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Revisiting Membership Inference Under Realistic Assumptions
Abstract: We study membership inference in settings
where assumptions commonly used in previous research
are relaxed. First, we consider cases where only a small
fraction of the candidate pool targeted by the adversary
are members and develop a PPV-based metric suitable
for this setting. This skewed prior setting is more re-
alistic than the balanced prior setting typically consid-
ered. Second, we consider adversaries that select infer-
ence thresholds according to their attack goals, such as
identifying as many members as possible with a given
false positive tolerance. We develop a threshold selection
designed for achieving particular attack goals. Since pre-
vious inference attacks fail in imbalanced prior settings,
we develop new inference attacks based on the intuition
that inputs corresponding to training set members will
be near a local minimum in the loss function. An attack
that combines this with thresholds on the per-instance
loss can achieve high PPV even in settings where other
attacks are ineffective.
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1 Introduction
Differential privacy has become the gold standard for
performing any privacy-preserving statistical analysis
over sensitive data. Its privacy-utility tradeoff is con-
trolled by the privacy loss budget parameter ε (and fail-
ure probability δ). While it is a well known fact that
larger privacy loss budgets lead to more leakage, it is
still an open question how low privacy loss budgets
should be to provide meaningful privacy in practice.

Although differential privacy provides strong
bounds on the worst-case privacy loss, it does not elu-
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cidate what privacy attacks could be realized in prac-
tice. Attacks, on the other hand, provide an empirical
lower bound on privacy leakage for a particular setting.
Many attacks on machine learning algorithms have been
proposed that aim to infer private information about
the model or the training data. These attacks include
membership inference [29, 35, 38, 46], attribute infer-
ence [15, 16, 46], property inference [3, 17], model steal-
ing [31, 42] and hyperparameter stealing [43, 45]. Of
these, membership inference attacks are most directly
connected to the differential privacy definition, and thus
are a good basis for evaluating the privacy leakage of
differentially private mechanisms. Given a small enough
privacy loss budget, a differentially private mechanism
should provide a defense against these attacks. But, in
practice it is rarely possible to obtain a model with
enough utility without increasing the privacy loss bud-
get beyond the minimum needed to establish such guar-
antees. Instead, models are tested using empirical meth-
ods using simulated attacks to understand how much
an adversary would be able to infer. Previous works on
membership inference attacks only consider balanced
priors, however, leading to a skewed understanding of
inference risk in cases where models are likely to face
adversaries with imbalanced priors. In this work, we de-
velop a metric based on positive predictive value that
captures the inference risk even in scenarios where the
priors are skewed, and introduce a new attack strategy
that shows models are vulnerable to inference attacks
even in settings where previous attacks would be un-
able to infer anything useful.

Theoretical Contributions. Motivated by recent re-
sults [22, 28], we aim to develop more useful privacy
metrics. Similarly to Liu et al. [28], we adopt a hypoth-
esis testing perspective on differential privacy in which
the adversary uses hypothesis testing on the differen-
tially private mechanism’s output to make inferences
about its private training data. We use the recently pro-
posed f -differential privacy notion (see Section 3.1) to
bound the privacy leakage of the mechanism. Using this
hypothesis testing framework, we tighten the theoreti-
cal bound on the advantage metric (Section 4.1). Then,
we show that this metric alone does not suffice in most
realistic scenarios since it does not consider the prior
probability of the data distribution from which the ad-
versary chooses records. We propose using positive pre-
dictive value (PPV) in conjunction with the advantage
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metric as it captures this notion, and provide a theoret-
ical analysis of this metric (Section 4.2).

Empirical Contributions. We provide a threshold
selection procedure that can be used to improve any
threshold-based inference attack to better capture how
an adversary with a particular goal would use the attack
(Section 5.1). We use this procedure for the loss-based
attack of Yeom et al. [46] and the confidence-based at-
tack of Shokri et al. [38], as well as for two new attacks.
We propose a novel inference attack strategy that sam-
ples points around the candidate input to gauge if it is
near a local minimum in the loss function (Section 5.2).
The Merlin attack uses this strategy to decide if an in-
put is a member based on a threshold on the ratio of
samples where the loss value increases. Our Morgan at-
tack (Section 5.3) combines this with thresholds on the
per-instance loss value. Finally, we use these attacks to
empirically evaluate the privacy leakage of neural net-
works trained both with and without differential pri-
vacy on four multi-class data sets considering balanced
and imbalanced prior data distribution (Section 7). Our
main empirical findings include:
– Non-private models are vulnerable to high-

confidence membership inference attacks in both
balanced and imbalanced prior settings.

– PPV changes with the prior and hence it is a more
reliable metric in imbalanced prior settings.

– The Morgan attack achieves higher PPV than Mer-
lin, which already outperforms previous attacks.

– Private models can be vulnerable to our attacks, but
only when privacy loss budgets are well above the
theoretical guarantees.

2 Related Work
While statistical membership inference attacks were
demonstrated on genomic data in the late 2000s [19, 36],
the first membership inference attacks against machine
learning models were performed by Shokri et al. [38].
In these attacks, the attacker exploits the model confi-
dence reflecting overfitting to infer membership. Shokri
et al. [38] consider the balanced prior setting and evalu-
ate the attack success with an accuracy metric. The at-
tacker trains shadow models similar to the target model,
and uses these shadow models to train a membership
inference model. Yeom et al. [46] proposed a simpler,
but usually more effective, attack based on per-instance
loss and proposed using membership advantage metric

for attack evaluation as it has theoretical interpretation
with differential privacy.

Yeom et al.’s membership advantage metric is use-
ful for balanced prior settings, but not representative of
true privacy leakage in realistic scenarios (as we demon-
strate in Section 4). Rahman et al. [34] evaluate differ-
entially private mechanisms against membership infer-
ence attacks and use accuracy and F-score as privacy
leakage metrics. But they do not specify the theoreti-
cal relationship between their privacy leakage metrics
and the privacy loss budgets (i.e., how the metric would
scale with increasing privacy loss budget) necessary to
gain insight as to what privacy loss budgets are safe even
in the worst case scenarios. Jayaraman and Evans [22]
evaluate the private mechanisms against both member-
ship inference and attribute inference attacks using the
advantage privacy leakage metric of Yeom et al. [46]. All
the above works consider a balanced prior data distribu-
tion probability and hence are not applicable to settings
where the prior probability is skewed.

Liu et al. [28] theoretically evaluate differentially
private mechanisms using a hypothesis testing frame-
work using precision, recall and F-score metrics. They
give a theoretical relationship connecting these metrics
to the differential privacy parameters (ε and δ) and give
some insights for choosing the parameter values based
on the background knowledge of the adversary. Re-
cently, Balle et al. [4] provided hypothesis testing frame-
work for analysing the relaxed variants of differential
privacy that use Rényi divergence. However, neither of
the above works provide empirical evaluation of privacy
leakage of the private mechanisms. In another recent
work, Farokhi and Kaafar [14] propose using conditional
mutual information as the privacy leakage metric and
derive its upper bound based on Kullback–Leibler di-
vergence. Although they provide a relationship between
this upper bound and the privacy loss budget, they do
not evaluate the empirical privacy leakage in terms of
the proposed metric. We provide a theoretical analy-
sis of privacy leakage metrics and perform membership
inference attacks under the more realistic assumptions
of different prior data distribution probabilities and an
adversary that can adaptively pick inference thresholds
based on specific attack goals.

3 Differential Privacy
Here, we provide background on the differential privacy
notions we use. Table 1 summarizes the notations we use
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throughout. Dwork et al. [12] introduced a formal no-
tion of privacy that provides a probabilistic information-
theoretic security guarantee:

Definition 3.1 (Differential Privacy). A randomized
algorithmM is (ε, δ)-differentially private if for any pair
of neighbouring data sets S, S′ that differ by one record,
and any set of outputs O,

Pr[M(S) ∈ O] ≤ eεPr[M(S′) ∈ O] + δ.

Thus, the ratio of output probabilities across neighbour-
ing data sets is bounded by the ε and δ parameters. The
intuition behind this definition is to make any pairs of
neighbouring data sets indistinguishable to the adver-
sary given the information released.

From a hypothesis testing perspective [4, 11, 25, 28,
44], the adversary can be viewed as performing the fol-
lowing hypothesis testing problem given the ouput of
eitherM(S) orM(S′):

H0 : the underlying data set is S,
H1 : the underlying data set is S′.

According to the definition of differential privacy, given
the information released by the private algorithm M,
the hardness of this hypothesis testing problem for the
adversary is measured by the worst-case likelihood ra-
tio between the distributions of the outputsM(S) and
M(S′). Following Wasserman and Zhou [44], a more
natural way to characterize the hardness of this hypoth-
esis testing problem is its type I and type II errors and
can be formulated in terms of finding a rejection rule φ
which trades off between type I and type II errors in an
optimal way. In other words, for a fixed type I error α,
the adversary tries to find a rejection rule φ that mini-
mizes the type II error β. More specifically, recalling the
definition of trade-off function from Dong et al. [11]:

Definition 3.2 (Trade-off Function). For any two
probability distributions P and Q on the same space,
the trade-off function T (P,Q) : [0, 1]→ [0, 1] is:

T (P,Q)(α) = inf{βφ : αφ ≤ α},

where the infimum is taken over all (measurable) rejec-
tion rules, and αφ and βφ are the type I and type II
errors for the rejection rule φ.

This definition suggests that the larger the trade-off
function is, the harder the hypothesis testing problem
will be. It has been established in Dong et al. [11] that
a function f : [0, 1] → [0, 1] is a trade-off function if

Notation Description
D = X × Y Distribution of records with features sampled

form X and labels sampled from Y
S ∼ Dn Data set S consisting of n records, sampled

i.i.d. from distribution D
z ∼ S Record z is picked uniformly from data set S
z ∼ D Record z is chosen according to distribution D
MS Model obtained by using a learning algorithm

M over data set S
A Membership inference adversary
p Probability of sampling a record from train set
γ Test-to-train set ratio, (1− p)/p
ε privacy loss budget of DP mechanism
δ Failure probability of DP mechanism
α False positive rate (FPR) of inference adversary
β False negative rate of inference adversary
φ Decision threshold of inference adversary; also

called rejection rule in hypothesis testing

Table 1. Notation

and only if it is convex, continuous, non-increasing, and
f(x) ≤ 1−x for x ∈ [0, 1]. Thus, differential privacy can
be reformulated as finding the trade-off function f that
limits the adversary’s hypothesis testing power, i.e., it
maximizes the adversary’s type II error for any given
type I error.

