
Proceedings on Privacy Enhancing Technologies ; 2021 (1):5–20

A K M Mubashwir Alam*, Sagar Sharma, and Keke Chen

SGX-MR: Regulating Dataflows for Protecting
Access Patterns of Data-Intensive SGX
Applications
Abstract: Intel SGX has been a popular trusted exe-
cution environment (TEE) for protecting the integrity
and confidentiality of applications running on untrusted
platforms such as cloud. However, the access patterns
of SGX-based programs can still be observed by adver-
saries, which may leak important information for suc-
cessful attacks. Researchers have been experimenting
with Oblivious RAM (ORAM) to address the privacy
of access patterns. ORAM is a powerful low-level prim-
itive that provides application-agnostic protection for
any I/O operations, however, at a high cost. We find
that some application-specific access patterns, such as
sequential block I/O, do not provide additional infor-
mation to adversaries. Others, such as sorting, can be
replaced with specific oblivious algorithms that are more
efficient than ORAM. The challenge is that developers
may need to look into all the details of application-
specific access patterns to design suitable solutions,
which is time-consuming and error-prone. In this pa-
per, we present the lightweight SGX based MapRe-
duce (SGX-MR) approach that regulates the dataflow of
data-intensive SGX applications for easier application-
level access-pattern analysis and protection. It uses the
MapReduce framework to cover a large class of data-
intensive applications, and the entire framework can be
implemented with a small memory footprint. With this
framework, we have examined the stages of data pro-
cessing, identified the access patterns that need pro-
tection, and designed corresponding efficient protection
methods. Our experiments show that SGX-MR based
applications are much more efficient than the ORAM-
based implementations.

Keywords: SGX-based data analytics, MapReduce,
Data flow regularization, Access Patterns, ORAM

DOI 10.2478/popets-2021-0002
Received 2020-05-31; revised 2020-09-15; accepted 2020-09-16.

*Corresponding Author: A K M Mubashwir Alam:
Marquette University, E-mail: mubashwir.alam@marquette.edu
Sagar Sharma: HP Inc., E-mail: sagar.shamra@hp.com
Keke Chen: Marquette University, E-mail:
keke.chen@marquette.edu

1 Introduction
With the development of resource-starving applications
in big data, artificial intelligence, and the Internet of
Things (IoT), cloud computing has become popular for
its storage, computation scalability, and accessibility.
However, when uploading data and conducting com-
putations in the cloud, data owners lose full control
of their data and must trust that service providers
can take care of security well. In practice, due to the
wide attack surface of the cloud software stack and the
unique co-tenancy feature [25], we have witnessed fre-
quent cloud security incidents. Practitioners using pub-
lic clouds have experienced at least one cloud-related
security incident, and more than 93% of organizations
are moderately or extremely concerned about cloud se-
curity. The challenge is how to improve cloud security
and make data owners more confident in using public
clouds.

Researchers have been experimenting with novel
crypto approaches, such as fully homomorphic encryp-
tion (FHE) [4] and secure multi-party computation
(SMC) [13, 20], to address this problem. However, such
pure software-based cryptographic solutions are still too
expensive to be practical. Their overheads in storage,
communication, and computation can be in many or-
ders of magnitudes higher than the plaintext solutions.
Recent advances in hybrid protocols, e.g., for machine
learning [20, 21, 29], strive to reduce the overall costs
of the frameworks by blending multiple crypto prim-
itives to implement different algorithmic components.
Although we have seen several close-to-practical solu-
tions [20, 29], they are specifically designed for a par-
ticular problem or algorithm and difficult to generalize
and optimize for new domains.

During the past five years, the trusted execution
environment (TEE) has emerged as a more efficient
approach to addressing the performance and usability
issues in secure outsourced computation. It provides

SGX-MR 6

hardware support to create an isolated environment
within the cloud server that cannot even be compro-
mised by adversaries who control the entire system soft-
ware stack, including the operating system. Intel Soft-
ware Guard Extension (SGX) [8] is probably the most
well-known TEE hardware and SDK implementation.
Since 2015, SGX has been available in most Intel CPUs.
Using SGX, a user can run their sensitive computations
in a TEE called enclave, which uses a hardware-assisted
mechanism to preserve the privacy and integrity of en-
clave memory. With SGX, users can pass encrypted data
into the enclave, decrypt it, compute with plain text
data, encrypt the result, and return it to the untrusted
cloud components.

SGX aims to protect the confidentiality and in-
tegrity of the in-enclave data, code, and computation.
While it provides much better performance than expen-
sive pure software-based crypto approaches, it leaks in-
teractions and access patterns between the untrusted
area and the enclave. Recent studies [10, 27, 36] show
that some data access patterns may reveal application-
level information to adversaries, even though the data
blocks on the untrusted memory are encrypted. Thus,
several efforts [1, 27] adopt the concept of oblivious
RAM (ORAM) [12] to address the access-pattern leak-
age problem. While ORAM is a generic solution cov-
ering all types of SGX applications by protecting each
I/O access, it incurs high costs. With the state of the
art ORAM schemes so far [32, 33], each block access
still comes with an additional O(logN) overhead, with
N numbers of blocks in the pool. Furthermore, for data-
intensive applications, the data to be processed is nor-
mally larger than the limited physical enclave memory
(i.e., the Enclave Page Cache) [8]. Thus, page swapping
happens frequently, which can be precisely captured by
adversaries via observing page fault interrupts [31] to
infer the access pattern of sensitive data.

1.1 Scope of Our Research

While ORAM provides a generic primitive for hiding
data access patterns for all I/O operations, we find
that it is unnecessary to hide sequential, uniform, and
completely random I/O patterns, especially for data-
intensive applications. For example, sequentially read-
ing or writing a block file does not reveal additional in-
formation about the file content. However, the ORAM
based I/O interface does not distinguish the different
types of application patterns to treat them differently.
Developers can certainly carefully examine each step

in their applications to decide to use (or not to use)
the ORAM operation. However, it is time-consuming
and error-prone. Developers who are not familiar with
the access-pattern attacks may accidentally mishandle
or simply overlook some I/O accesses. We hypothesize
that for many data-intensive algorithms, e.g., data min-
ing algorithms, regulating the dataflow of the application
and focusing on protecting specific access patterns can
be more efficient than using the ORAM primitive for all
I/O accesses. We propose a framework: SGX-MR to au-
tomatically regulate the data flow of data-intensive ap-
plications and protect access patterns without depend-
ing on the expensive ORAM primitive or scrupulous ex-
amination and design by developers. The proposed ap-
proach protects not only the data access patterns from
the untrusted memory but also record-level access pat-
terns within the enclave threatened by page-fault at-
tacks [31]. SGX-MR provides all of these benefits while
keeping the low-level details transparent to the develop-
ers.

Our idea is to take the MapReduce framework [9]
to regulate data-intensive SGX application dataflows,
and then examine the stages of MapReduce process-
ing to address their access pattern leakages. This ap-
proach has several advantages. (1) Since the dataflow
in MapReduce processing is fixed for all MapReduce
applications, it is more efficient for us to analyze each
stage’s access pattern, identify possible access-pattern
leakages, and apply more efficient oblivious methods
than ORAM. Using this systematic approach, it is pos-
sible to cover a large number of potential applications.
(2) The MapReduce framework is easy to use and has
been applied to numerous data-intensive problems, e.g.,
data mining [18], machine learning [6], text processing
[16], and basic statistics. Researchers and practitioners
have accumulated extensive experience [6, 17, 18] for
solving most data analytics problems with the MapRe-
duce framework during the past decade. Furthermore,
Roy et al. [26] also show that certain types of aggre-
gate reducers with user-defined mapper functions will
be sufficient to support a large class of data mining al-
gorithms, including clustering, predictive modeling, and
recommenders. SGX-MR strategically uses this finding
to facilitate a wide range of data analytics while leverag-
ing SGX’s features in solving the related confidentiality
and integrity concerns. Therefore, SGX-MR1 provides

1 SGX-MR does not support the join operation yet, which will
be examined for full performance and privacy guarantee in the
future.

