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Abstract: Privacy preference signals are digital repre-
sentations of how users want their personal data to be
processed. Such signals must be adopted by both the
sender (users) and intended recipients (data processors).
Adoption represents a coordination problem that re-
mains unsolved despite efforts dating back to the 1990s.
Browsers implemented standards like the Platform for
Privacy Preferences (P3P) and Do Not Track (DNT),
but vendors profiting from personal data faced few in-
centives to receive and respect the expressed wishes of
data subjects. In the wake of recent privacy laws, a
coalition of AdTech firms published the Transparency
and Consent Framework (TCF), which defines an opt-
in consent signal. This paper integrates post-GDPR de-
velopments into the wider history of privacy preference
signals. Our main contribution is a high-frequency lon-
gitudinal study describing how TCF signal gained dom-
inance as of February 2021. We explore which factors
correlate with adoption at the website level. Both the
number of third parties on a website and the presence
of Google Ads are associated with higher adoption of
TCF. Further, we show that vendors acted as early
adopters of TCF 2.0 and provide two case-studies de-
scribing how Consent Management Providers shifted ex-
isting customers to TCF 2.0. We sketch ways forward for
a pro-privacy signal.
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1 Introduction
Privacy preference signals are digital representations of
how users want their personal data to be processed.
These vary from a binary “Do Not Track” signal through
to more complex expressions in cookie consent dialogues.
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Such signals are intended to influence how entities in-
cluding websites and third parties process personal data.
Web actors may collect privacy preferences in the hope
of legitimizing data processing in the eyes of customers
or to satisfy legal obligations.

Efforts to standardize privacy preferences go back to
at least P3P, which was presented as a prototype to US
regulators in 1997 and recommended as a standard by
the World Wide Web Consortium (W3C) in 2002. It was
adopted by around 20k websites [1], but was criticized
by privacy advocates for not establishing consequences
for false reporting of privacy practices [2]. Another W3C
working group was formed in 2011 to specify the Do Not
Track HTTP extension but it was closed before com-
pletion, citing the lack of planned support among “the
ecosystem at large” [3] as exemplified by the Interactive
Advertising Bureau’s withdrawal [4]. The first wave of
privacy preference signals is completed by the opt-out
cookies [5] created by the Network Advertising Initiative
(NAI) as part of a regulatory compromise with the Fed-
eral Trade Commission [6]. The NAI never published a
specification, the opt-out only concerned a narrow defi-
nition of tracking, and very few vendors participated [5].

A second wave of privacy preference signals was
prompted by the passage of privacy laws like the EU
General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA). For example,
the GDPR establishes that an opt-in consent signal may
constitute a legal basis for processing personal data pro-
viding the consent was “freely given, specific, informed
and unambiguous”. These laws prompted research that
has largely focused on the interfaces through which opt-
in [7–10] and opt-out [11, 12] signals are collected. An
ecosystem of actors has emerged to manage the collec-
tion of opt-in consent signals on behalf of websites [13].
Often these signals are collected and shared with a pay-
for-membership “Global Vendor List”, which has been
termed the “commodification of consent” [14].

At this point, skeptics will rightly state that such
signals exist in the world of soft privacy with no tech-
nical guarantees about personal data flows and that
we should instead focus on the technologies associated
with hard privacy. Such skepticism is compelling but
should be qualified by the behavior of privacy advocates
and AdTech firms. Both sides invested resources in P3P
and DNT working groups. The latter posed a threat to
AdTech business models as evidenced by the Interac-
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Fig. 1. Timeline of key events for privacy preference signals and relevant laws

tive Advertising Bureau withdrawing from the working
group after Microsoft announced it would be turned on
by default [4]. The power of these signals can also be
seen in websites’ dark patterns that nudge users towards
expressing certain preferences [9–11]. Given the stakes
have been further increased by sanctions associated with
the GDPR and the CCPA, widespread adoption of a pri-
vacy preference signal would have privacy implications.

In terms of technical design, there is disagreement
over who controls the interface by which users set pri-
vacy preferences. In both P3P and DNT, the user ex-
presses preferences to a user agent. In contrast, user
preferences are collected by embedding an interface in
a web page in both of the approaches developed by
AdTech industry bodies, namely the Interactive Adver-
tising Bureau (IAB) [8] and the Network Advertising Ini-
tiative (NAI) [5]. This bypasses browsers by making the
signal backwards compatible with existing technology.
Turning to semantics, AdTech vendors proposed opt-in
signals that could represent compliance, whereas privacy
advocates proposed (global) opt-out signals that em-
power users. In summary, these signals have a long his-
tory and also have privacy implications going forward.

This paper systematizes historical knowledge on
privacy preference signals (the past), measures which
signals have been adopted as of February 2021 (the
present), and reflects on adoption strategies for a pro-
privacy signal (the future). We show a grim state of af-
fairs for user control over privacy: P3P is obsolete, NAI’s
system still has only 75 participating AdTech firms, and
the reincarnation of Do Not Track—the Global Pri-
vacy Control—has been adopted by less than 10 web-
sites. Meanwhile, the Interactive Advertising Bureau’s
TCF 1.x and TCF 2.0 have been adopted by thousands
of websites. We then use high-frequency web measure-
ments to build a longitudinal case-study of how adoption
and TCF 2.0 migration varied over time, websites and
AdTech vendors. Our contributions include:

– Systematize knowledge about first wave (P3P,
DNT, and NAI opt-out) and second wave (TCF and
GPC) privacy preference signals.

– Measure present day adoption and show that
TCF adoption is roughly comparable to historical
P3P adoption among websites, whereas an order of
magnitude more AdTech vendors have adopted TCF
than all other signals combined.

– Test explanatory variables for TCF adoption
like website popularity, category, number of embed-
ded third parties, and presence of Google Ads. TCF
adoption is higher among websites with closer ties
to AdTech.

– Longitudinal case-study exploring TCF 2.0 mi-
gration strategies among the two most popular Con-
sent Management Platforms, and how the new ver-
sion changed the legal basis that individual AdTech
vendors claim for tracking.

Section 2 describes the five privacy preference signals
and Section 3 identifies related work measuring their
adoption. This motivates our empirical measurements,
which are described in Section 4. Our results describ-
ing the present are contained in Section 5. Section 6
discusses the past, present and future of privacy prefer-
ences. We conclude in Section 7.

2 Background
This section compares five privacy preference signals
in terms of design properties and real-world adoption,
which is summarized in Table 1. We selected these sig-
nals because they were the most widely adopted among
the key stakeholders, namely browsers, AdTech vendors
and websites. We do not provide a background on the
widespread online tracking that motivate privacy pref-
erence signals, such as cookies [15, 16] and other track-
ing technologies [17–19]. Similarly, we do not consider
privacy preserving technologies unless they function to
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express privacy preferences, such as when browsers/add-
ons collect user preferences and automate sending the
signal. We now turn to the five signals. Figure 1 pro-
vides and overview of the key events for each signal and
Figure 2 provides a visual summary of the signal’s flow.

2.1 Platform for Privacy Preferences (P3P)
P3P is one of the earliest privacy preference signals pro-
posed for the Web. A demonstration of a P3P proto-
type was presented before the FTC in June 1997. The
W3C recommended the P3P 1.0 specification in 2002,
which describes an XML format to encode a human-
readable privacy policy into a machine-readable spec-
ification stating the type, recipients and purposes of
data collected. Users can define individual privacy pref-
erences, which browsers can cross-check against a web-
site’s self-reported P3P policy. Each website’s imple-
mentation could become arbitrarily complex with dif-
ferent policies for each web page and third-party cookie.