Several differentially private machine learning algo-
rithms [8, 21, 23, 47] have been proposed that consume
a small privacy loss budget (ε < 1) without sacrific-
ing the model accuracy for convex learning methods.
Recent advances in composition analysis of differential
private mechanisms [1, 7, 13, 32] have made private deep
learning [1, 5, 6, 18, 20] possible with acceptable model
utility, but still requiring large privacy loss budgets to
make the guarantees provided by differential privacy in-
sufficient to provide meaningful privacy.

3.1 f -Differential Privacy

The hypothesis testing formulation of differential pri-
vacy described above leads to the notion of f -differential
privacy [11] (f -DP) which aims to find the optimal
trade-off between type I and type II errors and will be
used to derive the theoretical upper bounds of our pro-
posed metrics for the privacy leakage.

Definition 3.3 (f -Differential Privacy). Let f be a
trade-off function. A mechanism M is f-differentially
private if for all neighbouring data sets S and S′:

T (M(S),M(S′)) ≥ f.
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Note that in the above definition, we abuse the nota-
tions ofM(S) andM(S′) to represent their correspond-
ing distributions. For an (ε, δ)-differentially private algo-
rithm, the trade-off function fε,δ is given by Lemma 3.1,
which has been proved by Wasserman and Zhou [44] and
Kairouz et al. [25]:

Lemma 3.1 ([25, 44]). Suppose M is an (ε, δ)-
differentially private algorithm, then for a false positive
rate of α, the trade-off function is given by:

fε,δ(α) = max{0, 1− δ − eεα, e−ε(1− δ − α)}.

This lemma suggests that higher values of fε,δ(α) corre-
spond to more privacy and perfect privacy would require
fε,δ(α) = 1−α. In addition, increasing ε and δ decreases
fε,δ(α), reflecting the expected reduction in privacy.

3.2 Gaussian Differential Privacy

The Gaussian mechanism is a fundamental approach
for achieving differential privacy, especially for differen-
tially private deep learning [1]. More specifically, noisy
stochastic gradient descent (SGD) and noisy Adam [2],
i.e., adding Gaussian noise (Gaussian mechanism) to
SGD and Adam, are often used as the underlying pri-
vate optimizers for training neural networks with pri-
vacy guarantees. Therefore, precisely characterizing the
privacy loss of the composition of Gaussian mechanisms
and deriving its sub-sampling amplification results are
of great interest. This motivates the notion of Gaussian
differential privacy [11], which belongs to the family of
f -DP with a single parameter µ that defines the mean
of the Gaussian distribution.

Definition 3.4 (µ-Gaussian Differential Privacy). A
mechanismM is µ-Gaussian differentially private if for
all neighbouring data sets S and S′:

T (M(S),M(S′)) ≥ Gµ,

where Gµ = T (N (0, 1),N (µ, 1)).

In this definition, Gµ is a trade-off function and hence
µ-GDP is identical to f -DP where f = Gµ. Lemma 3.2,
which is established in Dong et al. [11], gives the equa-
tion for computing Gµ:

Lemma 3.2. Given that M is a µ-Gaussian differen-
tially private algorithm, then for a false positive rate of
α, the trade-off function is given as:

Gµ(α) = Φ(Φ−1(1− α)− µ),

where Φ is the cumulative distribution function of stan-
dard normal distribution.

In our experiments, we use Gaussian differential privacy
for training differentially private neural networks.

4 Measuring Privacy Leakage
To evaluate privacy leakage, we define an adversarial
game inspired by Yeom et al.’s [46]. Unlike their game
which assumes a balanced prior, our game factors in
the prior membership distribution probability. The ad-
versarial game models the scenario where an adversary
has access to a model, MS , trained over a data set S,
knowledge of the training procedure and data distri-
bution, and wishes to infer whether a given input is a
member of that training set.

Experiment 4.1 (Membership Experiment). Assume
a membership adversary, A, who has information about
the training data set size n, the distribution D from
which the data set is sampled, and the prior member-
ship probability p. The adversary runs this experiment:
1. Sample a training set S ∼ Dn and train a model
MS over the training set S.

2. Randomly sample b ∈ {0, 1}, such that b = 1 with
probability p.

3. If b = 1, then sample z ∼ S; else sample z ∼ D.
4. Output 1 if A(z,MS , n,D) = b; otherwise output 0.

Note that our experiment incorporates the prior prob-
ability p of sampling a record, compared to the set-
ting of Yeom et al. that assumes balanced prior prob-
ability (p = 0.5). We consider skewed prior p as in-
ferring membership is more important than inferring
non-membership in our problem setting. This is differ-
ent from the semantic security analogue where all mes-
sages are treated equally regardless of the skewness of
the message distribution. For most practical scenarios
(that is, where being exposed as a member carries mean-
ingful risk to an individual), p is much smaller than 0.5.
For instance, for a scenario of an epidemic outbreak, the
training set could be the list of patients with the disease
symptoms admitted at a hospital. The non-members
can be the remaining population of the city or a dis-
trict. Hence, assuming a balanced prior of p = 0.5 is not
a realistic assumption, and it is important to develop
a privacy metric that can be used to evaluate scenarios
with lower (or higher) priors.
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(a) AdvA with varying α (b) Maximum AdvA bound

Fig. 1. (a): AdvA(α) bounds for various privacy loss budgets
(δ = 10−5). (b): Improving the bound on maximum advantage
(δ = 0). Improved bound uses Theorem 4.1 to get maximum
advantage across all 0 < α ≤ 1.

4.1 Membership Advantage

The membership advantage metric, Adv, was defined by
Yeom et al. [46] as the difference between the true posi-
tive rate and the false positive rate for the membership
inference adversary provided that p = 0.5 (i.e., balanced
prior distribution). Yeom et al. showed that for an ε-
differentially private mechanism, the theoretical upper
bound for membership advantage is eε − 1, which can
be quite loose for higher ε values and is not defined for
eε − 1 > 1 since the metric proposed by Yeom et al. is
only defined between 0 and 1. Moreover, the bound is
not valid for (ε, δ)-differentially private algorithms which
are more commonly used for private deep learning.

We derive a tighter bound for the membership ad-
vantage metric that is applicable to (ε, δ)-differentially
private algorithms based on the notion of f -DP:

Theorem 4.1. LetM be an (ε, δ)-differentially private
algorithm. For any randomly chosen record z and fixed
false positive rate α, the membership advantage of a
membership inference adversary A is bounded by:

AdvA(α) ≤ 1− fε,δ(α)− α,

where fε,δ(α) = max
{

0, 1− δ − eεα, e−ε(1− δ − α)
}
.

Proof of Theorem 4.1. The proof follows directly from
Yeom at al.’s definition, AdvA(α) = TPR − FPR, when
we have balanced prior membership distribution, p =
0.5. For a given FPR = α, we have 1 − TPR ≥ fε,δ(α)
according to the definition of trade-off function (Def-
inition 3.2 and Lemma 3.1). Therefore, AdvA(α) ≤
1− fε,δ(α)− α.

Figure 1a shows the relationship between the false pos-
itive rate α of a given adversary and the upper bound
of the advantage given by Theorem 4.1. This bound lies

(a) PPV A with varying α (b) PPV A with varying γ

Fig. 2. PPV bounds for various privacy loss budgets (δ = 10−5).
For figure (a) γ = 1, and for figure (b) α = 0.01.

strictly between 0 and 1 and is tighter than the bound
of Yeom et al. [46], as shown in Figure 1b. However, this
metric is limited to balanced prior distribution of data
and hence can overestimate (or underestimate) the pri-
vacy threat in any scenario where the prior probability
is not 0.5. Thus, membership advantage alone is not a
reliable way to measure the privacy leakage. Hence, we
next propose the positive predictive value metric that
considers the prior distribution of data.

4.2 Positive Predictive Value

Positive predictive value (PPV) gives the ratio of true
members predicted among all the positive membership
predictions made by an adversary (the precision of the
adversary). For an (ε, δ)-differentially private algorithm,
the PPV is bounded by the following theorem:

Theorem 4.2. LetM be an (ε, δ)-differentially private
algorithm and A be a membership inference adversary.
For any randomly chosen record z and a fixed false
positive rate of α, the positive predictive value of A is
bounded by

PPVA(α, γ) ≤
1− fε,δ(α)

1− fε,δ(α) + γα
,

where fε,δ(α) = max
{

0, 1 − δ − eεα, e−ε(1 − δ − α)
}
,

γ = (1− p)/p, and p is the prior membership probability
defined in Membership Experiment 4.1.

Proof of Theorem 4.2. According to the trade-off func-
tion definition (Definition 3.2 and Lemma 3.1), for a
given FPR = α, we have 1 − TPR ≥ fε,δ(α). Since
PPVA(α, γ) = TP/(TP + FP ), we can obtain:

PPVA(α, γ) = TPR

TPR+ γ · FPR
≤

1− fε,δ(α)
1− fε,δ(α) + γα

.
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Like membership advantage, the PPV metric is strictly
bounded between 0 and 1. Moreover, the bound on PPV
metric considers the prior distribution via γ, which gives
the ratio of probability of selecting a non-member to a
member. This allows the PPV metric to better capture
the privacy threat across different settings. Figure 2a
shows the effect of varying the false positive rate α and
Figure 2b shows the effect of varying the prior distribu-
tion probability γ on the PPV metric. For example, for
ε = 5, δ = 10−5, α = 0.01, γ = 100, the advantage metric
can be as high as 0.98, while the PPV metric is close
to 0.5 (i.e., coin toss probability). Thus, in such cases,
advantage grossly overestimates the privacy threat.

5 Inference Attacks
While the previous section covers the metrics to evaluate
privacy leakage, here we discuss about the membership
inference attack procedures. In Section 5.1, we describe
our threshold selection procedure for threshold-based
inference attacks. Section 5.2 presents our threshold-
based inference attack that perturbs a query record and
uses the direction of change in per-instance loss of the
record for membership inference. Section 5.3 presents
our second attack that combines our first attack with
the threshold-based attack of Yeom et al. [46].

5.1 Setting the Decision Threshold

The membership inference attacks we consider need to
output a Boolean result for each test, converting a real
number measure from a test into a Boolean that indi-
cates whether or not a given input is considered a mem-
ber. The effectiveness of an attack depends critically on
the value of this decision threshold.

