
Proceedings on Privacy Enhancing Technologies ; 2021 (4):225–248

Aditya Hegde, Helen Möllering, Thomas Schneider, and Hossein Yalame

SoK: Efficient Privacy-preserving Clustering
Abstract: Clustering is a popular unsupervised machine
learning technique that groups similar input elements
into clusters. It is used in many areas ranging from busi-
ness analysis to health care. In many of these applica-
tions, sensitive information is clustered that should not
be leaked. Moreover, nowadays it is often required to
combine data from multiple sources to increase the qual-
ity of the analysis as well as to outsource complex com-
putation to powerful cloud servers. This calls for efficient
privacy-preserving clustering. In this work, we systemat-
ically analyze the state-of-the-art in privacy-preserving
clustering. We implement and benchmark today’s four
most efficient fully private clustering protocols by Cheon
et al. (SAC’19), Meng et al. (ArXiv’19), Mohassel et
al. (PETS’20), and Bozdemir et al. (ASIACCS’21) with
respect to communication, computation, and clustering
quality. We compare them, assess their limitations for
a practical use in real-world applications, and conclude
with open challenges.

Keywords: Privacy-preserving Protocols, Clustering, Se-
cure Computation

DOI 10.2478/popets-2021-0068
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

1 Introduction
In today’s world, machine learning (ML) algorithms are
widely used to categorize and classify large amounts of
data. Applications range from spam filtering over fraud
detection, stock market analysis to health diagnostic [1–
4]. Moreover, many large IT companies, including Mi-
crosoft, Facebook, Google, and Apple, collect massive
amounts of data to perform analyses for their commer-
cial benefit [5]. Clustering is a popular unsupervised
learning technique and plays a crucial role in data pro-

Aditya Hegde: IIIT-Bangalore, E-mail:
aditya.shridhar@iiitb.org (This work was done when the au-
thor was intern at the Technical University of Darmstadt)
Helen Möllering, Thomas Schneider, Hossein
Yalame: Technical University of Darmstadt, E-mail:
lastname@encrypto.cs.tu-darmstadt.de

cessing and analysis. It divides a set of given input data
into subgroups of elements with similar properties.

Cluster analysis is being utilized in various fields
with extremely sensitive data such as medical imag-
ing [4] and market research [6], to name a few. More-
over, data protection regulations such as the General
Data Protection Regulation (GDPR) in the EU and
the Health Insurance Portability and Accountability Act
(HIPAA) in the US prohibit companies from sharing
sensitive user information. Nevertheless, combining data
from different sources, e.g., different hospitals, broadens
the database and offers more meaningful, credible, and
high-quality clustering results. Additionally, it is often
needed to outsource the expensive clustering of large
amounts of data to powerful cloud servers. These re-
quirements emphasize the need for privacy-preserving
clustering to preserve the privacy of data.

Consequently, a series of efforts have been made
to protect the privacy of sensitive input data in clus-
tering through two paradigms for secure computation
that can also be combined. The first paradigm lever-
ages homomorphic encryption (HE) [7–9]. HE allows
to directly compute functions on encrypted data. The
second paradigm uses secure multi-party computation
(MPC) [10, 11]. MPC allows mutually distrusting par-
ties to collaboratively compute a joint function over
their respective private data. However, these works only
cover a few clustering algorithms so far: K-means, K-
medoid, Mean-shift, Gaussian Mixture Models Cluster-
ing (GMM), Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN), hierarchical clustering
(HC), Affinity Propagation, and Mean-shift. Moreover,
we found that only ten works (cf. Tab. 1) provide full
privacy protection according to the ideal functionality
for privacy-preserving clustering, i.e., they leak nothing
beyond the output (cf. §3.1).

Even revealing little and at the first glance minor
information during the clustering can have severe conse-
quences for the data privacy of individuals. For example,
when using clustering for the segmentation of medical
images [4] between two hospitals, revealing the cluster
sizes and assignments in each clustering iteration leaks
information about how many patients with similar char-
acteristics are input by the other party even before the
clustering stabilizes and a final result is reached. Unin-
tended common characteristics between patients might

SoK: Efficient Privacy-preserving Clustering 226

Algorithm Paper PETs Scenario Data Output Efficiency

K-means [12, CCS’07] HE+ASS 2PC a final centroids 7†

[13, CIC’15] HE Outsourcing, 2 Servers h final centroids 7†

[14, SAC’18] HE Outsourcing, 1 Server − final centroids 7?

[15, CLOUD’18] HE Outsourcing, 2 Servers − cluster sizes 7†

MPC-KMeans [11, PETS’20] GC Outsourcing, 2 Servers or 2PC h final centroids 3

Mean-shift HE-Meanshift [9, SAC’19] HE Outsourcing, 1 Server − final centroids 3

Affinity Propagation [16, SECRYPT’21] ASS Outsourcing or MPC a final clusters 7‡

DBSCAN [17, S&P’13] GC 2PC h cluster labels, centroids/size possible 7¶

ppDBSCAN [18, ASIACCS’21] GC+ASS Outsourcing, 2 Servers or 2PC a cluster labels, centroids/size possible 3

Hierachical Clustering PCA/OPT [19, ArXiv’19] HE+GC 2PC h final dendogram 3

† Computationally expensive due to use of Paillier’s HE and no parallelization.
? Costly computation due to use of bit-wise encryption. MPC-KMeans [11] outperforms this scheme by 5000× for 400 data records.
‡ [18] is 194× faster than this scheme for 400 data records.
¶ [18] is 5× faster than this scheme for a dataset size of 500 data records.
Table 1. Fully privacy-preserving clustering protocols (cf. §3.1). HE is homomorphic encryption [7], ASS is arithmetic secret shar-
ing [20], and GC is garbled circuits [21]. v indicates vertically partitioned data, i.e., the data owners hold the values for a subset of
parameters from all data records. h indicates horizontally partitioned data, where the data owners hold complete data records with all
parameters, a is arbitrarily partitioned data, and “ − ” indicates the scheme has only one data owner. Schemes that were implemented
and benchmarked in §4 are highlighted in gray.

be leaked even though they are only temporarily as-
signed to one cluster (due to these characteristics which
would not have been revealed in the final result). An
even more severe privacy breach is demonstrated in [22]
where leaking the results of comparison of distances be-
tween data records and a threshold can enable to ac-
curately approximate the original data record held by
another party. With this, complete patient records could
be extracted when clustering medical data. To summa-
rize, it is difficult to concretely determine the effects
of leaking intermediate information in advance for all
possible constellations. Hence, privacy research should
focus on designing efficient private clustering protocols
that do not leak anything beyond what can be inferred
from the output, i.e., provide full privacy.
Related Work. Privacy-preserving machine learning
(PPML) is a hot topic in recent privacy research [23–26].
To provide a better overview over the exploding research
field, several surveys have been done. Haralampieva et
al. [27] survey existing frameworks in the context of pri-
vate image classification. An overview about frameworks
for private neural network inference is given in [28]. Pro-
tocols used for private machine learning training are
investigated in [29]. Similarily, Tanuwidjaja et al. [30]
summarize existing works on privacy-preserving deep
learning and issues when using these schemes as well as
possible attacks on private deep learning. Kiss et al. [31]
systematically review the state-of-the-art approaches to
private decision tree evaluation.

All previous surveys focus on privacy-preserving su-
pervised learning where a training dataset with labelled
samples (i.e., known input-output pairs) is used to train
a model that can later be used to classify new data

records. In contrast, our survey focuses on clustering, a
popular unsupervised machine learning (ML) technique,
which detects unknown patterns in unlabelled data so
no “training” of a model is needed. In our work, we sys-
tematically survey and evaluate the state-of-the-art in
private clustering using secure computation techniques.

An orthogonal line of research uses differential pri-
vacy (DP) to protect privacy-preserving machine learn-
ing (PPML), including clustering [32–37], against infor-
mation leakage. Abadi et al. [38] and Shokri et al. [39]
provide comprehensive surveys on differentially private
deep learning. Generally, the noise added to achieve DP
reduces utility whereas secure computation has higher
complexity. Hence, DP-based and secure computation-
based protocols are not directly comparable and we
leave a survey on DP-based clustering for future work.
Our Contributions and Outline. After presenting
the preliminaries of privacy-preserving clustering in §2,
our Systematization of Knowledge (SoK) paper provides
the following core contributions:
− The first comprehensive review and analysis of exist-
ing techniques and protocols used for privacy-preserving
clustering with respect to security models, privacy limi-
tations, efficiency, and further aspects. We also provide
guidelines on how to choose an appropriate privacy-
preserving clustering scheme for a specific applica-
tion (§3).
− An empirical evaluation of the four most efficient and
fully private clustering schemes [9, 11, 18, 19], cf. Tab. 1,
on a range of criteria, including clustering quality, se-
curity and privacy, and runtime/communication over-
head (§4). Based on these insights, we provide an analy-
sis of the practicality of the four protocols for real-world

SoK: Efficient Privacy-preserving Clustering 227

applications based on our results from the benchmark-
ing (§5).
− An implementation of the clustering protocol of [9]
and [19] in C++17. Implementations of the remaining
two protocols that we also evaluate [11, 18] are publicly
available. Our code is available at https://encrypto.de/
code/SoK_ppClustering.

2 Preliminaries

2.1 Clustering

Clustering is a well-known unsupervised machine learn-
ing (ML) technique, i.e., it deals with detecting un-
known patterns in unlabeled data. Concretely, it groups
similar input records (internal homogeneity) in clusters
while records belonging to different clusters should be
maximally different (external separation) [40–42].

Clustering consists of four components: feature se-
lection/normalization, a proximity measure to deter-
mine similarity/dissimilarity, the clustering algorithm,
and the output assessment [41, 42]. However, most prior
works on privacy-preserving clustering mainly focus on
a specific clustering algorithm. For example, the proxim-
ity measure is typically chosen to enable efficient com-
putation using cryptographic techniques [14, 19]. Fur-
thermore, mostly continuous values are considered while
clustering can generally be applied to any kind of vari-
able (i.e., also discrete or nominal values) [42].

Clustering algorithms can be split in two classes:
hard and soft (fuzzy) clustering. In hard clustering, each
input data record is assigned to exactly one cluster. In
soft clustering, data records can be assigned to several
clusters with a certain probability. All works on privacy-
preserving clustering that we investigated in this work
except from [43] have only tackled hard clustering.

Properties of Good Clustering. Records are as-
signed to the same cluster given they are similar. How-
ever, (dis)similarity heavily depends on the chosen prox-
imity measure. Additionally, clustering algorithms were
designed having specific problems in mind such that
they exhibit biases that affect their performance when
the assumed conditions are not fulfilled. Therefore, ac-
cording to Xu and Wunsch [41], no clustering algorithm
is universally superior and a good clustering algorithm
should be able to cope with: 1) arbitrarily shaped clus-
ters, 2) large datasets, 3) updates with new records
without having to cluster old records again, 4) numeri-
cal (i.e., discrete and continuous) and nominal variables,

(a) (b) (c) (d) (e) (f) (g) (h)

1) Cluster Shapes − − ◦ + + − − −
2) Large Datasets ◦ − − − − − + ◦
3) Update Input Data + − − ◦ + + + +
4) Nominal Variables − + + − + + − −
5) Outliers − + ◦ − + ◦ + ◦
6) Input Order + + + + ◦ + − +
7) Storage + − − + + − + +
8) # Parameters − ◦ − ◦ ◦ − ◦ −

Full privacy 3 3 3 3 3 7 7 7

Table 2. Comparison of clustering algorithms with respect to
the aspects explained in §2.1: (a) K-means, (b) Affinity Prop-
agation, (c) Single/Complete Linkage HC, (d) Mean-shift, (e)
DBSCAN, (f) K-medoid, (g) BIRCH, and (h) GMM. + denotes
that the clustering algorithm performs well with respect to the
indicated aspect, ◦ denotes an average performance, and − in-
dicates that it has some weaknesses. 3 indicates that a fully
privacy-preserving clustering protocol is available and 7 that it
is not available yet.

and 5) outliers. Furthermore, it should: 6) be insensitive
to the order of input records, 7) provide acceptable stor-
age requirements, and 8) minimize the number of input
parameters. Finally, it should also be able to handle 9)
high-dimensional data records.

Clustering Algorithms

In the context of privacy-preserving cluster-
ing, four different types of clustering have been
studied so far: partitioning-based [8, 11, 14, 16],
distribution-based [44, 45], density-based [18, 46, 47],
and hierarchical clustering [19, 48–50]. In the following,
we summarize these four clustering types and com-
pare the respective algorithms w.r.t. the properties
listed before in §2.1. Due to space limitations, we only
provide the details of this evaluation for the three al-
gorithms [51–53] for which fully private protocols were
proposed (cf. §3.2) and that we benchmark in §4. De-
tails of the other algorithms are given in Appx. A.
Partitioning-based Clustering. Partitioning-based clus-
tering splits the input into K non-overlapping clusters.
Typically, an initial random partition is iteratively im-
proved given an objective function [54].

A well-known example is K-means [51]. It has a com-
putational complexity of O(NKt) and a space complex-
ity of O(N) [40] for dataset size N , K clusters, and t

clustering iterations. Furthermore, K-means can only
cluster convexly-shaped clusters, cannot to appropri-
ately handle outliers, and requires to pre-determine the
number of clusters K [40]. If the initial partitioning,

https://encrypto.de/code/SoK_ppClustering
https://encrypto.de/code/SoK_ppClustering

SoK: Efficient Privacy-preserving Clustering 228

i.e., the centroid initialization, is done at random, K-
means is not deterministic. It may converge to a local
optimum [55]. The input order does not affect the clus-
tering result. As the centroids are determined by averag-
ing, K-means is not suitable for nominal variables [56].
New data records typically require only a few additional
clustering iterations because they normally do not sig-
nificantly change the result. Other partitioning-based
clustering algorithms that were investigated in the con-
text of privacy-preserving clustering are the closely re-
lated K-medoids [57], Kernel K-means [58], Possibilistic
C-means [43], as well as Affinity Propagation [16].
Hierarchical Clustering. Hierarchical Clustering (HC)
algorithms can be classified into agglomerative and divi-
sive approaches. In agglomerative algorithms, each data
record forms an own cluster in the beginning and the
clusters are then iteratively merged together based on
their proximity. Divisive algorithms follow the oppo-
site approach and start with all elements in one cluster
which is then iteratively split up [52, p. 71-72]. HC al-
gorithms output a binary tree/dendrogram1 where each
leaf represents a record and nodes indicate a merge of
two similar clusters into one. The root combines all
records into a single cluster [40].

