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Abstract: Tree-based models are among the most effi-
cient machine learning techniques for data mining nowa-
days due to their accuracy, interpretability, and simplic-
ity. The recent orthogonal needs for more data and pri-
vacy protection call for collaborative privacy-preserving
solutions. In this work, we survey the literature on dis-
tributed and privacy-preserving training of tree-based
models and we systematize its knowledge based on four
axes: the learning algorithm, the collaborative model,
the protection mechanism, and the threat model. We
use this to identify the strengths and limitations of these
works and provide for the first time a framework ana-
lyzing the information leakage occurring in distributed
tree-based model learning.
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1 Introduction
Tree-based models are currently among the most pow-
erful data-mining methods. They are widely used in
the industry [1, 129] and in machine-learning compe-
titions [11, 150]. These algorithms perform very well
for tabular problems with numerical and categorical
data, which places them in the top ten of machine-
learning methods of 2017 [141] with numerous appli-
cations: fraud detection [55], medical diagnosis [9], and
stock trading [124]. An important feature of tree-based
models is interpretability, as it makes them an ideal can-
didate for the interpretable and explainable machine-
learning quest of the last few decades [39, 66, 131]. In-
terpretability is related to the comprehensibility of a
model, i.e., to what extent the end-user is able to com-
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prehend the model’s learning rationale and to verify the
soundness of its decisions. This is invaluable in sev-
eral domains, e.g.,medicine and finance, where black-
box machine-learning approaches are not acceptable. In-
deed, when conducting medical experiments, researchers
seek to identify the key factors that affect their outcome,
not just the best predictive model on some data. As
pointed out by Freitas [66], the interpretability of deci-
sion trees makes them reliable, facilitates analysis, and
orients future research by identifying points of interest.

Collaborative learning refers to the setting where
a group of entities seeks to train a model on their
joint data. Collaborative (also known as federated [126])
learning has received much traction, due to its applica-
bility in settings where the data is scarce and distributed
among multiple entities. For instance, in medical re-
search, a rare disease is possibly not well represented in
the patient data of one sole institution; hence the need
for data sharing across diverse institutions to create a
generalizable model with strong predictive performance.

However, collaborative learning raises privacy and
security issues. The training data, e.g., a hospital’s pa-
tient medical records, is sensitive and cannot, with-
out appropriate safeguards, be shared with other in-
stitutions. This is also reflected by the introduction
of strict privacy regulations, such as HIPAA [161] and
GDPR [50], that forbid data sharing without proper
anonymization or pseudonymization procedures. In par-
ticular, protecting data used in collaborative machine-
learning pipelines is critical, as recent research intro-
duces various successful privacy attacks [81, 89, 128,
135]. Any information exchanged while jointly training
a machine-learning model can break the privacy of the
training data or the resulting model.

In this work, we perform a cross-field systematiza-
tion of knowledge on privacy-preserving collaborative
training of tree-based models such as decision-trees, ran-
dom forests, and boosting. Our systematization is based
on four axes: the learning algorithm, the collaborative
model, the protection mechanism, and the threat model.
Our study emphasizes the usage of privacy-enhancing
technologies, showing their strengths and limitations.
We find that tensions arise as the learning, distributed
environment, and privacy protections introduce new
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constraints. Elegant and efficient solutions exist but of-
ten at the cost of some information leakage, and the few
end-to-end protected solutions are not amenable to all
scenarios. Therefore, we also provide a framework that
identifies the information leakage occurring during the
collaborative training of tree-based models. Our system-
atization enables us to identify limitations such as re-
laxed threat models and the lack of end-to-end confiden-
tiality, and overall highlights avenues for future work.

The remainder of the document is structured as fol-
lows. In §2, we present an overview of our systemati-
zation methodology. In §3, we provide background in-
formation on tree-based model learning. In §4, we ex-
pand on the learning algorithms and, in §5, on the types
of collaborative settings. In §6, we present the privacy-
preserving mechanisms used in the literature and in §7
the considered threat models. In §8, we present our leak-
age analysis framework. In §9, we give an overview of
the evaluation conducted in the literature. Finally, in
§10, we discuss open challenges and we conclude in §11.

1.1 Related Work

There exist a few works similar to ours. While several
works surveyed privacy-preserving data mining [120,
170] or decision-trees [164], these works only sketched
the collaborative and learning settings and did not delve
into the challenges they induce. Recent works focused
on federated learning [61] and the security and pri-
vacy issues of machine learning [139], but none from
the perspective of tree-based models. The literature
on on decision-tree classification with differential pri-
vacy was investigated [61] but only in the centralized
settings, where one entity holds the data (see §5).
Similarly, a recent work systematized the knowledge
on privacy-preserving decision-tree inference [98]. Our
work aims at bridging these gaps by systematizing
the topic of privacy-preserving collaborative tree-based
models focusing on the specific challenges induced by
tree-learning in the distributed setting.

1.2 Terminology

Let a party be an entity owning a local dataset consist-
ing of samples with multiple features. A party seeks to
participate in a tree-based model induction process with
other parties. A miner is an entity that performs com-
putations. It either conducts the model training on the
data owned by the parties or simply assists with inter-

mediate computations. An aggregator is an entity that
combines, during the learning process, information from
multiple parties. We also employ these definitions to ac-
count for the non-colluding servers model employed in
several works [5, 53, 54, 107, 109, 113, 123]. A collective
is a group of parties interested in training a tree-based
machine-learning model on their joint global dataset.

2 Scope and Method
We systematize the research efforts on privacy-
preserving collaborative learning of decision-tree models
in a thorough and structured manner. Overall, our focus
is on the perspective of privacy-enhancing technologies
(PETs). Hence, our goal is to understand their use for
tree-based model induction algorithms, their applica-
tion to the distributed setting, their trust assumptions,
the challenges that they are confronted with, and their
limitations and bottlenecks. Thus, we survey the current
literature and analyze it from various viewpoints. In this
section, we describe the methodology that we employed
when searching the literature and the systematization
approach that we devised to classify the relevant works.
Search Methodology. We used Google Scholar [3],
Microsoft Academic [4], and DBLP [2], to discover
works related to privacy-preserving collaborative tree-
based model learning: Our search results comprised 73
papers from a wide range of research communities (see
Appendix B). We cross-referenced each paper to dis-
cover additional relevant works. Overall, our search re-
sulted in 103 papers about privacy-preserving collabo-
rative learning of decision trees that we analyzed.
Systematization Methodology. To classify and or-
ganize these works in a structured manner, we devise
a systematization methodology that enables us to char-
acterize their approaches on collaborative and privacy-
preserving tree-based model induction. Our method
takes into account four systematization axes that we
briefly describe here:
Learning Algorithm (see §4). This refers to the tech-
niques used for the tree-based model learning. These
include the machine-learning task, the data type, the
training algorithm, and the underlying quality metric.
Collaborative Model (see §5). This axis is related to the
entities involved in the training of the tree-based model,
the computation, communication, and data model as-
sumed: the actors involved, their roles, how they inter-
act, and how the data is distributed among them.
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Protection Mechanism (see §6). The protection mech-
anism refers to the privacy-enhancing technologies em-
ployed to protect the different components that interact
during the tree-based learning, i.e., the training data,
the intermediate values, and the final model weights.
Threat Model (see §7). This systematization criterion
is related to the definition of the capabilities and ob-
jectives of the adversaries that each work considers. It
refers to the assumptions imposed to reach a target pro-
tection level for each component of the model learning.

3 Decision-Tree Algorithms
We present various tree-based learning algorithms.
Hereinafter, we adopt the following notation. We de-
note by D the global dataset of n training samples (x, y),
where x consists of d features and y∈C denotes its as-
sociated label, with C the set of possible classes. For
simplicity, we describe the notation and algorithms for
classification tasks. Let A be the attribute set defined
as A={A1, . . ., Ad}. Each component Ak∈A is a set in-
dicating the possible values obtained by the k-th feature
of a sample. With a slight notation abuse, Ak=v indi-
cates that the k-th feature takes the value v∈Ak. For
any set S, |S| denotes its cardinality.

3.1 Background on Decision Trees

Decision-tree algorithms are tree-based supervised
learning techniques used for classification or regression
tasks. The structure of a tree can be seen as a directed
acyclic graph that consists of nodes and edges. The root
node has no parent edges, and subsequent nodes are
called internal. If an internal node has no children, it is
called a leaf. During learning, let Di be the part of the
dataset that reaches a node i and that is split among its
children. This decision is made depending on Di’s value
for a specific feature called a split point. The learning
(or induction) process of a tree determines the splitting
feature and split point for every tree node and results
in what is known as the tree’s structure.

