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DPlis: Boosting Utility of Differentially Private
Deep Learning via Randomized Smoothing
Abstract: Deep learning techniques have achieved re-
markable performance in wide-ranging tasks. However,
when trained on privacy-sensitive datasets, the model
parameters may expose private information in training
data. Prior attempts for differentially private training,
although offering rigorous privacy guarantees, lead to
much lower model performance than the non-private
ones. Besides, different runs of the same training al-
gorithm produce models with large performance vari-
ance. To address these issues, we propose DPlis–
Differentially Private Learning wIth Smoothing. The
core idea of DPlis is to construct a smooth loss func-
tion that favors noise-resilient models lying in large flat
regions of the loss landscape. We provide theoretical jus-
tification for the utility improvements of DPlis. Exten-
sive experiments also demonstrate that DPlis can effec-
tively boost model quality and training stability under
a given privacy budget.
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1 Introduction
Recent advances in deep neural networks (DNNs) has
led to state-of-the-art performances in a wide variety
of tasks, including, among others, image recognition
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and natural language processing. The availability of
large datasets is indispensable for these advances. How-
ever, in many application domains of deep learning,
such as healthcare, finance, and location-based services,
the data may contain privacy-sensitive information. As
DNNs tend to memorize training data [5, 16, 67], the
sensitive information might be leaked with the release
of the model [46, 49, 50].

Differential privacy (DP), a canonical privacy no-
tion that provides provable privacy guarantees, has been
applied to mitigate training data leakage. DP aims at
hiding the presence of every individual record from the
output of an algorithm performed on private data. To
achieve this, DP characterizes the sensitivity of output
to the change of one record in an arbitrary input dataset
and further adds noise to the output that is proportional
to the sensitivity. The characterization of sensitivity is
challenging for DNNs, as the dependency of the large
size parameters on the training data is difficult to un-
derstand and trace.

Prior work presents two general threads of ideas
to deal with the challenge of sensitivity characteriza-
tion in deep learning. One is to recognize that DNNs
are mostly trained iteratively via stochastic gradient
descent (SGD) methods and thus one can bound the
sensitivity of each SGD step by clipping gradient norm
and then perturb the gradients accordingly. By ensur-
ing that each SGD step is differentially private, the fi-
nal output model satisfies a certain level of DP given the
composition theorem. As training DNNs involves a large
number of iterations, it is necessary to tightly track cu-
mulative privacy loss during training and halt when the
loss hits the privacy budget. Moments accountant [1, 61]
provides a much tighter composition analysis for Gaus-
sian noise applied to subsampled data, compared to the
standard advanced composition theorem [14] in DP. The
combination of the noisy SGD and moment accountants
is often referred to as DP-SGD and has been widely
used for building differentially private DNNs. However,
despite DP-SGD providing a principled, easily imple-
mentable framework for building differentially private
DNNs, the prediction accuracy of the privately trained
models is severely impaired due to the large noise added
into each SGD step. Another side-effect of DP-SGD of-
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ten overlooked by the previous work is the lack of stabil-
ity–different runs of the same algorithm results in dras-
tically different models in terms of prediction accuracy.

Another thread of ideas to overcome the difficulty
of sensitivity characterization in DNNs is based on Pri-
vate Aggregation of Teacher Ensembles (PATE) [41, 42].
PATE first trains an ensemble of models (i.e., teacher
models) on private data and then aggregates the predic-
tions from different teacher models to label public data
in a differentially private manner. Since post-processing
differentially private results will not affect the privacy
guarantee, a differentially private model can be directly
constructed via training on the labeled public data.
Overall, PATE converts the problem of characterizing
the sensitivity of a training algorithm to that of a label
aggregation function, which is much easier to analyze.
However, PATE requires access to a large public dataset
similar to private data and this prerequisite cannot al-
ways be satisfied in practice.

Hence, in this paper, we focus on DP-SGD and aim
at boosting the utility of DP-SGD in terms of both
prediction accuracy and stability. Existing improvement
strategies for DP-SGD are based on the idea of modi-
fying the design of optimization algorithms and model
architectures, such as post-processing the noisy gradi-
ents in a way that can reduce noise variance [57], ad-
justing the gradient clipping threshold to the norms of
the SGD updates [55], adopting a different error back-
propagation method [31], and using a family of bounded
activation functions [43]. In this paper, we propose an
improvement strategy that is complementary to existing
ones. The proposed strategy is motivated by the follow-
ing question: Can we modify the optimization objective
to make it more suitable for differentially private learn-
ing?

As the first step to answer the question, we examine
the issues associated with standard optimization objec-
tive functions (i.e., learning loss functions) for DNNs.
Figure 1a exemplifies the loss surface of a DNN, which
is irregular and contains a lot of sharp local minima.
Intuitively, such a loss landscape can have detrimental
effects on the performance and stability of DP-SGD.
Firstly, the noise injected by DP-SGD can result in sig-
nificant loss increases near each sharp local minimum,
which in turn leads to low prediction accuracy. Sec-
ondly, with this irregular landscape, noise perturbation
along different directions could cause very different loss
changes; thus, different runs of the same DP-SGD algo-
rithm might still have large performance variance. Over-
all, the “bumpy” and irregular loss landscape associated
with DNNs makes standard learning loss functions un-

(a) Standard (b) Flat

Fig. 1. Loss surfaces of a ResNet-56 on 1% training data of
CIFAR-10, without and with smoothing. The standard loss sur-
face is irregular and contains many local minima, which is un-
favorable given noise injected by DP-SGD. In comparison, a flat
loss surface will be more noise-tolerant.

suitable for performing DP-SGD. Instead, loss functions
with flat minima as in Figure 1b would be more desir-
able for DP-SGD because they are more noise-tolerant.
Contributions. Inspired by the observations and anal-
ysis above, we propose DPlis, which improves the util-
ity of DP-SGD by smoothing the learning loss func-
tion. Algorithmically, we leverage randomized smooth-
ing to smooth the loss function, which convolves Gaus-
sian noise with the original learning loss function. We
theoretically connect smoothed loss with the stability
and generalization of DP-SGD. Our experiments on di-
verse datasets and models show that DPlis alone can
often achieve 1 ∼ 6% prediction accuracy improvement
on image data and 8 ∼ 80% perplexity reduction on
language data. At the same time, DPlis leads to more
stable performance across different runs. Particularly,
DPlis is compatible with other DP-SGD improvement
strategies that focus on modifying the optimization al-
gorithm (e.g., [31, 55, 57]). Thus, DPlis can poten-
tially further boost the utility of differentially private
DNNs when combined with other existing improvement
strategies. Moreover, we show that the idea of smooth-
ing learning loss can be easily integrated into PATE—a
popular differentially private deep learning framework
in the presence of public data. Our experimental results
demonstrate that smoothing can usually improve the
prediction accuracy by 1 ∼ 4%.

As a side note, smoothing has been widely used in
the machine learning community to improve the gener-
alization of models [6, 63]. However, to the best of our
knowledge, our work is the first to investigate smoothing
in the context of privacy-preserving learning and pro-
vide theoretical bases for the utility gains of smoothing
in DP-SGD.
Paper Organization. In Section 2, we include back-
ground information regarding Differential Privacy, Deep
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Learning and their intersections. In Section 3, we moti-
vate our idea with toy examples and present the design
of our method, DPlis. In Section 4, we derive theoret-
ical results regarding the impact of DPlis on stability
and generalization of DP-SGD. In Section 5, we have
the effectiveness of DPlis verified empirically. We in-
clude a discussion of related work in Section 6. Finally
we conclude our work in Section 7.

2 Background

2.1 Differential Privacy

Given a randomized function that takes a dataset or
database as its input, DP [11–13] aims to hide the dif-
ference of output distribution between two neighboring
inputs and provides provable privacy protection against
adversaries of arbitrary computational power. The for-
mal definition of DP is as follows.

Definition 1. (Differential Privacy) A randomized
function F gives (ε, δ)-differential privacy if for all pairs
of adjacent datasets D,D′ ∈ D that differ in at most one
record and all S ⊆ Range(F),

Pr[F(D) ∈ S] ≤ eε Pr[F(D′) ∈ S] + δ

A common practice to making an arbitrary function dif-
ferentially private is through noising [11–13], which adds
noise of a certain form to the output of the function,
with the scale of noise proportional to the sensitivity of
the function. The formal definition of sensitivity is as
follows.

Definition 2. (Sensitivity) The sensitivity ∆ of a
function f is:

∆(f) = max
D∼D′

∥∥f(D)− f(D′)
∥∥ ,

where D ∼ D′ indicates that D and D′ are two adjacent
datasets.

The sensitivity captures the maximum change of the
function outputs when an arbitrary input dataset
changes by one entry. When we use `2-norm to mea-
sure the change, the corresponding sensitivity will be
referred to as `2-sensitivity or ∆2(f).