As divisive HC exhibits an immense overhead for ex-
amining the optimal splits (2N−1 − 1 possibilities [40],
where N is the dataset size), mostly agglomerative al-
gorithms have been observed in practice. Traditionally,
three merging methods were used: (1) single, (2) com-
plete, and (3) average linkage. Single linkage merges
the two clusters with the closest two elements, com-
plete linkage merges the two clusters whose maximally
distant pair of elements are closest among all pairs of
clusters, and average linkage merges the two clusters
that have the smallest average of all pairwise distances
of their elements [52, p. 76-77] [59].

Naive HC has computation complexity O(N3) and
space complexity O(N2) [42]. Some HC-based algo-
rithms (e.g., single linkage) cannot detect some clus-
ter shapes. They do not incorporate a notion of noise,
but are relatively insensentive to outliers. HC requires
to pre-determine the number of clusters K that are ob-
tained by cutting the tree at the respective level [40]. HC
needs a restructuring of the tree if new data records are
added after the first clustering. Nevertheless, HC can
handle any type of variable and the input order does
not affect the result.

1 A dendogram is a graph representing a tree structure.

Density-based Clustering. These algorithms use a
density-based neighborhood notion such that input
records that lay together in a dense area form a clus-
ter. Examples are Mean-shift [53] and DBSCAN [60].
Mean-shift has time complexity O(N2t), where N is the
dataset size and t is the number of iterations, which
makes it inefficient for large datasets. It can handle
any cluster shape and flexibly determine the number
of clusters K based on the input data. Additionally, the
input order does not affect the results. However, the
value of the bandwidth h in the Kernel Density Esti-
mator (KDE) used in Mean-shift can significantly af-
fect its performance. A too large h merges distinct clus-
ters while a too small h splits one cluster into multiple
smaller groups. The performance also deteriorates for
high dimensional data due to the “curse of dimension-
ality” in the KDE. Similarly, noisy features can hamper
the performance [61]. Mean-shift does not incorporate a
notion of noise. An update with new records can change
the KDE and the local maximas, thus requiring a re-
run of the entire algorithm. However, in practice, the
new points can be assigned to the cluster containing
the nearest mode if the change in the KDE is not sig-
nificant.

Density-Based Spatial Clustering of Applications
with Noise (DBSCAN [62]) specifically recognizes noisy
elements and marks them as outliers. It detects arbitrar-
ily shaped clusters and flexibly determines the number
of clusters in a dataset based on two input parameters,
namely the minimal cluster size and the maximal dis-
tance between two clusters. Especially the second pa-
rameter can be difficult to determine and DBSCAN can-
not correctly handle clusters with significantly different
densities [63]. Generally, if appropriate distance mea-
sures are chosen, any type of parameter can be clustered.
Moreover, the input order does only affect the clustering
result in exceptional cases where border elements lay in
the range of more than one cluster. If additional data
records shall be clustered after a first clustering was fin-
ished, their neighbors have to be determined to assess if
they can be added to previously created clusters. Oth-
erwise, they may create a new cluster with other out-
liers, but no completely new clustering is needed. Naive
DBSCAN needs O(N) memory and has computation
complexity O(N2) [62, 63].
Distribution-based Clustering. Distribution-based clus-
tering algorithms assume that clusters are drawn from
an unknown mixture of distributions and aim at ap-
proximating the original distributions (i.e., the type and
parameters) as well as the number of different distri-
butions (i.e., the number of clusters) [41, 42]. A well-

SoK: Efficient Privacy-preserving Clustering 229

known example for distribution-based clustering algo-
rithms are Gaussian Mixture Models (GMM) using the
Expectation-Maximization (EM) algorithm [64].
Comparison of Clustering Algorithms. Modifica-
tions proposed for the clustering algorithms to fix some
weaknesses of the original often introduce other prob-
lems. Therefore, it is difficult to evaluate them with re-
spect to the general requirements for clustering algo-
rithms (cf. §2.1).

In Tab. 2, we compare the eight baseline clustering
algorithms for which privacy-preserving protocols have
been proposed with respect to the properties of good
clustering algorithms listed in §2.1. We did not include
the effect of property 9), i.e., high dimensionality, be-
cause it is often not directly linked to the clustering
algorithm. Instead, a large number of variables often
requires using feature reduction techniques.

2.2 Cryptographic Building Blocks

In the following, we summarize secure computation
techniques and respective security models.
Secure Computation. There are two main paradigms
for secure computation: Homomorphic encryption (HE)
and multi-party computation (MPC). HE [7, 65, 66]
enables operations on a set of ciphertexts such that
the resulting ciphertext contains the result of a func-
tion on the corresponding plaintexts. MPC allows two
or more mutually distrusting parties to jointly com-
pute a function on their private inputs. Two well-known
generic approaches for MPC are based on garbled cir-
cuits (GC) [21] and secret-sharing (SS) [20, 67]. As
an example for a SS-based technique, the GMW pro-
tocol [20] represents a function as Boolean/Arithmetic
circuit and the values are secret-shared using XOR or
Arithmetic secret sharing (ASS). Another type of SS is
Shamir’s secret sharing (SSS) [67].
Security Models. Two main security models have
been considered in privacy-preserving clustering: In the
semi-honest/passive security model, the adversary [68]
is assumed to honestly follow the protocol, but tries to
learn additional information about the private inputs
of other parties. Though this model is weaker than the
malicious model, that even protects against deviations
from the protocol specification, it facilitates practically-
efficient applications especially for privacy-preserving
machine learning (PPML) [69]. Full threshold security
means that up to N−1 parties can collude without jeop-
ardising privacy while honest majority security requires
the majority of the parties to not collude.

3 Privacy-preserving Clustering
In this section, we first define privacy-preserving clus-
tering. Then, we categorize and analyse the exist-
ing privacy-preserving clustering protocols to conclude
which protocols offer good efficiency with strong privacy
guarantees. Afterwards, we discuss possible applications
and provide indications on how to choose appropriate
privacy-preserving clustering schemes for these.

3.1 Functionality and Requirements

In an ideal world with a trusted third party (TTP),
all involved parties send their input data to the TTP.
The TTP then performs the clustering and returns the
output to the parties. The output can vary depending on
the application requirements and clustering algorithm.
For example, the output can be the cluster centroids or
it can be the cluster label for each data record.

We identified the following requirements for privacy-
preserving clustering:
Privacy. According to the ideal functionality a privacy-
preserving clustering protocol must not leak information
other than what can be derived from the output of the
protocol to be considered as fully privacy-preserving.
Importantly, this includes that all operations must be
obliviously realized and all intermediate results must be
kept private.
Efficiency. A privacy-preserving clustering scheme must
be efficient in terms of communication and runtime.
This means that it must scale well with respect to the
dataset size N , the number of clusters K, and the di-
mensionality d of the input records.
Clustering Quality: A privacy-preserving clustering
scheme must offer a good clustering quality of the re-
sults independent of a dataset’s properties. Specifically,
the requirements of good clustering listed in §2.1 should
be fulfilled.
Flexibility. A privacy-preserving clustering scheme
should ideally be flexibly usable for outsourcing [70] and
multi-party computation. In an outsourcing scenario,
one or multiple data owners outsource their data and
the computation to untrusted non-colluding parties [70].
Here, the data owners can even be malicious (cf. §2.2).
In multi-party computation, several parties interactively
compute the clustering on their joint dataset.

SoK: Efficient Privacy-preserving Clustering 230

3.2 Existing Private Clustering Protocols

In this subsection, we categorize the existing works on
privacy-preserving clustering with respect to the un-
derlying plaintext clustering algorithm, security model,
scenarios for which protocols where designed, data dis-
tributions, used secure computation techniques as well
as privacy and efficiency (cf. §3.1). We discuss the
strengths and weaknesses of these schemes with respect
to these criteria. Tab. 3 contains on overview of all
59 works on privacy-preserving clustering with secure
computation techniques that we are currently aware of.
It indicates the respective security model, used secure
computation techniques, common types of leakages of
intermediate values, the type of output, which and how
many parties are involved in the protocol, the data par-
tition, and other issues.
Plaintext Clustering Algorithms. Eight clustering
algorithms have been investigated in the context of
privacy-preserving clustering: K-means (including the
two variants Kernel K-means [58] and Possibilistic C-
means [43]), K-medoids [57, 71], GMM [44, 45], Mean-
shift [9], DBSCAN [22, 46, 47, 72–76], baseline agglom-
erative HC (e.g., single linkage or complete linkage) [19,
48–50, 77, 78], BIRCH [79, 80], and Affinity Propaga-
tion [16, 81]. The vast majority of works focuses on the
simple K-means algorithm [8, 11–15, 82–106], which en-
ables an efficient parallelization of computation through
packing with homomorphic encryption [8, 88, 95] or
amortization through batched oblivious transfers [11].
However, as discussed in §2.1, K-means can be used
only for very specific applications where the number
of clusters is known in advance and the clusters are
convexly shaped. We gave an overview of the strengths
and weaknesses of these plaintext clustering algorithms
in Tab. 2. Generally, the choice of the plaintext clus-
tering algorithm heavily affects the quality of the clus-
tering result. Some works on privacy-preserving cluster-
ing exactly reproduce the original algorithms and hence
achieve the same accuracy, e.g., [19, 44, 45, 82]. Oth-
ers deviate from the original algorithms such as when
updating the centroids in K-means due to, e.g., normal-
ization/quantization/specific encodings of the plaintext
space [8, 9, 14, 22, 88, 95], adaptations of the original
algorithm [14], or approximations [14, 43] which either
enhance efficiency or are needed because of the under-
lying secure computation techniques.
Security Models. All works except for [16, 96, 105]
consider only the semi-honest security model (cf. §2.2).
A few even do not explicitly define their security
model [43, 48, 57, 58, 71, 100, 108]. The semi-honest

security model assumes that the adversary correctly fol-
lows the protocol while trying to gain additional infor-
mation. However, this strong assumption is not always
realistic. Concretely, the use of protocols that are se-
cure against semi-honest adversaries is only acceptable
in specific applications where the participants already
generally trust each other but are legally not allowed to
share data, e.g., hospitals conducting medical analysis
or central banks for financial analytics on country-level.
We discuss the requirements and implications of appli-
cations on the choice of a privacy-preserving clustering
scheme in more detail in §3.3.
Scenarios. Generally, privacy-preserving clustering
protocols have been designed for two scenarios: Firstly,
multi-party computation (MPC, [16, 44–46, 50, 57, 71,
72, 74–76, 82, 85, 87, 89, 91, 94, 96, 99–101, 103]) with
the special case of two-party computation (2PC, [11–
13, 19, 22, 48, 49, 73, 74, 77–80, 83, 84, 86, 93]), where
two or more data owners jointly perform a secure com-
putation protocol ideally such that nothing beyond the
output is leaked to each other (cf. §3.1). Some of these
protocols [50, 75, 76, 88, 95, 100, 103] also involve one
or more additional (semi-trusted) entities, e.g., repre-
sented by servers, that assist in the computation. In
contrast, other protocols were designed for the out-
sourcing scenario where one or more data owners out-
source computation (and storage) to external parties
who ideally perform the clustering for them without
learning anything about the input data [8, 9, 14, 15,
43, 47, 58, 90, 92, 97, 98, 102, 104–106, 108]. As out-
sourcing aims at using external resources, data owners
should not be involved in the execution of the proto-
col and can go offline, but this is often not fulfilled, e.g.,
in [43, 47, 97, 98, 104, 105, 108]. Some MPC/2PC proto-
cols can also be used for an outsourcing scenario where
the data owners secret share their data among multi-
ple non-colluding parties who then perform the cluster-
ing [8, 11, 105]. However, whether a 2PC/MPC cluster-
ing protocol is usable for outsourcing heavily depends
on its design. This is hindered if data owners are actively
involved by computing on plaintext input data, e.g.,
[22, 44–46, 48, 49, 72–75, 82, 88], or a data owner needs
to perform intermediate decryptions, e.g., [86, 91, 95].
Data Partition. The data to be clustered in a pri-
vate manner can be partitioned in three ways when pro-
vided by multiple parties. It is horizontally partitioned
when each data owner holds complete (but different)
data records [9, 13, 44, 45, 47, 49, 50, 73, 75, 77, 78, 84–
86, 91, 92, 94–96, 98, 99, 101–103, 105, 106, 108]. The
data is vertically partitioned when data owners hold mu-
tually different parameters of the same data records [44,

SoK: Efficient Privacy-preserving Clustering 231

Algorithm Scheme Privacy Security PETs L1 L2 L3 L4 O1 O2 O3 Interactivity (Scenario) Data Other issues

K-means

[82, KDD’03] 7 HE+blinding (7)1 7 7 7 7 3 7 all data owners (≥ 3) v

[83, KDD’05] 7 HE+ASS+GC 3 3 7 7 3 3 7 2PC a wrong division
[84, ESORICS’05] 7 HE or OPE 7 3 3 7 7 3 7 2PC h

[12, CCS’07] 3 HE+ASS 3 3 3 7 7 3 7 2PC a

[85, SECRYPT’07] 7 blinding 7 3 7 7 3 3 7 all data owners v/h
[86, AINAW’07] 7 HE+ASS+OPE 3 7 7 7 3 3 7 2PC h

[87, PAIS’08] 7 ASS 3 3 7 7 3 3 7 all data owners (≥ 4) v

[88, WIFS’09] 7 HE 7 3 7 3 3 7 7 data owners + 1 server h

[89, KAIS’10] 7 HE+ASS 3 3 7 7 3 7 7 all data owners h

[90, PAISI’10] 7 SS 3 7 7 7 3 3 7 Outsourcing ≥ 3 servers a

[91, ISPA’10] 7 HE 3 3 7 7 7 3 7 all data owners v/h
[92, WIFS’11] 7 HE+GC 3 7 3 3 3 7 7 Outsourcing, 3 servers h