3.2 Greedy Algorithms

Classic decision-tree induction techniques rely on greedy
algorithms [24, 144]. These algorithms follow a top-
down approach, i.e., they build the tree from the root

to the leaves. At each node, they attempt to find the
optimal “short-term” decision. Thus, for each node, the
learning problem is reduced to maximizing an objective
function that depends on the algorithm.
Quality Metrics. Among the most popular metrics
for the objective function are the entropy-based infor-
mation gain, the gain ratio, and the Gini index.
Entropy-Based Information Gain. The entropy of the
i-th node over the class labels is defined as

HC(Di)=−
∑
c∈C

|Dc
i |

|Di|
· log2

(
|Dc

i |
|Di|

)
, (1)

with |Dc
i | the number of samples in Di with class label

c ∈ C. The best split is defined as the partitioning of the
dataset Di along the k-th feature that maximizes the in-
formation gain Gain(k,Di)=HC(Di)−HC(Di|k), where
HC(Di|k) is the conditional information given by the
k-th feature.
Information-Gain Ratio. For the k-th feature, this met-
ric is the ratio between the gain Gain(k,Di) and the
information value of the split defined as HAk

(Di). This
metric can be extended to a continuous feature a by
splitting its space in two parts (i.e., a≤v and a>v) [181].
Gini Index. Informally, it corresponds to the probability
of incorrectly classifying a sample when randomly pick-
ing the label following the class value distribution for
a specific feature. The Gini impurity metric is defined
by replacing the entropy HC(·) by the Gini function de-
fined as Gini(Di)=1−

∑
c∈C (|Dc

i |/|Di|)2. This metric is
more arithmetically-friendly than the previous two, as
it can be rewritten with only additions and multiplica-
tions. Similarly to the information gain, the best split of
Di is along the feature that maximizes the Gain value.
Other Splitting Techniques. Some works explore alterna-
tives to these classic splitting techniques. The median-
based splitting criterion favours a balanced distribution
of the data across leaves [34]. The max operator corre-
sponds to the mis-classification rate if the majority class
is returned for a specific feature value [68, 114, 140, 192].
Induction Algorithms. There exist several algo-
rithms that use the above metrics to build trees. The
ID3 algorithm [144] builds classification trees over cat-
egorical data. Following a top-down approach, and re-
cursively at each node, the best split is computed on
the dataset that reaches the node and the available fea-
tures by using the information gain metric. All possible
values of the selected feature are added as children, and
the dataset is split accordingly. The process is repeated
for every child until all dataset samples belong to the
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same class or until the feature set is empty (the ma-
jority class is returned). The CART algorithm [24] ac-
counts for both regression and classification tasks by us-
ing the Gini impurity metric. After generating the tree,
it prunes it into a smaller one. The C4.5 algorithm [145]
improves ID3 by using the gain ratio to handle both nu-
merical and categorical data.

3.3 Random Algorithms

Contrary to the greedy algorithms above, random ap-
proaches generate a tree at random instead of us-
ing heuristics: For each node, a random feature is
picked from the set of available ones, the tree is split
based on all its possible values, and the selected fea-
ture is removed from the set. The structure of the
tree is determined randomly beforehand, and the train-
ing data is used to prune the tree and label the
leaves. This method is known as completely random
trees (CRTs) [51]. Geurts et al. [74] proposed extremely
random trees (ExRTs) similar to CRTs but each node
evaluates K random splits and selects the one returning
the best information gain.

3.4 Random Forests

Breiman proposed the combination of multiple decision
trees to form a random forest (RF) [23]. A forest is an
ensemble of classification (or regression) trees trained
independently. Each tree is trained with one of the afore-
mentioned induction algorithms, using a set of boot-
strap training samples and a random subset of features.
Forest predictions are made by aggregating all the trees
evaluations. We denote by CRF a RF made of CRTs.

3.5 Boosting

Adaptive Boosting (AdaBoost) [67]. AdaBoost
works sequentially by adding simple models (classifiers
or regressors) to the ensemble model with a certain
weight: The final model is a weighted aggregate of these
weak learners whose weight is decreasing according to
their error. At each iteration, a model is trained focusing
on mis-classified samples from the previous iteration.
Gradient-Boosting Decision Tree (GBDT) [69].
GBDT also follows a sequential approach: At each it-
eration, the updated model learns from the previous
one. This is achieved by training a simple tree model

on the residuals, i.e., the difference between the obser-
vation and the output, of the previous tree. In GBDT,
residuals for a datapoint (x, y) are approximated at each
iteration as the negative gradient of an objective func-
tion L(y, f(·)) evaluated on x with f(·) the sum of clas-
sifiers from previous iterations. We refer the reader to
Friedman’s work [69] for further details.
XGBoost [31]. This is an improvement of GBDT
and currently the state-of-the-art tree-based algo-
rithm [150]. Its main characteristic is the use of the
second-order derivatives and a better regularization.
XGBoost creates an ensemble of K CARTs and its ob-
jective function is L=

∑n
i=1 l(ŷi, yi)+

∑
m Ω(fm), where

l(·, ·) is a convex loss-function measuring the difference
between the target label yi and the prediction ŷi, fm

the m-th decision tree with m ∈ {1, . . . ,K}, and Ω(f)
a regularisation term. At each iteration t, the simpli-
fied objective is L̃(t)=

∑n
i=1[gift(xi) + 1

2f
2
t (xi)] + Ω(ft)

where ft is the t-th iteration CART tree, gi and hi are
the first- and second-order derivative of l(yi, ·), respec-
tively. Then, representing a tree fk as a fixed structure
with T leaves of weights w, λ and γ parameters, and for
a partition I of data reaching leaf j, the optimal weight
of j is w∗j = − (

∑
i∈Ij

gi)/(
∑

i∈Ij
gi + λ). The optimal

tree structure is obtained with a greedy algorithm that
finds the split maximizing the objective Lsplit. Denoting
by IL and IR the instances of the left and right nodes,
respectively, (i.e., I=IL ∪ IR), the split objective is

Lsplit(I)=
1
2

( (
∑

i∈IL
gi)2∑

i∈IL
hi+λ

+
(
∑

i∈IR
gi)2∑

i∈IR
hi+λ

−
(
∑

i∈I
gi)2∑

i∈I
hi+λ

)
−γ.

(2)

4 Learning Algorithm
As presented in §3, there exist numerous algorithms that
can be used to learn tree-based models. Among these,
ID3 is predominantly considered for the case of privacy-
preserving collaborative decision trees, with classifica-
tion being the most popular task (see Table 1). Hence,
most of the surveyed works only consider categorical
data, whereas some of them propose the discretiza-
tion of continuous data to account for numerical at-
tributes [62]. We classify as “ensemble” any work that
creates a forest rather than single trees. For optimiza-
tion reasons, several works modify the quality metric
used by the learning algorithm [5, 17, 34, 38, 53, 54,
112, 114, 122, 149, 178, 183] (see §6). Overall in the
literature, we observe a wide range of combinations on
tree-types, tasks, data, and algorithms, as illustrated
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Table 1. Learning algorithms in the surveyed literature. (Ens.:
Ensemble, Clas.:Classification, Reg.:Regression, Num.:Numerical,
Cat.:Categorical).

Task Data

Reference Ens. Clas
.
Reg

.
Num

.
Cat.Algorithm

[179, 180] CART
[37] CART
[34] CART-like
[5] C4.5-like
[168] CRT
[116] ExRT
[119] ExRT
[62] CART
[15, 17, 71, 85, 96, 110, 152,
154, 158, 181] C4.5

[41] CART
[172, 192] CART-like
[156] CRT
[68, 171] ID3/C4.5
[112] C45
[7, 8, 27] CART
[9] C4.5
[16, 26, 79, 183] CART
[95, 108, 177] CRT
[84] ID3/CRT
[20] CRF
[190] GBDT
[75] RF
[117] RF/CART
[104, 105] GBDT
[32, 101, 102, 118, 162, 175,
184] XGBoost

[12, 60] CRF
[83, 103, 140, 146] RF
[70, 173] AdaBoost
[123] RF
[55, 56] XGBoost
[137] Boosted
[59] CRF
[188] ExRT
[10] RF
[19, 38, 42, 48, 52–54, 63, 72,
73, 76, 80, 90, 100, 107, 109,
111, 113, 114, 121, 122, 147,
149, 153, 157, 160, 163, 166,
167, 177, 182, 186, 187]

ID3

on Table 1. We remark that the learning algorithm im-
poses constraints on designing a privacy-preserving and
collaborative solution as we will detail this issue in sub-
sequent sections.

