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Abstract: Fueled by advertising companies’ need of ac-
curately tracking users and their online habits, web fin-
gerprinting practice has grown in recent years, with se-
vere implications for users’ privacy. In this paper, we de-
sign, engineer and evaluate a methodology which com-
bines the analysis of JavaScript code and machine learn-
ing for the automatic detection of web fingerprinters.
We apply our methodology on a dataset of more than
400, 000 JavaScript files accessed by about 1, 000 volun-
teers during a one-month long experiment to observe
adoption of fingerprinting in a real scenario. We com-
pare approaches based on both static and dynamic code
analysis to automatically detect fingerprinters and show
they provide different angles complementing each other.
This demonstrates that studies based on either static
or dynamic code analysis provide partial view on ac-
tual fingerprinting usage in the web. To the best of our
knowledge we are the first to perform this comparison
with respect to fingerprinting.
Our approach achieves 94% accuracy in small decision
time. With this we spot more than 840 fingerprinting
services, of which 695 are unknown to popular tracker
blockers. These include new actual trackers as well as
services which use fingerprinting for purposes other than
tracking, such as anti-fraud and bot recognition.
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1 Introduction
Web fingerprinting is an advanced technique for gather-
ing information about users when they browse the Inter-
net. Its deployment is aimed to uniquely identify users
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without relying on cookies or other kinds of client-side
state. Based on information obtained from the browser
and device, fingerprinting practice builds precise signa-
tures to uniquely re-identify them across different web
services. Fingerprints can be obtained on-the-fly by in-
jecting specialized JavaScript code, which the browser
executes in a transparent way to the user.

Nowadays, fingerprinting is a common practice, and
it has been fueled by the online advertising industry,
which relies on the collection of personal information to
design ad campaigns tailored to match users’ interests
and maximize conversion rates. Fingerprinting has been
widely studied by the research community because of its
deep consequences [11, 24, 28]. Indeed, it allows trackers
to be more precise at recording users’ online behavior,
putting users’ privacy at risk [10, 12, 24].

Nevertheless, fingerprinting is used for purposes
other than tracking users [4]. In fact, it allows websites
to execute security-related tasks, such as fraud detec-
tion, or to discriminate visits generated by bots. For
instance, application providers (e.g., web mails, social
networks, bank websites, etc.) leverage fingerprinting to
track devices linked to accounts, and notify users when
their credentials are used from unknown devices.

In this study we aim at understanding web finger-
printing in the wild through two principal contributions.
First, we design a scalable and extensible methodology
for the identification of fingerprinting script providers
(fingerprinters in the rest of the paper) based on static
or dynamic analysis of JavaScript code and machine
learning. Second, we apply such methodology on a pe-
culiar dataset of pages visited by a set of 1,000 actual
users during their navigation. This allows us to charac-
terize fingerprinting usage and fingerprinters’ penetra-
tion in the wild, albeit from a limited point of view.
Our approach complements the catalog of tools that
have been adopted so far to study fingerprinting which
mostly build on dynamic analysis of JavaScript code.
Indeed, by comparing our results obtained from static
versus dynamic analysis, we demonstrate they provide
different and complementary perspectives.

More in detail, the contributions presented in this
paper are the following:
•We design, develop and engineer a methodology which
combines code-mining techniques and supervised ma-
chine learning approaches to automatically detect web
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fingerprinters. Our methodology achieves 94.2% accu-
racy, with a modest 5.6% false positive rate, and requires
about 190ms per-script decision time on off-the-shelf
hardware. We compare this against approaches based
on dynamic code analysis [7, 11]. Interestingly, we ob-
serve that static code analysis spots several latent finger-
printing patterns, i.e., pieces of JavaScript code which
activate under given circumstances only (e.g., on spe-
cific browser versions and settings). We conclude that
static and dynamic code analysis are complementary,
and should be combined to maximize detection.
•We use our methodology to detect scripts using finger-
printing on a unique dataset of JavaScript files down-
loaded by real users. 1.1% of scripts are classified as fin-
gerprinters and delivered by 842 unique domains, some
of which were previously unknown.
• We deeply characterize fingerprinters, and the tech-
niques they adopt. Surprisingly, most recent and accu-
rate fingerprinting techniques such as Canvas and Audio
are the least used (21% and 4% of fingerprinting scripts,
respectively), whereas more traditional techniques (e.g.,
enumeration of plug-ins and MIME types) are the most
popular (85% of fingerprinting scripts).
• We match the list of fingerprinters we obtain against
a list of tracking domains provided by popular tracker
blockers. We identify 695 unknown fingerprinters that
combine modern fingerprinting techniques with tradi-
tional ones more often than already known systems.
This stresses the need for automatic detection systems
such as the one proposed in this paper.
• Deepening on the class of unknown fingerprinters, we
observe it includes trackers which deliver their scripts
directly from the domain of websites hosting them, thus
possibly circumventing tracker-blockers. Other services
use fingerprinting for non-tracking purposes, such as
fraud detection and bot recognition. These observations
testify there is a great variety in fingerprinters’ ecosys-
tem, and further ingenuity is required to identify actual
privacy-offending fingerprinting.

We strongly believe the methodology and the results
presented in this paper are interesting for researchers
working on online privacy, as well as for developers
building privacy-preserving technologies such as anti-
tracking blocklists, privacy-aware browsers and tracker
blockers. For this reason we share our ground-truth
dataset with researchers to stimulate further studies.

The rest of the paper is organized as follows: Sec-
tion 2 presents a brief overview of known fingerprinting
techniques, as well as works related to this study. In Sec-
tion 3 we present the ground-truths we use for training
and testing our classifiers as well as the dataset we ob-

tain from real users. In Section 4 we detail our method-
ology, its parameter tuning and performance evalua-
tion, and compare static and dynamic code analysis ap-
proaches. Then, in Section 7 we present a characteriza-
tion of fingerprinters based on data obtained from real
users. In Section 8 we discuss the limitations of our ap-
proach. Finally, Section 9 concludes the paper.

2 Background and related work
In this section we describe fingerprinting practice,
techniques and countermeasures (Section 2.1 and Sec-
tion 2.2), and the body of work related to this study
(Section 2.3), which we divide in three categories. The
first studies its usage and pervasiveness. The second fo-
cuses on techniques to identify web fingerprinting. The
third proposes countermeasures to mitigate it.

2.1 Fingerprinting techniques

Fingerprinting is the process that leverages the browser
to collect information about the device running it.
Such collection might have multiple purposes. The most
privacy-offending is the identification and tracking of
browser instances or devices in a stateless manner, e.g.,
without using HTTP cookies. In general, a user encoun-
ters fingerprinting scripts during navigation, and, once
executed by the browser, these scripts collect and report
sets of attributes and properties whose combination is
likely unique for the user’s device configuration. Consid-
ering the specific case of tracking services, fingerprinting
makes their activity more difficult to detect and block,
as they do not install identifiers on the users’ device.

In the last decade fingerprinting techniques have
evolved dramatically. This evolution has been driven
prominently by trackers’ need of identifying users even
when, e.g., cookies are turned off. We briefly present the
state of the art of techniques in the following.
Browser Fingerprinting: It builds on the collection of
attributes simply obtainable from users’ browser, such
as, for instance, installed fonts, plug-ins, MIME types,
screen properties, user agent, etc. These can be easily re-
trieved through navigator and screen objects, HTTP
headers, Java and Flash browser’s plug-ins. When com-
bined, this information may build unique identifiers to
track users [10, 19, 24], or discriminate visits generated
by automatic crawlers [7]. However, this technique has
some disadvantages. First, it is prone to instability as
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fingerprints can change because of browser upgrades or
modifications of its configuration (e.g., new font instal-
lation). Second, it cannot distinguish browser instances
identically configured on different devices [10].
Canvas and Audio fingerprinting: These two tech-
niques are more recent than those described above and
we group them together as they both build on the same
idea of leveraging APIs which, when fed with specific
input, return values which vary depending on users’ sys-
tem configuration and hardware. For instance, Canvas
fingerprinting builds on rendering text and graphical
components on screen areas using the HTML5 Can-
vas element and on the acquisition of pixel data re-
turned by the corresponding API. More in detail, the
fingerprinting script obtains a 2D-graphics context and
draws text and figures in the canvas. Then, it executes
the toDataURL() JavaScript API to obtain a Base64-
encoded version of the PNG image rendered from the
canvas, which is ultimately used to generate a hash. A
similar process can be executed with 3D objects. This
simple fingerprinting technique has been demonstrated
for the first time by Mowery and Shacham in [21]. Many
factors influence the generation of the hash. These are
operating system, browser version, graphics card and
anti-aliasing management. As a consequence, the hash
acts as a unique identifier. Canvas fingerprinting is ap-
pealing for trackers as it provides high entropy, it is con-
sistent over time, transparent to the user and fully im-
plementable in JavaScript, thus easy to execute without
any special requirement. Nevertheless, hash can change
across browsers, and cannot be used to discriminate
users sharing the same graphical stack. Audio finger-
printing builds on a similar mechanism which exploits
the creation and recording of an audio waveform [11].
Other fingerprinting approaches: There exist other,
rarer to encounter or less efficient, fingerprinting tech-
niques. JavaScript Engine fingerprinting builds on
JavaScript conformance tests such as ECMA’s Test262
test suite [3]. As Mulazzani et al. show in [22], this
method keeps track of failed conformance tests in user’s
browser to pinpoint its version. Cross-browser finger-
printing builds on APIs of hardware made accessible via
JavaScript. For instance, specifically for mobile devices,
Bojinov et al. have shown in [9] how one can measure
accelerometer calibration imprecisions to build a signa-
ture and uniquely identify the device. This fingerprint-
ing approach detects the device being used, and works
independently from the browser in use. WebRTC offers
features for real-time communication which, in order to
find the best route between two communicating end-
points, allows to collect information on IP addresses of

interest, including private ones used by local network in-
terfaces. Such information can again be used to further
enrich the robustness of a fingerprint [27]. Battery fin-
gerprinting consists in taking track of the capacity and
status of devices’ battery using HTML5 Battery Status
APIs. This is another piece of information which one
could use to increase entropy and, thus, uniqueness of
fingerprints [25]. It is worth mentioning that Firefox, as
well as many other browsers, dropped the support for
such set of APIs in 2015, thus preventing web finger-
printers to collect data on users’ battery status [1].