We introduce a simple procedure to select the de-
cision threshold for any threshold-based attack where
the adversary’s goal is to maximize leakage for a given
expected maximum false positive rate:

Procedure 5.1 (Finding the Decision Threshold).
Given an adversary, A, that knows information about
a target model including the training data distribution
D, training set size n, training procedure, and model
architecture, as well as knowing the prior distribution
probability p for the suspected membership set, this
procedure finds a threshold φ that maximizes the pri-

vacy leakage of the sampled data points for a given
maximum false positive rate α.
1. Sample a training data set S̄ ∼ Dn for training a

modelMS̄ .
2. Randomly sample b ∈ {0, 1}, such that b = 1 with

probability p.
3. Sample record z ∼ S̄ if b = 1, otherwise z ∼ D.
4. Output the decision threshold, φ, that maximizes

its true positive rate constrained to a maximum
false positive rate of α for the inference attack,
A(z,MS̄ , n,D, φ).

Note that in comparison to Experiment 4.1, the adver-
sary A takes an additional parameter φ, which is used to
query the target modelMS to perform membership in-
ference. Procedure 5.1 works for any threshold-based in-
ference attack where an adversary knows the data distri-
bution and model training process well enough to train
its own models similar to the target model.

Application to Yeom’s Attack. The membership
inference attack of Yeom et al. [46] uses per-instance
loss information for membership inference. Given a loss
`(z,MS) on the query record z, their approach classi-
fies it as a member if the loss is less than the expected
training loss. Using Procedure 5.1, we instead find a
threshold φ for membership inference that corresponds
to an expected maximum false positive rate α. In other
words, if the per-instance loss `(z,MS) ≤ φ, then z is
classified as a member of the target model’s training set
S, otherwise it is classified as a non-member. We refer
to this membership inference adversary as Yeom.

Application to Shokri’s Attack. In the member-
ship inference attack of Shokri et al. [38], the attacker
first trains multiple shadow models similar to the tar-
get model, and then uses these shadow models to train
an inference model for binary classification. We modify
this attack by taking the softmax output of the inference
model that indicates the model’s prediction confidence,
and use our threshold selection procedure on the model
confidence. By default, the model predicts the input is
a member if the confidence is above 0.5, which is equiv-
alent to Shokri et al.’s original version. We vary this
threshold between 0 and 1 according to Procedure 5.1,
and refer to this inference adversary as Shokri.

5.2 Merlin

Procedure 5.1 can be used on any threshold-based infer-
ence attack. Here, we introduce a new threshold-based
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Algorithm 1: Inference Using Direction of
Change in Per-Instance Loss
1 A(z,MS , n,D, φ):
Input : z: input record,MS : model trained

on data set S of size n, D: data
distribution, φ: decision function, T :
number of repeat, σ: standard
deviation parameter

Output: membership prediction of z (0 or 1)
2 count← 0 ;
3 for T runs do
4 ξ ∼ N (0, σ2I) ; // Sample Gaussian noise
5 if `(z + ξ,MS) > `(z,MS) then
6 count← count+ 1 ;
7 end
8 end
9 return count/T ≥ φ ; // 1 if ‘member’

membership inference attack called Merlin1 that uses a
different approach to infer membership. This method
checks if the per-instance loss of the record increases
when perturbed with a small amount of noise. The in-
tuition here is that due to overfitting, the target model’s
loss on a training set record will tend to be close to a
local minimum, so the loss at perturbed points near the
original input will be higher. For a non-member record,
the loss is equally likely to either increase or decrease.

Algorithm 1 describes the attack procedure. For a
query record z, random Gaussian noise with zero mean
and standard deviation σ is added and the change of
loss direction is recorded. This step is repeated T times
and the count is incremented each time the per-instance
loss of the perturbed record increases. Though we use
Gaussian noise, the algorithm works for other noise dis-
tributions as well. We also tried uniform distribution
and observed similar results, but with different σ val-
ues. Both the parameters T and σ can be pre-tuned on
a hold-out set to maximize the attacker’s distinguish-
ing power and fixed for the entire attack process. In our
experiments, we find T = 100 and σ = 0.01 work well
across all data sets. Finally, the query record z is clas-
sified as a member when count/T ≥ φ, where φ is a
threshold that could be set by Procedure 5.1.

Comparison with Related Attacks. Although the
intuition behind the Merlin is new, it has similarities
with previous attacks that also involve sampling. Fred-

1 Backronym for MEasuring Relative Loss In Neighborhood.

erikson et al. [15] proposed a white-box attack for model
inversion problem, which is different from the member-
ship inference problem we consider, where the attacker
has count information of all training instances and uses
it to guess the most probable value for the sensitive at-
tribute of the query training instance. This ‘count’ is
different from the count used in Merlin attack. Long et
al. [30] proposed a black-box model inversion attack that
is similar to Merlin. While the Merlin attack considers
the target point’s environment in the input space, the
attacks in Long et al. [30] consider the target point’s
environment in the logit-space, i.e., the output of the
target network before the softmax is applied. As the
logit-space is much more dense than the input space,
Merlin is much more fine-grained, enabling it to detect
membership where the logit-space attacks would not.
Choo et al. [9] recently proposed a label-only member-
ship inference attack which is similar to Merlin in the
sense that they also use the model’s behavior on neigh-
boring points as part of a membership inference attack.
The key difference is that they assume the neighboring
points, which in their case are data augmentations of
the target record, are also present in the training set,
while we do not have any such assumptions for Merlin.

5.3 Morgan

Both Yeom and Merlin use different information for
membership inference and hence do not necessarily iden-
tify the same member records. Some members are more
vulnerable to one attack than the other, and different in-
puts produce false positives for each attack. Our obser-
vations of the distribution of the values from the Yeom
and Merlin attacks (see Figure 6) motivate combining
the attacks in a way that can maximize PPV by exclud-
ing points with very low per-instance loss. The intuition
is that if the per-instance loss is extremely low, the Mer-
lin attack will suggest a local minimum, but in fact it is
a near-global minimum, which is not as strongly corre-
lated with being a member. Hence, we introduce a com-
bination of the Yeom and Merlin attacks, called Morgan2,
that combines both attacks to identify inputs that are
most likely to be members.

The Morgan attack uses three thresholds: a lower
threshold on per-instance loss φL, an upper threshold
on per-instance loss φU , and a threshold on the ratio as
used by Merlin, φM . Morgan classifies a record as mem-

2 Measuring lOss, Relatively Greater Around Neighborhood.



Revisiting Membership Inference Under Realistic Assumptions 355

ber if the per-instance loss of the record is between φL
and φU , both inclusive, and has a Merlin ratio of at least
φM . The φU and φM thresholds are set using the stan-
dard threshold selection procedure for the Yeom and
Merlin attacks respectively, by varying their α values.
A value for φL is found using a grid search to find the
maximum PPV possible in conjunction with φU and φM
thresholds, and selecting the lowest value for φL that
achieves that PPV to maximize the number of members
identified. Note that all three thresholds are selected to-
gether to maximize the PPV on a separate holdout set
that is disjoint from the target training set, as is done
in our threshold selection procedure 5.1. As reported in
Table 2, this exposes some members with 100% PPV for
both RCV1X and CIFAR-100. Section 7 reports on Mor-
gan’s success on identifying the most vulnerable records
with > 95% PPV at balanced prior and with > 90%
PPV in skewed prior cases (γ > 1).

6 Experimental Setup
This section describes the data sets and models used,
along with the training procedure. We evaluate our
methods on both standard (non-private) models and
models trained using differential privacy mechanisms.
We focus on differentially private models since our
theoretical bounds apply to these models. Although
several other defenses have been proposed, such as
dropout, model stacking or MemGuard [24], our the-
oretical bounds do not apply to them and we do not
include them in our evaluation.3

Table 2 summarizes the data sets used and the per-
formance of non-private models trained over each data
set, and the leakage from the most effective member-
ship inference attack (Morgan). In the balanced prior
setting (γ = 1), some members are exposed with very
high confidence (>95% PPV) for all the test data sets.
The membership inference is significant even in the im-
balanced prior case, when γ = 10. We defer discussion
of these results to Section 7.

Data Sets. Multi-class classification tasks are more
vulnerable to membership inference, as shown in prior
works on both black-box [38, 46] and white-box [33]

3 Our attacks and experimental tests do, however, and it will be
interesting to see how effective non-DP defenses are against our
attacks, so we do plan to include evaluations of other defenses
in future work.

attacks. Hence, we select four multi-class classification
tasks for our experiments. Although these data sets are
public, they are representative of data sets that contain
potentially sensitive information about individuals.
– Purchase-100X: Shokri et al. [38] created Purchase-
100 data set by extracting customer transactions from
Kaggle’s acquire valued customers challenge [10]. The
authors arbitrarily selected 600 items from the trans-
actions data and considered only those customers who
purchased at least one of the 600 items. Their resulting
data set consisted of 197,000 customer records with 600
binary features representing the customer purchase his-
tory. The records are clustered into 100 classes, each rep-
resenting a unique purchase style, such that the goal is
to predict a customer’s purchase style. Since we needed
more records for our experiments with the γ = 10 set-
ting, we curated our own data set by following the same
procedure but instead of 600 arbitrary items taking the
600 most frequently purchased items. This resulted in
an expanded, but similar, data set with around 300,000
customer records which we call Purchase-100X.
– Texas-100: The Texas hospital data set, also used by
Shokri et al. [38], consists of 67,000 patient records with
6,000 binary features where each feature represents a
patient’s medical attribute. This data set also has 100
output classes where the task is to identify the main
procedure that was performed on the patient. This data
set is too small for tests with high γ settings, but a useful
benchmark for the other settings.
– RCV1X: The Reuters RCV1 corpus data set [27] is a
collection of Reuters newswire articles with more than
800,000 documents, a 47,000-word vocabulary and 103
classes. The original 103 classes are arranged in a hierar-
chical manner, and each article can belong to more than
one class. We follow data pre-processing procedures sim-
ilar to Srivastava et al. [41] to obtain a data set such
that each article only belongs to a single class. The final
data set we use has 420,000 articles, 2,000 most frequent
words represented by their term frequency–inverse doc-
ument frequency (TFIDF) which are used as features
and 52 classes. We call our expanded data set RCV1X.
– CIFAR-100: We use the standard CIFAR-100 [26] data
set used in machine learning which consists of 60,000 im-
ages of 100 common world objects. The task is to iden-
tify an object based on the input RGB image consisting
of 32× 32 pixels. Although the privacy issue here is not
clear, we include this data set in our experiments be-
cause it is used as a benchmark in many privacy works.
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Data set #Features #Classes Train Acc Test Acc Leakage at Balanced Prior Leakage at γ = 10 Prior
Purchase-100X 600 100 1.00 0.71 11 ± 3 (98.0 ± 4.0 PPV) 8 ± 6 (97.5 ± 5.0 PPV)

Texas-100 6,000 100 1.00 0.53 55 ± 25 (95.7 ± 4.6 PPV) (data set too small to test)
RCV1X 2,000 52 1.00 0.84 41 ± 27 (100.0 ± 0.0 PPV) 8 ± 8 (93.0 ± 9.8 PPV)

CIFAR-100 3,072 100 0.48 0.18 2 ± 1 (100.0 ± 0.0 PPV) (data set too small to test)

Table 2. Summary of data sets and results for non-private models. Leakage is the number of members identified out of 10,000 with
near-certain confidence out of 10,000 members by Morgan while maximizing the PPV metric, averaged across five runs.