[93, ISI’11] 7 HE+ASS (7)1 7 7 7 3 7 7 2PC v

[94, TM’12] 7 SSS 7 7 3 7 7 3 7 all data owners h distance calculation unclear
[95, JIS’13] 7 HE 7 3 3 7 3 7 7 data owners + 2 servers h

[96, ICDCIT’13] 7 SSS+ZKP 7 7 3 7 7 3 7 all data owners h

[97, ASIACCS’14] 7 HE 7 7 7 7 3 3 7 outsourcing, 1 data owner + 1 server − insecure HE [107]
[98, MSN’15] 7 HE 7 7 7 3 7 7 7 outsourcing, data owners + 1 server h insecure HE [107]
[99, IJNS’15] 7 HE 7 7 7 7 7 3 7 all data owners h

[13, CIC’15] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers h

[100, ICACCI’16] 7 N/A SS 7 7 7 7 3 7 7 arbitrary number of servers a

[101, ISPA’16] 7 blinding 7 7 7 3 7 3 7 all data owners (≥ 3) h

[102, SecComm’17] 7 HE 3 7 7 3 7 3 7 outsourcing, ≥ 4 servers h

[103, TII’17] 7 HE 7 7 7 7 7 7 7 data owners + 1 server h

[14, SAC’18] 3 HE 3 3 3 3 7 3 7 Outsourcing, 1 server −
[15, CLOUD’18] 3 HE 3 3 3 7 7 3 7 Outsourcing, 2 servers − distance calculation unclear
[108, CCPE’19] 7 N/A HE 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h insecure HE [107]
[104, TCC’19] 7 HE 3 7 7 3 3 7 7 Outsourcing, 1 data owner +≥ 1server(s) −
[105, Inf. Sci.’20] 7 ()2 HE+GC 7 7 7 7 7 3 7 Outsourcing, 2 data owners + 1 server h

[106, SCN’20] 7 HE+SKC 3 7 7 3 7 3 7 Outsourcing, 3 servers h

[11, PETS’20] 3 GC 3 3 3 7 7 3 7 2PC/Outsourcing h

[8, TKDE’20] 7 HE 3 73 3 7 7 3 7 Outsourcing, 2 servers a

Kernel K-means [58, KAIS’16] 7 N/A PKC 3 7 7 7 3 7 7 Outsourcing, 1 server − security model
Possibilistic C-means [43, TBD’17] 7 N/A HE 7 7 7 7 3 3 7 Outsourcing, 1 data owner + 1 server −

K-medoids [57, SMC’07] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search
[71, CCSEIT’12] 7 N/A HE+blinding 3 7 7 3 7 7 7 all data owners v exhaustive search

GMM [45, KAIS’05] 7 blinding 3 3 7 7 3 7 7 all data owners h

[44, DCAI’19] 7 ASS 3 3 7 7 3 7 7 all data owners (> 2) v/h
Affinity Propagation [81, INCoS’12] 7 HE + blinding 3 3 7 3 3 7 7 all data owners v

[16, SECRYPT’21] 3 / ASS+GC 3 3 3 3 3 7 7 all data owners/Outsourcing a

Mean-shift [9, SAC’19] 3 HE 3 3 3 3 3 7 7 Outsourcing, 1 server −

DBSCAN

[72, ISI’06] 7 blinding 3 3 7 3 7 7 7 all data owners v lack of complete protocol
[73, ADMA’07] 7 HE+blinding 3 7 7 3 3 7 7 2PC v/h
[74, IJSIA’07] 7 PKC+blinding 3 3 7 3 3 7 7 all data owners v

[75, ITME’08] 7 HE+blinding 3 7 7 3 3 7 7 data owners + 1 server h

[22, TDP’13] 7 HE+blinding 3 7 7 3 3 7 7 2PC a

[17, S&P’12] 3 / 5 GC 3 3 3 3 3 3 7 2PC h

[46, SIBCON’17] 7 HE+PKC 3 3 7 3 3 7 7 all data owners v cluster expansion missing
[47, PRDC’17] 7 HE 3 7 7 3 7 7 7 outsourcing, all data owners + 1 server h

[76, AI’18] 7 HE 3 7 7 3 3 7 7 data owners + 1 server a uses absolute distance
[18, ASIACCS’21] 3 ASS+GC 3 3 3 3 3 (3)4 7 2PC/Outsourcing a

HC

[77, SDM’06] 7 HE+ASS+GC 3 3 7 3 7 3 7 2PC h

[50, TKDE’07] 7 blinding or SKC 3 3 7 3 3 7 7 data owners + 1 server h SKC not semantically secure
[49, TDP’10] 7 HE+GC 3 3 7 3 3 3 7 2PC h

[48, ISI’14] 7 N/A HE 3 7 7 3 3 3 7 2PC v

[78, ISCC’17] 7 HE 3 3 7 3 7 7 3 2PC v/h
[19, ArXiv’19] 3 HE & GC 3 3 3 3 7 3 3 2PC h

BIRCH [79, SDM’06] 7 HE+ASS 3 3 7 3 7 7 7 2PC v

[80, ADMA’07] 7 HE+ASS 3 3 7 3 7 7 7 2PC a

1 Of the parameters hold by the respective data owner.
2 Assuming max. 1 party deviates from the protocol.
3 Leaks partial information about cluster sizes.
4 Not implemented, but possible.
5 Can be used with any security model of GCs.

Table 3. History overview of privacy-preserving clustering using secure computation techniques. Privacy indicates if fully privacy pro-
tection according to the ideal functionality for privacy-preserving clustering (§3.1) is provided (7: leakage; 3: no leakage). is the
semi-honest security model, is the malicious security model, N/A indicates that no security model was defined. HE is homomorphic
encryption, ASS additive secret sharing, SSS Shamir’s secret sharing, GC garbled circuits, OPE oblivious polynomial evaluation, PKC
public-key cryptography, SKC symmetric-key cryptography, ZKP zero-knowledge proof, blinding is the use of random values for blind-
ing, and other types of secret sharing are summarized by SS. v indicates that the data that shall be clustered is vertically distributed,
i.e., the data owners hold the values for a subset of parameters from all data records. h indicates horizontally partitioned data where
the data owners hold complete data records with all parameters, and a is arbitrary data partitioning. L1 leaks intermediate centroids,
L2 intermediate cluster sizes, L3 other intermediate values (e.g., intermediate cluster assignments or distance comparison results), and
L4 the number of clustering iterations. O1 outputs the final cluster labels/assignments, O2 outputs the final centroids, and O3 outputs
the final dendogram/tree structure. The schemes with the best privacy guarantees are marked in bold (we do not consider the num-
ber of clustering iterations as a severe leakage as it can be easily avoided, cf. §3.2). The efficient and fully private schemes that we
implemented and benchmarked in §4 are highlighted in gray.

SoK: Efficient Privacy-preserving Clustering 232

46, 48, 57, 71–74, 78, 79, 82, 85, 87–89, 91, 93]. An ar-
bitrary partitioning is a mix of both vertical and hori-
zontal data splitting [8, 12, 22, 76, 80, 83, 90, 100]. A
realistic data partition depends on the specific applica-
tion. We discuss this matter in more detail in §3.3.
Used Secure Computation Techniques. Existing
privacy-preserving clustering protocols use two main
cryptographic techniques. First, there is a range of
works that use homomorphic encryption (HE), e.g., [8,
14, 48, 76, 78, 84, 97, 104], but most of them tend to
be relatively slow due to the expensive cryptographic
operations. Another research direction uses multi-party
computation (MPC) techniques like Yao’s Garbled Cir-
cuits [21], blinding with random numbers, and secret
sharing to achieve better efficiency [11, 16, 18, 44, 45, 72,
83, 94]. These schemes tend to have better runtimes, but
higher communication than using HE. However, some
MPC techniques [10] also have to rely on non-collusion
assumptions between (a subset of) the computing par-
ties which can make them more difficult to deploy in
real-world applications. Other protocols use a mix of
these techniques aiming at combining the strengths of
both approaches [12, 19, 46, 77, 79, 103].
Privacy. As discussed in §1, information leakage can
cause severe privacy infringement. Ideally, no informa-
tion beyond what can be extracted from the final output
should be derivable (cf. §3.1). However, most of the pro-
posed privacy-preserving clustering schemes leak inter-
mediate values like the intermediate centroids [43, 84,
85, 88, 94, 97, 98, 100, 105, 108], cluster assignments [43,
57, 58, 71, 83, 86, 87, 89–91, 97, 98, 100, 102–106, 108],
and/or cluster sizes [8, 57, 71] in each clustering itera-
tion of K-means or K-medoids, thus, failing to provide
full privacy protection. Similarly, both private GMM
schemes [44, 45] leak the intermediate covariance ma-
trices, means, and probability values for each Gaussian
distribution. Many schemes originating from a round-
based clustering algorithm such as K-means or GMM
leak the number of clustering iterations until conver-
gence, e.g., [12, 13, 15, 43–45, 82, 83, 94, 100]. However,
this issue can be avoided by clustering for a fixed num-
ber of iterations independent of the input which must
be large enough to reach a good clustering result. How-
ever, this results in a longer runtime as more iterations
are done than normally with a convergence check. Also
most DBSCAN-based and HC-based schemes leak infor-
mation, e.g., distances between data records [46, 50], the
comparison results of distances [48, 72, 75, 79, 80], clus-
ter assignments [22, 46, 47, 49, 73, 75, 76, 79, 80], cluster
sizes [22, 47, 73, 75, 76], or may even leak concrete in-
put records for specific data constellations [73, 77] to

at least one of the involved parties (independent of the
party’s data ownership). All in all, we only identified ten
clustering protocols shown in Tab. 1 that provide fully
privacy guarantees (maximally leaking the number of
clustering iterations): [9, 11–19].
Efficiency. As stated before, homomorphic encryption-
based protocols such as [14, 48, 76, 78, 84, 97, 104] tend
to be computationally expensive and, thus, slower than
MPC-based schemes, e.g., [11, 18, 44, 45, 72, 94], which
require more communication. Due to space limitations,
we will focus here on the ten protocols that provide
full privacy (cf. §3.1) and compare them in terms of
efficiency. Kim and Chang [15] observe an about 2.85×
runtime improvement compared to [13] thanks to a more
efficient secure comparison. They as well as Bunn and
Ostrovsky [12] use the Paillier encryption scheme with-
out any parallelization making it expensive and slow
compared to the other more optimised protocols which
use, for example, packing or batching of operations [11].
The K-means protocol by Mohassel et al. [11] was exper-
imentally compared to [14] and [18]. It outperforms the
K-means protocol by Jäschke et al. [14] by five orders
of magnitude on a dataset with 400 elements thanks to
an efficient batching and the usage of GC instead of
HE. It is also 19× faster on the same dataset than the
private DBSCAN protocol of Bozdemir et al. [18], but
DBSCAN often achieves significantly better clustering
quality [18]. [18] runs about 13 minutes for clustering
500 elements while Zahur and Evans [17] report more
than 550 minutes for their private DBSCAN protocol
with 480 records. [18] is also 194× faster than the fully-
private affinity propagation protocol by Keller et al. [16]
thanks to the use of optimized combinations of GC and
ASS. No direct comparison between [9, 11, 19] was done
so far.
Choice for Benchmarks. To summarize, the MPC-
based protocol of Mohassel et al. [11] is the most ad-
vanced private K-means scheme w.r.t. privacy and effi-
ciency. Meng et al. [19] and Cheon et al. [9] provide the
only schemes that offer fully private single and complete
linkage HC/Mean-shift. Bozdemir et al. [18] propose the
most efficient fully privacy-preserving DBSCAN proto-
col. In §4, we focus on these four works by comparing
their computation and communication efficiency, secu-
rity and privacy, and clustering quality.

3.3 Private Clustering Applications

Privacy-preserving clustering can be generally used for
two main purposes: to protect sensitive data when out-

SoK: Efficient Privacy-preserving Clustering 233

sourcing the computation and storage and/or when mul-
tiple data owners provide input data to the clustering.
For each of these scenarios, we discuss a few example
applications in the following to give a guideline on how
to choose appropriate private clustering protocols.
Example Applications. Multiple data owners who
jointly cluster their combined data is an instance of
multi-party computation (MPC). In the financial mar-
ket, clustering is used to automatically detect correla-
tions between securities’ stock prices in pair trading,
i.e., for investment strategies that leverage discrepan-
cies between typically correlated securities [109, 110].
Additionally, it is used for outlier detection to identify
credit card, insurance, or tax frauds and insider trad-
ing [3, 111]. In this context, it is typically necessary to
cluster data from several sources like competing (invest-
ment) banks or insurance companies to detect suspicious
behavior [112]. Thereby, the different entities might hold
information about the same customer, i.e., they have
vertically partitioned data. Furthermore, clustering can
be used by companies for enhancing marketing mea-
sures, e.g., by market segmentation or personalization of
recommendation systems [113, 114]. A larger database
increases the quality and reliability of the result but
business secrets and customer data must be protected.
In such scenarios, a horizontal data partitioning where
the companies provide data from different customers is
more plausible. Additionally, clustering is also used in
medical research and diagnosis [115, 116]. In this con-
text, using data from several sources, e.g., several hos-
pitals, reduces potential bias caused by demographics,
ethnicities, or cultures.
MPC. For the aforementioned applications, the parties
can always safely trust themselves. Thus, full thresh-
old security (i.e., security against up to N − 1 col-
lusions, cf. §2.2) as provided by some MPC tech-
niques [117, 118] would be an interesting option. Un-
fortunately, only Keller et al. [16] and schemes based
on a threshold secret sharing (like SSS (cf. §2.2)) with
the respective threshold can offer this. Additionally,
again only Keller et al. [16] provide full privacy guaran-
tees against malicious adversaries (cf. §2.2). However,
if the other partners involved are generally trusted but
strictly regulated by data protection laws like HIPAA
or GDPR, hindering them from directly sharing data,
a 2PC- or MPC-based clustering protocol with hon-
est majority and secure against semi-honest adversaries,
e.g., [9, 11, 19], might be sufficient and provides signif-
icantly better efficiency than MPC techniques that are
secure against full threshold semi-honest or malicious
adversaries [119].