2.2 Countermeasures to fingerprinting

The privacy concerns raised by fingerprinting techniques
made users’ demand for privacy-preserving solutions
grow considerably in the last decade. Countermeasures
for private users come often implemented as browser
extensions, which can be divided in two main families:
active blockers, browser extensions which either prevent
the browser to execute fingerprinting code (e.g., No-
Script1 and Privacy Badger2), or block or alter spe-
cific attributes (e.g., Canvas Blocker3 and Ultimate User
Agent4). The second family is URL blockers. These are
extensions, apps or proxies (considering the corporate
scenario), which use pre-built blocklists of URLs to pre-
vent the browser to contact fingerprinters, and thus,
download and execute their code (e.g., Adblock Plus5

and Disconnect3). Blocklists are usually built manually,
and contain domains or URLs which have been found
linked to some sort of tracking activity.

2.3 Related work

Fingerprinting pervasiveness: Many studies have
quantified the diffusion of web tracking in the last years.
Krishnamurthy and Willis were the first to longitudi-
nally describe tracking services and how they massively
increased their presence in the web between 2005 and
2008 [17]. Following studies have shown a worryingly
consistent growth of web trackers’ pervasiveness [19, 20].

1 No-Script, https://github.com/hackademix/noscript.
2 Privacy Badger, https://www.eff.org/privacybadger/faq.
3 Canvas Blocker, https://github.com/kkapsner/
CanvasBlocker.
4 Ultimate User Agent, http://iblogbox.com/chrome/
useragent/alert.php.
5 Adblock Plus https://adblockplus.org/.

https://github.com/hackademix/noscript
https://www.eff.org/privacybadger/faq
https://github.com/kkapsner/CanvasBlocker
https://github.com/kkapsner/CanvasBlocker
http://iblogbox.com/chrome/useragent/alert.php
http://iblogbox.com/chrome/useragent/alert.php
https://adblockplus.org/
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Considering specifically web fingerprinting, Eckers-
ley was the first to provide a comprehensive study of
available techniques with EFF’s Panopticlick project.
In [10] he showed how fingerprinting improves trace-
ability, severely harming users’ privacy, especially when
Java and Flash plug-ins are installed in the browser.

Nikiforakis et al. examined the JavaScript code of
popular fingerprinters [24]. They show some techniques
are so pervasive they can track the IP address of devices
even in presence of HTTP proxies, or install browser
plug-ins without the user’s authorization. Englehardt
and Narayanan presented similar observations in [11].

Trackers keep developing novel techniqes exploiting
browsers’ data leakage. For instance, Olejinik et al. were
the first to denounce in [25] how browsers’ Battery Sta-
tus APIs can be used for fingerprinting purposes.
Identification based on dynamic code analy-
sis: A number of studies have analyzed fingerprint-
ing and developed identification techniques based on
dynamic analysis of scripts contained in webpages.
Acar et al. built a set of heuristics to understand how
browser properties such as navigator, window.screen
and HTMLElement are systematically used by trackers to
perform browser and device fingerprinting [7]. In 2014,
G. Acar et al. presented in [6] the results of analyz-
ing the presence of ever-cookies, cookie-syncing practice
and Canvas fingerprinting on the 100,000 most popu-
lar websites according to Alexa ranking. Interestingly,
Canvas fingerprinting was present on 5.5% of consid-
ered websites. In 2016, Englehardt and Narayanan con-
ducted a similar experiment on a wider scale, i.e., con-
sidering Alexa’s top 1M websites [11]. These new re-
sults demonstrated that only 1.6% of websites contained
some Canvas fingerprinting code, leading to conclude
that previous studies induced web trackers to stop us-
ing this pervasive technique. Englehardt and Narayanan
surveyed methodologies based on Canvas font, Audio-
Context, BatteryAPI and WebRTC, which all resulted
to be less diffused than Canvas fingerprinting.

Section 5 shows that studies based on dynamic code
analysis alone tend to underestimate the actual usage of
fingerprinting in the web, and in Section 6 we compare
our approach with those presented in [7] and [11].
Identification based on static code analysis: The
number of studies addressing the problem of identify-
ing trackers and fingerprinters using static analysis of
JavaScript code is rather limited. Recently, Ikram et
al. presented in [16] a methodology which combines
code mining and machine learning to identify pieces of
JavaScript code performing tracking activity – not fin-
gerprinting, though. Ikram et al. encountered our same

difficulties during the design of their methodology, such
as, e.g., the need of manually labeling tracking scripts
to build a ground-truth dataset for the classifiers, and
the inability to correctly analyze obfuscated scripts.

Van Zalingen and Haanen proposed in [15] an ap-
proach that has inspired us in the design of our method-
ology. Similarly to them, we leverage Abstract Syntax
Tree to perform code analysis, and SVM to classify
fingerprinting scripts. However, despite these common
points, our methodology differs substantially from mul-
tiple perspectives. Amongst the most important ones,
our machine-learning approach addresses considerably
more fingerprining techniques, and has been trained and
tested using a much bigger ground-truth dataset con-
taining thousands of JavaScript scripts. In fact, Van Za-
lingen and Haanen’s dataset contains only few tens of
scripts. Finally, we achieve much better results.
Mitigation of fingerprinting: Other studies propose
systems to protect devices from fingerprinting. In partic-
ular, by limiting or modifying its execution at run time,
when the browser is asked to call specific fingerprinting
APIs [8, 13, 14, 23]. In general, these systems alter val-
ues provided by fingerprinting APIs by returning either
partial or empty sets of properties, randomizing values
for attributes such as the screen size or DOM elements’
offsets, and introducing noise to the images produced by
HTMLCanvasElement. However, these approaches could
cause the browser to be even more unique and, as such,
easier to recognize in a multitude [24].

Browsers themselves have introduced some mecha-
nisms to limit the collection of easily identifiable user
data. Laperdrix et al. in [18] repeated the experi-
ments Eckersley presented in [10]. By comparing results,
Laperdrix et al. observed a noticeable reduction of iden-
tifying capability of lists of fonts and plug-ins.

This paper advances the state of the art on web
fingerprinting by presenting a methodology that com-
plements existing techniques for fingerprinter detection,
so it can be used to build curated privacy-preserving
blocklists, or extended to identify on the fly specific
JavaScript pieces of code to block.

3 Datasets
In this section we describe the datasets we collected and
use throughout this paper.
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3.1 Dataset for fingerprinter analysis

Our study builds on a unique dataset containing HTTP
and HTTPS logs provided by volunteering users who
participated in a web measurement project run by Po-
litecnico di Torino between April and August 2017.
Users joining the project provided their explicit con-
sent to install an HTTP/S traffic monitoring tool, Er-
mes Proxy, on their PCs (running Windows, macOS
or Linux) for a period of at least one month. Ermes
Proxy acts as a software proxy installed on the device
and performs HTTP and SSL inspection. It processes all
HTTP/S transactions generated by browsers on the de-
vice, and dumps to file the information extracted from
headers (i.e., removing all payloads): For each HTTP/S
transaction, Ermes Proxy registers the timestamp, the
HTTP method, the requested URL, page referer, user
agent, and server response status code in a local log,
which is periodically uploaded to a remote server.