All the above data sets are pre-processed such that the
`2 norm of each record is bounded by 1. This is a stan-
dard pre-processing procedure that improves model per-
formance that is used by many prior works [8, 23].

Model Architecture. We train neural networks with
two hidden layers using ReLU activation. Each hidden
layer has 256 neurons and the output layer is a soft-
max layer. Several previous works used similar multi-
layer ReLU network architectures to analyze privacy-
preserving machine learning [1, 37, 38]. Details on hy-
perparameters can be found in Appendix A. Table 2
includes the training and test accuracy of non-private
models across the four data sets.4 Although we tuned
the model hyperparameters to maximize the test accu-
racy for each data set, there is a considerable gap be-
tween the training and test accuracy. This generaliza-
tion gap indicates that the model overfits the training
data, and hence, there is information in the model that
could be exploited by inference attacks.

Private Model Training. We evaluate the model ac-
curacy of private neural network models trained on dif-
ferent data sets. We vary the privacy loss budget ε be-
tween 0.1 and 100 for differentially private training and
repeat the experiments five times for all the settings to
report the average results.

We report the accuracy loss, which gives the relative
loss in test accuracy of private models with respect to
non-private baseline:

Accuracy Loss = 1− Accuracy of Private Model
Accuracy of Non-Private Model

Figure 3 gives the accuracy loss of differentially private
models trained on different data sets with varying pri-
vacy loss budgets. The private models are trained using
the gradient perturbation mechanism where the gradi-
ents at each epoch are clipped and Gaussian noise is
added to preserve privacy. The privacy accounting for

4 As with all of the experimental results we report in this paper,
the results are averaged over five runs in which the target model
is trained from the scratch for each run.

composition of mechanisms is done via both Gaussian
differential privacy (GDP) [11] and the prior state-of-
the-art Rényi differential privacy (RDP) [32]. As shown
in the figure, the GDP mechanism has a lower accuracy
loss for ε ≤ 10 due to its tighter privacy analysis. The
GDP composition theorem requires that the individual
mechanisms be highly private, and hence it is hard to
reduce noise for ε > 10 without increasing the failure
probability δ. For all the data sets, GDP performs bet-
ter than RDP, hence we only report the results for GDP
in the remaining experiments.

7 Empirical Results
In this section, we evaluate our threshold selection pro-
cedure (Procedure 5.1) across the four inference attacks.
We first consider the Yeom attack, and show that our
threshold selection procedure can be used to obtain
thresholds that achieve particular attacker goals, such as
maximizing the PPV or membership advantage metric,
or minimizing the false positive rate. Next, we use our
threshold selection procedure on the Shokri attack and
discuss the results in Section 7.2. In Section 7.3 we eval-
uate the Merlin attack using the same threshold selection
procedure, and find that it achieves higher PPV metric
compared to both Yeom and Shokri. Then, Section 7.4
shows how the Morgan attack achieves higher PPV by
combining aspects of both Yeom and Merlin. Results in
the first four subsections focus on non-private models
and balanced prior scenarios. In Section 7.5 we evaluate
the attacks on differentially private models. Section 7.6
presents results for scenarios with imbalanced priors.
The results show that non-private models are vulnera-
ble to our proposed attacks, especially Morgan, even in
the skewed prior settings. Private models are vulnerable
in the balanced prior setting if the privacy loss budget
is set beyond theoretical guarantees.
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(a) Purchase-100X (b) Texas-100 (c) RCV1X (d) CIFAR-100

Fig. 3. Accuracy loss comparison of private models trained with different privacy analyses.

(a) Loss Distribution. (b) Yeom Performance.

Fig. 4. Analysis of Yeom on non-private model trained on
Purchase-100X with balanced prior. The x-axis shows the per-
instance loss on a logarithmic scale from 10−7 to 101 where
the buckets are in the range (10−7, 10−6.9), (10−6.9, 10−6.8),
and so on up to (100.9, 101).

7.1 Yeom Attack

The Yeom attack uses a fixed threshold on per-instance
loss for its membership inference test. A query record
is classified as a member if its per-instance loss is less
than the selected threshold. We show that the adversary
can achieve better privacy leakage, specific to particular
attack goals, by using our threshold selection procedure.

Results on Purchase-100X. Figure 4a shows the dis-
tribution of per-instance loss of members and non-
members for a non-private model trained on Purchase-
100X. Per-instance losses of members are concentrated
close to zero, and most of the loss values are less than
0.001. Whereas for non-members, the loss values are
spread across the range. This suggests that a larger frac-
tion of members will be identified by the attacker with
high precision (PPV) for loss thresholds less than 0.001,
and hence the privacy leakage will be high.

Another notable observation is that out of the
10,000 test records there are 959.2± 23.5 non-members
(average across five runs) with zero loss, and hence the
minimum achievable false positive rate is around 10%.

This is reflected in Figure 4b, which shows the effect of
selecting different loss thresholds on the privacy leakage
metrics. An attacker can use our threshold selection pro-
cedure to choose a loss threshold to meet specific attack
goals, such as minimizing the false positive rate (Min
FPR), or achieving a fixed false positive rate (Fixed
FPR), or maximizing either of the privacy leakage met-
rics (Max PPVA and Max AdvA). Table 3 summarizes
these scenarios and compares their thresholds with the
threshold selected by the method of Yeom et al. (Fixed
φ). For Fixed FPR, we consider an attacker with a false
positive rate of 1% (α = 1%).

The attacker uses Procedure 5.1 to find the loss
threshold, φ, corresponding to α = 1%, which it uses
for membership inference on the target set. However,
since the minimum achievable false positive rate for
Yeom on Purchase-100X is 10%, this attack fails to find a
suitable threshold. For maximizing PPV or advantage,
the attacker can use the threshold selection procedure
with varying α values and choose the threshold φ that
maximizes the required privacy metric. In comparison,
Fixed φ uses expected training loss as threshold which
does not necessarily maximize the privacy leakage. As
the results in the table demonstrate, an attacker can
accomplish different attack goals, and achieve increased
privacy leakage, using the Yeom attack with thresholds
chosen using our threshold selection procedure.

Results on Other Data Sets. Table 4 compares the
performance of Yeom against non-private models across
the Texas-100, RCV1X and CIFAR-100 data sets. We ob-
serve similar trends of privacy leakage corresponding to
the selected thresholds for these data sets as we did for
Purchase-100X so present most of the results for these
data sets in Appendix B, and only discuss some notable
differences here.

For Texas-100, Yeom can achieve false positive rates
as low as 3%. The attack performance on this data set is
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α φ Actual FPR Actual TPR AdvA PPVA

Yeom

Fixed FPR 1.00 - - - - -
Min FPR 10.00 0 5.7 ± 4.7 6.7 ± 5.5 1.0 ± 0.8 32.5 ± 26.5
Fixed φ - (1.0 ± 0.0) × 10−4 29.9 ± 0.3 63.7 ± 0.2 33.8 ± 0.3 68.1 ± 0.2
Max PPVA 35.00 (3.7 ± 0.3) × 10−4 35.3 ± 0.5 95.5 ± 1.1 60.2 ± 0.8 73.0 ± 0.2
Max AdvA 37.00 (6.0 ± 0.4) × 10−4 37.3 ± 0.5 99.2 ± 0.2 61.9 ± 0.3 72.7 ± 0.2

Yeom CBT

Min FPR 0.01 0, 0, 6.7 × 10−6 0.1 ± 0.0 0.3 ± 0.1 0.2 ± 0.1 73.4 ± 5.0
Max PPVA 0.01 0, 0, 6.7 × 10−6 0.1 ± 0.0 0.3 ± 0.1 0.2 ± 0.1 73.4 ± 5.0
Fixed FPR 1.00 0, 0, 6.7 × 10−6 0.1 ± 0.0 0.3 ± 0.1 0.2 ± 0.1 73.4 ± 5.0
Fixed φ - (0.2, 0.9, 2.4)×10−4 29.7 ± 0.3 62.1 ± 1.8 32.4 ± 1.6 67.6 ± 0.5
Max AdvA 55.00 (1.1, 4.6, 18.7)×10−4 36.9 ± 0.2 98.4 ± 0.3 61.6 ± 0.5 72.7 ± 0.2

Shokri

Min FPR 0.02 1.06 ± 0.38 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.1 33.2 ± 31.7
Fixed FPR 1.00 0.80 ± 0.02 1.2 ± 0.1 3.0 ± 0.4 1.8 ± 0.5 71.9 ± 4.2
Max PPVA 1.92 0.78 ± 0.01 2.2 ± 0.1 6.0 ± 0.6 3.8 ± 0.5 73.4 ± 1.6
Fixed φ - 0.50 ± 0.00 48.6 ± 1.0 99.2 ± 0.8 50.6 ± 0.5 67.1 ± 0.3
Max AdvA 47.30 0.50 ± 0.04 48.6 ± 0.4 99.2 ± 0.9 50.6 ± 0.7 67.1 ± 0.2

Shokri CBT

Fixed FPR 1.00 - - - - -
Min FPR 2.00 0.5, 0.8, 1.8 0.4 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 53.8 ± 5.0
Max PPVA 40.00 0.4, 0.7, 1.1 36.6 ± 0.6 94.0 ± 0.9 57.5 ± 0.4 72.0 ± 0.2
Max AdvA 50.00 0, 0.7, 1.1 39.0 ± 0.4 98.6 ± 0.8 59.6 ± 0.4 71.7 ± 0.1
Fixed φ - 0.5, 0.5, 0.5 48.6 ± 1.0 99.2 ± 0.8 50.6 ± 0.5 67.1 ± 0.3

Merlin

Min FPR 0.01 0.88 ± 0.01 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 93.4 ± 6.3
Max PPVA 0.01 0.88 ± 0.01 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 93.4 ± 6.3
Fixed FPR 1.00 0.78 ± 0.00 0.7 ± 0.1 4.2 ± 0.1 3.4 ± 0.2 85.0 ± 2.0
Max AdvA 31.00 0.60 ± 0.00 30.5 ± 0.3 51.1 ± 0.1 20.6 ± 0.2 62.6 ± 0.2

Morgan Max PPVA - 3.4 × 10−5, 6.0 × 10−4, 0.88 0.0 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 98.0 ± 4.0

Table 3. Thresholds selected against non-private models trained on Purchase-100X with balanced prior. The results are averaged over
five runs such that the target model is trained from the scratch for each run. Yeom CBT uses class-based thresholds, where φ
shows the triplet of minimum, median and maximum thresholds across all classes. All values, except φ, are in percentage.

comparable to that of Purchase-100X. For RCV1X, the
attack success rate is substantially lower than that for
the other data sets. This is because, unlike the other
data sets which have 100 classes, RCV1X is a 52-class
classification task. As reported in prior works [39, 46],
success of membership inference attack is proportional
to the complexity of classification task. We further note
that the maximum PPV that can be achieved by Yeom
on RCV1X is only around 58%, at which point the mem-
bership advantage is close to 27%. This gives credence
to our claim that membership advantage should not be
solely relied on as a measure of inference risk. While
membership advantage can be high, the privacy leak-
age is negligible for balanced priors when the PPV is
close to 50%. Later in Section 7.6 we show that this
phenomenon is prevalent across all data sets when the
prior is imbalanced.

