
Proceedings on Privacy Enhancing Technologies ; 2021 (4):270–290

Felix Engelmann*, Lukas Müller, Andreas Peter, Frank Kargl, and Christoph Bösch

SwapCT: Swap Confidential Transactions for
Privacy-Preserving Multi-Token Exchanges
Abstract: Decentralized token exchanges allow for se-
cure trading of tokens without a trusted third party.
However, decentralization is mostly achieved at the ex-
pense of transaction privacy. For a fair exchange, trans-
actions must remain private to hide the participants
and volumes while maintaining the possibility for non-
interactive execution of trades. In this paper we present
a swap confidential transaction system (SwapCT) which
is related to ring confidential transactions (e.g. used
in Monero) but supports multiple token types to trade
among and enables secure, partial transactions for non-
interactive swaps. We prove that SwapCT is secure in
a strict, formal model and present its efficient perfor-
mance in a prototype implementation with logarithmic
signature sizes for large anonymity sets. For our con-
struction we design an aggregatable signature scheme
which might be of independent interest. Our SwapCT
system thereby enables a secure and private exchange
for tokens without a trusted third party.

Keywords: atomic swap, exchange, typed tokens

DOI 10.2478/popets-2021-0070
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

1 Introduction
Crypto-currencies are primarily used to trade tokens.
Either they are traded between systems or within
one environment, such as within Ethereum with its
ERC20 [19] token standard. The thousands of ERC20
tokens with multiple billions USD of market capitaliza-

*Corresponding Author: Felix Engelmann: Aarhus
University, Denmark, E-mail: felix.engelmann@cs.au.dk or
fe-research@nlogn.org
Lukas Müller: Ulm University, Germany, E-mail:
lukas.mueller@alumni.uni-ulm.de
Andreas Peter: University of Twente, The Netherlands, E-
mail: a.peter@utwente.nl
Frank Kargl: Ulm University, Germany, E-mail:
frank.kargl@uni-ulm.de
Christoph Bösch: Ulm University, Germany, E-mail:
christoph.boesch@uni-ulm.de

tion and similar daily trading volumes1 are used to trade
e.g. reputation points, lottery tickets, shares of com-
panies, fiat currency, precious metals and many more.
While the token’s security is backed by a distributed
ledger (DLT) sometimes called (block)chain, most are
traded on centralized exchanges which operate like stock
exchanges. These central exchanges provide the required
privacy for fair trading such that participants have no
insight into a detailed order book or trades of competi-
tors. Unfortunately, users have to trust the exchange op-
erators which are susceptible to malicious activity like
theft [6] or hacks for data exfiltration. Due to these
reasons, self-governing exchanges based on consensus
in a distributed ledger system are beneficial. There are
plenty of smart contract based decentralized exchanges,
however, to allow public auditing, they typically reveal
details about the performed trades. With all bids and of-
fers persisted on the DLT, the exchange is no longer pri-
vate and any malicious participant in the system has the
advantage of detailed insights into the order book and
upcoming offers in the pool of unconfirmed DLT trans-
actions (mempool). This enables e.g. front-running [10]
attacks, where a miner who notices a large bid in the
mempool may just persist an order of themselves first
and then profit from selling it later to the prospective
buyer. The underlying issues are persisted, public offers
(smart contract calls) when ordered by an untrusted
party.

Many applications which build on top of a token sys-
tem require an efficient and fair exchange mechanism.
Exchange happens between tokens of different types and
between a type and the base currency to initially buy
and sell the tokens or pay fees. Additionally, a large part
of Ethereum’s success is attributed to the possibility of
creating arbitrary tokens independent of the base cur-
rency. However, all token types inherit the security of
the whole Ethereum network, which is not the case for
tokens deployed and maintained on their own ledger.
We illustrate the benefits of a single DLT with swaps
between types with a concrete example: a DLT-based li-
cense management system for 3D-printed objects where
everyone can create new 3D object designs and license

1 https://coinmarketcap.com/tokens/

SwapCT 271

them to others for printing. Such transfers of licenses are
represented by transactions on the DLT and each object
type is represented by a separate token type. Introduc-
ing a new object design, which happens frequently, in-
volves introducing a new token type. Setting up and
maintaining a separate chain for each token type gen-
erates a much higher overhead than a single multi type
chain. In addition to performance, this example demon-
strates our privacy and confidentiality requirements. If
information about company A licensing a certain num-
ber of prints for a specific design is available on the
DLT, then this means a leak of crucial information to
competitors. Even the meta-data from the existence of
private transactions on a chain dedicated for one design
inevitably leaks information about business activities of
company A. Therefore, we require a DLT with support
for user anonymity and confidentiality for transactions
that hide the token type and whether a transaction is a
regular transfer or a swap.