Outsourcing. While running “generic” MPC protocols
is the most straightforward approach to securely clus-
ter on the joint database of data owners, it suffers from
high computation and communication costs and might
be practically infeasible for a large number of data own-
ers as MPC protocols often scale quadratically in the
number of parties. A more efficient alternative can be
to outsource the evaluation.2 Thereby, the data owners
(e.g., competing companies conducting market analy-
ses) might prefer to not rely on a non-collusion assump-
tion needed for MPC-based protocols such as [11] where
multiple providers must be found and trusted not to col-
lude. Hence, in such a situation an HE-based outsourc-
ing scheme like [9, 14] might be advantageous. Addition-
ally, in an outsourcing scenario, no data owner should
be required to be online or actively involved in the com-
putation. This can only be achieved by some proto-
cols: [11, 13–16, 18, 19, 37, 43, 58, 90, 92, 100, 102, 106].
Privacy vs. Efficiency. Furthermore, there exists a
trade-off between data leakage and efficiency. Schemes
that can leak complete data records (e.g., [73, 74])
should not be used. When generally trusted parties like
hospitals are involved, leaking less critical information
like the number of iterations (cf. §3.2) might be accept-
able to reduce runtime. However, as pointed out in §1,
it is not always possible to fully understand and antic-
ipate the effects of leaking intermediate results. Gener-
ally, MPC-based protocols are considered to be faster
but require more communication than HE-based proto-
cols. We will give more insight on the efficiency of the
four most efficient fully private clustering schemes in §4.
Algorithm Characteristics. Finally, another impor-
tant aspect for choosing the right private clustering
scheme are the input parameters. For instance, K-
means, K-medoid, GMM, and HC require the number of
clusters as input. This is not an issue when the number
of clusters is fixed by the application, e.g., if the goal
is to split bank customers’ behavior into benign and
suspicious. However, a more fine-grained analysis might
be needed when different types of malicious behavior
can occur that significantly differ from each other (e.g.,
credit card, tax, or insurance fraud), but it is unclear in
advance how many untypical behaviors can occur. Clus-
tering might even be used to detect and differentiate
these outliers in the first place. In such a case, a proto-
col that originates from affinitey propogation, DBSCAN
or Mean-shift should be chosen as they will flexibly de-
tect the number of clusters. Furthermore, some algo-

2 A single data owner might of course also outsource clustering.

SoK: Efficient Privacy-preserving Clustering 234

rithms like K-means and GMM can only detect clusters
of convex shapes, while DBSCAN can detect arbitrar-
ily shaped clusters [41]. If new data arrives regularly, it
might be beneficial to avoid recomputing the complete
clustering by using K-means-, K-medoid-, DBSCAN-, or
GMM-based protocols (e.g., [8, 11, 43, 44, 46]). Then,
different private clustering schemes give different out-
puts, e.g., centroids [8, 11] or dendograms [19]. For ex-
ample, a medical analysis detecting typical character-
istics for a specific disease should output centroids as
they represent these characteristics. Additionally, cen-
troids also allow to assign new data to the created clus-
ters later on which is not possible with only the cluster
labels.

To conclude, the following aspects need to be ex-
amined when deciding upon a private clustering pro-
tocol: scenario (MPC vs. outsourcing), security/privacy
requirements, trust level among the data owners, data
distribution and splitting, and the plaintext clustering
algorithm’s characteristics (e.g., required input param-
eters that can be anticipated in advance). Based on this
information, our extensive summary in Tab. 3 can help
to choose an appropriate protocol.

4 Evaluation
In this section, we compare the clustering quality (§4.1),
security and privacy (§4.2), and efficiency (§4.3) of
the four most efficient fully private clustering proto-
cols [9, 11, 18, 19] identified in §3.2. Details about these
protocols are provided in Appx. B.
Software Details. We implemented all four proto-
cols in C++17 and instantiate all cryptographic building
blocks with a security level of 128 bits. We instantiate
all algorithms with optimal parameters to assess their
performance assuming perfect conditions. All our imple-
mentations are single threaded for a fair comparison of
the efficiency of protocols.
MPC-KMeans [11]. In the remainder of this work, we
call the private K-means protocol by Mohassel et al. [11]
MPC-KMeans. We use the publicly available implemen-
tation3 from the authors of [11] with default parameter
values. Specifically, the statistical security parameter is
λ = 40, the computational security parameter κ = 128,
and the bitlength ` = 32.

3 https://github.com/osu-crypto/secure-kmean-clustering

HE-Meanshift [9].We call the private Mean-shift pro-
tocol by Cheon et al. [9] HE-Meanshift. The implemen-
tation uses the HEAAN library [120] with the same pa-
rameters as [9] providing 128-bit security. Specifically,
the degree of the polynomial modulus of the plaintext
ring Nc is set to 217 and the ciphertext modulus qL is
set to 21480. Thus, the number of plaintext slots in each
ciphertext is 216. Unless explicitly stated, we set the de-
gree parameter for the kernel Γ = 6, the MinIdx degree
parameter t = 5, and the Inv iteration parameter ζ = 5.
PCA/OPT [19]. We call the baseline private HC pro-
tocol by Meng et al. [19] PCA (complete linkage) and
its extension OPT (single linkage). The implementation
uses the ABY framework [10] for Yao’s garbled circuits
and the libpaillier library [121] for Paillier with identi-
cal parameters as [19]. Specifically, the symmetric-key
security parameter is κ = 128 bits and the size of the
RSA modulus in Paillier encryption is κpub = 2048 bits.
The statistical security parameter is λ = 40.
ppDBSCAN [18]. We call the privacy-preserving DB-
SCAN protocol by Bozdemir et al. [18] ppDBSCAN. We
use the publicly available C++ implementation4 pro-
vided by the authors which is based on the ABY frame-
work [10]. The computational security parameter is set
to κ = 128 bits and the bitlength ` = 32 bits. The pa-
rameter maxIterations was set to 4 as also done in [18].

4.1 Clustering Quality

In this section, we evaluate the clustering quality of the
four fully private clustering protocols.
Datasets. We use nine datasets from the well-known
FCPS [122] and Graves [123] collections designed for
benchmarking clustering algorithms. They also include
the ground truth separation [124]. In Tab. 4, we sum-
marize four of these datasets for which we present the
results of the quality evaluation. The results of our eval-
uation on the remaining 5 datasets are given in Appx. D.
Metrics for Clustering Quality. We measure the
quality of the clustering result using clustering qual-
ity indices. As no single index is superior [125], we
use four well-known indices: Adjusted Rand Index
(ARI) [126], Adjusted Mutual Information (AMI) [127],
Silhouette Index (SI) [128], and Calinski-Harabasz In-
dex (CHI) [129]. SI and CHI measure the output clus-
ters’ separation and compactness while ARI and AMI

4 https://encrypto.de/code/ppDBSCAN

https://github.com/osu-crypto/secure-kmean-clustering
https://encrypto.de/code/ppDBSCAN

SoK: Efficient Privacy-preserving Clustering 235

Dataset N d K Property

Hepta 212 3 7 Well-defined clusters
Lsun 400 2 3 Different shapes
Chainlink 1000 3 2 Non-linearly separable clusters
Dense 200 2 2 Different cluster variances

Table 4. Datasets used for evaluating clustering quality, where N
is the dataset size, d is the dimension of the data records, and K
is the number of clusters.
compare the output clusters to the known ground truth
to evaluate the clustering quality [125].

The results for the algorithms with random initial-
ization, MPC-KMeans and HE-Meanshift are averaged
over 10 runs. The iterative algorithms MPC-KMeans,
HE-Meanshift, KMeans++, and Mean-shift are run for
20 iterations. The number of clustersK for the K-Means
and HC protocols, i.e., MPC-KMeans and PCA/OPT,
is set to the number of clusters in the ground truth.
HE-Meanshift modifies the Mean-shift algorithm to run
the mean-shift process on a small and random subset
of datapoints, called dusts, to improve efficiency. The
number of dusts is set to the largest power of 2 greater
than or equal to the number of clusters, to ensure effi-
ciency while maintaining the quality of the clustering.
Original vs. Private Algorithm. We also compare
the differences in clustering quality between the pri-
vate clustering protocols and the original plaintext al-
gorithms to evaluate the error arising by using privacy
preserving techniques. PCA, OPT and ppDBSCAN are
identical to plaintext HC with complete and single link-
age and DBSCAN respectively which is why we do not
include the results for their plaintext implementations
here. The underlying computations in MPC-KMeans
are identical to the standard K-means protocol except
for differences in the initialization of the centroids. We
evaluate this effect using the plaintext KMeans++ [130]
algorithm (a variant of K-Means with an improved clus-
ter initialization where the centroids are initialized with
data records far apart from each other). HE-Meanshift,
in contrast, introduces several modifications to the stan-
dard Mean-shift algorithm [53] to make the computa-
tion HE friendly, e.g., using a polynomial kernel and
adopting dust-sampling for efficient mode-seeking. We
compare the clustering quality of HE-Meanshift to a
plaintext implementation of Mean-shift to evaluate the
combined effect of the changes.

Fig. 1 summarises the results of our evaluation of
the clustering quality with the four quality indices.
Hepta Dataset. All algorithms achieve a relatively
good clustering quality. PCA, OPT and ppDBSCAN
output exactly the ground truth and achieve the best
scores on the four indices. MPC-KMeans has a slightly

worse clustering quality than the HC algorithms. HE-
Meanshift achieves significantly lower scores and its high
standard deviation in comparison to KMeans++ and
Mean-shift indicates that the initialization of dusts has
a significant impact on the clustering quality.
Lsun Dataset. OPT and ppDBSCAN output exactly
the ground truth and, thus, achieve the maximal scores
for the ARI and AMI. While the output of PCA sig-
nificantly differs from the ground truth, it is notewor-
thy that it achieves similar scores as OPT and ppDB-
SCAN on the SI and CHI that measure internal clus-
ter properties, i.e., separation and compactness. HE-
Meanshift again shows large standard deviations due
to the random initialization. The poor clustering qual-
ity achieved by MPC-KMeans and KMeans++ on the
ARI and AMI is due to the non-convexly shaped clus-
ters in the ground truth where K-means does not work
well. The best scores achieved by HE-Meanshift are sig-
nificantly higher than their plaintext counterparts, pos-
sibly due to favourable (random) initialization for the
non-convexly shaped clusters in some of the runs.
Chainlink Dataset. OPT and ppDBSCAN have the
same output as the groundtruth and achieve the high-
est ARI and AMI scores though the presence of non-
linearly separable clusters in the dataset leads to lower
SI and CHI scores. The remaining algorithms perform
poorly. A poor clustering quality of MPC-KMeans and
KMeans++ is expected since K-Means does not work
well on non-linearly separable clusters.
Dense Dataset.MPC-KMeans, HE-Meanshift, ppDB-
SCAN, KMeans++, and Mean-shift achieve good scores
on all indices while the HC protocols, i.e., PCA and
OPT, have significantly lower scores in comparison. In-
tuitively, the poor clustering quality of HC-based proto-
cols can be attributed to the large variance in one of the
clusters of the Dense dataset. This can cause incorrect
merging of clusters since clusters are merged based on
their proximity, which can be large when the variance
of the cluster is high.
Conclusion. ppDBSCAN consistently achieves the
highest scores and is able handle different shapes, non-
linear clusters, and high cluster variance well. PCA and
OPT achieve a relatively good clustering quality on
three out of four datasets, but they (completely) fail on
the Dense dataset. The K-Means and Mean-shift pro-
tocols have comparable clustering quality that heavily
varies between different datasets. The K-means-based
protocols can only cluster very specific datasets that
do not contain non-convexly shaped and non linearly-
separable clusters.

SoK: Efficient Privacy-preserving Clustering 236

HE-Meanshift tends to have large standard devia-
tions which indicate a strong dependency on dust ini-
tialization. However, the highest score achieved by HE-
Meanshift is comparable to that of plaintext Mean-shift
which indicates that the modifications introduced for its
HE-friendly computation do not decrease accuracy. In
contrast, MPC-KMeans has a small standard deviation
and achieves a similar clustering quality to KMeans++,
which shows that the randomness used for centroid ini-
tialization has a smaller impact on final output.

4.2 Security & Privacy

In this section, we discuss the security and privacy of
the four clustering protocols.
Security Model w.r.t Scenario. All four works are
in the static semi-honest security model i.e., the adver-
sary can corrupt some of the parties at the onset of
the computation and correctly follows the protocol de-
scription, but attempts to learn information about the
private inputs of the honest parties.

MPC-KMeans, PCA/OPT, and ppDBSCAN con-
sider the outsourced two-party computation setting
where multiple data owners secret share their input
among two non-colluding servers to privately cluster
the dataset. In contrast, in HE-Meanshift, a single data
owner outsources its computation to a single server.

Informally, a protocol is said to be secure if anything
that can be computed by a party participating in the
protocol can also be derived from the input and output
of this party. This is formalized by using a simulator
which generates a view that is indistinguishable from a
real protocol execution given the party’s input and out-
put [132]. MPC-KMeans [11] and PCA/OPT [19] pro-
vide such a formal proof of security.

The security of HE-Meanshift [9] follows directly
from the security of the used CKKS encryption scheme
since only the input and final output are sent. We note
that the recent attack on the CKKS scheme by Li and
Micciancio [133] does not affect the security of HE-
Meanshift, as discussed by Cheon et al. [134]. Specif-
ically, the attack requires access to a decryption oracle
which is not available to the server in the outsourced
single-server computation setting.

Similarly, the security of ppDBSCAN [18] follows
directly from the security of the employed secure two-
party computation techniques, specifically GC and ASS
(cf. §2.2), as no intermediate values are opened and the
conversions are provably secure [10].

Leakage from Outputs. Provable security of the pro-
tocols ensures that the computation does not leak any-
thing more than what is revealed in an ideal world where
a trusted third party obtains the inputs, computes the
clustering functionality and returns the output. How-
ever, the information leaked from the clustering output
is not captured in the security definition and we discuss
this in the following.

HE-Meanshift outputs the cluster labels for every
record in the dataset. However, this is not a privacy
concern since the protocol is intended to be used in the
outsourced single-server computation setting where the
entire dataset is known to the client.

MPC-KMeans and ppDBSCAN can be adapted to
output either the cluster centroids or cluster labels.
MPC-KMeans also outputs the number of iterations for
the clustering to converge which is related to the dis-
tribution of the underlying dataset. We have already
discussed how to avoid this leakage in §3.2.

