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Abstract: Loyalty programs allow vendors to profile
buyers based on their purchase histories, which can
reveal privacy sensitive information. Existing privacy-
friendly loyalty programs force buyers to choose whether
their purchases are linkable. Moreover, vendors receive
more purchase data than required for the sake of pro-
filing. We propose a privacy-preserving loyalty program
where purchases are always unlinkable, yet a vendor can
profile a buyer based on her purchase history, which re-
mains hidden from the vendor. Our protocol is based
on a new building block, an unlinkable updatable hid-
ing database (HD), which we define and construct. HD
allows the vendor to initialize and update databases
stored by buyers that contain their purchase histo-
ries and their accumulated loyalty points. Updates are
unlinkable and, at each update, the database is hid-
den from the vendor. Buyers can neither modify the
database nor use old versions of it. Our construction for
HD is practical for large databases.
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1 Introduction
Loyalty programs (LPs) are marketing strategies imple-
mented by vendors (Vs) to establish lasting relationships
with buyers (Bs). LPs offer accumulating benefits to Bs
who purchase certain brands or buy in certain shops [19].
LPs benefit Vs in two ways. First, they improve cus-
tomer retention. Second, by storing Bs’ purchase histo-
ries (PHs) and personal identifiable information (PII),
and thanks to data mining techniques, LPs allow Vs to
profile Bs. Those buyer profiles (BPs) are used for mar-
ket research and targeted advertising.

LPs have raised privacy concerns because BPs can
reveal sensitive PII, which Vs could sell to third-party
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advertisers and data brokers [21]. Those privacy con-
cerns have been shown to have an impact on the partic-
ipation in LPs [19].
Previous Work. LPs can be classified depending on
the type of PII and PH collected, on whether they in-
volve a single or multiple Vs, on the type of rewards
given to Bs, on whether those rewards are transferable to
other Bs, etc. For privacy’s sake, the key issue is whether
V requires collection of PHs or not.

Some privacy-preserving LPs (PPLPs) do not allow
V to collect PHs [5, 6, 16, 28]. In [16], blind signatures
are used to provide unlinkability between issuance and
redemption of loyalty points (lpts). In [28], Bs can anony-
mously download a batch of loyalty cards and use them
in an unlinkable manner. In [5], an updatable anony-
mous credential scheme is proposed that allows Bs to
get V to add lpts at each purchase without revealing the
total number of lpts accumulated. Recently, in [6], the
scheme in [5] is improved to add some features such as
recoverability of failed spent lpts or backward unlinka-
bility. Despite offering privacy protection to Bs, these
solutions prevent any form of buyer profiling, and thus
they limit the benefits that Vs obtain from LPs.

Other solutions do allow V to obtain some infor-
mation on PHs [4, 29, 32]. In [29, 32], B obtains an
anonymous credential at registration. At each purchase,
B shows her anonymous credential and chooses whether
her purchases are linkable or unlinkable to previous pur-
chases. In [4], B, at each purchase, obtains a blind sig-
nature. This signature signs purchase data along with
a value chosen by B. To obtain lpts, B can link signa-
tures of different purchases when they sign the same
B-chosen value. B then reveals those signatures to V.
Therefore, in [4, 29, 32], at each purchase, Bs need to
decide whether they want the purchases to be linkable
to previous purchases. The PPLPs in [4, 29, 32] have
two drawbacks.
Privacy of PHs. Profiling consists in running a clas-

sification algorithm over a B’s PH. A PPLP should
minimize the disclosure of PHs. However, in [4, 29,
32], when Bs choose to link their purchases in order
to benefit from the LP, V receives more informa-
tion on PHs than is actually needed to create a BP.
In [29, 32], all the PH is revealed, while in [4] a
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taxonomy of products and product types is defined
and Bs can reveal the concrete product bought or
the product category.

Unlinkability of Purchases. In [4, 29, 32], Bs need
to decide whether purchases are linkable or unlink-
able at the moment of purchase. It would be desir-
able to have a scheme where purchases are always
unlinkable, and yet at a later stage Bs can be pro-
filed based on their PH and benefit from lpts.

Our Contribution. We propose a PPLP that ad-
dresses those drawbacks. First, it protects B’s privacy
by avoiding the disclosure of PHs to V. Second, it guar-
antees that purchases are always unlinkable. PHs and
lpts are stored on B’s side and can later be used for
profiling or to redeem lpts.

Our PPLP involves a vendor V and multiple buyers
Bk and can be used in e-commerce and physical shops.
Bs are equipped with an electronic device (e.g., a smart-
phone). The PPLP consists of the following phases.
Registration. Bk signs up for the PPLP.
Purchase. Bk’s PH and lpts are stored on Bk’s side.

Each purchase is unlinkable to previous ones. De-
spite of unlinkability, at each purchase, V updates
Bk’s PH and lpts without learning any of them.

Redemption. Bk proves that she has accumulated a
number of lpts.

Profiling. Bk reveals to V the result of running a pro-
filing algorithm on her PH (or, in general, any com-
putation run on her PH) and proves that this result
is correct without disclosing her PH. We describe
a variant of this phase where V does not learn the
profiling result either, but is able to use it to, e.g.,
give Bk more lpts.

To describe our PPLP, we use a new building block,
an unlinkable updatable hiding database (HD), which
could be used in other privacy-preserving protocols. An
HD is a protocol between an updater U and multiple
readers Rk. (In our PPLP, V (resp. Bk) plays the role of
U (resp. Rk).) An HD consists of an update phase and a
read phase. In an update phase, U updates the database
stored by a reader Rk identified by a pseudonym P. We
consider simple databases DB with entries of the form
[i, vri ], where i is the position and vri the value stored at
position i. (In §E, we show how to modify our definition
and construction for HD to use databases of the form [i,
vri,1, . . . , vri,m], i.e., databases where a tuple of values
is stored in each entry.) U does not learn the contents of
DB and cannot link it to previous updates. However, U is
ensured that he is updating the last version of DB given
to Rk. In the read phase, Rk commits to some of the

data from the database and proves to U that it is stored
in DB. Later, Rk can use those commitments to prove in
zero-knowledge (ZK) other statements about the data
in DB. For instance, Rk can prove the correctness of the
result of running an algorithm on input those data. One
key property of HD is that Rk is able to prove in ZK
statements about both vri and i.

In §3.1, we define security for HD in the universal
composability (UC) framework [13]. We define an ideal
functionality FHD for HD that is suitable for modular
design, i.e., that can be used as a building block of a pro-
tocol. In the UC framework, a protocol can be described
modularly in the hybrid model, where parties use ideal
functionalities for the building blocks of the protocol.
However, many functionalities in the literature cannot
be used for modular design whenever we must guarantee
that two or more functionalities receive the same input.
To solve this issue, we use the method in [8], which is
based on sending committed inputs to functionalities.

We propose a construction ΠHD for HD in §3.3. ΠHD
uses a vector commitment (VC) scheme as main build-
ing block. A VC scheme allows us to compute a vector
commitment vc to a vector x of values, where each value
x[i] is stored at a given position i. Additionally, vc can
be opened to x[i] with communication cost independent
of the vector length. We use a VC scheme that is ad-
ditively homomorphic. ΠHD also uses a pseudonymous
channel that provides unlinkability in communications
between any Rk and U .

A VC vc is used to store the database DB by com-
mitting to a vector x such that x[i] = vri . Initially, Rk
obtains a signed vc to an initial database DB from U .
To read DB in an unlinkable manner, Rk rerandomizes
vc to vc′, reveals vc′ to U and proves in ZK that vc′

is a rerandomized version of a commitment signed by
U . Then Rk can prove statements about the database
committed in vc′. To update DB, U uses the homomor-
phic property of the VC scheme to update the database
in vc′ (without learning its contents) and produce an
updated VC vcu, which U signs and sends to Rk. ΠHD
implements a double-spending detection mechanism to
ensure that, in the next read phase, Rk uses vcu and
not previous commitments received from U .

To construct a PPLP based on HD, we store Bk’s
PH in the form of a database DB that, for each product
(or product category, depending on the detail needed
to create BPs), stores the number of purchases or the
amount of money spent by Bk on that product. There-
fore, DB is a vector x where each position i represents
a product and x[i] is the number of purchases or the
amount of money spent on that product. An additional
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position is used to store the accumulated lpts. When Bk
purchases some products, to update DB, V computes
another VC to a vector xu that stores the information
regarding the products purchased and additional lpts.
Then, by using the homomorphic property, V multiplies
both vector commitments to get a VC to x + xu and
sends the new VC to Bk. We describe our PPLP in §4.

Our PPLP guarantees unlinkability between pur-
chases and minimizes the PH disclosure towards V.
Thanks to double-spending detection, our PPLP en-
sures that Bk uses the last version of the PH at the
next update or when reading it for profiling or redeem-
ing lpts. Nevertheless, we note that Bk can refuse to use
the PPLP for certain purchases or create more than one
profile. Allowing users to curate their own profiles might
yield profiles better suited for some purposes, such as
providing personalized discounts, but, if needed, it can
be discouraged (see §4).

ΠHD benefits from the efficiency properties of VCs.
Particularly, updating the database is very efficient
thanks to the homomorphic property. In §3.4, we show
that the communication cost of read and update opera-
tions, as well as the computation cost of update opera-
tions, is independent of the database size N . Read op-
erations have amortized computation cost that is also
independent of N . Therefore, ΠHD is suitable for large
databases. In §4.3, we implement our PPLP and analyze
its efficiency.

2 Modular Design in UC
We summarize the UC framework in §A. We use the
method in [8] to allow FHD to be used as building block
in our PPLP protocol in §4, which we describe mod-
ularly in the hybrid model. This method allows us to
ensure, when needed, that FHD and other functionali-
ties receive the same input. In [8], a functionality FNIC
for non-interactive commitments is proposed. FNIC con-
sists of four interfaces:
1. Any party Pi uses the nic.setup interface to set up

the functionality.
2. Any party Pi uses the nic.commit interface to send a

message m and obtain a commitment c and an open-
ing o. A commitment c consists of (c′, pnic,NIC.Vf),
where c′ is the commitment, pnic are the public pa-
rameters, and NIC.Vf is the verification algorithm.

3. Any party Pi uses the nic.validate interface to send
a commitment c to check that c contains the correct
pnic and NIC.Vf.

4. Any party Pi uses the nic.verify interface to send (c,
m, o) to verify that c is a commitment to m with
opening o.

FNIC can be realized by a perfectly hiding commitment
scheme, such as Pedersen commitments [8]. To ensure
that a party Pi sends the same input m to several ideal
functionalities, Pi first uses nic.commit to get a commit-
ment c to m with opening o. Then Pi sends (c,m, o) as
input to each of the functionalities, and each functional-
ity runs NIC.Vf to verify the commitment. Finally, other
parties in the protocol receive the commitment c from
each of the functionalities and use the nic.validate inter-
face to validate c. Then, if c received from all the func-
tionalities is the same, the binding property provided
by FNIC ensures that all the functionalities received the
same input m.

3 Our Hiding Database

3.1 Ideal Functionality for HD

FHD interacts with readers Rk and an updater U . FHD
maintains one database DB per reader. Each DB consists
of N entries of the form [i, vri ]. FHD has two interfaces
hd.read in Fig. 1 and hd.update in Fig. 2:
1. The reader Rk sends the hd.read.ini message on

input a pseudonym P and (i, vri , ci , oi , cri , ori)i∈S,
where [i, vri ] is a DB entry and (ci , oi) and (cri , ori)
are commitments and openings to i and vri .
– If no DB is stored forRk, FHD sends P and f = 1

to U to inform U that a reader with pseudonym
P requests a database be set up.

– If a DB for Rk is stored, and S = ∅, FHD sends
P and f = 0 to U . In this case, Rk does not read
any entry and simply wants that U updates her
database.

– If a DB for Rk is stored, and S 6= ∅, for all
i ∈ S, FHD verifies that [i, vri ] is stored in DB
and verifies the commitments (ci , oi) and (cri ,

ori). Then FHD sends P, f = 0 and (ci , cri)i∈S
to U . In this case, Rk reads some entries from
her database and sends the commitments to the
entries read to U .

2. U sends the hd.update.ini message on input P and
(i, vui)i∈[1,N ]. This interface can only be invoked by
U as a response to a previous invocation of the read
interface by the reader with pseudonym P. FHD re-
covers the flag f sent previously to U .
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FHD is parameterised by a database size N , a universe of pseudonyms Up, a universe of values Uv and an
operator � : Uv × Uv → Uv.
1. On input (hd.read.ini, sid,P, (i, vri , ci , oi , cri , ori)i∈S) from Rk:

– Abort if sid /∈ (U , sid ′), or if P /∈ Up.
– Abort if there is a tuple (sid,P ′,R′k, f ) stored such that P ′ = P, or such that R′k = Rk and f 6= ⊥.
– If a tuple (sid,Rk,DB) is not stored, set f ← 1, else set f ← 0.
– If f = 0 and S 6= ∅, for all i ∈ S, do the following:

– Abort if i /∈ [1,N ], or if vri /∈ Uv, or if [i,Uv] is not stored in DB.
– Parse ci as (c′i , pnic,NIC.Vf) and cri as (cr ′i , pnic,NIC.Vf).
– Abort if NIC.Vf is not a ppt algorithm.
– Abort if 1 6= NIC.Vf(pnic, c′i , i, oi) or if 1 6= NIC.Vf(pnic, cr ′i , vri , ori).

– Create fresh qid, store (qid,P,Rk, f , (ci , cri)i∈S) and send (hd.read.sim, sid, qid, (ci , cri)i∈S) to S.
S. On input (hd.read.rep, sid, qid) from S:

– Abort if (qid ′,P,Rk, f , (ci , cri)i∈S) such that qid = qid ′ is not stored.
– Store (sid,P,Rk, f ), delete (qid,P,Rk, f , (ci , cri)i∈S) and send (hd.read.end, sid,P, f , (ci , cri)i∈S) to U .

Fig. 1. Functionality FHD: interface hd.read

– If f = 1, FHD stores (i, vui)i∈[1,N ] as the
database of the reader Rk associated with P
and sends (i, vui)i∈[1,N ] to Rk.

– If f = 0, FHD replaces the database (i, vri)i∈[1,N ]
of the reader Rk associated with P by (i, vri �
vui)i∈[1,N ]. � represents a generic operation to
be instantiated in each construction for FHD.
FHD sends (i, vui)i∈[1,N ] to Rk. (i, vui)i∈[1,N ]
could equal (i, 0)i∈[1,N ], where 0 is the identity
element for �. In this case, the database is not
updated after the read operation. Still, U must
invoke the update interface after a read opera-
tion so that Rk can perform the next read op-
eration.

When invoked by U or Rk, FHD first checks the cor-
rectness of the input and aborts if it does not belong
to the correct domain. FHD also aborts if an interface
is invoked at an incorrect moment in the protocol. For
example, Rk cannot invoke hd.read if Rk is awaiting an
update operation.