To realize a privacy friendly multi-token system
which provides similar operations as ERC20 tokens, its
functionality has to include registration of new token
types for any user and trading between all types. Most
applications using ERC20 tokens, i.e. those pegged to
fiat currency, rely only on these features and there-
fore can seamlessly switch to a privacy-preserving multi-
token system. Trading needs to be 1. private, such that
only selected parties have insight into what is traded
and 2. fair, i.e. no malicious party can abort with a
profit. For this, we identify the following six proper-
ties required by a privacy-preserving DLT transaction
system: Sender and receiver anonymity (SRA) en-
sures that senders of funds should remain hidden to
all parties and that recipients are known only to the
sender of a transaction. This enables basic user privacy
in transactions. Confidential amounts (COA) hide
the amounts transferred and thereby prevent heuristic
deanonymization of rational transactors. Confidential
types (COT) support independent token types within
one transaction system and hide the type to provide a
single joint anonymity set over all types. Decentral-
ized setup (DSE) ensures that the security and privacy
of the system does not rely on a trusted party or cere-
mony. This increases the trust for a truly decentralized
system. Non-interactive transactions (NIT) guaran-
tee that transactions consist of a single, non-interactive
broadcast message. Any direct communication between
senders and receivers decreases the sender anonymity
as the receiver learns the network identity of the sender
through meta-data. Decentralized exchanges (DEX)
should be used to trade tokens of different types. Trad-

Table 1. Overview of systems and their supported properties.
Partial support of a feature is noted with (X).

SRA COA COT DSE NIT DEX
MimbleWimble [12] X X[22] X (X)

Confidential Assets [17] X X X X
Stellar [2] X X X X
Zcash [18] X X X[13] X (X[13])

X-Chain Swap [8] X X X X (X)
Monero [1] X X X X

Omniring [15] X X X X

Our SwapCT X X X X X X

ing is achieved by supporting transactions which ex-
change the ownership of tokens of different types. As
they atomically swap the ownership of tokens, we name
them atomic swap transactions. To satisfy the NIT prop-
erty, atomic swaps need to be non-interactive and work
without a trusted third party. By non-interactive we
mean to allow a single message only from the offering
party to e.g. an exchange. This is analogous to a classical
exchange, where a party submits a bid to an exchange
and then forgets about it until it is fulfilled. Our non-
interactivity especially excludes the offering party to ac-
tively participate in the merging of offers. For sender
anonymity, swap transactions hide the number of par-
ticipants resulting in the indistinguishability of simple
transfers and swaps providing additional privacy by a
joint anonymity set.

A transaction system with all the above properties
provides a privacy friendly alternative for many existing
applications currently based on public tokens. Addition-
ally, new platforms with strong privacy requirements, as
described in the above-mentioned licensing example, are
easily developed on top of such a private system. Table
1 provides an overview of existing systems with support
for a large subset of our required properties. We describe
the details on these systems in Section 2.

Our goal is to design a transaction system, that sat-
isfies all six aforementioned properties. While Omniring
provides a thorough security definition for a single to-
ken system, there exists no formal description of a multi
token system with swap transactions. Regarding a con-
struction, the restriction on communication (NIT) re-
quires participants of a swap to prepare a partial trans-
action signature which is mergeable into a transaction
by an untrusted party, perfectly hiding the contribu-
tors of the final signature. To our knowledge, there is
no signature scheme supporting this merge operation.
Therefore, we propose a novel aggregatable signature
scheme for this purpose.

To address all six properties combined for a decen-
tralized exchange and to overcome the drawbacks of ex-

SwapCT 272

isting systems, we propose Swap Confidential Transac-
tions (SwapCT), a decentralized and privacy-preserving
transactions system for multiple token types support-
ing non-interactive, atomic swaps. SwapCT is based on
unspent transaction outputs (UTXO) where tokens are
stored in transaction outputs and spent by anonymously
referencing these. All referenced outputs become invalid
to prevent double spending. We make use of primitives
proven efficient and secure in Monero [1] and Omnir-
ing [15] (DSE) such as logarithmically sized, linkable ring
signatures for sender anonymity and one-time addresses
for receiver anonymity (SRA). Instead of Pedersen com-
mitments for amounts, we integrate typed homomorphic
commitments similar to confidential assets to hide the
amounts (COA) and types (COT). To prove conservation
of types and amounts combined, we design an efficient
zero-knowledge proof based on Bulletproofs [4].