P3P was adopted by, respectively, 588 (10%), 463
(8.34%), 2.3k (2.3%), and 33.1k (60%) of the sites in
samples from 2003 [20], 2007 [21], 2007 [22], and 2010 [1].
The final sample [1] is not representative of the wider
web because the majority of sites were discovered by the
Privacy Finder search engine, which specifically aimed
to identify web sites that respect a user’s privacy. How-
ever, the finding of 19 820 websites [1] implementing P3P
in 2010 serves as a reasonable lower bound in Table 1.
The same study [1] found that 11 (15%) of a sample of
AdTech vendors had a P3P privacy policy.

Microsoft was the only browser developer to fully
adopt P3P and stopped support in 2016. Mozilla sup-
ported only some P3P features, but removed them by
2007. Other browsers shunned P3P and instead allowed
users to set defaults like blocking all third party cook-
ies [23]. P3P-specific browser extensions provide a more
meaningful perspective on conscious user adoption than
usage statistics for each browser. For example, Privacy
Bird, an add-on for Internet Explorer 5 and 6 that
displays a website’s P3P policy in an easy to under-
stand language, was downloaded 20k times in the first 6
months [24].

2.2 Network Advertising Initiative (NAI)
Opt-Out

AdTech vendors founded a self-regulatory body, the
NAI, as a compromise following the Federal Trade Com-
mission’s (FTC) report on web privacy submitted to
Congress in 1998 [6]. The NAI established a system of
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Fig. 2. User prompt, privacy preference signals, and personal data
flows when using each approach.

opt-out cookies. Users can visit the NAI’s website1 and
set an opt-out cookie for each participating vendor to
signal that the user does not want to be tracked by that
firm. Critics [5] note that the NAI’s narrow definition of
tracking would not cover many techniques observed in
the wild [17–19].

1 https://optout.networkadvertising.org/

https://optout.networkadvertising.org/
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The NAI provide a list of all participating vendors,
which was just 4 in 2004, 75 in 2010 [1] and stands at 75
participating vendors as of January 2021. Websites and
browsers do not need to adopt the NAI’s system because
it piggy-backs on existing browser cookie functionality.
The NAI reported one million visits to the the opt-out
page in 2006 [5] but we cannot differentiate unique vis-
itors. Returning to browser extensions, there were at
least 44.9k users of the Targeted Advertising Cookie
Opt-Out (TACO) add-on2, which maintained an up to
date list of opt-out cookies.

2.3 Do Not Track (DNT)

Acknowledging the failure of P3P, the W3C created
a working group in 2011 to standardize the Do Not
Track (DNT) mechanism [25]. DNT was less expres-
sive than P3P. Implementation involved browsers send-
ing a DNT: 1 header with each HTTP request to signal
that their user did not wish to be tracked. Stakehold-
ers disagreed on whether DNT should default to on or
off [4, 26]. This opposition was part of the reason why
the W3C working group was closed without success in
2019 [3].

DNT was implemented in browsers by Microsoft,
Apple, Mozilla and eventually Google [27]. Websites and
third-party vendors could signal in an HTTP response
header if they respected the user’s DNT signal. This
signal was not exposed in any browser’s user interface3

(outside of add-ons), which meant users were largely un-
aware of website adoption. Only 9 companies issued pub-
lic statements regarding support of DNT [28]. In 2011,
Mozilla reported DNT adoption by Firefox users to be
at 17% in the US and 11% outside [29], although this
oversamples privacy aware users.

2.4 Global Privacy Control (GPC)

The unofficial GPC draft specification [30], which was
released in October 2020, continues the work of DNT in
extending HTTP requests with a single bit value. Per-
haps the most important change is re-framing Do Not
Track as a “Do Not Sell” and “Object To Processing”
signal, which is closer to the language of the GDPR

2 https://web.archive.org/web/20110920055245/https://
addons.mozilla.org/en-us/firefox/addon/targeted-advertising-
cookie-op/
3 https://www.w3.org/TR/tracking-dnt/#responding

and the CCPA, which became effective in May 2018 and
January 2020. This means GPC references (enforceable)
laws, which DNT lacked.

As of February 2021, Mozilla and the Brave browser
are listed as publicly supporting GPC, but only Brave
have implemented it. We do not provide any estimates
for user size given it was released so recently.

2.5 Transparency and Consent Framework
(TCF)

After the enactment of the GDPR, an advertising indus-
try body (IAB Europe) formed a working group to de-
velop the Transparency and Consent Framework (TCF),
“the only GDPR consent solution built by the industry
for the industry” [31]. Participants predominantly rep-
resenting private firms from the advertising and pub-
lishing industries co-developed the TCF, which defines
the legal terms and data processing purposes that users
consent to and the format by which consent signals are
stored and exchanged between third parties. A new ver-
sion (TCF 2.0) was introduced in 2020.

TCF is implemented by websites in the form of a
consent dialog that does not require browser buy-in,
much like NAI. It creates the role of Consent Manage-
ment Providers (CMPs), who implement the framework
on individual websites. CMPs are central to the TCF
in providing an interface between website, user, and ad
vendors. They provide websites with a (customizable)
cookie prompt to embed, store users’ choices as browser
cookies, and provide an API for advertisers to access
this information. We refer to Hils et al. [13, Fig. 2] for a
visual depiction of the ecosystem.

The IAB maintains a public list of CMPs, which lists
119 participating providers as of February 2021.4 A web-
site wishing to implement the TCF independently must
become a CMP, otherwise they can out-source this to
an existing CMP. In reality, a handful of CMPs dom-
inate the market [8]. The largest CMPs are OneTrust
and Quantcast, which account for 37.4% of all CMP im-
plementations in the Tranco 100k (see Section 5).

To receive TCF consent signals from CMPs, AdTech
vendors must register with the IAB and pay a yearly
maintenance fee to join the Global Vendor List (GVL)5.
As of Feb. 2021, 684 companies are registered on this
list. Most CMPs collect consent for the entire GVL by

4 https://iabeurope.eu/cmp-list/
5 https://iabeurope.eu/vendor-list/

https://web.archive.org/web/20110920055245/https://addons.mozilla.org/en-us/firefox/addon/targeted-advertising-cookie-op/
https://web.archive.org/web/20110920055245/https://addons.mozilla.org/en-us/firefox/addon/targeted-advertising-cookie-op/
https://web.archive.org/web/20110920055245/https://addons.mozilla.org/en-us/firefox/addon/targeted-advertising-cookie-op/
https://www.w3.org/TR/tracking-dnt/#responding
https://iabeurope.eu/cmp-list/
https://iabeurope.eu/vendor-list/
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Table 1. Comparison of privacy preference signals

P3P NAI Opt-Out DNT GPC Transparency & Consent Framework

TCF 1.x TCF 2.x

General
Convened by W3C AdTech & FTC Privacy Advocates AdTech
Legal Basis none self-regulat. self-regulat. CCPA GDPR
Standardized by W3C NAI W3C GPC IAB
Design Properties
Implementation Privacy Policy XML Opt-Out Cookie HTTP Header Consent Cookie from CMP
User Interface UA indicator central website UA setting or ext. dialog on website
User Decision configure prefs. opt out turn on select allowed purposes
Decision Scope all browsing cookie lifetime all browsing website until re-request
Vendor Decision define policy join NAI adopt standard declare processing purposes
Website Decision define policy none adopt standard pick vendors vendors+purposes

Adoption
Websites > 20k [1, 20–22] – > 9 [28] ? > 1,539* > 6,726*
AdTech Vendors > 11 [1] > 75 [1] ≈ 0 [28] ? 602 684
Browsers – – –

?=unknown, –= compat. with exist. tech., *= inTranco 100k, see Sec. 5, Safari Brave Chrome Internet Explorer Firefox

default, which means privacy preferences apply to the
whole list [14].