5 Collaborative Model
We propose a systematization of the literature on
privacy-preserving collaborative tree-based model learn-
ing based on their collaborative model. In distributed
settings, it is crucial to understand which entities are
involved, their role, and how they interact. We distin-
guish two major aspects of the collaborative model: (i)
the computation and communication model and (ii) the

data distribution model. The former considers the enti-
ties and their interactions, whereas the latter describes
how the global dataset is partitioned.

5.1 Computation and Communication
Model

We consider three types of entities that participate in
the distributed learning: parties, miner(s), and aggrega-
tor (see §1.2). Although some works rely on additional
(external) entities (e.g., a trusted third-party, a public-
key infrastructure), here we omit them as they do not di-
rectly participate in the learning process. We present the
different collaborative models considered in the litera-
ture on distributed privacy-preserving tree-based model
induction. The different categorization corresponds to
where the training data is available and where the bulk
of the computation is executed.
Central and Offloading Model. In this case, a miner
has access to all the parties’ data and performs the
training. This model covers works that are not ini-
tially envisioned for the distributed setting, e.g., [19,
26, 34, 62, 68, 84, 105, 114, 140, 183, 192], as well
as works under the offloading category where the par-
ties explicitly communicate their dataset to the miner,
e.g., [7, 8, 12, 26, 49, 63, 123]. Brickell and Shmatikov
propose a model where a miner creates a private model
on a single remote secret database [26]. For privacy, Ab-
spoel et al. assume parties offload their data by sharing
it across three non-colluding servers [5]. The offloading
to only two servers is also possible [123].
Aggregator Model. Contrary to the previous model,
in this one, any party that takes part in the learning
process communicates with an aggregator. The latter
coordinates the training by obtaining intermediate val-
ues computed locally by the parties on their data. The
aggregator combines these values and publishes the re-
sult such that the learning process can continue. The
aggregator operates differently, depending on the learn-
ing task. For example, it issues count queries to the
parties to compute the information gain for the ID3 al-
gorithm (e.g., [163]) or selects a subset of features to be
considered by parties (e.g., [116]). In another approach,
trees are learned locally and sent encrypted to the ag-
gregator (e.g., [75]). The aggregator uses all the locally
trained encrypted trees to compute the encrypted pre-
diction. But, experiments show a performance drop in
the model accuracy [75]. A similar approach is also used
for distributed AdaBoost [106, 180].
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Fully Distributed (FD) Model. This scenario in-
volves only members of the collective that hold local
data. In this case, each party communicates with all
the others. Although initially considered for the setting
of two parties by Lindell and Pinkas [111] and subse-
quent works [41, 55, 56, 76, 160, 181], it was later ex-
tended to arbitrary number of parties [38, 48, 70, 100,
102, 104, 106, 149, 168, 179, 182]. In this setting, some
parties might be assigned specific tasks. We refer to sys-
tems with consistent parties’ roles during learning as
leader-based [32, 80, 153, 156, 186, 187], whereas those
with temporary ones as sequential [190]: e.g., the local
learning of a model before communicating it to the next
member of the collective.

5.2 Data-Distribution Model

The global dataset can be partitioned in different ways
among the entities that participate in the tree-based
model-learning process:
No Partitioning. The whole data is centralised in
one unique site and the learning is executed on it. It
is directly related to the central and offloading models
presented in §5.1 and often a comparison baseline. Al-
though it requires parties to communicate their data to
a remote server, no subsequent rounds of communica-
tion are needed as the learning operates as if the data
was never distributed.
Horizontal Partitioning. All the parties possess their
own data samples that share the same feature space.
The collaborative learning incurs communication over-
head as the parties need to exchange intermediate re-
sults computed on their local data. For instance, for
the ID3 algorithm, the collective needs to compute the
information gain for every possible split: This requires
sharing the counts of the data points at each split. This
becomes communication heavy, with an increasing num-
ber of features and classes, hence multiple works modify
the learning algorithm to a randomized one that is more
collaboration-friendly; indeed, only the final leaf counts
need to be computed on the distributed data.
Vertical Partitioning. Conversely to the previous
case, with vertical partitioning, the parties share a dif-
ferent feature space for the same individual samples of
the global dataset. This can, for instance, represent a
distributed database containing the data of a common
set of customers across multiple financial institutions.
The class label is known by all the parties or by only
one. The challenge in this setting is to find the feature on

which to split the tree. With greedy algorithms, to find
the feature with the best gain, each party can locally
compute the gain, and then communicate with others.
Arbitrary Partitioning. In this case, both horizon-
tal and vertical partitioning are present. It is often
referred to as an arbitrary (or mixed) partitioning of
the data. Only a few works present a distributed so-
lution for this case by using special data represen-
tation [80] or by adding extra rounds of communica-
tion [38, 100, 122, 168].

5.3 Summary

Table 2 presents the collaborative models of the sur-
veyed works. The vast majority of works consider the
aggregator or offloading model. Works in the central
model can trivially handle both data partitioning tasks,
as they eventually gather the data in one place. The
fully distributed case is by far the most challenging one.
However, most of those solutions focus on the two-party
case. Vertical and horizontal partitioning have, respec-
tively, their own limitations: The former relies on lo-
cal best attributes but often needs public class labels,
and the latter requires distributed computations, in-
troducing computation and communication overhead.
Few works acknowledge the challenges introduced by
the local data following different statistical distribu-
tions [61, 103, 104, 106, 190]. Although this is a non-
issue for greedy algorithms in which the distributed al-
gorithm works as if the data was centralised, it can
become cumbersome for randomized and boosted al-
gorithms [103]. Moreover, the notion of availability or
dropout of the parties is often overlooked with only one
work that provides a solution for parties to leave the
collective and that removes their impact on the train-
ing [119].

6 Protection Mechanism
We review the types of privacy-enhancing technolo-
gies (PETs) employed to ensure confidentiality of
data during the collaborative tree induction pro-
cess. We identify five categories of PETs: (a) input
randomization (§6.1), (b) differential privacy-based so-
lutions (§6.2), (c) cryptographic approaches (§6.3),
(d) hardware-based solutions (§6.4), and (e) hybrid so-
lutions that combine the above (§6.5).
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Table 2. Different collaborative models in the literature.

Members Data Model

Reference Coll. Model Part
ies
Agg

rega
tor

MinerVert
ical
Hori

zont
al

Both

[38, 100, 122, 168] FD
[71, 157, 167, 179] FD
[17, 48, 70, 102, 149, 182] FD
[95] FD (2 parties)
[41, 55, 56, 76, 96, 160] FD (2 parties)
[111, 121, 181] FD (2 parties)
[80] Leader
[32, 37, 153, 166, 186] Leader
[72, 104, 156, 187] Leader
[190] Sequential
[110, 162] Aggregator
[52, 117, 119, 152, 154,
172] Aggregator

[9, 10, 73, 75, 101, 103,
108, 116, 118, 163, 175,
180, 184]

Aggregator

[5, 53, 113, 123] Offloading
[54, 107, 109] Offloading
[5, 7, 8, 12, 15, 27, 42, 63,
85, 90, 112, 130, 147, 158,
173]

Offloading

[16, 19, 20, 26, 34, 59, 60,
62, 68, 79, 83, 84, 105,
114, 137, 140, 146, 171,
183, 188, 192]

Central

6.1 Input Perturbation and Randomization

These techniques generate a surrogate dataset by per-
turbing the original one to protect its confidentiality;
this dataset is used by the miner to train the tree-
based model. Thus, it is predominantly employed in the
offloading collaborative model, e.g., [7, 27, 40, 49, 63,
85, 112]. Typically, perturbation techniques discretize or
add noise to each sensitive attribute of the dataset [7],
or swap the dataset with a surrogate one that has
the same probability distribution [49]. However, Kar-
gupta et al. [93] showed that noise addition does not
prevent the reconstruction of patterns in the data: They
propose a filtering technique that reconstructs the orig-
inal dataset. Whereas other random substitution tech-
niques are immune to such attacks [40], they hamper
utility as the mining is performed on an approximation
of the original data [63]. Some works reconstruct a sur-
rogate dataset from the sanitized original database [90],
whereas others assume that the miner obtains the tree
computed on the original data before adding noise [85].
Finally, some studies modify the learning algorithm to
handle the perturbed datasets [112].

Although this line of work does not necessarily tar-
get the distributed scenario, it can be trivially extended
to it. Overall, input perturbation and randomization
techniques are ad-hoc methods that obfuscate the train-

ing dataset with limited privacy guarantees. So, more
recent works rely on differential privacy to address this
lack of formalization.

