
Proceedings on Privacy Enhancing Technologies ; 2021 (2):305–322

Se Eun Oh*, Nate Mathews, Mohammad Saidur Rahman, Matthew Wright, and Nicholas Hopper

GANDaLF: GAN for Data-Limited
Fingerprinting
Abstract: We introduce Generative Adversarial Net-
works for Data-Limited Fingerprinting (GANDaLF), a
new deep-learning-based technique to perform Website
Fingerprinting (WF) on Tor traffic. In contrast to most
earlier work on deep-learning for WF, GANDaLF is in-
tended to work with few training samples, and achieves
this goal through the use of a Generative Adversarial
Network to generate a large set of “fake” data that helps
to train a deep neural network in distinguishing between
classes of actual training data. We evaluate GANDaLF
in low-data scenarios including as few as 10 training
instances per site, and in multiple settings, including
fingerprinting of website index pages and fingerprinting
of non-index pages within a site. GANDaLF achieves
closed-world accuracy of 87% with just 20 instances per
site (and 100 sites) in standard WF settings. In partic-
ular, GANDaLF can outperform Var-CNN and Triplet
Fingerprinting (TF) across all settings in subpage fin-
gerprinting. For example, GANDaLF outperforms TF
by a 29% margin and Var-CNN by 38% for training
sets using 20 instances per site.

DOI 10.2478/popets-2021-0029
Received 2020-08-31; revised 2020-12-15; accepted 2020-12-16.

1 Introduction
Tor is one of the most widely used anonymous networks,
with eight million daily users [14]. While Tor provides
anonymity against basic traffic inspection, it has been
shown that more sophisticated attacks can be used to
recover some information about Tor traffic. One of the

*Corresponding Author: Se Eun Oh: University of Min-
nesota, E-mail: seoh@umn.edu
Nate Mathews: Rochester Institute of Technology, E-mail:
nate.mathews@mail.rit.edu
Mohammad Saidur Rahman: Rochester Institute of Tech-
nology, E-mail: saidur.rahman@mail.rit.edu
Matthew Wright: Rochester Institute of Technology, E-mail:
matthew.wright@rit.edu
Nicholas Hopper: University of Minnesota, E-mail: hop-
pernj@umn.edu

most well-studied attacks against Tor is Website Finger-
printing (WF), which uses the patterns of traffic sent
and received on a Tor connection to identify whether
the connection is to a list of possible destinations.

WF attacks in the literature have evolved to achieve
very high accuracy in classifying known websites. Ini-
tial work explored a variety of classification algorithms
and useful features to extract from a Tor traffic trace.
Through these efforts, WF attacks based on domain-
specific classifier models and domain-specific feature ex-
traction [6, 17, 30] reached over 90% accuracy.

More recent work has sought to apply methods
from Deep Learning to automate the process of select-
ing classifiers and extracting features from a network
trace [16, 21, 22, 25]. By training classifiers on a much
larger data set, using raw traffic traces, and applying
techniques to search for the best classifiers within a set
of models, this work has led to the discovery of classifiers
with over 95% accuracy, and which automatically per-
form feature extraction without requiring prior domain
knowledge.

Attaining superior classification performance with
these models, however, is only feasible when using a
huge training set, such as 800 samples per site. As
Juarez et al. [11] pointed out, most websites are reg-
ularly updated and modified, requiring the attacker to
frequently collect new training traces for each site. This
leads to questions about the feasibility of WF attacks
for all but the most powerful attackers.

To demonstrate that WF attacks are a serious
threat that even less powerful adversaries can use to un-
dermine the privacy of Tor users, researchers have fur-
ther investigated more advanced deep learning models
that can be optimized in scenarios with limited amounts
of training data. Var-CNN [4] adapts the ResNet [7] net-
work model with dilated convolution for traffic analysis
with relatively smaller training sets. Triplet Fingerprint-
ing (TF) [26] applies triplet networks with N-shot learn-
ing to learn a WF feature extractor that can be used for
classification with only a few training samples.

In this paper, we pursue the same objective, data-
limited fingerprinting, but using generative adversarial
networks (GANs) to achieve even better performance
for realistic low-data training. Compared to previous

GAN for Data-Limited Fingerprinting 306

work [4, 26], our approach is more efficient, requiring
fewer samples than Var-CNN, and offering better per-
formance than TF without the need for pre-training.

To support training with limited data, we propose
the novel GANDaLF architecture, which leverages a
small amount of labeled data and a larger unlabeled
set to train two networks, a generator and a discrimi-
nator. In our setting, the generator is trained to convert
random seeds into fake traces from the same statistical
distribution as the training data, while the discrimina-
tor is trained to correctly classify the labeled data while
also discriminating between real traces and fake traces
output by the generator. To the best of our knowledge,
this represents the first application of semi-supervised
learning using a GAN in a WF attack. We show that
the GANDaLF approach leverages the generator as an
additional source of data to help improve the perfor-
mance of the discriminator, which enables WF to be
effective even in low-data settings.

In addition, our work is the first to examine the
performance of low-data WF attacks in a more realistic
WF scenario, in which users visit both index and non-
index webpages. We present how the generator effec-
tively generates fake traces resulting in a better discrim-
inator (that is, classifier) even when the intra-class vari-
ance is much larger than in the standard WF scenario.
Note that this second scenario makes GANDaLF more
promising, especially when the corpus of site subpages is
enormous and requires some limited selection of train-
ing subpages. We show that the discriminator can be
trained even with very few subpages and work even on
previously unseen subpages.

We summarize our contributions as follows:
– WF with GANs. Ours is the first study to inves-

tigate the applicability of semi-supervised learning
with GANs to WF models. In this paper, we intro-
duce GANDaLF, an extension of the SGAN model of
Saliman et al. [23] that is optimized for website fin-
gerprinting. Our modifications include adding deeper
generator and discriminator networks, applying regu-
larization techniques in a different way, and adopting
improved feature matching loss [13]. In addition, we
empirically study the choice of hyperparameters and
investigate the optimal labeled and unlabeled data
settings that result in a more effective WF attack.

– Subpage Fingerprinting Study. We study the ap-
plicability of GANDaLF and other recent data-
limited WF attacks to two WF scenarios, WF
with index pages (WF-I) and WF with both index
and non-index subpages (WF-S). Although other re-

searchers [15, 17] have explored WF-S in the past,
to the best of our knowledge, our study is the
largest subpage fingerprinting analysis to date and
sheds light on the potential of GAN-based finger-
printing. In particular, using the largest website sub-
page dataset, we revisited state-of-the-art WF clas-
sifiers, including traditional machine-learning-based
WF, deep-learning-based WF, and more recently
published data-limited fingerprinting techniques in
both the closed- and open-world scenarios.

– Enhanced Low-Data Training. In our closed-world
lowest data setting using five instances, GANDaLF
outperforms Var-CNN [4] by a +40% margin in the
WF-I scenario. Even though TF becomes more power-
ful using five instances in the closed-world WF-I sce-
nario, TF performed poorly in the open-world setting,
showing that using the generator of GANDaLF as an-
other data source of “monitored” traces may lead to
better generalization in a real-world scenario than the
label-based pre-trained network used in TF. Besides
the performance improvement, GANDaLF has signifi-
cant advantages over TF. Unlike the pre-training ap-
proach of TF, which still requires regular collection
of a large labeled dataset, GANDaLF uses unlabeled
data that can often be collected from the same van-
tage point as used to collect data for the attack itself
by running a Tor guard or middle node.
In the WF-S scenario, GANDaLF outperforms both
Var-CNN and TF in all settings by +20-30% and +16-
43% margins, respectively. However, we found that k-
FP becomes more effective using more limited train-
ing data (i.e., 5-20 instances) and in the open-world
setting, since feature engineering based on packet
statistics is better able to handle large intra-class vari-
ance in our subpage dataset. We show that manual
feature engineering is helpful in WF-S, while GAN-
DaLF outperforms all other DL-based classifiers.

2 Background
In this section, we first organize WF attacks into three
categories: WF models based on traditional machine
learning techniques, techniques based on Deep Neural
Networks (DNNs), and finally advanced techniques that
specialize in maximizing performance in low-data sce-
narios. Finally, we discuss GANs.

2.1 Website Fingerprinting
Website fingerprinting is a traffic analysis technique in
which the adversary aims to identify the websites that

GAN for Data-Limited Fingerprinting 307

(a) Vanilla GANs (b) Semi-supervised learning
with GANs

Fig. 1. Generative adversarial networks (GANs).

a user is visiting. To perform this attack, the adversary
first makes a series of connections to sites of interest
and saves the traffic patterns created to create a la-
beled dataset consisting of pairs: (traffic_pattern,
website). He then uses this dataset to train a machine
learning classifier to recognize these websites based on
traffic patterns observed from the victim’s online activ-
ity. This attack can be successful because the observable
traffic patterns across multiple visits to the same web-
page are relatively consistent and often fairly distinct
from the patterns seen when visiting other sites. Because
these attacks depend solely on traffic metadata (rather
than the traffic contents), WF attacks remain successful
even when traffic is encrypted or under the protection
of privacy enhancing technologies such as VPNs or Tor.