Yeom’s performance on CIFAR-100 is similar to that
on Purchase-100X and Texas-100 data sets. Since the
model does not completely overfit on CIFAR-100, the
distribution of loss values for both members and non-
members are not far apart, and as a consequence Yeom
is able to achieve much lower false positive rates.

Using Class-Based Thresholds. Recently, Song and
Mittal [40] demonstrated that the approach of Yeom et
al. [46] can be further improved by using class-based
thresholds instead of one global threshold on loss val-
ues. We implement this approach, using our threshold
setting algorithm to independently set the threshold for
each class (referred as Yeom CBT). This enables find-
ing class-based thresholds corresponding to smaller α
values, as seen for the minimum FPR (α = 0.01) and
fixed FPR (α = 1) cases for Purchase-100X in Table 3.
Nonetheless, the maximum PPV still does not increase
much beyond Yeom on Purchase-100X, with the largest
increase being from 73.0% to 73.4%. For other data sets,
though, this technique improves the maximum PPV
of Yeom. For Texas-100, the PPV increases from 76%
to 92%, for RCV1X, the PPV increases from 58% to
93% and for CIFAR-100, the PPV increases from 73%
to 81% (see Appendix B). However, the maximum PPV
never exceeds beyond Merlin or Morgan. While Song and
Mittal [40] also showed the application of their class-
based thresholds on other metrics such as model confi-
dence and modified entropy, their experimental results
show that these approaches achieve similar attack per-
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Texas-100 RCV1X CIFAR-100
α AdvA PPVA α AdvA PPVA α AdvA PPVA

Yeom

Fixed FPR 1.00 - - 1.00 - - 1.00 0.7 ± 0.3 65.1 ± 2.6
Min FPR 3.00 0.4 ± 0.9 12.0 ± 24.0 33.00 0.4 ± 0.8 10.3 ± 20.5 0.01 0.0 ± 0.0 33.3 ± 27.9
Fixed φ - 51.3 ± 2.6 75.0 ± 1.6 - 26.9 ± 2.7 58.0 ± 0.8 - 33.0 ± 1.6 70.3 ± 1.1
Max PPVA 26.00 59.2 ± 11.7 76.1 ± 1.6 67.00 24.8 ± 5.0 57.9 ± 1.0 12.00 19.0 ± 1.6 72.7 ± 0.8
Max AdvA 31.00 62.9 ± 7.7 75.0 ± 0.6 70.00 25.1 ± 3.2 57.7 ± 0.6 39.00 37.2 ± 1.8 66.5 ± 0.6

Shokri

Min FPR 0.01 1.0 ± 0.5 72.6 ± 8.6 0.01 0.6 ± 0.2 91.7 ± 4.2 0.01 16.5 ± 1.9 64.9 ± 0.7
Max PPVA 0.70 13.8 ± 1.1 89.4 ± 1.5 0.01 0.6 ± 0.2 91.7 ± 4.2 0.01 16.5 ± 1.9 64.9 ± 0.7
Fixed FPR 1.00 16.0 ± 1.3 88.9 ± 1.7 1.00 4.6 ± 0.6 84.5 ± 1.8 1.00 24.6 ± 0.8 63.0 ± 0.4
Fixed φ - 64.0 ± 1.4 74.1 ± 1.3 - 24.0 ± 0.8 57.3 ± 0.4 - 26.0 ± 0.8 62.5 ± 0.4
Max AdvA 31.00 64.1 ± 1.2 74.7 ± 0.9 75.00 24.2 ± 0.5 58.0 ± 0.4 8.00 26.9 ± 0.9 61.3 ± 0.4

Merlin

Min FPR 0.01 0.1 ± 0.1 51.9 ± 42.4 0.01 0.2 ± 0.0 98.8 ± 2.4 0.01 0.0 ± 0.0 51.4 ± 32.0
Max PPVA 0.06 0.3 ± 0.2 92.0 ± 4.5 0.01 0.2 ± 0.0 98.8 ± 2.4 0.90 1.6 ± 0.5 75.0 ± 2.6
Fixed FPR 1.00 4.9 ± 1.3 87.8 ± 2.7 1.00 2.6 ± 0.7 81.7 ± 4.3 1.00 1.8 ± 0.5 74.7 ± 1.7
Max AdvA 36.00 37.8 ± 1.5 68.0 ± 0.8 26.00 11.6 ± 2.3 59.5 ± 2.0 39.00 27.7 ± 1.3 63.3 ± 0.3

Morgan Max PPVA - 0.5 ± 0.2 95.7 ± 4.6 - 0.4 ± 0.3 100.0 ± 0.0 - 0.0 ± 0.0 100.0 ± 0.0

Table 4. Comparing attacks on non-private models for balanced prior. All values are percentages (α = 0.01 means 1 out of 10,000).

formance to the CBT on per-instance loss metric. Hence,
we do not include the CBT results for other metrics.

7.2 Shokri Attack

The Shokri attack [38] requires training multiple shadow
models on hold-out data sets similar to the target model.
These shadow models are used to train an inference
model that outputs a confidence value between 0 and
1 for membership inference, where 1 indicates mem-
ber. We use the experimental setting of Jayaraman and
Evans [22] to train five shadow models with the same
architecture and hyperparameter settings of the target
model. The inference model is a two-layer neural net-
work with 64 neurons in each hidden layer. As with the
Yeom attack, our threshold selection procedure can be
used to increase privacy leakage for Shokri.

Results on Purchase-100X. Table 3 shows the privacy
leakage of Shokri for different attack goals. The origi-
nal attack of Shokri et al. (Fixed φ) uses a threshold
of 0.5 on the inference model confidence and achieves
close to 50% membership advantage, but has a PPV of
around 67%. Using our threshold setting procedure to
maximize PPV, Shokri achieves PPV of over 73%, which
is comparable to the Yeom attack.

Results on Other Data Sets. Table 4 shows the re-
sults of Shokri across multiple data sets. The Shokri
attack performance varies considerably across different
data sets when compared to the Yeom attack. While
Shokri achieves higher PPV than Yeom on Texas-100 and
RCV1X, reflecting significant privacy risk on these data

(a) Merlin Ratio Distribution. (b) Merlin Performance.

Fig. 5. Analysis of Merlin on non-private model trained on
Purchase-100X with balanced prior.

sets, Yeom outperforms Shokri on CIFAR-100. However,
Merlin and Morgan consistently achieve higher PPV
than both Yeom and Shokri (see Sections 7.3 and 7.4).

Using Class-Based Thresholds. We also use class-
based thresholds for Shokri attack and include the re-
sults for Purchase-100X in Table 3 (called Shokri CBT).
However, we do not observe any significant improvement
in privacy leakage over the Shokri attack. While the
maximum membership advantage increases from 50%
to around 60%, the maximum PPV is still close to 72%.
We observe similar behaviour across other data sets.

7.3 Merlin Attack

Next, we perform inference attacks using the Merlin (Al-
gorithm 1) where the attacker perturbs a record with
random Gaussian noise of magnitude σ = 0.01 and notes
the direction of change in loss. This process is repeated
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T = 100 times and the attacker counts the number of
times the loss increases out of T trials to find the Merlin
ratio, count/T . If the Merlin ratio exceeds a threshold,
then the record is classified as a member. As with the
Yeom and Shokri experiments, we use Procedure 5.1 to
select a suitable threshold.

Results on Purchase-100X. Figure 5a shows the dis-
tribution of Merlin ratio for member and non-member
records for a non-private model trained on the Purchase-
100X data set. The average Merlin ratio is 0.57±0.17 for
member records, whereas for the non-member records it
is 0.52± 0.16. A peculiar observation is that the Merlin
ratio is zero for a considerable fraction of members and
non-members. For these non-member records, the loss
is very high to begin with and hence it never increases
for the nearby noise points. Whereas for the member
records, the loss value does not change even with addi-
tion of noise. As mentioned in step 5 of Algorithm 1,
we only check if the loss increases upon perturbation
since we believe that equality is not a strong indica-
tor of membership. Hence these outliers indicate regions
where the loss doesn’t change, not points where it al-
ways decreases.

Figure 5b shows the attack performance with vary-
ing thresholds. Merlin can achieve much higher PPV
than Yeom and Shokri. Table 3 summarizes the thresh-
olds selected by Merlin with different attack goals and
compares the performance with Yeom and Shokri. While
Yeom can only achieve a minimum false positive rate of
10% on this data set, Merlin can achieve false positive
rate as low as 0.01%. Thus Merlin is successful at a fixed
false positive rate of 1% where Yeom fails. Another no-
table observation is that Merlin can achieve close to 93%
PPV, while the maximum possible PPV achievable via
Yeom and Shokri (including their CBT versions) is un-
der 74%. Thus, this attack is more suitable for scenarios
where attack precision is preferred.