6.2 Differential Privacy Based Solutions

Introduced by Cynthia Dwork [44], differential privacy
(DP) is a privacy definition for sharing information with
respect to queries on a database. Informally, it guaran-
tees that the change of a single data record does not
modify the query’s output significantly. For a query f ,
this is achieved by adding noise to its answer; the noise
amount is determined by the query’s sensitivity ∆(f)
and the privacy budget ε. When designing a DP-based
solution for collaborative decision-tree learning, four im-
portant aspects should be considered: which entity per-
forms the noise addition, at which training stage, the
magnitude of noise required, and the total privacy bud-
get spent for training. Tackling these enables to train
and publish trees with DP guarantees.
Central Model. Recall that, in this scenario, a sin-
gle entity has access to the entire training dataset. The
main idea is to inject noise during key learning parts,
e.g., for selecting the best feature [68], counting class
counts at the leaves [34, 84], or computing gain queries
for each feature [62]. More recent works aim to find
tighter sensitivity bounds for the training queries or
new ways to embed DP [16]. Other approaches relax the
learning algorithm by replacing information gain with
more DP-friendly metrics, e.g.,Gini [62] or Max [114].
For instance, the max operator has lower sensitivity
than the Gini or information gains thus leading up to
higher accuracy on similar datasets and privacy lev-
els [61, 68]. In other works, the learning is adapted us-
ing RFs [83, 140, 146] or CRTs [20, 59, 60, 188]. Some
works abusively consider that each tree in the forest
is independent, to reduce the privacy budget consump-
tion [146]. However, this is circumvented by training
each tree on an independent subset of the training data
and applying the parallel composition theorem [59, 183].
Overall, works based on the central model consider
reasonable privacy budgets (i.e., ε∈[0.1; 1.0]) and some
even experiment with very low budgets (e.g., ε=0.01
for [16, 20, 59, 114, 137]). We note that the privacy bud-
get configuration directly affects the model’s accuracy;
Fletcher et al. report accuracy drops of more than 20%
when the budget is reduced from 2.0 to 0.2 to obtain
stronger privacy guarantees [60]. We refer the interested
reader to the survey by Fletcher and Islam on differen-
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tially private trees [61], as it exclusively focuses on the
central model where the miner has access to the dataset.
Aggregator Model. In this setting, parties apply per-
turbations to their local intermediate results before
sharing them with the potentially untrusted aggregator.
Xiang et al. [180] present two collaborative algorithms:
CART-based random forest and AdaBoost. In their so-
lution, each party builds a local ensemble model by in-
jecting noise into each tree, and the aggregator merges
the perturbed models with a weighted sum that de-
pends on each party’s data samples and reported ac-
curacy. Similarly, Liu et al. build a differentially private
ExRT where the split is randomly selected to reduce
the privacy budget consumption [116]. In the work by
Li et al. [103], each party uses a differentially-private
Generative Adversarial Network (GAN) to generate a
surrogate “synthetic” dataset. This can be shared with
the aggregator; it merges the received datasets and re-
distributes them to the parties that use them as vali-
dation data to select the best local model. Finally, the
best local models are shared with the aggregator that
combines them into the final global model.
Fully Distributed Model. Zhao et al. [190] propose a
collaborative system for GBDT. They employ an itera-
tive sequential method where each party locally trains
on its data and transfers the resulting tree to the next
party. To ensure privacy of the shared model, each party
generates DP trees: The split values are sampled using
the exponential mechanism [127].

6.3 Cryptographic Solutions

Numerous works employ cryptographic techniques to
protect the confidentiality of the tree-based model in-
duction process. The most common cryptographic tools
are Secure Multiparty Computation (SMC) (i.e., secret
sharing, garbled circuits, and oblivious transfers), ho-
momorphic encryption (HE), encryption as obfuscation,
and locality-sensitive hashing. We provide a brief back-
ground on these before analyzing their use by the rele-
vant works. Table 4 displays the different cryptographic
solutions employed in the literature (see PET column).
Background. Secret sharing (SS) methods distribute
a secret into shares such that the secret can only
be reconstructed by re-combining all the shares (or
a subset of them piloted by a threshold). Oblivi-
ous transfer (OT) [133], oblivious polynomial evalua-
tion [134], and garbled circuits (GC) [185] are SMC
building blocks that enable private secrets exchange,

function computation and, overall, circuit evaluation on
private inputs. Generic frameworks (e.g., SPDZ [36, 94]
or VIFF [159]) use these techniques and provide an
abstraction for SMC supporting arithmetic operations,
comparisons, and more. Other useful protocols include
private set intersection (PSI) [99, 142, 170], cardinal-
ity of intersections [6, 65, 166], and secure scalar prod-
uct (SSP) [41]; these protocols are at the core of some
distributed tree induction algorithms: i.e., counting the
number of samples reaching a node using dot prod-
uct between binary vectors [41] or creating consensus
among two parties [70]. Homomorphic encryption (HE)
enables computations on ciphertexts without requir-
ing decryption. Depending on the scheme, operations
can be linear (LHE) [46, 138] or, with fully homomor-
phic (FHE) schemes, polynomial ones [22, 33]. HE can
reduce the communication overhead of SMC: Instead
of being shared, the secret is encrypted and compu-
tations are done directly on the ciphertexts. Also, as
HE schemes support only limited operations, combin-
ing them with SMC in the offloading model enables new
functionalities such as divisions or comparisons [115].
Recent schemes merge directly HE and SMC for effi-
ciency [29, 97, 132]. Additionally, HE and SS can be
used to keep the final model secret and support oblivi-
ous predictions [5, 12, 75, 119, 123, 168]. We now present
how SMC and HE techniques are used to protect dis-
tributed tree-based model induction by recognizing the
constraints imposed by the learning and collaborative
model chosen (e.g., required information, communica-
tion topology, or data partitioning).
Secure Multiparty Computation. Du and Zhan [41]
pioneered the use of SMC for privacy-preserving ID3
training over a vertically distributed dataset among
two parties. In their system, an external semi-honest
entity generates blinding shares that are used, during
the training process, for secure scalar-product opera-
tions: The intermediate counts are computed by dot
products between binary vectors that represent the con-
straints needed to reach a specific node. Similarly, Lin-
dell and Pinkas proposed the first algorithm for ID3
induction with horizontally distributed data across two
parties [111]. Their algorithm uses GC techniques to ob-
tain the attribute with the minimal conditional entropy
and to compute an approximation of the x log x function
required to calculate the information gain. However, it
does not scale well with increasing number of parties. To
this end, Emekçi et al. use Shamir’s secret sharing [151]
and propose a new secure-sum protocol to aggregate the
counts required for the learning process [48]. Compared
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to their previous work [47], they relax the need for a
trusted aggregator and include a correctness check to
thwart malicious parties that tamper with intermediate
results during the computations. In particular, they in-
crease the degree of the random polynomial used for the
sharing, and they introduce redundancy in their system,
which makes it computationally infeasible for a party to
cheat. Nevertheless, their solution enables secure com-
putation of only the gains; the best feature and the
data split is performed in cleartext. Ma and Deng [122]
reduce the communication and computation overhead
of arbitrarily distributed ID3 by replacing the infor-
mation gain with the Gini impurity metric. Privacy is
ensured via secret sharing; multiplication, comparison,
and addition operations are achieved with custom pro-
tocols executed among the parties. However, a trusted
server is required to generate shares of secret blind-
ing values. Gambs et al. [70] use secure-sum [91] and
PSI [99] protocols to enable distributed AdaBoost. De
Hoogh et al. [38] opt for a generic framework [159] for
SMC by using Shamir secret sharing: They train trees
using the ID3 algorithm with the Gini index metric, but
their solution supports only categorical data. This lim-
itation was recently addressed by Abspoel et al. [5] by
using SPDZ [94].

Contrary to perturbation or DP-based approaches,
SMC solutions enable almost exact learning (to the ap-
proximation of non-polynomial operations, e.g., ID3),
hence they do not compromise the accuracy of the re-
sulting model. Additionally, a handful of SMC solu-
tions protect the resulting model by keeping it private
(i.e., secret-shared) [5, 38]. SMC solutions also accom-
modate multiple parties. Their main drawback, how-
ever, is the introduced computation and communica-
tion overhead. Furthermore, to enable specific com-
putations, e.g.,multiplications, there is sometimes the
need for a trusted setup or a trusted server that gener-
ates intermediate values (e.g., blinding shares or Beaver
triples) [41, 55, 113, 179].
Homomorphic Encryption. Considered initially for
offloading and outsourcing scenarios [8, 12], HE can also
be used in collaborative settings by using the appro-
priate keying material. Most works that employ HE-
based approaches use the additive scheme introduced
by Paillier [138], its threshold variant [35], or similar
multi-party schemes [25]. HE alleviates some limitations
of pure SMC approaches, e.g., the communication over-
head and the need for a trusted setup. Indeed, with
HE, secrets do not need to be shared among all parties,
and computations can be executed by a single party

without compromising privacy. On the negative side,
HE schemes are limited by the operations allowed on
ciphertexts; these schemes might not suffice to execute
some tree-based learning algorithms.