Closed- and Open-World Settings. An important
consideration in the study of WF is whether an evalua-
tion uses a closed-world setting or an open-world setting.
In a closed-world setting, which is typically used to make
baseline comparisons between models, the victim is as-
sumed to be visiting one of a fixed set of sites that the
attacker is interested in and can train on, known as the
monitored set. In contrast, an experiment in the open-
world setting also uses a large set of sites outside of the
monitored set, known as the unmonitored set, and allows
the victim to visit a site in either set. Since in practice,
a user could be visiting any site on the web, open-world
evaluations model is a more realistic scenario. It should
be noted, however, that open-world evaluations cannot
test every possible unmonitored site on the Web – at-
tacks tend to degrade in accuracy as larger unmonitored
sets are used in an evaluation. Additionally, neither sce-
nario considers the rate at which users actually visit
different sites while using Tor (the base rate of each
site). Attacks will be more accurate in practice when

including popular sites in the monitored set than when
looking for less popular sites.

2.1.1 Traditional ML Attacks on Tor
The first WF attack on Tor was introduced by Her-
rmann et al. [8] using a Naive Bayes Classifier based on
the packet length frequency. After that, Panchenko et
al. [18] further improved WF performance by using a
Support Vector Machine (SVM) and investigating vari-
ous feature sets. Since then, other researchers [6, 17, 30]
explored different classifiers and new feature sets to de-
velop more effective WF models:

k-NN. Wang et al. [30] adapted a k-Nearest Neighbor
(k-NN) classifier for effective WF with a large feature
set, and attained 95% accuracy in a closed-world setting
with the index pages of 100 websites.

CUMUL. Panchenko et al. [17] significantly improved
the performance of the SVM classifier with a new feature
set, called CUMUL, that is based on cumulative sizes of
TCP packets, lengths of TLS records, and numbers of
Tor cells.

k-Fingerprinting. Hayes and Danezis [6] proposed
the k-fingerprinting (k-FP) attack, which leverages a
Random-Forest classifier and a statistics-based feature
set to achieve high performance. In their open-world
evaluation, they computed the hamming distances be-
tween RF leaves and used these in a k-NN classifier.
This allowed them to tune their attack towards either
high precision or high recall by varying the value of k.

2.1.2 Deep-Learning-Based Attacks
WF researchers [16, 22, 25] began investigating the ap-
plicability of deep learning (DL) to automate the feature
extraction process in WF:

Automated Website Fingerprinting (AWF).
Rimmer et al. [22] examined various DNN models such
as stacked-denoising autoencoders, convolutional neu-
ral networks (CNN), and Long Short-Term Memory
(LSTM). For the evaluation, they collected the largest
dataset of traffic traces in the WF literature. Their best
attack reaches up to 94% accuracy when evaluated in
a closed world of 900 websites. It requires 2,500 train-
ing samples per website to achieve this, however. In our
paper, we used the dataset they collected to evaluate
GANDaLF.

Deep Fingerprinting. Sirinam et al. [25] proposed
Deep Fingerprinting (DF), a CNN model adapting re-

GAN for Data-Limited Fingerprinting 308

cent advances in computer vision to create a deeper and
more effective network. The DF model got 98% accu-
racy in a closed world of 95 websites, over 90% accu-
racy for traffic traces defended by WTF-PAD [12] – a
defense considered the lead candidate for deployment in
Tor [19], and 98% top-two accuracy on traffic defended
by Walkie-Talkie [31]. To get this level of accuracy, how-
ever, they require 800 training samples per website.

2.1.3 Low-Data WF
The AWF and DF models were trained using hundreds
of samples for every website in the monitored set. Siri-
nam et al. noted that collecting such large datasets
would require an attacker to run between 8-24 PCs
continuously [26], where the dataset needs to be re-
freshed every few weeks at least to maintain high ac-
curacy [11, 22]. Given this, one can criticize the attacks
as being unrealistic except for powerful adversaries who
could use the resources to instead perform other attacks
on Tor. To address this, researchers have begun focusing
on the design of WF attacks that overcome the cost and
time to obtain training data. Two recent works [4, 26] fo-
cus on the optimization of DNN architectures to achieve
state-of-the-art performance when few fresh samples are
available for training. These attacks allow hypothetical
adversaries to quickly apply ready-to-use models, even
when subjected to such constraints.

Var-CNN. To achieve comparable classification per-
formance in low-data scenarios, Bhat et al. [4] intro-
duced Var-CNN, an optimized DNN architecture based
on ResNet [7] with dilated causal convolutions. They
also proposed to combine direction and timing informa-
tion together. Those improvements enabled their model
to get 97.8% accuracy using just 100 training instances
per website across 100 websites.

Triplet Fingerprinting. To achieve high perfor-
mance with as few fresh training samples as possi-
ble, Sirinam et al. [26] pursued the concept of N-shot
learning with their Triplet Fingerprinting (TF) attack.
For this attack, the adversary first pre-trains a feature
extractor using large, publicly available training sets
such as the AWF dataset [22]. The feature extractor
is trained to produce a vector as output that captures
the feature information in a way that minimizes the dis-
tances between traces from the same website and max-
imizes the distances between traces from different web-
sites. Using the features derived from this feature ex-
tractor, a small dataset of fresh samples are then used
to train and test a simple distance-based classifier, such

as k-NN. This attack was shown to reach 94% accuracy
when only using 10 instances per website to train the
classifier.

Although Sirinam et al. addressed the problem of
data-limited fingerprinting, it requires pre-training a
model using a large labeled training dataset. While such
datasets are available, such as the AWF dataset col-
lected in 2016, Sirinam et al. found a significant loss
in performance when using data from three years be-
fore [26]. It is likely that the attacker would still need
to regularly update the labeled dataset to maintain a
high performance level. In contrast, GANDaLF uses a
large unlabeled dataset. This dataset can be obtained by
eavesdropping on potential victims from the same van-
tage points as used to perform the attack. For example,
the attacker could run a Tor guard or middle node or
use malware to compromise the DSL modems through
which users connect to the Internet. From these vantage
points, they can collect unlabeled data to train the GAN
as well as the data for performing the actual WF attack,
without significant additional cost. As such, to properly
update WF models using a fresh dataset, the use of un-
labeled data can make WF attacks more portable while
keeping high performance.

2.1.4 WF with Subpages
For the majority of the experiments performed in the
aforementioned works, researchers have used a web-
site’s index page to represent the site (e.g. going to
http://www.cnn.com/ by typing it into the browser’s
URL bar). This attack strategy limits the applicability
of the attack as it severely limits the amount of traffic
instances that may be viably fingerprinted in the real-
world. Panchenko et al. were the first to identify this
issue [17]. An attacker would be interested to instead
identify a website using traffic samples generated from
any webpage on the site (e.g. news stories on CNN.com
reached by following links from the homepage or social
media). In this scenario, the attacker can use both index
pages and non-index pages (also referred to as subpages)
for website identification. To distinguish between these
settings, we use the phrases WF with index pages (WF-
I) and WF with subpages (WF-S).

When Panchenko et. al first studied this scenario,
they used a small dataset of 20 websites, each rep-
resented by 51 subpages, for which up to 15 samples
were collected (i.e. 20x51x15). In this paper, we extend
this study further by collecting a larger dataset of size
24x90x90 and perform a thorough comparison of WF
attacks in this setting.

http://www.cnn.com/
CNN.com

GAN for Data-Limited Fingerprinting 309

Tangentially, Oh et al. studied the fingerprintabil-
ity of keyword search queries for popular search en-
gines when visited over the Tor network [15]. This
work is similar to that of WF-S, since the webpage
generated by each keyword search query represents a
unique subpage of the search engine website domain.
Our work is different, however, in that each search
term’s subpages are identified as their own class, al-
lowing for the identification of individual pages within
a domain. For non-search cases, this would be equiva-
lent to trying to classify the subpages separately (e.g.
https://www.cnn.com/politics as different from https:
//www.cnn.com/business) instead of as members of the
same class (e.g. for CNN.com in general). We use the
term subpage identification to describe this type of at-
tack scenario. For this paper, we have limited our study
to WF-S and do not explore subpage identification.

2.2 Generative Adversarial Networks
Generative Adversarial Networks (GANs) were first in-
troduced in 2014 by Goodfellow et al. for creating im-
ages [5]. Figure 1a depicts a vanilla GAN, which consists
of two components: a discriminator and a generator.
The discriminator is a two-class classifier that is trained
to distinguish between real data samples and fake data
samples that are generated by the generator. The gen-
erator is trained to create those fake data samples in a
way that is as hard to distinguish from the real samples
as possible. If both models are successfully trained, the
generator will become good at producing samples that
are indeed very similar to the original data distribution,
such as realistic-looking images.

The discriminator uses a mostly standard convolu-
tional neural network (CNN) that takes the image as
input and outputs a single value in the range [0, 1) that
can be interpreted as a measure of how real the input
image is, i.e. the likelihood that it comes from the dis-
tribution of real data, pdata(x). The generator, on the
other hand, is given a noise vector pz(z) as input and
effectively operates as a reverse CNN, repeatedly using
a method called deconvolution to transform the noise
into image features and create an output in the shape
of an image.