One prevalent way of noising in the context of dif-
ferentially private deep learning [1, 57, 58, 66] is the

Gaussian mechanism, which adds proper Gaussian noise
to the function output based on the `2-sensitivity.

Definition 3. (Gaussian Mechanism) The Gaussian
mechanism with parameter σ, when applied to a func-
tion f : D → RK , adds zero-mean Gaussian noise with
variance σ2 in each of the K dimensions of F ’s output:
f(·) +N (0, σ2I).

For σ ≥
√

2 ln( 1.25
δ )∆2(f)
ε and ε ∈ (0, 1), it is proven

that the noised function above is (ε, δ)−differentially
private [13].

2.2 Deep Learning

A neural network fθ is a composition of L parametric
functions referred to as layers. Each layer consists of
neurons, each of which provides one dimension of the
layer’s output. We denote the lth layer as fθl and θl are
the associated parameters that control the behavior of
the layer. fθl takes as its input the output of the previ-
ous layer fθl−1 and applies a nonlinear transformation
to compute its own output. Given an input x, a neu-
ral network fθ performs the following computation to
predicts its label:

fθ(x) = fθL ◦ · · · ◦ fθ1(x)

where θ = [θ1, . . . , θL].
The parameter θ of a neural network is learned via

solving an optimization problem. The optimization ob-
jective is the learning loss function L(fθ, D), which is
the average of per-sample loss, i.e.

L(fθ, D) = 1
|D|

∑
x∈D

L(fθ, x)

where D is training data. With a slight abuse of nota-
tions, hereinafter, we will use L(θ) as a shorthand no-
tation for the average loss function L(fθ, D), and use
L(θ, x) to denote the sample-level loss function L(fθ, x).

The optimization problem is often solved via
stochastic gradient descent (SGD) methods. At each
step of SGD, a batch B ⊆ D of samples is drawn from
the training dataset D and the gradient of the average
loss ∇θL(θ) = 1

|D|
∑
x∈D∇θL(θ, x) will then be approx-

imated by 1
|B|
∑
x∈B ∇θL(θ, x). With such an approxi-

mation, the following rule is applied iteratively to up-
date the parameter:

θ ← θ − η · 1
|B|

∑
x∈B

∇θL(θ, x)
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Algorithm 1 Differentially Private SGD
Require: examples {x1, . . . , xN}, loss function L(θ) =

1
N

∑
i L(θ, xi), learning rate η, noise multiplier σ,

batch size L, clipping threshold C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random batch Lt with sampling probability
L/N in Poisson subsampling
Compute gradient
For each i ∈ Lt, compute gt(xi)← ∇θtL(θt, xi)
Clip gradient
ḡt(xi)← gt(xi)/max

(
1, ‖gt(xi)‖2

C

)
Add noise
g̃t ← 1

L

(∑
i ḡt(xi) +N (0, σ2C2I)

)
Descent
θt+1 ← θt − ηg̃t

end for
Output θT and compute the overall privacy cost
(ε, δ) using a privacy accounting method.

where η is the learning rate.
After the training process completes, the perfor-

mance of the trained model is evaluated on a held-out
test dataset. Since the parameter learning is based on
training data, the prediction performance of the trained
model is usually good on training data. The ability to
also perform well on unseen, test data is referred to as
generalization. The performance drop from training to
test data is referred to as the generalization gap.

2.3 Differentially Private Stochastic
Gradient Descent

Differentially private SGD (DP-SGD) was originally
proposed in [1], and still remains the only general back-
bone for differentially private deep learning that re-
quires no access to additional public data [1, 57, 58, 66].
The pseudocode of DP-SGD is shown in Algorithm 1.

DP-SGD utilizes the Gaussian mechanism to pro-
vide DP guarantees. Since the Gaussian mechanism re-
quires an upper-bound on the sensitivity of the data-
dependent function, in DP-SGD, the `2−norm of per-
sample gradients gt(xi) ← ∇θtL(θt, xi) are firstly
clipped:

ḡt(xi)← gt(xi)/max
(
1, ‖gt(xi)‖2

C

)
,

where C is the clipping threshold. This clipping step
bounds the `2−sensitivity of

∑
i ḡt(xi) by C and hence

the Gaussian noise that scales proportionally to C will
achieve DP. After the gradient is noised, it will be used
to update the parameters, following the similar update
rule to the regular SGD.

Applying the Gaussian mechanism to each gradient
update in the way above allows one to obtain the pri-
vacy guarantee for each iteration of SGD. To calculate
the privacy guarantee corresponding to the overall SGD
algorithm, one could apply the advanced composition
theorem for DP [13].

Theorem 1. Advanced Composition: For all
ε, δ, δ′ ≥ 0, the class of (ε, δ)-differentially private mech-
anisms satisfies (ε′, kδ + δ′)-differential privacy under
k-fold adaptive composition for

ε′ =
√

2k ln (1/δ′)ε+ kε(eε − 1).

However, it has been shown in [1] that this generic
composition theorem does not yield a tight analysis.
Recent works [61, 66, 69] have developed techniques
that can produce a much tighter estimate of the over-
all privacy guarantee for SGD under different subsam-
pling methods and noising mechanisms. Particularly,
autodp1 [61, 69] provides an analytical characteriza-
tion of privacy guarantees for composite differentially
private mechanisms and an efficient implementation to
track the guarantees. It is compatible with Poisson
subsampling—a subsampling method that is typically
assumed in DP-SGD. Hence, in this work, we will use
autodp as a default way to calculate the privacy param-
eters for SGD. Unlike the original paper of DP-SGD [1]
that uses fixed-size batches as an approximation, we fol-
low Poisson subsampling strictly in our evaluation for
rigorous privacy guarantees.

2.4 Private Aggregation of Teacher
Ensembles

PATE is a popular framework for differentially pri-
vate deep learning when there exists relevant public
data. PATE [41, 42] consists of three key ingredients:
teacher models, an aggregation mechanism, and a stu-
dent model.

Teacher models are trained independently on dis-
joint subsets of private data. The ensemble of teacher
models is then used to label the public data. An aggre-
gation mechanism is used to aggregate the class predic-
tions produced by each teacher model. Proper noise is
injected into the aggregate predictions to ensure that
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the labeled public data can achieve certain differential
privacy guarantees.

Finally, a student model is trained, usually in a
semi-supervised fashion, on public data that is at least
partially labeled by an aggregation mechanism. This
student model is differentially private as it observes only
public data and differentially private labels.

Among the several aggregation mechanisms pro-
posed in prior work [41, 42], the most advanced one is
Confident-GNMax Aggregator. It first tests with Gaus-
sian noise of scale σ1 whether the plurality vote of
teacher predictions passes a threshold T . If the test is
passed, it returns the class with the most votes after the
Gaussian noising of scale σ2. In this way, priority will
be given to labeling public data with sufficiently strong
consensus among teacher models.

3 Proposed Approach

3.1 Motivating Example

Let us first see a simple example to motivate the need for
smooth learning loss in differentially private learning.
Consider the objective function illustrated in Figure 2a,
which is the mixture of two centrosymmetric functions
Fu and Fv:

min
θ∈R2

L(θ) = Fu(θ) · E(θ, u)
E(θ, u) + E(θ, v)

+ Fv(θ) · E(θ, v)
E(θ, u) + E(θ, v)

(1)

where u, v ∈ R2 are two fixed centers of sym-
metry, Fu(θ) = S

(
‖θ−u‖2

5 − 5
‖θ−u‖2

)
, Fv(θ) =

S
(

2‖θ−v‖2
5 − 5

2‖θ−v‖2

)
, the sigmoid function S(x) =

1
1+e−x and E(θ, x) = e−

‖θ−x‖
2 .

As shown in Figure 2a, the loss landscape consists
of two local minima with L(θ) ≈ 0: a flat one and a
sharp one.

Due to the noise injected to protect privacy, the
dynamics of DP-SGD will exhibit large variability. In
Figure 2c, we visualize the distribution of θ obtained
from 100 independent runs of DP-SGD and we can see
that DP-SGD could converge to the neighborhood of
both local minima.

The noisy nature of DP-SGD degrades not only the
performance but the stability of performance, especially
when DP-SGD converges to the sharp local minimum.
In Figure 2e, we present the distribution of loss val-
ues from 1000 independent runs of DP-SGD. While loss

(a) The loss landscape of
the toy example described in
Equation 1

(b) The smoothed loss land-
scape of the toy example de-
scribed in Equation 1

(c) The outputs from 100
independent runs of DP-SGD

(d) The outputs from 100
independent runs of DP-SGD
with smoothing

(e) The distribution of loss
values from 1000 independent
runs of DP-SGD

(f) The distribution of loss
values from 1000 indepen-
dent runs of DP-SGD with
smoothing

Fig. 2. A toy example illustrating the motivation for DPlis

values are near-zero around both local minima, the loss
distribution of actual output models has a long tail. The
long tail is mainly caused by the the sharp minimum:
a slight change near the sharp minimum could lead to
a steep increase of loss. In contrast, a change near the
flat minimum would result in a small change of loss.