The specifications of TCF 1.x and TCF 2.0 both
define a more complex signal than DNT/GPC. Under
TCF 1.x, users may affirmatively consent to any combi-
nation of five data processing purposes. They may also
state individual preferences for each vendor on the GVL.
TCF 2.0 expands this model to ten purposes and two
special features, increasing complexity even further.

In both TCF versions, users are prevented from
expressing certain preferences. Vendors can claim that
they have a legitimate interest in a specific purpose,
which serves as their legal basis to process data even if
the user clicks “Reject all”. Starting with TCF 2.0, some
CMPs provide users with the additional option to object
to this processing (GDPR asks for such functionality),
but this needs to be done separately in a subdialog. As
such, the “Reject all” button commonly does not ac-
tually express all possible preferences. With TCF 2.x,
vendors can declare that their legal basis is flexible. This
means they would like to process data with the user’s
consent, but they can also perform (limited) process-
ing based on a legitimate interest. As the only excep-
tion, TCF 2.x removes the option for vendors to claim a
legitimate interest in Purpose 1—“Store and/or access
information on a device”—, possibly preempting an in-
tervention by regulators. The policy changes between
TCF 1.x and TCF 2.0 motivate measuring the transi-
tion.

3 Related Work

Section 3.1 briefly describes the privacy practices em-
ployed by websites in order to motivate why privacy
preferences matter. Section 3.2 surveys research into pri-
vacy preferences including the previous five signals. Sec-
tion 3.3 links the paper to the general question of why
are technical standards adopted?

3.1 Privacy Practices

Researchers consistently demonstrate privacy eroding
techniques deployed in the wild [15–19] motivated by
online advertising business models [32]. Personal data
is leaked via social networks [33], third-party web
scripts [34], apps [35], software development kits [36],
and organizational breaches [37]. The scale of tracking
motivate re-designing systems to provide privacy guar-
antees. For example, multihoming can be used to defend
against fingerprinting [38] and trusted hardware can en-
sure compliance to stated privacy policies [39].

Turning to so-called soft privacy, data processors are
constrained by law and social norms. These constraints
are far from absolute. For example, half of websites in
a 2017 sample violated laws implementing the EU Pri-
vacy Directive by installing cookies before collecting user
consent [40]. This is likely because organizations do not
incur significant costs following data breaches and pri-
vacy violations in terms of either regulatory fines or lost
shareholder value [41]. Nevertheless, firms’ privacy prac-
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tices are somewhat impacted by data processors’ self-
declared privacy policies [42–45] and even the privacy
preferences expressed by users, to which we now turn.

3.2 Privacy Preferences

Interviews [46] and surveys [47, 48] can use natural lan-
guage to understand users’ actual privacy preferences,
which tend to contradict observed behavior [49–51]. Pri-
vacy languages aim to express preferences more pre-
cisely than natural language. For example, APPEL en-
codes user preferences to be compared against P3P poli-
cies [52]. It could not express acceptable practices nor
capture the realities of secondary sharing, which mo-
tivated XPref [53] and P2U [54], respectively. Alterna-
tive languages focus on the usability for developers [55],
enabling audits [56], and providing explanations [57].
Privacy languages have been regularly surveyed by aca-
demics [58–61] but unfortunately there has been little
adoption in practice [59]. This motivates our focus on
signals deployed in the Web ecosystem.

In terms of the first wave of signals, measurements
of DNT and NAI opt-out adoption relied on organiza-
tions disclosing private data sources like Firefox config-
urations [29], opt-out web page visits [5], or the NAI’s
membership [5]. P3P differed in that website adoption
could be quantified via web scraping [1, 20–22, 62, 63]
often sampling via commercial website rankings.

Turning to the second wave, there are no GPC adop-
tion studies because only a draft specification has been
released so far. The TCF ecosystem has been probed
from a range of academic disciplines. Legal methods are
relevant to the semantic content of the signal. For ex-
ample, the purposes for collecting personal data stan-
dardized in the TCF may not be specific enough [64].

User interface research is important because the
TCF does not standardize how the consent decision
is presented to users, which is known to be influen-
tial [10, 65–67]. At least two studies have found that
consent dialogues used to collect consent under the TCF
contain design choices that nudge users towards provid-
ing consent [7, 9].

Web scraping studies have focused on implementa-
tion problems with TCF [64] or the ecosystem of con-
sent management providers (CMP) [13]. These stud-
ies provide measurements of TCF in passing. For ex-
ample, both studies measure TCF vendor registrations
and their claimed purposes for processing data for
TCF 1.x [13, p. 9] and both TCF 1.x and TCF 2.0 [64].
The latter study measures aggregate TCF 2.0 adoption,

whereas we measure and visualise at the vendor level.
Matte et al. [8] show how TCF 1.x adoption varies by
top-level domain (TLD) and identify the most popular
CMPs across the top 1k sites in five EU country code
TLDs. Hils et al. [13] use longitudinal measurements to
show the market growth of six CMPs, highlighting how
fast the ecosystem changes.

3.3 Standards Adoption

We build on a body of work emphasizing the role of in-
stitutions in technical standards adoption. For example,
many vendors initially saw the TCP/IP protocols as a
nuisance [68]. Leiner et al. [68] describe how a series of
“conferences, tutorials, design meetings and workshops”
were organized to educate a generation of vendors and
engineers. The rest is history.

The community was slow to turn to adoption ques-
tions like “What Makes for a Successful Protocol?”,
which was posed by RFC 5218 in 2008. Noting the quali-
tative nature of the resulting research, Nikkah et al. [69]
provide an illuminating statistical analysis of the as-
sociation between technical features of 250 RFCs and
adoption success. Analysing unchanging technical fea-
tures cannot explain why it took two decades before
IPv6 was widely adopted [70, 71]. Economic considera-
tions like the scarcity of IPv4 addresses and the supply
of compatible hardware can help explain when standards
are adopted [72].

Thus, standards should be considered in the context
of wider ecosystems governed by economic incentives.
For example, HTTPS adoption relies on X.509 certifi-
cate infrastructure that was “in a sorry state” in 2011
with many websites relying on shared or invalid certifi-
cates [73]. The situation was worse in the long tail likely
because certificates are costly [74]. Felt et al. [75] re-
port on significant improvements in 2017 and attribute
improvements in the long tail to institutions like Let’s
Encrypt and publishing platforms—we show how similar
economic considerations explain why TCF was adopted.

3.4 Contribution

Our main empirical contribution involves measuring
the adoption of privacy preference signals among web-
sites as of February 2021. Following the demise of P3P
and DNT, the TCF has become dominant and the
Global Privacy Control is still in its infancy. We ex-
plore variables explaining which websites adopt TCF,
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and also longitudinally measure migration to a new ver-
sion (TCF 2.0).

This work differs from existing work by focusing
exclusively on the adoption of privacy preference sig-
nals. We largely ignore the actors [13, 64] and inter-
faces [7, 9, 10] harvesting such signals and instead fo-
cus on which factors (e.g. website type, popularity, and
partners) are associated with TCF adoption. Further,
we are the first to systematize strands of research rang-
ing from works in the late 1990s to post-GDPR studies.
Finally, we provide the first results about migrating be-
tween versions of such signals using our the longitudinal
methodology introduced in [13]. Our previous work fo-
cuses on detecting specific CMPs, some of whom collect
non-TCF signals exclusively or only collect TCF signals
for a subset of customers.