The PCA/OPT algorithms output a point-agnostic
dendrogram in addition to the cluster centroids. The
point-agnostic dendrogram is intended to be a privacy-
preserving variant of the dendrogram output by a plain-
text HC algorithm since the latter provides the com-
plete merging history which leaks information in a set-
ting with multiple data owners. The point-agnostic den-
drogram is computed by first applying a random and
private permutation on the input records to fuzz the
merging history and by retaining the metadata of only
sufficiently large clusters. Intuitively, this allows obtain-
ing useful metadata akin to the plaintext computation
while still preserving privacy. However, it is unclear how
to formalize/measure the information leakage from the
protocol output.

4.3 Efficiency

Asymptotic Analysis. First, we compare the asymp-
totic runtime, communication, and round complexity of
the four investigated private clustering protocols and
depict the results in Tab. 5. Asymptotically, MPC-
KMeans is the most efficient with respect to commu-
nication and runtime in terms of dataset size N , input
records’ dimension d and number of clusters K.
Hardware Details. All experiments are run on two
machines (one for each party) each equipped with a 2.8
GHz Intel Core i9-7960X processor running Linux, 32
vCPUs and 128 GB RAM. We consider two network
settings. The LAN setting has bandwidth 1 Gbps and

SoK: Efficient Privacy-preserving Clustering 237

(a) Adjusted Rand Index (ARI)

(b) Adjusted Mutual Information (AMI)

(c) Silhouette Index (SI)

(d) Calinski-Harabasz Index (CHI)

Fig. 1. Clustering quality evaluation of the fully-private clustering protocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] evaluated on datasets Hepta (red), Lsun (blue), Chainling (purple), and Dense (green). As comparison to the
plaintext clustering algorithms (shaded bars), we also include KMeans++ and Mean-shift from Python Scikit-learn [131]. Each subfigure
(a-d) corresponds to a different clustering quality index: ARI, AMI, SI, and CHI (cf. §4.1) and larger values indicate better clustering
quality. The values are averaged over 10 runs and the error bar shows the standard deviation.

SoK: Efficient Privacy-preserving Clustering 238

Protocol Runtime Communication Rounds

MPC-KMeans [11] Θ(NK(d+ `)t) Θ
(
NK(d`2 + `κ)t

)
Θ(dlogKet)

HE-Meanshift [9] Θ
(
(NKdd

2t)/(Nc log d)
)

Θ(NdKdκ) 2
PCA [19] Θ(N3λ) Θ(N3λκ) Θ(N2)
OPT [19] Θ(N2(λ+ d)) Θ(N2(λκ+ κpub)) Θ(N2)

ppDBSCAN [18] Θ(N2(N + d)) Θ(N2`κ) O(N3)

Table 5. Asymptotic runtime, communication, and round complexity of the private clustering protocols MPC-KMeans [11], HE-
Meanshift [9], PCA/OPT [19], and ppDBSCAN [18]. N is the dataset size, d is the dimension, ` is the bitlength of the data records,
K is the number of clusters, Kd is the number of dusts used in HE-Meanshift, κ = 128 is the computational security parameter,
λ = 40 is the statistical security parameter, Nc is the number of plaintext slots in CKKS, κpub = 2048 is the size of the RSA modulus
in Paillier encryption [65].

RTT 1 ms while the WAN setting has bandwidth 100
Mbps and RTT 100 ms.
Benchmarks. We evaluate the efficiency of the four
privacy-preserving clustering protocols and their scala-
bility to large datasets, datasets with many clusters, and
multi-dimensional data. We generate synthetic datasets
with N ∈ {50, 100, 150, 200, 250} data points of dimen-
sion d ∈ {2, 8} and bitlength ` = 32, and number of
clusters K ∈ {2, 5}. We run the protocols on all possible
combinations of the above described parameters. The it-
erative protocols MPC-KMeans and HE-Meanshift are
run for 5 iterations to reach a comparable clustering
quality and enabling a fair comparison of their efficiency.

To analyze the scalability of the protocols to
large multi-dimensional datasets, we generate a syn-
thetic collection of large datasets with parameters
N ∈ {213, 214, 215, 216}, d ∈ {1, 2, 4, 8, 16} and K ∈
{2, 5, 10, 15, 20}. The memory consumption of MPC-
KMeans was too large (greater than 128 GB) to bench-
mark on datasets where N · d > 219. Similarly, the
memory consumption of PCA/OPT [19] and ppDB-
SCAN [18] was too large even for the smallest dataset
with N = 213, d = 1, and K = 2 due to the usage of
the memory intensive ABY framework [10]. We thus ex-
clude these protocols from our benchmarks on the large
datasets. Fig. 4 in Appx. C presents the memory con-
sumption of our implementations of the protocols for a
small and large dataset.
Communication. We plot the communication costs in
the bottom rows of Fig. 2 (small datasets) and Fig. 5 in
Appx. C (large datasets).

The communication cost for HE-Meanshift is iden-
tical across different small datasets (Fig. 2) because
the entire dataset can be encrypted in one ciphertext.
This inefficient packing of the dataset leads to HE-
Meanshift’s communication being 2× higher than that
of MPC-KMeans on average for small datasets. How-

ever, for large datasets (Fig. 5), HE-Meanshift’s com-
munication cost is up to 11.5× lower than that of MPC-
KMeans on average due to optimal packing. The com-
munication cost of PCA is 6× higher than that of ppDB-
SCAN on average while the communication of ppDB-
SCAN is 2× higher than that of OPT on average.
While the communication cost increases linearly in the
input records’ dimension d for HE-Meanshift, d does
not have a significant effect on the communication of
MPC-KMeans since the communication during the as-
signment of input records to clusters is independent of
d. This phase has the highest communication complex-
ity and dominates the overall communication cost. In
Fig. 5(f) HE-Meanshift’s communication for K = 10
and K = 15 is identical as both use the same number
of dusts Kd = 16 and hence send the same number of
ciphertexts. The communication costs of PCA/OPT are
independent of the input records’ dimension d while the
communication costs of PCA/OPT and ppDBSCAN are
independent of the number of clusters K.
Runtimes. We plot the LAN runtimes in the top row
of Fig. 2 (small datasets) and Fig. 5 in Appx. C (large
datases), and the WAN runtimes for small datasets in
Fig. 3 in Appx. C, all averaged over 10 runs.

MPC-KMeans has the lowest runtime and is up to
700× faster than HE-Meanshift on small datasets and
9.5× faster than HE-Meanshift on large datasets over
LAN. Thus, HE-Meanshift scales well to large, multi-
dimensional datasets due to lower communication costs,
but is not suitable for small datasets. As expected, the
runtime of MPC-KMeans in Fig. 5(b) is marginally af-
fected by increasing the dimension of the input records
d since its assignment of the input records (which is the
bottleneck of the protocol) to the clusters is independent
of d. On the other hand, the runtime of HE-Meanshift is
linear in d since it directly affects the number of cipher-
texts and the efficiency of the bootstrapping operation.

SoK: Efficient Privacy-preserving Clustering 239

50 100 150 200

101

102

103

Dataset size N

R
un

tim
e
(s
)

(a)

Input records’ dimension d = 8
Number of clusters K = 10

1 2 4 8

102

103

Input records’ dimension d

R
un

tim
e
(s
)

(b)

Dataset size N = 200
Number of clusters K = 10

2 5 10

101

102

103

Number of clusters K

R
un

tim
e
(s
)

(c)

Dataset size N = 200
Input records’ dimension d = 8

50 100 150 200

102

103

104

Dataset size N

C
om

m
un

ic
at
io
n
(M

iB
)

(d)

1 2 4 8
102

103

104

Input records’ dimension d

C
om

m
un

ic
at
io
n
(M

iB
)

(e)

2 5 10

102

103

104

Number of clusters K

C
om

m
un

ic
at
io
n
(M

iB
)

(f)

MPC-KMeans [11] HE-Meanshift [9] PCA [19] OPT [19] ppDBSCAN [18]

Fig. 2. LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the fully-private clustering protocols
MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19], and ppDBSCAN [18] for varying dataset size N , input records’ dimension d,
number of clusters K, and bitlength ` = 32. In (a) and (d) d = 8 and K = 10, in (b) and (e) N = 200 and K = 10, and in (c) and
(f) N = 200 and d = 8.

ppDBSCAN’s average runtime is 14× higher over LAN
and 2.5× higher over WAN than that of MPC-KMeans.
However, since ppDBSCAN’s runtime is independent of
the number of clusters, this gap in runtime diminishes
with the increase in number of clusters. OPT and PCA
have similar runtimes wich are 15× higher than that of
ppDBSCAN on average over LAN, even though OPT
has less communication. Moreover, OPT has the high-
est runtime on average over WAN. One possible rea-
son for this might be higher concrete computation costs
for OPT which is not captured by the asymptotic com-
plexity but highlighted due to benchmarking on small
datasets.

5 Real-world Application and
Open Challenges

In this section, we discuss the challenges that need to be
solved to make privacy-preserving clustering practical
for real-world applications.

Parameters. In a privacy-preserving setting, it is typi-
cally impossible to perform a preliminary analysis of the
data since it is distributed among multiple data owners
and not available to a single party. However, to set pa-
rameters like the number of clustersK for K-Means (i.e.,
in MPC-KMeans [11]) and HC (i.e., in PCA/OPT [19]),
the distance parameter ε for ppDBSCAN [18], or the
number of dusts for HE-Meanshift [9], insights about
the dataset are often needed to achieve high clustering
quality. We also observed in our experimental evaluation
that the degree of the kernel and the value of the MinIdx
parameter in HE-Meanshift has significant impact on
the clustering quality by amplifying the distances be-
tween data records. In specific cases, some parameters
like the number of clusters K can be given by the ap-
plication (cf. §3.3). But this is not the case for less in-
tuitive parameters like the initial distribution specifica-
tions of GMM or the neighborhood radius in DBSCAN.
Only ppDBSCAN [18], out of the four protocols that
we benchmarked, can determine these parameters when
they are not fixed by the application and inputs are
provided by more than one party.

SoK: Efficient Privacy-preserving Clustering 240

Secure Clustering Quality Evaluation. The issue of
dataset-dependent parameters is amplified by the lack of
secure clustering quality evaluation techniques. Specif-
ically, plaintext clustering algorithms are often simply
run several times with a range of different parameter
values and the best output is selected based on the
score of a clustering quality index. This is not possi-
ble in privacy-preserving clustering. Firstly, as in plain-
text clustering, no ground truth is known, so metrics
like ARI or AMI that compare to the ground truth can-
not be used. Secondly, as the private clustering result is
typically split among the data owners or only consists
of the centroids, the clusters’ compactness and the sep-
aration between different clusters cannot be measured
without additional secure computation. Thus, also in-
ternal indices like SI and CHI cannot be used easily.
The inherent overhead of secure computation makes it
expensive to perform multiple runs with different pa-
rameter values.
Clustering Quality and Efficiency. Clustering al-
gorithms that make minimal assumptions about the
shape of clusters and are robust to outliers are espe-
cially important in the case of privacy-preserving clus-
tering, because it is impossible to analyze the dataset
or remove noisy records before clustering. None of the
privacy-preserving clustering protocols we consider in-
vestigate soft clustering (cf. §2.1) and only ppDBSCAN
has the notion of noise. The K-means-based protocols,
i.e., MPC-KMeans, are very sensitive to outliers. Ad-
ditionally, as shown by our quality evaluation in §4.1
and as discussed in §2.1, K-means only succeeds on
clustering convexly shaped clusters which is not the
case for all datasets. HE-Meanshift’s clustering qual-
ity also strongly fluctuates depending on the dataset’s
properties (cf. §4.1). This is especially problematic for
privacy-preserving clustering where the dataset distri-
bution is often not known in advance. In contrast, hi-
erarchical clustering like PCA/OPT is less sensitive to
noise and more flexible with respect to the data distribu-
tion, i.e., the cluster shapes. However, as shown in §4.3,
PCA/OPT cannot be run on large datasets while MPC-
KMeans and HE-Meanshift scale significantly better
to large datasets. Our evaluation shows that ppDB-
SCAN performs well on different types of datasets while
also having lower runtimes than other protocols (except
MPC-KMeans).
Recommendations. Among the protocols we evalu-
ate, MPC-KMeans seems to be the most efficient alter-
native when clustering large multi-dimensional datasets.
HE-Meanshift might be a better choice when a single
resource-constrained data-owner outsources clustering

to a more powerful server over a high-latency and low-
bandwidth network. For smaller datasets, ppDBSCAN
seems to be the best option which performs well on a
variety of dataset types and also achieves low runtimes.
However, choosing the input parameter ε that deter-
mines the maximum distance between two data records
to be considered as neighbors requires domain expertise
and partial information about the dataset. This can be
avoided by using MPC-KMeans which only requires set-
ting the more intuitive number of clusters K which in
some cases is also given by the application (cf. §3.3).
Open Challenges. To summarize, for practical appli-
cation, privacy-preserving clustering protocols must be
(1) efficient in terms of runtime and communication,
(2) memory efficient, (3) only have parameters that are
mostly independent of the input data, (4) insensitive
to noise, and (5) flexible to cluster data of any dis-
tribution with high quality. Unfortunately, none of the
state-of-the-art works can fulfill all these requirements
simultaneously. Additionally, there is the need for a se-
cure clustering quality evaluation to assess the quality
of a clustering result run in a privacy-preserving man-
ner. Finally, privacy-research has not tackled privacy-
preserving soft clustering.

6 Conclusion
In this work, we systematically surveyed and ana-
lyzed the state-of-the-art in privacy-preserving cluster-
ing. We benchmarked and compared four efficient pro-
tocols [9, 11, 18, 19] that securely realize four different
clustering algorithms, with respect to clustering quality,
communication, and runtime to investigate their practi-
cality for real-world applications. Finally, we discussed
open challenges to make privacy-preserving clustering
practical.

ACKNOWLEDGEMENTS
We thank Oliver Schick for his support with implement-
ing PCA/OPT [19]. This project received funding from
the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 850990 PSOTI). It was co-
funded by the Deutsche Forschungsgemeinschaft (DFG)
– SFB 1119 CROSSING/236615297 and GRK 2050 Pri-
vacy & Trust/251805230, and by the BMBF and the
HMWK within ATHENE.