Some works employ HE solely for the computation
of the gain; the selection of the best attribute is com-
puted in cleartext. Vaidya et al. [167] introduce a secure
dot product protocol using the Paillier cryptosystem to
overcome the two-party limitation of prior work [41].
This protocol improves previous set-intersection algo-
rithms [6, 65, 166], by limiting leakage of unused in-
formation. Similar HE-based custom techniques for set-
intersection cardinality or scalar product are also em-
ployed in the literature [37, 80, 119, 160]. HE is also
used for aggregating the local encrypted counts or statis-
tics required to compute the gains [9, 32, 53, 54]. Once
aggregated, the result is decrypted and subsequent op-
erations are conducted in cleartext. Several HE-based
works opt for the Gini metric as it has an arithmetic rep-
resentation simpler than the other metrics [53, 54, 149].

Other HE-based works modify the collaborative
model. This enables the computation of functions not
supported by LHE. In the leader collaborative model,
Zhan et al. [186, 187], propose solutions with three lead-
ing parties: One performs Paillier encryption/decryp-
tion and computations, a second generates random-
ness, and the third is in charge of blindings. This de-
sign enables the computation of non-linear functions
and comparisons. However, the special-role parties need
to be available and to follow the protocol. In the of-
floading scenario, some works introduce an additional
entity [107, 110, 123]. This helps with the computa-
tion of non-linear functions and comparisons through
multi-party HE protocols among two non-colluding par-
ties [25]. Sometimes parties directly assist with the com-
putations [8]: The gain is computed on cleartext data,
and the comparison is replaced by an approximation of
the step function.

Finally, other HE-based works relax the learning al-
gorithm and employ CRTs [95, 108, 156, 168]. The train-
ing data is used only for updating the leaves’ statistics,
thus HE can be used to gather these counts [168]. Alter-
natively, each party creates a CRT or a local tree that
is added in the global forest: HE-based consensus can
be used to select which trees to retain [108] or the trees
are directly shared in encrypted form [75].

Overall, HE is a powerful tool that can reduce the
communication overhead of pure SMC solutions. Al-
though it is affected by similar constraints to SMC
(e.g., requiring simple arithmetic circuit representations
of the computations), HE solutions also introduce new
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challenges; the main one is the computation of the best
information gain. Finally, we note that the adversar-
ial model influences the choice of the HE scheme and
its efficiency: e.g., the widely used Paillier [138] or El-
Gamal [46] LHE schemes are not secure against quan-
tum adversaries; recent lattice FHE schemes such as
BGV [22] or CKKS [33] alleviate this limitation at the
cost of larger ciphertexts. However, we found only a few
works that use recent FHE schemes and focus on the
offloading model [8, 12]. They need a specific data rep-
resentation of categorical data (one-hot-encoding or dis-
cretization) for equality tests and comparisons [12].
Combining HE and SMC. SMC and HE approaches
are complementary. HE can reduce the communica-
tion overhead of SMC, whereas the latter supports
arithmetic operations (e.g., comparisons) that are ineffi-
cient with HE. Thus, many works on privacy-preserving
collaborative decision-tree learning combine them to
exploit the best of both worlds. For greedy algo-
rithms, HE can be used to compute aggregate inter-
mediate values by combining encrypted local values of
the x log x function, the Gini index, and the gain ra-
tio. The subsequent comparisons to find the best at-
tribute can be done privately using garbled circuits [26,
181]. Kikuchi et al. combine SMC [41] and HE [167] ap-
proaches, and they design a secure scalar product pro-
tocol that incurs low communication costs and does not
require a trusted setup [96]. For XGBoost, several works
use HE and secret sharing to protect the local interme-
diate residuals [118, 119, 175]. Liu et al. [118] propose
an aggregation scheme that, with Shamir secret shar-
ing and Paillier HE, ensures that the aggregator cannot
access individual party updates. Each party locally com-
putes gradients and the aggregator derives the score of
each party’s split to select in clear the best one. Simi-
larly, Fang et al. [55] propose a solution combining ad-
ditive secret-sharing and HE. Contrary to similar works
relying on pure HE [32] or combined with hypervisor-
enforced domain isolation and OT [56], their solution
maintains every value encrypted or secret-shared, thus
does not leak intermediate information. Wu et al. [179]
port XGBoost to the fully encrypted setting for more
than two parties by using a threshold version of Pail-
lier HE and the SPDZ framework [36]. Similarly to the
SMC approaches, this work requires the generation of
secret shares of random multiplications (Beaver triplets)
by a trusted third party. Recently, Liu et al. [113] pro-
posed a new offloading solution that could be extended
to collaborative scenarios. Using additive HE, data own-
ers offload their data to a cloud. Using additive secret-

sharing and with the help of a computing server, the
cloud builds the tree from the encrypted data via tai-
lored secure-counting and comparison protocols. They
improve similar works [109, 110], by relaxing the need
for parties to be online during the learning.
Encryption as Obfuscation. Similar to perturbation
techniques, obfuscation of the sensitive data can be
achieved with encryption techniques (e.g.,AES) [147,
152, 158]. The encryption can be lifted by the miner
once data has been merged [158]. Alternatively, parties
offload deterministic encryption of their data, and the
learning is done on the ciphertexts as new labels and
feature values [147, 152]. But this encryption technique
is prone to frequency-analysis attacks [18, 136].
Locality-Sensitive Hashing (LSH). SimFL [104] in-
cludes a pre-processing phase where LSH is applied and
similar information across parties is grouped without
revealing raw data. LSH ensures that similar (resp. dis-
similar) instances have equal (resp. different) hash di-
gests with high probability. During training, the gradi-
ents of all similar instances are included in the boosting.
SimFL improves upon previous work [104, 190] either
in terms of accuracy or efficiency. While SimFL is fully
distributed, it considers a relaxed threat model where a
dishonest party might learn some information about the
other parties through inference attacks, but not through
their raw data.

6.4 Hardware-Based Solutions

Trusted hardware, e.g., secure enclaves [92, 125], is an
alternative solution for private distributed model induc-
tion. In particular, a few recent works consider that each
party installs a secure enclave at its premises; this en-
clave is responsible for storing and computing on the
sensitive data [101, 102]. Hardware-based solutions im-
pose different trust assumptions and are orthogonal to
the aforementioned software-based solutions. Also, re-
cent research shows that secure enclaves are susceptible
to side-channel attacks [169, 174].

6.5 Hybrid Solutions

Hybrid solutions combine the various PETs described
earlier. For example, Teng et al. [160] combine random-
ization techniques with SMC: Each party’s local dataset
is enhanced with perturbed data from others to find
the best set of features during tree induction. This
leads to a model accuracy better than randomization
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approaches at reduced computation costs, compared
to SMC. Truex et al. [163] propose a hybrid approach
for federated learning; it employs DP mechanisms and
threshold HE. They apply it to decision-tree learning
by using the ID3 algorithm and an aggregator that ini-
tiates the root node. They employ threshold additive
HE on noisy inputs such that the aggregator decrypts
feature counts and class counts values with DP guaran-
tees. Their solution yields a more accurate model than
others that employ local DP, as the amount of noise
is divided by the number of parties required to “un-
lock” the HE threshold. Subsequently, Liu et al. [118]
improved this approach by ensuring that the aggrega-
tion is performed correctly. Moreover, combining local
DP and secure aggregation with threshold HE [21] is en-
visioned in both horizontal and vertical data partition-
ing settings for XGBoost [162]. Finally, Wu et al. [179]
inject noisy values during training to achieve the guar-
antees of DP for the output of their SMC-based aggre-
gation system, i.e., the resulting model.

7 Threat Model
We now systematize existing works on privacy-
preserving collaborative decision-tree learning based on
their threat model (see Table 3). We identify two main
threat model categories: (a) honest and semi-honest,
and (b) malicious.
Honest and Semi-Honest. An entity is deemed hon-
est if it abides by the protocol and does not try to infer
anything from the data exchanged and stored during
the protocol. A system operates under an honest model
if all the parties involved are honest. While none of the
surveyed works considers a fully honest threat model,
many solutions rely on at least one honest entity in the
system. For example, miners in the central collaborative
model are de facto trusted to train the model and to in-
ject the necessary noise to ensure differential privacy
guarantees of the output, e.g., [59, 69].