4 Methods

We adopt a mixed approach6 conducting both longi-
tudinal high-frequency measurements to determine his-
toric adoption of TCF and migration between versions,
as well as a large-scale snapshot measurement to ex-
amine site-specific factors that may influence adoption.
Section 4.1 describes our snapshot measurement of the
Tranco 100k toplist. Section 4.2 explains how we use
the Netograph platform to conduct longitudinal high-
frequency measurements.

4.1 Snapshot Measurements

To measure the prevalence of TCF and its different ver-
sions on the web, we crawled the top 100k entries from
the Tranco toplist, which aggregates the ranks from the
lists provided by Alexa, Cisco Umbrella, Majestic, and
Quantcast [76]. Our automated browser crawls were per-
formed in February 2021 using a Tranco toplist from
January 20207. We used this older toplist dated shortly
before publishers transitioned to TCF 2.x in order to
avoid survivorship bias in our observations. Picking a
later toplist would over-sample websites created post-
2020 who are certain to adopt TCF 2.0 and de facto
avoid a migration decision. Our toplist and a current

6 Supplementary Material:
https://github.com/mhils/pets2021-privacy-
preference-signals
7 Available at https://tranco-list.eu/list/K8JW

Table 2. Data sources for figures.

Figure Approach Data Source N CMP

3, 5 Snapshot (Feb. ’21) TrancoToplist 100k all
4 Snapshot (Feb. ’21) TrancoToplist 10k all

6, 9 Longitudinal Netograph 7.2M QC/OT
7 Longitudinal Netograph 5.7M QC
8 Longitudinal Netograph 1.4M OT

10–11 Diff. of vendor list IAB 293 –

Tranco toplist (Tranco id KGNW from Feb. 19th 2021)
overlap by 76.5%.

We first converted the Tranco list of domains to a
list of URLs that can be crawled. For each domain, we
attempted to establish a TLS and a TCP connection
with www.domain and domain on port 443 and 80, re-
spectively. This was repeated three times over a week
to catch temporary service disruptions. We then picked
a configuration that was reachable at least once, pre-
ferring TLS over TCP and secondly www.domain over
domain to construct our crawl URL. An error in the
TLS certificate verification was treated as unreachable.
We used http://domain as a fallback if no connections
were successful.

Our crawling infrastructure was set up in a Euro-
pean university network. Websites were opened using
Google Chrome on Linux with its current default user
agent,6 a desktop resolution of 1024×800, and en-US as
the preferred browser language. All other settings were
set to their defaults: third party cookies are allowed,
the DNT and GPC HTTP headers are not set. The low
desktop resolution and all other settings were chosen to
match that of our longitudinal measurements described
below. Crawls are automated using custom browser in-
strumentation based on the Chrome DevTools Protocol.
Unsuccessful crawls were retried twice within a week.

For every capture, we collected the following data
points using custom browser instrumentation. First,
HTTP headers are stored for all requests and responses.
Second, connection-related metadata such as IP ad-
dresses and TLS certificate chains are logged. Third, for
every domain in a capture, its relation to the main page,
all cookies, IndexedDB, LocalStorage, SessionStorage
and WebSQL records are saved. Fourth, we store the
browser’s DOM tree and record a full-page screenshot
(including scrolling).

https://github.com/mhils/pets2021-privacy-preference-signals
https://github.com/mhils/pets2021-privacy-preference-signals
https://tranco-list.eu/list/K8JW
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4.1.1 TCF Adoption

We automatically detect whether crawled websites im-
plement the TCF. To do this, we wait for the web-
site’s DOMContentLoaded event to fire, then wait an-
other ten seconds, and then inject JavaScript code into
the execution context of the root document. This ap-
proach for CMP detection was already validated by
Matte et al. [8] with more aggressive timeouts. As each
CMP must implement a __cmp() function for TCF 1.x
and __tcfapi() function for TCF 2.x, we check for
the presence of these functions to determine if TCF
is being used. We additionally checked for other signs
of TCF (such as the presence of __tcfapiLocator or
__cmpLocator), but this search did not turn up any new
results. For every TCF API we find, we issue a ping
command to learn more about the implementation. In
the case of TCF 2.x, the PingReturn object (as specified
by the TCF) is expected to contain the CMP’s identifier
(as assigned by the IAB) as well as the CMP/GVL/TCF
versions in use. We also considered that a CMP may
masquerade as a different CMP here. We correlated the
reported CMP ids with contacted domains and did not
find any evidence of misrepresentation.

The adoption of TCF is naturally higher on some
types of websites, such as those who typically display
paid advertisements. To quantify this, we divided the
Tranco 10k toplist into categories with the help of
Symantec Rulespace [77], a categorization database al-
ready used in related work by Sanchez-Rola et al. [78].
We limit our analysis to the Tranco 10k as a non-
negligible share of websites (11.7%) in the top 100k is
not categorized, compared to only 2.4% for the top 10k
websites. We note that recent work has shown that most
categorization services are not fit for detecting special-
ized content or content-blocking [79], but this does not
significantly affect our coarse classification of popular
domains.

To determine the number of third parties present on
each website, we normalized all requested URLs to their
effective second-level domain using Mozilla’s Public Suf-
fix List [80]. This list contains all suffixes under which
internet users can directly register names, including non-
standard “TLDs” such as blogspot.com. We note that
this approach does not account for recent obfuscation
techniques such as CNAME cloaking [81].

We also examined the fraction of websites that ap-
pear to be collecting data versus those showing a cookie
prompt. To determine a lower bound, we took all third-
party domains that were included on at least 1.000 web-
sites in the Tranco 100k (158 domains) and manually

removed shared resources such as content delivery net-
works which may not constitute tracking (12 domains).
We then determined for each website if any of the re-
maining 146 third parties were embedded. For example,
we exclude s3.amazonaws.com as this domain is com-
monly used to serve static assets and not for tracking.
In contrast, almost all remaining domains clearly belong
to ad companies. We include both lists in the supplemen-
tary material.6

Finally, we estimated the prevalence of non-TCF
cookie notices or consent prompts in our snapshot mea-
surements using a simple back-of-the-envelope heuris-
tic. For every capture, we scan the stored copy of the
browser’s final DOM tree for the occurrence of the
phrase “cookie”. The resulting estimates only indicate
orders of magnitude, which is acceptable given they are
not core to any of our results. Rather they are intended
to provide context, such as showing government web-
sites are significantly less likely to present a cookie no-
tice than our other categorizations (see Figure 4). In a
manual inspection of 50 randomly picked domains with
and 50 domains without “cookie” in their DOM tree, we
found five domains that had a “Cookie Notice” link in
their footer (but no dialog) and no false negatives (which
yields a 5% error rate overall). Again, this part of our
analysis is not as rigorous as our other measurements
and is only intended to provide context in Figure 4.

4.2 Longitudinal Measurements

To measure the adoption and transition between TCF
versions longitudinally, we analyze automated browser
crawls recorded by the Netograph web measurement
platform.8 Netograph continuously ingests a live feed of
social media posts, extracts all URLs, and visits them
from crawlers located in EU and US data centers. For
brevity, we refer to [13] for a discussion of the validity
and reliability of this measurement method. Most im-
portantly, HTTP message contents are not retained due
to storage constraints, but a large amount of metadata
is stored, such as the HTTP headers of every request.