The vanilla GAN thus alternately minimizes two dif-
ferent loss functions to achieve these two different goals:

min
G

max
D

Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[log(1-D(G(z)))]

In words, the discriminator, D, is trained to maximize
the probability of assigning the correct label to both
original and reconstructed samples from the generator,
G, while G is trained to minimize log(1−D(G(z))).

Table 1. The data setup for GANDaLF in Section 6 (Note that
(): the number of instances per class, L: labeled set, U: unla-
beled set, GF: GDLF, n: {5, 10, 20, 50, 90}).

WF-I WF-S
CW OW CW OW

L AWF1 AWF1&AWF-OW GF25 GF25&GF-OW
(n) (n&100×n) (n) (n&25×n)

U AWF2 AWF2&AWF-OW AWF1 AWF1&AWF-OW
(2500) (2500&33k) (2490) (2490&400k)

3 Data
In this section, we discuss the details of the datasets
used for our attack evaluation in Section 6. The datasets
we use are organized into two different types: index-page
only data for use in WF-I, and datasets containing a mix
of subpages to be used for WF-S.

3.1 Index Webpage Set
For the WF-I scenario, we use the large datasets col-
lected by Rimmer et al. in 2016 [22]. To the best of our
knowledge, they provided the largest dataset, compris-
ing 2,500 instances of each of 900 monitored websites
and 400,000 unmonitored websites. The sites were cho-
sen among top Alexa websites [2].

To produce the dataset used for our evaluations, we
chose 200 websites randomly sampled from their moni-
tored dataset. We further partitioned this data into two
distinct sets containing samples for 100 websites each,
which we denote AWF1 and AWF2. For our WF-I
experiments, we use AWF1 as our monitored dataset
and use the AWF unmonitored dataset (AWF-OW)
as is. We then use the AWF2 dataset to act as the unla-
beled dataset when training GANDaLF. This is also the
dataset we use to pretrain the TF attack. Furthermore,
to investigate the impact of labeled data and unlabeled
data on the performance of GANDaLF , we adopt DF
set (DF) provided by Sirinam et al. [25] that was col-
lected using 40 circuits and labelled with the circuit
index along with the website class.

All traces in AWF and DF set consisted of the
packet direction information in which each column was
marked as -1 if it is an incoming packet and 1 otherwise.

3.2 Subpage Set
In order to evaluate the effectiveness of subpage fin-
gerprinting we needed to collect a new dataset using
tor-browser-crawler [3]. Before beginning the data
crawl, we first harvested a list of non-index URLs for
websites sampled from the Alexa top 200 rankings.

https://www.cnn.com/politics
https://www.cnn.com/business
https://www.cnn.com/business
CNN.com

GAN for Data-Limited Fingerprinting 310

We then downloaded those websites locally using
torsocks wget and identified candidate URLs using the
find command. Finally, we eliminated domains that
had low subpage counts and trimmed our final list of
URLs to subpages within 25 domains.

Next, we randomly selected an equal number of non-
index pages for each website, which we visited many
times in a round-robin fashion. After collecting the traf-
fic for each visit, we filtered out traces that failed to
load and that contained less than 150 packets. We then
trimmed the dataset such that the number of non-index
pages and samples per non-index page were equal for
every examined website. This process left us with 39 in-
stances per subpage and 96 subpages per website, for a
total of 3,744 instances for each of our 25 websites. We
will refer to this dataset as GDLF25 from here on out.

For WF-S CW experiments, we use all 25 domains
in GDLF25 as our monitored dataset. To evaluate WF-
S in the OW setting, we further crawled the unmon-
itored subpage dataset using urls provided by other
researchers [22], leading to 70,000 subpages (GDLF-
OW). Finally, we use the AWF1 dataset to act as the
unlabeled and pretraining data for the GANDaLF and
TF attacks. Table 1 summarizes the dataset usage for
two different scenarios: WF-I and WF-S.

4 Semi-Supervised Learning with
GANs

Given that GANs have achieved success for various gen-
erative applications, researchers have become interested
to see if they can also help in classification tasks as well.
In particular, GANs have been applied to the problem
of semi-supervised learning (SSL) [27, 28]. The goal of
SSL with GANs is to transform the discriminator into a
multi-class classifier that learns from a relatively small
amount of labeled data (the supervised part) while also
learning from a larger body of unlabeled data (the un-
supervised part). As shown in Figure 1b, this classifier
(the discriminator D) outputs not only a single value
that measures whether the input was real (closer to 1)
or fake, but also it outputs a set of K individual class
probabilities that can be used to identify the label for
any real samples. The generator G is trained as before
only to produce samples that appear real without nec-
essarily fitting any of the classes in particular, which
eventually helps classify the dataset.

The benefit of this approach is that it can achieve
high performance on the classification task while only

using a relatively small sample of labeled data. In many
tasks, unlabeled data is readily available, but obtain-
ing large quantities of data with accurate labels is often
expensive. The insight of using a GAN is that, during
the process of learning how to discriminate real samples
from fake ones, the discriminator is also learning how to
extract meaningful features from the data by utilizing
a large amount of unlabeled data. Having built up this
feature extraction capability, the model is then able to
learn how to distinguish between different sites with rel-
atively few samples. Indeed, Saliman et al. [23] showed
the potential of this idea by improving the performance
of a classification task using GANs in this way. In this
paper, the overall GANDaLF design is based on their
GAN, which is called SGAN. We next provide a brief
overview of the SGAN design.

4.1 SGAN Overview
SGAN is composed of a generator and a discriminator,
which are trained together in the same way as a vanilla
GAN. The key difference from the vanilla GAN is in the
loss functions of the generator and discriminator. Sal-
iman et al. [23] introduced a new loss function, called
feature matching loss, to be used as the generator loss.
We will discuss this loss function in detail in Section 4.2.
The discriminator loss is a combination of the super-
vised loss, based on how well it classifies labeled inputs
into the K classes, and unsupervised loss, based on how
well it can distinguish real inputs from the unlabeled
dataset and the fake inputs from the generator.

The original concept of the supervised loss was to
optimize the classification over K + 1 labels where K is
the number of classes in the labeled set, and there is one
additional label for fake data. However, since the classi-
fier with K + 1 softmax outputs is overparameterized, as
an efficient implementation [1], Saliman et al. suggested
to fix the unnormalized logit as 0 for fake data, which
in turn, leads the supervised loss to a categorical cross-
entropy loss over the softmax output of K classes and

the discriminator D to be D(x) = Z(x)
Z(x) + exp(lfake(x))

= Z(x)
Z(x) + 1 , where Z(x) =

∑K
k=1 exp(lk(x)) where l is

the output logits. We will detail this unsupervised loss
implementation of the discriminator in Appendix A.

4.2 Feature Matching Loss
State-of-the-art GANs have been shown to generate ex-
cellent samples for many tasks [20], but training GANs
is difficult and very sensitive to the hyperparameter set-
tings. A particular issue is that the two models can end

GAN for Data-Limited Fingerprinting 311

up focusing too much on mistakes the other model is
making without actually improving on the core task.
For example, if the generator is adding a blue blob to
the corner of nearly every image, then the discriminator
will heavily emphasize this blob in its decisions, improv-
ing its score without improving its function. The gener-
ator in turn may learn to change the color of the blob
to red without removing it. This can create a fruitless
back-and-forth that does not yield good images.

To solve this problem, Saliman et al. [23] proposed
a new loss function for the generator, called feature
matching loss, to prevent it from overtraining on the
current discriminator. Feature matching loss is com-
puted on the output of an intermediate layer of the
discriminator, which can be thought of as a represen-
tation of the features that the convolutional layers have
found. By seeking to minimize the difference between
the features found in real data and the features found
in its generated samples, the generator can avoid focus-
ing unduly on a single mistake it is making that would
be heavily emphasized in the final discriminator output.
This strategy makes GANs more stable in training, and
we leverage it in GANDaLF as well. In GANDaLF, the
feature matching loss was computed for both WF-I and
WF-S scenarios by capturing the feature vectors in the
flatten layer prior to the last convolutional 1D layer, as
shown in Figure 2.

5 GANDaLF
In this section, we introduce our new attack, GAN-
DaLF, starting with the threat model, then a discussion
of the intuition behind the choice of SGAN for WF, and
present details of its design and network architecture.
Furthermore, we emphasize the contribution of GAN-
DaLF based on our experiences and findings when tun-
ing the GAN for WF in the semi-supervised setting and
in comparison to prior WF attacks.

5.1 Threat Model
We assume a network-level, passive adversary who can
only observe the network traces between the client and
the middle node of a Tor circuit, possibly by operating
the entry guard or middle node. The attacker is not
able to drop or modify packets that have been sent and
received from servers or collude with web servers.

The attacker requires training data, but since col-
lecting data from a client-based web crawl can be ex-
pensive, this attacker seeks to run an entry guard or
middle node to both perform the attack and simulta-

neously gather live Tor traffic that can be used as un-
labeled data. Note that while the middle node position
has less direct information about the client, Jansen et
al. [10] showed how an attacker can use the middle node
to perform attacks such as WF.