SGX-MR 7

a versatile framework/tool for developers to implement
wide range of data mining algorithms without having
to worry about confidentiality and integrity concerns.
Note that it is well known that applications requiring
random accesses of data or low latency processing may
not match the design purpose of MapReduce. Accord-
ingly, SGX-MR will not be a good candidate for such
applications.

We have carefully designed the whole SGX-MR
framework2 to minimize the attack surface [30] and
achieve the best performance as possible. Specifically,
our research has the following contributions.
– We have implemented the lightweight SGX-MR

framework that is flexible to adapt to the restricted
enclave memory, data volume, and computation
complexity.

– We have carefully studied both the access patterns
outside and inside the enclave during each stage of
the SGX-MR framework and designed robust miti-
gation methods to prevent access pattern leakages.

– We have conducted extensive component-wise ex-
periments to understand the cost and performance
of the SGX-MR framework with the ORAM based
SGX approach. The result shows that SGX-MR can
be several times faster than ORAM based solutions.

In the remaining sections, we will first give the back-
ground knowledge for our approach (Section 2), then
dive in the details of the proposed approach (Section 3),
present the evaluation result (Section 5), and described
the closely related work (Section 6).

2 Preliminary
We will present the related background knowledge be-
fore we dive into our approach, including the way
SGX manages the enclave memory and related issues,
the ORAM approach to addressing the known access-
pattern attacks, and a brief introduction to MapReduce
framework.

2.1 Enclave Memory Management

Due to the hardware implementation cost, Intel SGX
only reserves 128 MB of physical memory, known as

2 We will open-source the SGX-MR framework after we finalize
the development.

Processor Reserved Memory (PRM). A certain portion
of PRM has been used for maintaining SGX’s internal
operations. The remaining portion, about 90MB known
as the Enclave Page Cache (EPC), can be used by the
enclave programs. In the Linux systems, SGX can uti-
lize the Linux virtual memory management for enclave
programs, which can thus access a much larger virtual
memory address space with contingency for potential
page-faults. When a page-fault interrupt happens, the
SGX driver will encrypt the selected EPC page and
swap it out to the untrusted memory area. This mem-
ory management brings two concerns. First, since the
SGX driver mostly uses the kernel’s functions for page-
fault handling, which an adversarial kernel can manip-
ulate to issue targeted page-fault attack [31]. Shinde et
al. [31] have shown such an attack can help adversaries
learn the in-enclave access patterns over the EPC pages.
Second, It is unknown how efficient the inherent SGX
virtual memory management works in applications. Ar-
nautov et al. [2] show system-managed EPC page swap-
ping incurs significant costs when handling data larger
than the limit of enclave memory. We have also exper-
imentally confirmed this observation. We also designed
a block-buffer based application memory management
to minimize the memory access pattern. However, due
to the large processed data, the application-managed
buffer also needs frequent swapping out blocks explic-
itly, showing no significant performance advantage over
implicit system page swapping, as we show in experi-
ments. Thus, for simplicity, a data-intensive application
can just use the system virtual memory mechanism, e.g.,
by setting a sufficiently large enclave heap size. This also
gives some flexibility for handling other issues like large
objects.

2.2 Access-Pattern Based Attacks and
ORAM for SGX

When encrypted messages are either accessed from
memory or exchanged via the network, an adversary
can observe the dataflow and possibly extract sensi-
tive information. Cash et al. [5] and Zhang et al. [35]
have shown how an adversary can extract the con-
tent of encrypted documents by leveraging access pat-
tern leakages. Ohrimenko et al. [22] have also demon-
strated how sensitive information, such as age-group,
birthplace, marital status, etc., can be extracted from
MapReduce programs by only observing the network
flow and memory skew.

SGX-MR 8

a

b

c

d

retrieved
block

Trusted MemoryUntrusted Memory

Accessing every node from path to
hide the actual position of the block

a
b
c
d

Fetching
Path

Fetched
Path

CMOV

ORAM Tree

Fig. 1. Oblivious block retrieval from the ORAM Tree. The entire
path containing the target block is loaded into the enclave to
hide the access pattern. Furthermore, the CMOV instruction is
used to hide the in-enclave access of the target block to address
the page-fault attack.

While SGX can protect the content in the enclave
memory from an adversarial OS, it does not provide a
systematic mechanism to protect against access pattern
leakages. When the program inside the enclave accesses
the untrusted memory, the adversarial OS can always
monitor the accessed memory addresses. Furthermore,
adversaries can modify the virtual memory management
mechanism to manipulate the page-fault interrupt gen-
eration to figure out in-enclave page access patterns [31].

Consider an example where a pharmaceutical com-
pany wants to find top sold items last month by ana-
lyzing the daily transactions in the cloud. As sales in-
formation is sensitive, they do not want to reveal any
statistics from the transactions. Hence in a secure set-
ting, data remains encrypted in untrusted memory and
only decrypted in a trusted enclave during computation.
A simple way is to use Hashmap to collect the counts
of sold items: each item is mapped to a key, which is
associated to a key-count pair located at a fixed mem-
ory address; each time an item is observed, the corre-
sponding memory address is visited to update the cor-
responding count. Without access pattern protection,
an adversarial OS can observe the memory page access
pattern, which can be used to infer the number of a
certain item accesses. This access pattern can be used
to estimate the number of medicine types, the count of
certain medicine, and the total number of sold items.

Researchers have applied the idea of Oblivious RAM
(ORAM)[12] to protect the block-level access patterns
for SGX applications [1, 27]. ORAM primarily re-
trieves multiple memory blocks in a path and then ran-
domly shuffles memory blocks periodically to disguise
read/write access patterns on encrypted data blocks,
where an adversary cannot learn additional informa-
tion by observing memory access patterns. ORAM was

originally developed for theoretical treatment for soft-
ware protection[12], and then actively studied for pro-
tecting remote access patterns for cloud-based appli-
cations [32, 33] to address the privacy concerns with
untrusted cloud service providers. By leveraging the
ORAM construction, SGX applications can protect the
access pattern of untrusted memory from the adversarial
OS. The current SGX ORAMmethods also partially ad-
dress the in-enclave page-fault attack on ORAM-related
operations. As shown by Figure 1, the popular SGX
ORAM solutions, such as ZeroTrace [27] and Obliviate
[1], utilize the most efficient Path ORAM [32] or Circuit
ORAM [33], which uses a tree structure and paths from
the root to the leaves to hide the actual accessed block.
The tree and data blocks are maintained in the un-
trusted area. Once the path containing the target block
is identified, it is loaded into the enclave for the enclave
program to extract the target block. However, adver-
saries may monitor page faults to figure out which block
in the path is finally accessed. CMOV instruction[23, 24]
is a CPU instruction that moves the source operand to
destination if a conditional flag is set. Regardless the
flag is set or not, the source operand will be read. There-
fore, the occurrence of page fault cannot be used to infer
whether the source is copied to the destination or not.
A simplified example is shown as follows:

//if (a < b) x = a else x = b
CMOVL x, a
CMOVGE x, b

Consider a and b as two sources we want to protect (e.g.,
the blocks in the ORAM path, as shown in Figure 1).
We want to hide the actual access pattern, say, copying b
to the buffer x. If the comparison result is true, the copy
happens with the CMOVL (move if less) line, otherwise
with the CMOVGE (move if greater or equal) line. For
both lines, the sources a and b are read regardless of the
condition is true or not. As the ORAM controller’s vital
data structures, such as the position map and stash, will
be kept inside the enclave, the in-enclave access patterns
about the position map and stash may also be under the
page-fault attacks. Similar approaches have been used to
hide these data-dependent page access patterns. How-
ever, as a lower level block I/O interface, SGX ORAM
cannot address application-specific page-fault attacks.