Results on Other Data Sets. Table 4 compares the
membership inference attack performance against non-
private models across the other data sets. The Mer-
lin attack consistently achieves higher PPV than Yeom
and Shokri across all the data sets. Merlin is more suc-
cessful on Texas-100 compared to Purchase-100X, as the
gap between Merlin ratio distribution of member records
and non-member records is high for Texas-100 (see Ap-
pendix B for more analysis). More surprisingly, while
Yeom is less successful on RCV1X, we find that Mer-
lin still manages to achieve a very high PPV that even
exceeds the PPV of Shokri (see Table 4). Thus, Merlin
poses a credible privacy threat even in scenarios where

Yeom fails. However, Merlin does not perform signifi-
cantly better than Yeom and Shokri on CIFAR-100 since
the per-instance loss of members is high on this data
set and hence the members are not at local minimum.
Appendix B provides more details on all these results.

Using Class-Based Thresholds. We also tried class-
based thresholds for Merlin, like we did for Yeom and
Shokri. However, we found that this approach does not
benefit Merlin as the individual classes do not have
enough records to provide meaningful thresholds. Using
class-based thresholds for Merlin increases the advantage
metric from 0.1% to 2.8%, but decreases the maximum
achievable PPV from around 93.4% to 83.1%. We ob-
served similar behavior across different thresholds.

7.4 Morgan Attack

The Morgan attack (Section 5.3) combines both Yeom
and Merlin attacks to identify the most vulnerable mem-
bers. Recall that Morgan classifies a record as member
if its per-instance loss is between φL and φU and if the
Merlin ratio is at least φM .

Results on Purchase-100X. Figure 6a shows the loss
and Merlin ratio for members and non-members for one
run of non-private model training in balanced prior.
As shown, a fraction of members are clustered between
3.4× 10−5 and 6.0× 10−4 loss and with Merlin ratio at
least 0.88, and in this region there are very few non-
members. Thus, Morgan can target these vulnerable
members whereas Yeom and Merlin fail to do, being re-
stricted to a single threshold. As reported in Table 3,
Morgan succeeds at achieving around 98% PPV while
Yeom and Shokri only achieve 73% PPV at maximum
on Purchase-100X whereas Merlin achieves 93% PPV.

Results on Other Data Sets. Morgan exposes mem-
bers with 100% PPV in our experiments against non-
private models for the RCV1X and CIFAR-100 datasets,
and exceeds 95% PPV for Texas-100 (Table 4). Morgan
benefits by using multiple thresholds and is able to iden-
tify the most vulnerable members with close to 100%
confidence. Further discussion on these results can be
found in Appendix B.

7.5 Impact of Privacy Noise

So far, all results we have reported are for inference
attacks on models trained without any privacy protec-
tions. We also evaluated membership inference attacks
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Yeom Merlin Morgan
ε α φ Max PPVA α φ Max PPVA φ Max PPVA
1 0.03 (9.6 ± 1.1) × 10−2 71.4 ± 25.7 0.12 0.87 67.2 ± 12.8 2.1, 4.3, 0.87 71.4 ± 17.2

10 0.90 (3.7 ± 1.5) × 10−5 59.4 ± 2.4 0.02 0.88 79.7 ± 17.9 4.5 × 10−5, 0.011, 0.88 95.0 ± 10.0
100 24.00 (1.1 ± 0.2) × 10−2 60.5 ± 0.2 0.03 0.88 80.3 ± 24.8 1.8 × 10−4, 0.0066, 0.87 93.3 ± 13.3

Table 5. Attacks against private models (Purchase-100X, balanced prior). α and PPV values are percentages. Standard deviation is
not shown for Merlin’s φ: across the five runs, it does not change for ε = 1, but changes by ±0.01 for ε = 10 and ε = 100.

(a) Non-private model at γ = 1 (b) Private model at γ = 1, ε = 100 (c) Non-private model at γ = 10

Fig. 6. Comparing loss and Merlin ratio side-by-side on Purchase-100X. Members and non-members are denoted by orange and pur-
ple points respectively. The boxes show the thresholds found by the threshold selection process (without access to the training
data, but with the same data distribution), and illustrate the regions where members are identified by Morgan with high confi-
dence.

against the private models and found the models to be
vulnerable to Merlin and Morgan at privacy loss bud-
gets high enough to train useful models. Like the exper-
iments with non-private models, here also we repeat the
experiments five times and report average results and
standard error. In each run, we train a private model
from scratch and perform the attack procedure on it.

Table 5 compares the maximum PPV achieved by
Yeom, Merlin and Morgan against private models trained
on Purchase-100X with varying privacy loss budgets.5 As
expected, the privacy leakage increases with the privacy
loss budget. Merlin and Morgan both achieve high PPV
for privacy loss budgets, ε ≥ 10 (large enough to offer
no meaningful privacy guarantee, but this is still smaller
than needed to train useful models). Morgan has higher
PPV on average and less deviation than Merlin.

Yeom Attack. To understand how the privacy noise
influences Yeom attack success, we plot the loss distri-
bution of member and non-member records for a pri-
vate model trained with ε = 100 in Figure 7a. The
figure shows that the noise reduces the gap between
the two distributions when compared to Figure 4a with
no privacy. Hence differential privacy limits the suc-

5 Due to the high cost of Shokri, we do not include it for this
experiment. Although our experiments on Purchase-100X shows
that Shokri does not pose significant privacy threat even for ε =
100, where it achieves only 60% PPV.

cess of Yeom by spreading out the loss values for both
member and non-member distributions. This has the
counter-productive impact of reducing the number of
non-member records with zero loss from 959.2±23.5 (in
non-private case) to 98.0± 16.0. This reduces the mini-
mum achievable false positive rate to 1%, and hence al-
lows the attacker to set α thresholds smaller than 10%
against private models which wasn’t possible in the non-
private case. However, the PPV is still less than 60% for
these thresholds.

Figure 7b shows the attack performance at different
thresholds. Due to the reduced gap between the member
and non-member loss distributions, the PPV is close
to 60% across all loss thresholds even if the maximum
membership advantage is considerable (close to 20% for
ε = 100). Thus even with minimal privacy noise, the
privacy leakage risk to membership inference attacks is
significantly mitigated. For ε = 1, the minimum false
positive rate goes to 0.01%, allowing Yeom to achieve
high PPV but with high deviation. The average PPV is
close to 50%. We observe similar trends for other data
sets and hence defer these results to Appendix C.

Merlin and Morgan Attacks. Figure 7c shows the dis-
tribution of Merlin ratio for member and non-member
records on a private model trained with ε = 100. When
compared to the corresponding distribution for a non-
private model (see Figure 5a), the gap between the dis-
tributions is greatly reduced. This restricts the privacy
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(a) Loss distribution. (b) Yeom performance. (c) Merlin ratio distribution. (d) Merlin performance.

Fig. 7. Analysis of Yeom and Merlin on private model trained with ε = 100 at γ = 1 (Purchase-100X).

leakage across all thresholds, as shown in Figure 7d.
Though the maximum PPV can still be high enough
to pose an exposure risk at higher privacy loss bud-
gets. We observe similar trends for Merlin on the other
data sets (see Appendix C). Unlike for non-private mod-
els, Morgan does not achieve close to 100% PPV as the
members and non-members are not easily distinguish-
able due to the added privacy noise (see Figure 6b), but
it does better than Merlin. Regardless, models trained
with high privacy loss budgets can still be vulnerable to
Merlin and Morgan even if Yeom does not succeed. This
shows the importance of choosing appropriate privacy
loss budgets for differential privacy mechanisms.

7.6 Imbalanced Scenarios

As discussed in Section 4, the membership advantage
metric does not consider the prior distribution proba-
bility and hence does not capture the true privacy risk
for imbalanced prior settings. In this section, we pro-
vide empirical evidence that the PPV metric captures
privacy leakage more naturally in imbalanced prior set-
tings, and hence is a more reliable privacy metric.

In imbalanced prior settings, the candidate pool
from which the attacker samples records for inference
testing has γ times more non-member records than
members. In other words, a randomly selected candi-
date is γ times more likely to be a non-member than a
member record. We keep the training set size fixed to
10,000 records as in our previous experiments, so need a
test set size that is γ times the training set size. For each
data set, we set γ as high as possible given the available
data. As mentioned in Section 6, we constructed ex-
panded versions of the Purchase-100 and RCV1 data sets
to enable these experiments. Both the Purchase-100X
and RCV1X data sets have more than 200,000 records,
and hence are large enough to allow setting γ = 10. We
did not have source data to expand Texas-100, so are

γ Yeom Merlin Morgan

Purchase-100X

0.1 96.5 ± 0.1 99.3 ± 0.7 100.0 ± 0.0
0.5 84.5 ± 0.1 97.2 ± 2.8 100.0 ± 0.0
1.0 73.0 ± 0.2 93.4 ± 6.3 98.0 ± 4.0
2.0 57.6 ± 0.3 84.0 ± 5.6 99.1 ± 1.7

10.0 21.2 ± 0.1 69.7 ± 13.8 97.5 ± 5.0

Texas-100

0.1 97.0 ± 0.1 99.2 ± 0.7 100.0 ± 0.0
0.5 86.4 ± 1.1 95.0 ± 3.6 98.4 ± 0.5
1.0 76.1 ± 1.6 92.0 ± 4.5 95.7 ± 4.6
2.0 62.4 ± 0.4 87.7 ± 11.1 97.4 ± 2.7

10.0 - - -

RCV1X

0.1 93.3 ± 0.5 99.8 ± 0.3 100.0 ± 0.0
0.5 72.5 ± 0.9 94.3 ± 6.5 99.5 ± 1.0
1.0 57.9 ± 1.0 98.8 ± 2.4 100.0 ± 0.0
2.0 40.5 ± 1.5 98.8 ± 2.4 98.8 ± 2.4

10.0 12.2 ± 0.3 74.3 ± 15.9 93.0 ± 9.8

CIFAR-100

0.1 96.0 ± 0.2 97.9 ± 1.9 100.0 ± 0.0
0.5 84.6 ± 0.5 86.4 ± 1.7 100.0 ± 0.0
1.0 72.7 ± 0.8 75.0 ± 2.6 100.0 ± 0.0
2.0 56.7 ± 0.6 74.0 ± 8.1 100.0 ± 0.0

10.0 - - -

Table 6. Effect of varying γ on maximum PPV achieved by at-
tacks against non-private models. All values are in percentage.

left with a data set with only 67,000 records and hence
only have results for γ = 2. The threshold selection pro-
cedure (Procedure 5.1) uses holdout training and test
sets that are disjoint from the target training and test
sets mentioned above, so the data set needs at least
(γ + 1)× 20, 000 records to run the experiments.