The attacker is interested in two attack scenarios,
both of which we explore in this paper. The first goal is
to train GANDaLF using website index pages and then
fingerprint visits to index pages only. This approach has
been used by most previous WF research [6, 16, 22, 25].
We call this scenario WF-I, referring to fingerprinting
websites with index pages.

The attacker’s second goal, which might include
more realistic scenarios, is to train GANDaLF using
both index and subpages (i.e. non-index pages) from a
website and then try to identify visits to any subpage of
a website. For example, the attacker may want to clas-
sify any page of amazon.com as Amazon. Note that the
attacker only needs a subset of the subpages from each
website instead of all pages to train the model, and can
test it using unseen subpages by leveraging the genera-
tive ability of GANDaLF. We call this scenario WF-S,
referring to fingerprinting websites with index and non-
index pages.

We explore WF-I and WF-S scenarios in both
closed-world (CW) and open-world (OW) settings. In
CW experiments, the attacker keeps a webpage finger-
print database and assumes that users will only visit
webpages in this database. In the more realistic OW
setting, the attacker keeps a set of monitored sites and
attempts to classify whether a particular trace is to a
site in this set or outside the monitored set. To achieve
this, the attacker collects traces of both monitored and
unmonitored websites to train the classifier and predicts
unseen webpages using this trained model to answer
whether or not they are monitored.

5.2 Sources of Unlabeled Data
Several groups of WF researchers [4, 16, 22, 25] have
demonstrated the effectiveness of convolutional neural
networks (CNNs) to model the distribution of website
traces, resulting in WF attacks with high classification
accuracy. Based on CNNs, we built an SGAN model
with a generator and a discriminator, in which the dis-
criminator becomes a K+1 class WF classifier (K is the
number of websites in the labeled set). This classifier
utilizes three different sources of training data: labeled
website traces collected by the attacker, unlabeled web-
sites traces that could be from a publicly available WF
database or fresh Tor traffic collected by running entry

GAN for Data-Limited Fingerprinting 312

Fig. 2. GANDaLF architecture (FC: Fully-connected layer,
Conv: convolutional layer, r: ReLU, t: Tanh, and l: LeakyReLU).
Note that in WF-I, we used one fully connected layer for the gen-
erator.

guards or middle nodes, and fake website traces pro-
duced by the generator.

The combination of different training sources en-
ables GANDaLF to learn from a broader perspective,
which leads to more precise WF classification only us-
ing a few labeled samples for training. In contrast, the
learning capacity of supervised WF techniques is lim-
ited to the data distribution when using a small set
of training samples, which leads to significantly weaker
performance in the limited-data setting.

Since GANDaLF needs multiple data sources, the
choice of unlabeled data impacts its classification per-
formance. SGAN [23] constructed both labeled and un-
labeled datasets from the same data distribution. In a
WF attack, however, this would require the attacker to
collect a very large unlabeled set to be aligned with
the labeled data, which contradicts the goal of low-data
training. Thus, to investigate the applicability of SGAN
to low-data WF, we studied how different the unlabeled
data distribution is from the labeled data distribution
if we construct them from different datasets.

Fig. 3. Distribution of euclidean distances between labeled and
unlabeled data (A1: AWF [22] set consisting of 100 websites,
A2: AWF set consisting of 100 websites (different from A2), and
D: DF set [25]).

We explored three datasets – WF-I, and WF-S, and
the MNIST computer vision dataset to serve as a base-
line. For MNIST, we built both labeled and unlabeled
data from the MNIST set. For WF-I, we constructed
the labeled set using the AWF1 set [22] and three dif-
ferent unlabeled sets: (i) one based on the same AWF1
set (WF-I in Figure 3), (ii) one based on the AWF2 set
(WF-I-A2), and (iii) one based on the DF set collected
with different network settings (WF-I-D). For WF-S,
we used GDLF21 to be used as labeled set and build
two unlabeled sets: (i) one from the same GDLF21 set
(WF-S in Figure 3) and (ii) one from AWF1 (WF-S-A1).
Then we computed the pair-wise Euclidean distances
between labeled and unlabeled data in these settings;
the distributions of these distances are shown in Fig-
ure 3.

Figure 3 shows that WF-I-A2 is close to WF-I,
which indicates that if the traces are collected in the
same network environment, their distance distributions
are almost the same, even though they comprise differ-
ent website traces. In WF-I-D, as the DF set was col-
lected in different network settings, the distances had
more variance. Similarly, the distance distributions of
WF-S-A1 and WF-S became more different from each
other, which we assumed as the most difficult data setup
for GANDaLF. We will empirically show in Section 6
the impact of using unlabeled data chosen from other
distributions, and conclude that it has minimal impact
on the classification accuracy, but it does affect the sta-
bility of training and somewhat restricts the capacity of
supervised learning.

With this preliminary analysis, we see that SGAN
is promising to explore WF in the low-data setting by
using a small labeled set together with a large unlabeled
set to help train the discriminator. Furthermore, we will
study more optimal labeled and unlabeled data settings
to maximize the classification power of GANDaLF in
Section 6. Compared to MNIST with a normally dis-
tributed curve, however, Figure 3 shows more variance

GAN for Data-Limited Fingerprinting 313

in the distances between labeled and unlabeled data for
WF data. This means that we need careful tuning of
SGAN to ensure better performance, which we discuss
in Section 5.3.

In addition, we expect that WF-S is a more chal-
lenging task than WF-I, because traces in WF-S are
more different than WF-I as they are plotted on a wider
curve in Figure 3. This results in additional difficulty to
simulate realistic fake subpage fingerprints as well as to
classify fingerprints to correct website labels.

5.3 SGAN Optimization for GANDaLF
Saliman et al. [23] proposed several SGAN architec-
tures optimized for different datasets, including MNIST,
CIFAR-10, and SVHN. Among these architectures, we
selected the one optimized for CIFAR-10 as our start-
ing point, since it yielded better initial accuracy on the
AWF1 set.

In this section, we discuss the technical challenges
we addressed to find the optimal SGAN architecture
for WF tasks and key design decisions. First, we found
several aspects of SGAN to be problematic when applied
directly to the WF problem.
– SGAN was built based on two-dimensional (2D) con-

volutional layers. As pointed out by Sirinam et al.,
however, network traffic features do not carry a mean-
ingful 2D spatial pattern in the same way as the im-
ages that most CNNs operate on [25]. Thus, we had to
incorporate one-dimensional (1D) convolutional lay-
ers into SGAN, and further, tune the model towards
WF classification tasks. The application of 1D convo-
lutional layers to SGAN revealed several additional
problems that we needed to address to improve the
performance of GANDaLF.

– SGAN used neither a batch normalization (BN) nor
dropout in the generator. However, building the ini-
tial SGAN architecture to use 1D convolutional layers
made training unstable. Thus, we explored whether
adding BN or dropout layers to both generator and
discriminator would help improve the training pro-
cess.

– Saliman et al. proposed feature matching loss using
the mean absolute difference (i.e., L1 loss) between
the expected features of real data and the expected
features of the generated data. However, since web-
page traces are different from image features, we also
investigated different feature matching loss functions
(L2 vs L1 distance).

– The choice of hyperparameters impacts the perfor-
mance of SGAN. Thus, we had to empirically find

the optimal parameters for WF-I and WF-S, respec-
tively.
To overcome these limitations of the original SGAN

architecture, we introduced the following technical in-
novations. Note that we used the same architecture for
WF-I and WF-S, but we empirically selected hyperpa-
rameters for each scenario as shown in Table 2.

Deeper 1D-Based Design. The initial SGAN im-
plementation [1] with feature matching was based on
the generator containing four deconvolutional 2D lay-
ers 1 and a discriminator consisting of seven 2D con-
volutional layers. After simply switching from 2D con-
volutional layers to 1D layers, we trained it using 90
instances per website and it reached 78% CW accuracy
in the WF-I setting. As shown in Figure 2, we added
more 1D convolutional layers, which resulted in a higher
accuracy. This change led to a classifier that obtained
95% accuracy with 90 training instances for each of the
100 websites.

Dropout and BN. We found that selective use of
dropout layers and the full use of BN layers in the gen-
erator helps to make the training more stable in WF-
S. More specifically, we added a dropout layer after all
convolutional layers except the first and last layers as
shown in Figure 2. In contrast, for WF-I, we only used
BN layers in the generator, since the use of dropout lay-
ers in any location worsened the performance. Further-
more, we added several fully connected layers, followed
by dropout layers between the flattened layers, where
we captured features to compute the feature matching
loss, and the last output layer.

Different Generator Loss. We noticed that the same
L1 feature matching loss works properly for WF-I, while
L2 loss improved the testing accuracy in the WF-S sce-
nario more than L1 loss. However, in both scenarios,
generator loss started with very low value around 0 and
did not decrease much, while discriminator loss continu-
ally decreased. This indicates that the generator did not
generate actual good fake traces, while the supervised
performance was constantly improved. This is because
intra-class variation in WF traces is more significant
than for images such as MNIST, which made it harder
for GANDaLF to reduce the feature matching loss. Fur-
thermore, when using AWF1 set as unlabeled data in

1 A deconvolution is the inverse operation of the convolution,
which means performing the convolution in the back propaga-
tion.