The session identifier sid has the structure (U , sid ′)
so that each updater can have its instance of FHD. FHD
implicitly checks that sid in a message equals the one
received in the first invocation. Before FHD queries the
simulator S, FHD saves its state, which is recovered
when receiving a response from S. To match a query
to a response, FHD creates a query identifier qid.
FHD guarantees the following properties:

Unlinkability. The read operations remain unlinkable
towards U . FHD reveals to U a pseudonym P rather

than the identifier Rk, and FHD checks that P is
unique for each read operation.

Hiding. U does not learn the contents of any DB. U sets
the initial values of each DB but, because read opera-
tions are unlinkable, afterwards U cannot keep track
of the updates performed on each DB and thus does
not know their contents. Additionally, when reading,
Rk sends U commitments to database entries, which
are hiding as guaranteed by FNIC. When FHD is
used as building block of a protocol,Rk can prove in
ZK statements about the committed values rather
than revealing them.

Unforgeability. Rk cannot modify her database DB
or read from DB entries that were not stored and
updated by U . Additionally, Rk cannot make U up-
date an old version of DB.

3.2 Building Blocks of our Construction

We describe here the building blocks of ΠHD. We define
their security in §B.
FREG. ΠHD uses the functionality FREG for key regis-
tration in [13]. FREG interacts with any party T that
registers a message v and with any party P that retrieves
the registered message. FREG consists of two interfaces
reg.register and reg.retrieve. T uses reg.register to register
a message v with FREG. P uses reg.retrieve to retrieve v
from FREG.
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2. On input (hd.update.ini, sid,P, (i, vui)i∈[1,N ]) from U :
– Abort if (sid,P ′,Rk, f ) such that P ′ = P and f 6= ⊥ is not stored, or if, for i ∈ [1,N ], vui /∈ Uv.
– If f = 1, set DB← (i, vui)i∈[1,N ] and store a tuple (sid,Rk,DB).
– If f = 0, take the stored tuple (sid,Rk,DB), parse DB as (i, vri)i∈[1,N ] and update DB ← (i, vri �

vui)i∈[1,N ] in the tuple (sid,Rk,DB).
– Update f ← ⊥ in the tuple (sid,P ′,Rk, f ) with P ′ = P.
– Create fresh qid, store (qid,Rk,P, (i, vui)i∈[1,N ]) and send (hd.update.sim, sid, qid) to S.

S. On input (hd.update.rep, sid, qid) from S:
– Abort if a tuple (qid ′,Rk,P, (i, vui)i∈[1,N ]) such that qid = qid ′ is not stored.
– Delete (qid ′,Rk,P, (i, vui)i∈[1,N ]) such that qid = qid ′ and send (hd.update.end, sid,P, (i, vui)i∈[1,N ])

to Rk.

Fig. 2. Functionality FHD: interface hd.update

FCRS.Setup
CRS . ΠHD uses the functionality FCRS.Setup

CRS for
common reference string generation in [13]. FCRS.Setup

CRS
interacts with any parties P that obtain the common
reference string, and consists of one interface crs.get. P
uses crs.get to request and receive crs from FCRS.Setup

CRS . In
the first invocation, FCRS.Setup

CRS generates crs by running
algorithm CRS.Setup.
FNYM. ΠHD uses the functionality FNYM, which mod-
els an idealized secure pseudonymous channel. We use
FNYM to describe our protocol in order to abstract
away the details of real-world pseudonymous channels.
FNYM is similar to the functionality for anonymous se-
cure message transmission in [11]. FNYM interacts with
senders Tk and a replier R and consists of two interfaces
nym.send and nym.reply. Tk uses nym.send to send a mes-
sage m and a pseudonym P to R. R uses nym.reply to
send a message m and a pseudonym P. FNYM checks if
there is a party Tk associated with P that is awaiting a
reply, and in that case sends m and P to Tk. Therefore,
R replies to messages from Tk by specifying P.
FR

ZK. Let R be a polynomial time computable binary
relation. For tuples (wit, ins) ∈ R we call wit the witness
and ins the instance. ΠHD uses a functionality FR

ZK for
zero-knowledge. FR

ZK runs with multiple provers Pk and
a verifier V. FR

ZK follows the functionality for ZK in [13],
except that a prover Pk is identified by a pseudonym
P towards V. FR

ZK consists of one interface zk.prove. Pk
uses zk.prove to send a witness wit, an instance ins and
a pseudonym P to FR

ZK. FR
ZK checks whether (wit, ins)

∈ R, and, in that case, sends ins and P to V.
Commitment Schemes. A commitment scheme con-
sists of algorithms C.Setup, C.Com and C.Vf. C.Setup(1k)
generates the parameters parc, which include a de-
scription of the message space M. C.Com(parc, x) out-

puts a commitment c to x ∈ M and an opening o.
C.Vf(parc, c, x, o) outputs 1 if c is a commitment to x
with opening o or 0 otherwise. A commitment scheme
must be hiding and binding. We use a commitment
scheme that is additively homomorphic. Given two com-
mitments c1 and c2 to messages x1 and x2 with openings
o1 and o2, there exists an operation · such that c ← c1 ·
c2 is a commitment to x = x1 + x2 with opening o = o1
+ o2. If x2 = 0, then c is a rerandomization of c1, which
we denote by c ← C.Rerand(c1, o2).
Vector Commitments. Vector commitments (VC) al-
low us to commit to a vector of messages and to open
the commitment to one of the messages with an open-
ing size independent of the vector length [14, 27]. A
VC scheme consists of the algorithms VC.Setup, VC.Com,
VC.Open and VC.Vf. On input an upper bound ` for the
vector length, VC.Setup(1k, `) generates the parameters
par , which include a description of the message space
M and of the randomness space R. VC.Com(par ,x, r)
outputs a commitment vc to a vector x ∈M` with ran-
domness r ∈ R. VC.Open(par , i,x, r) computes an open-
ing w for x[i]. VC.Vf(par , vc, x, i,w) outputs 1 if w is a
valid opening for x being at position i and 0 otherwise.
A VC scheme must be hiding and binding. We use VC
schemes that are additively homomorphic. Given two
commitments vc1 and vc2 to vectors x1 and x2 with
randomness r1 and r2, there exists an operation · such
that vc ← vc1 · vc2 is a commitment to x = x1 + x2
with r = r1 + r2. (If vc2 is a commitment to the vector
x[i] = 0 for all i ∈ [1, `], then vc is a rerandomization
of vc1, which we denote by vc = VC.Rerand(vc1, r2).) In
addition, if w1,i is a witness for x1[i] being a position i in
the vector x1 committed in vc1, and w2,i is an opening
for x2[i] being a position i in the vector x2 committed
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ΠHD is parameterized by a database size N , a universe of pseudonyms Up, which parameterizes FNYM, and
a universe of values Uv which is given by the message space of the VC scheme.
1. On input (hd.read.ini, sid,P, (i, vri , ci , oi , cri , ori)i∈S), Rk and U do the following:

– If a tuple (sid, par , parc, pk, vc,x, r, c, s, o, sig) is not stored:
– Rk uses crs.get to obtain the VC parameters par and the commitment parameters parc.
– Rk picks a random value s1 ←M, computes a commitment (c1, o1)← C.Com(parc, s1) and stores

(sid, par , parc, c1, s1, o1).
– Rk picks a random pseudonym P ← Up and uses the nym.send interface of FNYM on input P to

send c1 to U .
– If P was received before, U aborts.
– U sets a flag f ← 1 (because a single commitment c1 is received) and (ci , cri)i∈S ← ⊥.
– U stores (sid,P, f , c1).

– If a tuple (sid, par , parc, pk, vc,x, r, c, s, o, sig) is stored:
– Rk picks randomly r2 ← R, sets r′ ← r + r2 and runs vc′ ← VC.Rerand(vc, r2) to rerandomize vc.
– For all i ∈ S, Rk does the following:

∗ Abort if x[i] 6= vri .
∗ Compute an opening wi ← VC.Open(par , i,x, r′).
∗ Parse the commitments ci as (c′i , pnic,NIC.Vf) and cri as (cr ′i , pnic,NIC.Vf).

– Rk picks random o2, sets o′ ← o + o2 and runs c′ ← C.Rerand(c, o2) to rerandomize c.
– Rk sets as follows the witness witr ← (sig, vc, c, r2, o2, 〈i, vri ,wi, oi , ori〉i∈S) and insr ← (pk, par ,

parc, vc′, c′, pnic, 〈c′i , cr ′i 〉i∈S).
– Rk replaces vc by vc′ and r by r′ in the stored tuple (sid, par , parc, pk, vc,x, r, c, s, o, sig).
– Rk picks randomly a pseudonym P ← Up and uses the zk.prove interface to send witr, insr and

P to FRr

ZK, where Rr is

Rr = {(witr, insr) :
1 = S.Vf(pk, sig, 〈vc, c〉) ∧ vc′ = VC.Rerand(vc, r2) ∧ c′ = C.Rerand(c, o2) ∧ (1)
{1 = NIC.Vf(pnic, c′i , i, oi) ∧ 1 = NIC.Vf(pnic, cr ′i , vri , ori) ∧ (2)
1 = VC.Vf(par , vc′, vri , i,wi) }∀i∈S } (3)

In equation 1, Rk proves that vc and c were signed by U , and that vc′ and c′ are rerandomizations
of vc and c. In equation 2,Rk proves that c′i and cr ′i commit to i and vri respectively. In equation 3,
Rk proves that x[i] = vri , where x is the vector committed in vc′.

– U receives insr and P. U aborts if P was received before. U checks that the signing public key,
VC parameters and commitment parameters in insr are equal to those stored in the tuple (sid,
par , parc, pk, sk). U sets a flag f ← 0 and stores (sid,P, f , vc′, c′).

– U sends a message (Open c′) to U by using the nym.reply interface of FNYM on input P. (Here we
consider that any construction for FRr

ZK uses FNYM, so U can reply through FNYM.)
– Rk picks a random value s1 ←M, computes a commitment (c1, o1)← C.Com(parc, s1) and stores

(sid, c1, s1, o1).
– Rk uses the nym.send interface of FNYM on input P to send the message and the opening (s, o′)

of c′ and a new commitment c1 to U .
– U verifies the opening by running C.Vf(parc, c′, s, o′). U checks that s has never been received

before, which ensures that the reader uses the last version of the database x in vc. U replaces c′

by c1 in the stored tuple (sid,P, f , vc′, c1).
– U outputs (hd.read.end, sid,P, f , (ci , cri)i∈S).

Fig. 3. Construction ΠHD: interface hd.read
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2. On input (hd.update.ini, sid,P, (i, vui)i∈[1,N ]), U and Rk do the following
– U aborts if there is not a tuple (sid,P ′, f , . . .) such that P = P ′.
– If (sid, par , parc, pk, sk) is not stored, U obtains par and parc from FCRS.Setup

CRS . U computes a signing
key pair (pk, sk)← S.KG(1k) and uses reg.register to register pk. U stores (sid, par , parc, pk, sk).

– If f = 1, do the following:
– U takes the stored tuple (sid,P, f , c1).
– U sets a vector x[i]← vui (for all i ∈ [1,N ]) and runs vc ← VC.Com(par ,x, 0) with 0 as randomness.
– U picks a random value s2, computes a commitment (c2, 0)← C.Com(parc, s2) with 0 as opening,

and computes c ← c1 · c2.
– U computes a signature sig ← S.Sign(sk, 〈vc, c〉) on vc and c.
– U uses nym.reply on input P to send (x, s2, sig) to Rk.
– Rk takes the stored (sid, par , parc, c1, s1, o1).
– Rk computes vc ← VC.Com(par ,x, 0) with 0 as randomness.
– Rk computes (c2, 0)← C.Com(parc, s2) with 0 as opening and sets c ← c1 · c2.
– Rk uses the reg.retrieve interface of FREG to retrieve the public key pk of U and verifies the

signature sig by running S.Vf(pk, sig, 〈vc, c〉).
– Rk stores (sid, par , parc, pk, vc,x, r ← 0, c, s← s1 + s2, o ← o1, sig).

– Rk outputs (hd.update.end, sid,P,x).

Fig. 4. Construction ΠHD: interface hd.update (Case f = 1)

in vc2, then wi ← w1,i ·w2,i is an opening for x1[i]+x2[i]
being at position i in the vector x committed in vc.
Signature Schemes. A signature scheme consists of
the algorithms S.KG, S.Sign and S.Vf. S.KG(1k) outputs
a secret key sk and a public key pk, which include a de-
scription of the message spaceM. S.Sign(sk,m) outputs
a signature sig on the message m ∈ M. S.Vf(pk, sig,m)
outputs 1 if sig is a valid signature on m and 0 otherwise.
This definition can be extended to blocks of messages
m̄ = (m1, . . . ,mn). In this case, S.KG(1k ,n) receives the
maximum number n of messages as input. A signature
scheme must be existentially unforgeable [18].

3.3 Construction for HD

We depict ΠHD in Fig. 3, Fig. 4 and Fig. 5. In ΠHD, a
VC vc is used to commit to the databases DB, where
each DB consists of N entries of the form [i, vri ]. To this
end, vc commits to a vector x such that x[i] = vri for
i ∈ [1,N ].

In the first interaction with the updater U , the
reader Rk obtains a VC vc to an initial DB. U signs
vc and gives the signature sig to Rk. In subsequent in-
teractions, Rk may want to read entries from DB, to
make U update the database, or both. To read entries
[i, vri ], Rk gets as input the commitments and openings
(ci , oi , cri , ori)i∈S. Rk uses FRr

ZK to prove in ZK that ci

and cri commit to an entry [i, vri ] in DB. U receives
a randomized version vc′ of vc. To update DB with (i,
vui)i∈[1,N ], U computes a VC vc2 to (i, vui)i∈[1,N ] and
then uses the homomorphic property of the VC scheme
to set vcu ← vc′ · vc2. The VC vcu that commits to the
updated database is signed and sent to Rk.

To prevent Rk from reading an old database, ΠHD
uses a double-spending detection mechanism. A com-
mitment c is signed along with every vc. c commits to a
random value s = s1 + s2, where s1 and s2 are random
values contributed by Rk and U respectively. In a read
operation, Rk reveals a randomized version c′ of c and
opens c′ to s. U checks that s has never been received
before. The message space of the commitment scheme
should be sufficiently big to avoid collisions.

To provide unlinkability, in addition to rerandom-
izing vc′ and c′, Rk communicates with U through
a secure pseudonymous channel modeled by FNYM.
FCRS.Setup

CRS is used byRk and U to retrieve the VC param-
eters and the commitment parameters. (We note that
the commitments (ci , oi , cri , ori)i∈S received as input by
Rk are computed outside the protocol by FNIC and may
have other parameters.) FREG is used to register the
signing public key of U .

Theorem 3.1. The construction ΠHD securely realizes
FHD in the FCRS.Setup

CRS , FREG, FNYM and FRr

ZK-hybrid
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2. On input (hd.update.ini, sid,P, (i, vui)i∈[1,N ]), U and Rk do the following
– U aborts if there is not a tuple (sid,P ′, f , . . .) such that P = P ′.
– If (sid, par , parc, pk, sk) is not stored, U obtains par and parc from FCRS.Setup

CRS . U computes a signing
key pair (pk, sk)← S.KG(1k) and uses reg.register to register pk. U stores (sid, par , parc, pk, sk).