For atomic swap transactions that are indistinguish-
able from simple transactions, we propose a transaction
structure which uses our new aggregatable signature
scheme. For such an atomic swap transaction, senders
create offers which capture the intent to spend some
tokens in return for different types of tokens. Offers
provide sender and receiver anonymity and are not per-
sisted on a DLT. For additional sender privacy, offers are
mergeable non-interactively from original senders (NIT).
An atomic swap is performed by merging two matching
offers. If the offers do not match exactly, a third offer,
prepared by the merger with their own inputs, is added.
Merged offers are persisted as a single transaction, in-
distinguishable from regular transactions (DEX).
Our contributions can be summarized as follows:
– We specify a formal model for SwapCT systems

which extends the type-less model of Omniring.
– We provide an efficient instantiation of our SwapCT

system which natively supports multiple token
types, large anonymity sets and swap transactions
that are indistinguishable from regular transactions.

– We prove the security of our SwapCT protocol.
– To non-interactively merge partial transactions and

hide the original participants, we propose a novel
anonymously aggregatable signature scheme, which
might be of independent interest.

– We implement our SwapCT scheme and pro-
vide performance numbers comparable to Monero
demonstrating its efficiency.

2 Related Work
Previous research and commercial projects achieved
some properties required for a private, decentralized ex-
change system as shown in Table 1.

Zcash [18] is a production system providing user
privacy and amount confidentiality without support for
types. It hides amounts in commitments and references
previous outputs through zero-knowledge proofs. The
efficiency of Zcash’s zk-SNARK proofs is dependent on
a trusted setup. Recipients’ identities are protected by
one-time addresses. To facilitate trade between such sin-
gle type systems, there are multiple approaches, summa-
rized by Zamyatin et al. [21], even in a private setting
with privacy-preserving cross-chain swaps [8]. Cross-
chain transactions generally create one transaction on
each chain which privately reference each other. Only if
both transactions are valid, the tokens are exchanged.
Independent single-type DLTs with cross-chain swaps
allow for flexible governance and implementations opti-
mized for the specific token’s challenges. As cross-chain
swaps require a new DLT for each token they cannot
provide type confidentiality.

Poelstra et al. [17] propose confidential assets, a
commitment scheme to provide confidential types and
confidential amounts. The interactive transaction gen-
eration of MimbleWimble [12] allows for a direct re-
placement of the single type commitment scheme with
confidential assets, demonstrated by Zheng et al. [22].
Instead of using addresses to non-interactively receive
tokens, the MimbleWimble transaction generation is an
interactive protocol between sender and receivers, re-
ducing the anonymity of both.

Stellar is an already deployed transaction system
with multiple asset types. It uses ZkVM [2] transactions
to enable confidential transactions that satisfy an ar-
bitrary arithmetic circuit. To create a transaction, the
sender provides a proof of correctness according to the
constraint system. However, the system does not pro-
vide sender anonymity or non-interactive swaps.

Gao et al. propose a private atomic exchange [13]
where they introduce the notion of debt which has to be
settled on spending. The authors claim that their model
can be instantiated in a transparent setup, and provide
a Zcash [18] based version without a performance eval-
uation or implementation. Their system requires per-
sisting multiple transactions per swap, increasing the
overall cost and duration.

Monero [1], Omniring [15] and RingCT 3.0 [20] are
privacy-preserving transaction systems with a trans-

SwapCT 273

parent setup, sender and receiver anonymity, non-
interactive transactions and amount confidentiality.
These systems use anonymity sets to hide senders and
generate one-time addresses for receiver anonymity.
Their transaction verification proves conservation of a
single currency and has no notion of types. Without
multiple token types, they do not support atomic swaps.

3 Private UTXO Transactions
In this section we provide an overview of different ap-
proaches to UTXO based transaction structures and de-
scribe how our new SwapCT structure relates to them.
Figure 1 shows the transaction structures most simi-
lar to our scheme ((a) Monero RCT-simple and (b)
Omniring). All examples use 2 inputs and 3 outputs.
The visibility of secrets is from the senders perspective.
To achieve sender anonymity, both schemes rely on an
anonymity set where each real input [¤][a] of the sender
on the left is hidden in a set of other possible inputs,
denoted by empty brackets [][]. For the real inputs,
a tag is provided such that reusing the same input is
detectable. The consensus algorithm maintains only a
list of spent tags and rejects all transactions with a tag
already used as double spend attempts. While Monero
uses an independent ring signature for each input, Om-
niring, true to its name, uses a joint ring as anonymity
set for all inputs. The outputs of a transaction, on the
right in all schemes, are one-time accounts derived from
recipient identities by the sender.

