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Abstract: Sharing genome data in a privacy-preserving
way stands as a major bottleneck in front of the sci-
entific progress promised by the big data era in ge-
nomics. A community-driven protocol named genomic
data-sharing beacon protocol has been widely adopted
for sharing genomic data. The system aims to provide
a secure, easy to implement, and standardized inter-
face for data sharing by only allowing yes/no queries on
the presence of specific alleles in the dataset. However,
beacon protocol was recently shown to be vulnerable
against membership inference attacks. In this paper, we
show that privacy threats against genomic data sharing
beacons are not limited to membership inference. We
identify and analyze a novel vulnerability of genomic
data-sharing beacons: genome reconstruction. We show
that it is possible to successfully reconstruct a substan-
tial part of the genome of a victim when the attacker
knows the victim has been added to the beacon in a re-
cent update. In particular, we show how an attacker can
use the inherent correlations in the genome and cluster-
ing techniques to run such an attack in an efficient and
accurate way. We also show that even if multiple indi-
viduals are added to the beacon during the same update,
it is possible to identify the victim’s genome with high
confidence using traits that are easily accessible by the
attacker (e.g., eye color or hair type). Moreover, we show
how a reconstructed genome using a beacon that is not
associated with a sensitive phenotype can be used for
membership inference attacks to beacons with sensitive
phenotypes (e.g., HIV+). The outcome of this work will
guide beacon operators on when and how to update the
content of the beacon and help them (along with the
beacon participants) make informed decisions.
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1 Introduction
With plummeting sequencing costs, we look forward
reaching a capacity of sequencing one billion individu-
als over the next 15-20 years, resulting in availability of
very large genomic datasets [20, 49, 64]. Although such
large datasets are promising a revolution in medicine,
it has been shown in numerous studies that it is not
straightforward to ensure anonymity of the participants
in such datasets [19, 36, 42, 63, 71].

Human genome is the utmost personal identifier and
sharing genomic data for research while preserving the
privacy of the individuals have been challenging many
different fields (e.g., medicine, bioinformatics, computer
science, law, and ethics) for long, due to possibly dire
ethical, monetary, and legal consequences. To address
this challenge and create frameworks and standards to
enable the responsible, voluntary, and secure sharing of
genomic data, the Global Alliance for Genomics and
Health (GA4GH) was formed by the community [1]. The
current genomic data sharing standard of the GA4GH
is called the genomic data-sharing beacons. Beacons are
the gateways that let users (researchers) and data own-
ers exchange information without -in theory- disclosing
any personal information. A user who wants to apply for
access to a dataset can learn whether individuals with
specific alleles (nucleotides) of interest are present in the
beacon through an online interface. That is, a user can
submit a query, asking whether a genome exists in the
beacon with a certain nucleotide at a certain position,
and the beacon answers as "yes" or "no". If the dataset
does not contain the desired genome, genomic data is
not shared and distributed unnecessarily. In addition,
researchers do not have to go through the paperwork
to obtain a dataset which will not be helpful for their
research. The GA4GH provides a shared beacon inter-
face [2] that as of December 2020 provides access to 81
beacons and acts as a hub where researchers and data
owners meet.

Beacons are typically associated with a particular
sensitive phenotype (e.g., the SFARI beacon that host
individuals with autism). Therefore, presence of an in-
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dividual in a particular beacon is considered as privacy-
sensitive information and the main aim of the beacons
is to protect this information. An attacker, using the re-
sponses of a beacon and genomic data of a victim, may
try to infer the membership of the victim in a particular
beacon by running a membership inference attack. Bea-
con framework sets a barrier against membership infer-
ence attacks by allowing only presence/absence queries
for variants and not tying any response to any spe-
cific individual. In that sense, beacons are considered to
have stronger privacy measures compared to other sta-
tistical genomic databases. Despite these barriers, sev-
eral works have proven that beacons are not bulletproof
and they are vulnerable to membership inference at-
tacks [59, 65, 73].

However, threats against genomic data-sharing bea-
cons are not limited to membership inference attacks.
In this paper, for the first time, we identify and ana-
lyze the vulnerability of genomic data-sharing beacons
for the “genome reconstruction” attack. We consider a
scenario, in which the attacker knows the membership
of a victim to a beacon that may not be associated with
a sensitive phenotype. Therefore, we consider a targeted
attack, in which either (i) the attacker knows that the
victim donated their genome to take part in a study or
(ii) infer the membership of the victim from beacon’s
metadata (as done in [65]). Then, we show how the at-
tacker can accurately infer the genome of the victim by
using the beacon responses. Such an attack may result
in serious consequences if the attacker uses the recon-
structed genome to infer sensitive information (e.g., dis-
ease diagnosis) about the victim or to infer the victim’s
membership to another statistical genomic database of
interest (e.g., another beacon that is associated with a
sensitive phenotype). In particular, we show how the at-
tacker can use the inherent correlations in the genome
to run such an attack in an efficient and accurate way
compared to a baseline approach. We also show how
clustering techniques can be used to further improve
the accuracy of such an attack.

Previous works in the literature assume beacons are
static and do not change over time. However, beacons
are dynamic datasets (donors join and leave) and this re-
sults in an increased risk for the genome reconstruction
attack. An attacker can monitor the number of newly
added donors to the beacon and the number of donors
leaving the beacon from the meta-information of the
beacon. With this information, newly joined donors (or
donor leaving the beacon) become more vulnerable for
genome reconstruction attacks. Thus, for the first time,
we consider the beacons as dynamic databases and for-

mulate the genome reconstruction attack accordingly.
Privacy vulnerabilities due to dynamic changes in a sys-
tem has been recently explored in the context of dy-
namic model changes in machine learning models [61].
It has been shown that different model outputs can con-
stitute a new attack surface for an adversary to infer
information of the dataset used to perform a model up-
date [61]. Here, rather than model updates, we focus
on the changes in the query responses to a dynamic
database.

In a genome reconstruction attack, the attacker re-
constructs all or a subset of the genomes in the beacon.
Among the reconstructed genomes, it is not trivial to in-
fer which one belongs to the victim. Therefore, we also
show how the attacker can identify the victim’s genome
among the set of reconstructed genomes using moder-
ate auxiliary information about the victim (i.e., a set
of visible physical characteristics of the victim, which is
public information). Finally, to show one of the conse-
quences of the identified genome reconstruction attack,
we show how the attacker can utilize the outcome of
this attack to initiate a membership inference attack
against the same victim in another beacon, which can
be associated with a sensitive phenotype. To do this,
we combine the identified genome reconstruction attack
with the membership inference attacks against beacons
from the literature.

We implement and evaluate the identified vulner-
ability using real genome data obtained from Open-
SNP [32] and HapMap [21] datasets. We particularly
evaluate the success of the attacker to reconstruct a
victim’s point mutations that include at least one rare
nucleotide (i.e., minor allele) since minor alleles (i) re-
veal sensitive attributes of individuals (e.g., predisposi-
tions to privacy-sensitive diseases); and (ii) provide rich
information to the attacker for membership inference
attacks [59, 73]. We show that for a beacon with 50
individuals, precision and recall of the reconstruction
reach up to 0.9 (each) when 3 individuals are added
to the beacon and the victim is one of the newcomers.
Even when 10 new participants are added to the bea-
con (causing a 20% increase in beacon size), we show
that the attacker has a precision of 0.7 and a recall of
0.8. Furthermore, our results show that when more than
one individual is added to the beacon, the attacker can
accurately pinpoint the victim’s reconstructed genome
by using moderate (and publicly available) auxiliary in-
formation about the victim. For this, we show how the
attacker can match the victim’s phenotypical charac-
teristics to the reconstructed genomes using machine
learning algorithms. We also show via experiments that
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the outcome of the genome reconstruction attack can
be accurately used for the membership inference attack
on another beacon and it helps an attacker infer the
membership of a victim only with a few queries.

Overall, we identify an important vulnerability and
show how it can be exploited. We notably show how
dependencies between point mutations can be used in a
clustering algorithm to have high accuracy in a genome
reconstruction attack. Furthermore, our methodology
consists of a complete pipeline, showing how an attacker
use the information it infers in the genome reconstruc-
tion attack in a subsequent membership inference at-
tack. Therefore, this study clearly shows that privacy
risks for genomic data-sharing beacons are much severe
than perceived. This is particularly important since the
number of beacon participants, and hence the privacy
risk of individuals increase rapidly.

2 Related Work
Genomic privacy has recently been explored by many
studies [11, 27, 56]. In the following subsections, we will
summarize existing work on privacy in statistical ge-
nomic databases, inference attacks, and privacy of ge-
nomic data-sharing beacons.