– If f = 0, do the following:
– U takes the stored tuple (sid,P, f , vc′, c1).
– U sets a vector xu[i]← vui (for all i ∈ [1,N ]), computes a commitment vc2 ← VC.Com(par ,xu, 0)

with 0 as randomness and sets vcu ← vc′ · vc2.
– U picks a random value s2, computes a commitment (c2, 0)← C.Com(parc, s2) with 0 as opening,

and computes cu ← c1 · c2.
– U sets a signature sig ← S.Sign(sk, 〈vcu, cu〉) on vcu and cu.
– U uses nym.reply on input P to send (xu, s2, sig) to Rk.
– Rk takes the stored tuple (sid, c1, s1, o1).
– Rk computes (c2, 0)← C.Com(parc, s2) with 0 as opening and sets cu ← c1 · c2.
– Rk takes vc from the stored tuple (sid, par , parc, pk, vc,x, r, c, s, o, sig), runs vc2 ← VC.Com(par ,

x, 0) with 0 as randomness and sets vcu ← vc · vc2.
– Rk verifies the signature sig by running S.Vf(pk, sig, 〈vcu, cu〉).
– Rk updates the tuple (sid, par , parc, pk, vc ← vcu,x← x + xu, r, c, s← s1 + s2, o ← o1, sig).

– Rk outputs (hd.update.end, sid,P,x).

Fig. 5. Construction ΠHD: interface hd.update (Case f = 0).

model if the VC scheme is hiding and binding, the com-
mitment scheme is hiding and binding, and the signa-
ture scheme is existentially unforgeable.

Security Analysis. We analyze in detail the security
of ΠHD in §C. The use of FCRS.Setup

CRS to generate the
parameters guarantees that they are generated honestly
and that Rk and U do not know any trapdoor.

When Rk is corrupt, the binding property of the
VC scheme guarantees that Rk is not able to open a
VC vc to a value vri at position i if vri 6= x[i], where
x is the vector committed by the honest U in vc. The
binding property of the commitment scheme guarantees
that the commitment c cannot be opened to a random
value s different from the one committed, which ensures
that Rk cannot open the same commitment twice with-
out being detected. The unforgeability property of the
signature scheme ensures that Rk can only use vc and
c that were signed by U .

When U is corrupt, the hiding property of the VC
scheme guarantees that the database in vc remains hid-
den from U . The use of FNYM guarantees unlinkabil-
ity between read operations, so that U cannot keep
track of the updates for a particular reader. The hiding
property of the commitment scheme hides the random
value s committed in c during the update phase, which

is needed to provide unlinkability between the update
phase and the next read phase. The use of FREG guar-
antees that U does not set up a different public key for
each reader, which would also break unlinkability.
Discussion. In ΠHD, an update operation always fol-
lows a read operation, and vice versa. We remark that,
when only an update is required, the tuple (i, vri , ci ,

oi , cri , ori)i∈S can be empty, and when only a read op-
eration is needed, the tuple (i, vui)i∈[1,N ] can equal (i,
0)i∈[1,N ].
U updates databases without knowing their content.

The update operator is the sum. In our instantiation
in §3.4, the sum is done modulo p. We assume p is
big enough so that the sums accumulated are always
smaller.

3.4 Instantiation and Efficiency

In §D, we describe an instantiation of ΠHD that uses
a VC scheme similar to the one in [27], the Pedersen
commitment scheme [31], the signature scheme in [1]
and the UC ZK proof protocol in [10]. Here we analyze
the storage, communication, and computation costs of
our instantiation.
Storage Cost. Rk stores the common reference string,
which consists of the VC and commitment parameters.
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The VC parameters grow linearly with the maximum
size N of the database. Rk also stores the public key
pk, which has constant size. Throughout the protocol
execution, Rk stores the last update of sig, vc and c,
the committed values and their openings. In conclusion,
the storage cost for Rk grows linearly with N . U stores
the common reference string and the signing key pair
and thus his storage cost also grows linearly with N .
Communication Cost. In a read operation, Rk and
U run a ZK proof for Rr where witr and insr grow lin-
early with the number |S| of positions read, but are inde-
pendent of N . Therefore, the communication cost grows
linearly with |S| but is independent of N . Rk sends a
Pedersen commitment c1 and an opening (s, o′) to U ,
which have constant size. In an update, U sends Rk an
update xu for vc′, a signature on vc′ and c′ and the
random value s2. The signature and s2 are of constant
size. Although the size of xu could be N , in practice, xu
only needs to contain the values for positions that are
updated. Consequently, the communication cost of read
and update operations grows linearly with the number
of positions read or updated but is independent of N .
Computation Cost. In a read operation, Rk needs
to compute VC openings wi for the positions read. If
wi is computed for the first time, the computation cost
grows linearly with N . However, by using the homomor-
phic property, when vc is updated, each opening wi can
be updated with cost that grows linearly with the num-
ber of updated positions but is independent of N . The
remaining steps in the computation and verification of
the proof for Rr are also independent of N . Rk also com-
putes a commitment c1, which entails constant cost. In
the first update operation, U computes a commitment
vc to an initial database with cost linear in N . (In prac-
tice, if the database is initialized to a vector of zeroes,
the cost is constant.) Subsequently, U updates vc by us-
ing the homomorphic property of the VC scheme. The
computation cost grows with the number of positions
updated.

In summary, the communication cost is independent
of N and the amortized computation cost is also inde-
pendent of N , which makes our instantiation of ΠHD
practical for large databases.
Implementation and Timings. We implement our
instantiation of ΠHD in the Python programming lan-
guage, using the Charm cryptographic framework [2],
on a computer equipped with an Intel Core i5-7300U
CPU clocked at 2.60 GHz, and 8 gigabytes of RAM.
The BN256 curve is used for the pairing group setup. To
compute the UC ZK proofs for Rr, we use the compiler
in [10]. The cost of a proof depends on the number of

Table 1. ΠHD execution times in seconds

Interface N = 15000 N = 65000
Time (s) SD Time (s) SD

First Update 88.97 0.5 386.20 3
Computation of 0.23 0.002 1.0028 0.008
vc or wi

1 entry Update 0.00003 0.00001 0.00003 0.00001
of vc or wi

1 entry Read 6.9564 0.4 7.6770 0.3
5 entry Read 23.0339 0.4 26.9555 0.4

elements in the witness and on the number of equations
composed by Boolean ANDs. The computation cost for
the prover of a Σ-protocol for Rr involves one evalua-
tion of each of the equations and one multiplication per
value in the witness. The compiler in [10] extends a Σ-
protocol and requires, additionally, a computation of a
multi-integer commitment that commits to the values
in the witness, an evaluation of a Paillier encryption for
each of the values in the witness, a Σ-protocol to prove
that the commitment and the encryptions are correctly
generated, and 3 exponentiations in the DSA group. The
computation cost for the verifier, as well as the commu-
nication cost, also depends on the number of values in
the witness and on the number of equations. Therefore,
as the number of values in the witness and of equations
is independent of N in our proof for relation Rr, the com-
putation and communication costs of our proof do not
depend on N . The storage costs for storing the common
reference string in this implementation, for databases of
size 15000 and 65000 were found to be about 10MB and
42MB respectively.

Table 1 lists the mean execution times (and the stan-
dard deviation) of the interfaces of the protocol, in sec-
onds, over 100 trial runs, evaluated against N . The Pail-
lier key size is 2048 bits. In the first update, the public
parameters of all building blocks are computed and the
database is set up by computing vc. In the second row
of Table 1, we show the cost of just computing vc, which
is virtually the same as that of computing an opening
wi, and these costs are very small. In a single entry up-
date, one database entry is modified and vc is updated,
and the cost of updating an opening wi is virtually the
same. As can be seen, the cost of the first update grows
linearly with N , as does the cost of setting up vc or
wi, whereas the cost of updating vc or wi is very small
and independent of N . (We note that the cost of setting
up vc or wi is constant when the database is initialized
to 0 in every position, which is the case in our PPLP
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protocol.) The timings for the read interface increase
linearly with the number of entries read |S|. However,
the timings are independent of N .

4 Our PPLP
Our PPLP involves a vendor V and multiple buyers Bk.
It can be applied to both online and physical shops. Buy-
ers are equipped with an electronic device such as a
smartphone. To provide unlinkability, our PPLP uses
the secure pseudonymous channel modeled by FNYM.
In addition, it requires payment methods that provide
unlinkability, such as cash in physical shops or anony-
mous e-cash [9] in online shops. In an online setting, the
purchase of physical goods would also require an anony-
mous delivery system [3].

Our PPLP consists of registration, purchase, re-
demption and profiling phases. After the registration
phase for a buyer Bk is run, the remaining phases are
interleaved throughout the protocol execution. Those
four phases are initiated by Bk, and V finalizes them
with an update database operation.

When Bk purchases products, V gives Bk a number
of loyalty points lpts, which Bk can later redeem to ob-
tain any sort of discount or gift. This general setting
follows many existing LPs. Our PPLP can be adapted
to variations or extensions of this general setting (e.g.,
applying discounts at every purchase, adding an expira-
tion date to lpts, . . . ).
V profiles Bk based on her PH. To store the PH of

Bk, we use arrays of the form [product, value], where
product is a specific product or category of product (de-
pending on the granularity needed to profile buyers),
and value is the amount of money spent by Bk on that
product in one or more purchases, the number of times
that the product was bought, or any other data required
to profile buyers. Without loss of generality, products
are identified by an index, i.e. product is in [1,M ], where
M is the number of products offered by V.

We consider a profiling algorithm defined by a func-
tion family F . A function f ∈ F is defined by f : (i,
v)i∈S → res, i.e., a function that takes as input a subset
S ⊆ [1,M ] of the entries of the PH of Bk and outputs a
result res that classifies Bk into a category. In our PPLP,
Bk runs f on input her PH and proves in ZK that the
result is correct.

We remark that the concrete function f ∈ F (and
the set S) used by Bk at a profiling phase remains hidden
from V. As a simple example, in our implementation in

§4.3, we use a family where each function f specifies a
set S and requires Bk to prove that the total amount
paid for the products in S surpasses a threshold. Bk
needs to prove in ZK that a correct subset S of posi-
tions is read without revealing S. For this purpose, V
computes signatures on the indices of each of the sub-
sets in the family S. Bk proves in ZK knowledge of a
signature and proves that the positions read from the
database are equal to the signed subset indices, as de-
scribed in the ZK set membership and range proof in [7].

Previous work [15] has shown how to prove in ZK
correctness of the evaluation of two popular classifica-
tion methods: random forests and hidden Markov mod-
els. The schemes in [15] follow a similar approach to our
example above. For each classification method, a func-
tion family is defined, and V provides Bk with signatures
that sign the parameters of each concrete function that
V considers. Bk uses those signatures to prove in ZK the
correctness of the profiling result res without revealing
to V the concrete function being used.

The conditions under which V can request Bk to
reveal her classification result should be defined in the
terms and conditions of the PPLP and agreed upon by
Bk. V could incentivize Bk to be profiled by e.g. offering
Bk more lpts.

Our PPLP only discloses to V the profiling result.
However, depending on the profiling function used, this
result can be privacy sensitive. To counter this problem,
we show that for some purposes V can use the profiling
result without learning it.

4.1 Ideal Functionality for a PPLP

We depict an ideal functionality FLP for a PPLP in
Fig. 6. FLP interacts with a vendor V and multiple
buyers Bk. FLP maintains one database DB per buyer.
Each DB is of size N = M + 1 and stores the PH for
M products and the lpts accumulated by Bk. FLP con-
sists of the interfaces lp.register, lp.purchase, lp.redeem,
lp.profile and lp.updatedb.
1. A buyer Bk sends the lp.register.ini message on input

a pseudonym P. FLP checks that P is unique and
that Bk did not send a registration request before.
In that case, after being prompted by the simulator
S, FLP sends P to V.

2. A buyer Bk sends the lp.purchase.ini message on in-
put a pseudonym P. FLP checks that Bk is already
registered, that P is unique and that Bk has not initi-
ated another purchase, redeem or profile phase that
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is still unfinished. In that case, after being prompted
by S, FLP sends P to V.

3. A buyer Bk sends the lp.redeem.ini message on input
a pseudonym P and a number of loyalty points p.
FLP checks that Bk is already registered, that P is
unique, that Bk has not initiated another purchase,
redeem or profile phase that is still unfinished, and
that Bk has accumulated at least p loyalty points.
In that case, after being prompted by S, FLP sends
P and p to V.

4. A buyer Bk sends the lp.profile.ini message on input a
pseudonym P and a profiling function f . FLP checks
that Bk is already registered, that P is unique, and
that Bk has not initiated another purchase, redeem
or profile phase that is still unfinished. In that case,
FLP evaluates f on input the purchase history of Bk.
After being prompted by S, FLP sends P and the
profiling result res to V.

5. The vendor V sends the lp.updatedb.ini message on
input a pseudonym P and a database (i, vui)i∈[1,N ].
FLP checks that there is a request pending for
pseudonym P, which is associated to a buyer Bk. For
a registration request, FLP initializes the database
DB of Bk contain 0 at every position. For a purchase
request, FLP uses (i, vui)i∈[1,N ] to update the PH
and the loyalty points stored in DB. For a redeem
request, FLP updates DB by subtracting p loyalty
points redeemed by Bk. For a profile request, FLP
does not update the database. After being prompted
by S, FLP sends P and (i, vui)i∈[1,N ] to Bk.

FLP guarantees that the requests made by buyers are
unlinkable for V. As can be seen, FLP reveals to V a
pseudonym that is unique per request. FLP also ensures
that the PH and lpts of a buyer are hidden from V. FLP
never reveals a buyer’s database to V and, thanks to
unlinkability, V is not able to link the updates of a
database. FLP also ensures unforgeabilty of databases,
i.e. buyers are not able to modify their databases. This
guarantees that lpts can only be redeemed if they were
accumulated, and that the profiling result is correct.

4.2 Construction for a PPLP

We depict a construction ΠLP for FLP in Fig. 7 and
Fig. 8. ΠLP is described modularly in the hybrid model,
where V and Bk use the functionalities FHD, FRrd

ZK , FRpr

ZK ,
FNYM and FNIC. FRrd

ZK and FRpr

ZK are ZK functionalities
used in the redemption and profiling phases respectively.
This modular design allows multiple constructions of

ΠLP by choosing different instantiations for those func-
tionalities. It also eases its security analysis.
FHD is used to store the buyers’ databases DB. Dur-

ing registration, Bk invokes the hd.read interface for the
first time, and V invokes the hd.update interface on in-
put (i, 0)i∈[1,N ] to initialize DB. In the purchase phase,
Bk invokes the hd.read interface without reading the
database, and V invokes the hd.update interface on input
(i, vui)i∈[1,N ] to update the PH and lpts stored in DB.