On the other hand, if we can smooth out the sharp
local minima, both the performance and the stability
of performance will be greatly improved. Figure 2b il-
lustrates the objective after smoothing. We will dive
into the details of the smoothing technique later. With
enough smoothing, the sharp local minimum will van-
ish and only the flat one retains. Running DP-SGD with
such a smoothed loss will always converge to the neigh-
borhood of the flatter minimum, which enjoys better
performances. Moreover, the variance of loss across dif-
ferent runs of DP-SGD can be mitigated.
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3.2 Main Algorithm

We leverage the randomized smoothing technique to
smooth the learning loss function. Specifically, let L(θ)
denote the original loss function. For instance, for classi-
fication tasks, a standard choice of L(θ) is cross-entropy.
In general, a randomized smoothing technique convolves
the density µ of a random variable with the original loss
function:

Lsmooth(θ) =
∫
L(θ′)µ(θ − θ′)dθ′ = E∆∼µ[L(θ + ∆)]

(2)

The intuition underlying such approaches is that con-
volving two functions yields a new one that is at least as
smooth as the smoothest of the two original functions.

There are various smoothing distributions µ, includ-
ing Gaussian and uniform distributions on norm balls.
We use the Gaussian density function as our default
choice of smoothing distribution:

Lsmooth(θ) = E∆∼N (0,σ2
smoothI)[L(θ + ∆)] (3)

= Eθ′∼N (θ,σ2
smoothI)[L(θ′)] (4)

where σsmooth controls the strength of smoothing: a
larger value of σsmooth indicates a smoother loss func-
tion. The choice of Gaussian density function is be-
cause we found it is more compatible with DP-SGD
which adds Gaussian noise into each gradient update
step and as we will see later, its combination with DP-
SGD leads to a rigorous generalization bound for the
trained model.

As a simple illustration of randomized smoothing,
in Figure 2b, we present the loss landscape of the toy ex-
ample from Equation 1 after smoothing. The sharp local
minimum vanishes and thus model parameters are effec-
tively guided into the flat local minimum as presented
in Figure 2d, which results in better and more stable
loss values as shown in Figure 2f. We will formally show
that the Gaussian density-based randomized smoothing
indeed leads to a smoother loss function in the next
section.

In addition to smoothing the loss landscape, there
is an alternative way of interpreting our proposed loss
function Lsmooth(θ). Recall that because of the random
noise injection, the output model of DP-SGD is intrin-
sically random. Essentially, the original learning objec-
tive, minθ L(θ), only focuses on optimizing the perfor-
mance of a single instantiating of the random output
model and ignore the fact that the large randomness of

the learning process might severely degrade the model
performance. Instead, a more reasonable learning ob-
jective for DP-SGD is to minimize the expected perfor-
mance of the output model. Denoting the distribution
of model parameters by H(θ), we can write out this new
learning objective as:

Lavg(θ) = Eθ′∼H(θ)L(θ′) (5)

However, it could be very difficult to analytically char-
acterize H(θ), due to the complexity of the model
and the learning algorithm. By comparing Lavg(θ) with
Lsmooth(θ), we can see that the gist of our proposed
smooth loss is to approximate the output model dis-
tribution H(θ) via a simple Gaussian distribution. Al-
though this could be a crude approximation, it can lead
to easily implementable algorithm and at the same time
be mindful of the randomness present in DP-SGD.

Note that the second interpretation of our proposed
loss can potentially open up new, improved ways of de-
signing the learning objective for DP-SGD. For instance,
one can construct a more accurate approximation to
H(θ) by leveraging the structure of the learning algo-
rithm. However, in this paper, we will just focus on the
smoothness interpretation and present an in-depth in-
vestigation of the effect of smoothness on the differen-
tially private learning performance.

When it comes to the implementation of the pro-
posed learning loss, there are a few questions to be
addressed: (1) how can we calculate the expectation?
and (2) how can we choose the smoothing strength
σsmooth? We address the first question by using sam-
ple averaging to approximate the expectation. As for
setting the smoothing strength, the second interpreta-
tion of our smoothed loss can provide us with guide-
lines. In the second interpretation, σsmooth captures the
spread of the distribution of the output model param-
eters. Hence, intuitively, σsmooth should depend on the
amount of noise injected by DP-SGD, which further de-
pends on the learning rate, the batch size, and the clip-
ping threshold. Hence, we will factorize σsmooth into the
learning rate η, the noise multiplier used in DP-SGD σ,
the clipping threshold C, as well as a tuning parameter
R, which we call smoothing radius. The smoothing ra-
dius captures some complex factors that can impact the
spread of parameter distribution, like the training data
distribution.

Formally, the smoothed loss used in the implemen-
tation of DPlis is given as follows:

min
θ

1
K

K∑
j=1
L(θ +R · η

L
· νj) νj ∼ N (0, σ2C2I) (6)
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Algorithm 2 DP-SGD with DPlis
Require: examples {x1, . . . , xN}, loss function L(θ) =

1
N

∑
i L(θ, xi), learning rate η, noise multiplier σ,

batch size L, clipping threshold C, smoothing radius
R, number of smoothing samples K.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random batch Lt with sampling probability
L/N in Poisson subsampling
Compute gradient
For each i ∈ Lt, compute
gt(xi)← 1

K

∑K
j=1∇θtL(θt+R · ηL ·N (0, σ2C2I), xi)

Clip gradient
ḡt(xi)← gt(xi)/max

(
1, ‖gt(xi)‖2

C

)
Add noise
g̃t ← 1

L

(∑
i ḡt(xi) +N (0, σ2C2I)

)
Descent
θt+1 ← θt − ηg̃t

end for
Output θT and compute the overall privacy cost
(ε, δ) using a privacy accounting method.

K is the number of samples that we draw from the
smoothing distribution. With a larger K, the loss above
will be a better approximation to Lsmooth(θ) and thus
better learning performance could be expected. How-
ever, a larger K would at the same makes the learning
algorithm more computationally expensive. In general,
one can set K to be as large as the computational re-
source permits. We will present a more detailed study
of the effect of K and the smoothing radius in Section 5.

The complete algorithm of DP-SGD with our
smoothed loss is provided in Algorithm 2, where the red
texts highlight the difference from the original DP-SGD
algorithm.

4 Utility Analysis
In this section, we provide the utility analysis for DP-
SGD with smoothed loss. We will start by formalizing
the smoothness of the loss landscape and further char-
acterize the change in the loss landscape smoothness
with randomized smoothing. Moreover, we study the
implications of smoothing in improving the stability and
generalization of differentially private models. Proofs of
lemmas and theorems in this paper can be found in the
appendix.

4.1 Smoothness

A commonly used notion for smoothness is based on the
Lipschitz constant of the gradient of a function.

Definition 4 (Smoothness). We say that a function f

is β-smooth if

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖. (7)

β is often referred to as the smoothness constant and a
smaller β indicates a smoother function.

The next lemma characterizes the smoothness con-
stant of a function smoothed with randomized smooth-
ing based on Gaussian density.

Lemma 1. Assume that L is L-Lipschitz with respect to
the `2 norm. Then, Lsmooth in Equation (3) is expected
to be L/σsmooth-smooth. In addition, if L is β-smooth,
then Lsmooth is expected to be min{L/σsmooth, β}-
smooth.

Lemma 1 indicates that larger Gaussian noise used in
randomized smoothing will lead to a smoother loss land-
scape. Moreover, note that the first part of Lemma 1
makes no assumption about the smoothness of the origi-
nal loss function. Hence, even when the original function
is unsmooth (i.e., unbounded smooth constant), ran-
domized smoothing can still lead to a smooth function.
Indeed, unsmooth loss is quite common in deep learn-
ing. For instance, when the ReLU activation function is
used, the resulting deep net has unbounded smoothness
constant. The second part of the theorem implies that
the smoothness constant of Lsmooth is always less than
that of L. In other words, if the original loss function is
already smooth, randomized smoothing can only make
it smoother.

4.2 Stability

With the characterization of smoothness, we can reason
about the effect of smoothness on the stability of differ-
entially private learning, i.e., the consistency of model
performance across different runs. Particularly, we will
use the sum of the expected squared l2-norm of the gra-
dient across all iterations to help measure the stability.
Gradients induce the changes in the model parameters
and if each gradient has a large variance, then the model
parameters will also have a large variance. Hence, the
sum of the expected squared l2-norm of the gradient
reflects the total variations exhibited during training.
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Theorem 2 provides a bound on the total expected
squared l2-norm of the gradients in terms of the smooth-
ness constant with a simplification through ignoring the
effect of gradient clipping. The proof follows from the
convergence proof of SGD in [19, 35].