2.1 Privacy in Statistical Genomic
Databases and Inference Attacks on
Genomic Privacy

Several works have shown that anonymization does not
effectively protect the privacy of genomic data [30, 33,
35, 45, 50, 53, 66]. It has been shown that the identity
of a participant of a genomic study can be revealed by
using a second sample (e.g., part of the DNA informa-
tion from the individual) and the results of the clinical
study [19, 37, 41, 75, 77]. Differential privacy (DP) [26]
concept has been frequently used to mitigate member-
ship inference attacks when releasing summary statis-
tics from genomic databases [28, 44, 68, 76]. Compared
to statistical databases, genomic data-sharing beacons
have stronger privacy measures since they only allow
presence/absence (or yes/no) queries for variants.

Humbert et al. proposed an inference attack on kin
genomic privacy using the family ties between individ-
uals, pairwise correlations between the SNPs, and pub-
licly available statistics about DNA [38]. Then, Dezn-
abi et al. demonstrated that stronger inference tech-
niques can be generated by combining high-order corre-
lations and family ties [25]. Furthermore, several stud-
ies have examined phenotype prediction from genomic
data, as a means of tracing identity [10, 18, 39, 46, 51,

52, 54, 58, 74, 78]. To mitigate such attribute inference
attacks, cryptographic solutions has been proposed for
privacy-preserving processing and sharing of genomic
data (e.g., to outsource the computation to a public
cloud or to conduct collaborative association studies).
Existing cryptographic solutions mainly focus on (i) pri-
vate pattern-matching and the comparison of genomic
sequences [15, 24, 43, 55, 69] and (ii) privacy-preserving
personalized medicine [12, 13]. In this work, we identify
and analyze a different type of attribute inference attack
particularly against genomic data-sharing beacons.

2.2 Privacy in Genomic Data Sharing
Beacons

Researchers showed that presence (membership) of an
individual in a genome sharing beacon can be inferred
by repeatedly querying the beacon. Here, the attacker
is assumed to be an active (or authorized) user of the
beacon, in practice, it can ask as many queries as it
wishes to the beacon (there is no limitations and cost for
this in the current beacon protocol), and it can decide
which queries to ask to the beacon. Furthermore, the
attacker is assumed to have access to the set of SNPs of
the victim. Shringarpure and Bustamante introduced a
likelihood-ratio test (LRT) that can predict whether an
individual is in the beacon by querying the beacon for
multiple SNPs of a victim [65]. Note that inferring the
membership of an individual in a beacon that is associ-
ated with a sensitive phenotype is equivalent to uncov-
ering the sensitive phenotype about the victim. Then,
Raisaro et al. showed that if the attacker first queries
the SNPs with low minor allele frequency (MAF) val-
ues, it needs fewer queries for a successful attack [59].
In Section 6.5, we use this attack when we show how
the proposed genome reconstruction attack can be com-
bined with the membership inference attack. We pro-
vide further background information about this attack
in Appendix A. Later, von Thenen et al. showed that
even if the attacker does not have victim’s low-MAF
SNPs, it is still possible to infer membership by exploit-
ing the correlations in the genome [73]. Furthermore,
they showed that beacon responses can also be inferred
using such correlations (via a query inference, or QI-
attack). In an orthogonal work, Hagestedt et al. have hy-
pothesized that while current beacons systems are lim-
ited to genomic data, in the near future, the community
is going to need a similar system for other biomedical
data types. They proposed a beacon system for shar-
ing DNA methylation data (an epigenetic mechanism
to regulate transcriptional activity) and then showed
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that it is possible to successfully launch a membership
inference attack against this system. They proposed a
DP-based solution in their proposed MBeacon [34] sys-
tem. The approach retains utility by adjusting the noise
level for high risk methylation regions that might leak
phenotypic information (i.e., regions which are related
to disease).
Contribution of this paper. In this paper, we iden-
tify and analyze a genome reconstruction attack against
genomic data-sharing beacons by particularly exploit-
ing the information leaked due to beacon updates and
the correlations between the point mutations. So far, all
works in the literature have focused on membership in-
ference attacks against genomic data-sharing beacons.
To the best of our knowledge, this is the first work that
identifies, thoroughly analyzes, and shows the conse-
quences of the genome reconstruction attack against the
beacons. Furthermore, as opposed to existing work (that
only consider a snapshot of the beacon), we show the
privacy risk in dynamic beacons, in which new donors
may join or existing donors may leave.

3 Genomics Background
Approximately 99.9% of the all individuals’ DNA are
identical and the remaining 0.1% is responsible for our
differences. Single nucleotide polymorphism (SNP) is
the most common source of variation in the human
genome. SNP is a point mutation (e.g., substitution of
a single nucleotide in the genome - A,T,C, or G) and
there are around 50 million known SNPs in the hu-
man genome [3]. The alternative nucleotides for each
locus (SNP position) are called alleles and each allele
of a SNP can be either the major or the minor allele
for that SNP. The major allele is the most frequently
observed nucleotide for a SNP position and the minor
allele is the rare nucleotide (i.e., the second most com-
mon). The frequency (or probability) of observing the
minor allele at a SNP position is called the minor allele
frequency (MAF) of that SNP. Human genome has two
copies for each locus (one per chromosome) and a SNP
can be represented in terms of the number of its minor
alleles (i.e., 0 for homozygous major, 1 for heterozygous,
or 2 for homozygous minor).

Particular SNPs in human population are inherently
correlated and this correlation model may change for
different populations. Linkage disequilibrium (LD) is
the non-random association of alleles at two or more
loci. If two SNPs are in LD, they are correlated and co-
occur more frequently than expected. Some SNPs are
pathogenic and cause genetic diseases [6] and hence,

they may carry sensitive information regarding individ-
uals’ health conditions. As discussed in Section 2, most
existing works in genomic privacy literature focus on the
protection of the SNPs to prevent the risk of genetic dis-
crimination.

4 System Model
As shown in Figure 1, we consider a system between
the beacon participants (e.g., donors), the beacon, and
the beacon users (which may include the attacker). The
donor shares their genome with the beacon. It is pos-
sible that the donor may share their genome with mul-
tiple beacons that may or may not be associated with
sensitive traits. Genome donor is not active during the
protocol after they share their data with the beacon.
Also, beacon never publicly shares its dataset, but some
beacons may share metadata about (i) their content
(e.g., size) or (ii) their donors (e.g., their gender, age,
or ethnicity). In general, we consider the beacon as a
dynamic dataset, in which new donors may join and ex-
isting donors may leave over time. Beacon users issue
queries to the beacon. As discussed, the beacon user
can only ask the presence of a genome with a particu-
lar allele (nucleotide) at a particular position of a given
chromosome and the beacon only responds as “yes” or
“no”. In this work, we assume beacon honestly reports
the result of each query to the user (e.g., without in-
troducing intentional noise to the query results) and we
do not consider a query limit for the users, as it is usu-
ally trivial to overcome such limits (e.g., by registering
several times with different accounts).

5 Threat Model
Depending on the attacker’s objective, two attacks that
can be launched against genomic data-sharing beacons
are: (i) membership inference attack and (ii) genome
reconstruction attack. In both attacks (including this
work), the attacker is assumed to be a registered bea-
con user who can send unlimited number of queries to
the beacon. In this work, for the first time, we iden-
tify and study the genome reconstruction attack. We
assume that the attacker knows the membership of an
individual to a beacon. Thus, we consider a targeted
attack, in which the attacker knows that the victim do-
nated their genome (to take part in a study). Given
the current rise in personal genomics (people upload-
ing their genomes to public sites), this is feasible. Also,
beacons with no sensitive-phenotype report metadata
about their donors. For instance, Shringapure and Bus-
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Fig. 1. Proposed system model.

tamante [65] verified a specific person being in PGP
and Kaviar [31] beacons via metadata, and hence the
attacker can also identify the membership of the vic-
tim using such metadata. Using the membership infor-
mation, the goal of the attacker is to reconstruct the
victim’s genome by issuing queries to the corresponding
beacon.

Genome inference attack can be considered both for
static and dynamic beacons. In static beacons, knowing
that the victim is a member of the beacon, only the “no”
responses would provide certain information about the
victim’s genome to the attacker. “Yes” responses may
be due to any other participant of the beacon and as
the size of the beacon increases, “yes” responses do not
provide much information to the attacker. However, in
dynamic beacons, when the beacon is updated, using
the change in the responses of the beacon, the attacker
can learn more about the genomes of new participants.
Thus, in this paper, we analyze this vulnerability for dy-
namic beacons and we assume that the victim is added
between times t and t+δ along with other (m−1) newly
added donors to the beacon. As discussed before, the at-
tacker can monitor the number of newly added donors
to the beacon and the number of donors leaving the
beacon from the metadata of the beacon.