In total, 982 volunteers installed Ermes Proxy on
their PCs for more than 1 month. We collected about
250GB of traffic logs obtained from more than 52M
HTTP/S transactions. In the remainder of the paper
we will refer to this dataset as HTTPDataset.
Compliance with data protection law: We per-
formed our data collection in Europe, where since May
2018 any kind of data collection process must be com-
pliant with the European General Data Protection Reg-
ulation (GDPR in short) [5]. Despite EU’s GDPR was
not yet active at the moment of the collection, we used
its draft as a policy reference to conduct our measure-
ment collection: Users who joined the data collection
have been properly informed about the purposes of the
research project; They received a description of the data
collection methodology, including information about the
risks they could incur into, as well as a description of
the mechanisms we adopted to prevent data leaks and
guarantee privacy and security. The whole collection
was based on the opt-in principle, and users voluntar-
ily accepted to join the experiment. Finally, our data
collection has been funded by Politecnico di Torino and
approved by its Privacy and Security Board.
Privacy preservation and security:We designed the
measurement collection process to be fully secure and
respect users’ privacy. HTTPS connections are the most
critical from privacy and security perspectives as they
often carry information users would like to keep private.
For this, Ermes Proxy pseudo-anonymizes logs to miti-
gate the risk of leaking personal information. In partic-
ular, Ermes Proxy does not register any user identifier,
nor it stores Personal Identifiable Information (PIIs)

such as IP addresses. Plus, to avoid collecting PIIs con-
tained in URLs, it strips query parameters contained in
URLs (by removing text after “?”). To prevent attack-
ers to gain access to our data collection, we implement
strict security policies. We limit the access to the server
hosting data to few authorized people who can access it
through selected machines.

We encouraged users to join the project using re-
wards. They could obtain a gift card to spend on a
popular online retailer at the end of the data collection
period. To avoid the dataset to be biased or polarized to-
wards specific communities, we advertised our initiative
at different events (e.g., fairs, classes, etc.), platforms
(Facebook groups), and specific online communities. In
the end, the set of participants consists mainly in males
(85%) between 18 and 31 years old (91%). Participants
are from different parts of Italy, with 19% from the
metropolitan area of Politecnico di Torino. The visited
websites fairly represent the typical web activity of the
average user. In fact, 68.1%, 42.8% and 17.3% of Alexa’s
top 1,000, 10,000 and 100,000 websites are present in the
set of visited websites, respectively.6 Conversely, 68.8%
of visited websites is out of Alexa’s top 1M, being these
mostly local websites.

We use HTTPDataset to collect JavaScript files that
we use to design and test our methodology. First, we
extract all URLs containing JavaScript scripts by per-
forming a substring search for “.js” files (about 716, 000
records). Next, we download each JavaScript file using
wget, parse it and generate a hash code from its con-
tent. We use the hash to identify duplicate files. The fi-
nal dataset consists of 419, 824 JavaScript files, of which
236, 217 are unique, from a total of 29, 851 different ser-
vices, that we identify by the domain name in the URL.
We refer to this dataset as JSWild.

Our dataset provides a different angle compared
to data collections like crawling the top websites in
rankings (e.g., Alexa), or passively sniffing HTTP traf-
fic. First, it considers regular PCs, each with differ-
ent browsers, browsing histories, operating systems, and
hardware configurations. Second, it factors actual users’
habits while they browse websites in which they are in-
terested. Hence, we can analyze scripts from internal
website pages, possibly protected by login, yet publicly
accessible, as well as scripts downloaded only after ex-
plicit user actions (e.g, click on cookie banner).

6 Alexa Top Websites, https://www.alexa.com/topsites.

https://www.alexa.com/topsites
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3.2 Ground truth for static code analysis

To design and test a supervised machine-learning
methodology, we need labeled data. In our case, labels
refer to the script being fingerprinters or not. To this
end, we proceed in two phases.
First phase: building a seeding dataset. First,
we gather JavaScript files connected to websites that
have low probability of embedding ads and trackers,
and, hence, fingerprinters. Such websites are, for in-
stance, academic and government sites. Then, we in-
tegrate this collection with previously known finger-
printing scripts contained in Princeton’s WebCensus
database [2] which Englehardt and Narayanan built for
their experiments [11]. Next, we manually analyze each
script to verify whether it contains fingerprinting code
or not. For this we proceed as follows:
1) We check if the script is in clear text and easy to
read, or at least, minification does not compromise the
readability of the code.
2) We check if the script domain corresponds to some
tracking service. For this, we use a list of tracking do-
mains, named TrackerList, built by merging different
lists (Disconnect7, EasyPrivacy8 and EasyList9).
3) Similarly to the approach used by Englehardt and
Narayanan, we check the presence of specific fingerprint-
ing APIs (see Table 3 for the full list).
4) We analyze the code to understand its procedure, the
results it would obtain if executed and if these would be
sufficient to perform fingerprinting based on the knowl-
edge we have on available techniques, and we extrapo-
late the context to understand the aim of the code.10 For
instance, for the case of font enumeration, we check the
presence of any kind of code implementing the following
steps: a) apply browser’s default text on a pre-defined
text and calculate its size, b) iterate over a list of pre-
defined fonts, and at each cycle, apply a font from the
list on the text, c) compare the size of rendered text
with the size of text rendered using the browser’s de-
fault font, d) register the considered font id in a list in
case of mismatch (that means, the font is installed as
the browser has not used default font as fallback), e)
the list is then saved in a structure which is sent to a
server or saved in a cookie. At the end of this process

7 Disconnect, https://disconnect.me.
8 EasyPrivacy, https://easylist.to/easylist/easyprivacy.txt.
9 EasyList, https://easylist.to/easylist/easylist.txt.
10 We remark that we label as fingerprinters all scripts which
do contain actual fingerprinting code, and not for some mere
feature probing.

Non-fingerprinting Fingerprinting Total

#scripts 1,169 733 1,902
#domains 278 493 75212

Table 1. Characterization of ground-truth dataset used to train
and test our methodology based on static code analysis JSStatic-
GroundTruth.

we obtain 309 manually verified scripts where 170 are
labeled as fingerprinters.
Second phase: extending the manually labeled
dataset. We build on these 309 scripts to build a pre-
liminary version of our classifier. We then use it to
quickly classify a subset of 100, 000 randomly picked
scripts from the HTTPDataset. At the end of this pro-
cess we again manually check them as described above.
In case of ambiguous decision, we skip the script. This
results in 563 scripts manually verified as fingerprinters
and 1, 030 as non-fingerprinters.

In the end, we obtain in total more than 1, 900 man-
ually validated scripts, 39% of which are fingerprinters.
We refer to this dataset as JSStaticGroundTruth, as de-
tailed in Table 1. For the sake of transparency, we share
with the community this ground-truth to let other re-
searchers verify its content.11

3.3 Ground truth for dynamic code
analysis

To compare our approach based on static analysis
against dynamic code analysis we need to build a sep-
arate dataset. In fact, dynamic code analysis builds on
the availability of data collected during the execution
of a piece of code. For our specific purpose, we need to
log fingerprinting APIs when executed by the browser.
For this, we modify OpenWPM13, the web crawler in-
troduced in [11] to override JavaScript functions and
APIs which are typically used for fingerprinting pur-
poses. Any time a JavaScript script requires the browser
to execute one of the instrumented APIs, we log i) the
API name, ii) the URL from which the script has been

11 Ground-truths available at https://www.pimcity-
h2020.eu/publication/unveiling-web-fingerprinting-in-the-
wild-via-code-mining-and-machine-learning/ .
12 Some domains host both non-fingerprinting and fingerprint-
ing scripts. As such, the total number of domains is different
from the sum of the number of domains in the two classes.
13 OpenWPM, https://github.com/mozilla/OpenWPM.

https://disconnect.me
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easylist.txt
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://www.pimcity-h2020.eu/publication/unveiling-web-fingerprinting-in-the-wild-via-code-mining-and-machine-learning/
https://github.com/mozilla/OpenWPM
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Non-fingerprinting Fingerprinting Total

#scripts 206 222 428
#domains 101 161 262

Table 2. Characterization of the ground-truth dataset used to
train and test our classifier based on dynamic analysis JSDynam-
icGroundTruth.

downloaded, and iii) the execution timestamp, and we
save the JavaScript file.

We instruct our OpenWPM crawler to visit the top
1M websites of the Alexa rank. For each website, we
visit the landing page and five internal links at ran-
dom. The measurement campaign took 94 days to nav-
igate all websites using 8 browser instances running in
parallel on 2 AWS machines equipped with a 2.5GHz
CPU core and 8GB of RAM. In total, we collect 9.8M
scripts and 111GB logs of calls to JavaScript APIs. Out
of this dataset, we randomly extract a sample consisting
of about 156,000 scripts connected to 17,000 websites. In
the rest of the paper, we refer to this dataset as JSAlexa.

At last, we create a second labeled dataset that
we use to train and test a classifier based on dynamic
code analysis data, capable of detecting the same set of
fingerprinting techniques identified by our static anal-
ysis. This second ground truth, namely JSDynamic-
GroundTruth, consists of 428 scripts downloaded by our
crawler, that we manually verified using a procedure
similar to that used to build JSStaticGroundTruth. We
summarize JSDynamicGroundTruth in Table 2.

4 Classification using static code
analysis

In this section we present the methodology we design
to automatically identify JavaScript files performing
fingerprinting based on static analysis of their code.
It builds on the assumption that we can determine
whether a script performs fingerprinting by checking the
presence of code patterns typically employed to perform
fingerprinting. Our methodology consists of four steps
that we describe in the following.