GAN for Data-Limited Fingerprinting 314

Table 2. Hyperparameter optimization showing the chosen parameters and search spaces for the WF-I and WF-S scenarios
(G: generator, D: discriminator, [Conv]: 1D convolutional layer block, [Full]: fully-connected layer block, Up: Upsampling layer,
act: activation function, and #: number).

Scenario → WF-I WF-S

HyperParam ↓ Choice Search Space Choice Search SpaceG D G D
[Conv] layer# 9 8 4∼12 9 8 4∼12
[Conv] filter# 64∼ 512 32∼ 256 10∼1,000 32∼ 256 32∼ 256 10∼1,000
[Conv] filter size 5 5 2∼10 20 20 2∼30
[Conv] stride size 1 1∼2 1∼4 1 1∼4 1∼4
[Conv] dropout rate - 0.3 0.2∼0.9 0.3 0.3 0.2∼0.9
[Conv] act ReLU LeakyReLU ReLU, LeakyReLU, ELU ReLU LeakyReLU ReLU, LeakyReLU, ELU
[Conv] Up# 4 - 2∼9 4 - 2∼10
[Full] layer# 1 5 1∼6 3 5 1∼5
[Full] node# 316 512∼ 2,048 128∼2,048 316 512∼ 2,048 10∼2,048
[Full] dropout rate - 0.5 0.2∼0.9 0.5 0.5 0.2∼0.9
[Full] act ReLU ReLU ReLU,LeakyReLU ReLU ReLU ReLU, LeakyReLU
input dim 5,000 5,000 5,000 3,000∼8,000
z dim 100 50∼700 100 50∼700
optimizer Adam Adam Adam Adam
learning rate 2e−4 5e−5 1e−5 ∼ 0.1 2e−4 5e−5 1e−5 ∼ 0.1
epoch ≤30(CW), ≤150(OW) 10∼1,000 ≤10(CW), ≤100(OW) 10∼1,000
batch 32 16∼128 16 16∼128

WF-S, the generator loss kept increasing even as the
discriminator loss was decreasing. We will investigate
this problem in detail in Section 6.3.

Stride and Kernel Choice in WF-S. Furthermore,
we found that a greater length of strides and kernels
helped improve the performance of GANDaLF in WF-S.
This was consistent with our expectation that increasing
the stride length and kernel sizes, which shrinks the out-
put volume after the convolutions, might lead the net-
work to better handle WF-S having greater intra-class
variation than WF-I and capture meaningful features.
This resulted in the number of features used to compute
the feature matching loss in WF-I being 20,224, while
it was 1,280 in WF-S scenario. As such, losing some
details by increasing the stride and kernel sizes helps
to better capture the traffic pattern when features are
more variable within each class.

Input Representation for WF-S. Most DL-based
WF attacks represent a website trace as a sequence of
±1’s that indicate packet direction. In our investiga-
tions, we explored several alternative data representa-
tions, such as inter-packet delay (IPD) and Tik-Tok [21]
sequences, for both WF-I and WF-S scenarios. In the
WF-S scenario, we found that IPD yielded +9% and
+8% better CW accuracy than the direction and Tik-
Tok features. Hence, we used IPD sequences in WF-S
scenarios throughout the paper.

Parameter Tuning. Along with the architectural
tuning, we also explored different combinations of pa-
rameters involved in the architecture for WF-I and WF-
S. Since the GDLF dataset is different from the AWF
dataset, we conducted hyperparameter tuning sepa-
rately for each scenario. We used 90 instances of AWF1
and all of AWF2 for tuning WF-I, and 90 instances of
GDLF25 and all of AWF1 for tuning WF-S. In this way,
we can ensure that the overlap is minimal between the
tuning sets and the testing sets used in Section 6.

The parameter search space and chosen parameters
are reported in Table 2. Beyond these parameters, we
also adjusted other components in SGAN. First, the
SGAN of Saliman et al. [1] used weight normalization
(WN) [24] in the discriminator, while we applied batch
normalization since WN barely impacted the perfor-
mance, and BN is easier to implement. Second, we ap-
plied different learning rates to the discriminator and
generator during the optimization based on findings by
Heusel et al. [9] that this ensures better convergence to
Nash equilibrium, and further, led GANs such as DC-
GAN [20] to achieve better performance.

Summary. Overall, the most effective design for GAN-
DaLF is to go much deeper by adding fully-connected
layers and more convolutional layers. As shown by Siri-
nam et al. [25], more layers help the model learn the in-
ner structure of website traces more effectively since WF
set has more inter- and intra-class variances than the

GAN for Data-Limited Fingerprinting 315

image set. On the downside, this may make the model
more complicated, resulting in more chances of overfit-
ting. Thus, we added dropout and batch normalization
layers to relieve this concern.

6 Evaluation
In this section, we evaluate the performance of GAN-
DaLF in various experimental scenarios. First, we com-
pare GANDaLF to the state-of-the-art WF techniques
in the WF-I setting (index pages) with limited train-
ing data. Then we further investigate the applicability
of GANDaLF and other data-limited attacks in the WF-
S setting (subpages).

6.1 Experimental Setting

Setup. We implemented GANDaLF using Tensorflow;
each experiment was conducted on a Tesla P100 GPU
with 16GB of memory. Using pseudocode, we provide
details of the GANDaLF experimental setup in Algo-
rithm 1 of Appendix B. We evaluated each technique us-
ing five trials and added more experiments up to a max-
imum of 20 when the standard deviation was greater
than 1%.

To implement state-of-the-art WF techniques, we
adopt the original implementations provided by re-
searchers [4, 6, 17, 25, 26]. We made few changes when
necessary for the data loading pipeline and for hyperpa-
rameter tuning. When tuning k-FP, we explored differ-
ent numbers of trees from 500 to 2,000 and finally chose
2,000 for both scenarios. For DL-based WF attacks, we
explored different mini-batch and convolutional stride
sizes, as these are parameters that are significant for
GANDaLF. Both DF and TF were also allowed to train
for additional epochs until validation loss increased for
five consecutive epochs. Since TF [26] used 1-20 training
instances per website for the N-shot learning, we chose
similar training set sizes, however, we increased the size
up to 90 instances to see how much DL-based classifiers
are benefited by additional training instances. That is,
to construct the training labeled set, we randomly sam-
pled 5, 10, 20, 50, and 90 instances for 100 websites in
WF-I. In WF-S (subpages), we randomly chose one in-
stance using each of ns subpages per site in which ns =
5, 10, 20, 50, and 90 (i.e., total 1× ns instances).

For GANDaLF, we randomly sampled these in-
stances rather than using one subpage per site, since
this approach yielded slightly higher closed world ac-
curacy, which will be detailed in Section 6.3. For other

Table 3. WF-I, CW: Comparison to k-FP, DF, Var-CNN, and TF
using 5-90 training instances. We do not show standard devia-
tions less than 1%. We measured the time (s: seconds) for testing
42k testing samples. Other numbers are %.

TrainN GANDaLF k-FP DF Var-CNN TF
5 70±2 61 60±2 25.9 78±1
10 81±1 72.5 79±2 69.1 81.6
20 87±1 77.3 89±2 90.8 83.1
50 93±1 82.8 95.1 97.1 83.9
90 95±1 85.5 97.1 98.3 84.2
time 5.5s 1.1s 7.6s 43.6s 8.5s

classifiers, we chose 1× ns achieving a higher accuracy.
In either case, the standard deviations between trials in
WF-S are greater than WF-I, most likely due to much
larger intra-class variance.

Metrics. We summarize the metrics for CW and OW
evaluation as follows.
– Accuracy: The percentage of predictions that are cor-

rect. This metric is traditionally used to evaluate clas-
sifiers in the CW setting in prior WF work, which we
adhere to.

– Precision: The percentage of positive predictions (i.e.
predicted as “monitored”) that are correct. If the clas-
sifier is tuned for high precision, it minimizes the
number of users being misdetected as “guilty,” but
may miss some instances that were truly monitored.

– Recall: The percentage of monitored-site instances
that are classified as “monitored.” A classifier tuned
for high recall will reliably identify when a sensitive
site has been visited, but may also misidentify “inno-
cent” websites as sensitive.

A WF adversary must consider both the precision and
recall of their classifier when evaluating the results of a
real-world attack, so we show precision-recall curves for
our OW experiments.

6.2 Fingerprinting Websites with Index
Pages

In this section, we evaluate the classification ability
of GANDaLF and other WF techniques in a low-data
setting by training and testing with website index pages.

CW Performance. We trained GANDaLF, k-FP,
DF, Var-CNN, and TF classifiers using 5-90 instances
per website, randomly sampled from the AWF1 dataset.
To train GANDaLF, we used AWF2 as the unlabeled
data. For a fair comparison, we also used the AWF2
dataset for the pre-training phase of the TF attack. The

GAN for Data-Limited Fingerprinting 316

Table 4. WF-I, CW: Impact of circuit diversity on labeled train-
ing data (DF set [25]). We used DF as labeled data and AWF2 as
unlabeled data. All standard deviations are less than 0.5%.

train (25) acc train (90) acc
1 circuit 86.6 slow 93.4
5 circuits 86.8 fast 92.9
40 circuits 87.1 random90 93.5

performance for each technique is shown in Table 3. The
best results for a given number of training instances is
shown in bold.