SGX-MR 9

2.3 MapReduce

MapReduce[9] is a popular programming model and also
a processing framework, designed to handle large-scale
data with a massively-parallel processing infrastructure.
It has several major computation phases: map, optional
combiner, shuffle and reduce. The input data is split
into fixed-size blocks. Running in parallel, each Mapper
takes the user-defined “map” function to process one as-
signed data block and converts it to key-value pairs. An
optional combiner can be used to pre-aggregate the map
outputs, if hierarchical aggregation works for the reduce
function. Then, all output key-value pairs of mapper
(or combiners if they are used) are sorted, grouped, and
partitioned individually for Reducers to fetch. Each Re-
ducer then fetches the corresponding share of Map (or
Combiner) output in the shuffling phase. After collect-
ing all shares, each Reducer sorts them. Finally, each
Reducer applies the user-defined reduce function to pro-
cess each group of key-value pairs to generate the final
result. In both map and reduce phases, multiple pro-
cesses (Mappers and Reducers) are run in parallel on
distributed computing nodes to achieve high through-
puts. Noticing the regulated dataflow in MapReduce
processing and the extensive experience in developing
MapReduce applications accumulated during the past
few years [6, 17, 18], we decide to apply this process-
ing framework to the SGX-based data-intensive appli-
cations. By addressing the access pattern leakages in
this framework, we can protect a large number of appli-
cations using our SGX-MR framework.

3 The SGX-MR Approach
Starting with an analysis of the typical data flow for
data analytics algorithms in the SGX enclave con-
text, we present the SGX-MR framework to integrate
MapReduce processing into the SGX enclave environ-
ment. Then, we describe the target threat model and
analyze possible access pattern leakages under the SGX-
MR framework. We will design mitigation methods to
address these access pattern leakages.

3.1 Features of SGX-Based Data
Analytics Algorithms and Threat
Model

Typical data analytics applications handle datasets
much larger than the enclave memory and often they
are sequentially scanned in multiple iterations. Using
SGX for data analytics applications has several unique
features. For simplicity, datasets are often organized in
encrypted blocks and stored in a block-file structure. For
security reasons, the SGX enclave program that runs in
the protected EPC area cannot access the file system
APIs directly. When processed, they are first loaded
into the main (untrusted) memory, and then passed
to the enclave via SGX APIs. Encrypted data blocks
will be decrypted and processed inside the enclave. In
this process, there are two security challenges. (1) Ad-
versaries can observe the interactions between the un-
trusted memory and the enclave. Thus, preserving this
access pattern is essential, which has been addressed
by ORAM-based approaches, but appears too expen-
sive. (2) Large data processing in enclave will inevitably
cause data spill out, either handled implicitly by the
system’s page swapping mechanism, or explicitly by ap-
plications, e.g., via buffer management. Adversaries can
also observe or even manipulate page faults to obtain
in-enclave access patterns.

Threat Model. Based on the analysis of the fea-
tures of SGX-based data analytics algorithms, we derive
the following threat model. 1)An adversary may com-
promise the operating system and any hypervisor of the
host running the SGX applications. However, it can-
not compromise the SGX hardware and enclaves. 2)The
adversary may observe all of the data, program execu-
tions, and memory management of the system outside
the SGX enclaves. It can thus analyze and detect inter-
action patterns between SGX enclave process and the
untrusted memory. 3) A malicious adversary may tam-
per the application data and program running in the
untrusted memory. 4) A powerful adversary may manip-
ulate the data and program execution in the untrusted
memory to force page faults within enclave to obtain
in-enclave memory access patterns. 5) Denial-of-service
and the side-channel attacks based on power analysis,
or timing attacks [11], are out of the scope of this paper.

We refer to the basic SGX mechanism [8] for in-
tegrity and confidentiality protection. We encrypt the
code and data in the untrusted region of our frame-
work with sgx_crypto, a cryptographic library provided
by Intel SGX SDK with robust security protection. We
design the MapReduce framework and associated algo-

SGX-MR 10

SGX -MRUntrusted

 Map()
 Combine()
 Reduce()

Block Data
Manager

Encrypted
Files Data-Block In MR

Controller

Crypto
Module

Oblivious
Sort

Data-Block Out

SGX-MR
Initiator

Memory

Block 2

Block n
...

Block 1

Fig. 2. High-level diagram of SGX-MR: shaded modules or mem-
ory either executed in the enclave or remain encrypted.

rithms in such a manner that the page-fault attacks in-
side the enclave and the enclave’s access patterns to the
untrusted memory are oblivious from the adversary.

3.2 Design of SGX-MR

According to the SGX working mechanism and features
of data-intensive applications, we partition the entire
framework into two parts, i.e., the trusted (enclave) and
untrusted parts. Figure 2 shows the components. The
untrusted part contains the user-uploaded encrypted
data and the small block I/O library. The remaining
components of the SGX-MR framework reside in the
enclave.
– Untrusted Part. Since the data and the I/O li-

brary are in the untrusted area, our design needs
to address both their confidentiality and integrity.
We design a block file structure for encrypted data
on disk and in the untrusted memory area. For sim-
plicity, we assume that data records have a fixed
size. Both block size and record size are tunable
by the user based on the specific application. Each
block also contains a message authentication code
(MAC) to ensure data integrity. The whole block
is encrypted systematically using the AES Counter
(CTR) mode functions in the SGX SDK. To mini-
mize the attack surface, we design the library run-
ning in the untrusted part to handle only block I/O,
and a verification function inside the block data
manager in the enclave to capture any adversarial
modification on the loaded data blocks.

– Enclave Part. The SGX-MR controller handles
MapReduce jobs and controls the dataflow of the
application. Users only provide the map(), re-
duce(), and combine() functions to implement the
application-specific processing. For simplicity, we
will focus on the aggregation-style combine and

Sort

Data Block
/page

Untrusted Memory

Enclave Memory

Combiner

Data Block
/page

Data Block
/page

Data Block
/page

Map Reduce

Iterative
Processing

Fig. 3. Regulated dataflows between enclave and main memory

reduce functions, such as COUNT, MAX, MIN,
SUM, TOP-K, etc., which have been shown suf-
ficient to handle many data analytics tasks [26].
Remarkably, with our careful design, the binary
of the whole SGX-MR framework (without the
application-specific map, combine, and reduce func-
tions) takes only about 1.1MB physical memory.
With the manually managed memory, we can also
work with EPC memory as small as 3–4 blocks. The
block size may depend on the specific application
(we use block sizes varying from 2 KB to 2 MB for
both WordCount and kMeans application in our ex-
periment).