4.1 Code de-obfuscation and
beautification

In order to minimize their footprint, JavaScript files
are usually delivered to the browser in a minified form,
which replaces variable and function names with short
random strings and wipes out unnecessary spacing. Be-
cause of this process, minified scripts are hardly human-
readable, and, thus, difficult to analyze. Sometimes code
is obfuscated too. Code obfuscation enables the protec-
tion of intellectual and industrial property, but it makes
reverse engineering impracticable, with severe conse-
quences for privacy and security [29]. In this phase we
first de-minify JavaScript files using the same approach
used in [15], which combines JSBeautifier14 with a set
of tools developed specifically for this purpose. Then,
we attempt to perform de-obfuscation, which allows us
to maximize the amount of scripts to process. More in
detail, de-obfuscation is effective against a number of
obfuscating tools and techniques: JavaScript Obfusca-
tor15, Dean Edward’s packer16 and url-encoding. How-
ever, our de-obfuscation approach cannot succeed when
strong obfuscation techniques are employed. We discuss
the impact of this limitation on our analysis in Section 8.

4.2 Syntactic structure analysis and
string-matching search

We analyze the code’s syntactic structure by generating
an Abstract Syntax Tree (AST). Given a script, its AST
provides a tree representation of the syntactic structure
of the code. Each node of the tree describes a code con-
struct in the script, and integrates data about the type
of construct, position and construct-specific properties.
In other words, we obtain information describing what
would happen when the browser executes the analyzed
code. To accomplish this task we build on Esprima17 to
generate the AST, and Estraverse18 to analyze it.

4.3 Fingerprinting patterns

The features we use for classification build on APIs used
by scripts performing fingerprinting. In Table 3 we re-

14 JSBeautify, https://github.com/beautify-web/js-beautify.
15 JavaScript Obfuscator, https://javascriptobfuscator.com.
16 Dean Edward’s packer, http://dean.edwards.name/packer.
17 Esprima, http://esprima.org/.
18 Estraverse, https://github.com/estools/estraverse.

https://github.com/beautify-web/js-beautify
https://javascriptobfuscator.com
http://dean.edwards.name/packer
http://esprima.org/
https://github.com/estools/estraverse
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port the list of APIs we consider in this study, grouped
by category. Since the presence in the code of one of such
APIs is not sufficient to determine the presence of finger-
printing (APIs can be used for different purposes), we
must define fingerprinting patterns around them. A pat-
tern is a portion of JavaScript instructions containing
one or more calls to APIs in Table 3, and satisfying spe-
cific conditions. For instance, non-fingerprinting scripts
often use Canvas APIs, hence we define specific crite-
ria to determine when Canvas APIs, e.g., toDataURL(),
are likely to be used for fingerprinting. For instance,
Canvas fingerprinting is based on the presence of micro-
differences between the image provided as input and the
rendered one. Thus, we create a pattern for which we
check that the image format used by toDataURL() to
output the figure is lossless, since a lossy one would be
deprived of the needed details to perform fingerprint-
ing. We define patterns for APIs detected with both
AST and string-matching approaches. For the AST, we
create in total 79 patterns ranging from simple enumer-
ations of navigator properties to calls to specific APIs
(toDataURL(), createOscillator(), etc.).

Figure 1 reports an example of fingerprinting code,
together with a graphical representation of part of the
corresponding AST. For the sake of brevity, we omit to
report the full AST and hide irrelevant sub-trees (drawn
with dashed contour). The figure shows how we employ
the fingerprinting pattern we developed to detect plug-
in enumeration leveraging the AST. Our pattern con-
sists of the blocks highlighted in red in the figure. In
particular, we record the variable declaration in line 1
where navigator.plugin is called, the for statement
and the subsequent calls to navigator.plugin’s prop-
erties version and name. The final fingerprinting pat-
tern also verifies that the properties are not compared
to static strings or used under a conditional expression.
If all these conditions are met, we finally record the pat-
tern as a possible enumeration attempt, and create the
relative feature to be used by the classifier.

Unfortunately, AST generation (often) fails on
obfuscated or malformed code. In fact, it fails on
7.33% of the processed scripts contained in JSStatic-
GroundTruth. In this case it either produces an incom-
plete result (3.67%), or it does not produce a result at
all (3.66%). To mitigate this issue, we also rely on sim-
ple string-matching approach to register the presence
of fingerprinting patterns in obfuscated scripts. Indeed,
despite obfuscation, it is common that some calls to fin-
gerprinting APIs may be still present in clear text, and,
thus, easy to detect. For string matching, we build 63
fingerprinting patterns, i.e., all those designed for AST,

except enumerations (fonts, plug-ins and MIME types)
as string matching does not allow us to verify conditions
for enumeration-based fingerprinting techniques.

4.4 Classification with machine learning

Given the multidimensional space and variety in AST
data, machine learning is both crucial and a natural
choice to accelerate the creation of reliable classifiers.
Moreover, machine learning algorithms offer explana-
tions on why a decision has been taken, e.g., show-
ing the most important features that drive a decision.
Hence, we rely on supervised machine learning to train
classifiers able to distinguish fingerprinting from non-
fingerprinting JavaScript code. To do so, we first define
the features to be used as input, then we select a proper
supervised classifier, train and optimize parameters to
ultimately maximize classification performance. In the
following, we describe each step.
Feature engineering: For each fingerprinting pattern
identified in the AST or by using string-matching, we
create a feature based on its number of occurrences. In
details, given a JavaScript file, we create a map of key-
value pairs where fingerprinting patterns are the keys,
and the corresponding number of occurrences in the file
are the values. We then use such features to train and
test two supervised machine-learning classifiers.
Machine learning model selection: Given the lim-
ited size of the labeled dataset, we select Support Vec-
tor Machines (SVM) and Random Forest (RF) as mod-
els to train. We choose these because they are consid-
ered among the best performing models with relatively
small datasets, and they build on substantially different
approaches to classification. Both consider non-linear
models. SVM has been chosen because it captures com-
plex relationships between samples, without requiring
us to perform cumbersome data transformations. RF
has been selected because of its flexibility and its ca-
pability to automatically perform feature selection. RF
models are also easy to understand and interpret, and
this considerably helps us to debug and improve the
methodology. We excluded other, more complex, models
such as those based on Neural Networks or Associative
Rules. In fact, these models perform very well when fed
with large amounts of data, which is not our case. For
the implementation, we use Scikit-Learn [26], a popular
Python library for machine learning.
Classification performance indices: To evaluate the
performance of the trained models, we rely on standard
classification indices such as precision and recall. Given
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Fig. 1. Example of JavaScript code performing fingerprinting using plug-in enumeration, and the graphical representation of part of
corresponding Abstract Syntax Tree. Red blocks represent the fingerprinting pattern we developed to detect plug-in enumeration.

a class label, they are defined as follows:

Precision = | true positives |
| true positives | + | false positives | (1)

Recall = | true positives |
| true positives | + | false negatives | (2)

Precision evaluates the classifier’s exactness, whereas,
recall represents its completeness. We also consider the
accuracy, a standard measure of the generic goodness of
the classifier, irrespective of the considered class.

Accuracy = | true positives | + | true negatives |
| all items |

(3)

We conduct a thoughtful tuning of parameters for each
classifier to identify the configurations providing the
best results. We report details in Appendix A.1.

Finally, we analyze feature importance assigned by
the RF classifier. This gives a hint about which APIs
RF considers to be determinant for classification. Inter-
estingly, all most important APIs come from Browser
Parameters, Plug-in and MIME Types and Screen cat-
egories, while Canvas’ API toDataURL() looks consid-
erably less determinant. As described in detail in Sec-
tion 7, this reflects the actual usage of fingerprinting
techniques in a real scenario.

4.5 Final performance evaluation

We now report classification results in details. Table 4
details the per-class precision, recall, and the over-

all accuracy for the best hyperparameters configura-
tions. Again, to avoid overfitting, all results are aver-
aged over a 10-fold cross validation using the best per-
forming hyperparameters. First, we observe that all in-
dices for both SVM and RF overcome 90%. Interest-
ingly, both classifiers reach a large recall at recogniz-
ing non-fingerprinting scripts, but this decreases for fin-
gerprinting scripts. This means that it is more likely
for both classifiers to mis-classify a true fingerprinting
script than mis-classifying a true non-fingerprinting. In
other words, actual non-fingerprinting scripts are eas-
ier to classify. This confirms the intuition that a non-
fingerprinting script rarely uses patterns used by finger-
printers. As such, it is easier to classify them. Never-
theless, some patterns used by fingerprinting scripts are
also seldom used by non-fingerprinters. This is the case
for instance of scripts that enumerate plug-ins to check
whether to execute code blocks. In general, this means
that separating the two classes is not trivial, and both
classifiers create robust models.