Relying on metadata in our longitudinal data means
we have to measure TCF adoption using CMP-specific
indicators. Instead of building quick and dirty heuris-
tics for over 90 CMPs, we focus our efforts on creat-
ing a set of reliable indicators for two of the leading
providers in the consent management market, Quant-

8 https://netograph.io/

https://netograph.io/
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Fig. 3. Share of websites in the Tranco 100k that use a CMP.
OneTrust and Quantcast are the most popular providers, followed
by Sourcepoint, Google, and Liveramp.

cast and OneTrust, which are embedded on 9.7% of web-
sites in the Tranco 10k (Feb. 2021). We manually ana-
lyzed their respective dialog implementations and iden-
tified distinct HTTP requests that indicate the use of
specific TCF versions6. For Quantcast, we detected the
use of TCF for all implementations dating back to May
2018. For OneTrust, we identified the use of TCF 1.x or
TCF 2.0 in their Cookie Consent SDK launched at the
end of 2019 (otSDKStub.js).

From Netograph’s 177 million captures in the social
media dataset, we obtained all 5.7 million captures that
include a Quantcast consent dialog and all 1.4 million
captures that include a OneTrust consent dialog. We
grouped captures by their effective second-level domain
to not overcount repeated measurements with varying
subdomains. Due to Netograph’s sampling strategy, less
popular domains may not be observed for a several days.
We account for this by explicitly marking the period be-
tween the last TCF 1.x and the first TCF 2.0 measure-
ment as an (unobserved) transition phase.

4.2.1 Measuring Vendor Adoption

To track the adoption of TCF 2.0 by AdTech vendors,
we downloaded all previously published lists of vendors
registered as participating in the TCF from the IAB
and verified their accuracy using the Internet Wayback
Machine. These lists include each vendor’s declared pur-
poses for processing personal data. As of Feb. 2021, there
are 215 revisions of this list for TCF 1.x and 78 re-
visions for TCF 2.0. We then inspected these previous
versions for longitudinal changes and measured every in-
stance when an AdTech vendor joins, leaves, or switches
to TCF 2.0. While TCF 2.0 is not backwards compati-
ble from a publisher’s point of view, a vendor that has
declared support for TCF 2.0 may still accept TCF 1.x
consent strings from publishers.

News & Entertainment
Shopping
Technology
Business
Education
Government

0% 100%
No Cookie Prompt No TCF TCF 1.x TCF 2.x

Fig. 4. Share of websites in the Tranco 10k with a (TCF) cookie
prompt. For reference, marks the share of websites which do not
embed popular third parties.

5 Results

Section 5.1 focuses on the relationship between website
characteristics and TCF adoption mainly using snap-
shot measurements. Section 5.2 explores how vendors
and websites migrated to TCF 2.0 using our longitudi-
nal approach. Table 2 maps each figure to the approach,
data source, and covered CMPs. We provide the under-
lying data in the supplementary material.6

5.1 TCF Adoption

We first explore how TCF adoption varies by the
popularity and category of website. Figure 3 shows
that TCF is more prevalent among popular websites
(e.g the Tranco 5k) and that adoption is relatively con-
sistent through the Tranco 100k. Websites embedding
OneTrust comprise a greater fraction of TCF implemen-
tations for more popular sites (Tranco 20k), whereas
Quantcast embeds are more evenly distributed. Quant-
cast’s free self-service solution may be better suited to
less popular sites than OneTrust’s, which requires an in-
teraction with a sales associate. By offering a free and
usable solution, Quantcast is playing a similar role to
Let’s Encrypt with HTTPS adoption [75].

Figure 4 shows that TCF adoption in the Tranco top
10k is highest among websites classified as News & En-
tertainment and is lowest among Government websites.
The grey bars provide a relatively coarse indication (see
the previous section) of what percentage of each cate-
gory displays a cookie prompts. Few Government web-
sites display prompts, which helps to explain the low
TCF adoption. Almost half of all cookie prompts on
News & Entertainment sites implement TCF, whereas
this fraction is less than 15% for each of the other five
even though the first five categories have a similar frac-
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Fig. 6. Google did not participate in TCF 1.x and only joined
TCF 2.0. Their partners’ websites were far more likely to adopt
TCF 2.x but not TCF 1.x.

tion of websites showing cookie prompts. This motivates
exploring alternative explanations.

We explored whether web relationships can help ex-
plain varying adoption rates. Figure 5 shows that TCF
adoption increases with the number of embedded third
parties. This result could be caused by third parties in-
fluencing partner websites to adopt TCF, but it could
also be mere correlation. Websites with business mod-
els based on personal data may be both more likely to
embed many third parties and also more likely to adopt
the TCF.

Causality could be probed via a natural experiment
in which websites were randomly assigned a partner that
exerts influence. It can be argued the decision of Google
to join TCF 2.0 but not TCF 1.x provides such an oppor-
tunity. By comparing the relative adoption of TCF 1.x
and TCF 2.0 among websites which embed Google with
those who do not, we can isolate the effect on TCF
adoption of partnering with Google. If partnering with
Google influences websites’ decisions, we would expect
a higher fraction of such websites to adopt TCF 2.0 but
not TCF 1.x as compared to the same fraction among
non-partners. Indeed, Figure 6 shows that for websites
supporting TCF 2.x and not using Google Ads, 60%
had already joined TCF 1.x, whereas this applies to
only 45% of the websites using Google Ads. We cannot
tell whether the influence is active (e.g. vendor X only
contracts with TCF websites) or passive (e.g. website Y
finds it easier to adopt the same standard as their part-
ners).

To shed more light on these relationships, we run
logistic regressions with TCF 2.0 adoption as the depen-
dent variable. For each website, we have the following
explanatory variables: a binary dummy for the presence
of Google ads β1 (from Figure 6), log of the number
of embedded third parties β2

9 (from Figure 5), and the
website category (from Figure 4). We include a full re-
gression table in the Appendix (Table A.1).

As we would expect from the figures, the first re-
gression shows β1 and β2 have a positive relationship
with adoption:

y ≈ −4.6∗∗∗ + 0.15∗∗∗β1 + 0.77∗∗∗β2 (1)

and both effects are statistically significant at the p =
0.01 level. This means each variable adds additional ex-
planatory power.

Model 2 adds a fixed effect for each website category
and this boosts the Pseduo-R2 from 0.08 to 0.13 relative
to Model 1. The coefficient for News & Entertainment is
positive and highly significant. The high adoption rate
among such websites exceeds what could be explained
by β1 and β2 alone.

Finally, Model 3 explores the interaction effect be-
tween β1 and β2. The sign of β1 ∗ β2 means that the
relationships are sub-additive—the increased likelihood
of adoption from increasing both variables is less than
the sum of increasing each variable independently. Al-
though these regressions have shown that website cate-
gory and web relationships help explain TCF 2.0 adop-
tion rates, the Pseduo-R2 shows a lot of the variance re-
mains unexplained. This could be down to our relatively
crude statistical design aiming to directly link variables
to organisation-level outcomes. A recent systematization
of knowledge [41] highlights similar difficulties explain-
ing cybersecurity outcomes via manifest variables and
suggests latent variables inferred via reflexive indicators
represent a better way forward.

5.2 TCF 2.0 Migration

The release of TCF 2.0 provides an opportunity to ob-
serve how actively both vendors and websites adopt
these signals.

9 We count the first party domain so that β2 ≥ 0.
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Fig. 7. TCF Adoption by Quantcast customers. Note that the y-
axis differs from OneTrust; Quantcast started with a significantly
larger number of TCF 1.x customers.
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Fig. 8. TCF Adoption by OneTrust customers. Most TCF 1.x
customers switched to TCF 2.x around August 2020. Since July
2020, OneTrust gained a large number of new customers which
directly started using TCF 2.x. Transition marks the unobserved
interval during which a switch from TCF 1.x to 2.x occurred.