Table 6 shows the effect of varying γ on the maxi-
mum PPV of inference attacks against non-private mod-
els trained on different data sets. We can see a clear drop
in PPV values across all data sets with increasing γ val-
ues for Yeom and Merlin.6 Although, Merlin consistently
outperforms Yeom across all settings. At γ = 0.1, the

6 Due to the high cost of Shokri, we do not include it for this
experiment.
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(a) Yeom performance at γ = 0.1. (b) Yeom performance at γ = 10. (c) Merlin performance at γ = 0.1. (d) Merlin performance at γ = 10.

Fig. 8. Attack performance on Purchase-100X for imbalanced prior setting. PPVA varies with γ, while AdvA remains almost same.

base rate for PPV is 90%. While Yeom achieves around
96% PPV, Merlin achieves close to 100% PPV across all
data sets. For γ = 2, the maximum PPV of Yeom is
close to 60%, whereas Merlin still achieves high enough
PPV to pose some privacy threat. Both the Yeom and
Merlin are less successful as the γ value increases to 10.
However, Morgan consistently achieves close to 100%
PPV across all settings, thereby showing the vulnera-
bility of non-private models even in the skewed prior
settings. This is graphically shown in Figure 6c where
Morgan is able to identify the most vulnerable members
on Purchase-100X even at γ = 10. The advantage values
remain more or less the same across different γ values
for both Yeom and Merlin on Purchase-100X, as shown in
Figure 8. These results support our claim that PPV is
a more reliable metric in skewed prior scenarios. We ob-
serve the same trend for the other data sets, and hence
do not include their plots due to space limit.

While Yeom and Merlin do not pose an exposure
threat in the imbalanced prior settings where γ values
are higher than 10, Morgan still exposes some vulnerable
members with close to 100% PPV. Thus, our proposed
attacks pose significant threat even in more realistic set-
tings of skewed priors, where the existing attacks fail.
We observe that the private models are not vulnera-
ble to any of our inference attacks in the imbalanced
prior setting where γ > 1. At γ = 2, the best attack
achieves maximum PPV close to 48% across all data
sets, whereas at γ = 10, this further drops to around
17%. Hence we do not show the membership inference
attack results against private models for these settings.

8 Conclusion
Understanding the privacy risks posed by machine
learning involves considerable challenges, and there re-
mains a large gap between achievable privacy guaran-

tees, and what can be inferred using known attacks
in practice. While membership inference has previously
been evaluated in balanced prior settings, we consider
scenarios with imbalanced priors and show that there
are attacks which pose serious privacy threats even in
such settings where previous attacks fail.

We introduce a novel threshold selection procedure
that allows adversaries to choose inference thresholds
specific to their attack goals, and propose two new mem-
bership inference attacks, Merlin and Morgan, that out-
perform previous attacks in the settings that concern
us most: being able to identify members, with very high
confidence, even from candidate pools where most can-
didates are not members. From experiments on four
data sets under different prior distribution settings, we
find that the non-private models are highly vulnerable
to such attacks, and the models trained with high pri-
vacy loss budgets can still be vulnerable.

Availability
All of our code and data for our experiments is available
at https://github.com/bargavj/EvaluatingDPML.
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A Hyperparameters
For each data set, the training set is fixed to 10,000 ran-
domly sampled records and the test set size is varied to
reflect different prior probability distributions. We sam-
ple γ times the number of training set records to create
the test set. For both Purchase-100X and RCV1X, we
use γ = {0.1, 0.5, 1, 2, 10}; for Texas-100 and CIFAR-100,
we use γ = {0.1, 0.5, 1, 2} since they are too small for
experiments with larger γ. For training the models, we
use the Adam optimizer and perform grid search to find
the best values for hyperparameters such as batch size,

learning rate, `2 penalty, clipping threshold and number
of iterations. We find a batch size of 200, clipping thresh-
old of 4, and `2 penalty of 10−8 work best across all the
data sets, except for CIFAR-100 where we use `2 penalty
of 10−4, and RCV1X where we use clipping threshold of
1. We use a learning rate of 0.005 for Purchase-100X and
Texas-100, 0.003 for RCV1X, and 0.001 for CIFAR-100.
We set the training epochs to 100 for Purchase-100X and
CIFAR-100, 30 for Texas-100, and 80 for RCV1X. We fix
the differential privacy failure parameter δ as 10−5 to
keep it smaller than the inverse of the training set size,
generally considered the maximum acceptable δ value.

B Additional Results for
Non-Private Models

Results on Texas-100.We plot the distribution of per-
instance loss for a non-private model trained on Texas-
100 in Figure 9a. A notable difference is that the number
of non-members having zero loss is lower than that of
Purchase-100X. As a result, the false positive rate can
be as low as 3% for this data set. This is depicted in
Figure 9b which shows the performance of Yeom against
a non-private model at different thresholds. The trend
is similar to what we observe for Purchase-100X.

Figure 9c shows the distribution of Merlin ratio
against a non-private model trained on Texas-100. The
gap between the member and non-member distributions
is greater than that of Purchase-100X and hence this
attack is more effective on this data set. An important
indicator is that all members have non-zero Merlin ra-
tio. The average Merlin ratio is 0.81± 0.12 for members
whereas it is 0.65 ± 0.22 for non-members. Figure 9d
shows the performance of Merlin on non-private model
at different count thresholds. These results further vali-
date the effectiveness of selecting a good threshold based
on our proposed procedure. Figure 10a shows the scat-
ter plot of per-instance loss and Merlin ratio for all
records. Similar to the case of Purchase-100X, more frac-
tion of members are concentrated between 1.2× 10−4

and 5.1× 10−3 loss and have Merlin ratio greater than
0.90. Table 7 compares the membership inference at-
tacks across different attack settings on Texas-100. As
shown, Merlin achieves much higher PPV values than
Yeom. Using class based thresholds drastically improves
PPV for Yeom such that Yeom CBT achieves maximum
PPV comparable to Merlin. As with Purchase-100X, we
observe no benefit of using CBT for Merlin. While Shokri

https://github.com/csong27/membership-inference
https://github.com/csong27/membership-inference
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(a) Loss distribution for Texas-100 (b) Yeom on Texas-100 (c) Merlin ratio for Texas-100 (d) Merlin on Texas-100

(e) Loss distribution for RCV1X (f) Yeom on RCV1X (g) Merlin ratio for RCV1X (h) Merlin on RCV1X

(i) Loss distribution for CIFAR-100 (j) Yeom on CIFAR-100 (k) Merlin ratio for CIFAR-100 (l) Merlin on CIFAR-100

Fig. 9. Analysis of Yeom and Merlin against non-private models trained on different data sets in the balanced prior setting.

α φ Actual FPR Actual TPR AdvA PPVA

Yeom

Fixed FPR 1.00 - - - - -
Min FPR 3.00 0 0.8 ± 1.7 1.3 ± 2.6 0.4 ± 0.9 12.0 ± 24.0
Fixed φ - (1.1 ± 2.0) × 10−2 26.1 ± 5.0 77.5 ± 7.4 51.3 ± 2.6 75.0 ± 1.6
Max PPVA 26.00 (1.8 ± 0.4) × 10−3 26.6 ± 0.3 85.8 ± 14.5 59.2 ± 11.7 76.1 ± 1.6
Max AdvA 31.00 (6.6 ± 1.3) × 10−3 31.4 ± 2.8 94.3 ± 10.3 62.9 ± 7.7 75.0 ± 0.6

Yeom CBT

Min FPR 0.01 0, 3.4 × 10−6, 9.2 × 10−2 1.0 ± 0.5 11.2 ± 3.1 10.2 ± 2.6 92.0 ± 2.3
Max PPVA 0.01 0, 3.4 × 10−6, 9.2 × 10−2 1.0 ± 0.5 11.2 ± 3.1 10.2 ± 2.6 92.0 ± 2.3
Fixed FPR 1.00 0, 4.8 × 10−6, 9.2 × 10−2 1.3 ± 0.6 12.5 ± 3.4 11.2 ± 2.9 91.2 ± 2.1
Fixed φ - (0.1, 8.3, 554.8)×10−4 21.7 ± 3.6 70.9 ± 15.7 49.2 ± 12.1 76.3 ± 1.4
Max AdvA 52.00 1.2 × 10−7, 7.3 × 10−3, 4.3 28.9 ± 4.2 90.4 ± 11.5 61.5 ± 8.0 75.8 ± 1.2

Merlin

Min FPR 0.01 1.00 ± 0.01 0.0 ± 0.0 0.1 ± 0.1 0.1 ± 0.1 51.9 ± 42.4
Max PPVA 0.06 0.99 ± 0.00 0.0 ± 0.0 0.3 ± 0.2 0.3 ± 0.2 92.0 ± 4.5
Fixed FPR 1.00 0.95 ± 0.00 0.8 ± 0.2 5.7 ± 1.4 4.9 ± 1.3 87.8 ± 2.7
Max AdvA 36.00 0.76 ± 0.00 33.6 ± 1.1 71.4 ± 1.2 37.8 ± 1.5 68.0 ± 0.8

Morgan Max PPVA - 1.2 × 10−4, 5.1 × 10−3, 0.98 0.0 ± 0.0 0.6 ± 0.2 0.5 ± 0.2 95.7 ± 4.6

Table 7. Thresholds selected against non-private models trained on Texas-100 with balanced prior. The results are averaged over five
runs such that the target model is trained from the scratch for each run. Yeom CBT uses class-based thresholds, where φ shows
the triplet of minimum, median and maximum thresholds across all classes. All values, except φ, are reported in percentage.
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(a) Texas-100 (b) RCV1X (c) CIFAR-100

Fig. 10. Comparing loss and Merlin ratio for non-private models trained on different data sets at γ = 1. Members and non-members
are denoted by orange and purple points respectively. Highlighted boxes denote the members identified by Morgan at max PPV.