To redeem p lpts, Bk invokes the hd.read interface
to read the database entry [N , vN ], which stores the ac-
cumulated lpts. Bk uses FRrd

ZK to prove that p ∈ [0, vN ].
Both FRrd

ZK and FHD receive as input commitments out-
put by FNIC to ensure that the value vN read is used
in the ZK proof. V invokes the hd.update interface on
input (i, 0)i∈[1,M ]||[N ,−p] to subtract the redeemed loy-
alty points from DB.

In the profiling phase, Bk invokes the hd.read inter-
face to read the subset S of database entries required
by the function f . Bk uses FRpr

ZK to prove correctness
of the evaluation of f . Commitments produced by FNIC
are again used to guarantee that the entries read are
used in FRpr

ZK . V invokes the hd.update interface without
updating the database to conclude this phase.

Theorem 4.1. ΠLP securely realizes FLP in the FHD,
FRrd

ZK , FRpr

ZK , FNYM and FNIC-hybrid model.

Security Analysis. We analyze in detail the security
of ΠLP in §F . ΠLP provides the unlinkability and hid-
ing properties of FLP, which protect buyers’ privacy.
Regarding unlinkability, FHD, FRrd

ZK , FRpr

ZK and FNYM
reveal to V a pseudonym and not the identifier Bk. Bk
chooses a different pseudonym for each phase. Regard-
ing the hiding property, in the purchase phase V does
not learn any information on the PH or on the lpts of
Bk. In the redemption phase, V only learns that Bk ac-
cumulated at least p points. In the profiling phase, V
only learns the result of evaluating f on input the PH
of Bk. We recall that FNIC ensures that commitments
are hiding.

ΠLP prevents an adversarial Bk from forging her PH
or her lpts. FHD ensures that only V sets up and mod-
ifies databases. FHD also ensures that Bk cannot reuse
her PH or her lpts. Additionally, the binding property
ensured by FNIC guarantees that commitments sent to
FHD and to the ZK functionalities are opened to the
same value. Therefore, Bk can only prove knowledge of
the PH or lpts that were stored by V.
Extensions. There are many LPs with different fea-
tures and requirements. In general, we think that our
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FLP is parameterised by a database size N , a universe of pseudonyms Up, a function family F and a universe
of values Uv.
1. On input (lp.register.ini, sid,P) from Bk:

– Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if there is a tuple (sid,P ′,B′k, . . .) stored such that P ′ = P,
or a tuple (sid,P ′,B′k, 0) such that B′k = Bk.

– Store (sid,P,Bk, 0), create a fresh qid, store (qid,P,Bk) and send (lp.register.sim, sid, qid) to S.
S. On input (lp.register.rep, sid, qid) from S:

– Abort if (qid ′,P,Bk) such that qid = qid ′ is not stored.
– Store (sid,P,Bk, lp.register), delete (qid,P,Bk) and send (lp.register.end, sid,P) to V.

2. On input (lp.purchase.ini, sid,P) from Bk:
– Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if a tuple (sid,P ′,B′k, 1) such that B′k 6= Bk is not stored.

Abort if there is a tuple (sid,P ′,B′k, . . .) stored such that P ′ = P, or (sid,P ′,B′k, 0) such that B′k = Bk.
– Store (sid,P,Bk, 0), create a fresh qid, store (qid,P,Bk) and send (lp.purchase.sim, sid, qid) to S.

S. On input (lp.purchase.rep, sid, qid) from S:
– Abort if (qid ′,P,Bk) such that qid = qid ′ is not stored.
– Store (sid,P,Bk, lp.purchase), delete (qid,P,Bk) and send (lp.purchase.end, sid,P) to V.

3. On input (lp.redeem.ini, sid,P, p) from Bk:
– Abort if sid /∈ (V, sid ′), or if P /∈ Up. Abort if a tuple (sid,P ′,B′k, 1) such that B′k 6= Bk is not stored.

Abort if there is a tuple (sid,P ′,B′k, . . .) stored such that P ′ = P, or a tuple (sid,P ′,B′k, 0) such that
B′k = Bk. Take the stored tuple (sid,Bk,DB) and take the entry [N , vN ] ∈ DB. Abort if p /∈ [0, vN ].

– Store (sid,P,Bk, 0), create a fresh qid, store (qid,P,Bk, p) and send (lp.redeem.sim, sid, qid) to S.
S. On input (lp.redeem.rep, sid, qid) from S:

– Abort if (qid ′,P,Bk, p) such that qid = qid ′ is not stored.
– Store (sid,P,Bk, lp.redeem, p), delete (qid,P,Bk, p) and send (lp.redeem.end, sid,P, p) to V.

4. On input (lp.profile.ini, sid,P, f ) from Bk:
– Abort if sid /∈ (V, sid ′), or if P /∈ Up, of if f /∈ F . Abort if a tuple (sid,P ′,B′k, 1) such that B′k 6= Bk is

not stored. Abort if there is a tuple (sid,P ′,B′k, . . .) stored such that P ′ = P, or a tuple (sid,P ′,B′k,
0) such that B′k = Bk.

– Take (sid,Bk,DB) and compute res ← f ((i, v)i∈S), where (i, v)i∈S ⊆ DB and S is defined in f .
– Store (sid,P,Bk, 0), create a fresh qid, store (qid,P,Bk, res) and send (lp.profile.sim, sid, qid) to S.

S. On input (lp.profile.rep, sid, qid) from S:
– Abort if (qid ′,P,Bk, res) such that qid = qid ′ is not stored.
– Store (sid,P,Bk, lp.profile), delete (qid,P,Bk, res) and send (lp.profile.end, sid,P, res) to V.

5. On input (lp.updatedb.ini, sid,P, (i, vui)i∈[1,N ]) from V:
– Abort if (sid,P ′,Bk, lp.x, . . .) such that P ′ = P is not stored, or if, for i ∈ [1,N ], vui /∈ Uv.
– If lp.x = lp.register, set DB← (i, 0)i∈[1,N ] and store a tuple (sid,Bk,DB).
– If lp.x = lp.purchase, take the stored tuple (sid,Bk,DB), parse DB as (i, vri)i∈[1,N ] and update DB← (i,

vri + vui)i∈[1,N ] in the tuple (sid,Bk,DB).
– If lp.x = lp.redeem, take p from the tuple (sid,P ′,Bk, lp.purchase, p). Take the stored tuple (sid,Bk,

DB), parse DB as (i, vri)i∈[1,N ] and update the database entry [N , vri + p] in the tuple (sid,Bk,DB).
– Delete the tuple (sid,P ′,Bk, lp.x, . . .). If lp.x 6= lp.purchase, set (i, vui)i∈[1,N ] ← ⊥.
– Create fresh qid, store (qid,Bk,P, lp.x, (i, vui)i∈[1,N ]) and send (lp.updatedb.sim, sid, qid) to S.

S. On input (lp.updatedb.rep, sid, qid) from S:
– Abort if a tuple (qid ′,Bk,P, lp.x, (i, vui)i∈[1,N ]) such that qid = qid ′ is not stored.
– In the tuple (sid,P ′,Bk, 0) such that P ′ = P, if lp.x = lp.register, replace 0 by 1, else replace 0 by ⊥.
– Delete (qid ′,Bk,P, lp.x, (i, vui)i∈[1,N ]) and send (lp.updatedb.end, sid,P, (i, vui)i∈[1,N ]) to Bk.

Fig. 6. Functionality FLP
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ΠLP is parameterised by a database size N , a universe of pseudonyms Up, a function family F and a universe
of values Uv.
1. On input (lp.register.ini, sid,P), Bk and V do the following:

– Bk uses the nic.setup interface of FNIC and sends (hd.read.ini, sid,P,⊥) to FHD.
– V receives (hd.read.end, sid,P, f ,⊥) from FHD. If f = 1, V stores (sid,P, lp.register) and outputs

(lp.register.end, sid,P). In its first activation, V uses the nic.setup interface of FNIC.
2. On input (lp.purchase.ini, sid,P), Bk and V do the following:

– Bk sends (hd.read.ini, sid,P,⊥) to FHD.
– V receives (hd.read.end, sid,P, f ,⊥) from FHD. If f = 0 and no commitments to read data are received,
V stores (sid,P, lp.purchase) and outputs (lp.purchase.end, sid,P).

3. On input (lp.redeem.ini, sid,P, p), Bk and V do the following:
– Bk takes the stored (i, vi)i∈[1,N ] and checks that p ∈ [0, vN ].
– Bk uses the nic.commit interface of FNIC on input N and vN to get two commitments and openings

(cN , oN , cv, ov) to N and vN .
– Bk sets a witness witrd ← (vN , ov) and insrd ← (p, cv, cN ,N , oN ). Bk uses the zk.prove interface to

send witrd, insrd and P to FRrd

ZK , where Rrd is

Rrd = {(witrd, insrd) : 1 = NIC.Vf(pnic, cv, vN , ov) ∧ p ∈ [0, vN ]}

Bk proves that vN is committed in cv and that p ≤ vN . For the latter, Bk uses a range proof [7].
– V uses the nic.verify interface of FNIC on input (cN ,N , oN ) to verify that cN commits to the position

N . V uses the nic.validate interface on input cv to check that cv is a commitment computed by FNIC.
V stores the commitments (cN , cv).

– V sends a message (Read DB) to Bk by using the nym.reply interface of FNYM on input P. (Here we
consider that any construction for FRrd

ZK uses FNYM, so V can reply through FNYM.)
– Bk stores (sid,P, p) and sends the message (hd.read.ini, sid,P, (N , vN , cN , oN , cv, ov)) to FHD.
– V receives (hd.read.end, sid,P, f , (cN , cv)) from FHD. V checks that the commitments (cN , cv) equal

the ones received from FRrd

ZK . V stores (sid,P, lp.redeem, p) and outputs (lp.redeem.end, sid,P, p).
4. On input (lp.profile.ini, sid,P, f ), Bk and V do the following:

– Bk takes her purchase history (i, vi)i∈[1,M ]. Let S ⊆ [1,M ] contain the indices needed to evaluate f .
Bk commits to (i, vi)i∈S, i.e., for all i ∈ S, Bk uses nic.commit on input i and vi to get (ci , oi , cri , ori).

– Bk computes res ← f((i, vi)i∈S).
– Bk sets a witness witpr ← (〈i, oi , vi, ori〉i∈S) and inspr ← (res, 〈ci , cri〉i∈S). Bk uses the zk.prove interface

to send witpr, inspr and P to FRpr

ZK , where Rpr is

Rpr ={(witpr, inspr) :
{1 = NIC.Vf(pnic, ci , i, oi) ∧ i ∈ S ∧ 1 = NIC.Vf(pnic, cri , vi, ori)}∀i∈S ∧ res = f((i, vi)i∈S)}

Bk proves that i and vi are committed in ci and cri , and that i ∈ S. Bk also proves that res is the
result of evaluating f on input (i, vi)i∈S.

– V uses nic.validate to check that (ci , cri)i∈S are commitments computed by FNIC and stores (ci , cri)i∈S.
– V sends a message (Read DB) to Bk by using the nym.reply interface of FNYM. (Here we consider that

any construction for FRpr

ZK uses FNYM, so V can reply through FNYM.)
– Bk sends FHD the message (hd.read.ini, sid,P, (i, vi, ci , oi , cri , ori)i∈S).
– V receives (hd.read.end, sid,P, f , (ci , cri)i∈S) from FHD. V checks that the commitments (ci , cri)i∈S

equal the ones received from FRrd

ZK . V stores (sid,P, lp.profile) and outputs (lp.profile.end, sid,P, res).

Fig. 7. Construction ΠLP: interfaces lp.register, lp.purchase, lp.redeem and lp.profile.
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5. On input (lp.updatedb.ini, sid,P, (i, vui)i∈[1,N ]), V and Bk do the following:
– V finds the tuple (sid,P ′, lp.x, . . .), such that P ′ = P.
– If lp.x = lp.register, V initializes a database (i, 0)i∈[1,N ] and sends (hd.update.ini, sid,P, (i, 0)i∈[1,N ]) to
FHD. Bk receives (hd.update.end, sid, (i, 0)i∈[1,N ]) from FHD, checks that (i, 0)i∈[1,N ] contains 0 in all
positions, stores (i, 0)i∈[1,N ] and outputs (lp.updatedb.end, sid,P,⊥).

– If lp.x = lp.purchase, V sends (hd.update.ini, sid,P, (i, vui)i∈[1,N ]) to FHD. Bk receives (hd.update.end,
sid, (i, vui)i∈[1,N ]) from FHD and checks that (i, vui)i∈[1,N ] is correct, i.e., the database was updated
by using the correct prices paid by Bk for the products purchased and the correct number of lpts was
added. Bk updates her database (i, v′i)i∈[1,N ] by setting (i, v′i+vui)i∈[1,N ] and outputs (lp.updatedb.end,
sid,P, (i, vui)i∈[1,N ]).

– If lp.x = lp.redeem, V takes p from the tuple (sid,P, lp.redeem, p) and sets a database (i, vi)i∈[1,N ]
where vi = 0 for i ∈ [1,M ] and vN = −p. V sends (hd.update.ini, sid,P, (i, vi)i∈[1,N ]) to FHD. Bk
receives (hd.update.end, sid, (i, vi)i∈[1,N ]) from FHD and checks that vi = 0 for i ∈ [1,M ] and vN = −p,
where p is stored in the tuple (sid,P, p). Bk updates her database (i, v′i)i∈[1,N ] by setting (N , v′N + vN )
and outputs (lp.updatedb.end, sid,P,⊥).

– If lp.x = lp.profile, V initializes a database (i, 0)i∈[1,N ] and sends (hd.update.ini, sid,P, (i, 0)i∈[1,N ]) to
FHD. Bk receives (hd.update.end, sid, (i, 0)i∈[1,N ]) from FHD and checks that (i, 0)i∈[1,N ] contains 0 in
all positions. Bk outputs (lp.updatedb.end, sid,P,⊥).

Fig. 8. Construction ΠLP: interfaces lp.updatedb.

PPLP can be extended to implement them. In the fol-
lowing, we discuss some popular features:
– Learning vs Using Profiles. In ΠLP, V learns

the result of evaluating a profiling function f on in-
put the PH of Bk. Depending on f , that result can
be privacy sensitive, and thus disclosing it must be
avoided whenever possible. There are applications
in which V does not need to learn the buyer’s pro-
file in order to use it. For example, if V’s goal is to
offer extra lpts to buyers with certain profiles, ΠLP
can be modified to add those lpts without V learning
the buyer’s profile.
Consider a profiling function f . We define a func-
tion f ′ : (i, v)i∈S → lpts as f ′ = g ◦ f , i.e. f ′ first
evaluates f on input PH to obtain a profiling re-
sult, and second evaluates g on input that result to
get a number of lpts. In the profiling phase of ΠLP,
in FRpr

ZK , f must be replaced by f ′. To allow Bk to
prove in ZK correctness of the evaluation of g, V can
follow the same approach as for f . (In the simplest
case, for each profiling result, V computes a signa-
ture that signs the result along with the number of
lpts awarded to that result.) Additionally, V must
be able to add lpts to the database without learning
the amount of lpts added. Let p be the output of g.
To do that, Bk computes a commitment c to p. The

relation Rpr is extended to prove in ZK that the out-
put of g is committed in c. Then V uses c to update
the database by making use of the homomorphic
property of the VC scheme.