Our experiments show that GANDaLF is effectively
tied with TF when using 10 samples per class. However,
the testing cost of GANDaLF was lower than TF, DF,
and Var-CNN. For 50 samples and above, Var-CNN is
the best classifier, but it was much less effective when
limited to 5 or 10 samples, with accuracies of 26% and
69%, respectively. In the lowest data setting with 5 sam-
ples, TF was the most accurate classifier due to its pre-
trained WF model. Across all classifiers, if the attacker
can afford this larger cost for data collection, the pay-
off is worthwhile for closed-world classification of index
pages. In particular, when either DF or Var-CNN is
trained on many more instances, performance is much
improved. When trained on 90 instances, the accuracy
of DF and Var-CNN improves to 97% and 98% respec-
tively. This is important evidence to suggest that these
models require very large labeled training datasets to
learn effective feature representations in the WF-I sce-
nario.

Impact of Circuit Diversity. The attacker using
GANDaLF needs to gather and use a smaller dataset
of labeled data than in other attacks, so the source of
that data may impact attack accuracy. In particular, the
circuits used to collect this data might be slow, fast, or
otherwise not representative of the kinds of conditions
faced by the victim. To investigate the impact on GAN-
DaLF of the diversity of circuits used to gather labeled
training data, we examine how the number of circuits
used to gather data impacts accuracy. We used a subset
of the DF dataset collected using 40 circuits, and split
it into 40 smaller subsets, one per circuit. Each subset
consists of 25 instances of each of 95 websites. Thus, we
randomly sampled 95 websites and 25 instances (95×25)
within one subset, four subsets, and 40 subsets to con-
struct three training labeled sets and 100 instances of
each of 95 websites within all 40 subsets to build one
testing set (We detailed this data sampling in Algo-
rithm 2 of Appendix C). Then we trained three differ-

ent models using each labeled set and tested them using
the testing set. As shown in Table 4, the performance
somewhat improved with increasing number of circuits,
though it is far from critical in performing the attack.

Impact of Network Conditions. While the attacker
would likely use multiple circuits to gather labeled train-
ing data, the victim may have a particularly slow or fast
circuit. Thus, we examine how the speed of the victim’s
circuit impacts the attack. We use the same 40 subsets
of the DF dataset as when testing circuit diversity. We
split out the four fastest circuits and the four slowest
circuits by using the total website load times.

We then constructed fast (or slow) testing sets by
randomly sampling 95×100 instances from data gath-
ered using the four fast circuits (or slow circuits), which
was the same testing set size used in DF [25]. To
train GANDaLF, we randomly chose 95×90 instances
over the remaining 36 subsets. We described this data
sampling details in Algorithm 3 of Appendix C.

As a baseline, we further trained GANDaLF us-
ing randomly chosen 95×90 samples over 40 subsets
and tested it using another randomly chosen 95×100
instances over 40 subsets. As shown in Table 4, GAN-
DaLF performs modestly worse when identifying traces
using fast circuits and about the same on slow circuits.
The small margins indicate that the network condition
when collecting the victim’s traffic minimally impacts
the performance of GANDaLF.

Impact of Unlabeled Data. To understand the
impact of the choice of unlabeled data, we also
trained GANDaLF using the AWF1 set as both labeled
and unlabeled data. In other words, this models the
case that both sample groups come from the same dis-
tribution. Interestingly, this change only led to a 1%
increase in the accuracy of CW classification. We fur-
ther trained GANDaLF using the DF set (which was
collected in different network settings) and GANDaLF
yielded 87% CW accuracy when using 20 labeled train-
ing instances per website. Even though the distributions
of distances between labeled and unlabeled sets were
somewhat different as shown in Figure 3, this result
shows that the gap did not critically impact the clas-
sification ability of GANDaLF. This suggests that the
unlabeled data does not require either any of the moni-
tored sites in the labeled set or the same network setting
for the unlabeled data collection to provide a useful ba-
sis for semi-supervised learning.

OW Performance. Since GANDaLF and TF per-
formed more effectively in the low-data CW setting (i.e.,

GAN for Data-Limited Fingerprinting 317

Fig. 4. WF-I, OW: Comparison to k-FP and TF. We used 360k
background traces for k-FP and TF.

5-10 instances), we further evaluated them in the open-
world scenario. In this evaluation, the classifiers were
trained using 20 instances for each monitored site in
AWF1 and 2,000 unmonitored site instances from AWF-
OW. We then tested using a background set of 360,000
unmonitored website samples, which is the same size as
the largest background set explored by TF in their OW
evaluations [26]. We further varied the size of the un-
monitored set from 5,000 to 360,000 to show the impact
of the background set on the performance of GANDaLF.
As shown in Figure 4, GANDaLF outperformed k-FP
and TF and increasing the unmonitored set size de-
graded GANDaLF performance. Compared to the CW
setting, GANDaLF provides better performance than
TF by a more significant margin in detecting monitored
websites versus unmonitored websites. The better effec-
tiveness in OW scenarios is mainly because the discrimi-
nator using additional supervised loss also became more
benefited by the binary classification setting.

6.3 Fingerprinting Websites with
Subpages

In this section, we investigate the classification ability
of GANDaLF and other techniques in the WF-S set-
ting. This scenario not only represents a more realistic
scenario for attacks, but also a more challenging one, as
the inclusion of many subpage traffic instances results
in high intra-class variation.

CW Performance. For the WF-S CW experiments,
we trained each technique in a low-data setting with
between 5-90 training instances per site, where each in-
stance was randomly sampled. This means that, at best,
the attacker is able to train on one sample per subpage
within each site in our dataset. Consequently, during ex-
periments where the training sample count is below 90,

Table 5. WF-S, CW: Comparison to k-FP, DF, Var-CNN (Var),
and TF using 5-90 training instances. For unlabeled sets, we used
AWF1 (GF(A)) or GDLF-OW-old (GF(G)). We do not show
standard deviations less than 1%. We measured the time (s: sec-
onds) for testing 12k testing samples. Other numbers are %.

TrainN GF(A) GF(G) k-FP DF Var TF
5 30±1 31±2 41 4 5±1 14±1
10 39±3 38±2 46 5±1 6±2 17±1
20 46±3 47±3 52 47±2 9±2 18
50 57±2 56±3 57 49±2 21±6 18
90 62±1 62±3 61 61 25±7 19
time 2.3s 2.3s 3.1s 5.1s 12.07s 8.2s

there are subpages within the testing set on which the
attack did not train. We believe this challenging CW
scenario appropriately models the real-world difficulty
of accurately profiling an entire website under reason-
able data restrictions.

As shown in Table 5, this difficult training scenario
and the higher intra-class variance reduced the perfor-
mance for all WF methods. GANDaLF performed the
most effectively using 90 instances per site and ties with
k-FP when using 50 instances per site. In the lower data
settings, however, k-FP is more accurate. We believe
that the categorical features such as the total number
of packets enabled k-FP to gain an enhanced under-
standing about subpage traces even using more limited
training data. In contrast, deep learning models must
learn feature representations from scratch using the few
training samples provided, inevitably resulting in the
network gaining a poorer understanding of the data.

TF and Var-CNN achieved worse performance than
anticipated for all cases. The poor performance of Var-
CNN may be explained by how heavily tuned the model
is to the traditional WF-I scenario. The expanded recep-
tive field of the dilated convolutions used by the network
may cause the model to miss meaningful local patterns.

For TF, it seems that the distinctions between AWF
websites did not help the model generate good features
for the subpage traces, because the decision boundary
for the classification in WF-S was different from WF-I.
Since the pre-trained model was trained using labels, the
decision boundary became more biased towards WF-I,
leading to poor feature embeddings for subpage traces.

In contrast, GANDaLF was trained by additional
unsupervised loss and feature matching loss, enabling
it to learn a broader view of AWF1 traces without la-
bels rather than focusing on the differentiation between
AWF websites based on labels. This makes GANDaLF

GAN for Data-Limited Fingerprinting 318

Table 6. GANDaLF CW accuracy (Acc) according to different
labeled set by varying the number of subpages (s) and instances
(i) in the labeled set. All numbers are %.

s× i 2× 10 10× 2 20× 1 random
Acc 42.78±2.3 46.03±3.5 45.91±2.0 46.7±2.0

performance solid even when learning from a different
distribution (WF-S versus WF-S-A1 in Figure 3).

Impact of Subpages in Labeled Data. We further
varied the number of subpages used to represent each
website in the training data. More specifically, we var-
ied the number of subpage classes by fixing the total
instance count at 20. For example, we varied the sub-
page count s and instance count i to be s × i = 20.
We first randomly selected s subpages among 96 sub-
pages and then randomly sampled i instances for each
subpage. This scenario allows us to better see the ef-
fects of the increased intra-class variance as the number
of subpages (i.e., s) increases to labeled training data
and further guides us to build the optimal labeled set
to maximize the GANDaLF performance.