The semi-honest model (also referred to as passive
or honest-but-curious) considers that the participants
follow the protocol but might try to infer as much in-
formation as possible about the other entities’ private
data, from the communicated values. This is a typi-
cal threat model for solutions based on perturbation
and randomization techniques that implicitly consider
that parties exchange their data with a semi-honest
miner. Indeed, the miner is not trusted with the original
datasets but obtains full access to each party’s surrogate

data, e.g., [7, 63]. For works that consider the applica-
tion of DP in the aggregator collaborative model, the
aggregator is often considered semi-honest, hence par-
ties add noise to their local computations before sharing
them with the aggregator [116, 180].

Most works using cryptographic techniques consider
the semi-honest model for the different entities [32, 41,
55, 70, 100, 111, 113, 166, 181, 182]. Only a handful of
these works also consider passive collusions among the
different members. For instance, by using SMC frame-
works or LHE, several works are secure against a col-
lusion between half of the N involved parties [38, 167].
With threshold encryption or secret sharing other works
tolerate up to N−2 [70, 80], or even N−1 [48, 168], col-
luding participants. In both works of Truex et al. [163]
and Wang et al. [175], the maximum number of collud-
ing members admissible without damaging privacy is
piloted by the threshold defined for the secret sharing
scheme. In other works, however, collusion causes a di-
rect loss of privacy: In the work of Du et al. [41], the
collusion between one party and the third-party assist-
ing with the computation can reveal the other party’s
secret data. The revocation mechanism in the work by
Liu et al. is secure, as long as the revoked member does
not collude with the aggregator [119]. Li et al. [104] con-
sider that a dishonest party might learn some informa-
tion about the data of other parties, e.g., local gradients,
but not raw data. Theirs is one of the few works that
takes into account potential leakage induced by sharing
intermediate values during the training process.
Remark. Note that in several works, the privacy is
guaranteed by the presence of implicitly trusted third-
parties involved in the generation of cryptographic
keys [107, 110] and random shares used for the com-
putations (e.g.,Beaver triplets for multiplication oper-
ations in SMC) [179]. Similarly, hardware-based solu-
tions presume the chip manufacturer is trusted and the
attacker does not have access or control over the en-
clave [101, 102].
Malicious. Also known as active, malicious partici-
pants can actively cheat and tamper with the proto-
col by crafting messages with fabricated inputs and by
aiming to gain more information about the other enti-
ties’ data or to simply disrupt the protocol. A limited
amount of works consider resistance against malicious
entities. As a party can always tamper with its local
training data to perturb the learning, the envisioned
malicious model concerns active adversaries who aim to
cheat the learning process by performing wrong compu-
tations. Emekçi et al. [48] rely on Shamir secret-sharing,
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along with a technique that verifies the correctness of an
aggregate result; by including redundancy to the secret-
sharing polynomials, they are able to over-determine
the equation system that reveals the result upon so-
lution. They show that with appropriate tuning, it is
computationally hard for an adversary to forge a re-
sult undetected. Akavia et al. [8] provide privacy guar-
antees against a malicious aggregator that tries to learn
as much as possible from the clients’ inputs following
any arbitrary attack strategy. Furthermore, a malicious
aggregator might be tempted to skip the correct aggre-
gation of intermediate values to obtain some local in-
formation. This behaviour is tackled by Liu et al. [118]
with τ -threshold secret-sharing which ensures that the
aggregator only learns the aggregate result over the
data of at least τ parties. In InPrivate [190], the ma-
licious parties seek to tamper with the steepest-descent
returned. Hence, the design employs a local quality con-
trol of other members’ trees: Each party evaluates on its
local data the performance of the tree received from the
previous member and decides whether to discard it or
not. In the work by Wu et al. [179], malicious members
that deviate from the protocol are considered as an ex-
tension of their design: They use zero-knowledge proofs
and commitments to prove statements about secret data
without disclosing it. In particular, each member of the
collective proves that it executed the specified protocol
correctly. Similarly, though not considering the mali-
cious model, several works claim that this model can be
supported using general techniques such as those pre-
sented by Goldreich [77, 78] at the cost of efficiency (in
terms of computations and communications) [111, 168].
Recently, Abspoel et al. [5] use SPDZ [94] to provide a
MPC-based C4.5 algorithm. Active security is achieved
assuming honest majority among three non-colluding
servers and sacrificing performance.

8 Leakage Analysis
Our analysis of the literature on privacy-preserving col-
laborative tree-model induction (§6) shows that very
few works protect the training process end-to-end. We
find that most works ensure the confidentiality of the
raw training data, but do not consider the leakage that
might occur from computations required for collabora-
tive tree induction, e.g., comparison operations are per-
formed on cleartext data to abide with HE limitations.
To this end, we design a framework that analyzes which
information is leaked during privacy-preserving collab-

Table 3. Threat models considered in the literature. : Honest, :
Honest-but-curious, : Malicious, Coll. Res.: Collusion resistant,
N number of parties, τ : Secret sharing threshold, u: number of
parties knowing the class labels, TH: Trusted Hardware

Reference Part
ies
MinerAgg

rega
tor

Coll
. Re

s.

[107, 109, 113, 123]
[7, 12, 15, 26, 27, 40, 49, 53, 54, 63,
85, 90, 112, 130, 147, 158, 165]
[8]
[162, 163, 175] N−τ
[9, 10, 52, 75, 103, 108, 110, 116, 119,
152, 154, 172, 180, 184]
[118]
[38] dN/2e
[48, 179, 190] N−1
[70, 80, 153] N−2
[32] N−u
[167, 168] N−τ
[17, 37, 41, 42, 55, 56, 71, 72, 95,
96, 100, 104, 111, 121, 122, 149, 156,
157, 160, 166, 181, 182, 186, 187]
[5] dN/2e
[101, 102] TH TH
[16, 19, 20, 34, 59, 60, 62, 68, 79, 83,
84, 105, 114, 137, 140, 146, 171, 177,
183, 188, 192]

orative tree-based model induction, enabling us to sys-
tematize the literature on that aspect. Although sev-
eral works acknowledge this leakage and even provide
an analysis of their solution [32, 55, 70, 75, 118, 167,
168, 179], they do not do so in a systematic way. Our
framework is a first step towards a generic systemati-
zation of works based on the information leakage. We
explain the need for leakage analysis and then present
our taxonomy.

8.1 Importance of Leakage Minimization

Overall, revealing computation results during tree-based
model induction, e.g., statistics or model updates, pro-
duces a potential leakage about the training data. For
instance, global statistics refer to values aggregated
from several parties involved in the learning. This can
include feature counts, class counts, the global feature
list, or the party owning the best split. Wu et al. [179]
describe an attack among colluding parties in the verti-
cal data-partitioning setting that we extend here. Con-
sider that only one party holds the class attribute. Then,
colluding parties responsible for successive splits from
the root can, with access to the label of the leaf, in-
fer the class of a subset of the training data with high
probability. They also propose a second attack that re-
lies on the same principle to yield the feature value.
Generally, during tree-based induction in the horizon-
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tal data-partitioning setting, aggregate statistics leak
information about the global training set (e.g., number
of samples, distribution per feature). Similarly, in the
vertical case, the chosen metric value for the best lo-
cal feature is revealed. Even though no concrete attacks
that exploit these values have been proposed, this leak-
age might be non-negligible and should be taken into
account by designers of privacy-preserving solutions. In-
deed, numerous works have shown that aggregate statis-
tics leak information about individual samples in several
settings such as genomics [82], smart metering [28], and
location data [143].

Similarly, weight updates might leak information
and lead to membership or property-inference at-
tacks [128, 135, 191]. A curious participant could infer
the presence of specific samples in other parties’ data
or properties about the data. This is particularly rele-
vant for works using gradient boosting. Access to local
model updates makes the training process vulnerable to
updates-leak attacks [148] that aim at inferring infor-
mation about the training sets from the model updates.
Finally, as shown by Hitaj et al. [81], a Generative Ad-
versarial Network can be trained on the global aggregate
updates to generate prototypical examples of the tar-
geted victim’s local dataset. Even though these attacks
focus on different learning algorithms, e.g., deep con-
volutional neural networks, these attacks show that the
information communicated during gradient descent con-
tains private data. Fang et al. acknowledge and tackle
this leakage by using HE and secret sharing to protect
the gradients end-to-end [55].