5.2.1 Websites

Quantcast have the most customers embedding TCF,
claim to be a driving force behind its development, and
launched a new free TCF 2.0 product in May 2020. Yet
Figure 7 shows how a large share of their customers had
not adopted the new version when TCF 1.x support by
the IAB ended on August 15th. Approaching the IAB’s
deadline, Quantcast went as far as embedding a promi-
nent deprecation notice visible to all website visitors into
its TCF 1.x consent dialogs (see Figure A.1). Quantcast
lost customers while enforcing the switch over, which
can be seen in the fall (6%) in old customers who had
implemented TCF 1.x from the start of August to end
of September. Quantcast’s total customers continue to
grow due to new customers who directly adopt TCF 2.0
(the yellow fraction), but the fall in old customers can
be seen in the decreasing total of the green and blue
lines in Figure 7.

In contrast, OneTrust lost very few customers in
transition, which can be seen in the bright green area
in Figure 8. OneTrust acquired many new customers
from June 2020 and the majority of these immediately
adopted TCF 2.0. As a result, OneTrust had a higher
fraction of customer implementing TCF 2.0 than Quant-
cast by the end of September 2020 even though Quant-
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Fig. 9. Share of websites in each segment of the Tranco toplist
that use the TCF and have upgraded to version 2.x.
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Fig. 10. TCF Adoption by ad-tech vendors.

cast pursued a more assertive transition strategy. How-
ever, Quantcast remain comfortably ahead of OneTrust
in terms of number of websites embedding TCF (al-
though OneTrust also implements a significant number
of non-TCF dialogs [13]).

Returning to the role of top list position, Figure 9
shows that websites in the Tranco top 100 began experi-
menting with TCF 2.0 migration in the first half of 2020.
The experimentation can be seen in how migration went
down at various points. The majority had permanently
transitioned by July 2020. This suggests the CMP’s an-
nouncement about ending support for TCF 1.x were suf-
ficient to lead to migration for popular websites. How-
ever, the less popular websites were far less responsive.

5.2.2 Vendors

The majority of early adopters were vendors rather than
websites. By the start of 2020, more vendors (84) had
switched to TCF 2.0 than there were websites (48) em-
bedding either version of TCF using OneTrust’s Con-
sent SDK. Figure 10 shows vendors appear to follow an
S-growth pattern with slow uptake, a relatively small
window in which the majority adopt, and a stubborn
tail. The number of vendors implementing each version
of TCF was relatively consistent through to Septem-
ber 2020, which suggests the upgraded TCF was not a
major draw for vendors unlike for websites embedding
Google Ads (see Figure 6). The growth rate increased



Privacy Preference Signals: Past, Present and Future 260

not in
vendor list

not claimed

consent

legitimate
interest

not in
vendor list

not claimed

consent

TCF 1.x TCF 2.x

Store and/or access information on a device

Fig. 11. Removing the option to claim legitimate interest for pur-
pose 1 of the TCF (see Section 2) led more vendors to collect
consent for accessing information such as advertising identifiers
under TCF 2.x. New vendors that did not adopt TCF 1.x (not in
vendor list) mostly seek consent as well.

from September 2020 for reasons we do not know, but
this is much smaller than the post-GDPR growth.

Comparing time to adoption and migration between
vendors and websites speaks to the question of which
constituency is driving TCF adoption. Figure 10 shows
most vendors had already adopted TCF 1.x by the time
GDPR came into effect, whereas OneTrust had no TCF
product and only a fraction of Quantcast’s 2020 cus-
tomers were implementing TCF. The same pattern holds
for TCF 2.0 migration. This is consistent with ven-
dors providing an incentive for partner websites towards
adoption. While we cannot claim causality, this evidence
at least makes it unlikely that websites pushed vendors
towards adoption.

5.2.3 Implications

Thus far we have focused on adoption and migration
without considering the details or privacy implications
of the switch. We illustrate the need for future work by
measuring the effect of migrating to TCF 2.0 on the
legal basis by which vendors claimed the right to pro-
cess personal data. We recount some of the background
from Section 2. Both versions of TCF define purposes
for processing personal data. For each purpose, vendors
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Fig. 12. In migrating from TCF 1.x to TCF 2.x, a large portion of
vendors now can claim to be flexible regarding the legal basis; i.e.
they will perform the processing based on consent or a legitimate
interest.

implementing TCF 1.x can declare either; they do not
use personal data for that purpose, need to first obtain
consent before doing so, or claim they have a legitimate
interest in doing so (which users cannot dispute).

The IAB removed the option to claim a legitimate
interest in storing and/or accessing information on a de-
vice under TCF 2.x. Figure 11 shows how this shifted
the majority of vendors who were previously claiming le-
gitimate interest towards asking for consent. This high-
lights how standards setters can influence how privacy
preferences are communicated at scale by removing the
legally questionable options.

Updated standards can also add complexity that
makes analyzing impacts difficult to evaluate. For ex-
ample, the purpose “ad selection, delivery and report-
ing” was renamed and split into multiple purposes in
TCF 2.x. Additionally, vendors had the additional op-
tion to declare that they are flexible regarding the legal
basis; they can perform the processing based on consent
or a legitimate interest. Figure 12 shows how this led to a
decrease in both the number claiming legitimate interest
and also the number collecting consent, which means its
unclear whether users lost or gained control under the
new standard. These results show just one way in which
the design of standards impacts user privacy.
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6 Discussion

This section discusses the past, present (as established
in the previous section) and future of privacy preference
signals.

6.1 Past

Mark Twain’s quip that “history doesn’t repeat itself,
but it often rhymes” is also true of privacy preference
signals, and identifying these rhymes helps to reason
about the present and future. For example, Table 1
shows that signals proposed by AdTech (NAI and TCF)
collect user preferences via a web page, whereas the
signals proposed by privacy advocates are collected by
a browser. As a result, browsers immediately support
AdTech signals and could only stop them by actively
preventing web content rendering, meanwhile AdTech
vendors must actively make the decision to support P3P,
DNT and GPC. Consequently, standards developed by
AdTech industry bodies have been adopted by browsers
by default, whereas AdTech vendors can delay adoption
and thus undermine the standard.

Privacy preference signals also vary in terms of the
signal’s scope, permanence, and how decision volume
scales with web usage. Table 1 highlights how privacy
preferences are collected in a single interaction under
P3P and DNT/GPC and the browser assumes that this
decision applies to the entire Web. Consequently, the
user makes a single decision that has long-term signaling
implications. In contrast, the NAI’s opt-out cookies only
apply to specific forms of tracking [5] and only last until
the user loses the cookie or the vendor sets a new one.

Scope and permanence are even narrower under the
TCF, which contains asymmetries based on the prefer-
ences expressed. The decision not to provide consent10

only applies to a specific website and only last until
the website re-requests consent, whereas positive con-
sent signals may apply to multiple websites [8, 14] and
re-requests are less frequent. Table 1 shows history re-
peating itself in that privacy advocates support a signal
that imposes a low decision load on users (P3P, DNT
and GPC), whereas AdTech vendors support imperma-
nent signals with a narrow application that force a de-
cision burden on users (NAI and TCF).

10 Notably, the TCF framework does not even mention the pos-
sibility a user can “revoke” a decision [31].

Turning to the forum in which signals were de-
signed, we have seen a movement away from develop-
ment via consensus-based working groups committed
to open standards. Initially all parties met in working
groups coordinated by the W3C but the clashing politi-
cal objectives led to splintering. For example, the Digital
Advertising Alliance withdrew from the DNT working
group in 2012 citing the lack of progress [82].