We assume that, along with the fact that the victim
is among the newly joined participants to the beacon,
the attacker also knows (i) the number of other newly
joined individuals that are added to the beacon along
with the victim; (ii) a snapshot of the beacon before
the victim is added (at time t). That is, responses to all
queries before the victim joins to the beacon. The bea-
con protocol does not bar someone from taking a com-
plete snapshot. Thus, querying a beacon to take a com-
plete snapshot only requires a high-bandwidth internet
connection. Economic cost of such an internet service is

around 79$ per month [70] and there is no other eco-
nomic cost, as the system is publicly available at [2].
Even though the number of SNPs in a complete snap-
shot is large, typically, only low-MAF SNPs are useful
for the attacker (as they are typically the sensitive ones);
(iii) auxiliary information about the victim to identify
victim’s genome among the reconstructed ones. For this
we assume the attacker has moderate information, such
as a set of victim’s visible characteristics (phenotype);
and (iv) publicly available information about genomics,
such as minor allele frequencies (MAF values) of SNPs
and correlation between the SNPs in the population of
interest. Finally, we assume that the attacker does not
collude with the beacon.

In genome reconstruction attack, due to the nature
of beacon responses, the attacker can infer if a victim
has at least one minor allele at every SNP position. This
is because the response of the beacon only tells if there is
an individual in the beacon with at least one minor allele
at a given SNP position. Thus, for each SNP j of victim
v (Svj ), the goal of the attacker is to infer Pr(Svj = 0)
and Pr(Svj 6= 0) (i.e., Pr(Svj = 1) or Pr(Svj = 2)). For
simplicity, we define the event Ŝvj = 1Sv

j
=1∨Sv

j
=2. Thus,

Ŝvj = 0 if Svj = 0, and Ŝvj = 1, otherwise. Note that
inferring this information for a victim results in a serious
privacy concern. As we will discuss and show later, using
this information, an attacker can associate the genotype
of the victim to related phenotypes (e.g., diseases) and
initiate a membership inference attack for the victim
by targeting another beacon that is associated with a
sensitive phenotype (e.g., cancer or HIV+).

Our methodology consists of a complete pipeline,
showing how an attacker uses the information it infers
in the genome reconstruction attack in a subsequent
membership inference attack. Therefore, we evaluate the
success of the attacker using different metrics in differ-
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ent parts of the pipeline as follows. For genome recon-
struction (in Section 6.3), we use precision and recall to
quantify this inference power of the attacker. As we will
show in Section 7, the success of genome reconstruction
mainly depends on the size of the beacon, the number of
newly added donors to the beacon between times t and
t + δ, and the fraction of attacker’s snapshot at time
t. In real life, sizes of beacons show a large variation.
The size of a beacon can be as small as 100, such as
NBDC Human Database [4] or as large as 100K, such
as The Genome Aggregation Database (gnomAD) [5].
As discussed, these numbers can be monitored from the
metadata of such beacons. Thus, as we will we show,
for small-size beacons, even if the size of the beacon is
significantly increased (compared to its original size),
the attacker’s success may be high. For large-size bea-
cons, on the other hand, the number of newly added
donors should be a small fraction of the original size
for a successful attack. As a result of the genome re-
construction, the attacker potentially reconstructs mul-
tiple genomes and among these, one belongs to the vic-
tim. For this part, we show how the attacker can uti-
lize machine learning techniques to identify the victim’s
genome among the reconstructed ones (in Section 6.4)
and we use the classification accuracy of the attacker
as its success metric. Finally, to quantify the success of
the membership inference (Section 6.5), we use a power
analysis as the success metric. To evaluate the success
of the attacker in the membership inference attack, we
first let the attacker run the genome reconstruction at-
tack and then use the proposed machine learning tech-
nique to identify the victim’s genome among the recon-
structed ones. Thus, the success metric for the mem-
bership inference considers the attacker’s success in the
entire pipeline.

6 Genome Reconstruction Attack
on Genomic Data-Sharing
Beacons

As discussed, we define the genome reconstruction at-
tack as inferring genomic data of a genome donor (i.e.,
victim) given their membership information to the bea-
con. To show the effect of genome reconstruction attack
more clearly, we consider dynamic beacons and we as-
sume the victim is among the newly joined donors to
the beacon. For clarity of the discussion, we present the
identified attack only considering newly joined donors.
Considering the donors that leave the beacon is sym-
metrical and trivial. We discuss this case in Section 8.2.

We consider a scenario, in which the attacker has
no information about the victim’s genome, but it knows
that the victim is added to the beacon between times t
and t+δ. Let n and (n+m) represent the number of indi-
viduals in the beacon at times t and t+ δ, respectively.
As discussed, for most real-life beacons, the attacker
knows m (by monitoring the changes in beacon using
the metadata of the beacon). In all attack scenarios, we
assume that the attacker reconstructs m′ genomes (m′

can be different than m and the selection of m′ effects
the precision and recall of the attacker). Our goal is to
evaluate the performance for different m′ values to show
the attack is robust even if the attacker does not know
how many people are added. When metadata of the bea-
con, and hence m is not available, the attacker can de-
termine a potential upper bound (k) for the number of
newly added donors (m) by examining the number of
flipped responses (from “no” to “yes”). Then, for each
i from 1 to k, it can reconstruct genomes using RN→Y
assuming m = i, and hence instead of m, the attacker
ends up having k(k+1)

2 potential genomes to identify the
victim’s best matching reconstructed genome.

Using its auxiliary information (as discussed in
Section 5), the attacker can probabilistically infer the
genome of the victim by utilizing the changes in bea-
con’s responses (at times t and t + δ) as follows: (i)
if the previous response (at time t) was “no” and the
current response (at time t + δ) is “yes”, the probabil-
ity that the victim having a minor allele at the cor-
responding query position increases depending on how
many new individuals are added to the beacon in this
time interval; (ii) if the previous response was “yes” and
the current response is also “yes”, attacker cannot infer
much about the victim’s genome, especially if the total
size of the beacon is large; and (iii) if both the previous
and the current responses are “no”, the attacker under-
stands that the victim does not have a minor allele at
the corresponding query position.

Here, the most important (or the most sensitive) in-
formation for the attacker can be considered as the “no”
responses at time t that turn to “yes” at time t+ δ. Be-
cause, such responses let the attacker infer the positions
that the victim has at least one minor allele with a high
probability (depending on how many new individuals
are added to the beacon in this time interval). Since mi-
nor alleles of individuals are typically the indicators for
privacy-sensitive information about them, in this work,
we focus on the success of the attacker based on its
success in inferring the minor alleles of a victim using
the beacon responses that turn to “yes”. Exhaustively
generating all potential solutions of this problem would
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result in a total of 2β∗m′ genomes, where β is the total
number of responses that turn to “yes” at time t + δ

(which can be on the order of tens of thousands), and
hence it is intractable. In the following, we first describe
a baseline method that provides a tractable solution to
this problem. Next, we present a greedy approach to run
such an attack more accurately, and then we will detail
a more sophisticated, clustering-based approach for the
genome reconstruction attack.

6.1 Baseline Approach for Genome
Reconstruction

Here, we describe a baseline approach, in which the at-
tacker, using the responses of the beacon, reconstructs
the genomes (of the newly joined donors) by assigning
them to m′ bins according to MAF values of the SNPs.
Genome reconstruction attack using the baseline algo-
rithm for a particular victim v at time t + δ can be
described as follows. The input of the attacker is (i) re-
sponses of the beacon to all possible queries at time t
(i.e., complete snapshot of the beacon at time t); (ii)
the fact that m new donors are added to the beacon
between times t and t + δ; (iii) the fact that the vic-
tim is among the newly added donors; and (iv) publicly
available MAF values of the SNPs.