Based on Table 6, building the labeled set by ran-
dom sampling without considering s performed slightly
better than other cases while GANDaLF performance
remarkably worsened with more limited subpages when
s=2. This indicates that enough variance between sub-
pages in the labeled set is important to maximize the
performance of GANDaLF.

Impact of Unlabeled Data. As briefly discussed in
Section 5.3, we studied the effect of unlabeled sets to
the classification performance as well as the generator
loss. In this experiment, we used two unlabeled sets,
AWF1 and GDLF-OW-old which has a three-month
time gap with GDLF25 set, and one labeled set from
GDLF25. The generator loss somewhat decreased with
GDLF-OW-old while it kept increasing with AWF1.
Even though the GDLF-OW-old set made training more
stable, the CW accuracy was comparable across most
settings based on Table 5 (GF(A) versus GF(G)). How-
ever, the use of unlabeled set built from different data
distribution degraded the generator ability, which led
to more biased training towards a better discriminator
and may eventually result in limiting the upper-bound
of supervised learning capacity since Lu in Algorithm 1
of Appendix B also hardly decreased.

To create good fake samples against a greater num-
ber of classes than examined by Saliman et al. [23],
we should feed a much larger unlabeled set of subpage

(a) Comparison to k-FP. (b) Impact of unlabeled set.

Fig. 5. WF-S, OW: GANDaLF OW experiment by varying the
background sizes and unlabeled sets.
Table 7. Various unlabeled data settings using AWF1, AWF-OW
(AOW), and GDLF-OW-old (GOW). We reported the trace
count (size), whether or not the network setting was different
from the GDLF25 setting (network), and time gap (y: years,
and m: months).

setup AWF1-AOW AWF1-GOW AOW GOW
size 649k 329k 400k 80k

network no-no no-yes no yes
timegap 3y-3y 3y-3m 3y 3m

traces in which the corpus of the websites, subpages,
and instances is tremendous to train the generator ef-
fectively. As a result, both generator and discriminator
may reach the optimal Nash equilibrium while gaining
powerful supervised performance with a high CW ac-
curacy. We leave further investigation on the usage of
more optimal unlabeled data as future work.

OW Performance. We further conducted an OW
evaluation of GANDaLF and k-FP in the WF-S set-
ting, since they had better performance than other WF
attacks in the CW evaluation. For this experiment, we
trained both classifiers using the labeled set consisting
of 90 instances of 25 monitored sites and 2,250 unmoni-
tored subpages. In addition, we used AWF1 and AWF-
OW sets as unlabeled data for GANDaLF. Figure 5a
shows that as we increase the size of the unmonitored
set, GANDaLF becomes less effective, as expected. In
particular, k-FP outperformed GANDaLF in the OW
setting, which indicates that the handcrafted features
provide a more consistent basis to identify pages from
sites in the monitored set than the GANDaLF model.

We further investigated how combining unlabeled
sets could amplify the performance of GANDaLF.
For this experiment, we adopted AWF1, AWF-OW,
and GDLF-OW-old. We created combined datasets of
AWF1 with AWF-OW and AWF1 with GDLF-OW-old,
and compared these against AWF-OW and GDLF-OW-
old by themselves. See Table 7 for details.

GAN for Data-Limited Fingerprinting 319

Figure 5b shows that both of the combined un-
labeled sets performed slightly more effectively. This
suggests that the amount and perhaps variety of unla-
beled data played a role in enhancing the performance of
GANDaLF, even though some of the data was collected
three years prior to the labeled data and from differ-
ent network conditions (i.e., AWF-AOW in Table 7).
Furthermore, GANDaLF improved with the inclusion
of the GDLF-OW-old set, which suggests that the unla-
beled subpage traces help generate good fake samples to
distinguish monitored subpages from unmonitored sub-
pages by lowering Lu and LG in Algorithm 1 of Ap-
pendix B.

Summary. We find that GANDaLF outperforms other
DL-based classifiers on subpages. Surprisingly, however,
k-FP was even more effective in both the CW and
OW settings. The greater intra-class variation made it
harder for automatic feature extraction to work effec-
tively, while manually defined features can still work
consistently in such a challenging setting.

7 Conclusion
We introduce a novel attack, GANDaLF, using GANs
in the semi-supervised setting, in which the generator
minimizes the difference between real trace and fake
trace distribution while the discriminator is trained to
distinguish between real and fake samples and, further,
improve classification over the labeled set, by leverag-
ing both labeled and unlabeled traces. Because it re-
quires only a small amount of labeled data, we investi-
gated the applicability of this variant of GANs in the
low-data setting for WF attacks. Furthermore, we eval-
uated GANDaLF by considering both sites’ index and
non-index pages using various experimental scenarios.
Finally, our empirical study showed that GANDaLF had
better performance than Var-CNN and TF, the most re-
cent low-data WF attacks, at non-index fingerprinting,
with particularly significant performance advantage in
the open-world setting. However, in WF-S, GANDaLF
did not become more effective than k-FP leveraging the
total packet statistics.

Reproducibility. The source code and datasets used
in this paper are available on Github.2

2 https://github.com/traffic-analysis/gandalf

Acknowledgments
We thank the anonymous reviewers for their many com-
ments that helped to improve the paper. This work
was funded in part by the National Science Founda-
tion under Grants nos. 1722743, 1816851, 1433736, and
1815757.

References
[1] Code for the paper "improved techniques for training GANs.

https://github.com/openai/improved-gan.
[2] Does Alexa have a list of its top-ranked websites ? – Alexa

support. https://support.alexa.com/hc/en-us/articles/
200449834-Does-Alexa-have-a-list-of-its-top-ranked-
websites-.

[3] Tor browser crawler. https://github.com/webfp/tor-browser-
crawler.

[4] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A
data-efficient website fingerprinting attack based on deep
learning. Proceedings on Privacy Enhancing Technologies,
2019(4):292–310, 2019.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2672–2680, 2014.

[6] J. Hayes and G. Danezis. k-fingerprinting: A robust scal-
able website fingerprinting technique. In USENIX Security
Symposium, pages 1187–1203, 2016.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[8] D. Herrmann, R. Wendolsky, and H. Federrath. Website
fingerprinting: Attacking popular privacy enhancing tech-
nologies with the multinomial naïve-bayes classifier. In ACM
workshop on Cloud computing security, pages 31–42, 2009.

[9] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter. GANs trained by a two time-scale update
rule converge to a local Nash equilibrium. In Advances in
Neural Information Processing Systems (NeurIPS), pages
6626–6637, 2017.

[10] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz.
Inside job: Applying traffic analysis to measure Tor from
within. In Network & Distributed System Security Sympo-
sium (NDSS), 2018.

[11] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
critical evaluation of website fingerprinting attacks. In ACM
Conference on Computer and Communications Security
(CCS), pages 263–274. ACM, 2014.

[12] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. To-
ward an efficient website fingerprinting defense. In European
Symposium on Research in Computer Security (ESORICS),
pages 27–46. Springer, 2016.

[13] B. Lecouat, C.-S. Foo, H. Zenati, and V. R. Chandrasekhar.
Semi-supervised learning with GANs: Revisiting manifold
regularization. arXiv preprint arXiv:1805.08957, 2018.

https://github.com/traffic-analysis/gandalf
https://github.com/openai/improved-gan
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://github.com/webfp/tor-browser-crawler
https://github.com/webfp/tor-browser-crawler

GAN for Data-Limited Fingerprinting 320

[14] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and
M. Sherr. Understanding Tor usage with privacy-preserving
measurement. In Internet Measurement Conference, pages
175–187, 2018.

[15] S. E. Oh, S. Li, and N. Hopper. Fingerprinting keywords in
search queries over Tor. Proceedings on Privacy Enhancing
Technologies, 2017(4):171–190.

[16] S. E. Oh, S. Sunkam, and N. Hopper. p1-FP: Extraction,
classification, and prediction of website fingerprints with
deep learning. Proceedings on Privacy Enhancing Technolo-
gies, 2019(3):191–209, 2019.

[17] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pen-
nekamp, K. Wehrle, and T. Engel. Website fingerprinting
at Internet scale. In Network & Distributed System Security
Symposium (NDSS), 2016.

[18] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
fingerprinting in onion routing based anonymization net-
works. In Workshop on Privacy in the Electronic Society
(WPES). ACM, 2011.

[19] M. Perry. Padding negotiation. Tor Protocol Specification
Proposal. https://gitweb.torproject.org/torspec.git/tree/
proposals/254-padding-negotiation.txt, 2015.

[20] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

[21] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara,
and M. Wright. Tik-Tok: The utility of packet timing in
website fingerprinting attacks. Proceedings on Privacy En-
hancing Technologies, 2020(3):5–24, 2020.

[22] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem,
and W. Joosen. Automated website fingerprinting through
deep learning. In Network & Distributed System Security
Symposium (NDSS), 2018.

[23] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for train-
ing GANs. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2234–2242, 2016.

[24] T. Salimans and D. P. Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep neu-
ral networks. In Advances in Neural Information Processing
Systems (NeurIPS), pages 901–909, 2016.