The second wave of privacy preference signals were
developed outside of open, consensus-based groups.
TCF was developed via a working group listing 139
participating organizations [83] for which the Interac-
tive Advertising Bureau controlled membership. The re-
sulting TCF signal is closed in that both websites and
vendors need the IAB’s permission to implement it, al-
though this authority is delegated to consent manage-
ment providers. GPC is developed more openly, but lists
only 17 supporting organizations with no formal forum
to coordinate development. For comparison, the P3P 1.0
specification lists participants from 56 organizations, the
DNT working group contained 110 members [82], and
the NAI for a long time only included “a fraction of the
industry” [5] and now counts 91 members.

In retreating to less consensus-based processes, the
Global Privacy Control and the Interactive Advertising
Bureau follow (in more than just initials) the governance
model of the Internet Advisory Board, which was cre-
ated in 1984 to incorporate stakeholders beyond Vint
Cerf’s “kitchen cabinet” [84, p. 51]:

“The IAB cannot be characterized as a democracy, since no-
body voted and the Board only let in the people they wanted
. . . Democracy, with its competing factions and its political
compromises, was not an appropriate political model for the
IAB or the Internet.”

The same could be true of privacy standards given over
10 years was spent drafting P3P and DNT at the W3C.
It should be noted that the Internet’s IAB later moved
towards more open governance by creating and transfer-
ring power to the IETF [84]. It seems unlikely AdTech’s
IAB will voluntarily follow suit, which raises the ques-
tion of regulatory involvement.

The history of privacy preference signals is inter-
twined with regulation. Do Not Track began as a letter
to congress and was re-invigorated by the FTC chairman
going off script to mention it years later [85]. The NAI’s
opt-out cookies resulted from an agreement with the
FTC to self-regulate [5]. The IAB created the TCF in
response to the GDPR, and GPC quotes “Do Not Sell”
directly from the CCPA. However, none of these signals
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are mandated by law, which means they could become
de-facto standards by achieving widespread adoption.

A final lesson from history is that for all the will-
ingness of browser developers to attend working groups,
they are reluctant to support privacy preference signals
if doing so risks impacting user experience. For exam-
ple, Microsoft set allow-all cookies as the default for
sites who misconfigure P3P presumably because block-
ing cookies may have affected those websites. This de-
cision on defaults was widely exploited; a misconfigu-
ration described on a Microsoft support page was de-
tected down to the exact typo in 2 756 sites [1]. Simi-
larly, DNT was adopted without sufficient enforcement
from browsers, which does little to improve user privacy
beyond shifting the blame to AdTech vendors for not
respecting the signal.

More encouragingly, history also shows privacy ad-
vocates can subvert systems with relatively low-effort
browser add-ons. For example, advertising networks ex-
pected every user to visit their individual websites to
set opt-out cookies [5]. In reality, the TACO browser
extension allowed one individual to maintain and share
an updated list of cookies with thousands of users [85].
Similarly, the Privacy Bird allegedly helped boost P3P
adoption by directly making the user aware of websites’
adoption decisions. These two examples point to the
importance of designing privacy enhancing technologies
that allow users to send low-effort privacy preference
signals. This becomes especially urgent given the state
of the present, to which we now turn.

6.2 Present

Having surveyed a history in which P3P and DNT were
eventually deprecated and NAI membership remains at
less than one hundred vendors, our measurements pro-
vide an updated picture as of February 2021. TCF is
the dominant signal as the GPC was released as an un-
official draft in October 2020 and only six websites in
the Tranco top 100k now implement it. Given signals
must be adopted by both sender and recipient, we now
discuss adoption among each stakeholder.

Websites are arguably the most important stake-
holder for the success of TCF since only websites can
collect consent signals [14]. We discovered 7,582 TCF
implementations in the top 100k. A crude comparison
can be drawn with a 2010 sample detecting 19.8k P3P
implementations [1]. Turning to estimates that reference
a toplist, TCF is more prevalent among both the top 5k
(13%) and top 100k (7%) than historic P3P measure-

ments (8% [21] and 2% [22] respectively). Such com-
parisons are limited by changes in the Web and also
research methods; P3P adoption studies relied on com-
mercial rankings, whereas we used a top list designed to
be stable over time for research purposes. This should
make our measurement more comparable to future work.

Turning to adoption among AdTech vendors, ven-
dors were early adopters of TCF and also the first to
migrate to TCF 2.0 (see Figure 9). By October 2020,
more than 600 vendors had adopted TCF. For compari-
son, just 75 vendors were offering opt-out cookies in June
2010 of which only 11 were also implementing P3P [1].
Although AdTech vendors drafted the TCF specifica-
tion, adoption was not inevitable given the NAI had no
more than 6 full members from 2001–2007 [5]. Thus,
TCF is the first privacy preference signal to achieve
widespread adoption among AdTech vendors.

Our results also speak to why websites are adopting
TCF. Numerous pieces of evidence suggest vendors in-
centivize partner websites to adopt TCF (see Figure 3,
Figure 5 and especially Figure 6). An interesting com-
parision can be made with P3P. Websites embedding
more third-party domains are more likely to adopt TCF
but less likely to adopt P3P [62, p. 292]. This supports
the common sense intuition that TCF was designed to
perpetuate privacy eroding business models.

More generally, we provide evidence in support of
the general finding that private firms deploy economic
resources to ensure the adoption of standards [86]. Fig-
ure 3 shows how Quantcast’s free consent management
solution supported TCF adoption, particularly among
less popular sites. The role of institutional support is
crucial even to open standards, such as the organiza-
tion of TCP/IP education events [68] and subsidization
of free certificates via Let’s Encrypt to support HTTPS
adoption [75]. In terms of migrating to updated stan-
dards, we show how Quantcast boosted TCF 2.0 adop-
tion by adding prominent deprecation messages into
consent dialogs. Thus, Figure 7 suggests that IAB pol-
icy (TCF 1.x consent strings becoming invalid) led to
Quantcast losing customers.

Finally, we can quantify the relative decision volume
of users relative to vendors. Quantcast boast of process-
ing 25 billion consent signals [87], whereas we observed
just 2,103 changes in vendor purposes since 2018. This
means users have made at least 11 million times more
decisions than vendors since TCF was launched. At 3.2s
per decision [13], this means users have spent at least
2,500 years since 2018 expressing their privacy prefer-
ences through Quantcast dialogs alone.
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6.3 Future
Given this startling time investment in sending TCF sig-
nals, it is worth considering what the future holds for
pro-privacy signals. Releasing the GPC specification in
an unofficial draft [30] over two years after GDPR came
into effect and ten months after CCPA provided TCF
with a first-mover advantage. However, we have few con-
cerns that privacy aware users will adopt the GPC in the
future. Pro-privacy browsers like Firefox supported the
design, additionally the Brave browser11 and add-ons
like Privacy Badger12 already turn the GPC signal on
by default.

We are less optimistic that the intended recipients,
namely AdTech vendors, will adopt the GPC signal.
Much like with DNT [4], AdTech vendors are likely to
claim that on-as-default makes the signal meaningless.
However, privacy advocates can now rely on privacy laws
like the CCPA, which was not available when DNT was
first adopted by browsers.

Fighting legal cases to establish a favorable prece-
dent is a likely strategy. One of the GPC’s participating
organizations, Brave Browser, has already lodged com-
plaints under the GDPR against rival browsers [88], na-
tional regulators [89], and even the IAB Europe’s web-
site [90]. We anticipate similar actions under the CCPA,
especially given California’s attorney general tweeted
about the GPC in January 202113. Multiple publish-
ers adopting the same standard and out-sourcing imple-
mentation to dominant CMPs creates the potential for
auditing at scale [p. 10][13], as evidenced by an NGO’s
threat of automated complaints against publishers14.