First, the attacker identifies the set of SNPs for
which the response of the beacon was “no” at time t
and it becomes “yes” at time t + δ. Thus, the attacker
constructs a set RN→Y , consisting of these SNPs. Then,
the attacker creates m′ empty bins representing SNP
sets of newcomer donors. For each SNP j in set RN→Y ,
the attacker retrieves its MAF value, MAFj . Next, the
attacker assigns the value of SNP j for each individual
i (in each bin) consistent with the SNP’s MAF value as
follows: (i) Ŝij = 0 with probability (1−MAFj)2 and (ii)
Ŝvj = 1 with probability MAF 2

j + 2MAFj(1 −MAFj).
Since the beacon’s response for SNPs in RN→Y has
flipped from “no” to “yes”, for all SNPs in RN→Y , there
should be at least one bin (among m′ bins) with at least
one mutation (i.e., homozygous minor or heterozygous
SNP). Thus, once the values of the SNPs in RN→Y for
all m′ bins are determined, the attacker checks if there
is any SNP in set RN→Y that is not assigned to any
bin. If there is such a SNP, the attacker randomly picks
a bin and assigns the value of the corresponding SNP
as Ŝij = 1 for the corresponding bin. The details of this
baseline approach are also shown in Algorithm 2 (in
Appendix B).

6.2 Greedy Algorithm for Genome
Reconstruction

The above-mentioned baseline algorithm assumes every
SNP is independent and the correlations among them
are disregarded. However, SNPs are inherently corre-
lated and considering such correlations in the genome
reconstruction attack may result in significantly more
accurate results. In the greedy algorithm discussed here,
the attacker forms the bins considering the correlations
between the SNPs in set RN→Y . Using an iterative ap-
proach, the attacker assigns each SNP (minor allele) to
an individual such that the probability of assignment is
proportional to the average correlation of the new SNP
with the already assigned SNPs of the individual (i.e.,
bin i). If no assignment is made this way, a random in-
dividual is selected to make sure there is at least one
person with the corresponding new SNP.

Genome reconstruction attack using the greedy al-
gorithm for a particular victim v at time t + δ can be
described as follows. The input of the attacker includes
everything in the baseline approach and also a correla-
tion model between the SNPs that is consistent with
the population structure of the beacon (that can be
computed using publicly available genomic datasets).
Different correlation models have been explored for ge-
nomic data before. In [62], authors showed how the cor-
relations in the genome can be modelled using a Markov
chain model. We create our correlation model by consid-
ering the pairwise correlations between all the SNPs in
the beacon (which results in richer information for the
attacker). The attacker calculates the likelihood of the
victim v having at least one minor allele at a SNP posi-
tion j as Pk(Ŝvj ) = P (Ŝvj |Ŝvk), where k may be any other
position in the genome. We use Sokal-Michener distance
to compute correlations between SNPs as follows:

A = 2(nŜv
j

=1,Ŝv
k

=0 + nŜv
j

=0,Ŝv
k

=1)

B = nŜv
j

=1,Ŝv
k

=1 + nŜv
j

=0,Ŝv
k

=0

DSokal−Michener(Ŝvj , Ŝvk) = A

A+B

In the greedy approach, first, the attacker con-
structs set RN→Y . Then, it creates m′ empty bins (m′

does not have to be equal to m) representing the num-
ber of rare SNPs in RN→Y . We assume that the SNPs
with an MAF value below a threshold τ are categorized
as rare SNPs. Observing rare SNPs do not have corre-
lations among each other, assigning the rare SNPs in
RN→Y to different bins as seeds is assumed to result in
an accurate initial separation of individuals. Next, for
each remaining SNP j in RN→Y , the attacker computes
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the average correlation between that and all the previ-
ously assigned SNPs in bin i using the aforementioned
correlation model. This is done for each bin i. Let Ŝij
be a binary random variable for SNP j and bin i. The
attacker assigns Ŝcj = 1 for bin c which has the highest
average correlation value and Ŝij = 0,∀i ∈ [1,m′] and
i 6= c. Eventually, the attacker constructs m′ potential
genomes (in m′ bins) belonging to m newcomer donors.

6.3 Clustering-Based Algorithm for
Genome Reconstruction

Greedy algorithm (in Section 6.2) reconstructs genomes
by following a particular order (determined based on
the MAFs of the SNPs). Different orders may provide
different solutions. Thus, to consider all query responses
together in a collective way, we propose clustering-based
approaches for the genome reconstruction attack that
cluster the identified minor alleles for the newly joined
donors to the beacon. The proposed clustering tech-
niques essentially use the correlations between the SNPs
(that are computed using the aforementioned correla-
tion model) to distribute SNPs into different bins. We
use two types of clustering techniques: (i) hard cluster-
ing to create non-overlapping bins and (ii) soft or fuzzy
clusterin to assign a SNP into multiple bins.

For (i), we employ spectral clustering, in which a
standard clustering method (such as k-means cluster-
ing) is applied on certain eigenvectors of the Laplacian
matrix of a graph [57]. In this graph, the SNPs cor-
respond to vertices and correlations between the SNPs
correspond to weights of edges. Spectral clustering is our
method of choice as it has been shown to provide favor-
able results in many high dimensional feature spaces
like ours [60]. And, for (ii) we employ the fuzzy c-means
clustering (FCM) algorithm [14], which is a common
choice for these types of tasks. The algorithm is similar
to k-means clustering, but it also allows probabilistic as-
signments of samples to multiple clusters. Different from
k-means clustering, FCM assigns a membership value
uij = P (Ŝij = 1) for each element j and for each cluster
i. This membership values are used as weights in the ob-
jective function. After convergence, these membership
values are used as the probability of assignments of el-
ements to each cluster. The description of both cluster-
ing methods are similar except for the clustering steps.
Thus, in the following, we describe both methods to-
gether.

The input of both clustering-based algorithms is the
same as the input of the greedy algorithm. First, the at-
tacker identifies the set of SNP positions for which the

response of the beacon was “no” at time t and it be-
comes “yes” at time t + δ and constructs set RN→Y .
Then, the attacker builds a graph of SNPs using the
correlation model, in which the vertices are the SNPs in
RN→Y and undirected edges are weighted by the corre-
lation values between these SNPs. This graph represents
a pairwise similarity model for the SNPs and is used for
a quantitative assessment of the correlation of each SNP
pair in RN→Y .

Next, the attacker applies either the spectral or
fuzzy clustering algorithms on the constructed graph.
The outcome of spectral clustering is a set of disjoint
clusters. Fuzzy clustering results in groups of SNPs that
maximizes the similarity in a group while allowing a
SNP to be shared by multiple individuals. Thus, in fuzzy
clustering, each SNP i is assigned to clusters for which
the algorithm returns a relatively high probability of as-
sociation. After clustering, the attacker obtains m′ dif-
ferent clusters which corresponds to m′ reconstructed
genomes. The details are shown in Algorithm 1.

6.4 Identifying the Victim Using
Genotype-Phenotype Associations

In previous sections, for genome reconstruction, we as-
sumed that the attacker can correctly identify the vic-
tim’s genome among several reconstructed bins. As-
suming the attacker has some moderate auxiliary in-
formation about the victim, here, we study and show
how accurately the attacker can identify the victim’s
genome among other candidates. For this, we assume
the attacker uses information about some phenotypic
characteristics of the victim and it relies upon the fact
that SNPs are intrinsically linked to phenotypic traits
(such as eye color, hair color, etc.) This provides a com-
plete methodology for the genome reconstruction attack
against beacons in real-life. As we will discuss later, the
success of the attacker to correctly identify the victim’s
genome among the reconstructed ones increases if the
attacker has access to more auxiliary information about
the victim.

Assume victim v is among the m new additions to
the beacon (it is trivial to extend the methodology if
there are more than one victim). The attacker is as-
sumed to have access to two distinct sets: (i) a set
S = {~S1, ~S2, . . . , ~Sm′} of m′ reconstructed genotypes
as a result of the genome reconstruction attack, where
~Si = (Ŝi1, . . . , Ŝik) is a vector containing the SNP values
of genotype i (or bin i); and (ii) a set Pv = (pv1, . . . , pvt )
containing the values of t phenotypic traits of victim v.
Such phenotype information can be obtained from pub-
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Algorithm 1: Clustering-Based Algorithm
for Genome Reconstruction Attack

Input: b: beacon; m: Number of added people to b;
Population P that represents the composition
in b

Output: m′ reconstructed genomes
// Step 1: Query Beacon

1 snapshot1 ← queryBeacon(b, t)
// Including victim, m donors join Beacon

between time t and t+ δ

2 snapshot2 ← queryBeacon(b, t+ δ)
3

// Step 2: Obtain No-Yes SNPs
4 NoYesResponses ← []
5 for i← 0 to snapshot1.length do
6 if snapshot1[i] = "No" and snapshot2[i] = "Yes"

then
7 NoYesResponses.append(i)
8 end
9 end

10

// Step 3: Cluster No-Yes SNPs
11 G← Graph()
12 for i← 0 to NoY esResponses.length− 1 do
13 for j ← i+ 1 to NoYesResponses.length do
14 ri ← NoYesResponses[i]
15 rj ← NoYesResponses[j]
16 c ← corr(P,ri,rj)
17 G.addEdge(ri,rj,c)
18 end
19 end
20 clusters ← graphClustering(G,m′)
21

// Step 4: Reconstruct genomes
22 S ← []
23 for i← 0 to m′ do
24 S[i]← getReferenceGenome(P )
25 foreach s in clusters[i] do
26 S[i][s]← getMinorAllele(P, s)
27 end
28 end
29 return S

licly available resources or using the physical traits of
the victim. For instance, the attacker can obtain such
information from victim’s social media accounts. The
goal of the attacker is to correctly match the victim’s
phenotype to the correct reconstructed genome (that
is the most similar to the victim’s) among all candi-
date reconstructed genome sequences. In the test phase,
the attacker has m newly added donors and m′ re-
constructed genomes. Attacker’s task is to match each
donor with the best matching reconstructed genome.
Thus, for each newly added donor, the attacker calcu-
lates the likelihood scores of matching with all m′ re-
constructed genomes.