Theorem 2. Given an arbitrary β-smooth learning loss
L and a learning rate η, assuming E[∇L(θ, xi)] =
E[∇L(θ)] and E[‖∇L(θ, xi) − ∇L(θ)‖2] ≤ σ2 for some
parameter σ ≤ 0, we have

1
T

T∑
t=1

E[‖∇L(θt)‖2] ≤ 2E[L(θ1)]− 2E[L(θ∗)]
η(2− ηβ)T + ηβσ2

(2− ηβ)

If we use a monotonically decreasing learning rate η

and η = ω( 1
T ), then when T → ∞, the second term

on the right-hand side will dominate. Since randomized
smoothing can effectively reduce the smoothness con-
stant, the left-hand side for the smoothed loss will be
less than that for the original loss, which further im-
plies that DP-SGD with DPlis is more stable than the
vanilla DP-SGD.

4.3 Generalization

We now switch up to another performance metric for
differentially private learning—generalizability of the
trained model.

We show with the following theorem that random-
ized smoothing may help to close generalization gaps.
While the same proof idea can be generalized to Pois-
son subsampling, a simplification is made in the follow-
ing theorem by considering DP-SGD that uses fixed-size
batches instead. This is to derive a more succinct bound
that offers more insights.

Theorem 3 (Generalization by Smoothness). Let
L̂(θ) be the expected loss on the actual distribution, L(θ)
be the corresponding average loss computed on the train-
ing data and L(θ, x) be the corresponding loss on sample
x. Let Ltrain(θ, x) be the training loss used in DP-SGD
on sample x, which may differ from L(θ, x). Assume
L(θ, x) is L-Lipschitz for every x and Ltrain(θ, x) is
β-smooth every x, then we have

|E[L̂(θ)− L(θ)]| ≤ 2ηCLT
n

· (1 + ηβ)T−1, (8)

where θ is the final parameter from DP-SGD with learn-
ing rate η, clipping threshold C, noise multiplier σ, total
number of steps T and total number of training data n.

The expectations are taken over both the randomness of
DP-SGD and the draw of training data.

Theorem 3 indicates that the generalization error of a
model (i.e., left-hand side of Eqn. 8) depends on the
smoothness of the loss function used for training the
model (i.e., β in the right-hand side of Eqn. 8) and a
smoother training loss can potentially lead to a smaller
generalization error. The theorem justifies the advan-
tage of using randomized smoothing during training.

The proof is largely inspired by [20] and is left to
the appendix. The key idea of the proof is to leverage a
classic result in learning theory that the generalization
gap E[L̂(θ)−L(θ)] can be bounded by s when the learn-
ing algorithm is s-uniformly stable (i.e. E[L(θ, x)] may
differ at most s when one sample in the training set is re-
placed). LetD andD′ be respectively training set before
and after the replacement. Since L(θ, x) is L-Lipschitz,
the difference E[L(θD, x)] − E[L(θD′ , x)] is bounded by
L ·E[‖θD−θ′D‖], where θD and θD′ represent the models
trained on D and D′, respectively. Thus, we can analyze
E[‖θD − θ′D‖] instead. Fixing the randomness of initial
parameters, Gaussian noise, and batch selection, we can
analyze how θD and θ′D depart from each other through
DP-SGD updates using the smoothness of Ltrain. Intu-
itively, the smoother the training objective is, the less
sensitive individual iterations of DP-SGD would be to
changes of training points. At last, we take expectation
over the randomness above to obtain the final bound
of uniform stability, which is then transferred into the
generalization bound.

5 Evaluation
We would like to answer the following five questions
with empirical evaluation:
1. How does DPlis perform compared to vanilla DP-

SGD?
2. Is the performance sensitive to the newly introduced

hyper-parameters (i.e., K and smoothing radius)?
3. Does randomized smoothing indeed lead to

smoother loss landscapes for DNNs?
4. Does randomized smoothing improve the stability?
5. Will the gains from smoothing remain combining

other improvement strategies?

In addition, we present how the smoothing idea can be
extended to improve PATE—a popular framework for
differentially private deep learning with public data.



DPlis: Boosting Utility of Differentially Private Deep Learning via Randomized Smoothing 171

5.1 Experimental Setup

Datasets and Models. To answer question (1), we
evaluate DPlis on various learning tasks. We first
demonstrate DPlis’s performance improvement on two
classic vision benchmarks: MNIST and CIFAR-10.
On these two benchmarks, models are trained entirely
from scratch, which we refer to as non-transfer settings.
MNIST [29] is one of the most commonly used bench-
mark datasets in deep learning containing 70000 hand-
written digit images. CIFAR-10 [28] is another classic
benchmark for image classification. It consists of 60000
images from 10 different classes with 6000 images each.
We evaluate two different architectures on MNIST and
CIFAR-10: multilayer perceptron (MLP) and convolu-
tion neural network (CNN). The MLP is comprised of
two hidden layers with 512 (1536) neurons and 128 (128)
neurons for MNIST (CIFAR-10) all using ReLU activa-
tion. The architecture of the CNN is inherited from the
official tutorial of tensorflow/privacy2.

Besides non-transfer settings, given the access to
pre-trained feature extractors, we also evaluate DPlis
on more challenging datasets, which we refer to as trans-
fer settings. Specifically, we evaluate DPlis in three
transfer settings.
– ImageNet→CIFAR-100: ImageNet [47] denotes

the image classification benchmark in Ima-
geNet Large Scale Visual Recognition Challenge
(ILSVRC). It includes a training set with over 1.2
million images and a validation set of 50000 images,
all in full resolution, spanning 1000 different classes.
CIFAR-100 [28] is similar to CIFAR-10 but with 100
different classes. In this setting, we use a ImageNet
pre-trained EfficientNet-b03 [54] to extract features.
After average-pooling, the extractor provides 1280-
dimensional feature vectors, on which an MLP with
two 256-neuron hidden layers and ReLU activation
is trained to classify CIFAR-100.

– CelebA→PubFig83: PubFig83[44] is a dataset of
13838 facial images from 83 public figures with at
least 100 images per identity. In our evaluation, we
use a pre-processed version of PubFig834 [9], where
images are aligned by the position of the eyes. 50 im-
ages from every identity are taken into the testing
set with a total of 4150 images, and the remaining
9688 images constitute the training set. CelebA[36]
is a large-scale dataset of 202599 facial images cor-
responding to 10177 identities. We remove all 44
identities with only one corresponding image from
CelebA, which results in a total of 202555 images
and 10133 identities. In this setting, the pre-training

is accomplished on this dataset using 10133-way
face identification with one image from every iden-
tity preserved for validation. We choose ResNet-
50[21] as the backbone of pre-trained feature extrac-
tors, following the implementation of face.evoLVe5.
After pre-training, average-pooling is applied to the
outputs of the last convolution layer to form features
with 2048 dimensions, and an MLP with one 32-
neuron hidden layer and ReLU activation is trained
on such features.

– CelebA−→CelebA1000: In CelebA−→CelebA1000
setting, 1000 identities with exactly 30 correspond-
ing facial images are picked to form the private
dataset, namely CelebA1000, while the remaining
9133 identities constitutes the dataset for pre-
training, namely CelebA−. The pre-training on
CelebA− is similar to the one in CelebA→PubFig83
setting, with one image from every identity pre-
served for validation. For the private dataset
CelebA1000, 25 images from every identity are taken
by the training set, and the other 5 images are taken
by the testing set, which leads to a training set of
size 25000 and a testing set of size 5000. The archi-
tecture is the same as CelebA→PubFig83 setting.

Beyond vision tasks, we also evaluate DPlis on an NLP
task, namely next word prediction on Reddit Com-
ments (Reddit). Reddit Comments [2] is a collection of
Reddit posts. Following the setup of [25], we randomly
sample 10000 comments as training data and 5000 com-
ments as testing data, and pre-train the model on an ad-
ditional public data source, Brown corpus [15], without
differential privacy for warm-starting. Following [38], we
choose to use a pre-selected dictionary from public data
instead of to use heavy hitter estimation[45] to gener-
ate one from private data. Our dictionary is composed
of a total of 36743 words, containing all words with a
frequency of at least two from Brown corpus.