8.2 Leakage Taxonomy

We now present our leakage classification of the lit-
erature on privacy-preserving collaborative tree-based
models. We use the term beneficiary for the entity in
the collective who has access to the leak, i.e.,who is able
to infer some information. This can be the miner, the
aggregator, the parties themselves or a combination of
these entities. We remark that training tree-based mod-
els in the collaborative setting requires communication
between the different members, thus increasing poten-
tial leakage compared to a non-collaborative scenario.
Three types of leakage can occur:
Data Leakage. This directly endangers each party’s
raw training data. Data leakage can be the result of
an improperly configured protection mechanism. For
instance, works on random perturbation [7, 49] of-
fer no formal privacy guarantees and are vulnerable

to reconstruction attacks [93]. As mentioned in §6.1,
these approaches employ ad-hoc methods to obfus-
cate the training data. Similarly, encryption as obfus-
cation using deterministic encryption can provide only
limited guarantees, as the relationship between data
points is preserved. Works using DP mechanisms in
the central model also inherently leak raw training
data to the server; by design the server aggregates the
raw data before applying the protection. Data leakage
might also occur from the usage of a trained model.
Shokri et al. propose a membership inference attack re-
vealing if a sample was in the training set by looking at
the classifier’s prediction outputs [155]. Similarly, inver-
sion attacks reveal if a sensitive attribute is used in the
decision-tree [64] and property-inference attacks, if the
training set satisfies some properties [13]. We consider
these attacks out of scope in this analysis; they concern
the inference phase and not the training.
Model Leakage. Tree-based models can be sensitive
due to their business value and because they con-
tain information about the data on which they were
trained. For instance, Zhu and Du [193] quantify the
privacy risks associated with publishing decision trees
and show that a maximum entropy estimate can leak
information about the training data. As a result, it
is crucial for privacy-preserving solutions to protect
the trained model. In our literature analysis, we iden-
tify works that protect the final model and its weights
from any party, enabling only oblivious predictions on
it. This is the case for a handful of works that use
HE [5, 12, 75, 119, 123, 168], perturbation [85], and oth-
ers that protect the model with DP mechanisms (see
§6.2). Works publishing decision trees with DP guaran-
tees introduce a different trade-off compared to crypto-
graphic approaches. The privacy budget determines the
amount of admissible leakage for the model and training
data, at the cost of accuracy.
Leakage of Intermediate Values. As discussed in §6,
numerous works tolerate the exchange of cleartext infor-
mation during training to cope with challenging cryp-
tographic operations, e.g., comparisons and gains. We
identify two classes depending on whether the revealed
information is local (i.e., related to only one party) or
global (i.e., aggregated over multiple parties). The type
of leaked intermediate information varies depending on
the learning algorithm. For standard-tree learning al-
gorithms such as ID3, this information represents the
selected split (i.e., feature and split value) but also the
gains and counts per tree path. For completely random
approaches, the intermediate values are the class counts
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at the leaves. Other statistics, such as the number of
local samples reaching a specific node, residual accu-
racy errors [56], the “owner” of a node in the vertically
distributed scenario (i.e.,which party holds the selected
attribute for the node), might also be leaked. For gradi-
ent boosting ensemble models, the intermediate values
are the weight updates or residuals. As shown in recent
work by Hitaj et al. for deep models, the use of a DP
mechanism can have a very limited effect on the pri-
vacy when such intermediate values are shared [81].
Summary. Following our observations, we systematize
the different works in the literature. For each work,
we first identify the privacy-preserving mechanisms em-
ployed. Then, we analyze the type of data exchanged
during the learning process and under which form
(e.g., encrypted, blinded, aggregated, noisy, or in clear).
We assess if this corresponds to leakage of (local or
global) intermediate values that we classify as statis-
tics or weights depending on the type of data and the
learning algorithm. Finally, we identify which entity
gains more information from the leak (i.e., the benefi-
ciary of the leak). We introduce an additional category
for works that reveal the local model to the aggrega-
tor [10, 103, 180]. Finally, we describe how each work
suffers from the leakage of information. Our analysis
identifies three major groups: (a) works that do not leak
any intermediate values, (b) works that leak intermedi-
ate values with local DP guarantees, and (c) works that
leak intermediate statistics or weights. We present our
findings in Table 4. For conciseness, we do not display
works envisioned in the central collaborative model that
use DP mechanisms or perturbation techniques for pri-
vacy preservation, as we have already analyzed their
leakage above in the data leakage description. Overall,
we find that only a few cryptographic works keep the fi-
nal model secret [8, 12, 38, 75, 102, 119, 123, 168]. Addi-
tionally, our framework shows that, though most works
of Table 4 rely on the same PETs (e.g., secret sharing or
HE), only a few of them avoid leaking intermediate val-
ues [5, 12, 107, 111, 121, 123, 168, 179, 181, 182]. This is
probably due to the fact that ensuring zero-leakage dur-
ing tree-based model induction comes with high commu-
nication and computation overheads.

9 Evaluation and Comparison
Overall, fair comparisons between works are non-trivial,
as the learning, collaborative, and privacy models are
orthogonal, and the choice of evaluation metrics and

datasets might differ. Additionally, very few works pro-
vide a public implementation which makes comparisons
harder. Several datasets are commonly used for bench-
marking the solutions (e.g., [43, 87, 88]), but unfortu-
nately, they often are too limited in the number of fea-
tures and samples to be realistic for modern big-data
tasks (see Appendix A for more details).

A formal comparison of communication and com-
putation overhead in the literature is challenging to
achieve as works seldomly vary only one of the four
axes we have identified. Nonetheless, several conclusions
can be drawn. The communication overhead is con-
strained by the collaborative model, the type of data
partitioning, and the number of nodes in the tree: For
instance, in the fully distributed models with N par-
ties and horizontal data partitioning, local information
needs to be exchanged with all other parties, whereas
in the aggregator model, only the aggregator needs to
be informed, yielding a communication in O(N2) ver-
sus O(N), respectively (c.f. [48] vs. [12]). Conversely,
in the vertical setting, communication is less affected,
as the difficulty lies only in finding the best party to
split the data (which can be achieved by only shar-
ing the best locally computed gain and not interme-
diate values such as counts). With respect to computa-
tion overhead, the horizontal data-partitioning setting
requires each party to compute local intermediates: In-
stead of computing this information once, it is computed
locally by each party on smaller datasets. Eventually,
all the intermediates are exchanged and aggregated to
find the best split. Protection mechanisms also play a
crucial role in the overhead. Works employing differ-
entially private mechanisms, randomization or pertur-
bation techniques report minimal to no computation
and communication overhead as the distributed learn-
ing process operates similarly as if the data was not
perturbed. Hardware-based solutions present a compu-
tational overhead ranging between 4.5× and 5.1× to
perform encrypted XGBoost compared to the standard
algorithm [101]. Cryptographic solutions have an even
more dramatic impact on computational and commu-
nication overhead. For fully distributed tree induction
with horizontal partitioning, SMC solutions induce a
communication overhead of O(N2) (e.g., [38, 100]) and
while some HE solutions have a similar asymptotic
overhead (e.g., [149, 182]), others can reduce this over-
head to O(c2 +Nc) (e.g., [187]), where c is the number
of class labels. However, the more complex homomor-
phic operations imply a bigger computational overhead,
e.g., an overhead of O(N2|A|) [149, 182] vs. O(|A|) for
a pure SMC solution [48], with |A| the number of at-
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Table 4. Intermediate value leakage in the literature. DP: Differential Privacy, P: Party, A: Aggregator, M: Miner.

What is leaked
Beneficiary Perturb. Loc. Statistics Weights

Ref. PET P A M values Model Loc. Glob. Loc. Glob. Description
[104] LSH Table of similar instances and local gradients
[37] LHE Best local gain and node owner
[56] HE+OT P1 learns residual errors from P2
[70] SMC[99] Owner, number, or local best weak classifier
[71] LHE Best local gain
[160] random+SMC Best k attributes on augmented dataset to P
[8] FHE All gains
[9] LHE+Blindings All gains
[17] SMC All gains
[41] SMC+SS Depends how max computed
[48] SSS Conditional entropy, global class count
[95] LHE Structure and counts of every class per leaf
[96] LHE+SS Who owns best attribute
[100] SMC Tree structure, best gain and node owner
[109] HE Best attribute
[110] LHE (thrs) All or best gain
[122] SS+GC Sign of secret
[149] LHE+SMC Global square ratio
[153] SMC+SS Best local gain and node owner
[175] SS Global gradients (hi,gi)
[119] LHE (thrs) Local Split vector W to A
[166] LHE Class distribution of each node, local best gain
[187] LHE+Blindings Leader learns permuted decryption
[186] LHE+Blindings Leader learns permuted decryption
[32] LHE Residuals, node owner, split, and d
[52] SMC Node owner and index of best feature
[72] SMC Global gain for each feature to Leader
[80] LHE Gain value for all features to Leader
[113] LHE+SS (thrs) Gain value for all features
[154] SMC Gain value for all features
[156] LHE Global class distribution to Leader
[163] DP+HE Global gradients (hi,gi)
[167] LHE Best site, local best gain
[118] LHE+SS (thrs) Global gradients (hi,gi)
[10] Electronic Voting Local ensemble
[103] DP-GAN locally trained optimal tree
[54] LHE All gains
[53] LHE All gains, node owner
[190] DP mechanism Local DP models
[116] DP mechanism DP protected intermediates
[180] DP mechanism Local DP models
[162] DP+LHE (thrs) Perturbed global gradients (more with collusion)

tributes depending only on the training set. Recently,
Wu et al. [179] showed that combining HE and SMC
can reduce the computational overhead achieving up to
a 19.8× speed up compared to a pure SMC solution. In-
deed, in their approach, the secret-shared values among
the parties are reduced from O(n|A|) to O(b|A|) with b
the number of split values for any feature.