In [40], Humbert et al. focused on the deanoymiza-
tion risk and modelled genotype-phenotype association
as an assignment problem. They showed this risk by us-
ing the Hungarian algorithm [47]. Different from [40],
here, we rely on machine learning for maximizing the
matching likelihood and genotype-phenotype associa-
tions. We observe that such a formulation provides more
accurate results. Also, rather than using SNP values (0,
1 or 2), due to the nature of the proposed attack, we
represent the state of each SNP j of individual i as Ŝij ,
which can be either 0 or 1, as discussed before.

For phenotype inference, we train a separate model
for each of the considered phenotypes, where SNPs with
flipped responses (from “no” to “yes”) are used as fea-
tures. Since phenotype datasets are highly imbalanced,
we apply Synthetic Minority Oversampling Technique
(SMOTE) [16] for each of these datasets to resolve this
problem. In SMOTE, a minority class instance is se-
lected along with its nearest neighbors at random. Then,
a new sample is generated as a combination of the orig-
inal instance and a random neighbor. Next, we train
a random forest model for each phenotype. We use re-
peated stratified 5-fold cross validation to tune the hy-
perparameters. After training the phenotype models, we
form the ensemble classifier using the ones that have
better validation F1-macro score than random guess.
We discard the other models.

Ensemble classifier calculates the matching likeli-
hood of given genome and set of phenotypic traits.
Softmax output of each phenotype model correspond-
ing to a given phenotypic trait of the victim (i.e., prob-
ability that a reconstructed genome having blue eye)
are summed to calculate the matching likelihood. For
single victim, this calculation is done for each recon-
structed genome and the victim is matched with the
reconstructed genome with the highest matching likeli-
hood score. Note that this matching does not need to be
one-to-one; a single reconstructed genome might match
with different set of phenotypic traits. We discuss the
performance of identification of victim’s reconstructed
genome under different settings in Section 7.4.

6.5 Using Genome Reconstruction in
Membership Inference Attack

To show one consequence of the proposed genome re-
construction attack, we also model and analyze how the
proposed attack can be utilized for membership infer-
ence attack (introduced in Appendix A). We consider a
scenario in which the attacker knows the membership of
an individual to a beacon with which no sensitive associ-
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ated phenotype (e.g., phenotype neutral). The attacker
first utilizes the responses of this beacon to infer specific
parts of a victim’s genome (i.e., SNPs). Then, it uses
these inferred SNPs to infer the membership of the vic-
tim to a beacon with a sensitive phenotype. This attack
is important and realistic, because knowing the mem-
bership of an individual to a phenotype neutral beacon
(e.g., Kaviar Beacon) may not seem to pose a privacy is-
sue. However, using the proposed genome reconstruction
attack and the membership information of the victim to
the beacon with non-sensitive phenotype, the attacker
can first infer the SNPs of the victim and then, infer
the membership of the victim to another beacon which
is associated a sensitive phenotype (e.g., SFARI beacon
which is associated with autism phenotype).

To show this, first, we run the proposed genome re-
construction attack that is explained in Section 6.3 and
infer the SNPs of the victim with at least one minor
allele on a beacon B1. Using these inferred SNPs, we
then run the membership inference attack to infer the
membership of the victim in another beacon B2. For
membership inference attack, we use the optimal attack
in [59] (described in Appendix A), which is shown to
be an effective attack for membership inference (for our
scenario, optimal attack in [59] and the QI-attack in [73]
perform similarly, so we choose to use the optimal at-
tack due to its simplicity). However, in contrast to the
original optimal attack, in the null and alternate hy-
pothesis equations in (1) and (2), there is an additional
error due to the inference error of the genome recon-
struction attack. This is because the attacker queries
the alleles of the victim that it infers as a result of the
genome reconstruction attack and there is a degree of
uncertainty. Thus, we first experimentally compute the
error rate of the genome reconstruction attack for a par-
ticular scenario (e.g., for particular m and n values). We
then include this additional error on the γ parameter in
(2), which represents the probability that the attacker’s
copy of the victim’s genome does not match the beacon’s
copy for a SNP. Furthermore, as opposed to original op-
timal attack, here the attacker may not have access to
the SNPs of the victim with the lowest MAF values;
instead the attacker only knows the SNPs that are in-
ferred as a result of the genome reconstruction attack.

We evaluate the success of this attack in terms of
the power of the attacker in Section 7.5. Similar to Rais-
aro et al. and von Thenen et al., we plot the power curve
of the membership inference attack at 5% false positive
rate. We empirically build the null hypothesis (H0 in
Appendix A). For every query, we determine the distri-
bution of Λ under the null hypothesis using 20 individ-

uals that are not in B2. In this work, in order to model
the uncertainty of correctly matching the victim (using
phenotype inference as in Section 6.4), we first experi-
mentally compute the error rate of the overall process.
For instance, if the accuracy of correctly matching the
phenotype of the victim to their reconstructed genome
is p%, then p% of the 20 individuals are selected from
correctly identified reconstructions and remaining indi-
viduals are selected from other new people added to the
beacon along with the victim (incorrect identifications).

When Λ is less than a threshold tα, the null hypoth-
esis is rejected and we find tα from the null hypothesis
with α = 0.05 (corresponding to 5% false positive rate).
Then, we computed the power as proportion of the in-
dividuals in the alternate hypothesis (including 20 dif-
ferent individuals in B2) having a Λ value that is less
than tα. As before, p% of the 20 individuals are selected
from correctly identified reconstructions and remaining
people are selected from other new people added to the
beacon along with the victim.

7 Evaluation
To evaluate the identified vulnerabilities, we evaluated
our methods using real-life genomic datasets. Here, we
describe the datasets and present the evaluation results.

7.1 Datasets
We used two different genome datasets for evalua-
tion: (i) genome dataset of CEU population from
the HapMap dataset [29] and (ii) OpenSNP genome
dataset [7]. Using the HapMap dataset, we created the
beacons and victims from CEU population which con-
tains 164 donors and around 4 million SNPs for each
donor. We created the correlation model (i.e., SNP-SNP
relation network or similarity model) for this beacon us-
ing individuals from the same HapMap dataset that are
not in the constructed beacon and set of victims. Us-
ing the OpenSNP dataset, we created the beacons and
victims from a random population which contains 2980
donors and around 2 million SNPs for each donor. We
created the correlation model using the rest of the Open-
SNP dataset.

For the OpenSNP dataset, we also collected the re-
ported phenotypes of individuals. Since sample sizes
are small, we used the reported phenotypes in a bi-
nary form. From OpenSNP, we used the following com-
monly reported phenotypes: (i) eye color, 967 samples,
(ii) hair type, 371 samples, (iii) hair color, 468 samples,
(iv) tan ability, 287 samples, (v) asthma, 226 samples,
(vi) lactose intolerance, 347 samples, (vii) earwax, 244
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samples, (viii) tongue rolling, 434 samples, (ix) intol-
erance to soy, 136 samples, (x) freckling, 277 samples,
(xi) ring finger being longer than index finger, 268 sam-
ples, (xii) widow peak, 176 samples, (xiii) ADHD, 154
samples, (xiv) acrophobia, 155 samples, (xv) finger hair,
155 samples, (xvi) myopia, 152 samples, (xvii) irritable
bowel syndrome, 142 samples, (xviii) index finger being
longer than big thumb, 131 samples, (xix) photoptarmis,
133 samples, (xx) migraine, 129 samples, and (xxi) Rh
protein, 311 samples. We used 1320 genomes which are
associated with at least one of the listed phenotypes
while training the models. Newly added donors are cho-
sen from the individuals who have reported at least 10
out of 21 considered phenotypes. We repeated each ex-
periment for 10 times with different sets of newly added
donors. For each experiment, remaining samples (except
for the beacon participants and newly added donors) are
used to train and validate phenotype models.