– Expiration. To improve customer retention, many
LPs require that lpts expire if Bk did not purchase
anything in the last weeks or months. Our PPLP
can be extended to support expiration. In the pur-
chase phase, V signs a commitment to the date of
purchase along with the VC vc and the commit-
ment c. In the next purchase, or when redeeming
lpts, Bk proves in ZK that the committed date is
recent enough.

– Database Consistency. In ΠLP, a user can reg-
ister several buyer identities and thus hold several
databases. This frequently leads to the creation of
better profiles. Nevertheless, if needed, authentica-
tion during registration can be applied to allow V to
reject multiple registrations by a single user. Also, in
ΠLP, several users can share a buyer identity. When
this is undesirable, ΠHD can be extended with ex-
isting mechanisms to discourage transferability of
anonymous credentials [12].

– Revocation. Many LPs require the ability of re-
voking registrations. Our PPLP can be extended
with existing mechanisms proposed for revocation
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of anonymous credentials [12]. These mechanisms,
like the non-transferability mechanisms discussed
above, would require V to blindly sign some user
secret along with vc and c.

– Multiple Vendors. Many LPs involve multiple
vendors from the same or from different organiza-
tions. Unlinkability should be maintained when a
buyer interacts with more than one vendor, which
means that the public key of a vendor cannot be re-
vealed when interacting with the next vendor. The
simplest way to extend our PPLP to support mul-
tiple vendors, also used in the recent work in [5], is
that vendors share their signing secret key. This is
undesirable especially when different organizations
are involved. Another possibility is to allow Bk to
prove in ZK that she uses a signature signed by a
vendor in the LP without revealing his public key.
To this end, signatures on the public keys of the
vendors in the LP are published. With structure
preserving signatures, which we use in our instan-
tiation of ΠHD, Bk can prove in ZK that the public
key for a signature on vc and c is signed in one of the
published signatures, without revealing that public
key.
Double-spending detection with multiple vendors
would require that they have online access to a cen-
tral database. In [5], a method for off-line detection
is proposed, which our PPLP can implement.

4.3 Implementation and Efficiency

We have implemented ΠLP in the Python programming
language, using the Charm cryptographic framework [2],
on a computer equipped with an Intel Core i5-7300U
CPU clocked at 2.60 GHz, and 8 gigabytes of RAM. Al-
though we have used a single core implementation of the
protocol for our evaluations, we comment that the proto-
col may benefit from parallelization in the setup phase.
The BN256 curve has been used for the pairing group
setup. As described in §3.4, we use the compiler in [10]
to compute UC ZK proofs for Rrd and Rpr, and the
Paillier encryption scheme uses a 2048 bit key in both
cases. We also employ the range proof scheme described
in [7] in the redemption and profiling phases, which re-
quires the computation and storage of a CRS of about
152 bytes. For the purposes of evaluating the profiling
phase, we have used a profiling function f which checks
whether the sum of the amounts paid by Bk for prod-
ucts represented by a specified set of database entries
surpasses a specified threshold value. Table 2 depicts the

Table 2. PPLP phase execution times in seconds

Phase N = 15000 N = 65000
Time (s) SD Time (s) SD

Registration 0.03 0.0004 0.04 0.0009
Purchase 4.08 0.5 4.89 0.5
Redemption 11.32 0.4 12.92 0.4
1 entry Profiling 11.51 0.4 13.08 0.4
5 entry Profiling 57.55 0.8 65.42 0.9
10 entry Profiling 115.08 1.2 130.91 1.1

mean computation times (and the standard deviation)
for all phases of the protocol over 100 trial runs, against
a database size N = {15000, 65000}, which we consider
adequate for shops of average size.1 The timings take
into account the database update operation performed
by V for each of the phases. The last three rows of Ta-
ble 2 list the mean computation times for the profiling
phase when sets S of 1, 5, and 10 database entries were
passed as input to the profiling function. The execu-
tion times for the profiling phase grow with the size of
S. However, the computation cost is independent of N .
We remark that the purchase and redemption phases do
not depend on S, and that the profiling phase does not
have real-time requirements.

5 Related Work
VC Schemes. VC schemes [14, 27] can be based on
different assumptions such as CDH, RSA and DHE. We
could use VCs secure under the more standard CDH
or RSA assumptions, but the VCs based on DHE have
efficiency advantages. A mercurial VC scheme based on
DHE was proposed in [27], and subsequently DHE VC
schemes were used in [20, 24, 25]. In our instantiation
of ΠHD, we extend the VC scheme with signatures to
enable ZK proofs of an opening wi.

Polynomial commitments (PCs) allow us to commit
to a polynomial and open the commitment to an eval-
uation of the polynomial. PCs can be used as VCs by
committing to a polynomial that interpolates the vector
to be committed. In [22], a construction of PCs from the

1 The number of SKUs of a typical supermarket, which is a kind
of shop that frequently uses loyalty programs, is anywhere from
15000 to 60000 (https://www.fmi.org/our-research/supermarket-
facts)

https://www.fmi.org/our-research/supermarket-facts
https://www.fmi.org/our-research/supermarket-facts
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SDH assumption is proposed. A further generalization
of VCs and PCs are functional commitments [26].
ZK Proofs for Large Datasets. In most ZK proofs,
the computation and communication costs grow linearly
with the size of the witness, which is inadequate for
proofs about datasets of large size N . However, some
techniques attain costs sublinear in N . Probabilistically
checkable proofs [23] achieve verification cost sublinear
in N , but the cost for the prover is linear in N . In suc-
cinct non-interactive arguments of knowledge [17], ver-
ification cost is independent of N , but the cost for the
prover is still linear in N . ZK proofs for oblivious RAM
programs [30] consist of a setup phase where the prover
commits to the dataset, with cost linear in N for the
prover and constant for the verifier. After setup, multi-
ple proofs can be computed about the dataset with cost
sublinear (proportional to the runtime of an ORAM pro-
gram) for prover and verifier.

Our construction is somehow similar to [30], i.e. a
database is committed, and then ZK proofs are com-
puted. Storage cost is linear in N . However, the verifi-
cation cost of a ZK proof is constant an independent of
N . To compute a ZK proof, only the cost of computing
an opening wi is linear in N , but wi can be reused and
updated with cost independent of N . Therefore, com-
puting a ZK proof has an amortized cost independent
of N , which makes our construction practical for large
databases.
Updatable Anonymous Credentials. In an anony-
mous credential (AC) [12] scheme, issuers sign user at-
tributes. Users show that they possess a signature from
an issuer on their attributes and selectively disclose, or
prove in ZK statements, about their attributes. Unlinka-
bility ensures that shows of a credential cannot be linked
to each other or to the issuance of the credential. Re-
cently, an updatable AC scheme has been proposed in [5]
and applied to LPs. An updatable AC scheme allows
users to update their signed attributes blindly, i.e., with-
out the issuer knowing the attribute values. An HD can
thus also be used to construct an updatable AC scheme.
In [5], the cost of proving and verifying statements about
attributes grows with the number of attributes signed
in a credential. In their LP, only the number of lpts
is signed, and vendors do not receive any information
on buyer profiles. Our construction ΠHD provides ZK
proofs of cost independent of N . This allows us to de-
sign a PPLP where, in addition to lpts, V signs and up-
dates the whole purchase history of buyers, which could
consist of hundreds or thousands of products, with a
computation and computation cost comparable to [5].
Buyers can then be profiled based on the result of a

profiling algorithm, without disclosing further purchase
data to V.
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A UC Security
We prove our protocol secure in the universal compos-
ability framework [13]. The UC framework allows one to
define and analyze the security of cryptographic proto-
cols so that security is retained under an arbitrary com-
position with other protocols. The security of a protocol
is defined by means of an ideal protocol that carries out
the desired task. In the ideal protocol, all parties send
their inputs to an ideal functionality F for the task. F
locally computes the outputs of the parties and provides
each party with its prescribed output.

The security of a protocol ϕ is analyzed by compar-
ing the view of an environment Z in a real execution of
ϕ against that of Z in the ideal protocol defined in Fϕ.
Z chooses the inputs of the parties and collects their
outputs. In the real world, Z can communicate freely
with an adversary A who controls both the network and
any corrupt parties. In the ideal world, Z interacts with
dummy parties, who simply relay inputs and outputs
between Z and Fϕ, and a simulator S. We say that a
protocol ϕ securely realizes Fϕ if Z cannot distinguish
the real world from the ideal world, i.e., Z cannot dis-
tinguish whether it is interacting with A and parties
running protocol ϕ or with S and dummy parties relay-
ing to Fϕ.

A protocol ϕG securely realizes F in the G-hybrid
model when ϕ is allowed to invoke the ideal functional-
ity G. Therefore, for any protocol ψ that securely real-
izes G, the composed protocol ϕψ, which is obtained by
replacing each invocation of an instance of G with an
invocation of an instance of ψ, securely realizes F .

In the ideal functionalities described in this pa-
per, we consider static corruptions. When describing
ideal functionalities, we use the following conventions
as in [8].
Interface Naming Convention. An ideal functional-

ity can be invoked by using one or more interfaces.
The name of a message in an interface consists of
three fields separated by dots, e.g., hd.read.ini in
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FHD in §3.1. The first field indicates the name of
the functionality and is the same in all interfaces of
the functionality. This field is useful for distinguish-
ing between invocations of different functionalities
in a hybrid protocol that uses two or more differ-
ent functionalities. The second field indicates the
kind of action performed by the functionality and
is the same in all messages that the functionality
exchanges within the same interface. The third field
distinguishes between the messages that belong to
the same interface, and can take the following dif-
ferent values. A message hd.read.ini is the incoming
message received by the functionality, i.e., the mes-
sage through which the interface is invoked. A mes-
sage hd.read.end is the outgoing message sent by the
functionality, i.e., the message that ends the execu-
tion of the interface. The message hd.read.sim is used
by the functionality to send a message to S, and the
message hd.read.rep is used to receive a message from
S.

Network vs Local Communication. Identities of
interactive Turing machine instances (ITI) consist
of a party identifier pid and a session identifier sid.
A set of parties in an execution of a system of in-
teractive Turing machines is a protocol instance if
they have the same session identifier sid. ITIs can
pass direct inputs to and outputs from “local” ITIs
that have the same pid. An ideal functionality F
has pid = ⊥ and is considered local to all parties.
An instance of F with the session identifier sid only
accepts inputs from and passes outputs to machines
with the same session identifier sid. Some function-
alities require the session identifier to have some
structure. Those functionalities check whether the
session identifier possesses the required structure
in the first message that invokes the functionality.
For the subsequent messages, the functionality im-
plicitly checks that the session identifier equals the
session identifier used in the first message. Commu-
nication between ITIs with different party identifiers
must take place over the network. The network is
controlled by A, meaning that he can arbitrarily
delay, modify, drop, or insert messages.

Query Identifiers. Some interfaces in a functionality
can be invoked more than once. When the function-
ality sends a message hd.read.sim to S in such an
interface, a query identifier qid is included in the
message. The query identifier must also be included
in the response hd.read.rep sent by S. The query
identifier is used to identify the message hd.read.sim
to which S replies with a message hd.read.rep. We

note that, typically, S in the security proof may not
be able to provide an immediate answer to the func-
tionality after receiving a message hd.read.sim. The
reason is that S typically needs to interact with the
copy of A it runs in order to produce the message
hd.read.rep, but A may not provide the desired an-
swer or may provide a delayed answer. In such cases,
when the functionality sends more than one message
hd.read.sim to S, S may provide delayed replies, and
the order of those replies may not follow the order
of the messages received.

Aborts. When an ideal functionality F aborts after
being activated with a message sent by a party, we
mean that F halts the execution of its program and
sends a special abortion message to the party that
invoked the functionality. When an ideal function-
ality F aborts after being activated with a message
sent by S, we mean that F halts the execution of
its program and sends a special abortion message to
the party that receives the outgoing message from
F after F is activated by S.

B Security Definitions
Description of FREG. FREG is parameterized by a
message spaceM.
1. On input (reg.register.ini, sid, v) from a party T :

– Abort if sid 6= (T , sid ′), or if v /∈ M or if there
is a tuple (sid, v′, 0) stored.

– Store (sid, v, 0).
– Send (reg.register.sim, sid, v) to S.

S. On input (reg.register.rep, sid) from the simulator S:
– Abort if (sid, v, 0) is not stored or if (sid, v, 1) is

already stored.
– Store (sid, v, 1) and parse sid as (T , sid ′).
– Send (reg.register.end, sid) to T .

2. On input (reg.retrieve.ini, sid) from any party P:
– If (sid, v, 1) is stored, set v′ ← v; else set v′ ← ⊥.
– Create a fresh qid and store (qid,P, v′).
– Send (reg.retrieve.sim, sid, qid, v′) to S.

S. On input (reg.retrieve.rep, sid, qid) from S:
– Abort if (qid,P, v′) is not stored.
– Delete the record (qid,P, v′).
– Send (reg.retrieve.end, sid, v′) to P.

Description of FCRS.Setup
CRS . FCRS.Setup

CRS is parameterized
by a ppt alg. CRS.Setup.
1. On input (crs.get.ini, sid) from any party P:

– If (sid, crs) is not stored, run crs ← CRS.Setup
and store (sid, crs).
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– Create a fresh qid and store (qid,P).
– Send (crs.get.sim, sid, qid, crs) to S.

S. On input (crs.get.rep, sid, qid) from the simulator S:
– Abort if (qid,P) is not stored.
– Delete the record (qid,P).
– Send (crs.get.end, sid, crs) to P.

Description of FNYM. FNYM is parameterized by a
message spaceM, a universe of pseudonyms Up, and a
leakage function l, which leaks the message length.
1. On input (nym.send.ini, sid,m,P) from Tk:

– Abort if sid 6= (R, sid ′), or if m /∈ M, or if P /∈
Up.

– Create a fresh qid and store (qid,P, Tk,m).
– Send (nym.send.sim, sid, qid, l(m)) to S.

S. On input (nym.send.rep, sid, qid) from S:
– Abort if (qid,P, Tk,m) is not stored.
– Store (sid,P, Tk).
– Delete the record (qid,P, Tk,m).
– Parse sid as (R, sid ′).
– Send (nym.send.end, sid,m,P) to R.

2. On input (nym.reply.ini, sid,m,P) from R:
– Abort if sid 6= (R, sid ′), or if m /∈ M, or if P /∈

Up.
– Abort if there is not a tuple (sid,P ′, Tk) stored

such that P ′ = P.
– Create a fresh qid and store (qid,P, Tk,m).
– Delete the tuple (sid,P, Tk).
– Send (nym.reply.sim, sid, qid, l(m)) to S.

S. On input (nym.reply.rep, sid, qid) from S:
– Abort if (qid,P, Tk,m) is not stored.
– Delete the record (qid,P, Tk,m).
– Send (nym.send.end, sid,m,P) to Tk.