Transactions are signed to attest the intent to spend
the real input to designated outputs by proving knowl-
edge of the inputs’ private keys ¤ and to ensure that

tag ← MLSAG

tag ← MLSAG

[¤][a]
[][]
[][]

[][]

[][]
[¤][a]

[a]

[a]

[¤][a]
[¤][a]

[¤][a]
Σ,rng

(a) Monero RCT-simple

[¤][a]
[][]
[][]

[][]

[][]
[¤][a]

[¤][a]
[¤][a]

[¤][a]

tag, tag ← Omnisig

(b) Omniring

[¤][a,ty]
[][]
[][]

[][]

[][]
[¤][a,ty]

a,ty

a,ty

[¤] a,ty
[¤] a,ty

[¤] a,ty

(c) SwapCT offerer

tag ← AS

tag ← AS

[][]
[][]
[][]

[][]

[][]
[][]

[a,ty]

[a,ty]

[][a,ty]
[][a,ty]

[][a,ty]

(d) SwapCT merger

Seal
tag, tag ← AS

Fig. 1. Transaction structures for (a) Monero RCT-simple, (b)
Omniring, (c) two SwapCT offers and (d) one SwapCT trans-
action. a represent arbitrary amounts, ty is any type. Dashed
lines are signatures to authorize spending and dotted lines ensure
wealth conservation. [·] denotes a commitment to the value and if
not blank, the value is known to the signer.

the cumulative wealth in the output is equal to the one
in the inputs. Omniring uses an all encompassing ring
signature (Omnisig) to prove both requirements. Mon-
ero first copies the amounts into intermediate commit-
ments [a]. Then, MLSAG [1] is used as the ring signature
which proves that the signer knows the inputs’ secret
keys ¤ and that the intermediate commitment is equal
to the real input. Wealth conservation is then proven
by a Schnorr signature Σ over intermediate and output
commitments and Bulletproof range proofs [4] (rng) in
Figure (1a).

Monero as well as Omniring require the final set of
outputs at the time of signing the input ring(s), which
is not available in non-interactive swaps since the swap
partner might not be known in advance. To support non-
interactive swap transactions, we propose a new transac-
tion structure (Figure 1 (c,d)) which slightly resembles
Monero. Figure (1c) shows two independent parties (up-
per and lower), each with one input [¤][a]. However, in-
stead of directly signing inputs with ring signatures, us-
ing all outputs concatenated as signing message, we pro-
pose a new anonymously aggregatable signature (AS) in
combination with an efficient linkable ring signature for
each input. We use a separate ring signature for each
input to hide if multiple inputs are contributed by the
same signer. Each partial transaction, called offer, has
its own outputs [¤] a,ty which are joined by merging of-
fers. We use the intermediate copies for amounts and
types a,ty as Monero does for amounts [a] only. The open-
ings of our intermediate and output commitments are
part of the offer and therefore offers must not be pub-
lished globally. We envision multiple off-chain dissemi-
nation scenarios: 1. The offer is not shared with anyone.
The outputs are then designated recipients, resulting in
a simple transaction. 2. The offer is sent to a peer who
created a matching offer. The offers are merged for an
atomic swap transaction. 3. The offer is shared with a
small group of participants who may be interested to
fulfill the offer. 4. The offer is sent to a lightweight ex-
change. Exchanges in our SwapCT system are entrusted
with publishing an order-book and merging of offers.
Due to our AS, ring signature and one-time accounts,
SwapCT exchanges cannot steal tokens or deanonymize
their users. A merged transaction is sealed to assure
amount and type conservation (Seal). The real senders
are hidden from the merger who only seals a transaction
with the final set of outputs and intermediate commit-
ments. Miners without insight into transactions have no
advantage reordering them to front-run offers.

To support confidential types, the wealth conser-
vation requires a zero-knowledge proof that the com-

SwapCT 274

mitted types are valid. The DLT maintains a list of
valid types. New types are registered by proposing a
one-time account which holds the initial supply of to-
kens. If the new type is unique, it is persisted in the
DLT and future transactions can reference it as input.
These are similar requirements to other privacy preserv-
ing DLTs such as Zcash and Monero and allow SwapCT
to be readily deployed on a clone of their DLT infras-
tructure. Alternatively SwapCT can be integrated into
a blockchain framework such as https://substrate.dev.
Substrate is a rust framework which provides modules to
operate a blockchain. Our rust prototype implementa-
tion of SwapCT is easily adapted to form the transaction
generation and validation module, as it already has an
interface close to substrate’s architecture. The remain-
der of necessary components for a blockchain, such as
peer-to-peer network with discovery, block generation
and dissemination is provided by the framework.