7.2 Evaluation Metrics
We evaluated the precision and recall for the reconstruc-
tion of a victim’s SNPs based on the changes in beacon
responses. For precision and recall, we defined the suc-
cess as correctly inferring the SNPs of the victim with
at least one minor allele. Thus, for the calculation of
precision and recall, we defined (i) true positive as cor-
rectly inferring a SNP j of victim v with Ŝvj = 1 (with at
least one minor allele); (ii) false positive as incorrectly
assigning Ŝvj = 1 for v who is homozygous major at that
locus; (iii) true negative as correctly inferring a SNP j of
victim v with Ŝvj = 0 (with no minor allele, homozygous
major); and (iv) false negative as incorrectly assigning
Ŝvj = 0 for v who has at least one minor allele at that
locus (i.e., heterozygous or homozygous minor).

Furthermore, we quantified the success of identi-
fying the victim’s genome among the reconstructed
genomes in terms of the accuracy of the developed
genotype-phenotype inference mechanism. We evalu-
ated the accuracy of the ensemble classifier (to iden-
tify victim’s genome from phenotype) using the recon-
structed genomes of newly added donors. Given ensem-
ble classifier f , set of indices ~J = (j1, ..., jv) that repre-
sent the indices of best matching clusters for each newly
added donors, vector containing SNP values of the ith

cluster ~Si = (Ŝi1, . . . , Ŝik), and set of phenotypic traits
of victim v, Pv = (pv1, . . . , pvt ), we computed the accu-

racy as (
m∑
v=1

1(argmax
1≤i≤m′

f(~Si,Pv))=jv )/m. Finally, we used

power analysis for the membership inference to show
how the outcome of the genome reconstruction attack
can be used for membership inference attack. Power for

the ith query is calculated from given set of l case peo-
ple as P i = (

∑
Λi
j
∈Λicase

1Λi
j
<tiα

)/l, which is defined as
the fraction of the cases who have Λij value that is less
than tiα as described in Section 6.5. Then, the vector
~Pn = (P 1, ..., Pn) is plotted to see the power change
with respect to a total of n queries. Higher power value
represents a more successful attack.

7.3 Evaluation of Genome Reconstruction
First, using both OpenSNP and HapMap beacons and
only focusing on genome reconstruction, we evaluated
and compared the baseline method (in Section 6.1) and
the proposed clustering-based approach (in Section 6.3)
when the size of the beacon (n) is 50 and m = m′. Here,
we assume that the attacker can identify the victim’s re-
constructed genome among the other candidates. Later,
we will also show that attacker can indeed identify this
genome with high accuracy using public (i.e., not sensi-
tive) phenotype information about the victim.

Figures 2 and 9 (in Appendix C) show the preci-
sion and recall of the reconstruction for various number
of newly added donors (m) for OpenSNP and HapMap
beacons, respectively. Overall, we observed that the suc-
cess of the attack to be higher for OpenSNP beacon.
The reason of this is the limited data we had to build
the correlation model for HapMap dataset (we used 945
donors to build the correlation model in OpenSNP bea-
con, while we could only use 110 donors to build it for
the HapMap beacon). For both datasets, we used in-
dividuals that are not in the beacon to construct the
correlation models. When we compared the correlation
models that are constructed using the individuals that
(i) are not in the beacon and (ii) are in the beacon,
we observed that correlation model constructed for the
OpenSNP beacon is significantly more accurate (i.e., it
is very close to the correlation model of the individu-
als that are in the OpenSNP beacon) mainly due to
the number of individuals we used to create the model.
Therefore, in the following, we mostly discuss the results
we obtained from the OpenSNP beacon.

The results show that on average, the identified at-
tack using spectral clustering can reconstruct the vic-
tim’s genome with a precision close to 0.9 when the size
of the beacon is increased by adding 3 people (i.e., a 6%
increase in beacon size). We also obtained more than
0.7 precision and 0.8 recall even when the size of the
beacon is increased by adding 10 people (i.e., a 20% in-
crease in beacon size). This indicates a substantial pri-
vacy risk, especially if the reconstructed SNPs are tied
to sensitive phenotypes. Also, the baseline algorithm (in
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Fig. 2. Precision and recall for the genome reconstruction of a newly added donor to OpenSNP beacon with varying number of newly
added donors.

Section 6.1) performs substantially worse than the pro-
posed clustering-based approach. The results also show
that spectral clustering-based genome reconstruction is
slightly better than the fuzzy clustering-based approach.
We observed that allowing a SNP (that includes at least
one minor allele) to be in multiple bins results in high
false positives. Therefore, in the remaining of this sec-
tion, we use spectral clustering-based genome recon-
struction for the evaluations.

To show the benefit of utilizing a beacon (and bea-
con update) in its genome reconstruction attack, we also
computed the reconstruction accuracy of an attacker
when it only uses publicly available information (e.g.,
population statistics and victim’s phenotype). As dis-
cussed, each victim we consider has a subset of 21 phe-
notypes listed in Section 7.1. Using the associations of
victim’s phenotypes with the corresponding SNPs (ex-
tracted from SNPedia [8]), we assigned some SNP values
of the victim. We observed that, on the average, such a
reconstruction achieves a precision of 18% and a recall
of 47% on total of 232 SNPs. Therefore, we conclude
that having access to a beacon and knowing the mem-
bership of a victim to a beacon significantly increases
the success of the genome reconstruction attack.

To show the effect of varying number of bins (m′) in
the genome reconstruction attack, in Figures 3 and 10
(in Appendix C), we show the attacker’s success when
the number of newly added donors m = 5 and beacon
size n = 50 for OpenSNP and HapMap beacons, respec-
tively. We observed that for both beacons, precision in-
creases and recall decreases with increasing m′. Also, as
expected, precision and recall becomes balanced when
m′ = m.

Next, in Figures 4 and 11 (in Appendix C), we show
the effect of the beacon size (n) at time t when 5 new
donors are added between times t and t + δ for Open-
SNP and HapMap beacons, respectively. Here, we as-
sume that the number of bins (m′) is equal to the num-
ber of newly added donors (m). We observed that as

the size of the beacon increases, both the precision and
recall of the reconstruction attack almost remains the
same (for a fixed number of newly added donors).

Even if the success of the genome reconstruction re-
mains high, the number of flipped responses (from “no”
to “yes”) may decrease when beacon size is increased (as
shown in Figure 4). In other words, the number of vul-
nerable SNPs (the ones that can be inferred using the
change in the beacon responses) of a victim decreases
and this might result in lower performance in phenotype
inference and membership inference parts of the attack.
However, with high probability, as the beacon size in-
crease, low-MAF SNPs of the victim (which typically
provide the most valuable information for the member-
ship inference attack) still remain vulnerable, since with
high probability, such SNPs are not observed in other
donors in the beacon. For example, in the previous ex-
periment (in Figure 4), when the size of the beacon is
increased from 50 to 400, total number of vulnerable
SNPs of a victim reduces by 94%, however, number of
vulnerable SNPs of a victim with MAF value smaller
than 0.01 only reduces by 52%.

Keeping the ratio of newly added donors fixed (to
5%), we also observed the change in the success of the
attack with increasing beacon size when m′ = m in
Figure 5 (we did this evaluation only for the Open-
SNP beacon since HapMap beacon did not have more
than 100 donors). We observed that, when the beacon
size increases beyond 100, although the recall of the at-
tacker still remains high, its precision starts decreas-
ing. This shows that the success of the identified attack
mainly relies on the number of clusters the attackers
needs to generate (in the proposed clustering-based al-
gorithm). For small or mid-size beacons (e.g., NBDC
Human Database [4] with slightly more than 100 in-
dividuals), even if the beacon update significantly in-
creases beacon’s size, the identified attack is still effec-
tive. On the other hand, for large size beacons (e.g., gno-
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Fig. 3. Precision and recall for the genome reconstruction of a newly added donor to OpenSNP beacon with varying number of
bins/clusters (m′) in the genome reconstruction attack. Number of newly added donors (m) is 5.