We evaluate both MLP and LSTM models for the
task. The MLP takes the last 20 tokens as its input
and contains three hidden layers with respectively 500,
250, and 50 neurons. The LSTM model takes a series
of words as input and embeds them individually into a
learned 256-dimensional space. The embedded charac-
ters are then processed through an LSTM module with
96 nodes. Finally, the output of the LSTM module is
sent to a fully-connected layer for word predictions.
Training Setups. For all the reported results, all
hyper-parameters for DP-SGD are selected to achieve
the best performance of vanilla DP-SGD. DPlis then
sets the exactly same value for the part of hyperpa-



DPlis: Boosting Utility of Differentially Private Deep Learning via Randomized Smoothing 172

Table 1. Hyper-parameters

setting L η
L

η σ C

MNIST 256 6× 10−4 0.1536 1.1 1.0

CIFAR-10 256 6× 10−4 0.1536 1.1 1.0

ImageNet→CIFAR-100 256 4× 10−4 0.1024 3.0 1.0

CelebA→PubFig83 256 6× 10−3 1.536 2.0 1.0

CelebA−→CelebA1000 256 6× 10−3 1.536 1.3 1.0

Reddit 64 10−3 0.064 1.1 1.0

rameters that appear in DP-SGD. The exact choice of
hyper-parameters are presented in Table 1, where L is
(expected) batch size, η is learning rate, σ is noise mul-
tiplier and C is clipping threshold. Batches are sampled
through Poisson sampling with probability L

N , where N
is the size of the training set.

For DPlis, unless otherwise specified, we setK = 10
in both non-transfer and transfer settings and K = 20
for next word prediction on Reddit. We present results
for radius R = 10 and R = Rbest, where Rbest denotes
the radius that achieves the best performance under cor-
responding privacy budgets.

In presenting privacy budgets, we fix δ in
(ε, δ)−differential privacy to be 10−5 and present only
the corresponding ε. Each row in Table 2, Table 3 and
Table 5 corresponds to results from a single run.

5.2 Performance Evaluation

Results in Non-transfer Settings. As shown in Ta-
ble 2, using DPlis improves test accuracy of DP-SGD
by 0.46% ∼ 5.88% with R = Rbest and 0.06% ∼ 3.88%
with R = 10 in non-transfer settings.

An interesting phenomenon is that the test accuracy
of vanilla DP-SGD occasionally drops drastically when
training proceeds. As a concrete example, when we train
MLP on CIFAR-10, the test accuracy starts to degrade
as early as before ε = 5.01. Though it seems like overfit-
ting, it is actually not since no increasing generalization
gap is observed. We will further discuss this in Section
5.4. This issue, if not fully addressed, is greatly alle-
viated by randomized smoothing. When training pro-
ceeds, no significant drop on test accuracy is observed
for DPlis.
Results in Transfer Settings. As in Table 3, while
pre-trained features already lift the utility of vanilla DP-
SGD, using DPlis can further improve test accuracy of

DP-SGD by 1.23% ∼ 5.81% with R = Rbest and 0.56% ∼
5.81% with R = 10.

Firstly, pre-trained features greatly boost capabil-
ities of vanilla DP-SGD in a sense that now it can
perform fairly well within meaningful privacy budgets
on much more difficult tasks. Table 4 contains a sum-
mary of training set statistics, where Ntrain denotes the
size of training set, M denotes the size of label set and
Ntrain
M denotes the average number of samples per la-

bel. CIFAR-100, PubFig83 and CelebA1000 are consid-
ered much harder than MNIST and CIFAR-10, as they
have more label classes, fewer samples per class, and
richer details in images. However, with a pre-trained
EfficientNet-b0 as the feature extractor, an accuracy of
46.78% is achieved on CIFAR-100 by DP-SGD with-
out smoothing in a very tight privacy budget ε = 0.86,
which is already comparable to 49.70% on CIFAR-10
by training a CNN from scratch with ε = 1.99. Clearly,
it is beneficial to have pre-trained features when using
DP-SGD.

Secondly, even with strong pre-trained features,
randomized smoothing remains a substantial improve-
ment to model performance when applied in DP-
SGD. This observation is consistent in all three set-
tings, regardless of whether the feature extractor
is pre-trained on a dataset with a broader scope
(ImageNet→CIFAR-100), a dataset with domain shift
(CelebA→PubFig83), or even a dataset with a similar
distribution (CelebA−→CelebA1000). With the pres-
ence of randomized smoothing, test accuracy is raised
by at least 3% in many cases and around 5% in a few.
The effectiveness of randomized smoothing in improv-
ing utility does not seem to be weakened by access to
pre-trained features.
Results on Next Word Prediction. In Table 5, ap-
plying DPlis results in a significant performance im-
provement, which further supports the effectiveness of
our approach. Perplexity is reduced by at least 50 in all
cases for both R = 10 and R = Rbest.

Similar to the image-domain tasks in non-transfer
settings, we observe degrading performance for the
LSTM model when using DP-SGD without smooth-
ing. The perplexity is indeed increasing gradually when
training proceeds. While we will further discuss the po-
tential cause of this issue in Section 5.4, we can see
here that it is again addressed by randomized smooth-
ing successfully. Perplexity decreases and utility im-
proves through training with the presence of random-
ized smoothing.
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Table 2. Evaluation in Non-transfer Settings

dataset model smoothing
test accuracy

ε = 1.99 ε = 5.01 ε = 7.01 ε = 10.00

MNIST

MLP
No 92.60% 93.92% 94.11% 93.35%

R = 10 92.66%(+0.06%) 94.78%(+0.86%) 94.84%(+0.73%) 95.19%(+1.84%)

R = Rbest 93.58%(+0.98%) 95.94%(+2.02%) 96.17%(+2.06%) 96.00%(+2.65%)

CNN
No 95.08% 95.92% 96.07% 95.89%

R = 10 96.62%(+1.54%) 97.49%(+1.57%) 97.52%(+1.45%) 98.56%(+2.67%)

R = Rbest 97.31%(+2.23%) 98.01%(+2.09%) 98.48%(+2.41%) 98.90%(+3.01%)

CIFAR-10

MLP
No 43.88% 43.16% 41.95% 41.07%

R = 10 44.09%(+0.21%) 44.48%(+1.32%) 44.73%(+2.78%) 44.95%(+3.88%)

R = Rbest 44.34%(+0.46%) 46.90%(+3.74%) 46.92%(+4.97%) 46.95%(+5.88%)

CNN
No 49.70% 58.48% 60.46% 61.37%

R = 10 50.09%(+0.39%) 60.39%(+1.91%) 62.09%(+1.63%) 63.22%(+1.85%)

R = Rbest 50.85%(+1.15%) 61.75%(+3.27%) 62.32%(+1.86%) 64.73%(+3.36%)

Table 3. Evaluation in Transfer Settings

setting smoothing test accuracy

ImageNet→
CIFAR-100

ε = 0.39 ε = 0.54 ε = 0.66 ε = 0.77 ε = 0.86

No 34.75% 42.34% 44.52% 46.00% 46.78%

R = 10 35.73%(+0.98%) 43.32%(+0.98%) 46.59%(+2.07%) 49.02%(+3.02%) 49.70%(+2.92%)

R = Rbest 35.98%(+1.23%) 43.76%(+1.42%) 48.00%(+3.48%) 51.04%(+5.04%) 52.04%(+5.26%)

CelebA→
PubFig83

ε = 2.84 ε = 4.06 ε = 5.04 ε = 5.89 ε = 6.64

No 41.20% 53.45% 55.95% 59.47% 62.17%

R = 10 41.76%(+0.56%) 54.53%(+1.08%) 61.76%(+5.81%) 62.84%(+3.37%) 64.84%(+2.67%)

R = Rbest 43.16%(+1.96%) 57.16%(+3.71%) 61.76%(+5.81%) 64.27%(+4.80%) 66.24%(+4.07%)

CelebA−→
CelebA1000

ε = 4.88 ε = 6.06 ε = 7.12 ε = 8.03 ε = 8.87

No 19.68% 25.74% 31.54% 34.12% 36.44%

R = 10 21.46%(+1.78%) 29.86%(+4.12%) 34.32%(+2.78%) 38.18%(+4.06%) 40.32%(+3.88%)

R = Rbest 22.54%(+2.86%) 30.38%(+4.64%) 35.58%(+4.04%) 38.88%(+4.76%) 41.08%(+4.64%)