For efficient ring signatures and conservation proofs
in SwapCT, we adapt an elegant Bulletproof non-
interactive, zero-knowledge approach, which is similar
to the single signature in Omniring. With an anonymity
set size of r and m inputs, this results in transaction
sizes of SwapCT between the logarithmic efficiency of
Omniring O(log(m ·r)) and the linear efficiency of Mon-
ero O(m · r). We achieve a transaction size logarithmic
in the size of the anonymity set per input O(m log(r))
because of the non-interactive ring signature creation.

An efficient proof for large ring sizes is important
to provide sender anonymity. As SwapCT ring signa-
tures provide the same anonymity as Monero ring sig-
natures, we can use the Binned Mixin Sampling from
Möser et al. [16] to select the ring members. Binned
Mixin Sampling references temporally local groups of
previous outputs to counter timing attacks and protect
against an adversary who controls many outputs. Sam-
pling a proper ring is important, as transaction graph
analysis with external information may trace an input to
a real sender with high probability. While Monero users
are financially incentivized to keep the ring size small
due to linear transaction fees per mixin, our SwapCT
ring signature sizes only grow logarithmically in the ring
size. The default Monero ring size of 11 may provide a
worst-case effective untraceability set of 4 to 6 possible
inputs. With suggested 123 ring members in SwapCT,
the worst-case effective untraceability is 40 to 60. The
effective untraceability is the anonymity set expected af-
ter running statistical deanonymization attacks on the
transaction graph.

To show the usual interaction of the algorithms of
our SwapCT system, we describe a swap between Alice

DLT

Merger

Setup
Alice Bob

ltpA := KeyGen ltpB := KeyGen
tyg = TypeGen(green) tyr = TypeGen(red)

accA = OTGen(ltpA, 42, tyg) accB = OTGen(ltpB , 100, tyr)
accA, green

accB , red

accA′ = OTGen(ltpA, 40, tyg)
accA′′ = OTGen(ltpA, 5, tyr)
SA = {(accA, tagA)}
TA = {accA′ , accA′′}
oA = Offer(SA,RA,TA)

accB′ = OTGen(ltpB , 95, tyr)
accB′′ = OTGen(ltpB , 2, tyg)

SB = {(accB , tagB)}
TB = {accB′ , accB′′}

oB = Offer(SB ,RB ,TB)
offA = off(SA,RA,TA) offB = off(SB ,RB ,TB)

offA,oA, offB ,oB
o = Merge(oA,oB)

t = Seal(offA ∪ offB ,o)
tx = tx(offA ∪ offB)

VfTx(tx, t)
(40, tyg), (5, tyr) = Receive(tx)(95, tyr), (2, tyg) = Receive(tx)

Fig. 2. Example of a full SwapCT system with setup, type regis-
tration and an atomic swap of 2 green for 5 red tokens between
Alice and Bob with an untrusted Merger and DLT. Sampling of
the rings Ra and Rb is covered by related research [16].

and Bob in Figure 2. The system is transparently set
up and to participate both users generate a long term
key with KeyGen serving as their identity. As there are
no types registered yet, both create their own type with
TypeGen and set themselves as recipients. The total sup-
ply of each type is fixed in this operation. The consen-
sus accepts the registration of a new token type as the
identifiers (g, r) are unique regarding all previous regis-
trations. Alice now possesses all green tokens and Bob
all red tokens. Alice wants 5 red tokens and proceeds to
generate outputs accA′ and accA′′ which deduct 2 green
tokens from her account accA and give her 5 red tokens.
She authorizes the tentative spending of accA by creat-
ing an offer offA with inputs SA, outputs TA and ring
members RA signed by Offer. Bob creates a complemen-
tary offer, which trades 5 red tokens for 2 green tokens.
The spending authorization consists of publishing a tag
corresponding to the input account. The offers are then
merged with Merge by either an independent Merger,
Alice or Bob. Merging does not require any secret in-
put. However, each input in an offer contains a unique
tag to prevent double-spending. Anyone with access to
an offer will recognize its tag in a persisted transaction.
Still, access to an offer does not deanonymize the sender
or receiver and only reveals the tokens transferred.

A balanced offer, where the input and output is
equal, is then sealed with Seal and submitted to the
consensus for verification (VfTx). The transaction is per-
sisted, if the signatures are valid and all tags are unique
regarding all previous transactions. After persisting the
transaction, the designated outputs {acc′A, acc′′A} and
{acc′B , acc′′B} generated in the offer process are received
with Receive and usable as future transaction inputs.