Fig. 4. Precision and recall for the genome reconstruction of a newly added donor to OpenSNP beacon with varying number of beacon
size (n). Number of newly added donors m is 5 and m′ = m for all plots.

mAD [5], with more than 100K individuals), the update
size should be small to have a vulnerability.

Finally, we explored the scenario, in which the at-
tacker only has a partial snapshot of the beacon (instead
of a full snapshot). In Figure 6, we show the success of
the reconstruction attack when m = 5 donors are added
(at time t + δ) into the OpenSNP beacon with size 50
when the attacker has varying snapshots of the bea-
con at time t and when m = m′. We observed that the
success (precision and recall) of reconstruction do not
change with varying snapshots. However, the number of
inferred SNPs (as a result of the genome reconstruction
attack) decreases linearly with the decreasing snapshot
that is known by the attacker at time t.

7.4 Identifying the Victim’s Genome
Using Phenotype Inference

Here, we evaluate the success of the attacker in iden-
tifying the reconstructed genome of the victim among
all reconstructed genomes using the algorithm in Sec-
tion 6.4. Since HapMap dataset does not include phe-
notype information about the genome donors, we only
use the OpenSNP beacon for this evaluation.

We employed and compared several machine learn-
ing models for genotype-phenotype associations, includ-
ing: Logistic Regression [23], SVM [22], Multi-layer Per-
ceptron [72], Random Forest [67], and XGBoost [17].

Among these, we obtained the highest classifier accu-
racy with the Random Forest, and hence all reported
results are based on this model.

In Figure 7, we show the ensemble classifier accu-
racy for varying number of newly added donors to the
beacon (here, we assumed m′ = m and we observed sim-
ilar patterns when m′ 6= m as well). We used the origi-
nal genomes of individuals in the training dataset when
building the model. For test, we used reconstructed
genomes of the victims (that may have noise due to
reconstruction error). Beacon size is 50 in these experi-
ments (i.e., n = 50).

We observed that the proposed algorithm provides
70% accuracy when the size of the beacon is increased
by adding 2 individuals in the update, and the accu-
racy slightly decreases with increasing number of newly
added donors. These results show that the attacker can
identify the reconstructed genome of the victim among
all m′ reconstructed genomes with high accuracy. As
discussed before, in this experiment, we assumed the at-
tacker has moderate auxiliary knowledge about the vic-
tim (i.e., phenotypic-traits, which can be easily learnt
from social network profiles of the victim). However,
since genotype-phenotype associations are not strong
yet, there is an accuracy bottleneck in the overall pro-
cess due to this step. A stronger attacker (that has ac-
cess to richer auxiliary information about the victim)
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Fig. 5. Precision and recall for the genome reconstruction of a newly added donor to OpenSNP beacon with varying number of beacon
size (n). Number of newly added donors m is always 5% of the beacon size and m′ = m for all plots.

Fig. 6. Precision and recall for the genome reconstruction of a newly added donor to OpenSNP beacon when the attacker knows vary-
ing fractions of beacon’s snapshot. Number of newly added donors m is 5, beacon size n is 50 and m′ = m for all plots.

Fig. 7. Classification accuracy of genotype inference from phe-
notype for varying number of newly added donors (m) to the
beacon.

may utilize victim’s known mutations or genomes of
family members. Then, the phenotype inference part is
not required and accuracy loss would not happen.

7.5 Using Genome Reconstruction in
Membership Inference

In Section 7.3, we evaluated the success of the recon-
struction and in Section 7.4, we showed that the at-
tacker is able to identify the victim among many added
donors with high accuracy. Here, we show a severe con-
sequence of the proposed genome reconstruction attack,
in which the outcome of the previous steps can be uti-
lized in a membership inference attack. By doing so,
we also explicitly explore the impacts of (i) incorrect

inference of some SNPs during reconstruction and (ii)
imperfect choice of the reconstructed genotype due to
the use of genotype-phenotype associations in terms of
the success of this membership inference attack.

We randomly constructed two non-overlapping bea-
cons from the OpenSNP dataset: (i) B1 includes 50, and
(ii) B2 includes 60 individuals. We assume that B2 is as-
sociated with a privacy-sensitive phenotype and the goal
of the attacker is to infer the membership of the victim
to B2. We also assume thatm new individuals are added
to B1 at time t+ δ and the victim is among these newly
joined donors. The attacker only knows that the victim
is among these m individuals that are added to B1 at
time t+ δ along with a snapshot of B1 at time t.

First, we applied the spectral clustering-based
genome reconstruction (that provides the best perfor-
mance in Section 7.3) to reconstruct the genomes of
newly joined m donors to B1. Then, we identified the
reconstructed genome of the victim using phenotype in-
formation about the victim (as in Section 6.4). Finally,
using the reconstructed genome of the victim, we con-
ducted the membership inference attack on B2 using the
optimal attack (as described in Appendix A).

We used the identification accuracy in Section 6.4
to construct and infer victims’ genomes for alternate
and null hypotheses. For instance, when m = 2 we have
70% identification accuracy. In this scenario, 14 genomes
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are chosen from correctly reconstructed genomes, while
the remaining 6 genomes are chosen from incorrectly
reconstructed genomes for corresponding victims.

In Figure 8, we show the power plots of this attack
with varying number of newly added donors (m) to bea-
con B1. As expected, with decreasing values of m, the
power increases faster since the accuracy of genome re-
construction increases (and hence the error rate of the
membership inference attack decreases). For instance,
when the victim is the only newly added donor to bea-
con B1 (m = 1), the attacker can reconstruct their
genome and then infer the victim’s membership to bea-
con B2 with a very high confidence (100% power) in
just slightly more than 15 queries. We also observed
that when m is increased, the power decreases, yet still
reaches to 0.8 with approximately 80 queries when 2
individuals are added. These results show that the at-
tacker may confidently conduct membership inference
attacks as a result of genome reconstruction even though
it has many sources of uncertainties in its input for
membership inference.

Fig. 8. Power of membership inference attack on beacon B2 with
varying number of newly added donors (m) to beacon B1.

8 Discussion
This work pinpoints a new information leak and identi-
fies beacon updates as a new risk, which leads to genome
reconstruction attacks. We show that an attacker can ef-
ficiently and accurately link this new vulnerability to a
membership inference attack. Furthermore, recently, we
observed that some beacons even report the number of
occurrences for a “yes” response (e.g., Sinai Health Sys-
tem Beacon in [2]). Using such information in the iden-
tified attack would further improve the accuracy of the
proposed clustering-based algorithm (in Section 6.3).
We will explore this in future work.

8.1 Extension of the Proposed Attack
For the proposed genome reconstruction algorithm in
Section 6.3, we only focused on the “no” responses of
the beacon at time t that turn to “yes” at time t + δ

(i.e., no-yes responses) since such responses reveal the
SNPs of the victim with minor alleles and minor alleles
are typically the indicators for privacy-sensitive infor-
mation about individuals. As a result, we also only con-
sidered the correlations between such SNPs of a victim.
As briefly discussed before, no-no responses also provide
deterministic information to the attacker (about the vic-
tim certainly not having a minor allele in such SNP po-
sitions). Furthermore, using the information from no-no
responses, the attacker can utilize the correlations be-
tween such SNPs (with no minor alleles) and others. In
this work, we did not consider the no-no responses in
the attack since (i) typically there are excessive number
of no-no responses in a beacon and this creates a compu-
tational burden to compute all the pairwise correlations
between such SNPs and (ii) SNPs with no minor alleles
(learned from no-no responses) typically are not highly
correlated with the SNPs with minor alleles, which are
instrumental to the attacker for the membership infer-
ence attack. We will further consider the impact of such
no-no responses in future work.

8.2 Donors Leaving the Beacon
In Sections 6 and 7, we presented and evaluated the
identified vulnerability by only considering the newly
joined donors to the beacons. It is also possible that
existing donors may leave the beacon. However, such a
scenario can be easily addressed by using the identified
attack mechanism. Considering the donors that leave
the beacon brings up two different scenarios: (i) victim
is among the newly joined donors (while there are also
donors leaving the beacon between times t and t+δ) and
(ii) victim is among the donors that leave the beacon
(while there may be other donors leaving or joining the
beacon between times t and t+ δ).

Scenario in (i) is no different than what we discussed
in Section 6. The number of “no” responses at time t
that turn to “yes” at time t+ δ does not change due to
the donors leaving the beacon. On the other hand, some
“yes” responses at time t may turn to “no” at time t+ δ

due to the donors leaving the beacon. However, such
responses do not provide information about the minor
alleles of the victim, and hence we do not consider such
responses in this work. In scenario (ii), “yes” responses
at time t that turn to “no” at time t + δ will provide
information about the minor alleles of the victim (and
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other donors that leave the beacon during that time
interval). Using such responses, one will need to run
the algorithms proposed in Section 6 to reconstruct the
genome of the victim.