SoK: Efficient Privacy-preserving Clustering 241

References
[1] Z. Qian, Z. M. Mao, Y. Xie, and F. Yu, “On Network-level

Clusters for Spam Detection.” in NDSS, 2010.
[2] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V.

Karamouzis, and D. I. Fotiadis, “Machine learning appli-
cations in cancer prognosis and prediction,” Computational
and Structural Biotechnology Journal, 2015.

[3] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A Survey
of Anomaly Detection Techniques in Financial Domain,” in
Future Generation Computer Systems, 2016.

[4] F. Masulli and A. Schenone, “A fuzzy clustering based
segmentation system as support to diagnosis in medical
imaging,” Artificial Intelligence in Medicine, 1999.

[5] S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli,
“User profiles for personalized information access,” in The
adaptive web, 2007.

[6] A. Chaturvedi, J. D. Carroll, P. E. Green, and J. A. Ro-
tondo, “A feature-based approach to market segmentation
via overlapping k-centroids clustering,” Journal of Market-
ing Research, 1997.

[7] C. Gentry and D. Boneh, A fully homomorphic encryption
scheme. Stanford university Stanford, 2009.

[8] W. Wu, J. Liu, H. Wang, J. Hao, and M. Xian, “Secure
and efficient outsourced K-means clustering using fully ho-
momorphic encryption with ciphertext packing technique,”
in TDKE, 2020.

[9] J. H. Cheon, D. Kim, and J. H. Park, “Towards a practical
cluster analysis over encrypted data,” in SAC, 2019.

[10] D. Demmler, T. Schneider, and M. Zohner, “ABY - A
framework for efficient mixed-protocol secure two-party
computation,” in NDSS, 2015.

[11] P. Mohassel, M. Rosulek, and N. Trieu, “Practical privacy-
preserving K-means clustering,” in PETS, 2020.

[12] P. Bunn and R. Ostrovsky, “Secure two-party K-means
clustering,” in CCS, 2007.

[13] F.-Y. Rao, B. K. Samanthula, E. Bertino, X. Yi, and
D. Liu, “Privacy-preserving and outsourced multi-user K-
means clustering,” in CIC, 2015.

[14] A. Jäschke and F. Armknecht, “Unsupervised Machine
Learning on Encrypted Data,” in SAC, 2018.

[15] H. Kim and J. Chang, “A privacy-preserving k-means clus-
tering algorithm using secure comparison protocol and
density-based center point selection,” in International Con-
ference on Cloud Computing, 2018.

[16] H. Keller, H. Möllering, T. Schneider, and H. Yalame,
“Balancing quality and efficiency in private clustering with
affinity propagation,” in SECRYPT, 2021.

[17] S. Zahur and D. Evans, “Circuit structures for improving
efficiency of security and privacy tools,” in IEEE S&P,
2013.

[18] B. Bozdemir, S. Canard, O. Ermis, H. Möllering, M. Önen,
and T. Schneider, “Privacy-preserving density-based clus-
tering,” in ASIACCS, 2021.

[19] X. Meng, D. Papadopoulos, A. Oprea, and N. Triandopou-
los, “Private two-party cluster analysis made formal & scal-
able,” arXiv:1904.04475v2, 2019.

[20] O. Goldreich, S. Micali, and A. Wigderson, “How to play
any mental game,” in STOC, 1987.

[21] A. C.-C. Yao, “How to generate and exchange secrets,” in
FOCS, 1986.

[22] J. Liu, L. Xiong, J. Luo, and J. Z. Huang, “Privacy pre-
serving distributed DBSCAN clustering,” in Transactions
on Data Privacy, 2013.

[23] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow: Secure TensorFlow infer-
ence,” in IEEE S&P, 2020.

[24] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta,
A. Rastogi, and R. Sharma, “CrypTFlow2: Practical 2-party
secure inference,” in CCS, 2020.

[25] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and
R. A. Popa, “Delphi: A cryptographic inference service for
neural networks,” in USENIX Security, 2020.

[26] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.
0: Improved mixed-protocol secure two-party computation,”
in USENIX Security, 2021.

[27] V. Haralampieva, D. Rueckert, and J. Passerat-Palmbach,
“A systematic comparison of encrypted machine learning
solutions for image classification,” in PPMLP, 2020.

[28] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and
H. Yalame, “MP2ML: A mixed-protocol machine learning
framework for private inference,” in ARES, 2020.

[29] L. Song, H. Wu, W. Ruan, and W. Han, “SoK: Training
machine learning models over multiple sources with privacy
preservation,” in arXiv:2012.03386, 2020.

[30] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim,
“Privacy-preserving deep learning on machine learning as
a service—a comprehensive survey,” in IEEE Access, 2020.

[31] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schnei-
der, “SoK: modular and efficient private decision tree eval-
uation,” in PETS, 2019.

[32] U. Stemmer, “Locally private K-means clustering,” in
ACM-SIAM Symposium on Discrete Algorithms, 2020.

[33] L. Ni, C. Li, X. Wang, H. Jiang, and J. Yu, “DP-
MCDBSCAN: Differential privacy preserving multi-core
DBSCAN clustering for network user data,” in IEEE Ac-
cess, 2018.

[34] M.-F. Balcan, T. Dick, Y. Liang, W. Mou, and H. Zhang,
“Differentially private clustering in high-dimensional Eu-
clidean spaces,” in ICML, 2017.

[35] D. Su, J. Cao, N. Li, E. Bertino, M. Lyu, and H. Jin, “Dif-
ferentially private K-means clustering and a hybrid ap-
proach to private optimization,” in TOPS, 2017.

[36] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin, “Differen-
tially private K-means clustering,” in Data and Application
Security and Privacy, 2016.

[37] W. Wu and H. Huang, “A DP-DBSCAN clustering algo-
rithm based on differential privacy preserving,” in Com-
puter Engineering and Science, 2015.

[38] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan,
I. Mironov, K. Talwar, and L. Zhang, “Deep learning with
differential privacy,” in CCS, 2016.

[39] R. Shokri and V. Shmatikov, “Privacy-preserving deep
learning,” in CCS, 2015.

[40] D. Xu and Y. Tian, “A comprehensive survey of clustering
algorithms,” in Annals of Data Science, 2015.

[41] R. Xu and D. Wunsch, “Survey of clustering algorithms,”
in TNN, 2005.

SoK: Efficient Privacy-preserving Clustering 242

[42] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:
A review,” in ACM Computing Surveys, 1999.

[43] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “PPHOPCM:
privacy-preserving high-order possibilistic c-means algo-
rithm for big data clustering with cloud computing,” IEEE
Transactions on Big Data, 2017.

[44] M. Hamidi, M. Sheikhalishahi, and F. Martinelli, “Privacy
preserving Expectation Maximization (EM) clustering con-
struction,” in DCAI, 2019.

[45] X. Lin, C. Clifton, and M. Zhu, “Privacy-preserving cluster-
ing with distributed EM mixture modeling,” in Knowledge
and Information Systems, 2005.

[46] I. V. Anikin and R. M. Gazimov, “Privacy preserving DB-
SCAN clustering algorithm for vertically partitioned data in
distributed systems,” in International Siberian Conference
on Control and Communications, 2017.

[47] M. S. Rahman, A. Basu, and S. Kiyomoto, “Towards out-
sourced privacy-preserving multiparty DBSCAN,” in PRDC,
2017.

[48] I. De and A. Tripathy, “A secure two party hierarchical
clustering approach for vertically partitioned data set with
accuracy measure,” in Recent Advances in Intelligent Infor-
matics, 2014.

[49] G. Jagannathan, K. Pillaipakkamnatt, R. Wright, and
D. Umano, “Communication-efficient privacy-preserving
clustering,” in Transactions on Data Privacy, 2010.

[50] A. İnan, S. V. Kaya, Y. Saygın, E. Savaş, A. A. Hintoğlu,
and A. Levi, “Privacy preserving clustering on horizontally
partitioned data,” in TDKE, 2007.

[51] H. Steinhaus, “Sur la division des corp materiels en par-
ties,” in Bulletin L’Académie Polonaise des Science, 1956.

[52] B. S. Everitt, S. Landau, M. Leese, and D. Stahl, “Cluster
analysis,” in Wiley, 2011.

[53] K. Fukunaga and L. Hostetler, “The estimation of the gra-
dient of a density function, with applications in pattern
recognition,” in TIT, 1975.

[54] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, “A
distribution-based clustering algorithm for mining in large
spatial databases,” in ICDE, 1998.

[55] J. M. Pena, J. A. Lozano, and P. Larranaga, “An empirical
comparison of four initialization methods for the K-means
algorithm,” in Pattern Recognition Letters, 1999.

[56] Zhexue Huang and M. K. Ng, “A fuzzy k-modes algorithm
for clustering categorical data,” in TFS, 1999.

[57] J. Zhan, “Privacy preserving K-medoids clustering,” in
SMC, 2007.

[58] K.-P. Lin, “Privacy-preserving kernel K-means clustering
outsourcing with random transformation,” Knowledge and
Information Systems, 2016.

[59] A. K. Jain and R. C. Dubes, Algorithms for clustering data.
Prentice-Hall, 1988.

[60] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-
based algorithm for discovering clusters in Large spatial
databases with noise.” in SIGKDD, 1996.

[61] Y. Ren, C. Domeniconi, G. Zhang, and G. Yu, “A weighted
adaptive mean shift clustering algorithm.”

[62] M. Ester, “Density-based clustering,” in Encyclopedia of
Database Systems. Springer, 2009.

[63] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander,
“OPTICS: ordering points to identify the clustering struc-

ture,” in ACM SIGMOD, 1999.
[64] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum

likelihood from incomplete data via the EM algorithm,” in
Journal of the Royal Statistical Society, 1977.

[65] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in EUROCRYPT, 1999.

[66] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomor-
phic encryption for arithmetic of approximate numbers,” in
ASIACRYPT, 2017.

[67] A. Shamir, “How to share a secret,” in Communication of
the ACM, 1979.

[68] O. Goldreich, Foundations of cryptography: volume 2, basic
applications. Cambridge university press, 2009.

[69] P. Mohassel and Y. Zhang, “SecureML: A system for scal-
able privacy-preserving machine learning,” in IEEE S&P,
2017.

[70] S. Kamara and M. Raykova, “Secure outsourced computa-
tion in a multi-tenant cloud,” in IBM Workshop on Cryp-
tography and Security in Clouds, 2011.

[71] S. K. Dash, D. P. Mishra, R. Mishra, and S. Dash, “Pri-
vacy preserving K-medoids clustering: An approach towards
securing data in mobile cloud architecture,” in Conference
on Computational Science, Engineering and Information
Technology, 2012.

[72] A. Amirbekyan and V. Estivill-Castro, “Privacy preserving
DBSCAN for vertically partitioned data,” in Intelligence
and Security Informatics, 2006.

[73] K. A. Kumar and C. P. Rangan, “Privacy preserving DB-
SCAN algorithm for clustering,” in Advanced Data Mining
and Applications, 2007.

[74] W.-j. Xu, L.-s. Huang, Y.-l. Luo, Y.-f. Yao, and W. Jing,
“Protocols for privacy-preserving DBSCAN clustering,” in
International Journal of Security and Its Applications, 2007.

[75] D. Jiang, A. Xue, S. Ju, W. Chen, and H. Ma, “Privacy-
preserving DBSCAN on horizontally partitioned data,” in
International Symposium on IT in Medicine and Education,
2008.

[76] N. Almutairi, F. Coenen, and K. Dures, “Secure third party
data clustering using φ data: Multi-user order preserving
encryption and super secure chain distance matrices,” in
International Conference on Innovative Techniques and
Applications of Artificial Intelligence, 2018.

[77] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright,
“A new privacy-preserving distributed K-clustering algo-
rithm,” in SDM, 2006.

[78] M. Sheikhalishahi and F. Martinelli, “Privacy preserving
clustering over horizontal and vertical partitioned data,” in
Symposium on Computers and Communications, 2017.

[79] P. K. Prasad and C. P. Rangan, “Privacy preserving
birch algorithm for clustering over vertically partitioned
databases,” in Workshop on Secure Data Management,
2006.

[80] K. Prasad and P. Rangan, “Privacy preserving birch algo-
rithm for clustering over arbitrarily partitioned databases,”
ADMA, 2007.

[81] X. Zhu, M. Liu, and M. Xie, “Privacy-preserving affinity
propagation clustering over vertically partitioned data,”
in International Conference on Intelligent Networking and
Collaborative Systems, 2012.

SoK: Efficient Privacy-preserving Clustering 243

[82] J. Vaidya and C. Clifton, “Privacy-preserving K-means
clustering over vertically partitioned data,” in SIGKDD,
2003.

[83] G. Jagannathan and R. N. Wright, “Privacy-preserving
distributed K-means clustering over arbitrarily partitioned
data,” in SIGKDD, 2005.

[84] S. Jha, L. Kruger, and P. McDaniel, “Privacy preserving
clustering,” in ESORICS, 2005.

[85] S. Samet, A. Miri, and L. Orozco-Barbosa, “Privacy pre-
serving K-means clustering in multi-party environment,” in
SECRYPT, 2007.

[86] C. Su, F. Bao, J. Zhou, T. Takagi, and K. Sakurai,
“Privacy-preserving two-party K-means clustering via se-
cure approximation,” in AINA, 2007.

[87] M. C. Doganay, T. B. Pedersen, Y. Saygin, E. Savaş, and
A. Levi, “Distributed privacy preserving K-means clustering
with additive secret sharing,” in International Workshop on
Privacy and Anonymity in Information Society, 2008.

[88] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk,
“Privacy-preserving user clustering in a social network,”
in Information Forensics and Security, 2009.

[89] J. Sakuma and S. Kobayashi, “Large-scale k-means cluster-
ing with user-centric privacy-preservation,” in Knowledge
and Information Systems, 2010.

[90] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V.
Jawahar, “Efficient privacy preserving K-means clustering,”
in Pacific-Asia Workshop on Intelligence and Security Infor-
matics, 2010.

[91] T.-K. Yu, D. Lee, S.-M. Chang, and J. Zhan, “Multi-party
K-means clustering with privacy consideration,” in ISPA,
2010.

[92] M. Beye, Z. Erkin, and R. L. Lagendijk, “Efficient privacy
preserving K-means clustering in a three-party setting,” in
Information Forensics and Security, 2011.