Table 4. Summary of Training Set Statistics

dataset Ntrain M Ntrain
M

MNIST 60000 10 6000

CIFAR-10 50000 10 5000

CIFAR-100 50000 100 500

PubFig83 9688 83 ≈ 117

CelebA1000 25000 1000 25

5.3 Hyper-parameters for Randomized
Smoothing

Applying randomized smoothing introduces only two
scalar hyper-parameters, smoothing radius R and the
number of smoothing samples K. With existing private
hyper-parameter selection techniques[34, 51], adding
two additional scalar hyper-parameters to existing
hyper-parameters in DP-SGD is in fact not too much
of a burden on privacy budgets, even if they are treated
naively through grid search. Nevertheless, we will show
in this section that by digging into the effects of R and
K to model performance, their selection can be done
properly with less or even no additional privacy budget.
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Table 5. Evaluation of Next Word Prediction on Reddit

dataset model smoothing
perplexity

ε = 0.55 ε = 0.60 ε = 0.65

Reddit

MLP
No 692.85 654.66 652.30

R = 10 638.10(−54.75) 593.92(−60.74) 590.11(−62.19)

R = Rbest 622.81(−70.04) 588.76(−65.90) 585.50(−66.80)

LSTM
No 1157.42 2909.73 2981.27

R = 10 688.95(−468.47) 585.47(−2324.26) 578.63(−2402.64)

R = Rbest 683.19(−474.23) 583.23(−2326.50) 575.54(−2405.73)

(a) MNIST (b) CIFAR-10

(c) ImageNet→CIFAR-100 (d) CelebA→PubFig83

(e) CelebA−→CelebA1000 (f) Reddit

Fig. 3. Test accuracy v.s. smoothing radius R

Effect of R. To understand the effect of R, we evaluate
randomized smoothing with various R under K = 20 for
next word prediction on Reddit and under K = 10 for
other settings. The results are presented in Figure 3. We
also report the values of Rbest in Table 6, Table 7 and
Table 8 respectively for different settings. Each color
corresponds to a specific setting with a specific value of
ε, with the full line in that color denoting performance
with smoothing using different R and the dotted line in
that color denoting performance without smoothing.

Table 6. Rbest in Non-transfer Settings

dataset model
Rbest

ε = 1.99 ε = 5.01 ε = 7.01 ε = 10.00

MNIST
MLP 40 40 40 40

CNN 40 40 40 40

CIFAR-10
MLP 30 40 40 40

CNN 30 30 30 30

Table 7. Rbest in Transfer Settings

setting Rbest

ImageNet→
CIFAR-100

ε = 0.39 ε = 0.54 ε = 0.66 ε = 0.77 ε = 0.86

5 12 30 30 30

CelebA→
PubFig83

ε = 2.84 ε = 4.06 ε = 5.04 ε = 5.89 ε = 6.64

15 12 10 12 12

CelebA−→
CelebA1000

ε = 4.88 ε = 6.06 ε = 7.12 ε = 8.03 ε = 8.87

12 12 12 12 12

Table 8. Rbest for Next Word Prediction on Reddit

dataset model
Rbest

ε = 0.55 ε = 0.60 ε = 0.65

Reddit
MLP 4 4 4

LSTM 4 4 4

Regarding the effect of R to model performance, we
observe a useful property here: model performance is ap-
proximately a unimodal function of R, which means it
is monotonically increasing for R < Rbest and monoton-
ically decreasing for R > Rbest. With this property, the
set of R that yields considerable improvements forms
an interval that is always fairly wide in all our results,
which is friendly to private hyper-parameter selection.

Furthermore, benefiting from our factorization of
σsmooth, even though σsmooth may vary greatly, the in-
terval for R with solid improvements is more or less
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(a) ImageNet→CIFAR-100 (b) CelebA→PubFig83

Fig. 4. Test accuracy v.s. number of smoothing samples K

(a) no smoothing (b) K = 5

(c) K = 10 (d) K = 20

Fig. 5. Loss surfaces on 1% training data of CIFAR-10

of the same scale across different settings. As a re-
sult, while Rbest is different from one setting to an-
other, smoothing DP-SGD with a single radius setting
R = 10 suffices to considerably outperform vanilla DP-
SGD across all settings as shown in Table 2, Table 3
and Table 5. Thus, as a rule of thumb, simply selecting
R = 10 is likely a good choice.
Effect of K. To understand the role of the hyper-
parameter K, we evaluate randomized smoothing with
various K under a fixed radius R = 10 in two set-
tings, ImageNet→CIFAR-100 for object classification
and CelebA→PubFig83 for face identification. The re-
sults are presented in Figure 4. For each setting, we
present results corresponding to three different privacy
budget ε. For each ε, the test accuracy obtained with
different K is plotted as a full line and the test accu-
racy without smoothing under the same ε is plotted as
a horizontal dotted line in the same color.

Overall, model performance benefits from a larger
K, which makes the selection of K a simple trade-off
between utility and computation time. Such trade-off

(a) MNIST MLP (b) MNIST CNN

(c) CIFAR-10 MLP (d) CIFAR-10 CNN

Fig. 6. Sharpness visualization

can be easily addressed without tuning by selecting
the largest K with acceptable training time. This phe-
nomenon is fairly intuitive given that a larger K implies
a better approximation of Lsmooth(θ). Figure 5 supports
this claim, in which we visualize the effect of K to the
loss surface of a ResNet-56 published by [32] along with
3D loss visualization code6. Besides, even with K as
small as 3, randomized smoothing can already improve
the performance of DP-SGD considerably, as shown in
Figure 4.

5.4 Justification of Smoothing

When designing DPlis, one of our motivations is to
explicitly incorporate the preference to flatter regions,
which is supported by theoretical results in Section 4. In
this section, we provide further supports by examining
empirically whether DP-SGD is guided towards flatter
regions with randomized smoothing.

One way of examination is through visualization,
which is intuitive but considers limited dimensions. We
adapt filter normalized plots from [26] for visualization,
which is designed to remove apparent differences in ge-
ometry caused by scaling filter weights. To visualize the
sharpness of loss landscape around a given parameter
θ, one begins with a random Gaussian direction d with
the same dimensions as θ. Then each filter fd in d will
be normalized by a factor of ‖fd‖‖fθ‖ , so that it will have
the same norm as the corresponding filter fθ in θ. At
last, with the filter-normalized vector d, one can plot
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Table 9. (Cε; A)-sharpness

dataset model smoothing (Cε;A)-sharpness

MNIST
MLP No 0.8626

R = 10 0.5454

CNN No 139.8159
R = 10 49.6169

CIFAR-10
MLP No 1.0375

R = 10 0.0000

CNN No 563.5351
R = 10 340.5471

out test accuracy and test loss corresponding to models
parameters on the segment θ+α ·d with α ∈ [−0.8, 0.8].

We visualize models trained with and without ran-
domized smoothing in three different settings. The re-
sults are presented in Figure 6. Overall, the visualized
region around the parameter obtained by DP-SGD with
smoothing tends to be flatter than the one around the
parameter obtained by vanilla DP-SGD. Though the vi-
sualization is conducted along a single direction, it gives
us a rough idea of the effect of DPlis.

Another way of examination is through numerical
sharpness metrics, which is less intuitive but able to
capture patterns from more dimensions. Here, we follow
the definition of (Cε;A)-sharpness from [26].

Definition 5. (Cε;A)-sharpness: Given θ ∈ Rn, ε >
0 and A ∈ Rn×p, the (Cε;A)-sharpness of L at θ is(

maxy∈Cε(θ) L(θ +Ay)
)
− L(θ)

1 + L(θ) × 100,

where Cε(θ) = {z ∈ Rp : |zi| ≤ ε
(
|
(
A+θ

)
i
|+ 1

)
} and

A+ denotes pseudo-inverse of A.

We set A to be the identity matrix In following their
default setting and set ε to be 0.0045. The results are
presented in Table 9, where (Cε;A)-sharpness is always
smaller with randomized smoothing, suggesting the suc-
cess of our design in guiding DP-SGD towards favorable
flatter regions.

In Section 5.2, we briefly mention the degrading per-
formance issue of vanilla DP-SGD when it is observed
in Table 2 and Table 5, where model performance de-
creases gradually as training proceeds. Here we propose
an explanation for the main cause of such an issue,
which separates it from overfitting in machine learning,
and we argue that guiding DP-SGD towards flatter re-
gions via randomized smoothing can indeed resolve this
issue.

(a) Training accuracy v.s.
ε

(b) Sharpness visualization of
SGD

Fig. 7. An explanation to the cause of degrading performance
issue of DP-SGD

In Figure 7a, we have curves of training accuracy on
CIFAR-10 plotted for DP-SGD with and without ran-
domized smoothing. We notice that not only the perfor-
mance on the test set but also the performance on the
training set can be degrading when using vanilla DP-
SGD. The degrading training performance, instead of
the enlarged generalization gap (i.e., overfitting), is the
major cause for degrading test performance.

We further propose a hypothesis: degrading train-
ing performance is a joint effect of a growing favor to
sharper minima and the noisy nature of DP-SGD. In
Figure 7b, we visualize training accuracy and training
loss of three checkpoints from a training process with
SGD and gradient clipping, where we observe that SGD
may start guiding the parameter towards sharper min-
ima from some point of training. Sharper minima are
considered less noise-tolerant and degrading training ac-
curacy occurs when starting at some point they fail
to tolerate noise introduced by DP-SGD. Randomized
smoothing resolves this issue by mitigating the tendency
for sharper minima with an explicit preference to flatter
regions.