8.3 Risk Quantification for the Genome
Reconstruction Attack

The identified vulnerability and the proposed attack
algorithm can be used as a privacy risk quantifica-
tion tool by the beacon operator. For this, we foresee
a simulation-based technique to quantify the risk and
show it to the beacon operator. This will be a cus-
tomized technique for each donor in the beacon and the
following discussion is for one particular donor. Assume
that a total of m new donors are gathered by the beacon
between times t and t+δ. To quantify the genome recon-
struction risk, one may run the attack we introduced in
Section 6, pretending the donor is added to the beacon
along with the other (m−1) newcomer donors and com-
pute the fraction of the SNPs that can be reconstructed.
Then, using public sources (such as HapMap), one can
gather a small number (e.g., s) of genomes belonging
to individuals from the same population as the donor.
Then, the same attack can be run for the selected s

people (i.e., adding each random individual along with
the other (m − 1) newcomer donors), their reconstruc-
tion rates can be set as the baseline, and eventually, a
privacy risk percentile can be provided for the donor.
Moreover, for all correctly inferred SNPs, one can per-
form a pathogenic scan on ClinVar [48] to inform the
donor about what traits they might be linked should
their genome is put onto the beacon. Using this infor-
mation and based on the privacy risk of the donor, either
the donor or the beacon operator will decide whether or
not to add the donor to the beacon at time t + δ. This
process can be repeated for all the newcomer donors.

We foresee that using such a quantification algo-
rithm, a potential beacon participant can provide in-
formed consent about how (and what portion of) their
data can be used by the beacons (e.g., when the beacon
can start using their data in its responses or when the
beacon should stop using their data). Similarly, such a
tool can guide a beacon operator on the number of par-
ticipants to include in a batch to update the beacon.

8.4 Mitigation Techniques
To mitigate membership inference attacks against bea-
cons, several countermeasures have been proposed [9,
59, 65]. However, most of such techniques directly re-
duce the utility of the beacon without carefully analyz-

ing a balance between privacy (of beacon participants)
and utility (of beacon responses). Thus, we believe that
existing countermeasures proposed for membership in-
ference are not directly applicable to mitigate genome
reconstruction attack. To mitigate genome reconstruc-
tion, here we suggest three simple methods: (i) updat-
ing the beacon content considering the beacon size and
the size of the update. For instance, as we showed in
Section 7.3, for small and mid-size beacons, even large-
sized updates create a vulnerability, while for large-
size beacons, only small-sized updates pose a threat;
(ii) adding (or removing) donors after quantifying their
risks against genome reconstruction (as discussed in Sec-
tion 8.3); and (iii) adjusting diversity of the beacon
to have beacons with mixed ethnicity genome donors.
For beacons with mixed ethnicity donors, it is hard to
construct the correlation model (unless the beacon dis-
closes the ethnicities of the donors as metadata), and
hence it is hard to conduct the proposed correlation-
based genome reconstruction attacks. It is worth noting
that the OpenSNP beacon in our evaluations was a di-
verse one, however we also created the correlation model
from the same diverse population (i.e., in our settings,
the attacker had access to a very similar population to
the target population). We will further work on more
sophisticated countermeasures in future work.

9 Conclusion
Thus far, the only privacy vulnerability that has been
identified for beacons was membership inference. We
have identified and, via extensive analysis, showed the
impact of another serious privacy concern for beacons:
genome reconstruction. We showed the practicality of
the identified privacy concern in real-life by showing
the whole attack strategy including genotype-phenotype
inference. Furthermore, we showed how genome recon-
struction attack can be used together with the member-
ship inference to identify privacy-sensitive phenotypes of
individuals.
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Appendices
A Membership Inference Attack

Against Genomic Data-Sharing
Beacons

In [59], Raisaro et al. introduced the “optimal attack”
using the same attacker assumptions discussed in Sec-
tion 2.2. In optimal attack, the attacker constructs a set
of candidate SNPs S to be queried and submits queries
starting from the lowest MAF SNPi. Let the null hy-
pothesis (H0) refer to the case in which the queried
genome is not in the beacon and alternative hypoth-
esis (H1) be the case in which the queried genome is
a member of the beacon. In [59], the log-likelihood (L)
under the null and alternate hypothesis are shown as
follows:

LH0(R) =
n∑
i=1

xilog(1−DiN ) + (1− xi)log(DiN ) (1)

LH1(R) =
n∑
i=1

xilog(1− δDiN−1) + (1− xi)log(δDiN−1),

(2)

where R is the response set, xi is the answer of the
beacon to the query at position i (1 for “yes”, 0 for

https://www.verizon.com/home/fios-fastest-internet/
https://www.verizon.com/home/fios-fastest-internet/
https://doi.org/10.1007/978-3-642-70911-1_20
https://doi.org/10.1145/1653662.1653726
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“no”), and γ represents a small probability where the
attacker’s copy of the victim’s genome does not match
the beacon’s copy for a locus (e.g., due to difference
in variant calling pipeline). n is the number of posed
queries. DiN is the probability that none of the N indi-
viduals in the beacon has the queried allele at position
i and DiN−1 represents the probability of no individual
except for the queried person having the queried allele at
position i. The computations of DiN−1 and DiN depend
on the queried position i and they change at each query
as follows: DiN−1 = (1− fi)2N−2 and DiN = (1− fi)2N ,
where fi represents the MAF of the SNP at position
i. The likelihood-ratio test (LRT) statistic, Λ, is then
determined as

Λ =
n∑
i=1

log

(
DiN

δDiN−1

)
+log

(
δDiN−1(1−DiN )
DiN (1− δDiN−1)

)
xi.

B Baseline Approach for Genome
Reconstruction

The details of this baseline approach for genome recon-
struction (described in Section 6.1) are shown in Algo-
rithm 2.

C Evaluation of Genome
Reconstruction on the HapMap
Beacon

In Figure 9 we show the success (precision, recall, and
accuracy) of the reconstruction for various number of
newly added donors (m) in HapMap beacon. In Fig-
ure 10, we show the effect of varying number of bins (m′)
in the genome reconstruction attack when the number
of newly added donors (m) is 5 for HapMap beacon.
Next, in Figure 11, we show the effect of the beacon
size (n) at time t when 5 new donors are added between
times t and t+ δ for HapMap beacon.

Algorithm 2: Baseline Algorithm for
Genome Reconstruction Attack

Input: b: beacon; m: Number of added people to b;
Population P that represent the composition
in b

Output: m′ reconstructed genomes
// Step 1: Query Beacon

1 snapshot1 ← queryBeacon(b, t)
// Including victim, m donors join Beacon

between time t and t+ δ

2 snapshot2 ← queryBeacon(b, t+ δ)
3

// Step 2: Obtain No-Yes SNPs
4 NoYesResponses ← []
5 for i← 0 to snapshot1.length do
6 if snapshot1[i] = "No" and snapshot2[i] = "Yes"

then
7 NoYesResponses.append(i)
8 end
9 end

10

// Step 3: Reconstruct genomes
11 S ← []
12 for i← 0 to NoYesResponses.length do
13 s← NoY esResponses[i]
14 assigned← False

15 for j ← 0 to m′ do
16 S[j][s]← getMajorAllele(P, s)
17 randnum← getRandomFloat(0, 1)
18 if randnum < getMAF(P,s) then
19 S[j][s]← getMinorAllele(P, s)
20 assigned← True

21 end
22 end
23

24 // Step 4:If a SNP is unassigned, randomly
assign it to a reconstruction

25 if !assigned then
26 randnum← getRandomInteger(0,m′)
27 S[randnum][s]← getMinorAllele(P, s)
28 end
29 end
30

31 return S
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(a) Precision. (b) Recall.

Fig. 9. Precision and recall for the genome reconstruction of a newly added donor to HapMap beacon with varying number of newly
added donors.

(a) Precision. (b) Recall.

Fig. 10. Precision and recall for the genome reconstruction of a newly added donor to HapMap beacon with varying number of
bins/clusters (m′) in the genome reconstruction attack. Number of newly added donors (m) is 5.

(a) Precision. (b) Recall.

Fig. 11. Precision and recall for the genome reconstruction of a newly added donor to HapMap beacon with varying number of beacon
size (n). Number of newly added donors m is 5 and m′ = m for all plots.
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