We manually check the sets of misclassified finger-
printing scripts produced by SVM and RF, and find that
they rarely overlap. That is, each classifier tends to fail
on different sets of fingerprinting scripts, while the sets
of misclassified non-fingerprinting scripts share many el-
ements. Since we aim at maximizing the probability of
identifying actual fingerprinters (i.e., maximizing true
positives), we can combine the output of both classi-
fiers – SVM ∪ RF in the table – so that we consider a



Unveiling Web Fingerprinting in the Wild Via Code Mining and Machine Learning 52

Categories Browser Parameters Plug-ins & MIME types Screen WebGL Parameters Canvas

Set of APIs

navigator.appCodeName
navigator.product
navigator.productSub
navigator.vendor
navigator.vendorSub
navigator.onLine
navigator.appVersion
navigator.language
navigator.cookieEnabled
navigator.javaEnabled
navigator.doNotTrack

navigator.plugins
navigator.plugins.length
navigator.plugins[i].name
navigator.plugins[i].filename
navigator.plugins[i].description
navigator.mimeTypes
navigator.mimeTypes.length
navigator.mimeTypes[i].enabledPlugin
navigator.mimeTypes[i].description
navigator.mimeTypes[i].suffixes
navigator.mimeTypes[i].type

window.screen.height
window.screen.width
window.screen.colorDepth
window.screen.pixelDepth
window.screen.availLeft
window.screen.availTop
window.screen.availHeight
window.screen.availWidth
window.screen.deviceYDPI
window.screen.deviceXDPI
window.screen.systemXDPI
window.screen.systemYDPI
window.screen.logicalXDPI
window.screen.logicalYDPI
window.screen.updateInterval

getExtension("WEBGL_debug_renderer_info")
UNMASKED_VENDOR_WEBGL
UNMASKED_RENDERER_WEBGL
RENDERER
ALIASED_POINT_SIZE_RANGE
ALIASED_LINE_WIDTH_RANGE
MAX_RENDERBUFFER_SIZE
MAX_CUBE_MAP_TEXTURE_SIZE
MAX_COMBINED_TEXTURE_IMAGE_UNITS
MAX_TEXTURE_IMAGE_UNITS
MAX_TEXTURE_SIZE
MAX_VARYING_VECTORS
MAX_VERTEX_ATTRIBS
MAX_VERTEX_TEXTURE_IMAGE_UNITS
MAX_VERTEX_UNIFORM_VECTORS
MAX_VIEWPORT_DIMS

readPixels
getImageData
toDataURL
toBlob
mozGetAsFile
mozFetchAsStream
extractData
fillText
strokeText

Categories Audio Hardware Information Timezone Font

Set of APIs

createOscillator
createanalyzer

createDynamicsCompressor
getChannelData
getFloatFrequencyData

navigator.platform
navigator.hardwareConcurrency
navigator.cpuClass
navigator.maxTouchPoints
navigator.msMaxTouchPoints
navigator.oscpu
window.devicePixelRatio

getTimezoneOffset measureText
offsetWidth
offsetHeight
getBoundingClientRect
getFontData

Table 3. Grouping of JavaScript APIs used for fingerprinting purposes.

Classifier Class Precision Recall Accuracy

SVM Non-fingerprinter 0.939 0.954 0.939Fingerprinter 0.937 0.916

RF Non-fingerprinter 0.931 0.968 0.940Fingerprinter 0.955 0.903

SVM ∪ RF Non-fingerprinter 0.958 0.941 0.942Fingerprinter 0.922 0.944

SVM ∩ RF Non-fingerprinter 0.914 0.982 0.936Fingerprinter 0.973 0.875

Table 4. Classification results using SVM and Random Forest
obtained using our ground-truth dataset JSStaticGroundTruth.

script as fingerprinter if at least one of the two classi-
fiers returns a positive match. This choice increases the
recall, but lowers the precision (since we accept some
more false positives). The performance results of this
combination in Table 4 shows that precision on the fin-
gerprinter class decreases a little, but recall gets closer
to 0.95. In the remainder of the paper we use this com-
bination of SVM and RF. We also show what happens
if one favors precision over recall, i.e., SVM ∩ RF. In
this case, the overall accuracy is still high, but as clas-
sification gets more precise at identifying actual finger-
printing scripts, it mis-classifies many of them as non-
fingerprinting. Contrarily, almost all non-fingerprinting
scripts are correctly labeled as such (recall equals 0.982),
but with less precision (0.914).

At last, we describe in Appendix A.2 the experi-
ments we conducted to ensure our classifiers are not
affected by overfitting.

5 Classification using dynamic
code analysis

Static analysis of JavaScript code fails in case of code ob-
fuscation or in case of malformed JavaScript. We quan-
tified the extent of this limitation in Section 4.3. A pos-
sible solution to overcome this limit is using dynamic
code analysis, which is performed by executing the code
under exam and observing its operation, by, e.g., keep-
ing track of instructions being executed. This approach
allows us to understand the actual workflow of a piece of
code, even in case its source code is not available (e.g.,
the program is compiled or its code is obfuscated).

Dynamic code analysis has some significant draw-
backs too. First, code obfuscation prevents manual val-
idation of classification based on dynamic analysis. In-
deed, we cannot verify the classification verdict obtained
with dynamic code analysis when a script is irreversibly
obfuscated, i.e., the code is unreadable and impossible
to understand. Second, it fails with scripts programmed
to prevent the execution of (portions of) code. For in-
stance, some fingerprinting patterns are executed under
specific conditions (e.g., browser in use, visited website,
installed plug-ins, etc). Finally, dynamic code analysis is
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resource consuming because it requires ad hoc analysis
frameworks to keep track of executed APIs and analyze
the execution workflow.

Hence, static and dynamic code analysis show some
pros and cons, and we use them to complement each
other as they lead to different visibility on code struc-
ture and execution. Here we aim to understand how the
two approaches actually compare and complement: we
augment our methodology to process data gathered us-
ing dynamic analysis of JavaScript code, and compare
its performance against the static analysis approach.

5.1 Classifier engineering

We adapt the methodology described in Section 4.4 to
process logs in JSAlexa. For each script, we count at
runtime the occurrences of APIs in Table 3. Once com-
pleted, features reporting the name of the API and num-
ber of its occurrences are used to feed a classifier which
is responsible for distinguishing fingerprinting scripts.

For training and testing our classifier we use the
same steps described in Section 4.4 using ground-
truth JSDynamicGroundTruth. For the sake of simplic-
ity, we use a Random Forest as classification engine.
The resulting Random Forest achieves a 0.952 precision
on the fingerprinting class, which is in line with results
obtained on JSStaticGroundTruth.19

5.2 Comparison

We apply both methodologies on the about 156, 000
scripts contained in JSAlexa. We observe the following
results: First, we observe that classification based on
static code analysis tags 1764 scripts as fingerprinting:
of these, 692 present only slight differences from the oth-
ers, mostly consisting in custom identifiers and settings
used by trackers, resulting in 1072 actually different fin-
gerprinters. As shown in Table 5, only 794 are labeled as
such by dynamic code analysis. Such difference is caused
by the intrinsic differences of these two approaches. In
fact, dynamic analysis can identify fingerprinting pat-
terns only if these have actually been executed by the
browser. However we observe a considerable amount of
fingerprinting scripts which contain latent fingerprint-
ing patterns, i.e., portions of code executed under given

19 We follow the same grid-search-based approach described
in Appendix A.1 to optimize hyperparameters.

conditions (e.g., “browser is Google Chrome”, “cookies
are not enabled”, etc.).20 Only static analysis can cap-
ture these. For these reasons, of the 1072 scripts labeled
as fingerprinters using static analysis, the dynamic one
agrees in 678 of the cases whilst 394 are “missed”, i.e.,
roughly 30% of scripts. Second, of the 794 fingerprinters
detected using dynamic analysis, 116 are “missed” by
static analysis.21 By manually inspecting them, we ob-
serve most of these are deeply obfuscated scripts which
do actually generate logs of fingerprinting patterns at
execution time. These are impossible to examine with
static analysis, which misses then about 15% of scripts.

In summary, the results of this experiment show
that static and dynamic code analysis complement
each other and both approaches must be considered to
achieve a reasonable trade-off between accuracy, devel-
opment costs and resource footprint.

6 Evaluating state of the art
Now we run experiments to gauge how our approach
improves the state of the art. For this, we compare
the performance achieved by our classifiers against the
two most prominent solutions for fingerprinter detec-
tion, FPDetective [7] and Princeton’s heuristics [11].

Considering FPDetective, unfortunately, the open-
source repository hosting its code is no longer main-
tained and the code building the system is obsolete.
Hence, to reproduce the behavior of FPDetective, we
implement the heuristics presented in Section 4.2 of
its paper [7]. Notice that, since it was built back in
2013, FPDetective does not consider many fingerprint-
ing techniques which have been introduced in the recent
years: Canvas, WebGL, Audio fingerprinting. Neverthe-
less, it contemplates now dead Flash technology.