https://substrate.dev

SwapCT 275

4 Formalizing Swap Transactions
In our SwapCT system, we distinguish the following
roles in our security model, where each participant of
the system may hold multiple roles at once and over
time. We model the security of our system on top of an
anonymous broadcast peer-to-peer network such as I2P
or libp2p using any consensus algorithm for transaction
ordering which prevents information leakage through
meta-data. For transaction verification, nodes need ac-
cess to the full history of transactions. Verifier: All
participants verify persisted transactions. In this role
everyone acts honestly as all their outgoing messages
are verified by the consensus rules. However they try to
deanonymize users or reveal transferred amounts and
types. Offerer: A participant creating an offer is mod-
eled as malicious as they have incentives to steal or
create funds. Merger/Exchange: Anyone matching,
merging and sealing offers into a transaction is mod-
eled as malicious. Their goals are to deanonymize par-
ticipants from their offers or redirect funds in an of-
fer to themselves. When sealing an offer to create a
transaction, the mergers are trusted to scrub the of-
fers off the plaintext values and types, which were re-
quired to match offers together. Publishing the amounts
and types reduces the anonymity set. Therefore, we re-
quire multiple, non-colluding mergers, but each of them
may act maliciously. Knowing a fraction of plaintext
amounts and types (the ones merged by the adversary)
in the graph of many transactions from other mergers
and direct transactions is not sufficient to deanonymize
users. In case of a single merger for the whole SwapCT
system, this merger acts as a central gateway to the
ledger and can partially deanonymize the transaction
graph and trace the amounts and types of transactions
they have merged. There, the only anonymity set left
is the set of direct transactions submitted to the ledger
by users, bypassing the single merger. In summary, the
anonymity set of offers depends on the ratio of uncom-
promized transactions persisted on the ledger.

First, we introduce some general notation. Given a
security parameter λ ∈ N, we denote negl(λ) as negligi-
ble in λ, equivalent to 1

poly(λ) . To sample an element x

uniformly at random from the set S, we write x $←− S.
The set of integers up to n is defined as [n] := {1, . . . , n}
and in general, sets are ordered if not specified other-
wise. For any set S we define

∑
S :=

∑
s∈S s. If an

algorithm fails, it will always abort with ⊥. We write
PPT for probabilistic polynomial time complexity.

The security of single-type set anonymous systems
is well formalized by Omniring [15]. We extend this for-
malization to encompass type support and swap trans-
actions. Parts in blue are very similar to the Omniring
description, e.g. only the type added, and are included
for better understanding and to conclude rigorous secu-
rity proofs where adding a type to Omniring’s defini-
tions may be ambiguous.

Definition 1. A Swap Confidential Transaction
(SwapCT) scheme consists of a tuple of PPT algo-
rithms (Setup, KeyGen, TypeGen, OTGen, Offer, VfOffer,
Merge, Seal, VfTx, Receive) defined as follows:

pp← Setup(1λ, 1α, 1β) takes the security parameter λ
and integers α for a maximum of 2α outputs of a trans-
action where each has an amount maximum of 2β − 1.
Then it outputs public parameters pp which are implic-
itly given to all the following algorithms. Setup is called
once when a SwapCT system is initialized.
(ltp, lts)← KeyGen() generates a long term secret key
lts with the corresponding long term public key ltp for
participants to initially join the system. The ltp is dis-
tributed and serves as a recipient address.
ty← TypeGen(name) generates a type ty given a name.
acc, ck← OTGen(ltp, a, ty) creates a one-time account
acc with coin key ck from a long term public key ltp and
an amount a of a type ty to then use this account as an
output in an offer or a new type registration.
o← Offer(S,R, T) takes the inputs
S = {(tagi, ji, ski, aSi , tySi , ckSi)}|S|i=1 is a set of inputs with
a tagi corresponding to accRi,ji at index ji ∈ [|Ri|], secret
key ski, amount aSi and type tySi with coin key ckSi .
R = {{accRi,j}

|Ri|
j=1 }

|S|
i=1 is a set of ring account sets, one

set per input to hide the real account.
T = {(accTi , aTi , tyTi , ckTi)}|T |i=1 is a set of accounts accTi
with amount aTi , type tyTi and coin key ckTi . It outputs
a signature o as authorization to spend the inputs.
b← VfOffer(off, o) takes a signature o and an offer

off(S,R, T) :=
(
{tagi, aSi , tySi }

|S|
i=1,

{{accRi,j}
|Ri|
j=1 }

|S|
i=1, {accTi , aTi , tyTi , ckTi }

|T |
i=1

) (1)

and returns a bit b specifying if the offer is valid.
o← Merge(o0, o1) takes two offer signatures and gener-
ates a combined one o valid for the union of both offers.
t← Seal(off, o) Takes a valid balanced offer defined as
above and its signature o and outputs a seal proof t.
b← VfTx(tx, t) takes a transaction defined as tx(off) :=(
{tagi}

|S|
i=1, {{accRi,j}

|Ri|
j=1 }

|S|
i=1, {accTi }

|T |
i=1

)
and the signa-

ture t and returns a bit b representing the validity.