[93] Z. Lin and J. W. Jaromczyk, “Privacy preserving two-party
K-means clustering over vertically partitioned dataset,” in
ISI, 2011.

[94] S. Patel, S. Garasia, and D. Jinwala, “An efficient approach
for privacy preserving distributed K-means clustering based
on shamir’s secret sharing scheme,” in Trust Management
VI, 2012.

[95] Z. Erkin, T. Veugen, T. Toft, and R. L. Lagendijk,
“Privacy-preserving distributed clustering,” in EURASIP
Journal on Information Security, 2013.

[96] S. Patel, V. Patel, and D. Jinwala, “Privacy preserving dis-
tributed K-means clustering in malicious model using zero
knowledge proof,” in Distributed Computing and Internet
Technology, 2013.

[97] D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced K-
means clustering,” in ASIACCS, 2014.

[98] X. Liu, Z. L. Jiang, S. M. Yiu, X. Wang, C. Tan, Y. Li,
Z. Liu, Y. Jin, and J. Fang, “Outsourcing two-party privacy
preserving K-means clustering protocol in wireless sensor
networks,” in MSN, 2015.

[99] S. J. Patel, D. Punjani, and D. C. Jinwala, “An efficient
approach for privacy preserving distributed clustering in
semi-honest model using elliptic curve cryptography,” Inter-
national Journal of Network Security, 2015.

[100] V. Baby and N. S. Chandra, “Distributed threshold K-
means clustering for privacy preserving data mining,” in

ICACCI, 2016.
[101] Z. Gheid and Y. Challal, “Efficient and privacy-preserving

K-means clustering for big data mining,” in IEEE Trust-
Com/BigDataSE/ISPA, 2016.

[102] H. Rong, H. Wang, J. Liu, J. Hao, and M. Xian, “Out-
sourced k-means clustering over encrypted data under mul-
tiple keys in spark framework,” in Security and Privacy in
Communication Networks, 2017.

[103] K. Xing, C. Hu, J. Yu, X. Cheng, and F. Zhang, “Mutual
privacy preserving K-means clustering in social participa-
tory sensing,” in TII, 2017.

[104] J. Yuan and Y. Tian, “Practical privacy-preserving MapRe-
duce based K-means clustering over large-ccale dataset,” in
TCM, 2019.

[105] Z. L. Jiang, N. Guo, Y. Jin, J. Lv, Y. Wu, Z. Liu, J. Fang,
S. Yiu, and X. Wang, “Efficient two-party privacy-
preserving collaborative k-means clustering protocol sup-
porting both storage and computation outsourcing,” Infor-
mation Sciences, 2020.

[106] Y. Zou, Z. Zhao, S. Shi, L. Wang, Y. Peng, Y. Ping, and
B. Wang, “Highly secure privacy-preserving outsourced k-
means clustering under multiple keys in cloud computing,”
in Security and Communication Networks, 2020.

[107] Y. Wang, “Notes on two fully homomorphic encryp-
tion schemes without bootstrapping.” Cryptology ePrint
Archive, Report 2015/519.

[108] Y. Cai and C. Tang, “Privacy of outsourced two-party k-
means clustering,” Concurrency and Computation: Practice
and Experience, 2019.

[109] S. M. Sarmento and N. Horta, “Enhancing a pairs trad-
ing strategy with the application of machine learning,” in
Expert Systems with Applications, 2020.

[110] R. Adusumilli, “DBSCAN Clustering for Trading,” 2020,
https://towardsdatascience.com/dbscan-clustering-for-
trading-4c48e5ebffc8.

[111] S. Panigrahi, A. Kundu, S. Sural, and A. K. Majumdar,
“Credit card fraud detection: A fusion approach using
dempster–shafer theory and bayesian learning,” in Infor-
mation Fusion, 2009.

[112] A. Sangers, M. van Heesch, T. Attema, T. Veugen,
M. Wiggerman, J. Veldsink, O. Bloemen, and D. Worm,
“Secure Multiparty PageRank Algorithm for Collaborative
Fraud Detection,” in FC, 2019.

[113] A. Chaturvedi, J. Carroll, P. Green, and J. A. Rotondo,
“A feature-based approach to market segmentation via
overlapping k-centroids clustering,” Journal of Marketing
Research, 1997.

[114] Y. S. Cho, S. C. Moon, S. C. Noh, and K. H. Ryu, “Im-
plementation of personalized recommendation system us-
ing k-means clustering of item category based on rfm,” in
ICMIT, 2012.

[115] Q. Guo, X. Lu, Y. Gao, J. Zhang, B. Yan, D. Su, A. Song,
X. Zhao, and G. Wang, “Cluster Analysis: A New Approach
for Identification of Underlying Risk Factors for Coronary
Artery Disease in Essential Hypertensive Patients,” in Sci-
entific Reports, 2017.

[116] F. Masulli and A. Schenone, “A fuzzy clustering based
segmentation system as support to diagnosis in medical
imaging,” Artificial Intelligence in Medicine, 1999.

https://towardsdatascience.com/dbscan-clustering-for-trading-4c48e5ebffc8
https://towardsdatascience.com/dbscan-clustering-for-trading-4c48e5ebffc8

SoK: Efficient Privacy-preserving Clustering 244

[117] L. Braun, D. Demmler, T. Schneider, and O. Tkachenko,
“MOTION - A framework for mixed-protocol multi-
party computation,” Cryptology ePrint Archive, Report
2020/1137.

[118] M. Keller, “MP-SPDZ: a versatile framework for multi-
party computation,” in CCS, 2020.

[119] A. Dalskov, D. Escudero, and M. Keller, “Secure evaluation
of quantized neural networks,” PETS, 2020.

[120] “HEAAN,” https://github.com/snucrypto/HEAAN, 2020.
[121] “Paillier library,” http://acsc.cs.utexas.edu/libpaillier, 2010.
[122] A. Ultsch, “Clustering with SOM,” in Workshop on Self-

Organizing Maps, 2005.
[123] D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering

and fuzzy clustering: A comparative experimental study,” in
Fuzzy Sets and Systems, 2010.

[124] M. Gagolewski, “Benchmark suite for clustering algorithms
version 1,” 2020, https://github.com/gagolews/clustering
_benchmarks_v1.

[125] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez,
and I. Perona, “An extensive comparative study of cluster
validity indices,” Pattern Recognition, 2013.

[126] L. Hubert and P. Arabie, “Comparing partitions,” Journal
of Classification, 1985.

[127] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic
measures for clusterings comparison: Variants, properties,
normalization and correction for chance,” Journal of Ma-
chine Learning Research, 2010.

[128] P. Rousseeuw, “Silhouettes: A graphical aid to the inter-
pretation and validation of cluster analysis,” Journal of
Computational and Applied Mathematics, 1987.

[129] T. Caliński and J. Harabasz, “A dendrite method for clus-
ter analysis,” in Communications in Statistics-theory and
Methods, 1974.

[130] D. Arthur and S. Vassilvitskii, “K-means++: The advan-
tages of careful seeding,” ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[131] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learn-
ing in Python,” JMLR, 2011.

[132] Y. Lindell, “How to simulate it–a tutorial on the simulation
proof technique,” Tutorials on the Foundations of Cryptog-
raphy, 2017.

[133] B. Li and D. Micciancio, “On the security of homomorphic
encryption on approximate numbers,” Cryptology ePrint
Archive, Report 2020/1533.

[134] J. H. Cheon, S. Hong, and D. Kim, “Remark on the se-
curity of CKKS scheme in practice,” Cryptology ePrint
Archive, Report 2020/1581.

[135] B. J. Frey and D. Dueck, “Clustering by passing messages
between data points,” Science, 2007.

[136] X. Liu, M. Yin, J. Luo, and W. Chen, “An improved affin-
ity propagation clustering algorithm for large-scale data
sets,” in International Conference on Natural Computation,
2013.

[137] F. Shang, L. Jiao, J. Shi, F. Wang, and M. Gong, “Fast
affinity propagation clustering: A multilevel approach,”
Pattern Recognition, 2012.

[138] D. Dueck, Affinity propagation: clustering data by passing
messages, 2009.

[139] A. Rodriguez and A. Laio, “Clustering by fast search and
find of density peaks,” Science, 2014.

[140] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: An
efficient data clustering method for very large databases,”
ACM SIGMOD, 1996.

[141] C. E. Rasmussen et al., “The infinite Gaussian mixture
model,” in NIPS, 1999.

[142] X. He, D. Cai, Y. Shao, H. Bao, and J. Han, “Laplacian
regularized gaussian mixture model for data clustering,”
IEEE Transactions on Knowledge and Data Engineering,
2010.

[143] J. P. Patist, W. Kowalczyk, and E. Marchiori, “Maintain-
ing gaussian mixture models of data streams under block
evolution,” in International Conference on Computational
Science, 2006.

[144] R. C. Pinto and P. M. Engel, “A fast incremental gaussian
mixture model,” PloS one, 2015.

[145] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song,
“Bootstrapping for approximate homomorphic encryption,”
in EUROCRYPT, 2018.

[146] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee, “Nu-
merical method for comparison on homomorphically en-
crypted numbers,” in ASIACRYPT, 2019.

A Discussion of Strengths and
Weaknesses of Additional
Clustering Algorithms

Affinity Propagation. Affinity Propagation [135] is a de-
terministic partitioning-based clustering algorithm that has a
computational complexity of O(N2t) and space complexity of
O(N2), where N is the dataset size and t the number of cluster-
ing iterations [136]. It flexibly determines the required number of
clusters based on the input data such that outliers that do not fit
into any cluster form a a cluster on their own [135]. The cluster-
ing result is independent of the input order of the data records,
as Affinity Propagation always iterates through the complete
dataset in each iteration. Affinity Propagation requires the in-
put of a preference value for each input record that indicates its
likelihood to be chosen as exemplar (similar to a centroid in K-
means) of a cluster. If the preference values are not well chosen, it
can lead to suboptimal clustering results [137]. If all records are
equally likely the preference values are set to the same value for
all records, e.g., the median or minimum of the distances [135].
The respective distance measure can be freely chosen, thus, also
any variable type could be clustered [138]. On the downside,
Affinity Propagation can only detect spherical clusters [139] and
a re-clustering is needed if new data records are added to the
input dataset after it has already been clustered, as this changes
the responsibility and availability matrices.
BIRCH. Balanced Iterative Reducing and Clustering using Hi-
erarchies (BIRCH) is a divisive HC algorithm [140]. Its compu-
tation and space complexity is linear in the dataset size [40].
Generally, BIRCH is relatively insensitive to noisy elements as
it allows to remove elements in sparse regions [40, 140]. Because

https://github.com/snucrypto/HEAAN
http://acsc.cs.utexas.edu/libpaillier
https://github.com/gagolews/clustering_benchmarks_v1
https://github.com/gagolews/clustering_benchmarks_v1

SoK: Efficient Privacy-preserving Clustering 245

each input record is processed incrementally and inserted into
the subtree representing the assigned closest cluster, BIRCH can
handle new data records well, but is affected by the input or-
der [40, 140]. Moreover, it can only detect convexly shaped clus-
ters with records with metric attributes [40, 140]. Additionally,
BIRCH requires to input a threshold for the maximal cluster size
and the branching factor of the tree. If the number of cluster K
is not given, all sub-clusters in the tree are returned.
GMM. Gaussian Mixture Models (GMM) Clustering is
a distribution-based clustering algorithm that uses the
Expectation-Maximization (EM) algorithm [64, 141]. GMM has
a computational complexity of O(NKd3t), where N is the
dataset size, K is the number of cluster, d is the data dimension,
and t the number of clustering iterations and its space complex-
ity is also linear in N [142–144]. The assumption of a Gaussian
distribution of cluster elements restricts the type of the variables
to real numbers. GMM fails when clusters have specific constel-
lations, e.g., when one cluster is surrounded by another one, or
if the clusters are not convexly shaped. It takes the number of
clusters K as input and is relatively sensitive to the selection of
the initial parameters of the cluster distributions [41]. Although
GMM does not explicitly acknowledge the notion of noise, its
result is relatively insensitive to outliers [40, 54], but Keller et
al. [16] demonstrate that outliers can still cause significant mis-
classifcations and incorrect merges between different clusters.
As it process the whole data set in each iteration, GMM is not
affected by the input order. A few new data records can be clus-
tered by GMM with only a few additional iterations.

B Summaries of Fully-Private
Clustering Protocols

MPC-KMeans [11].Mohassel et al. [11] propose a secure two-
party K-means (cf. §2.1) protocol in the semi-honest security
model using the ABY framework [10] for secure two-party com-
putation. We call this protocol MPC-KMeans in the following.
MPC-KMeans can also be used in an outsourcing scenario [70]
where multiple data owners outsource the clustering to two non-
colluding servers. The authors also propose a multi-party variant
where parties first locally run the plaintext K-means on their lo-
cal datasets and then proceed to securely compute the joint clus-
tering result based on the previously determined local centroids
of all parties.

In the two-party protocol, each data owner runs the plain-
text K-means algorithm on its local datasets to compute K

2 local
clusters. The centroids of these clusters are then secret-shared
and used to initialize the centroids for the clustering over the
combined dataset.

MPC-KMeans’ building blocks are optimized for two com-
putational settings: the amortized setting where the same func-
tion is evaluated multiple times on different inputs and the adap-
tive setting where the inputs to multiple evaluations of the func-
tion depend on the output of previous evaluations. Intuitively,
the updates of the centroids are non-adaptive in one cluster-
ing iteration but adaptive across several iterations. Therefore,
the authors introduce efficient protocols for secure multiplica-
tion and the calculation of the squared Euclidean distance in

the adaptive amortized setting. They also propose an efficient
protocol for computing the index of the minimum element in a
list of t values using a recursive tree evaluation of a customized
Garbled Circuit. This increases the number of rounds by dlog te,
but it reduces the communication costs by a factor of 2. MPC-
KMeans terminates when the difference between new and old
centroids is less than a predefined threshold.