Regulatory interventions may begin to undermine
the adoption of TCF. For example, the Danish regula-
tor ruled that the Danish Meteorological Institute could
not claim a legitimate interest in collecting personal
data [91]. Possibly preempting such a ruling, the option
to declare a legitimate interest in storing and/or access-
ing information on a device was removed in TCF 2.0 (see
Figure 11). The case also ruled that opt-out must be as
easy as opt-in. Many websites collecting TCF signals do
not follow this ruling [9, 13]. The leading provider of
TCF dialogs distances itself from ambiguity in privacy
law [92] by making the design choice a configuration that

11 https://brave.com/global-privacy-control/
12 https://www.eff.org/gpc-privacy-badger
13 https://digiday.com/media/why-a-tweet-from-californias-
ag-about-a-global-privacy-tool-has-companies-scrambling/
14 https://noyb.eu/en/noyb-aims-end-cookie-banner-terror-
and-issues-more-500-gdpr-complaints

websites select, with one CMP warning “with great cus-
tomizability comes great responsibility” [13]. This indi-
cates that AdTech vendors perceive liability risk related
to TCF.

This discussion raises the question of what happens
when two signals co-exist. Whereas standards usually
have a definitive winner, such as DVD over DIVX or
VHS over Betamax [93], GPC and TCF signals can be
sent simultaneously because they are defined on different
network layers (see Table 1). Encouragingly, one could
imagine a future in which browsers exploit control over
what is rendered to the user to block dialogs from load-
ing, whereas AdTech cannot stop browsers from send-
ing GPC headers as part of HTTP requests. Signals
co-existing is more troublesome when it comes to in-
terpretation. A TCF opt-in signal could be sent in an
HTTP request with GPC opt-out headers. We leave it
to legal scholars and future court cases to ponder which
signal has priority.

Arguably this back and forth over privacy prefer-
ence signals has been a distraction for over 20 years.
Regardless of the adoption of privacy preference signals,
there is little basis to trust that expressed preferences
will be respected. In terms of what we can observe: ven-
dors ignoring the DNT signal was public policy [4], P3P
was intentionally misconfigured by websites [1], TCF
consent signals misreport the user’s expressed prefer-
ences [8], tracking remains ubiquitous in a post-GDPR
world [78] and there is growing evidence firms use dark
patterns to manipulate users’ expressed preferences [94–
96]. More fundamentally, there is no way of auditing
whether AdTech vendors respect expressed signals.

7 Conclusion
Privacy preference signals must be adopted by both
senders (users) and recipients (AdTech vendors) who
have differing requirements. Vendors want to receive
positive consent signals in order to comply with pri-
vacy laws, and prefer not to receive negative signals that
undermine the vendor’s business model. This reason-
ing helps to explain why hundreds of vendors adopted
TCF [13, 64], which represents a historical anomaly
given vendors reluctance to adopt P3P [1], DNT [28]
and NAI opt-out cookies [5]. Our evidence that vendors
were early adopters of TCF 2.0 (Figure 9) underlies the
AdTech vendors’ commitment to receiving these signals.

History reveals two approaches to collecting users’
privacy preferences that are represented in the signal,
namely via the user agent (as in P3P and DNT) or a
webpage (as in NAI opt-out). As with the previous sig-

https://brave.com/global-privacy-control/
https://www.eff.org/gpc-privacy-badger
https://digiday.com/media/why-a-tweet-from-californias-ag-about-a-global-privacy-tool-has-companies-scrambling/
https://digiday.com/media/why-a-tweet-from-californias-ag-about-a-global-privacy-tool-has-companies-scrambling/
https://noyb.eu/en/noyb-aims-end-cookie-banner-terror-and-issues-more-500-gdpr-complaints
https://noyb.eu/en/noyb-aims-end-cookie-banner-terror-and-issues-more-500-gdpr-complaints
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nal designed by AdTech [5], TCF collects user prefer-
ences via dialogs embedded in a web page but this re-
quires adoption among websites. Our results show web-
site adoption varies from 5% to 12% across sections of
the Tranco top 100k (Figure 3) and is most prevalent
among News & Entertainment websites (Figure 4). We
also show that the presence of Google Ads (Figure 6)
and the number of embedded parties (Figure 5) are both
associated with greater TCF adoption rates.

Adoption is further supported by AdTech actors like
Quantcast lowering the cost of adopting TCF by pro-
viding free dialogs marketed as compliant with GDPR
(although legality has been called into question [8, 9]).
The increase in adoption following May 2018, which can
be seen in Figure 7, shows how AdTech capitalised on
the passage of the GDPR. This means AdTech firms
now not only draft the TCF, but also actively manage
and configure it. This market power facilitated the swift
transition to TCF 2.0 (see Figure 8 and Figure 7), which
is remarkable when contrasted against the time to mi-
grate to HTTPS [75] or IPv6 [72].

Thus, our measurements of the present reveal TCF
is now the dominant privacy preference signal. Further,
its adoption among both senders and recipients is a
significant historical development (see Table 1). Adop-
tion among recipients is unsurprising given the working
group who designed TCF was controlled by the Inter-
active Advertising Bureau and contained no privacy ad-
vocates. However, websites appear to have sided with
their business partners over users. Consequently, users
are forced to send signals via time consuming dialogs.
Our back-of-the-envelope calculation on p. 262 suggests
over two thousand years of user time has been spent on
sending TCF consent signals since 2018. All stakehold-
ers should ask to what extent the TCF’s fine-grained,
site-by-site signal clarifying privacy preferences has ma-
terially changed how recipients process personal data?
A second question is whether a revised signal would lead
to better outcomes, or can the problems only be resolved
by the technical constraints of hard privacy?
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Table A.1. Regression Coefficients for TCF 2.x Adoption

Dependent variable:

TCF 2.x Adoption

(1) (2) (3)

Google Ads 0.150∗∗∗ 0.151∗∗∗ 3.502∗∗∗

(0.043) (0.044) (0.140)

log(# contacted SLDs) 0.765∗∗∗ 0.596∗∗∗ 1.787∗∗∗

(0.020) (0.020) (0.053)

Category: Business −0.436∗∗∗ −0.430∗∗∗

(0.055) (0.055)

Category: Education −1.384∗∗∗ −1.385∗∗∗

(0.098) (0.098)

Category: Government −2.479∗∗∗ −2.506∗∗∗

(0.303) (0.304)

Category: News & Entertainment 0.954∗∗∗ 0.994∗∗∗

(0.031) (0.031)

Category: Shopping −0.885∗∗∗ −0.826∗∗∗

(0.067) (0.067)

Category: Technology −0.487∗∗∗ −0.469∗∗∗

(0.055) (0.055)

Google Ads * log(# contacted SLDs) −1.517∗∗∗

(0.058)

Constant −4.614∗∗∗ −4.189∗∗∗ −6.558∗∗∗

(0.045) (0.048) (0.121)

Observations 92,001 82,326 82,326
McFadden’s Pseudo-R2 0.08 0.13 0.14

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2. Summary Statistics

Variable N Min Mean Max

TCF 2.x Adoption 92,475 0 0.072 1
Google Ads 92,538 0 0.570 1
log(# contacted SLDs) 92,538 0 2.189 5.004
Category: Business 88,269 0 0.114 1
Category: Education 88,269 0 0.078 1
Category: Government 88,269 0 0.034 1
Category: News & Entertainment 88,269 0 0.210 1
Category: Shopping 88,269 0 0.086 1
Category: Technology 88,269 0 0.132 1
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Fig. A.1. Starting August 5th 2020, Quantcast added a prominent deprecation message at the bottom of all its customers’ TCF 1.x
consent dialogs, prompting them to switch to TCF 2.0.
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