3.2.1 Dataflow Regularization in SGX-MR

With a basic understanding of the components in SGX-
MR, we describe how the application dataflow is reg-
ulated, which helps simplify access-pattern analysis
and protection. While the original MapReduce is de-
signed for parallel processing, Figure 3 sketches how
the dataflow regulated by the MapReduce processing
pipeline and processed sequentially in SGX-MR, and
the interactions between the enclave and the untrusted
memory. First of all, input files are processed by the
data owner, encoded with the block format via a file
encoding utility tool, and uploaded to the target ma-
chine running the SGX-MR application. Second, within
a MapReduce job, all file access requests from the en-
clave (i.e., mapper reading and reducer writing) have
to go through the SGX-MR block I/O module running
in the untrusted memory area. Third, the intermediate
outputs, e.g., of the Map, Combiner, and Sorting phases,
can also be spilled out either by application buffer man-
ager or system’s virtual memory manager, in encrypted
form.

Specifically, after the job starts, the Map module
will read encrypted data blocks sequentially from the
untrusted memory area, decrypt them, and apply the
user-provided map function to process the records iter-

SGX-MR 11

atively, which generates the output in key-value pairs.
Note that the formats of both the input records and the
generated key-value pairs are defined by users for the
specific application (for readers who are not familiar
with MapReduce programming, please refer to Section
2 and the original paper [9]). The controller accumu-
lates the generated key-value records until they fill up a
block, and then sort them by the key. With strictly man-
aged memory, the filled data block will be written to the
untrusted area temporarily. If we depend on the virtual
memory management, the filled data blocks will stay
in the enclave memory and swapped out by the system
when needed. We have evaluated both options in experi-
ments and found that application-managed memory has
performance advantages. Since we have restricted the
reducer functions to a set of hierarchically aggregatable
functions (i.e., aggregates can be done locally and then
globally), we also design their combiner functions for
local aggregation. For example, for the COUNT func-
tion, the combiner will generate the local counts for a
key, say ki: ((ki, c1), (ki, c2), . . . , (ki, cm)) if there are m
mappers. The reduce phase will get the final counts of∑m

j=1 cj . The inclusion of combiner has two benefits:
(1) it can significantly reduce the cost of the most ex-
pensive phase: sorting, and (2) it can indirectly address
the group size leakage problem in the reduce phase that
will be discussed later.

The Combiner outputs will go through the sorting
phase, where the sorting algorithm will sort all key-value
pairs into groups uniquely identified by the key. The
Reduce phase then iteratively processed the groups of
key-value pairs identified by the key.

Like the Map phase, key-value pairs stored in blocks
will be handled sequentially in the Reduce phase. Specif-
ically, the user-selected reduce function from the library
takes a group of records with the same key and gener-
ates aggregated results. For all the aggregation functions
we mentioned earlier, a sequential scan over the group
will be sufficient to generate the aggregates. The aggre-
gate of each group is also in the form of key-value pairs,
which are accumulated in data blocks, encrypted, and
written back to the untrusted area. The above described
dataflow keeps the same for all applications that can be
cast into the MapReduce processing framework. Now,
by specifically addressing the potential access-pattern
leakages in the MapReduce data flow, we can effectively
protect a broad category of data-intensive SGX appli-
cations from access pattern related attacks.

3.2.2 Block Design

We fix the record size and records per block to avoid
variable length records leaking additional information.
Active adversaries can observe the record-level access
pattern via page-fault attacks, which allows them to
identify record length. Fixed-length records can effec-
tively address this problem, with a cost of padding for
short records. One may concern about the efficiency of
handling extra-large record that exceeds the limit of the
physical enclave memory (e.g., > 100 MB) . We admit
the padding will take a significant extra cost, but the
limit of enclave memory may not be a concern. By ad-
justing the enclave heap size to sufficiently accommo-
date blocks, the system’s virtual memory management
can handle well — in this case, we prefer not using the
application-managed buffer. Experiments have shown
the performance difference between different memory
management strategies is ignorable.

3.2.3 Integrity Guarantee

While SGX assures the integrity of enclave memory,
both code and data that reside in untrusted memory
remain vulnerable and can be modified. SGX-MR mini-
mizes untrusted execution that was only used for storing
and retrieving block data from untrusted memory. The
integrity of the untrusted execution will be verified in-
side the enclave.

We consider three possible attacks to integrity: (1)
modify a block, (2) shuffle a block with another block
in the same file, and (3) insert a block from a different
file (or a phase’s output that is encrypted with the same
key). To address all the attacks, we include the follow-
ing attributes in the block: (i) Block ID, so that block
shuffling can be identified, (ii) File Id, so that no block
from different files can be inserted, and (iii) the block-
level Message Authentication Code (MAC). At the end
of each block, a MAC is attached to guarantee the in-
tegrity of records, before the whole block is encrypted.
We also use the randomized encryption using AES-CTR
encoding to make sure the same block will be encrypted
to a totally non-distinguishable one so that adversaries
cannot trace the generated results in the MapReduce
workflow. A simple verification program runs inside the
enclave that verifies the IDs and MAC, after reading
and decrypting a block.

SGX-MR 12

Merge

R1 R2 R3 R4 R4 <= L1

L1 L2 L3 L4R1 R2 R3 R4

L1

Blocks

Fig. 4. Access-pattern leakage in MergeSort by observing the in-
teractions between the enclave program and the untrusted mem-
ory. If R4 ≤ L1, then the Merge Phase reads R1 to R4 one by
one to write sorted output and then reads L1 to L4. By observing
this reading pattern (movement of the pointers), the adversary
will learn that the entire right sub-list is smaller than the left sub-
list.

4 Access-Pattern Leakages and
Mitigation Methods

Based on the SGX-MR dataflow analysis, we can iden-
tify several critical data access patterns pertaining to
different phases: Map’s input, intermediate process-
ing, combining, and output; Shuffling/Sorting’s input,
sorting, and output; and Reduce’s input, aggregation,
and output. Among these access patterns, Map’s in-
put and Reduce’s output involve only sequential block
reads/writes. Thus, individually they do not leak ad-
ditional information except for input and output file
sizes (i.e., the number of blocks). However, Reducer’s
output, if observed synchronously with its input, may
reveal some information as we show in the following. In
this section we examine the access pattern leakages in
different stages of SGX-MR and discuss the mitigation
methods. First, we described leakage in sorting, followed
by leakages by page faults, and finally the leakages in
the reducing phase of the framework.

4.1 Leakage in Sorting

We start with the most expensive part of the whole data
flow - the Sorting phase. Traditionally, the MapReduce
framework adopts the MergeSort algorithm for its sim-
plicity. As the shares of Map(or combiner)-output have
been sorted individually, MergeSort only needs to merge
the sorted shares. However, as we show next, it leaks vi-
tal information about the records under sorting.

If we look at the block-wise merge process care-
fully, we can identify some unusual merging behaviors,
which reveals some sensitive attributes of the processed
records. Starting from the records in each block sorted

by the Map phase, the main body of MergeSort is to
merge and sort two individually sorted lists of records
recursively until all records are sorted. Assume the two
merged lists contain the records {Li} and {Rj}, respec-
tively, as shown in Figure 4. If one of the lists has all the
values larger (or less) than the other, the corresponding
access pattern will be continuously reading the blocks in
one list first, followed by the whole list of the other. This
pattern may leak sensitive information for real applica-
tions. For example, in the WordCount program, adver-
saries might be able to guess the frequencies of words
and derive the word distribution.