10 Open Challenges
Our deep analysis of privacy-preserving collaborative so-
lutions for decision-tree induction enables us to identify
some open problems and challenges in this field.
Motivating Privacy-Preserving Induction and
Quantification of Leakage. As discussed in §7, the
motivation for privacy-protection in collaborative tree
induction is not clearly stated in the literature; there
exist no papers that investigate privacy attacks that

can occur while training a tree-based model in a fed-
erated setting. On the contrary, research on other
learning algorithms, e.g., neural networks, demonstrates
several attacks, e.g.,membership or property-inference
ones [81, 128, 135], that might take place in collabora-
tive settings. Indeed, the need for strong protection of
intermediate computation values during tree induction
has not been extensively studied. Hence, the design of
more efficient protocols for privacy protection requires
an understanding of the quantitative effect of such leak-
age on the data and model privacy. Our leakage analysis
framework is a first step towards this research direction.
End-to-End Protection. Although numerous cryp-
tographic solutions on privacy-preserving distributed
decision-tree learning exist, very few of them provide full
privacy protection by safeguarding the parties’ data, the
training process, its outputs, and preventing intermedi-
ate value leakage. Works that achieve this protection
level cover only some collaborative models and learning
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algorithms. For instance, random forests and CRTs have
only been covered in the offloading [12, 123] and fully-
distributed [168] scenarios. The end-to-end solution by
De Hoogh et al. works only for categorical data [38] and
the work lifting this limitation operates in the offload-
ing model [5]. Thus, hybrid solutions combining HE or
secret-sharing with differential privacy to trade-off some
accuracy for end-to-end privacy protection in collabora-
tive tree-based learning is a promising direction [179].
Malicious Members in the Collective. In §7, we
analyzed the literature’s threat models and found that
most works consider semi-honest entities. Whereas this
model is deemed acceptable for research prototypes, it
might not reflect real-world collaborative scenarios in-
volving multiple entities; some of them might have in-
terest in exploiting the collaborative training process
for their own benefits. To this end, it would be valu-
able to design solutions in stronger models, e.g., the
anytrust model [176] or a fully malicious one. While
some works have addressed the former, they only con-
sider limited collaborative models and learning algo-
rithms, e.g., [48, 179]. Addressing fully malicious mod-
els could be achieved by employing additional cryp-
tographic techniques, e.g., verifiable computation and
zero-knowledge proofs, or robust learning techniques
that prevent malicious participants from actively bias-
ing the learning. For instance, zero-knowledge proofs
can ensure the correct execution of decision-tree pre-
dictions on a secret model held by one party [189].
Fiore et al. [57, 58] apply similar techniques for ensur-
ing correct computations on outsourced encrypted data.
Alternatively, works in the direction of Byzantine toler-
ance propose statistical techniques that prevent mali-
cious parties from poisoning the learning process [45];
these techniques could be combined with cryptographic
protocols to get the best of both worlds. As noted by
Bagdasaryan et al. [14], this is an open problem for the
PETs community not only for tree-based models but for
federated learning in general. We remark, however, that
decision trees have a substantially different structure
than neural networks and that no work has ever consid-
ered byzantine attacks for collaborative tree-based mod-
els. Consequently, understanding how byzantine parties
can disrupt the learning of distributed tree-based induc-
tion is a crucial first step.
Resilience to Dropout and Fault Tolerance. Party
dropouts occur when a member of the collective de-
cides to leave the consortium while the training pro-
cess has not been finalized. Following data protection
laws, such as the GDPR [50], it is desirable that this

member’s data is not taken into account for the model
training. This functionality, also referred to as the right
to be forgotten, can jeopardize privacy, in particular for
tree-based models [30]. Yet, not many works address
this problem [118, 175]. A possible deterrent is the fact
that dropouts are incompatible with widely used cryp-
tographic solutions such as HE or secret sharing where
all parties are needed to obtain a computation result.
Threshold cryptosystems could offer a solution to the
problem as the result of the computation can be ob-
tained with the participation of only a subset of entities.

Fault tolerance relates to communication issues
that arise when members of the collective are unavail-
able during the training (or respond asynchronously to
queries); the unreliability of the network and potential
hardware limitations of the parties could impede collab-
orative learning by waiting for the unavailable parties.
For instance, the learning can be stuck if the aggrega-
tor requires a sufficient number of local updates to pro-
ceed with its computations, if the collective relies on a
leader for protocol computations [187], or if a member is
unavailable in the sequential setting [190]. A potential
research direction is again the application of threshold
cryptography and its combination with learning algo-
rithms that cope with asynchronicity.

11 Conclusion
In this work, we have systematized the knowledge stem-
ming from the literature on privacy-preserving collab-
orative tree-based model induction. We observed that
preserving privacy in the distributed setting incurs chal-
lenges that most solutions address by modifying the
learning algorithm or introducing new entities in the col-
lective. Numerous privacy-preserving technologies have
been employed to account for combinations of learn-
ing algorithms, collaborative settings, and threat mod-
els; hybrid solutions that combine cryptographic pro-
tocols with differential privacy are the most promising
approach for achieving end-to-end privacy protection for
collaborative tree model induction. We have introduced
a leakage identification framework that enables proto-
col designers to categorize and reason about the leakage
that stems from the intermediate information computed
and exchanged in collaborative model training. Our sys-
tematization and framework highlighted several avenues
for further research on the topic such as support for ma-
licious models, asynchronicity, and leakage protection.
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A Experimental Evaluations
We now expand our analysis with respect to the evalu-
ations performed by the surveyed works.
Model Evaluation Metrics. Most works evaluate
their solutions against the model’s accuracy, error, area
under the curve or F1 score on standard open source
datasets [43, 86–88]. Most DP-based works estimate the
model’s accuracy as a function of the privacy budget
enabling cross-work comparison [84, 140, 188]. Another
popular metric for cryptographic solutions is the train-
ing execution time that is evaluated against the number
of trees, the depth, or the number of parties.
Datasets. The UCI database [43] and Kaggle [86–88],
are the predominant sources of the datasets used in
the literature. Although this facilitates comparisons, we
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note that several of these datasets contain a very lim-
ited number of features or very few samples, hence they
might not be representative of modern big-data tasks
performed today.
Open Source Implementations. Finally, very few
works provide a public implementation of their solu-
tion [20, 34, 59, 60, 62, 102, 184]; this makes reproduc-
tion and comparison with related works harder.

B Literature Analysis
In this section, we provide further details about the dif-
ferent works studied in this paper. As discussed in §2,
we used Google Scholar [3], Microsoft Academic [4], and
DBLP [2] to discover works related to combinations of
the different learning algorithms with the following key
words: {private, privacy-preserving, collaborative, dis-
tributed, training, induction, learning}. Then, we cross-
referenced the different works to expand the search. Fol-
lowing our search methodology we discovered 103 works
originating from a wide variety of communities. Figure 1
shows the distribution of the investigated works across
their communities. We find that most of the works come
from the machine learning, and data mining communi-
ties (ML in Fig. 1): These account for 36% of the inves-
tigated works. The security, privacy, and cryptography
community (SP) hosts 23% of the works with 24 publi-
cations. General computer science journals are also well
represented with 16 works (dubbed CS in Fig. 1). Sys-
tems cover a wide range of fields from distributed to in-
telligent systems and represent 10% of the literature on
collaborative privacy-preserving tree-based model learn-
ing. The communications, medical, and database com-
munities account respectively for 6%, 2%, and 2% of the
surveyed works. We regroup the remaining works as oth-
ers (e.g., ubiquitous computing, signal processing, etc.).
At the time of writing, the ML and SP communities ap-
pear as the most influential ones on the topic, yielding
more than 94% of the citations across all communities.

Fig. 1. Number of surveyed works across the different communi-
ties.
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