5.5 Stability of Performance

Vanilla DP-SGD is usually considered unstable as vari-
ations of performance among independent runs are non-
negligible. In this section, we show that randomized
smoothing improves not only the performance of DP-
SGD, but also its stability.

Table 10 contains our evaluation results. For each
cell in the table, range and standard deviation of test
accuracy across 5 runs are reported. Both standard devi-
ation and range can be reduced significantly after using
randomized smoothing, which indicates that random-
ized smoothing helps with the stability of performance.
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Table 10. Stability of Performance

dataset model smoothing
standard deviation range

ε = 5.01 ε = 10.00 ε = 5.01 ε = 10.00

MNIST MLP
No 0.184% 0.339% 0.55% (93.51%, 94.06%) 1.02% (93.25%, 94.27%)

R = 10 0.088% 0.184% 0.25% (94.72%, 94.97%) 0.56% (95.36%, 95.92%)

R = 40 0.068% 0.088% 0.18% (95.92%, 96.10%) 0.25% (95.90%, 96.15%)

CIFAR-10 CNN
No 0.577% 0.427% 1.61% (57.27%, 58.88%) 1.18% (60.65%, 61.83%)

R = 10 0.444% 0.360% 1.24% (60.18%, 61.42%) 0.92% (62.66%, 63.58%)

R = 30 0.332% 0.196% 0.96% (61.22%, 62.18%) 0.58% (64.25%, 64.83%)

Table 11. Evaluation when combined with Tempered Sigmoid

dataset model smoothing
test accuracy

ε = 1.99 ε = 5.01 ε = 7.01 ε = 10.00

CIFAR-10 CNN
No 50.04% 57.01% 58.07% 57.46%

R = 10 50.38%(+0.34%) 58.18%(+1.17%) 59.58%(+1.51%) 59.13%(+1.67%)

R = Rbest 50.38%(+0.34%) 59.17%(+2.16%) 59.93%(+1.86%) 60.06%(+2.60%)

Table 12. Evaluation of Smoothing for PATE

dataset parameter smoothing test accuracy

SVHN

σ2 = 40

ε = 7.44 ε = 11.08 ε = 14.08 ε = 16.75

No 82.56% 84.44% 85.79% 86.77%

Yes 84.06%(+1.50%) 85.64%(+1.20%) 86.96%(+1.17%) 87.39%(+0.62%)

σ2 = 80

ε = 3.78 ε = 5.51 ε = 6.90 ε = 8.10

No 75.65% 76.77% 81.95% 83.28%

Yes 77.84%(+2.19%) 82.06%(+5.29%) 83.62%(+1.67%) 84.64%(+1.36%)

σ2 = 100

ε = 3.15 ε = 4.57 ε = 5.70 ε = 6.68

No 70.51% 75.75% 79.19% 80.50%

Yes 73.92%(+3.41%) 79.56%(+3.81%) 81.69%(+2.50%) 82.36%(+1.86%)

5.6 Compatibility of DPlis

Since DPlis tailors the training objectives through
smoothing, it is by design complementary to and there-
fore naturally compatible with most if not all existing
strategies. As a proof of concept, we show empirically
in this section that the gains from DPlis remain when
combined with Tempered Sigmoid [43], which modifies
the activation functions.

The results are included in Table 11. Following [43],
we replace ReLU activations with tanh, the default set-
ting of Tempered Sigmoid. Other setups are the same
as in Section 5.1. The values of Rbest are 10, 15, 20, 15
respectively for ε = 1.99, 5.01, 7.01, 10.00.

On CIFAR-10 using a CNN with Tempered Sig-
moid activations, DPlis improves the test accuracy by
0.34% ∼ 2.60% with R = Rbest and 0.34% ∼ 1.67% with

R = 10, which corroborates the compatibility of DPlis
with other strategies.

5.7 Extension to PATE

In this section, we show that the idea of smoothing
learning loss can be extended easily to PATE for im-
proved utility as well. The core of PATE is noisy data
labeling. Intuitively, the label noise manifests itself as
parameter noise during training, which can be mitigated
by smoothing.
Experimental Setup. We evaluate PATE on
SVHN[40] benchmark following mostly setups from
[41, 42]. Detailed experimental setup is included in Ap-
pendix D.
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Experimental Results. As shown in Table 12,
smoothing improves test accuracy of PATE by 0.62% ∼
5.29%. PATE benefits from smoothing because of the
increased tolerance to the noise in privacy-preserving
labels. In Table 13, we report the accuracy of privacy-
preserving labeling Pcorrect. We notice that in most
cases, the improvement from smoothing is greater for
settings with lower Pcorrect, which corroborates the abil-
ity of smoothing to handle label noise.

6 Related Work
Privacy Attacks.Various privacy attacks motivate the
development of DP. Privacy attacks against machine
learning models aim to learn private information about
the training data. Membership inference and model in-
version are two major attacks of interest in the liter-
ature. Membership inference attacks aim to determine
whether a given individual’s data record is included in
the training set of the model [8, 33, 37, 49, 50]. On
the other hand, model inversion attacks aim to recon-
struct the sensitive features of the training data records
[16, 17, 48, 65, 68]. Additionally, model inversion at-
tack can be further refined into property inference at-
tack, where the attacker can speculate whether there
is a certain statistical property in the training dataset
[3, 18, 59]. While DP provides a strong theoretical guar-
antee against these privacy attacks, it will typically
cause unbearable utility degradation for the trained
models [46, 60]. Our work can be applied to obtain a
better utility-privacy tradeoff against privacy attacks.
Differentially Private Optimization. Differentially
private optimization is one of the most important ap-
plications of DP and has gone through careful stud-
ies during the past decade. For convex optimization,
there is a line of works with different trade-offs between
utility, privacy, and usability. [7] proposed the classic
techniques of output perturbation and objective per-
turbation. A thorough analysis of the techniques ap-
pear in [24] and two variants were proposed in [23, 64].
Several mechanisms [27, 53, 56] were proposed for deal-
ing with high-dimensional sparse regression. The non-
convex setting has only seen real progress recently. The
first private SGD algorithm was given in [52], but only
until the emergence of DP-SGD [1] with improved pri-
vacy composition do we see the real deployment of DP
in deep learning systems. Since then, [4, 39] proposed
Concentrated-DP and Rényi-DP which provides better
composability for DP-SGD. [61] further improved the

composition by considering sub-sampling in Rényi dif-
ferential privacy. [31] proposed to use direct feedback
alignment instead of backward propagation in DP-SGD.
[43] suggested that a family of bounded activation func-
tions, namely the tempered sigmoids, is more preferable
than ReLU in DP-SGD. [22] used recurrent neural net-
works learned on auxiliary public data to adjust noise
scales and to decide the update direction from the noisy
gradient. [30] introduced a line-search module to pri-
vately choose among a pre-defined set of learning rates
and decide whether to allocate more privacy budget.
In addition, [30] showed that setting a smaller gradient
clipping threshold C may impair utility when it causes
too much information loss in the estimates. Besides, un-
like randomized smoothing used in this work, reducing
C does not affect the smoothness of loss landscapes and
hence does not help tolerate noise.
Randomized Smoothing. Typically, a loss function
can be viewed as a function of both model parameters
and input data. In the machine learning community, sev-
eral lines of works perform randomized smoothing over
model parameter space as we do. To improve generaliza-
tion, [6] proposed Entropy-SGD, which optimizes local
entropy instead of the original loss function by estimat-
ing gradients with Langevin dynamics[62] and local en-
tropy is designed to have a smooth energy landscape.
With a similar purpose, [63] proposed SmoothOut,
which injects noise into the model to smooth out sharp
minima to obtain more robust models with flatter min-
ima. [10] utilized parameter-space smoothing to improve
convergence rates in nonsmooth convex optimizations.

7 Conclusion
In this work, we propose DPlis, which improves the
utility of DP-SGD by smoothing the learning loss func-
tion. We show both theoretically and empirically that
DP-SGD with the smoothed loss not only reduces the
performance variation across different runs but also
achieves a better generalization bound. In addition, we
show that the idea of smoothing learning loss can be
easily extended to improve the utility of PATE.