Mitigation Methods. This access pattern prob-
lem involves two parts: block-level pattern in untrusted
memory and the page-level pattern in enclave memory.
In the following, we address the block-level patterns only
with oblivious sorting algorithms [3]. The in-enclave
page-level patterns will be discussed later. By defini-
tion, regardless of the actual values in the sorted list,
an oblivious sorting algorithm will take the fixed identi-
cal access pattern that is only determined by the size of
the list. In the SGX-MR framework, we implement the
well-known BitonicSort [3] algorithm (See Fig 5. Note
that BitonicSort takes O(N(logN)2) block accesses for
N blocks, compared to MergeSort’s cost O(N logN).
Our evaluation shows although it is more expensive than
MergeSort, the overall cost is still significantly less than
MergeSort with ORAM-based oblivious I/O interface.

BitonicSort

S3 S4 S1 S2 S5 S8 S7 S6

S5 S6S1 S2 S3 S4 S7 S8

1 2 3 4

1 2 3 4

Sequence 1 Sequence 2

Identical Block
Access Patterns

Fig. 5. Uniform block access does not leak any pattern in Bitonic
Sort which is oblivious to the data in the blocks. The figure
shows the state of the sorting algorithm in the second iteration
of sorting

4.1.1 In-Enclave Page-Access-Pattern Leakage

As previously discussed, enclave execution is vulnerable
to the page-fault attack [31]. Since the in-enclave pro-

SGX-MR 13

cessing is around records, we look at the related record
processing. First, the page-fault attack does not provide
additional information for sequential record accesses in
executing the map function and the reduce aggregation
function. However, we do find some non-sequential in-
enclave access patterns that need to be protected from
page-fault attacks. They include the in-enclave sorting
part of the Sorting phase and the map-output sorting
(when a block is filled up) before combining. The repet-
itive page accesses for the same data block reveal the
ordering of records in a pair of blocks, a similar scenario
to Figure 4, but happening at the page level.

Mitigation Methods. At first glance, we can just
use the BitonicSort algorithm to hide the record-level
access pattern (as a result of page-level access leakage)
inside the enclave. However, this is insufficient, as the
core operation of this in-enclave BitonicSort, compare-
and-swap, can still be captured by observing the se-
quence of page faults and used to reveal the relative
ordering between pair of records. The following code
snippet shows how possibly the access pattern is asso-
ciated with the record order.

if (a >= b){
// swap a and b, and
// the page access can be observed.
}else{
// no page access.
}

To avoid this access-pattern leakage, we adopt the
oblivious swap operation applied to different scenarios
[7]. The basic idea is to use the CMOV instructions
to hide the page access patterns. The oblivious swap
operation indeed occurs high cost. We have observed
about 2 − 2.5× cost increase for finishing the Sorting
phase.

4.2 Leakage in Reducing

The Sorting phase will order key-value pairs by the key.
As a result, all pairs will be sorted into groups. The con-
troller will sequentially read the sorted blocks and trans-
fer the records containing the same key (i.e., a group of
records) to the reduce function. For aggregation-based
reduce functions, each group will be reduced to one key-
value pair. By observing the input/output ratio, adver-
saries may estimate group sizes, as shown in Figure 6 (if
Combiners are not presented). In extreme cases, multi-
ple blocks can be reduced into one record, which may

K2-V1 K2-V2 K2-V3 K2-V4 K2-V5 K2-V6 K2-V7 K3-V1 K3-V2 K3-V3

Input Blocks

Ouptut Blocks

Reduce

K2-V

Fig. 6. Group-wise aggregation in Reduce phase may leak group
sizes. K2 spread over three blocks. Thus, the access pattern will
be reading three blocks sequentially and then possibly writing out
one block.

lead to severe information leakage. For example, it leaks
the word frequencies for the WordCount program, which
helps estimate the word distribution that, in turn, can
be used to guess words.

Mitigation Methods. We consider a simple
method to address the group-size leakage problem. As
described in the previous section, the size difference be-
tween the Reducer’s input and output leaks the group
sizes. However, as we have made the Combiner compo-
nent mandatory in SGX-MR thanks to the restricted
types of reduce functions, it helps obfuscate the aggre-
gated result in the reduce phase. For example, without
Combiners, each record in the reduce phase corresponds
to one occurrence of a word (i.e., a key) in the Word-
Count program, and the group size reveals the frequency
of the word. With Combiners, each record entering the
Reduce phase may correspond to the pre-aggregate of
multiple records. Thus, counting the records in the Re-
ducer input does not give a good estimation of actual
group sizes. Note that we do not protect the combin-
ing process from page-fault attacks (e.g., the CMOV-
based method) for achieving better performance, which
will possibly expose partial group sizes. However, ad-
versaries cannot trace back the Reducer input to the
Combiner output to utilize the partial group size in-
formation because the oblivious sorting phase between
them breaks the link entirely. A concern is whether
the frequency of such combiner-output records still pre-
serves the ranking of actual group sizes. The intuition
is that the key of a large group may be presented in
more map outputs than a key of a small group. We
analyzed the observed group size after adding combin-
ers to check whether the size ranking is till preserved.
Figure 14 for WordCount and Figure 15 for kMeans
both show the ranking of group sizes is not preserved

SGX-MR 14

at all. To completely address the possible ranking leak-
age, we can further take one of the two candidate ap-
proaches: (1) injecting dummy key-value pairs by Com-
biners, e.g., adding (key, 0) for non-presented keys in the
Combiner output for the COUNT function, or (2) dis-
guising the reduce patterns by padding the output block
with dummy records, e.g., every time an input block is
scanned, output a padded block, regardless of whether
or not the actual aggregation happens. In the following,
we describe the second method in more detail.

load a block;
for each record in the block

if (the end of the group)
write the aggregate record

else
write a dummy record

write the output block

The above process shows the dummy record writ-
ing process. Note that all the records will be encrypted
and thus non-distinguishable. The concern is that the
page-fault attack can catch the execution of the if-else
branch, which leaks the information of writing aggre-
gate or dummy record. To address this problem, we also
apply the CMOV protection here. Another problem is
the increased size of output due to the added dummy
records, which can be a significant cost for applications
like kMeans that have only a few aggregated records
generated. We apply an additional bitonic sorting over
the padded blocks and extract top-k elements to get
rid of the dummy records, so that the group size rank-
ing is still oblivious to adversaries. In experiments, we
will evaluate the additional costs associated with this
method.

5 Experimental Evaluation

5.1 Experiment Setup

SGX-MR is implemented with C++ and the Intel SGX
SDK for the Linux environment. Our core framework
consists of only about 2000 lines of code. The entire
SGX-MR framework runs inside the enclave, except a
small component in the untrusted area that handles
block-level read/write requests from the enclave. The
compiled framework without the application code takes
about 1.1MB. To match the design specification, we
have implemented a customized bitonic sort that works

with block-level accesses in the untrusted memory. To
protect record level access patterns in the enclave, we
also apply the bitonic merge operation to obliviously
merge in-enclave blocks. Furthermore, we hide the con-
ditional swaps and sensitive branching pattern by lever-
aging CMOV instructions. As described in section 4.2,
we have implemented mandatory combiners to obfus-
cate the actual group sizes for the selected aggregators.
The experiments were conducted on a Linux machine
with an Intel(R) Core(TM) i7-8700K CPU of 3.70GHz
processor and 16 GB of DRAM. We use ZeroTrace’s
open-source implementation for our experiments. We
use 128-bit AES-CTR encryption to encrypt the data
blocks in the untrusted memory.