Description of FR
ZK. The functionality FR

ZK is parame-
terized by a description of a relation R and by a universe
of pseudonyms Up. FR

ZK interacts with provers Pk and
a verifier V.
1. On input (zk.prove.ini, sid,wit, ins,P) from Pk:

– Abort if sid 6= (V, sid ′), or if (wit, ins) /∈ R, or if
P /∈ Up.

– Create a fresh qid and store (qid, ins,P).
– Send (zk.prove.sim, sid, qid, ins) to S.

S. On input (zk.prove.rep, sid, qid) from S:
– Abort if (qid, ins,P) is not stored.
– Parse sid as (V, sid ′).
– Delete the record (qid, ins,P).
– Send (zk.prove.end, sid, ins,P) to the verifier V.

Commitment Schemes. A commitment scheme must
be hiding and binding. The hiding property ensures that
a commitment c to x does not reveal any information

about x, whereas the binding property ensures that c
cannot be opened to another value x ′.
Definition B.1. [Hiding Property] For any PPT adver-
sary A,

Pr



parc
$←− C.Setup(1k);

(x0, st) $←− A(parc);
x1

$←−M; b $←− {0, 1};
(c, o) $←− C.Com(parc, xb);
b′ $←− A(st, c) : x0 ∈M ∧ b = b′


≤ 1

2 + ε(k) .

Definition B.2. [Binding Property] For any PPT ad-
versary A,

Pr


parc

$←− C.Setup(1k);
(c, x, o, x ′, o′) $←− A(parc) :
x ∈M ∧ x ′ ∈M ∧
1 = C.Vf(parc, c, x, o) ∧
1 = C.Vf(parc, c, x ′, o′) ∧ x 6= x ′

 ≤ ε(k) .

Vector Commitments. A VC scheme must be hid-
ing and binding. Informally, the hiding property ensures
that a VC vc does not reveal any information about the
committed vector x, while the binding property ensures
that vc cannot be opened to two different messages x[i]
and x′[i] for any i ∈ [1, `].
Definition B.3. [Hiding Property] For any PPT A and
` polynomial in k,

Pr


par ← VC.Setup(1k, `);
(x0, st)← A(par); r ← R;
x1 ←M`; b← {0, 1};
vc ← VC.Com(par ,xb, r);
b′ ← A(st, vc) : b = b′ ∧ x0 ∈M`

 = 1
2 + ε(k) .

Definition B.4. [Binding Property] For any PPT A
and ` polynomial in k,

Pr


par ← VC.Setup(1k, `);
(vc, i, x, x′,w,w′)← A(par) :
VC.Vf(par , vc, x, i,w) = 1 ∧ x 6= x′ ∧
VC.Vf(par , vc, x′, i,w′) = 1 ∧
i ∈ [1, `] ∧ x, x′ ∈M

 ≤ ε(k) .

Signature Schemes. A signature scheme must be ex-
istentially unforgeable, which ensures that it is not fea-
sible to output a signature on a message without knowl-
edge of the secret key or of another signature on that
message.

Definition B.5. [Existential Unforgeability] Let Os be
an oracle that, on input sk and a message m ∈M, out-
puts S.Sign(sk,m), and let Ss be a set that contains the
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messages sent to Os. For any ppt adversary A,

Pr


(sk, pk) $←− S.KG(1k);
(m, sig) $←− A(pk)Os(sk,·) :
1 = S.Vf(pk, sig,m) ∧
m ∈M ∧ m /∈ Ss

 ≤ ε(k) .

C Security Analysis
To prove that ΠHD securely realizes FHD, we must show
that for any environment Z and any adversary A there
exists a simulator S such that Z cannot distinguish
whether it is interacting with A and the protocol in
the real world or with S and FHD. S thereby plays the
role of all honest parties in the real world and interacts
with FHD for all corrupt parties in the ideal world.

Our simulator S runs copies of the functionalities
FCRS.Setup

CRS , FREG, FNYM and FRr

ZK. When any of the
copies of those functionalities aborts, S implicitly for-
wards the abortion message to A if the functionality
sends the abortion message to a corrupt party.

First, we analyze the security of ΠHD when (a sub-
set of) readers Rk are corrupt. Second, we analyze the
security of ΠHD when the updater U is corrupt. We do
not analyze in detail the security of ΠHD when U and (a
subset of) readers Rk are corrupt. We note that, in ΠHD,
honest readers communicate with U but not with other
readers. Therefore, for this case the simulator and the
security proof are very similar to the case where only U
is corrupt.
Description of S for Corrupt Rk.We describe S for
the case in which (a subset of) Rk are corrupt.
A requests parameters. On input from A the mes-

sage (crs.get.ini, sid), the simulator S runs a copy
of FCRS.Setup

CRS on that input. When the copy of
FCRS.Setup

CRS sends (crs.get.sim, sid, qid, 〈par , parc〉), S
forwards that message to A.

A receives parameters. On input from A the mes-
sage (crs.get.rep, sid, qid), S runs a copy of FCRS.Setup

CRS
on that input. When the copy of FCRS.Setup

CRS sends
(crs.get.end, sid, 〈par , parc〉), S sends (crs.get.end, sid,
〈par , parc〉) to A.

A sends a ZK proof. On input (zk.prove.ini, sid,witr,
insr,P) from A, S stores (witr, insr,P) and runs
FRr

ZK on that input. When FRr

ZK sends the message
(zk.prove.sim, sid, qid, insr), S forwards that message
to A.

Honest U receives ZK proof. On input the message
(zk.prove.rep, sid, qid) from A, S runs a copy of

FRr

ZK on that input. When the copy of FRr

ZK sends
(zk.prove.end, sid, insr,P), S parses the stored witr
as (sig, vc, c, r2, o2, 〈i, vri ,wi, oi , ori〉i∈S) and does
the following:
– If the pseudonym P was received before, S

aborts. (We recall that the honest updater also
aborts if a pseudonym is reused.)

– Else, if A did not receive a signature sig on (vc,
c), S outputs failure.

– Else, S finds the stored tuple (vc,x, r, c, s, o)
that contains vc and c. If, for any i ∈ S, x[i] 6=
vri , S outputs failure.

– Else, S takes c′ from insr and runs FNYM
on input (nym.reply.ini, sid, (Open c′),P). When
FNYM sends (nym.reply.sim, sid, qid, l(Open c′)),
S forwards that message to A.

A receives (Open c′) message. When A sends the
message (nym.reply.rep, sid, qid), S runs a copy of
FNYM on that input. When the copy of FNYM
sends (nym.send.end, sid, (Open c′),P), S forwards
that message to A.

A sends the commitment (and opening). On in-
put the message (nym.send.ini, sid,m,P) from A, S
runs a copy of FNYM on that input. When the copy
of FNYM sends (nym.send.sim, sid, qid, l(m)), S for-
wards that message to A.

Honest U gets the commitment (and opening).
On input the message (nym.send.rep, sid, qid) from
A, S runs a copy of FNYM on that input. When
the copy of FNYM sends (nym.send.end, sid,m,P), S
parses m as either c1 or (c1, s, o′) and proceeds as
follows.
– If m = c1, S aborts if P was already received,

else stores (witr ← ⊥, insr ← ⊥,P) and sends
(hd.read.ini, sid,P,⊥) to FHD.

– If m = (c1, s, o′), S finds the stored tuple (witr,
insr,P) with the same pseudonym previously re-
ceived whenA sends a ZK proof. If no such tuple
exists, S aborts. Otherwise S parses insr as (pk,
par , parc, vc′, c′, pnic, 〈c′i , cr ′i 〉i∈S) and aborts if
(s, o′) is not a valid opening for c′. If the
opening is valid, S parses witr as (sig, vc, c, r2,

o2, 〈i, vri ,wi, oi , ori〉i∈S) and finds the stored tu-
ple (vc,x, r, c, s′, o) that contains vc and c.
– If s = s′, S aborts (in this case, A double-

spent a VC).
– If s 6= s′, S outputs failure.
– If s′ = ⊥, the simulator S stores (s, o′ −

o2) in that tuple and sends (hd.read.ini, sid,
P, (i, vri , ci , oi , cri , ori)i∈S) to FHD. When
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FHD sends (hd.read.sim, sid, qid, (ci , cri)i∈S),
S sends (hd.read.rep, sid, qid) to FHD.

Honest U sends update. When FHD sends the simu-
lator S the message (hd.update.sim, sid, qid), S sends
(hd.update.rep, sid, qid) to FHD. When FHD sends
(hd.update.end, sid,P, (i, vui)i∈[1,N ]), S sets xu[i] ←
vui (for all i ∈ [1,N ]) and picks a random value s2.
S picks the stored tuple (witr, insr,P) and the tuple
(vc,x, r, c, s, o) that contains vc and c in witr. S fol-
lows ΠHD to compute the new values of vc, x, and
c and updates the tuple (vc,x, r, c, s, o) accordingly
(r is updated by using witr). If a signing key pair
(pk, sk) is not stored, S computes and stores (pk, sk)
and registers pk with the copy of FREG. S computes
a signature sig on vc and c and runs FNYM on in-
put (nym.reply.ini, sid, 〈xu, s2, sig〉,P). When FNYM
sends (nym.reply.sim, sid, qid, l(〈xu, s2, sig〉)), S for-
wards that message to A.

A receives update. When A sends (nym.reply.rep, sid,
qid), S runs FNYM on that input. When FNYM sends
(nym.reply.end, sid, 〈xu, s2, sig〉,P), S forwards that
message to A.

A requests public key. On input (reg.retrieve.ini, sid)
from A, S runs a copy of FREG on that input. When
the copy of FREG sends (reg.retrieve.sim, sid, qid, pk),
S forwards that message to A.

A receives public key. On input (reg.retrieve.rep, sid,
qid) from A, S runs a copy of FREG on that input.
When the copy of FREG sends (reg.retrieve.end, sid,
pk), S sends (reg.retrieve.end, sid, pk) to A.

Theorem C.1. When (a subset of) Rk are corrupt,
ΠHD securely realizes FHD in the FCRS.Setup

CRS , FREG,
FNYM and FRr

ZK-hybrid model if the VC scheme is bind-
ing, the commitment scheme is binding, and the signa-
ture scheme is existentially unforgeable.

Proof of Theorem C.1. We show by means of a se-
ries of hybrid games that Z cannot distinguish between
the real-world protocol and our simulation with non-
negligible probability. Pr[Game i] is the probability
that Z distinguishes Game i from the real-world proto-
col.
Game 0: This game corresponds the real-world proto-

col. Therefore, Pr[Game 0] = 0.
Game 1: Game 1 follows Game 0, with the excep-

tion that Game 1 outputs failure when A sends a
signature sig on vc and c and A did not receive a sig-
nature on those values before. The probability that
Game 1 outputs failure is bound by theorem C.2.

Theorem C.2. Under the existential unforgeabil-
ity property of the signature scheme, we have that
|Pr[Game 1]− Pr[Game 0]| ≤ Advunf−sig

A .
We omit a formal proof of theorem C.2. In a nut-
shell, we can construct an algorithm B that, given
an A that makes Game 1 output failure with non-
negligible probability, wins the existential unforge-
ability game with that probability. B receives the
public key from the challenger and registers it with
FREG. To compute signatures on vc and c, B uses
the signing oracle. When A sends a signature sig on
vc and c as part of the witness witr sent to FRr

ZK such
that B did not compute before a signature on those
values, B submits sig along with (vc, c) in order to
win the existential unforgeability game.

Game 2: Game 2 follows Game 1, with the excep-
tion that Game 2 outputs failure when A sends a
witness (sig, vc, c, r2, o2, 〈i, vri ,wi, oi , ori〉i∈S) and an
instance (pk, par , parc, vc′, c′, pnic, 〈c′i , cr ′i 〉i∈S) such
that wi opens the commitment vc′ to a value vri 6=
x[i] at position i, where x is the vector committed
in vc (vc′ is a rerandomization of vc). The prob-
ability that Game 2 outputs failure is bound by
theorem C.3.
Theorem C.3. If the binding property of the
VC scheme holds, |Pr[Game 2] − Pr[Game 1]| ≤
Advbin−vc

A .
We omit a formal proof of theorem C.3. We can con-
struct an algorithm B that, given an A that makes
Game 2 output failure with non-negligible probabil-
ity, wins the binding game of the VC scheme with
that probability. B receives the parameters of the
VC scheme from the challenger and stores them in
the copy of FCRS.Setup

CRS . When A sends an opening
wi that opens vc′ to vri as described above, B com-
putes another opening w′i that opens vc′ to x[i]. We
note that witr contains r2, so B knows the random-
ness change of vc′ with respect to vc and is able to
compute w′i. B sends vc′ along with i, wi, vri , w′i,
and x[i] to win the binding game of the VC scheme.

Game 3: Game 3 follows Game 2, with the excep-
tion that Game 3 outputs failure when A sends an
opening (s, o′) for a commitment c′ such that a pre-
vious opening (ŝ, ô′) was received for a commitment
ĉ′ and both c′ and ĉ′ are rerandomizations of c. The
probability that Game 3 outputs failure is bound
by theorem C.4.
Theorem C.4. Under the binding property of the
commitment scheme, we have that |Pr[Game 3] −
Pr[Game 2]| ≤ Advbin−com

A .
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We omit a formal proof of theorem C.4. We can con-
struct an algorithm B that, given an A that makes
Game 3 output failure with non-negligible proba-
bility, wins the binding game of the commitment
scheme with that probability. B receives the param-
eters of the commitment scheme from the challenger
and stores them in the copy of FCRS.Setup

CRS . When A
sends an opening (s, o′) for a commitment c′ such
that a previous opening (ŝ, ô′) was received for a
commitment ĉ′ and both c′ and ĉ′ are both reran-
domizations of a commitment c, B computes (s,
o′ − o2) and (ŝ, ô′ − ô2). The values o2 and ô2 are
the randomness used to rerandomize c into c′ and ĉ′

respectively, which B obtains through the witnesses
witr sent to FRr

ZK. B sends c along with (s, o′ − o2)
and (ŝ, ô′− ô2) to win the binding game of the com-
mitment scheme.

The distribution of Game 3 is identical to our simula-
tion. This concludes the proof of theorems C.1.
Description of S when U is Corrupt. We describe
S for the case in which U is corrupt.
A requests or receives parameters. S runs as in

the case where (a subset of) Rk are corrupt.
A registers public key. On input (reg.register.ini, sid,

pk) from A, S runs a copy of FREG on that input.
When the copy of FREG sends (reg.register.sim, sid,
pk), S forwards that message to A.

A ends registration of public key. On input from
A the message (reg.register.rep, sid), S runs a copy of
FREG on that input. When the copy of FREG sends
(reg.register.end, sid), S forwards that message to A.

Honest Rk starts ZK proof. On input from func-
tionality FHD the message (hd.read.sim, sid, qid, (ci ,

cri)i∈S), the simulator S sends (hd.read.rep, sid,
qid) to FHD and receives (hd.read.end, sid,P, f , (ci ,

cri)i∈S) from FHD. If f = 0, S does the following:
– S computes a VC vc′ to a random vector and a

commitment c′ to a random value s with open-
ing o′.