[25] P. Sirinam, M. Imani, M. Juarez, and M. Wright. Deep
Fingerprinting: Undermining website fingerprinting defenses
with deep learning. In ACM Conference on Computer and
Communications Security (CCS). ACM, 2018.

[26] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright.
Triplet Fingerprinting: More practical and portable website
fingerprinting with n-shot learning. In ACM Conference
on Computer and Communications Security (CCS), pages
1131–1148, 2019.

[27] J. T. Springenberg. Unsupervised and semi-supervised learn-
ing with categorical generative adversarial networks. arXiv
preprint arXiv:1511.06390, 2015.

[28] I. Sutskever, R. Jozefowicz, K. Gregor, D. Rezende, T. Lil-
licrap, and O. Vinyals. Towards principled unsupervised
learning. arXiv preprint arXiv:1511.06440, 2015.

[29] J. van de Wolfshaar. Semi-supervised learning with GANs.
Medium Blog. https://medium.com/@jos.vandewolfshaar/
semi-supervised-learning-with-gans-23255865d0a4, 2018.

[30] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective attacks and provable defenses for website
fingerprinting. In USENIX Security Symposium, pages 143–
157, 2014.

[31] T. Wang and I. Goldberg. Walkie-Talkie: An efficient
defense against passive website fingerprinting attacks. In
USENIX Security Symposium, 2017.

Appendix

A Discriminator Loss
Implementation

We implemented the discriminator and generator train-
ing based on an existing implementation of SGAN by
Wolfshaar, which is described in a blog post [29]. In this
section, we briefly discuss the details of the discrimi-
nator loss implementation based on the interpretation
given in the blog post [29].

As Saliman et al. [23] suggested that having K+1
softmax distribution is overparameterized, subtracting
a function f(x) from each output logit hardly impacts
the output of the softmax. Thus, this is equivalent to
fix lK+1(x) = 0∀x where the supervised loss becomes
the standard supervised loss function of the classifier
with K classes and the discriminator, D, will be D(x) =

Z(x)
Z(x) + 1 where Z(x) =

∑K
k=1 exp(lk(x)). As such, Z(x)

is the sum of the unnormalized probabilities. Since we
want to take the log probability of the fake class for our
loss function,

log(Z(x))− log(1 + (Z(x)))
= logsumexp(l1, ...lK)− softplus(logsumexp(l1, ...lK)),

where l: the output logits, K: the number of classes in
the labeled set, and softplus(x) = log(1+x).

Since the generative adversarial training requires to
ascend the gradients of log(D(x)) + log(1-D(G(z))) (i.e.,
vanilla GAN loss function), the optimizer achieves the
following,

− log(D(x))− log(1−D(G(z)))
= −log(Z(x)/(1 + Z(x)))
− log(1− Z(G(x)))/(1 + Z(G(z)))
= −log(Z(x)/(1 + Z(x)))− log(1/(1 + Z(G(z))))

https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-negotiation.txt
https://medium.com/@jos.vandewolfshaar/semi-supervised-learning-with-gans-23255865d0a4
https://medium.com/@jos.vandewolfshaar/semi-supervised-learning-with-gans-23255865d0a4

GAN for Data-Limited Fingerprinting 321

By using the softplus function, the unsupervised loss of
the discriminator is implemented as follows.

softplus(logsumexp(lx1 , ..., lxK))− logsumexp(lx1 , ..., lxK)

+ softplus(logsumexp(lG(z)
1 , ..., l

G(z)
K))

Saliman et al. [1, 23] implemented this for CIFAR-10
dataset and we also used it for GANDaLF.

B GANDaLF Training
We present the pseudocode of training GANDaLF to
detail our experimental setup in Algorithm 1.

Algorithm 1: GANDaLF training.
Input : Labeled examples (xl, yl) ∼ pd1 , Unlabeled

examples (xu) ∼ pd2 , latent variable
z ∼ p(z), number of iterations i, α1=2e−4,
α2=5e−5, and β=0.5.

1 G – generator network
2 D – discriminator network
3 f – output of the flatten layer of D
4 LD – discriminator loss
5 LG – generator loss
6 ω – parameters of discriminator
7 θ – parameters of generator
8 for i = 1 to m do
9 x̃ ← G(z)

10 x̂z , fz ← D(x̃)
11 x̂l, fl ← D(xl)
12 x̂u, fu ← D(xu)
13 Ls ← CrossEntropy(x̂l, yl)
14 Lu ← - logsumexp(x̂u) + softplus(logsumexp(x̂u))

+ softplus(logsumexp(x̂z))
15 LD ← Ls + Lu /* supervised+unsupervised loss */

16 ω ← Adam(∇ω 1
m

∑
L

(i)
D , ω, α2) /* D optimizer */

17 LG ← MAE(fz , fu) /* MSE in WF-S */

18 θ ← Adam(∇θ 1
m

∑
L

(i)
G , θ, α1, β) /* G optimizer

*/
19 end

C Data Sampling for the
Experiments to Show the
Impact of the Network
Condition

To show the effect of the network condition to GAN-
DaLF performance, we studied two scenarios by vary-
ing the circuit diversity involved in the data collection

and the network congestion when collecting the test-
ing set. In this section, we detailed how we constructed
training and testing sets to show the impact of circuit
diversity (Algorithm 2) as well as network congestion
(Algorithm 3).

Algorithm 2: Data sampling to generate labeled
sets by varying the circuit diversity.

Input : DF dataset (D = (X,Yl, Yc)), total circuit
index array (C = {1, 2, ..., 40}), circuit count
(nc), website count (nw), labeled sample
count per class (nl), and testing sample
count per class (nt).

Output: Training data (Itr) and testing data (Ite).

1 Shuffle D. /* (samples, labels, circuit labels) */

2 Shuffle C.
3 Initialize Ctr, Cte,Dtr, Dte, Itr, Ite.
4 Ctr ← randomly chosen nc entries in C.
5 for (x, yl, yc) in D do
6 if yc in Ctr then
7 Dtr ← Dtr ∪ (x, yl)
8 end
9 if nc < 36 then

/* To ensure that circuits in Cte should have

at least 9,500 entries since each circuit

subset consists of 95×25. */

10 Cte ← {C − Ctr}.
11 if yc in Cte then
12 Dte ← Dte ∪ (x, yl)
13 end
14 else
15 Dte ← randomly chosen nw × nt entries in

{D −Dtr}
16 end
17 end

/* sampling for each website subset. */

18 for i in ({1, 2, ..., nw}) do
19 Itr ← randomly chosen nl instances in Ditr
20 Ite ← randomly chosen nt instances in Dite
21 end

GAN for Data-Limited Fingerprinting 322

Algorithm 3: Data sampling to simulate the vic-
tims with fast or slow circuits.

Input : DF dataset (D = (X,Yl, Yc)), total circuit
index array (C = {(1, t1), ..., (40, t40)}),
website count (nw), labeled sample count
per class (nl), and testing sample count per
class (nt).

Output: Training data (Itr) and testing data (Ite).

1 Shuffle D. /* (samples, labels, circuit labels) */

2 Shuffle C. /* (circuit index, mean of site loading

time). */

3 Cindex ← {1, 2, ..., 40} /* index. */

4 Ctime ← {t1, t2, ..., t40} /* mean loading time. */

5 Initialize Cf with top 4 indices in reverse(Ctime).
6 Initialize Cs with top 4 indices in Ctime.
7 Initialize Ctr, Cte,Dtr, Dte, Itr, Ite.
8 if choice == “fast” then
9 Cte ← Cf /* use fast subsets as testing data. */

10

11 else
12 Cte ← Cs /* use slow subsets as testing data. */

13

14 end
15 Ctr ← {Cindex − Cte}
16 for (x, yl, yc) in D do
17 if yc in Ctr then
18 Dtr ← Dtr ∪ (x, yl)
19 end
20 if yc in Cte then
21 Dte ← Dte ∪ (x, yl)
22 end
23 end

/* sampling for each website subset. */

24 for i in ({1, 2, ..., nw}) do
25 Itr ← randomly chosen nl instances in Ditr
26 Ite ← randomly chosen nt instances in Dite
27 end

	GANDaLF: GAN for Data-Limited Fingerprinting
	1 Introduction
	2 Background
	2.1 Website Fingerprinting
	2.1.1 Traditional ML Attacks on Tor
	2.1.2 Deep-Learning-Based Attacks
	2.1.3 Low-Data WF
	2.1.4 WF with Subpages

	2.2 Generative Adversarial Networks

	3 Data
	3.1 Index Webpage Set
	3.2 Subpage Set

	4 Semi-Supervised Learning with GANs
	4.1 SGAN Overview
	4.2 Feature Matching Loss

	5 GANDaLF
	5.1 Threat Model
	5.2 Sources of Unlabeled Data
	5.3 SGAN Optimization for GANDaLF

	6 Evaluation
	6.1 Experimental Setting
	6.2 Fingerprinting Websites with Index Pages
	6.3 Fingerprinting Websites with Subpages

	7 Conclusion
	A Discriminator Loss Implementation
	B GANDaLF Training
	C Data Sampling for the Experiments to Show the Impact of the Network Condition