Sample Applications. We use two sample ap-
plications in our evaluation: WordCount and KMeans.
WordCount takes a document collection and output
the frequency for each word. It is an essential tool for
language modeling and has been included in various
tutorials as an example of data-intensive processing.
KMeans [14] is a fast, simple clustering algorithm. It
takes the initial cluster centroids and iteratively con-
ducts the two steps: (1) cluster membership assignment
for each record and (2) the centroid re-computation, un-
til the clustering converges, where the centroids (or all
records’ cluster membership) do not change anymore.
In all KMeans related experiments, we only execute one
iteration of this learning process.

Baseline Implementation. To compare SGX-MR
with ORAM-based approaches, we have implemented
ORAM-based sample applications without depending
on the MapReduce framework. In most data analytics
programs, aggregating by groups is one of the most ex-
pensive core operations. It can be implemented with
either hashing or sorting (as in the MapReduce work-
flow). With ORAM based access-pattern protection, one
may wonder whether hashing can be more efficient for
enclave-based programs. However, processing hash table
in enclave creates page-level pattern [15, 19]. For exam-
ple, to update a hash value, we must access the position
of the particular hash key and update its value list. An
adversary can observe this access pattern and possibly
figure out the group size that ORAM cannot help. A few
recent studies have noticed the problems with enclave
based hashtable. Taehoon et al. [15] propose a key-value
data-structure for extensive data, but it still leaks the
access pattern of the encrypted keys on a hash table.
Mishra et al. [19] propose an ORAM based key-value
data structure to fully address the access pattern leak-
age. However, it takes O(N) complexity to find a key in
a worst-case scenario, and it will take O(N2) computa-

SGX-MR 15

3,000 9,000 15,000 21,000

105

104

103

102

101

Number of Blocks

E
xe
cu
tio

n
T
im

e(
m
s)

ORAM Block Access
Sequential Access in SGX-MR

Fig. 7. For sequential access over data ORAM incurs significant
cost overhead compared to SGX-MR.

0 2,000 4,000 6,000

106

105

104

103

102

101

Block Size

E
xe
cu

tio
n
T
im

e(
m
s)

ORAM Block Access
Sequential Access in SGX-MR

Fig. 8. Effect of different block size on ORAM and SGX-MR
sequential access, with a fixed file 30 MB.

tional cost to find the aggregated results. On the other
hand, MergeSort with ORAM and CMOV takes only
O(Nlog2N) to sort the records, and a consequent lin-
ear scan is sufficient to compute the aggregated results.
Thus, in our evaluation, we will take MergeSort with
CMOV protection for ORAM based baseline implemen-
tations to efficiently address both block and page level
attacks.

5.2 Performance of Core Operations

Block Access. We started our evaluation with the ba-
sic operations to understand the sources of performance
gain for SGX-MR compared to ORAM. As sequential
block accesses do not provide valuable access-pattern
information to adversaries, ORAM protection is unnec-
essary. Figure 7 shows that ORAM protected block ac-

0 5,000 10,000 15,000 20,000

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

Number of Blocks

E
xe
cu

tio
n
T
im

e
(m

s)

Merge Sort + ORAM
Bitonic Sort in SGX-MR

Fig. 9. MergeSort with the ORAM block I/O results in signifi-
cantly higher costs than a dedicated oblivious sorting (e.g., Biton-
icSort) in SGX-MR. Note: block size = 1 KB.

cesses can be 1000x slower than those without protec-
tion. As SGX-MR’s input, output, and some interme-
diate steps, are sequential block accesses, we can uti-
lize this feature to save a significant amount of cost.
Since block size is a critical application-specific factor,
we measured the impact of block size on performance.
Figure 8 shows that a larger block size can significantly
reduce the overhead of transferring the same amount
of data (30 MB) into enclave. While the block size is
increased from 1 KB to 6 MB, the execution time is re-
duced by about 50 to 100 times for both ORAM and
sequential access. Since the ORAM cost is affected by
the number of blocks, a larger block size reduces the
number of blocks and thus also benefits ORAM.

Sorting. Another key operation in our framework
is key-value record sorting. We have shown that it is nec-
essary to use oblivious sorting algorithms to protect the
important relationship between keys. We use MergeSort
in the ORAM setting and BitonicSort for SGX-MR in
the comparison. In both solutions, we also used CMOV-
based protection for page-fault attacks. Figure 9 shows
that BitonicSort under SGX-MR is much faster than
MergeSort with ORAM for the block I/O. While the
costs of both algorithms are asymptotically the same,
i.e., O(n log2 n), MergeSort+ORAM appears to have a
much high constant factor — it is about five times slower
when sorting 20,000 blocks.

Impact of Enclave Memory Management.
The physical memory allocated for SGX enclaves, called
Enclave Page Cache (EPC), is limited to a small size —
enclave applications can use only about 90 MB. How-
ever, the SGX Linux library can utilize the Linux vir-

SGX-MR 16

20 40 60 80 100

1

2

3

4

5
EPC Limit

Allocated Memory (megabyte)

E
xe
cu
tio

n
T
im

e
(µ
s)

Random Access
Sequential Access

Fig. 10. When allocated buffer size go beyond EPC limit, system-
managed memory incurs significant cost overhead for random
data access. Conversely, sequential access has negligible impact
on it.

0 50 100 150 200 250 300 350
0

2 · 105

6 · 105

1 · 106
1.2 · 106

1.6 · 106

Document Size (megabyte)

E
xe
cu
tio

n
T
im

e
(m

s)

System-Managed Memory
Application-Managed Buffer

Fig. 11. BitonicSort in SGX-MR costs for different memory man-
agement strategies. System-managed memory incurs small cost
overhead compared to application-managed Buffer.

tual memory management so that applications can ac-
cess the large virtual memory space. Thus, application
developers have two options: either entirely depending
on the enclave virtual memory management, or man-
ually managing a limited data buffer to minimize the
system intervention. Sergei et al. [2] noticed that when
the data size is small manually managed buffer can cost
less than the enclave virtual memory management as
it can reduce the number of unnecessary page swaps.
We revisited this issue and show that for sufficiently
large datasets (e.g., > 90 MB) these two strategies make
not much difference. Figure 10 confirms that page-fault
processing takes a significant amount of time. We con-
duct random block accesses over an array passed to
the enclave, which is copied to the enclave heap. When

the array size exceeds the limit of EPC size, the EPC
page fault handling mechanism is frequently called for
random accesses, which incurs higher costs. However,
when working with large data, swapping EPC mem-
ory by either buffer management or the system paging
does not make much cost different. Figure 11 compares
BitonicSort with a four-block buffer management strat-
egy, verses with all blocks loaded into a big array and
managed by the system. The cost difference is negligi-
ble. However, sometimes the application managed buffer
might be desired, e.g., to minimize the memory footprint
or better control memory swapping.

5.3 Costs of Access-Pattern Protection in
SGX-MR

We have discussed several mechanisms to protect the
specific access patterns in SGX-MR. In this section, we
design a set of experiments to fully understand how
these costs contribute to the entire processing costs.

Oblivious Sorting. Figure 12 shows the cost com-
parison with access pattern protection (i.e., Bitonic-
Sort) vs. without (i.e., MergeSort) for the WordCount
algorithm implemented with SGX-MR. SGX-MR with
BitonicSort is approximately seven times slower than
SGX-MR with MergeSort. Thus, this cost is significant.