α φ Actual FPR Actual TPR AdvA PPVA

Yeom

Fixed FPR 1.00 - - - - -
Min FPR 33.00 0 7.4 ± 14.8 7.8 ± 15.6 0.4 ± 0.8 10.3 ± 20.5
Max PPVA 67.00 (0.5 ± 0.2) × 10−3 65.7 ± 3.9 90.6 ± 8.8 24.8 ± 5.0 57.9 ± 1.0
Max AdvA 70.00 (1.5 ± 0.6) × 10−3 68.9 ± 3.2 94.1 ± 6.2 25.1 ± 3.2 57.7 ± 0.6
Fixed φ - (3.2 ± 3.2) × 10−3 70.2 ± 1.0 97.1 ± 2.2 26.9 ± 2.7 58.0 ± 0.8

Yeom CBT

Min FPR 0.01 0, 0, 3.8 × 10−3 0.1 ± 0.1 1.3 ± 0.3 1.2 ± 0.3 93.1 ± 3.2
Max PPVA 0.01 0, 0, 3.8 × 10−3 0.1 ± 0.1 1.3 ± 0.3 1.2 ± 0.3 93.1 ± 3.2
Fixed FPR 1.00 0, 2.4 × 10−8, 3.8 × 10−3 0.1 ± 0.1 1.4 ± 0.3 1.3 ± 0.3 92.7 ± 3.5
Max AdvA 70.00 0, 1.4 × 10−3, 9.0 50.9 ± 7.6 73.3 ± 10.5 22.4 ± 3.2 59.0 ± 0.5
Fixed φ - (0.1, 2.8, 91.1)×10−4 62.4 ± 4.8 84.0 ± 10.2 21.6 ± 5.6 57.3 ± 1.2

Merlin

Min FPR 0.01 0.97 ± 0.01 0.0 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 98.8 ± 2.4
Max PPVA 0.01 0.97 ± 0.01 0.0 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 98.8 ± 2.4
Fixed FPR 1.00 0.88 ± 0.00 0.7 ± 0.2 3.3 ± 0.7 2.6 ± 0.7 81.7 ± 4.3
Max AdvA 26.00 0.66 ± 0.00 24.9 ± 2.0 36.5 ± 1.6 11.6 ± 2.3 59.5 ± 2.0

Morgan Max PPVA - 1.0 × 10−4, 1.5 × 10−3, 0.95 0.0 ± 0.0 0.4 ± 0.3 0.4 ± 0.3 100.0 ± 0.0

Table 8. Thresholds selected against non-private models trained on RCV1X with balanced prior. The results are averaged over five
runs such that the target model is trained from the scratch for each run. Yeom CBT uses class-based thresholds, where φ shows
the triplet of minimum, median and maximum thresholds across all classes. All values, except φ, are reported in percentage.

achieves 89% PPV, slightly less than Merlin, on this data
set (see Table 4), using CBT decreases the PPV to 85%.
Morgan achieves highest PPV among all attacks.

Results on RCV1X. We plot the per-instance loss dis-
tribution for a non-private model trained on RCV1X in
Figure 9e. While more members are concentrated closer
to zero loss than the non-members, we observe that the
gap between the two distributions is not as large as with
the other data sets. Moreover, 3504± 444 non-members
have zero loss, and hence the minimum false positive
rate for Yeom is around 33%. Figure 9f shows the per-
formance of Yeom for different loss thresholds. The max-
imum PPV that can be achieved is only around 58%, at
which point the advantage is close to 27%. Thus while
the advantage metric would suggest that there is pri-
vacy risk, Yeom does not pose significant risk. Shokri,
on the other hand, achieves a PPV of 91% (see Table 4)
and poses a significant privacy risk.

Figure 9g shows the distribution of Merlin ratio for a
non-private model trained on RCV1X. While the gap be-
tween distributions is small, the PPV can still be high

as depicted in Figure 9h. Merlin achieves a maximum
PPV of around 99% on an average for threshold values
close to 0.97, and hence poses privacy threat even when
Yeom fails. Table 8 compares the attacks on RCV1X for
different attack goals. Yeom is benefited from using class
based thresholds, as the maximum PPV jumps from
58% to 93%. However, Merlin still outperforms Yeom
CBT at maximum PPV setting. As with other data sets,
Shokri does not benefit from CBT technique. Figure 10b
shows the loss and Merlin ratio scatter plot on RCV1X.
Though the members and non-members are less differ-
entiated, Morgan is still able to identify the most vul-
nerable members with 100% confidence (see Table 8).

Results on CIFAR-100. Figure 9i shows the distribu-
tion of per-instance loss for a non-private model trained
on CIFAR-100. The loss of both members and non-
members is high, since the model does not completely
overfit on this data set. Figure 9j shows the performance
of Yeom for different loss thresholds. Figures 9k and 9l
show the distribution of Merlin ratio and leakage metrics
for different thresholds. Using CBT on Yeom increases
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α φ Actual FPR Actual TPR AdvA PPVA

Yeom

Min FPR 0.01 (4.3 ± 2.1) × 10−3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.3 ± 27.9
Fixed FPR 1.00 (7.2 ± 0.8) × 10−2 0.8 ± 0.1 1.4 ± 0.4 0.7 ± 0.3 65.1 ± 2.6
Max PPVA 12.00 1.0 ± 0.0 11.4 ± 0.4 30.4 ± 1.9 19.0 ± 1.6 72.7 ± 0.8
Fixed φ - 2.0 ± 0.1 24.0 ± 1.0 57.0 ± 0.5 33.0 ± 1.6 70.3 ± 1.1
Max AdvA 39.00 2.9 ± 0.0 37.9 ± 0.5 75.1 ± 1.5 37.2 ± 1.8 66.5 ± 0.6

Yeom CBT

Min FPR 0.01 0, 0.1, 1.8 1.0 ± 0.2 4.4 ± 1.1 3.4 ± 0.9 81.2 ± 2.3
Max PPVA 0.01 0, 0.1, 1.8 1.0 ± 0.2 4.4 ± 1.1 3.4 ± 0.9 81.2 ± 2.3
Fixed FPR 1.00 0, 0.2, 2.0 1.6 ± 0.2 6.6 ± 0.9 5.1 ± 0.8 81.0 ± 1.4
Fixed φ - 0.7, 2.0, 3.2 22.5 ± 1.1 56.6 ± 3.5 34.0 ± 2.7 71.5 ± 0.7
Max AdvA 40.00 0.5, 3.0, 4.6 37.9 ± 0.4 75.4 ± 1.1 37.5 ± 1.5 66.6 ± 0.6

Merlin

Min FPR 0.01 0.92 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 51.4 ± 32.0
Max PPVA 0.90 0.82 ± 0.00 0.8 ± 0.2 2.3 ± 0.6 1.6 ± 0.5 75.0 ± 2.6
Fixed FPR 1.00 0.82 ± 0.00 0.9 ± 0.2 2.8 ± 0.7 1.8 ± 0.5 74.7 ± 1.7
Max AdvA 39.00 0.62 ± 0.00 38.1 ± 1.1 65.8 ± 2.3 27.7 ± 1.3 63.3 ± 0.3

Morgan Max PPVA - 2.7, 3.7, 0.87 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100.0 ± 0.0

Table 9. Thresholds selected against non-private models trained on CIFAR-100 with balanced prior. The results are averaged over five
runs such that the target model is trained from the scratch for each run. Yeom CBT uses class-based thresholds, where φ shows
the triplet of minimum, median and maximum thresholds across all classes. All values, except φ, are percentages.

Yeom Merlin Morgan
ε α φ Max PPVA α φ Max PPVA φ Max PPVA

Texas-
100

1 0.05 (1.0 ± 0.5) × 10−2 58.5 ± 4.6 0.13 0.92 61.0 ± 5.4 0.3, 1.4, 0.93 85.6 ± 19.8
10 0.06 (1.0 ± 0.4) × 10−5 65.5 ± 19.8 0.05 0.94 67.2 ± 19.3 5.4 × 10−2, 0.2, 0.93 76.7 ± 26.1

100 0.02 (0.2 ± 0.2) × 10−5 58.8 ± 24.0 0.45 0.92 59.5 ± 3.6 0, 8.4 × 10−5, 0.92 68.2 ± 17.9

RCV1X
1 13.00 (6.0 ± 1.1) × 10−4 51.7 ± 0.5 3.00 0.80 52.6 ± 2.0 0, 5.0 × 10−6, 0.80 75.0 ± 21.1

10 60.00 (2.4 ± 0.3) × 10−2 51.8 ± 0.2 0.10 0.89 70.9 ± 12.9 4.7 × 10−5, 3.6, 0.89 77.4 ± 11.0
100 70.00 (3.7 ± 0.3) × 10−2 53.0 ± 0.1 0.04 0.92 86.9 ± 11.6 2.7 × 10−5, 12, 0.92 89.1 ± 11.3

CIFAR-
100

1 0.11 4.3 ± 0.0 68.4 ± 27.1 0.11 0.85 57.3 ± 10.1 4.5, 4.8, 0.85 62.7 ± 7.7
10 0.11 1.2 ± 0.1 64.2 ± 29.4 0.07 0.79 66.6 ± 17.6 0.7, 3.1, 0.79 77.3 ± 12.6

100 0.80 1.3 ± 0.0 56.3 ± 3.2 0.12 0.77 62.0 ± 11.5 1.4, 2.2, 0.77 89.7 ± 13.5

Table 10. MI attacks against private models trained on different data sets in the balanced prior setting. α and PPV values are in
percentage. Merlin’s φ has 0 standard deviation for Texas-100, and ±0.01 standard deviation for RCV1X and CIFAR-100.

the maximum PPV from 73% to 81% (Table 9), ex-
ceeding that of Merlin. Shokri is less successful on this
data set, achieving only 65% PPV (Table 4), and does
not benefit from the CBT technique. Figure 10c shows
the loss and Merlin ratio of all records on CIFAR-100.
As shown, members with high Merlin ratio are distin-
guishable from non-members. Morgan is able to identify
certain members with 100% PPV (see Table 9).

C Additional Privacy Results
The plots for private models on all three data sets are
similar to that of Purchase-100X, hence we do not in-
clude them here. Instead, we directly compare the maxi-
mum PPV of the attacks against private models trained
with varying privacy loss budgets across all three data
sets in Table 10. As with Purchase-100X, adding noise

allows Yeom to set much smaller thresholds on Texas-
100. For higher ε values, Yeom poses some privacy threat
but the PPV deviation is high. On RCV1X, the α val-
ues are still high and hence Yeom is not successful even
for ε = 100. On CIFAR-100, Yeom achieves considerably
higher PPV values for ε = 1 and ε = 10, but the de-
viation is very high, indicating that the attack is only
successful for some runs. At ε = 100, Yeom fails to pose
any threat. Merlin achieves higher PPV than Yeom on
average across all data sets. Similar to Purchase-100X,
Merlin achieves high PPV values for ε = 10 and ε = 100
on RCV1X. However, it does not achieve high enough
PPV on Texas-100 and CIFAR-100 to pose a serious pri-
vacy threat, even for ε = 100. On the other hand, Morgan
poses serious privacy threat against models trained with
high privacy loss budgets across all tested data sets.
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