SwapCT 276

(tag, sk, a, ty, ck)← Receive(acc, lts) gets an account acc
and a long term secret lts and returns the matching tag,
secret key sk, amount a, type ty and coin key ck for acc.

Further, we require the following two auxiliary al-
gorithms to define the security properties.
b← ChkAcc(acc, a, ty, ck) takes an account acc, an
amount a with type ty and a coin key ck and checks
if they are consistent.
b← ChkTag(acc, tag, sk) takes an account acc, a tag and
a secret key sk and returns 1 if consistent, 0 otherwise.

Definition 2 (Correctness). A SwapCT scheme is cor-
rect, if for all λ, α, β ∈ N and all pp ∈ Setup(1λ, 1α, 1β):
Honestly generated payments are received correctly: For
any ltp, lts ∈ KeyGen(), any name ∈ (0, 1)∗, ty =
TypeGen(name), any amount a ∈ {0, . . . , 2β − 1}, any
(acc, ck) ∈ OTGen(ltp, a,ty), and any (·, a′, ty′, ck′) ∈
Receive(acc, lts), it holds that (a, ty, ck) = (a′, ty′, ck′).
Honestly received payments have a valid amount,
type and tag: For any (tag, sk, a, ty, ck) ∈
Receive(acc, lts),ChkAcc(acc, a, ty, ck) = 1 and
ChkTag(acc, tag, sk) = 1 hold.
Honestly generated offers are valid: For each S,R, T ,
defined as above, that satisfy
– ∀i ∈ [|S|],ChkTag(accRi,ji , tagi, ski) = 1
– ∀i ∈ [|S|],ChkAcc(accRi,ji , a

S
i , tySi , ckSi) = 1

– ∀i ∈ [|T |],ChkAcc(accTi , aTi , tyTi , ckTi) = 1
and for any signature o ∈ Offer(S,R, T), it holds that
VfOffer(off, o) = 1 with off = off(S,R, T).
Honestly merged valid offers are again valid: For each
pair of valid Sk,Rk, Tk with k ∈ {0, 1}, each ok ∈
Offer(Sk,Rk, Tk) and o = Merge(o0, o1), it holds that
VfOffer(off, o) = 1 with off = off(S0∪S1,R0∪R1, T0∪T1).

Honestly sealed transactions are valid: For any
S,R, T as above that satisfies all offer criteria and:
– |T | ≤ 2α, ∀i ∈ [|T |] : aTi ∈ {0, . . . , 2β − 1}
– ∀ty ∈ {tyTi }

|T |
i=1 :∑

{aSi |tySi = ty}|S|i=1 =
∑
{aTi |tyTi = ty}|T |i=1

and for any proof t ∈ Seal(off, o) it holds that
VfTx(tx, t) = 1 with off = off(S,R, T) and tx = tx(off).

5 Security
To formalize the security of a SwapCT scheme, we bor-
row components from other RingCT schemes, namely
Omniring, as transactions of a SwapCT scheme should
have comparable properties to their single type RingCT
counterparts. For the non-slanderability, we make use of
the definitions from Omniring [15], which allows an at-

tacker to make arbitrary transactions through oracles
and who must then output a valid transaction which
uses a tag of the oracle controlled accounts that was not
previously authorized. Theft prevention and privacy of
SwapCT require additional constraints to ensure these
properties in the presence of offers, types and multiple
distrusting parties jointly transacting.

The core of any transaction system is to assure that
no value is created out of thin air. Moreover, for individ-
ual participants, it is of paramount importance, that all
outgoing transactions from their wealth are authorized.

The authorization in the case of a single transactor
is simple: Signing the transaction with a set of inputs
for a final set of outputs. This is not directly applicable
to offers that may not have a final output set at the time
of authorizing the first inputs. The authorization given
to an offer translates to a condition that the signer ac-
cepts the spending of the inputs if and only if the speci-
fied outputs are fulfilled. As offers have to be authorized
before some untrusted party uses them to seal a transac-
tion and without further interaction, the authorization
must be conditioned that all designated outputs are in-
cluded in the final transaction without modifications.
As long as at least one input authorization, identified
by a tag, is used from an offer, the transaction outputs
must be a super-set of the original offer outputs. The
tag is anonymously bound to the hidden input.

To achieve theft prevention, we require ChkAcc and
ChkTag to be binding. Then, if a tag is bound to a source
account, double-spend detection is reduced to checking
for duplicate tags. In addition, the binding property pre-
vents opening an account to a different amount or type.