Considering Princeton’s proposal, also in this case
we cannot use the code contained in the repository pro-
vided in [11]. This hosts the code of the web scraper,
OpenWPM, but not the implementation of the heuris-
tics described in the paper. Hence, we can only try to

20 There exist advanced techniques for dynamic analysis whose
aim is to comprehensively examine all execution workflows con-
tained in code. However, such techniques (e.g., concolic testing)
are extremely resource consuming, and hard to automatize and
implement in the browser environment.
21 These numbers are not reflected in Table 5 as the numbers
reported there are computed considering Princeton’s and FPDe-
tective’s approaches too.
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∩ Static Dynamic Princeton FPDetective

Static 1072 - - -
Dynamic 678 794 - -
Princeton 260 307 330 -

FPDetective 115 131 101 199

Exclusive 388 66 23 62

Coverage 88% 65% 27% 16%

Table 5. Fingerprinters found in JSAlexa using static and dy-
namic code analysis, as well as Princeton’s approach [11] and
FPDetective [7]. Each cell reports the number of fingerprinters
detected by both approaches on corresponding row and column.
Each cell in “Exclusive” row reports the number of fingerprinters
detected exclusively by the approach on relative column. Each
cell in “Coverage” row reports the percentage of fingerprinters
detected by the approach on the corrisponding column, computed
over the total number of unique detected fingerprinters (1223).

reproduce the heuristics described in Sections 6.1-6.5
of [11]. Unfortunately, three fingerprinting techniques
described in the paper are not reproducible. In details,
• Audio: The authors simply list the Audio APIs which
they monitored, but they do not provide any actual al-
gorithm to conclude whether a script is performing Au-
dio fingerprinting or not. This lack of information pre-
vents us from implementing this heuristic.
• WebRTC: This heuristic is not meant to be auto-
matic. The paper describes which APIs authors moni-
tored to check WebRTC usage, but the test to under-
stand whether this was used for fingerprinting purposes
(i.e., tracking IP addresses) is performed manually.
• Battery: also in this case the authors do not detail
any algorithm to check when fingerprinting based on
Battery properties is performed. They simply list the
properties to monitor, and claim the fingerprinting pur-
poses are confirmed by the presence of other techniques.

As a result, the only heuristics we can reproduce
entirely are those for detecting Canvas and Canvas Font
fingerprinting. However, we remark that the usage of
Audio, WebRTC and Battery APIs for fingerprinting is
quite infrequent: as we show in Section 7, Audio is used
in about 4% of fingerprinting scripts. According to [11],
WebRTC has been observed in 0.7% of websites in the
top 1M, and Battery is used by just 2 scripts. Hence, we
are confident that the lack of these three techniques in
our implementation of Princeton’s heuristics does not
influence conclusions presented in the following section.

6.1 Comparison

As done in Section 5, we use again JSAlexa to compare
the performance of our classifiers against FPDetective
and Princeton’s heuristics, and report the results in Ta-
ble 5. As shown, FPDetective and Princeton’s heuristics
identify 199 and 330 fingerprinters, respectively. All in
all, focusing on the percentage of fingerprinters detected
by each approach (“Coverage” row), we observe Prince-
ton’s heuristics and FPDetective can spot only 27% and
16% of overall 1223 fingerprinters, respectively.

Checking the fingerprinters identified exclusively by
these approaches, by manual verification we have that
of the 23 scripts labeled as fingerprinters by Princeton’s
heuristics, 2 are true positives, 18 are false positives, and
3 are obfuscated scripts impossible to check. Similarly,
FPDetective labels as fingerprinters 62 scripts which
are not captured by other approaches, but 34 of these
are clear false positives. Of the 25 true positives, many
present very similar content, and they can be collapsed
to just 2 scripts, reducing the FPDetective’s additional
true positives down to 5 scripts. In the end, Prince-
ton’s heuristics and FPDetective together detect 7 new
true positives corresponding to actual false negatives
of our classifiers. For instance, FPDetective concludes
moatad.js22 is fingerprinting as it performs plug-in enu-
meration and checks the status of the battery (possibly
for bot recognition). Similarly, Princeton’s heuristics la-
bel the script tfav_adl_347.js23 as fingerprinting be-
cause it performs font enumeration. In both cases, our
RF model does not achieve the same conclusion.

The results of these old methodologies are rather
poor and expected: First, both do not cover all finger-
printing techniques considered by our classifiers. Sec-
ond, they both build on dynamic code analysis only,
thus, they cannot spot latent fingerprinting APIs.

7 Fingerprinting in the wild
Now we leverage our JSWild dataset to analyze the
adoption of fingerprinting scripts in the web. We
first quantify the actual spread of fingerprinting in
JavaScript files, and analyze which techniques are the
most used in Section 7.1. Then, we study how they
are used in combination in Section 7.2. Finally, in Sec-

22 https://z.moatads.com/martinwilliamssyngenta953159580698/
moatad.js
23 https://j.adlooxtracking.com/ads/js/tfav_adl_347.js

https://z.moatads.com/martinwilliamssyngenta953159580698/moatad.js
https://z.moatads.com/martinwilliamssyngenta953159580698/moatad.js
https://j.adlooxtracking.com/ads/js/tfav_adl_347.js
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Class Total scripts Unique scripts Domains

Non-fingerprinting 415280 (98.9%) 231543 (98.9%) 29678
Fingerprinting 4544 (1.1%) 2674 (1.1%) 842

Table 6. Fingerprinting scripts identified by SVM and Random
Forest classifiers combined as shown in Section 4 on JSWild .

tion 7.3, we study the pervasiveness of domains asso-
ciated to fingerprinting activity, and whether known
trackers adopt specific fingerprinting techniques.

7.1 Analyzing use of fingerprinting APIs

We run our classifier on all JavaScript files contained in
JSWild dataset. Table 6 shows the results. Only 1.1%
of scripts is classified as actual fingerprinting.

Since the same APIs used for fingerprinting can
be used for purposes other than tracking (e.g., Can-
vas APIs can be used to render actual images, or Au-
dio APIs can be used to play a piece of music), we
aim to analyze whether fingerprinters use some spe-
cific APIs. For this, we leverage the coarse grouping re-
ported in Table 3, and represent in Figure 2 the percent-
age of non-fingerprinting (cyan) and fingerprinting (red)
JavaScript files that use APIs belonging to different cat-
egories. First, we notice that non-fingerprinting scripts
do employ APIs used for fingerprinting, but with a
much lower probability. In fact, a not-negligible percent-
age of non-fingerprinting scripts employs these APIs:
more than 15% and 8% of non-fingerprinting scripts
use Browser Parameters and Screen APIs, respectively.
Given the large cardinality of non-fingerprinting scripts,
these fractions correspond to considerably large num-
bers. Second, API usage fractions are quite heteroge-
neous. Indeed, basically all fingerprinters use Browsers
Parameters, while Canvas and Audio APIs are used less
frequently, i.e., in 20% and 3% of cases, respectively.

7.2 Analyzing usage of fingerprinting API
combinations

Fingerprinters usually combine different techniques to
obtain high-entropy identifiers and improve tracking ac-
curacy, and we now aim to understand how fingerprint-
ing APIs are used together. For this, we rely on condi-
tional probability for an API category I to be used given

Fig. 2. Per-API-category percentages of fingerprinting and non-
fingerprinting scripts. Results obtained using scripts in JSWild .

the use of category H, that we compute as follows.

P (I | H) = | scripts with I and H |
| scripts with H |

(4)

Figure 3 reports the conditional probability for a given
API category on the x axis to be employed given the
use of categories on the y axis. First, results show that
fingerprinters tend to combine APIs in Browser Parame-
ters, Screen, Timezone, Plug-in and MIME types, Hard-
ware Information and Fonts. For instance, the proba-
bility that Hardware Information APIs are combined
with Browser Parameters, Screen and Timezone APIs
are 98.7%, 97.2% and 80.2%, respectively. Second, we
observe that scripts using APIs from Browser Param-
eters up to Font are very unlikely to use also WebGL
Parameters, Canvas and Audio APIs. However, the op-
posite is not true: APIs in Audio, Canvas, and WegGL
Parameters are often used in combination with most
used APIs. For instance, all scripts using Audio APIs
also use those in Browser Parameters. Interestingly, the
probability that scripts employing Audio APIs also use
APIs from WebGL Parameters is 91.4%, but the proba-
bility that WebGL Parameters is combined with Audio
is just 16.6%. This is explained by the fact that Audio
APIs are not so frequent to encounter in fingerprinting
scripts (see Figure 2). These observations suggest there
are clusters of APIs often used together (e.g., Browser
Parameters, Screen, Timezone, Hardware Information),
and others used in mutual exclusion (e.g., scripts using
Font APIs do not use APIs from Audio).
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Fig. 3. Usage of fingerprinting API combinations measured us-
ing conditional probability obtained empirically from scripts in
JSWild . Each cell reports the probability for an API category on
the x axis to be employed given the use of category on the y axis.