The authors use the squared Euclidean distance. They also
benchmark the Manhattan distance (max

i∈[1,d]
|xi − yi|, where d is

the dimension) and Chessboard distance (
∑d

i=1 |xi − yi|), but
show that computing squared Euclidean distance in the adap-
tive amortized setting is faster than the other two distances. The
computation is done on fixed point numbers using the truncation
method of [69] where each party locally truncates its share with
an error of at most one bit in the least significant bit of the frac-
tional part. The authors show that truncation has a negligible
impact on the accuracy of clustering.
HE-Meanshift [9]. Cheon et al. [9] propose a HE-friendly
variant of the Mean-shift clustering algorithm (cf. §2.1) in the
semi-honest security model using the fully homomorphic encryp-
tion (FHE) scheme CKKS [66, 145]. We call this protocol HE-
Meanshift in the following. The protocol is designed for the out-
sourced computation setting where a single, possibly resource-
constrained, data owner securely outsources the computation to
a server.

CKKS computes on real numbers, but it supports only ad-
dition and multiplication. Thus, HE-Meanshift replaces the non-
polynomial operations in Mean-shift by polynomial operations.
The gradient ascent algorithm used in Mean-shift for mode-
seeking requires computing the derivative of the kernel. The
authors of [9] propose the HE-friendly polynomial kernel Ghe
shown in Eq. 1. Given the degree parameter Γ ∈ N, the deriva-
tive of Ghe can be computed with a constant multiplicative fac-
tor using Γ + 1 multiplications and 2 subtraction operations.

Ghe(x, y) = (1− ‖x− y‖2)2Γ+1
. (1)

HE-Meanshift uses a fixed bandwidth parameter h = 1 in
the kernel density estimator (KDE) used to compute the den-
sity function in Mean-shift. h is a smoothing parameter for the
density function and it is the only parameter for the classical
Mean-shift algorithm. Although h is fixed in HE-Meanshift, the
Γ parameter still offers some flexibility by amplifying the dis-
tance between the data points.

Due to the computation overhead of FHE, the authors
adopt a random sampling strategy called dust sampling which
involves sampling Kd points called dusts from the dataset to re-
duce the O(N2) complexity of the original Mean-shift algorithm.
HE-Meanshift then performs the mode-seeking on the dusts in-
stead on all points in the dataset. Recall that modes are points
corresponding to local maxima in the KDE and represent ar-
eas of high density. In Mean-shift, each point is mapped to the
cluster containing the closest mode and the number of clusters
is equal to the number of distinct modes. Thus, HE-Meanshift
can use a relatively low value for Kd that is at least equal to the
number of clusters K to compute all clusters in the dataset. This
not only improves the efficiency of the mode-seeking but also re-
duces the costs for bootstrapping, which is now proportional to
Kd. However, setting Kd requires prior information about the

SoK: Efficient Privacy-preserving Clustering 246

number of clusters in the dataset in contrast to the plaintext
Mean-shift where only a value for h is needed.

After a predefined number of iterations, each point in the
input dataset is assigned a cluster label based on the final value
of the dusts. Since two or more sampled dusts might converge
to the same mode and hence the same cluster, HE-Meanshift
uses a secure PointLabeling algorithm to robustly assign records
to clusters. The Inv and MaxIdx protocols of [146] are used for
division and comparison.

HE-Meanshift does not require communication except from
sending and receiving the data to/from the untrusted processing
party. It is usable for a single data owner outsourcing the clus-
tering. However, the protocol is not usable for most outsourcing
scenarios where multiple data owners cluster their joint data
since the encrypted output can be decrypted only by a single
data owner.
PCA/OPT [19]. Meng et al. [19] introduce two-party privacy-
preserving hierarchical clustering (HC) protocols with single and
complete linkage (cf. §2.1) in the semi-honest security model
using additively homomorphic encryption [65] and Yao’s Gar-
bled Circuits [21]. In contrast to the protocols discussed be-
fore in §3, they do not return the resulting clusters/its indices,
but a dendrogram (cf. §2.1) indicating the clustering’s merging
history and metadata containing statistical information about
each merge like the new cluster’s size and a representative el-
ement/centroid. To limit information leakage through this re-
turned metadata, the protocols output only metadata of suffi-
ciently large merges or of the final clusters.

In the baseline protocol, called PCA, the two parties cal-
culate the pairwise squared Euclidean distances between the
clusters using the additively homomorphic property of Paillier
encryption [65]. Then, both parties get access to the plaintext
values of the distance matrix blinded with random values such
that they can collaboratively cluster the input elements and up-
date the merging dendrogram leveraging two GC-protocols that
determine the minimum/maximum distance.

The authors introduce an extension of PCA called OPT
that reduces HC’s computation complexity of O(N3), whereN is
the dataset size, with single linkage by leveraging the symmetry
of the minimum distance. This accelerates the search for the
next pair of clusters that have to be merged by a factor of N .

PCA can also be extended to the outsourcing scenario [70]
where an arbitrary number of data owners secret share their in-
put data among two non-colluding servers that run the privacy-
preserving clustering. However, an extension to more than two
servers is not straightforward due to the usage of GCs.
ppDBSCAN [18]. Bozdemir et al. [18] propose a privacy-
preserving DBSCAN [60] protocol in the semi-honest security
setting using the ABY framework [10]. We call this protocol
ppDBSCAN in the following. ppDBSCAN can either be used
as secure two-party computation protocol or in an outsourcing
scenario with two computing parties, e.g., servers, and an arbi-
trary number of data owners. The authors point out that the
post-processing can be adapted to provide an arbitrary output,
e.g., cluster labels, cluster sizes, etc. By assessing the needed
recursive depth of the neighborhood exploration ppDBSCAN’s
complexity can be reduced to a low cubic complexity (from nor-
mal cubic complexity). All computations are done on integers.

Initially, the data owners arithmetically share their input
records among the two non-colluding parties (which are poten-

tially represented by themselves). Then, the pair-wise squared
Euclidean distances are computed between all data records in
Arithmetic Sharing [20] to assess which elements have suffi-
ciently many neighbors (i.e., lie in a dense area) to form a clus-
ter. The results are stored as binary values to enhance the the
efficiency of the clustering process mostly done with GC [21].
Additionally, the distance computation and the cluster expan-
sion is also parallelized with SIMD operations.

C Additional Benchmarking
Results

Fig. 3 summarizes the WAN runtimes of the fully private cluster-
ing protocols on small datasets. Fig. 4 depicts the memory con-
sumption of the fully private clustering protocols for a small and
large dataset. Fig. 5 summarizes the runtime of HE-Meanshift
and MPC-KMeans on large datasets over LAN network.

50 100 150 200

102

103

104

Dataset size N

R
un

tim
e
(s
)

MPC-KMeans [11]
HE-Meanshift [9]
PCA [19]
OPT [19]
ppDBSCAN [18]

Fig. 3. WAN runtime in seconds of the private clustering pro-
tocols MPC-KMeans [11], HE-Meanshift [9], PCA/OPT [19],
and ppDBSCAN [18] for varying dataset size N , K=2 clusters,
dimension d = 8, and bitlength ` = 32.

Fig. 4. Memory consumption in GB of the privacy-preserving
clustering protocols ppDBSCAN [18], PCA/OPT [19], HE-
Meanshift [9], and MPC-KMeans [11] for a small (N = 200, d =
8,K = 10) and large (N = 65536, d = 4,K = 20) dataset.

SoK: Efficient Privacy-preserving Clustering 247

D Additional Clustering Quality
Evaluation

We compare the clustering quality on nine widely used datasets:
Hepta (Tab. 6), Lsun (Tab. 7), Target (Tab. 8), Wingnut
(Tab. 9), Tetra (Tab. 10), Chainlink (Tab. 11), and EngyTime
(Tab. 12) from [122]; and Dense (Tab. 13) and ZigZag Noisy
(Tab. 14) from [123]. Each dataset has different characteristics
such as different cluster shapes or different densities.

Algorithm ARI AMI SI CHI

Ground Truth - - 0.883 519.937
MPC-KMeans 0.869 0.946 0.754 292.539
KMeans++ 1.0 1.0 0.883 519.937
HE-Meanshift 0.667 0.834 0.603 156.518
Mean-shift 1.0 1.0 0.883 519.937
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.883 519.937
PCA 1.0 1.0 0.883 519.937

Table 6. Hepta

Algorithm ARI AMI SI CHI

Ground Truth - - 0.609 384.439
MPC-KMeans 0.405 0.524 0.653 485.003
KMeans++ 0.405 0.524 0.653 485.003
HE-Meanshift 0.434 0.537 0.234 220.118
Mean-shift 0.366 0.445 0.589 293.479
ppDBSCAN 1.0 1.0 0.609 384.439
OPT 1.0 1.0 0.609 384.439
PCA 0.405 0.529 0.641 458.157

Table 7. Lsun

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.260 27.869
Ground Truth 2 - - 0.249 0.494
MPC-KMeans 0.534 0.615 0.678 709.651
KMeans++ 0.611 0.639 0.742 738.291
HE-Meanshift 0.215 0.311 0.383 101.586
Mean-shift 0.626 0.645 0.766 590.057
ppDBSCAN 1.0 1.0 0.249 0.494
OPT 1.0 1.0 0.249 0.494
PCA 0.207 0.377 0.506 90.502

Table 8. Dataset Target

Algorithm ARI AMI SI CHI

Ground Truth - - 0.630 1061.016
MPC-KMeans 0.417 0.326 0.567 805.066
KMeans++ 0.425 0.334 0.570 815.492
HE-Meanshift 0.475 0.451 0.373 611.832
Mean-shift 0.638 0.538 0.621 1027.873
ppDBSCAN 1.0 1.0 0.630 1061.016
OPT 1.0 1.0 0.630 1061.016
PCA 1.0 1.0 0.630 1061.016

Table 9. Dataset Wingnut

Algorithm ARI AMI SI CHI

Ground Truth - - 0.726 418.391
MPC-KMeans 0.961 0.975 0.689 390.920
KMeans++ 1.0 1.0 0.726 418.391
HE-Meanshift 0.518 0.587 0.124 109.916
Mean-shift 1.0 1.0 0.726 418.391
ppDBSCAN 0.94 0.94 0.694 391.819
OPT 0.000 0.000 -0.436 1.472
PCA 0.987 0.982 0.718 409.221

Table 10. Dataset Tetra

Algorithm ARI AMI SI CHI

Ground Truth - - 0.179 250.865
MPC-KMeans 0.088 0.065 0.525 718.934
KMeans++ 0.087 0.064 0.525 718.788
HE-Meanshift 0.132 0.160 0.262 353.929
Mean-shift 0.223 0.272 0.405 574.488
ppDBSCAN 1.0 1.0 0.179 250.865
OPT 1.0 1.0 0.179 250.865
PCA 0.313 0.388 0.463 575.488

Table 11. Chainlink

Algorithm ARI AMI SI CHI

Ground Truth 1 - - 0.557 2921.700
Ground Truth 2 - - 0.577 3075.082
MPC-KMeans 0.844 0.783 0.578 3158.931
KMeans++ 0.843 0.783 0.578 3158.931
HE-Meanshift 0.801 0.720 0.198 1681.223
Mean-shift 0.833 0.769 0.578 3176.809
ppDBSCAN 0.612 0.493 -0.416 115.717
OPT 0.000 0.000 0.479 8.044
PCA 0.042 0.150 0.472 1318.72

Table 12. Dataset EngyTime

Algorithm ARI AMI SI CHI

Ground Truth - - 0.740 433.656
MPC-KMeans 0.756 0.713 0.790 497.182
KMeans++ 0.768 0.723 0.790 499.284
HE-Meanshift 0.838 0.779 0.540 277.155
Mean-shift 0.784 0.725 0.699 309.728
ppDBSCAN 0.935 0.904 0.762 503.083
OPT 0.000 0.019 0.490 15.626
PCA 0.257 0.348 0.631 231.817

Table 13. Dense

Algorithm ARI AMI SI CHI

Ground Truth 1 - - -0.050 30.858
Ground Truth 2 - - 0.500 317.869
MPC-KMeans 0.497 0.636 0.489 321.627
KMeans++ 0.519 0.655 0.540 362.227
HE-Meanshift 0.498 0.648 0.538 368.285
Mean-shift 0.542 0.699 0.510 351.971
ppDBSCAN 1.0 1.0 -0.050 30.858
OPT 1.0 1.0 -0.040 30.858
PCA 0.521 0.672 0.504 371.251

Table 14. Dataset ZigZag Noisy

SoK: Efficient Privacy-preserving Clustering 248

8192 16384 32768 65536

103

104

105

Dataset size N

R
un

tim
e
(s
)

(a)

Number of clusters K = 20
Number of clusters K = 5

1 2 4 8 16

104

105

Input records’ dimension d

R
un

tim
e
(s
)

(b)

Dataset size N = 16384
Dataset size N = 8192

2 5 10 15 20

103

104

105

Number of clusters K

R
un

tim
e
(s
)

(c)

Input records’ dimension d = 16
Input records’ dimension d = 4

8192 16384 32768 65536

103

104

105

Dataset size N

C
om

m
un

ic
at
io
n
(M

iB
)

(d)

1 2 4 8 16

103

104

Input records’ dimension d

C
om

m
un

ic
at
io
n
(M

iB
)

(e)

2 5 10 15 20

103

104

Number of clusters K

C
om

m
un

ic
at
io
n
(M

iB
)

(f)

MPC-KMeans [11] HE-Meanshift [9]

Fig. 5. LAN runtimes in seconds (top row) and communication in MiB (bottom row) of the fully-private clustering protocols
MPC-KMeans [11] and HE-Meanshift [9] for varying dataset size N , input records’ dimension d, number of clusters K, and bitlength
` = 32. In (a) and (d) is d = 4, in (b) and (e) K = 20, and in (c) and (f) N = 16384.

	SoK: Efficient Privacy-preserving Clustering
	1 Introduction
	2 Preliminaries
	2.1 Clustering
	2.2 Cryptographic Building Blocks

	3 Privacy-preserving Clustering
	3.1 Functionality and Requirements
	3.2 Existing Private Clustering Protocols
	3.3 Private Clustering Applications

	4 Evaluation
	4.1 Clustering Quality
	4.2 Security & Privacy
	4.3 Efficiency

	5 Real-world Application and Open Challenges
	6 Conclusion
	A Discussion of Strengths and Weaknesses of Additional Clustering Algorithms
	B Summaries of Fully-Private Clustering Protocols
	C Additional Benchmarking Results
	D Additional Clustering Quality Evaluation