– Parse the commitment ci as (c′i , pnic,NIC.Vf).
– Parse the commitment cri as (cr ′i , pnic,NIC.Vf).
– S sets the instance as insr ← (pk, par , parc, vc′,

c′, pnic, 〈c′i , cr ′i 〉i∈S) and stores (qid, insr,P) and
(sid,P, insr, s, o′).

– S sends (zk.prove.sim, sid, qid, insr) to A.
A receives ZK proof. On input (zk.prove.rep, sid, qid)

from A, S does the following:
– S sends an abortion message to A if (qid, insr,

P) is not stored.
– S deletes the record (qid, insr,P).

– S sends (zk.prove.end, sid, insr,P) to A.
A requests opening. On input from the adversary
A the message (nym.reply.ini, sid, (Open c′),P), S
runs FNYM on input (nym.reply.ini, sid, (Open c′),P).
When FNYM sends the message (nym.reply.sim, sid,
qid, l(Open c′)), S forwards that message to A.

Honest Rk receives request. On input the message
(nym.reply.rep, sid, qid) from A, the simulator S runs
a copy of FNYM on that input. When FNYM sends
(nym.send.end, sid, (Open c′),P), S continues with
the case “Honest Rk sends commitment (and open-
ing)”.

Honest Rk sends commitment (and opening).
On input (hd.read.sim, sid, qid, (ci , cri)i∈S) from the
functionality FHD, S sends (hd.read.rep, sid, qid) to
FHD and receives (hd.read.end, sid,P, f , (ci , cri)i∈S)
from FHD. S computes a commitment c1 to a ran-
dom value. If f = 1, S sets m ← c1. Else, after
following the case “Honest Rk starts ZK proof”,
S picks the stored tuple (sid,P, insr, s, o′) and
sets m ← 〈c1, s, o′〉. S runs a copy of FNYM on
input (nym.send.ini, sid,m,P). When FNYM sends
(nym.send.sim, sid, qid, l(m)), S forwards that mes-
sage to A.

A receives commitment (and opening). On input
(nym.send.rep, sid, qid) from A, S runs a copy of
FNYM on that input. When the copy of FNYM sends
(nym.send.end, sid,m,P), S forwards that message to
A.

A sends update. On input from FNYM the message
(nym.reply.ini, sid,m,P) , S runs a copy of FNYM
on that input. When the copy of FNYM sends
(nym.reply.sim, sid, qid, l(m)), S forwards that mes-
sage to A.

Honest Rk receives update. On input from A the
message (nym.reply.rep, sid, qid), S runs a copy of
FNYM on that input. When the copy of FNYM sends
(nym.send.end, sid,m,P), S parses m as (x, s2, sig),
picks the stored tuple (sid,P, insr, s, o′) and follows
the steps described in ΠHD to verify sig. Then S
sends (hd.update.ini, sid,P,x) to FHD. When FHD
sends the message (hd.update.sim, sid, qid), S sends
(hd.update.rep, sid, qid) to FHD.

Theorem C.5. When U is corrupt, ΠHD securely re-
alizes FHD in the FREG, FCRS.Setup

CRS , FNYM and FRr

ZK-
hybrid model if the VC scheme is hiding and the com-
mitment scheme is hiding.

Proof of Theorem C.5. We show by means of a se-
ries of hybrid games that Z cannot distinguish between
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the real-world protocol and our simulation with non-
negligible probability.
Game 0: This game corresponds to the real-world pro-

tocol. Therefore, Pr[Game 0] = 0.
Game 1: Game 1 follows Game 0, with the excep-

tion that Game 1 does not run a copy of FRr

ZK.
Instead, Game 1 sets the messages (zk.prove.sim,
sid, qid, insr) and (zk.prove.end, sid, insr,P) directly.
This change does not alter the view of Z. Therefore,
|Pr[Game 1]− Pr[Game 0]| = 0

Game 2: Game 2 follows Game 1, with the exception
that Game 2 replaces the VC vc′ in insr by a com-
mitment to a random vector. The probability that
Game 1 and Game 2 are distinguished by Z is
bound by theorem C.6.
Theorem C.6. Let M be the number of read op-
erations sent by honest readers after their first read
operation. Under the hiding property of the vector
commitment scheme, we have that |Pr[Game 2] −
Pr[Game 1]| ≤M ·Advhid−vc

A .
Proof of Theorem C.6. We define a sequence
of games. In Game 1.i, for the last i read op-
erations (after their first read operation) sent by
honest readers, the vector commitment vc′ is re-
placed by a vector commitment to a random vector.
Therefore,Game 1.0 corresponds toGame 1, while
Game 1.M corresponds to Game 2.
We construct an algorithm B that, given an A that
distinguishes Game 1.i from Game 1.(i + 1) with
non-negligible probability, breaks the hiding prop-
erty of the vector commitment scheme with non-
negligible probability. B works as follows. When the
challenger sends the parameters par , B stores par as
common reference string in the copy of FCRS.Setup

CRS .
B replaces the vector commitment vc′ by a vector
commitment to a random vector in the last i + 1
read operations by the honest readers. For the read
operation i, B sends to the challenger the vector
x that should be committed in vc′. The challenger
sends back a commitment vc′. As can be seen, if vc′

is a commitment to a random vector, the situation
corresponds to Game 1.(i+ 1), while otherwise the
situation corresponds to Game 1.i. Therefore, if A
distinguishes Game 1.i from Game 1.(i + 1) with
non-negligible probability, B can use A’s guess to
break the hiding property of the VC scheme. This
concludes the proof of Theorem C.6.

Game 3: Game 3 follows Game 2, with the exception
that Game 3 replaces the commitment c′ in insr by
a commitment to a random value. The probability

that Game 2 and Game 3 are distinguished by Z
is bound by theorem C.7.
Theorem C.7. Let M be the number of read op-
erations sent by honest readers. Under the hiding
property of the commitment scheme, we have that
|Pr[Game 3]− Pr[Game 2]| ≤M ·Advhid−com

A .
Proof of Theorem C.7. We define a sequence
of games. In Game 2.i, for the last i read oper-
ations sent by honest readers, the commitment c′

is replaced by a commitment to a random value.
Therefore,Game 2.0 corresponds toGame 2, while
Game 2.M corresponds to Game 3.
We construct an algorithm B that, given an A that
distinguishes Game 2.i from Game 2.(i + 1) with
non-negligible probability, breaks the hiding prop-
erty of the commitment scheme with non-negligible
probability. B works as follows. When the challenger
sends the parameters parc, B stores parc as common
reference string in the copy of FCRS.Setup

CRS . B replaces
the commitment c′ by a commitment to a random
value in the last i+ 1 read operations by the honest
readers. For the proof i, B sends to the challenger
the value s that should be committed in c′. The chal-
lenger sends back a commitment c′. As can be seen,
if c′ is a commitment to a random value, the situa-
tion corresponds to Game 2.(i+1), while otherwise
the situation corresponds toGame 2.i. Therefore, if
A distinguishesGame 2.i fromGame 2.(i+1) with
non-negligible probability, B can use the A’s guess
to break the hiding property of the commitment
scheme. This concludes the proof of Theorem C.7.

The distribution of Game 3 is identical to our simula-
tion. This concludes the proof of Theorem C.5.

D Instantiation of HD

D.1 Building Blocks of Our Instantiation

Bilinear Maps. Let G, G̃ and Gt be groups of prime
order p. A map e : G× G̃→ Gt must satisfy bilinearity,
i.e., e(gx, g̃y) = e(g, g̃)xy; non-degeneracy, i.e., for all
generators g ∈ G and g̃ ∈ G̃, e(g, g̃) generates Gt; and
efficiency, i.e., there exists an efficient algorithm G(1k)
that outputs the pairing group setup grp ← (p,G, G̃,Gt,
e, g, g̃) and an efficient algorithm to compute e(a, b) for
any a ∈ G, b ∈ G̃.
`-DH Exponent (DHE) Assumption. Let (p,G, G̃,
Gt, e, g, g̃)← G(1k) and α← Zp. Given (p,G, G̃,Gt, e, g,
g̃) and a tuple (g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`) such that
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gi = g(αi) and g̃i = g̃(αi), for any p.p.t. adversary A,
Pr[g(α`+1) ← A(p,G, G̃,Gt, e, g, g̃, g1, g̃1, . . . , g`, g̃`, g`+2,

. . . , g2`)] ≤ ε(k).
VC Scheme. We use a VC scheme that is secure under
the `-DHE assumption [27].
VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g, g̃)←
G(1k), pick α ← Zp, and compute (g1, g̃1, . . . , g`, g̃`,
g`+2, . . . , g2`), where gi = g(αi) and g̃i = g̃(αi). Out-
put the parameters par = (p,G, G̃,Gt, e, g, g̃, g1, g̃1,

. . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R = Zp).
VC.Com(par ,x, r). Let |x| = n ≤ `. Output vc = gr ·∏n

j=1 gx[j]
`+1−j = gr · gx[1]

` · · · gx[n]
`+1−n.

VC.Open(par , i,x, r). Let |x| = n ≤ `. Output w = gri ·∏n
j=1,j 6=i gx[j]

`+1−j+i.
VC.Vf(par , vc, x, i,w). Output 1 if e(vc, g̃i) = e(w, g̃) ·

e(g1, g̃`)x, else output 0.

Theorem D.1. This vector commitment scheme is hid-
ing and binding under as defined in §B under the `-DHE
assumption.

This vector commitment scheme fulfills the hiding
property in an information-theoretic way. We show that
this vector commitment scheme fulfills the binding prop-
erty under the `-DHE assumption. Given an adversary
A that breaks the binding property with non-negligible
probability ν, we construct an algorithm T that breaks
the `-DHE assumption with non-negligible probability
ν. First, T receives an instance (e,G, G̃,Gt, p, g, g̃, g1, g̃1,

. . . , g`, g̃`, g`+2, . . . , g2`) of the `-DHE assumption. T sets
par ← (p,G, G̃,Gt, e, g, g̃, g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`)
and sends par to A. A returns (vc, i, x, x′,w,w′) such
that VC.Vf(par , vc, x, i,w) = 1, VC.Vf(par , vc, x′, i,w′)
= 1, i ∈ [1, `], x, x′ ∈ M, and x 6= x′. T computes
g`+1 as follows:

e(w, g̃)e(g1, g̃`)x = e(w′, g̃)e(g1, g̃`)x
′

e(w/w′, g̃) = e(g1, g̃`)x
′−x

e((w/w′)1/(x′−x), g̃) = e(g1, g̃`)

e((w/w′)1/(x′−x), g̃) = e(g`+1, g̃) .

The last equation implies that g`+1 = (w/w′)1/(x′−x).
T returns (w/w′)1/(x′−x) as a solution for the `-DHE
problem.
Commitment Scheme. We use the Pedersen commit-
ment scheme [31]. C.Setup(1k) takes a group G of prime
order p with generator g, picks random α, computes
h ← gα and sets the parameters parc ← (G, g, h), which
include a description of the message space M ← Zp.
C.Com(parc, x) picks random o ← Zp and outputs a
commitment c ← gxho to x ∈ M and an opening o.

C.Vf(parc, c, x, o) outputs 1 if c = gxho. This scheme
is perfectly hiding and computationally binding. In [8],
it is shown that Pedersen commitments realize FNIC.
Therefore, we use Pedersen commitments to instantiate
both the commitments computed in ΠHD and those com-
puted by FNIC and received as input to ΠHD.
Signature Scheme. We use the structure-preserving
signature (SPS) scheme in [1]. In SPSs, the public key,
the messages, and the signatures are group elements in
G and G̃, and verification must consist purely in the
checking of pairing product equations. We employ SPSs
to sign group elements, while still supporting efficient
ZK proofs of signature possession. In this SPS scheme,
a elements in G and b elements in G̃ are signed.
S.KG(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g, g̃) be the bi-

linear map parameters. Pick at random u1, . . . , ub, v,

w1, . . . wa, z ← Z∗p and compute Ui = gui , i ∈ [1..b],
V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z. Return
the verification key pk ← (grp, U1, . . . , Ub, V,W1, . . . ,

Wa, Z) and the signing key sk ← (pk, u1, . . . , ub, v,

w1, . . . , wa, z).
S.Sign(sk, 〈m1, . . . ,ma+b〉). Pick r ← Z∗p, set R ← gr,

S ← gz−rv
∏a
i=1 m

−wi
i , and T ← (g̃

∏b
i=1 m

−ui
a+i )1/r,

and output the signature sig ← (R,S, T ).
S.Vf(pk, sig, 〈m1, . . . ,ma+b〉). Output 1 if it is satisfied

that e(R, V )e(S, g̃)
∏a
i=1 e(mi,Wi) = e(g, Z) and

e(R, T )
∏b
i=1 e(Ui,ma+i) = e(g, g̃).

Functionality FR
ZK. To instantiate FR

ZK, we use the
scheme in [10]. In [10], a UC ZK protocol proving knowl-
edge of exponents (w1, . . . , wn) that satisfy the formula
φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (4)

The formula φ(w1, . . . , wn) consists of conjunctions and
disjunctions of “atoms”. An atom expresses group rela-
tions, such as

∏k
j=1 g

Fj

j = 1, where the gj ’s are elements
of prime order groups and the Fj ’s are polynomials in
the variables (w1, . . . , wn).

A proof system for (4) can be transformed into a
proof system for more expressive statements about se-
cret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (5)

The transformation adds an additional base h to the
public bases. For each gj ∈ sbases, the transformation
picks a random exponent ρj and computes a blinded
base g′j = gjhρj . The transformation adds g′j to the
public bases bases, ρj to the secret exponents sexps, and
rewrites gFj

j into g′j
Fjh−Fjρj .
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The proof system supports pairing product equa-
tions

∏k
j=1 e(gj , g̃j)

Fj = 1 in groups of prime or-
der with a bilinear map e, by treating the target
group Gt as the group of the proof system. The
embedding for secret bases is unchanged, except for
the case in which both bases in a pairing are se-
cret. In this case, e(gj , g̃j)Fj must be transformed into
e(g′j , g̃′j)Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)−Fjρje(h, h̃)Fjρj ρ̃j .

D.2 UC ZK Proof for the Read Relation

To instantiate FRr

ZK with the protocol in [10], we need
to instantiate Rr with our chosen VC, commitment and
signature schemes. Then we need to express Rr following
the notation for UC ZK proofs described above. We use
ZK proof similar to the one in [24].

In Rr, we need to prove that the position i com-
mitted in c′i equals the position opened in the VC vc
through the verification equation e(vc, g̃i) = e(w, g̃) ·
e(g1, g̃`)x. In our VC scheme, α is secret, which makes
the relation between g̃i = g̃αi and i not efficiently prov-
able. To solve this problem, the updater computes SPSs
that bind gi with g̃i. Given the parameters par = (p,G,
G̃,Gt, e, g, g̃, g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`,M = Zp,R =
Zp), and the key pair (sk, pk), the updater, for i ∈ [1, `],
computes sigi ← S.Sign(sk, 〈gsid , g̃i, g̃i〉).