Through our work, we hope to open up a new per-
spective for improving the utility of privacy-preserving
deep learning, which is to tailor learning objective func-
tions to differential privacy goals. For future work, we
will investigate different instantiations of this overar-
ching idea and study the applications of the proposed
approach to medical data analysis.
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Appendices
A Proof of Lemma 1
Proof. Let µ(∆) to be the density of a random variable
∆ ∼ N (0, σ2

smoothI), then we have

Lsmooth(θ) = E∆∼N (0,σ2
smoothI)[L(θ + ∆)]

= Eθ′∼N (θ,σ2
smoothI)[L(θ′)]

=
∫
θ′

L(θ′)µ(θ − θ′)dθ′.

With Lemma 9(iii) from [10], given that L is L-Lipschitz
with respect to the `2 norm, we have the gradient of
Lsmooth to be L/σsmooth-Lipschitz continuous and there-
fore Lsmooth is L/σsmooth-smooth.

With Lemma 9(iv) from [10], we have

∇Lsmooth(θ) =E∆∼N (0,σ2
smoothI)[∇L(θ + ∆)]

=
∫
∆

(∇L(θ + ∆))µ(∆)d∆

Thus when L is β-smooth, for any θ, θ′, we have

‖∇Lsmooth(θ)−∇Lsmooth(θ′)‖

=‖
∫
∆

(∇L(θ + ∆))µ(∆)d∆−
∫
∆

(
∇L(θ′ + ∆)

)
µ(∆)d∆‖

=‖
∫
∆

(
∇L(θ + ∆)−∇L(θ′ + ∆)

)
µ(∆)d∆‖

≤max
∆
‖∇L(θ + ∆)−∇L(θ′ + ∆)‖

≤β‖θ − θ′‖,

which means Lsmooth is at least β-smooth.

B Proof of Theorem 2
Proof. Since L is β-smooth,

L(θt+1) ≤ L(θt) + 〈∇L(θt), θt+1 − θt〉+ β

2 η
2‖∇L(θt, xt)‖2

= L(θt)− η〈∇L(θt),∇L(θt, xt)〉+ β

2 η
2‖∇L(θt, xt)‖2

Take expectation on both sides, we have

E[L(θt+1)]− E[L(θt)]

≤ −η‖∇L(θt)‖2 + β

2 η
2‖∇L(θt)‖2 + β

2 η
2σ2
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By summarizing the above equation through all time
steps, we obtain the following inequality.

1
T

T∑
t=1

E[‖∇L(θt)‖2] ≤ 2E[L(θ1)]− 2E[L(θt+1)]
η(2− ηβ)T + ηβσ2

(2− ηβ)

≤ 2E[L(θ1)]− 2E[L(θ∗)]
η(2− ηβ)T + ηβσ2

(2− ηβ)

C Proof of Theorem 3
Proof. We introduce as tools the notion of uniform sta-
bility and a corresponding generalization bound from
[20].

Definition 6 (Uniform Stability). A randomized
learning algorithm A is s-uniformly stable if for all
datasets D,D′ of size n that differ in one sample, we
have

E[L(θD, x)− L(θD′ , x)] ≤ s

for all sample x, where θD and θD′ are respectively the
final parameter learned from D and D′ with A and the
expectation is taken over the randomness of A.

Theorem 4 (Generalization with Uniform Stability).
Let A be s-uniformly stable. We have

|E[L̂(θ)− L(θ)]| ≤ s,

where θ is the final parameter learned from training data
with A and the expectation is taken over both the ran-
domness of A and the draw of training data.

We can now focus on bounding the uniform stability of
DP-SGD, which can be then directly transferred into a
bound for generalization gaps with Theorem 4.

Let D = {x1, . . . , xN}, D′ = {x′1, . . . , x′N} be two
datasets of size n that differ in one sample(without loss
of generality, we assume x1 6= x′1)

Firstly, we analyze DP-SGD given realizations of
the following randomness: Let θ0 = θ′0 be a re-
alization of the random initialization of DP-SGD,
{n1, . . . , nT } = {n′1, . . . , n′T } be a realization of Gaus-
sian noise from N (0, σ2C2I) for all T steps of DP-SGD
and {B1, . . . , BT } = {B′1, . . . , B′T } be a realization of
indices of samples in all T steps.

We use θi and θ′i to denote respectively the param-
eters after the i-th updates of DP-SGD on D and D′,
and use hi to denote ‖θi − θ′i‖. Thus we have h0 = 0.

In i-th step, if the one sample that differs in D and
D′ is not selected, we have

hi ≤hi−1 + η

qn
·
∑
j∈Bi

‖clip (∇Ltrain(θi−1, xj))

− clip
(
∇Ltrain(θ′i−1, xj)

)
‖

≤hi−1 + η

qn
|Bi| · βhi−1

=hi−1 · (1 + ηβ)

where q is the sampling probability(i.e. qn = |Bi|
when using fixed-size batches) and the second inequal-
ity uses the condition that Ltrain is β-smooth(so that
clip (∇Ltrain) is β-Lipschitz).

Similarly, if the one sample that differs in D and D′

is selected, we have

hi ≤hi−1 + η

qn
·
∑
j∈Bi

‖clip (∇Ltrain(θi−1, xj))

− clip
(
∇Ltrain(θ′i−1, x

′
j)
)
‖

≤hi−1 + η

qn
(|Bi| − 1) · βhi−1 + η

qn
· 2C

≤hi−1 · (1 + ηβ) + 2ηC
qn

Combining both cases with the inital condition h0 =
0, we have

hT ≤ N1 ·
2ηC
qn
· (1 + ηβ)T−1,

where N1 is the total number of steps that contains the
different sample(i.e. x1 and x′1).

Since L(θ, x) is L-Lipschitz for every x, we have

E[L(θT , x)− L(θ′T , x)] ≤L‖θT − θ′T ‖
=LhT

≤L ·N1 ·
2ηC
qn
· (1 + ηβ)T−1

By taking expectation on both side over all previ-
ously given realizations, we have

E[L(θT , x)− L(θ′T , x)] ≤L · E[N1] · 2ηC
qn
· (1 + ηβ)T−1

=L · qT · 2ηC
qn
· (1 + ηβ)T−1

=2ηCLT
n

· (1 + ηβ)T−1

Since it holds for all D,D′ of size n that differ in
one sample, by Theorem 4, we have

|E[L̂(θ)− L(θ)]| ≤ 2ηCLT
n

· (1 + ηβ)T−1.
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D Experimental Setup:
Evaluation of Smoothing for
PATE

We evaluate PATE on SVHN[40] benchmark, which con-
sists of 73257 images for training and 26032 images for
testing. We preserve 10000 samples from its original test
set for evaluating model performance and use the re-
maining 16032 samples as the source of public data.

Following [42], we use the labels produced by ensem-
bles of 250 teachers published by [41]. We use Confident-
GNMax Aggregator[42] to aggregate predictions of
teachers. We fix T = 300, σ1 = 200 and report test accu-
racy and privacy budgets corresponding to total num-
ber of label queries #queries = 4000, 8000, 12000, 16000
with σ2 = 40, 80, 100. In presenting privacy budgets, we
fix δ to be 10−5 and present only the corresponding ε for
simplicity. To highlight the utility derived from privacy-
preserving labels rather than public data, student mod-
els in this section are trained in a supervised manner
using public data with privacy-preserving labels.

Smoothing is applied to the learning loss as follows
when training student models:

Lsmooth(θstudent) = 1
K

K∑
j=1
L(θstudent +N (0, σ2

smoothI)),

where K is number of smoothing samples and σsmooth
controls the degree of smoothing. We set K = 10 in all
settings. We use a batch size of 100 and a learning rate
of 0.01 that decays to 0.001 in the middle of training. In
each setting, we train the student model for sufficiently
long and report the highest test accuracy among train-

Table 13. Details of Evaluation of Smoothing for PATE

parameter #queries #labeled ε σsmooth Pcorrect

σ2 = 40

4000 1323 7.44 0.03 91.38%

8000 2692 11.08 0.03 91.01%

12000 4128 14.08 0.03 91.23%

16000 5521 16.75 0.025 91.66%

σ2 = 80

4000 1323 3.78 0.04 81.41%

8000 2692 5.51 0.04 81.35%

12000 4128 6.90 0.03 81.61%

16000 5521 8.10 0.03 81.89%

σ2 = 100

4000 1323 3.15 0.03 69.39%

8000 2692 4.57 0.04 70.54%

12000 4128 5.70 0.03 70.93%

16000 5521 6.68 0.03 71.26%

ing. The architecture of the student model is a CNN in-
herited from the official tutorial of tensorflow/privacy2.
Table 13 contains other details of evaluation.

Notes
1https://github.com/yuxiangw/autodp
2https://github.com/tensorflow/privacy
3https://github.com/lukemelas/EfficientNet-PyTorch
4https://ic.unicamp.br/~chiachia/resources/pubfig83-

aligned/
5https://github.com/ZhaoJ9014/face.evoLVe.PyTorch
6https://github.com/tomgoldstein/loss-landscape
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