7.3 Fingerprinting usage for known
trackers and unknown fingerprinters

We now investigate whether there exist fingerprinting
techniques which are peculiar for tracking services, or,
conversely, for services which rely on fingerprinting to
perform other tasks. We take a conservative approach,
and restrict our analysis to well-know trackers only con-
tained in TrackerList (see Section 3.3). Next, we extract
the set of fingerprinting scripts identified in JSWild and
match the domain contained in the corresponding URL
against the tracking domains contained in TrackerList.
Hence, we obtain a list of scripts classified as finger-
printers by our classifier and that are served by known
tracking services. The 4, 544 fingerprinting scripts in
our dataset are served by 842 services. 1, 705 of those
scripts are served by 147 “known trackers”. The remain-
ing 2, 839 fingerprinting scripts come from 695 services,
“unknown fingerprinters”, including actual tracking ser-
vices not present in TrackerList, services using finger-
printing for anti-fraud, security and recognition of bots
or web scrapers. For each domain in these two classes,
we obtain the set of fingerprinting scripts it delivers and
gather the list of fingerprinting APIs contained in such
scripts. This way for each domain we obtain the list
of fingerprinting techniques implemented by the corre-
sponding scripts. We then count the number of differ-
ent fingerprinting APIs used by each domain and build
its empirical distribution. Results in Figure 4 show that
known trackers and unknown fingerprinters exhibit sim-

Fig. 4. Empirical distribution of domains based on the number of
fingerprinting APIs they use. Black (green) bars refer to known
trackers (unknown fingerprinters). Results obtained from JSWild .

ilar trends. In fact, domains in both classes tend to use
3 to 6 different fingerprinting APIs, with around 20% of
domains combining 8 different APIs at the same time.

Next, we dig further. In particular, we are interested
in analyzing how frequently users incur in fingerprinters
and which are the most encountered during navigation.
For this, Table 7 reports 30 of the 147 known trackers
using fingerprinting which are the most contacted by
users in HTTPDataset. The table details the number of
users in our population who downloaded the script, as
well as the list of API categories used within. Domains
are ranked based on users’ penetration in decreasing
order. Focusing on services, we observe that most of
them are very well-known tracking domains often run
by big players of the web. Results confirm that these
scripts extract information using a combination of typ-
ically more than 3 APIs. As before, modern techniques
like Canvas and Audio are less used. For instance, Audio
APIs are used by just 4 services of Table 7. Consider-
ing the whole set of 147 trackers, 12% and 28% of them
use Audio, and Canvas APIs, respectively. Conversely,
88% trackers implement techniques based on enumera-
tion of plug-ins and MIME types. There are a few track-
ers (highlighted in bold) which use APIs from almost all
categories. Among these, addthis.com and moatads.com
are particularly pervasive as they have been downloaded
by 57% and 46% of users in our dataset, respectively. By
manually checking the code in the scripts, we notice that
some trackers collect fingerprinting information possibly
for purposes other than tracking. Indeed, moatads.com
and adtechus.com use fingerprinting to discriminate ac-
cesses generated by automatic bots or crawlers.

Now, similarly for what we did in Table 7 we report
in Table 8 the 30 most contacted unknown fingerprint-
ers. Again, domains are ranked based on users’ pene-
tration in decreasing order. These are either new track-
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(a) Known trackers.

(b) Unknown fingerprinters.

Fig. 5. Analysis of usage of fingerprinting API combinations ex-
pressed using conditional probability obtained empirically from
scripts in JSWild dataset, separately for known trackers (Fig-
ure 5a), and unknown fingerprinters (Figure 5b).

ing services not yet included in the lists building Track-
erList, or services which use fingerprinting for purposes
other than tracking. First, we observe that, similarly
to known trackers, basically all of them rely on legacy
fingerprinting techniques. In fact, APIs in Plug-ins and
MIME types are used by 92% of unknown fingerprint-
ers. This similarity holds also for recent techniques. For
instance, Canvas APIs are used in 31% of the cases.
However, as also suggested by results in Table 8, Au-
dio APIs are less used in this class, with only 4% of
unknown fingerprinters employing them. Second, focus-
ing on services, we notice many popular web portals

such as repstatic.it or wired.it embed actual fingerprint-
ing scripts. Further investigation shows that they de-
liver a script provided by webtrekk.com, a well-known
third-party tracker which delivers its tracking scripts
directly through the domain of the first party. In total,
out of the 30 in the table, we count 14 domains using
this approach. As such, those domains are actual track-
ers not contemplated in TrackerList, i.e., by most pop-
ular tracker blockers. Next, we observe domains which
use many fingerprinting APIs despite not being track-
ers. For instance, poste.it, the web portal of the Italian
postal service, uses APIs from many categories, possibly
for security purposes. cloudflare.com uses such APIs to
distinguish visits generated by bots and web scrapers.
Finally, we observe that domains in Table 8 exhibit a
smaller penetration than those in Table 7. This is be-
cause trackers in Table 7 connect as third-party services
to multiple websites. Thus, they have higher chances to
be contacted by users. Instead, domains in Table 8 are
mostly first-party websites, and their penetration corre-
sponds to their (relative) popularity among users.

Results above suggest there exist almost no differ-
ences in the usage of fingerprinting APIs between known
trackers and other services. As a further check, we re-
peat the experiment of Figure 3, separately for these two
classes, and report the results in Figure 5. In this case,
we perform the analysis at a finer granularity, i.e., con-
sidering the APIs used in unique scripts in JSWild, and
not aggregated by domain. Interestingly, the two plots
show there exist different API usage patterns between
the two classes. In detail, scripts from trackers (Fig-
ure 5a) rarely use APIs from WebGL parameters, Can-
vas and Audio in combination with APIs in Browser Pa-
rameters up to Font. Differently, scripts from unknown
fingerprinters (Figure 5b) do employ more recent fin-
gerprinting techniques, especially Canvas and WebGL
Parameters: for known trackers the probabilities of hav-
ing APIs from WebGL Parameters and Canvas used to-
gether with Font APIs is 9.2% and 7.9%, respectively,
whereas, these increase up to 48.4% and 59.7% for un-
known fingerprinters. We inspect the scripts responsible
for this increase and check results are not polarized by
the influence of few. Instead, they come from a multi-
tude of domains (217 for the case of Canvas) implement-
ing fingerprinting for very different purposes, including
tracking, anti-fraud and bot recognition. Understanding
the root cause behind this difference is complex. We con-
jecture it might be due to new trackers relying on more
recent fingerprinting techniques and which anti-tracking
lists building TrackerList do not include yet.
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Finally, we conclude there is no fingerprinting tech-
nique which is peculiar to a given family of services.
Thus, it is hard to grasp the purpose of fingerprinters
(i.e., tracking or security) based on the list of finger-
printing techniques they implement.

8 Limits
Our tools, methodology and datasets present some lim-
its that we summarize hereafter.
• Limits of Ermes Proxy: As Ermes Proxy cannot
provide us a copy of scripts downloaded by users, we
resort to wget to download scripts later on. This lead
us to miss about 40% of scripts actually encountered by
users (mainly because scripts are no more available, or
their URLs have been truncated for anonymization).
• Spatial, temporal and geographical limits of
HTTPDataset: We could only study fingerprinting
JavaScript files downloaded by a limited number of users
and for a limited amount of time. Hence, while we are
confident that HTTPDataset fairly represents typical
users’ browsing patterns, it only partially represents
the most visited websites. Second, HTTPDataset comes
from a single country, i.e., Italy. Therefore, our findings
might not generalize to other regions, and fingerprint-
ers active in such country might be inactive or behave
differently because of different local regulations.
• Considered APIs: Our methodology builds on a
wide number of fingerprinting APIs. For the sake of
simplicity, it does not contemplate some known, yet
rare to encounter, fingerprinting techniques. Those are
JavaScript Engine recognition, devices’ sensors finger-
printing, WebRTC and Battery.
• Limits of approach to analyze fingerprinting us-
age: Our analysis of fingerprinting usage only contem-
plates scripts labeled as fingerprinters by our classifier
based on static code analysis. Hence, it misses strongly
obfuscated and malformed scripts.

Because of all of the limitations described above, re-
sults in Section 7 represent an underestimation of actual
usage of fingerprinting in the wild.

9 Discussion and conclusions
We explored the possibility of identifying fingerprinting
services by combining static code analysis and machine
learning. For this, we designed, engineered and evalu-
ated a methodology building on these two techniques

and, leveraging a ground-truth dataset including more
than 1, 900 labeled JavaScript files, we demonstrated the
feasibility of this approach, showing that we can achieve
up to 94% accuracy at identifying fingerprinters auto-
matically. Plus, our approach is scalable and easy to
extend to consider other fingerprinting techniques.

We adapted the methodology to build on JavaScript
execution logs obtained by performing dynamic code
analysis. By comparing the two approaches we showed
they complement each other. In fact, dynamic analysis
spots obfuscated fingerprinting code impossible to de-
tect with static analysis, whereas, static analysis finds
fingerprinting patterns the browser executes only under
specific conditions, and, thus, not always detectable by
dynamic analysis. Hence, studies based solely on static
or dynamic code analysis provide an incomplete view of
actual usage of fingerprinting in the web.

By applying our methodology on a dataset of
JavaScript files downloaded by 982 users during their
navigation, we obtained several results. Out of the about
420, 000 scripts contained in the dataset, we identified
more than 4, 500 performing fingerprinting distributed
by 842 different domains. Interestingly, we observed that
only 17% of these domains are known trackers. The un-
known fingerprinters are new trackers not yet included
in popular anti-tracking lists and services which rely
on fingerprinting for security and anti-fraud purposes.
By characterizing fingerprinting techniques those scripts
use, we found that modern and possibly more accurate
approaches based on Canvas and Audio fingerprinting
are the least used, while traditional techniques, such
as those based on enumerations of browser’s plug-ins
and MIME types are 5 times more popular. Finally, the
695 unknown fingerprinters employ the same techniques
used by verified trackers, making it hard to understand
services’ nature based on adopted techniques.