Let h̃ ← G̃. Let (g, h) ∈ G2 and (g̃, h̃) ∈ G2 be two
sets of parameters of the Pedersen commitment scheme
for the commitments (c′i , cr ′i) and c respectively. Rr in-
volves proofs about secret bases and we use the trans-
formation described above for those proofs. The base h
is also used to randomize secret bases in G, and h̃ is
added to randomize bases in G̃.

Let (U1, U2, V,W1, Z) be the public key of the sig-
nature scheme for signing 1 element of G and 2 element
of G̃. Let (Ri, Si, Ti) be a signature on (gsid , g̃i, g̃i). Let
(R,S, T ) be a signature on vc, c and g̃sid . (When veri-
fying a proof, the updater can distinguish between the
two types of signatures because sid is signed in different
positions.) We describe the ZK proof for Rr as follows.

Kvc, c, R, S, T, {i, oi , vri , ori , g̃i,wi, Ri, Si, Ti}∀i∈S :
e(R, V )e(S, g̃)e(vc,W1)e(g, Z)−1 = 1 ∧ (6)
e(R, T )e(U1, c)e(U2, g̃sid)e(g, g̃)−1 = 1 ∧ (7)
{c′i = gihoi ∧ cr ′i = gvri hori ∧ (8)
e(Ri, V )e(Si, g̃)e(gsid ,W1)e(g, Z)−1 = 1 ∧ (9)
e(Ri, Ti)e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (10)
e(vc, g̃i)−1e(wi, g̃)e(g1, g̃`)vri = 1}∀i∈S (11)

Equation 6 and equation 7 prove knowledge of a sig-
nature (R,S, T ) on vc, c and g̃sid . Equation 8 proves
knowledge of the openings of the Pedersen commitments
c′i and cr ′i . Equation 9 and Equation 10 prove knowl-
edge of a signature (Ri, Si, Ti) on a message (gsid , g̃i,
g̃i). Equation 11 proves that the value vri in cr ′i is equal
to the value committed in the position i of the vector
commitment vc.

To prove knowledge of the secret bases (vc, c, R, S,
T, {g̃i,wi, Ri, Si, Ti}∀i∈S), the equations need to be mod-
ified following the transformation described above. This
means that each of the bases is rerandomized and added
to the instance. Therefore, a reader rerandomizes c and
vc, and the fact that they are a rerandomization of the
values signed in the signature (R,S, T ) is proven via
equation 6 and equation 7. In the case of vc, we use g
instead of h as the base used for randomization.

E Variants of HD
Variants of FHD. FHD can be modified to store a
database DB of the form [i, vri,1, . . . , vri,m], i.e., a
database where a tuple of values is stored in each en-
try. In the hd.update interface, U sends (i, vui,1, . . . ,
vui,m)∀i∈[1,N ], and each value vui,j (j ∈ [1,m]) can
be updated or not independently of other values in
the same entry. In the hd.read interface, Rk sends (i,
vri,1, . . . , vri,m)i∈S along with commitments and open-
ings to the position and values of each of the entries
read, i.e., all the values in an entry are read. The posi-
tion j ∈ [1,m] of each value vri,j is not hidden from U .
This variant of FHD is useful for protocols where a party
needs to read a tuple of values and prove that they are
stored in the same entry and that each vri,j is stored at
a certain position j within the entry.
FHD cannot be modified so that it authenticates

Rk towards U . If all Rk were authenticated, U would
be able to track all the changes performed on each of
the databases, and thus the contents of the databases
would not be hidden from U .
Variants of ΠHD. To construct the variant described
above, vc commits to a vector x of length N ×m such
that x[(i − 1)m + j] = vri,j for all i ∈ [1,N ] and
j ∈ [1,m]. In the update phase, each vector compo-
nent can be updated independently of others regard-
less of whether they belong to the same database en-
try. To read the database entry i, Rk needs to compute
openings (w(i−1)m+1, . . . ,wim) to open the positions
[(i−1)m+1, im] of the committed vector x.Rk must also
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prove that those positions belong to the database entry
i. To this end, the relation Rr is modified to involve a
witness witr ← (sig, vc, c, r2, o2, 〈i, oi , {w(i−1)m+j , vri,j ,

ori,j}∀j∈[1,m]〉i∈S) and insr ← (pk, par , parc, vc′, c′, pnic,
〈c′i , {cr ′i,j}∀j∈[1,m]〉i∈S).

Rr ={(witr, insr) :
1 = S.Vf(pk, sig, 〈vc, c〉) ∧
vc′ = VC.Rerand(vc, r2) ∧ c′ = C.Rerand(c, o2) ∧
{1 = NIC.Vf(pnic, c′i , i, oi) ∧
{1 = NIC.Vf(pnic, cr ′i,j , vri,j , ori,j) ∧
1 = VC.Vf(par , vc, vri,j , (i− 1)m+ j,w(i−1)m+j)
}∀j∈[1,m] }∀i∈S }

Instantiations of Variants of ΠHD. In order to in-
stantiate this variant of ΠHD, we compute signatures
sigi ← S.Sign(sk, 〈gi, gsid , g̃(i−1)m+1, . . . , g̃im〉) to bind
the entry i to the positions [(i− 1)m+ 1, im] that need
to be opened in the committed vector. The public key
of the signature scheme is now (U1, . . . , Um, V,W1,W2,

Z). The ZK proof for relation R is:

Kvc, c, R, S, T, {i, oi , {vri,j , ori,j ,

g̃(i−1)m+j ,w(i−1)m+j}∀j∈[1,m], Ri, Si, Ti}∀i∈S :
e(R, V )e(S, g̃)e(vc,W1)e(g, Z)−1 = 1 ∧
e(R, T )e(U1, c)e(U2, g̃sid)e(g, g̃)−1 = 1 ∧
{c′i = gihoi ∧ {cr ′i,j = gvri,j hori,j}∀j∈[1,m] ∧
e(Ri, V )e(Si, g̃)e(g,W1)ie(gsid ,W2)e(g, Z)−1 = 1 ∧
e(Ri, Ti)e(U1, g̃(i−1)m+1) · · · e(Um, g̃im)e(g, g̃)−1 = 1 ∧
{e(vc, g̃(i−1)m+j)−1e(w(i−1)m+j , g̃)e(g1, g̃`)vri,j = 1
}∀j∈[1,m]}∀i∈S

The signature on 〈gi, gsid , g̃(i−1)m+1, . . . , g̃im〉 also binds
the positions of the database entry i together and reveals
the position j ∈ [1,m] of each value vri,j within the
entry.

F Security Analysis of Our PPLP
To prove that ΠLP securely realizes FLP, we must show
that for any environment Z and any adversary A there
exists a simulator S such that Z cannot distinguish
whether it is interacting with A and the protocol in
the real world or with S and FLP. S thereby plays the
role of all honest parties in the real world and interacts
with FLP for all corrupt parties in the ideal world.

Our simulator S runs copies of the functionalities
FHD, FRrd

ZK , FRpr

ZK , FNYM and FNIC. When any of the

copies of those functionalities aborts, S implicitly for-
wards the abortion message to A if the functionality
sends the abortion message to a corrupt party.

First, we analyze the security of ΠLP when (a sub-
set of) buyers Bk are corrupt. Second, we analyze the
security of ΠLP when the vendor V is corrupt. We do
not analyze in detail the security of ΠLP when V and (a
subset of) readers Bk are corrupt. We note that, in ΠLP,
honest buyers communicate with V but not with other
buyers. Therefore, for this case the simulator and the
security proof are very similar to the case where only V
is corrupt.
Description of S for Corrupt Bk. We describe S for
the case in which (a subset of) Bk are corrupt. Basically,
S runs copies of FHD, FRrd

ZK , FRpr

ZK , FNYM and FNIC as
well as a copy of V in ΠLP to simulate the protocol to-
wards the adversary A. We refer to that as “running pro-
tocol ΠLP”. In the following, we indicate when S needs
to deviate from protocol ΠLP and we detail the commu-
nication between S and FLP.
Register. When the adversary A uses the nic.setup in-

terface and the hd.read interface on input (P,⊥),
S runs protocol ΠLP. When the copy of V outputs
(lp.register.end, sid,P), S sends (lp.register.ini, sid,P)
to FLP. When FLP sends (lp.register.sim, sid, qid), S
sends (lp.register.rep, sid, qid) to FLP.

Purchase. When A uses the hd.read interface on
input (P,⊥), S runs protocol ΠLP. When the
copy of V outputs (lp.purchase.end, sid,P), S sends
(lp.purchase.ini, sid,P) to FLP. When FLP sends
(lp.purchase.sim, sid, qid), S sends (lp.purchase.rep,
sid, qid) to FLP.

Redeem. When the adversary A uses the nic.commit
interface on input N and vN , the zk.prove interface
on input witrd ← (vN , ov), insrd ← (p, cv, cN ,N , oN )
and P, and the hd.read interface on input P and
(N , vN , cN , oN , cv, ov), S runs protocol ΠLP. (This
includes a nym.reply message (Read DB) sent to A.)
S outputs failure if the values (vN , ov) sent by A
to the zk.prove interface and to the hd.read inter-
face are different but they are both valid openings
of cv. When the copy of V outputs (lp.redeem.end,
sid,P, p), S sends (lp.redeem.ini, sid,P, p) to FLP.
When FLP sends (lp.redeem.sim, sid, qid), S sends
(lp.redeem.rep, sid, qid) to FLP.

Profile. When A uses the nic.commit interface on in-
put i and vi (for all i ∈ S), the zk.prove interface
on input witpr ← (〈i, oi , vi, ori〉i∈S), inspr ← (res,
〈ci , cri〉i∈S) and P, and the hd.read interface on in-
put P and (i, vi, ci , oi , cri , ori)i∈S, S runs protocol
ΠLP. (This includes a nym.reply message (Read DB)
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sent to A.) S outputs failure if any of the commit-
ment openings (〈i, oi , vi, ori〉i∈S) sent by A to the
zk.prove interface and to the hd.read interface are dif-
ferent but they are both valid openings of ci or of
cri . When the copy of V outputs (lp.profile.end, sid,
P, res), S sends (lp.profile.ini, sid,P, f ) to FLP. (We
note that f is determined by the set S that S learns
from A.) When FLP sends (lp.profile.sim, sid, qid), S
sends (lp.profile.rep, sid, qid) to FLP.

Update. When FLP sends (lp.updatedb.sim, sid, qid),
S sends (lp.updatedb.rep, sid, qid) to FLP. When
FLP sends (lp.updatedb.end, sid,P, (i, vui)i∈[1,N ]), S
runs protocol ΠLP on input (lp.updatedb.ini, sid,P,
(i, vui)i∈[1,N ]) and communicates with A following
protocol ΠLP.

Theorem F.1. ΠLP securely realizes FLP in the FHD,
FRrd

ZK , FRpr

ZK , FNYM and FNIC-hybrid model when (a sub-
set of) Bk are corrupt.

Proof of Theorem F.1. We omit a formal proof of this
theorem. We note that, when (a subset of) Bk are cor-
rupt, the simulator S runs protocol ΠLP. S is able to
do that because it receives from A and from FLP all the
information needed to run ΠLP. The difference between
S and protocol ΠLP is that S outputs failure when A
sends two different valid openings for the same commit-
ment. The probability that S outputs failure is negli-
gible thanks to the binding property of commitments
provided by FNIC.
Description of S for Corrupt V. We describe S for
the case in which V is corrupt. Basically, S runs copies
of FHD, FRrd

ZK , FRpr

ZK , FNYM and FNIC as well as a copies
of Bk in ΠLP to simulate the protocol towards the adver-
sary A. We refer to that as “running protocol ΠLP”. In
the following, we indicate when S needs to deviate from
protocol ΠLP and we detail the communication between
S and FLP.
Register. When FLP sends (lp.register.sim, sid, qid), S

sends (lp.register.rep, sid, qid) to FLP. When FLP
sends (lp.register.end, sid,P), S runs protocol ΠLP on
input (lp.register.ini, sid,P). (S creates a new copy of
Bk.) S interacts with A following protocol ΠLP.

Purchase. When FLP sends (lp.purchase.sim, sid, qid),
S sends (lp.purchase.rep, sid, qid) to FLP. When FLP
sends (lp.purchase.end, sid,P), S runs protocol ΠLP
on input (lp.purchase.ini, sid,P). (S chooses the first
copy of Bk.) S interacts with A following protocol
ΠLP.

Redeem. When FLP sends (lp.redeem.sim, sid, qid), S
sends (lp.redeem.rep, sid, qid) to FLP. When FLP

sends (lp.redeem.end, sid,P, p), S runs protocol ΠLP
on input (lp.redeem.ini, sid,P, p). (S chooses the first
copy of Bk. We note that, in the purchase and up-
date phases, all the loyalty points were accumulated
in this copy, so it is guaranteed that at least p loy-
alty points are accumulated.) S interacts with A
following protocol ΠLP.

Profile. When FLP sends (lp.profile.sim, sid, qid), the
simulator S sends (lp.profile.rep, sid, qid) to FLP.
When FLP sends (lp.profile.end, sid,P, res), S
chooses a database and a function f such that the
evaluation of f on input the database is res. S cre-
ates a new copy of Bk, stores that database on the
copy, and runs protocol ΠLP on input (lp.profile.ini,
sid,P, f ) by using that copy of Bk. S interacts with
A following protocol ΠLP.

Update. When A uses the hd.update interface on in-
put P and (i, vui)i∈[1,N ], S runs protocol ΠLP.
(S chooses the copy of Bk that was associated
with P in a previous phase.) When the copy of
Bk outputs (lp.updatedb.end, sid,P, (i, vui)i∈[1,N ]), S
sends (lp.updatedb.ini, sid,P, (i, vui)i∈[1,N ]) to FLP.
When FLP sends (lp.updatedb.sim, sid, qid), S sends
(lp.updatedb.rep, sid, qid) to FLP.

Theorem F.2. ΠLP securely realizes FLP in the FHD,
FRrd

ZK , FRpr

ZK , FNYM and FNIC-hybrid model when V is
corrupt.

Proof of Theorem F.2. We omit a formal proof of this
theorem. We note that, when V is corrupt, the simulator
S runs protocol ΠLP with the following changes.
– In the purchase and redeem phases, S picks the first

copy of Bk, while in the profile phase, it creates a
new copy. This change is indistinguishable because
FHD, FRrd

ZK , FRpr

ZK and FNYM never reveal the iden-
tity Bk of the buyer to the adversary. They only
reveal a pseudonym.

– In the redeem phase, S uses a copy of Bk that stores
a database where the number of accumulated loy-
alty points is likely different. In the profile phase,
S uses a copy of Bk that stores a newly created
database. This change is indistinguishable because
commitments provided by FNIC are hiding, FRrd

ZK or
FRpr

ZK do not reveal the witness to the adversary, and
FHD only reveals commitments to the positions and
values read.
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