0 50 100 150 200

3 · 106

6 · 106

9 · 106

1.2 · 107

Document Collection Size (megabytes)

E
xe
cu

tio
n
T
im

e
(m

s)

SGX-MR with BitonicSort
SGX-MR with BitonicSort + o-swap

SGX-MR with MergeSort

Fig. 12. SGX-MR with BitonicSort vs. with MergeSort. O-swap
uses CMOV to protect from page-fault attacks. Note: WordCount
with block size = 2 MB

In-enclave Page-Fault Attack protection.
Next, we evaluate the protection of the page-fault at-
tack on oblivious sorting. Previously, we have shown

SGX-MR 17

500 2,000 4,000 6,000

1 · 105

3 · 105

5 · 105

7 · 105

9 · 105

Block Size

E
xe
cu
tio

n
T
im

e
(m

s)

MergeSort + ORAM
SGX-MR: BitonicSort

SGX-MR: BitonicSort with o-swap

Fig. 13. Effect of block size on the cost of ORAM+MergeSort vs.
BitonicSort with/without o-swap.

that protecting access patterns from untrusted memory
is not enough. Even in enclave memory, page-level access
patterns reveal the order of the records in an oblivious
sorting algorithm. As described in section 4, we applied
the oblivious swap technique to protect the order of the
records within each block.

Fig. 12 and 13 show that, compared to
ORAM+MergeSort, the additional cost brought by
BitonicSort+o-swap is relatively small.

0 20 40 60 80 100100

101

102

103

104

105

Top 100 words ordered by frequency

W
or
d
Fr
eq
ue

nc
y

Actual Frequency
Observed Frequency

Fig. 14. Observed group sizes before (exactly mapped to word
frequencies) and after adding combiners for WordCount.

Protecting Group Sizes in Reducing. We have
mentioned that by using Combiners mandatorily in our
framework we can effectively protect from the group-
size-estimation attack in reducing. Figure 14 and 15
how Combiners’ outputs disguise the actual group sizes.
It’s well-known that combiners improve performance
as they can significantly reduce the number of records

1 2 3 4 5
0

1

2

3

4

5

Cluster Id

C
lu
st
er

Si
ze

lo
g 1

0

Actual Size
Observed Size

Fig. 15. Observed group sizes before (exactly mapped to the
cluster size) and after adding combiners for kMeans.

going to the Reduce phase. We achieved about ×2
and ×7 speedup for WordCount and KMeans respec-
tively. As our experiments showed, combiners are espe-
cially beneficial for applications with a small number
of keys such as KMeans. To further protect the pos-
sibly preserved group size ranking, we have also evalu-
ated the dummy-record padding method. Table 1 shows
the storage cost of dummy record padding method
and its post-processing cost to remove dummy records.
The padding will significantly increase the storage cost.
However, with the post-processing step, which approxi-
mately doubles the processing time of the Reduce phase,
the size goes back to the original one, which will not af-
fect the performance of future processing.

5.4 Application-Based Evaluation

Finally, we compare the SGX-MR and ORAM imple-
mentations for the sample applications. The SGX-MR
WordCount compiled code has around 1.6MB and the
KMeans code has around 1.5MB. Samples of the Yelp
review dataset3 are used for evaluating the WordCount
algorithm. The KMeans algorithm is evaluated with a
simulated two-dimensional dataset that fills 30 records
per 2 KB block and up to 10,000 blocks. We implement
the ORAM-based solutions with the original algorithms
(not in the MapReduce style) and use the ZeroTrace
block I/O interface for accessing data. As we discussed

3 https://www.kaggle.com/yelp-dataset/yelp-dataset

SGX-MR 18

Table 1. Additional Costs by Padding

Application Input Actual Output Padded Output w/o post-processing with post-processing
block block block ms ms

KMeans 10,000 1 1,662 33146 51606
WordCount 10,000 3,997 53,439 1022055 2029600

earlier, the ORAM-based baselines use an o-swap pro-
tected MergeSort for aggregating the records. Figure 16
and 17 show the overall costs according to the increased
data. Overall, the SGX-MR-based implementations for
both applications are significantly faster than ORAM-
based implementations (Table 2).

0 4 8 12 16 20
0

1 · 106

2 · 106

3 · 106

4 · 106

5 · 106

Document Size (megabytes)

E
xe
cu
tio

n
T
im

e
(m

s)

ORAM
SGX-MR

Fig. 16. Application Level Comparison of WordCount Problem

Table 2. Application Level Comparisons of SGX-MR and ORAM
for different applications. Block size = 2 KB, data size = 20 MB.

Application SGX-MR ORAM
(ms) (ms)

KMeans 33078 516634
WordCount 1022974 4821916

6 Related Work
There are several pieces of work related to our study.
The most popular technique for access-pattern protec-
tion would be Oblivious RAM [12]. During the past
years, the research on ORAM [32, 33] has been boom-
ing due to the rise of cloud computing and the privacy

0 4 8 12 16 20

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

Coordinate File Size (megabytes)

E
xe
cu

tio
n
T
im

e
(m

s)

Application Level Comparison of KMeans Problem

ORAM
SGX-MR

Fig. 17. Application Level Comparison of KMeans Problem

concerns over cloud data store. Tree-based Path ORAM
[32] and Circuit ORAM [33] are among the most efficient
schemes. ZeroTrace [27] uses both Path and Circuit
ORAM to address the access-pattern problem for SGX
applications. While using the most efficient implementa-
tion of ORAM, we show that ZeroTrace based block I/O
still takes a significant overhead over the regular block
I/O. Obliviate [1] also uses the Path ORAM scheme
to design the I/O interface for an SGX-based secure file
system. Similarly, the additional cost is significant. Both
schemes try to design a protection mechanism at the
block I/O level, providing a high level of transparency
to application developers. However, we argue that an
application-framework-level protection mechanism can
be more efficient.

Researchers also try to extend big data processing
platforms to take advantage of SGX. The basic idea is to
keep the codebase of current software, such as Hadoop
[9] and Spark [34], unchanged as possible, while moving
the data-processing parts to the SGX enclave. VC3 [28]
applied this strategy for modifying the Hadoop system.
It moves the execution of “map” and “reduce” functions
to the SGX enclave, while the upper-level functions such
as job scheduling and data management still stay out-
side the enclave. The most part of the Hadoop Java

SGX-MR 19

library is not changed at all. As a result, it achieves the
goal of processing encrypted sensitive data in enclaves,
but leaves other issues, such as access pattern protection
and computation integrity (for the components running
in the untrusted memory area), not addressed.

M2R [10] addresses the problem of access-pattern
leakage in the shuffling phase of VC3 and proposes to
use the oblivious schemes for shuffling. However, other
security problems are still not addressed. These top-
down approaches have the fundamental problem — un-
less the whole framework is re-implemented and moved
to the enclave, adversaries can easily attack the compo-
nents running in the untrusted area. Our work is entirely
different from these studies. We utilize the MapReduce
to regulate the application dataflow so that we can apply
access-pattern protection mechanisms to the framework
level. Opaque [36] tries to revise Spark for SGX. They
also focus on the data access patterns between comput-
ing nodes and illustrate how adversaries can utilize these
access patterns to infer sensitive information in the en-
crypted data. To protect the distributed data access pat-
terns, they provide four types of primitive oblivious op-
erators to support the rich Spark processing functionali-
ties: oblivious sort, filter, join, and aggregation. Noticing
the problem of computation integrity, they try to move
the job controller part, formerly in the master node,
to the trusted client-side and design an integrity verifi-
cation method to detect whether worker nodes process
data honestly. However, to reuse the most parts of Spark
codebase, it has the most of the system running in the
untrusted area, especially for worker nodes. Thus, the
local-level integrity guarantee and access-pattern pro-
tection might be insufficient. Mostly, it shares the same
fundamental problem with VC3 and M2R, as we men-
tioned.