In conclusion, the contributions presented in this
paper demonstrate that our approach to the automatic
identification of fingerprinters is novel, feasible and ac-
curate. Nevertheless, our results show that further inge-
nuity is needed to discriminate services conducting user-
tracking activity leveraging fingerprinting code analysis.
We plan to investigate this aspect in our future work.
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A Appendix A

A.1 Hyperparameter tuning

Each classifier is characterized by internal parame-
ters - called hyperparameters - which shall be accu-
rately tuned to optimize performance. For this, we run
an initial set of experiments to perform hyperparam-
eter configuration. We follow the best practice, using
10-fold cross-validated grid-search optimization also to
limit overfitting. For SVM, we consider combinations of
the kernel, γ, C and class_weight hyperparameters.
For RF, we consider n_estimators, max_features, and
min_samples_leaf.

We report the results of the grid-search optimization
in Figure 6 and Figure 7, for SVM and RF, respec-
tively. Figures report the overall accuracy achieved by
classifiers with different hyperparameter configurations.
Focusing on SVM, we consider both linear and Radial
Basis Function (RBF) kernels. For brevity, we report the
results for RBF kernel only, which consistently outper-
forms the simple linear kernel, and detail the case where
the classifier ignores class weights (top plot in Figure 6),
i.e., classes are treated equally even if unbalanced, and
when considering balanced class weights (bottom plot
in Figure 6), i.e., the classifier keeps track of the class
frequencies in the training set and counterbalances them
by assigning weights to classes. On the x and y axes we
vary γ and C, respectively. γ is inversely proportional
to the radius of the area of influence of support vec-
tors. If too large, the radius is smaller, and data points
cannot influence each other. If too small, the influence
region is too large and the model is not able to repre-
sent the complexity of data. C determines the trade off
between the complexity of the decision function and ac-
curacy. Intuitively, larger values of C increase the prob-
ability of overfitting data. Results in Figure 6 show that
γ has a considerable impact on accuracy, while C and
class_weights only marginally affect it. We achieve the
best accuracy with SVM for the lowest value of γ, C
equal to 100 and balanced class weights mode disabled.
Interestingly, while classes are little unbalanced (39% of
fingerprinting scripts vs 61% of non-fingerprinting) we
observe minor differences when balanced mode is active.

Switching to RF, the hyperparameter space we con-
sider is defined by n_estimators, max_features, and
min_samples_leaf. These represent, respectively, the
number of trees to use in the forest, the maximum num-
ber of features to split a node, and the minimum num-
ber of data points a leaf node can contain. Each grid

Fig. 6. Grid-search optimization of hyperparameters for SVM
classifier with RBF kernel. JSStaticGroundTruth dataset.

in Figure 7 refers to a different value of n_estimators
(from 15 to 64), and reports the accuracy when vary-
ing max_features (y axis) and min_samples_leaf (x
axis). As shown, accuracy varies marginally across con-
figurations in [0.921, 0.950]. We achieve the best perfor-
mance with 45 estimators, and min_samples_leaf and
max_features set to 2 and 50, respectively.

Considering time to complete a test, SVM takes al-
most 20 seconds to perform 10-fold cross validation on
the whole JSStaticGroundTruth on a server equipped
with a 4-core 8-threads 1.8-4.0 GHz CPU, averaging
1.93s for training and 3.84 × 10−2s for testing on each
fold. RF takes less than 1 second on the same hard-
ware, spending 7.58×10−2s for training and 4.34×10−3s
for testing on average. However, we remark that the
most time-consuming operation is script processing,
which takes on average 193ms to complete for each
script. More specifically, on average, 100ms for code
de-obfuscation, 85ms for AST generation and 8ms for
counting features.

A.2 Excluding overfitting

We take advantage of the experiment described in Sec-
tion 5 to verify that our methodology based on static
analysis is not affected by overfitting. In particular, we
use the above classification results to calculate the ac-
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Fig. 7. Grid-search optimization of hyperparameters for RF classi-
fier. JSStaticGroundTruth dataset.

curacy achieved by static analysis classifier on an in-
dependent dataset such as JSAlexa. In particular, we
manually check the 1, 764 scripts labeled as fingerprint-
ing, and we obtain a precision of 0.951 which is similar to
result reported in Table 4 and obtained on a completely
independent dataset, JSStaticGroundTruth. Given the
large amount of scripts labeled as non-fingerprinting in
JSAlexa, it is impossible for us to manually verify all
of them. Hence, to get a rough estimation of the fin-
gerprinting class recall, we pick all scripts tagged as
non fingerprinting and containing at least seven finger-
printing APIs, and manually observe that none of them
are fingerprinters. Even if non comprehensive, this anal-
ysis suggests that the rate of false negatives in non-
fingerprinting class is low. Hence, we can exclude our
classifier is affected by overfitting.

B Appendix B
Table 7 reports the 30 most contacted trackers (i.e.,
present in TrackerList) in JSWild using fingerprinting
APIs. The table details the number of users in our pop-
ulation who downloaded the corresponding script, and
the list of APIs used within. Domains are ranked based
on users’ penetration in decreasing order. Table 8 re-
ports the same information for the 30 most contacted
fingerprinters in JSWild dataset whose domain is not
contained in TrackerList.
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Domain # Users Font WebGL
Hardware
Information Audio Canvas

Plug-ins &
MIME types

Browser
Parameters Screen Timezone

addthis.com 562 (57%) • • • • • • •
bing.com 541 (55%) • • •
hotjar.com 491 (50%) • • • • •
moatads.com 449 (46%) • • • • • • • •
doubleverify.com 327 (33%) • • • • •
siftscience.com 265 (27%) • • • • • •
mathtag.com 252 (26%) • • • • • •
theadex.com 197 (20%) • • • •
hs-analytics.net 182 (19%) • • • •
scorecardresearch.com 144 (15%) • • • •
perfdrive.com 134 (14%) • • • • • •
adtechus.com 132 (13%) • • • • • •
adf.ly 130 (13%) • • • • • • • •
adsrvr.org 118 (12%) • • • •
digitru.st 111 (11%) • • •
ioam.de 108 (11%) • • •
mediaplex.com 104 (11%) • • • • • • • •
kissmetrics.com 94 (10%) • • •
rubiconproject.com 94 (10%) • • • • • • • •
penx.com 90 (9%) • • • • • • • •
coremetrics.com 89 (9%) • • • •
y-track.com 81 (8%) • • • • • •
cdn-net.com 72 (7%) • • • • • • • •
gumgum.com 67 (7%) • • • • • • • •
globalwebindex.net 64 (7%) • • • • •
firstimpression.io 61 (6%) • • • • •
doug1izaerwt3.cloudfront.net 60 (6%) • • •
advertising.com 53 (5%) • • • • • • • •
webtrends.com 48 (5%) • • • • • • • •
yandex.ru 42 (4%) • • • • • • • •

Table 7. The 30 most contacted trackers in JSWild dataset performing fingerprinting.

Domain # Users Font WebGL
Hardware
Information Audio Canvas

Plug-ins &
MIME types

Browser
Parameters Screen Timezone

cedsdigital.itwebtrekk 346 (35%) • • • •
paypal.com 284 (29%) • • • • • •
mediaset.netwebtrekk 232 (24%) • • • •
alicdn.com 221 (23%) • • • • • •
repstatic.itwebtrekk 173 (18%) • • • •
stbm.itwebtrekk 157 (16%) • • • •
stgy.ovh 155 (16%) • • • • • •
grouponcdn.com 151 (15%) • • • • • • • •
ilfattoquotidiano.itwebtrekk 148 (15%) • • • •
github.com 144 (15%) • • • • • •
ansa.itwebtrekk 132 (13%) • • • • •
yotpo.com 130 (13%) • • • • • •
youmath.it 126 (13%) • • • •
poste.it 114 (12%) • • • • • • • •
areyouahuman.com 113 (12%) • • • • • • • •
cloudflare.com 103 (10%) • • • • • • • •
ilgiornale.it 100 (10%) • • • •
plug.itwebtrekk 99 (10%) • • • • •
tiscali.itwebtrekk 98 (10%) • • • •
jsdelivr.net 92 (9%) • • • • • • • •
wired.itwebtrekk 90 (9%) • • • •
tiqcdn.com 90 (9%) • • • • • • •
libero.it 89 (9%) • • • • • •
editmysite.com 89 (9%) • • • • •
24o.it 87 (9%) • • •
yimg.com 83 (8%) • • • • • • • •
mymovies.itwebtrekk 70 (7%) • • • •
skuola.netwebtrekk 68 (7%) • • • •
lastampa.itwebtrekk 65 (7%) • • • •
flixbus.de 65 (7%) • • •

Table 8. The 30 most contacted domains in JSWild dataset performing fingerprinting, but not present in TrackerList.24
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