7 Conclusion
ORAM has been a popular solution for protecting
access-pattern leakages in SGX-based applications. Yet,
it is still very expensive. Furthermore, since ORAM pro-
vides a protection mechanism for lower-level block I/O,
it cannot address the application-level access-pattern
leakage. We also notice that application-specific data
access patterns can take advantage of alternative obliv-
ious access techniques to improve performance. Thus,
we propose the SGX-MR framework to regulate the
dataflow with the MapReduce processing framework,
which works for a large class of data-intensive applica-

tions. The regulated dataflow allows us to analyze the
access pattern leakages at each stage and develop so-
lutions for all applications implemented with the SGX-
MR framework. We have conducted extensive experi-
ments to understand the features of the SGX-MR. The
result shows that SGX-MR-based implementations of
data-intensive applications work much more efficiently
than ORAM-based implementations. We will continue
to optimize the phases of the SGX-MR framework to
achieve even better performance.

Acknowledgement
We thank our shepherd Claudio Soriente and all the
anonymous reviewers for their guidance and insight-
ful comments on improving this paper. This research
is partially supported by NIH (1R43AI136357) and the
Wright State Applied Research Corporation.

References
[1] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee. Obliviate: A

data oblivious file system for Intel SGX. In the Network and
Distributed System Security Symposium, 2018.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer. Scone: Secure linux containers with intel sgx.
In Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16, pages
689–703, Berkeley, CA, USA, 2016. USENIX Association.

[3] K. E. Batcher. Sorting networks and their applications.
In Proceedings of the April 30–May 2, 1968, Spring Joint
Computer Conference, AFIPS ’68 (Spring), pages 307–314,
New York, NY, USA, 1968. ACM.

[4] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic
encryption from ring-lwe and security for key dependent
messages. In Proceedings of the 31st Annual Conference
on Advances in Cryptology, CRYPTO’11, pages 505–524,
Berlin, Heidelberg, 2011. Springer-Verlag.

[5] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-
abuse attacks against searchable encryption. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, page 668–679, New
York, NY, USA, 2015. Association for Computing Machin-
ery.

[6] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, and
A. Y. Ng. Map-reduce for machine learning on multicore.
In Proceedings Of Neural Information Processing Systems
(NIPS), 2006.

[7] S. D. Constable and S. Chapin. libOblivious: A c++ library
for oblivious data structures and algorithms. In Electrical

SGX-MR 20

Engineering and Computer Science - Technical Reports. 184,
2018.

[8] V. Costan and S. Devadas. Intel sgx explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137–150, 2004.

[10] T. T. A. Dinh, P. Saxena, E. Chang, B. C. Ooi, and
C. Zhang. M2R: enabling stronger privacy in mapreduce
computation. In USENIX Security Symposium, pages 447–
462. USENIX Association, 2015.

[11] H. Gamaarachchi and H. Ganegoda. Power analysis based
side channel attack. CoRR, abs/1801.00932, 2018.

[12] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious ram. Journal of the ACM, 43:431–
473, 1996.

[13] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure
two-party computation using garbled circuits. In USENIX
Conference on Security, pages 35–35, 2011.

[14] A. Jain, M. Murty, and P. Flynn. Data clustering: A review.
ACM Computing Surveys, 31:264–323, 1999.

[15] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. Shieldstore:
Shielded in-memory key-value storage with sgx. In Proceed-
ings of the Fourteenth EuroSys Conference 2019, EuroSys
’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[16] J. Lin and C. Dyer. Data-intensive text processing with
MapReduce. Morgan and Claypool Publishers, 2010.

[17] D. Lyubimov and A. Palumbo. Apache Mahout: Beyond
MapReduce. CreateSpace Independent Publishing Platform,
2016.

[18] D. Miner and A. Shook. MapReduce Design Patterns:
Building Effective Algorithms and Analytics for Hadoop and
Other Systems. O’Reilly Media, 2012.

[19] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 279–296,
2018.

[20] P. Mohassel and Y. Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 19–38, 2017.

[21] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In IEEE Symposium
on Security and Privacy, pages 334–348, 2013.

[22] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious multi-
party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16), pages
619–636, Austin, TX, 2016. USENIX Association.

[23] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa. Oblivious multi-
party machine learning on trusted processors. In 25th
USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 619–636, 2016.

[24] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In Proceedings
of the 24th USENIX Conference on Security Symposium,
SEC’15, page 431–446, USA, 2015. USENIX Association.

[25] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in

third-party compute clouds. In Proceedings of the 16th
ACM conference on Computer and communications security,
pages 199–212, New York, NY, USA, 2009.

[26] I. Roy, S. T. V. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: Security and privacy for mapreduce.
In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages 20–20,
Berkeley, CA, USA, 2010. USENIX Association.

[27] S. Sasy, S. Gorbunov, and C. W. Fletcher. Zerotrace : Obliv-
ious memory primitives from intel SGX. In 25th Annual Net-
work and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018,
2018.

[28] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. Vc3:
Trustworthy data analytics in the cloud using sgx. In 36th
IEEE Symposium on Security and Privacy, 2015.

[29] S. Sharma and K. Chen. Confidential boosting with random
linear classifiers for outsourced user-generated data. In Com-
puter Security - ESORICS 2019 - 24th European Symposium
on Research in Computer Security, Luxembourg, September
23-27, 2019, Proceedings, Part I, pages 41–65, 2019.

[30] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Erad-
icating controlled-channel attacks against enclave programs.
In Network and Distributed System Security Symposium
2017 (NDSS’17). Internet Society, February 2017.

[31] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Pre-
venting page faults from telling your secrets. In Proceedings
of the 11th ACM on Asia Conference on Computer and
Communications Security, ASIACCS16, page 317–328, New
York, NY, USA, 2016. Association for Computing Machin-
ery.

[32] E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher,
L. Ren, X. Yu, and S. Devadas. Path oram: An extremely
simple oblivious ram protocol. Journal of the ACM, 65(4),
Apr. 2018.

[33] X. Wang, H. Chan, and E. Shi. Circuit oram: On tightness
of the goldreich-ostrovsky lower bound. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, page 850–861, New York,
NY, USA, 2015. Association for Computing Machinery.

[34] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association.

[35] X. Zhang, G. Li, and J. Feng. Crowdsourced top-k algo-
rithms: An experimental evaluation. Proc. VLDB Endow.,
9(8), Apr. 2016.

[36] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gon-
zalez, and I. Stoica. Opaque: An oblivious and encrypted
distributed analytics platform. In USENIX Symposium on
Networked Systems Design and Implementation, 2017.

	SGX-MR: Regulating Dataflows for Protecting Access Patterns of Data-Intensive SGX Applications
	1 Introduction
	1.1 Scope of Our Research

	2 Preliminary
	2.1 Enclave Memory Management
	2.2 Access-Pattern Based Attacks and ORAM for SGX
	2.3 MapReduce

	3 The SGX-MR Approach
	3.1 Features of SGX-Based Data Analytics Algorithms and Threat Model
	3.2 Design of SGX-MR
	3.2.1 Dataflow Regularization in SGX-MR
	3.2.2 Block Design
	3.2.3 Integrity Guarantee

	4 Access-Pattern Leakages and Mitigation Methods
	4.1 Leakage in Sorting
	4.1.1 In-Enclave Page-Access-Pattern Leakage

	4.2 Leakage in Reducing

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Performance of Core Operations
	5.3 Costs of Access-Pattern Protection in SGX-MR
	5.4 Application-Based Evaluation

	6 Related Work
	7 Conclusion