Definition 3 (Theft). A SwapCT scheme is theft pro-
tecting, if for any λ ∈ N and all α, β ∈ poly(λ) with
pp← Setup(1λ, 1α, 1β) (1) ChkTag and ChkAcc are bind-
ing such that for any adversary A it holds that

Pr
[

ChkTag(acc, sk, tag) = 1
ChkTag(acc, sk′, tag′) = 1, (sk, tag) 6= (sk′, tag′)

∣∣∣∣
(acc, sk, tag, sk′, tag′)← A(pp)

]
≤ negl(λ) and

Pr

ty = TypeGen(n), ty′ = TypeGen(n′)

ChkAcc(acc, ck, a, ty) = 1
ChkAcc(acc, ck′, a′, ty′) = 1

(a, n, ck) 6= (a′, n′, ck′)

∣∣∣∣∣∣∣∣
(acc, a, n, ck, a′, n′, ck′)← A(pp)

]
≤ negl(λ)

SwapCT 277

BalanceA,EA(1λ, 1α, 1β)
pp← Setup(1λ, 1α, 1β)
(tx, t)← A(pp)
(S,R,T)← EA(pp, tx, t)

parse S as
{

tagi, ji, ski, aSi , tySi , ckSi
}|S|
i=1

parse R as
{
{accRi,j}

|Ri|
j=1

}|R|
i=1

parse T as
{

accTi , a
T
i , tyTi , ckTi

}|T |
i=1

b1 := VfTx(tx, t), b2 := tx = tx(S,R,T)
b3 := ∀i ∈ [|S|], ChkTag(accRi,ji , ski, tagi) = 1
b4 := ∀i ∈ [|S|], ChkAcc(accRi,ji , a

S
i , tySi , ckSi) = 1

b5 := ∀i ∈ [|T |], ChkAcc(accTi , a
T
i , tyTi , ckTi) = 1

b6 := ∀ty ∈ {tyTi }
|T |
i=1 :

∑
{aSi |ty

S
i = ty}|S|

i=1 =
∑
{aTi |ty

T
i = ty}|T |

i=1
return b1 ∧ b2 ∧ ¬(b3 ∧ b4 ∧ b5 ∧ b6)

Fig. 3. Balance experiment

(2) for all PPT adversaries A and all S,R, T defined
as above, it holds that

Pr

[
{tag′i}

|S′|
i=1 ∩ {tagi}

|S|
i=1 6= ∅

{acc′Ti }
|T ′|
i=1 6⊇ {accTi }

|T |
i=1,VfOffer(off′, o′) = 1

∣∣∣∣∣
o← Offer(S,R, T)

(o′, off′)← A(pp, o, off(S,R, T))

]
≤ negl(λ).

To prevent users from spending more value than they
have as input or spending the same value twice, increas-
ing the total supply, a transaction must be balanced.
Our balance property only differs from a type unaware
RingCT system in the fact that the balance has to hold
for each type individually.

To achieve the balance property, we rely on theft
prevention, as a prerequisite. The balance experiment
in Figure 3 states, that for any efficient adversary A
which generates a valid transaction tx, t, there exists
an extractor EA which extracts the witness S,R, T of
this transaction. The witness must satisfy that the tags
match the inputs accRi,ji . In addition, the amounts and
types must match the input and output accounts with
ChkAcc. Unlike single type transaction systems, we ad-
ditionally require that each output type is present in the
input. Then, the sum of amounts in the inputs must be
equal to the sum of outputs per type.

Assume an efficient adversary creating a valid trans-
action signature for an unbalanced transaction. The sig-
nature ensures balance and thereby the adversary can
be used to create an efficient adversary against one of
the binding properties. This means being able to spend
the same account under a different tag or change the
amount or type.

Definition 4 (Balance). A SwapCT scheme is bal-
anced if it prevents theft (Def. 3) and for all
PPT adversaries A and all positive integers α, β ∈
poly(λ), there exists a PPT extractor EA such that

Pr[BalanceA,EA(1λ, 1α, 1β) = 1] ≤ negl(λ) with
BalanceA,EA(1λ, 1α, 1β) defined in Figure 3.

6 Privacy
The privacy of a SwapCT scheme consists of two
different settings. Offers require sender and receiver
anonymity, while for sealed transactions the regular
RingCT privacy must hold, which consists of sender and
receiver anonymity as well as value confidentiality. To
provide value confidentiality in a SwapCT, we have to
extend the RingCT model by also hiding the type.

The transaction creation process may be distributed
and offers are passed to possibly malicious parties.
Therefore, we require sender and receiver anonymity
for offers, too. Value and type confidentiality are not
desired for offers, as other parties must be able to ac-
cess the offered assets and decide if they want to merge
the offer. To ensure that swap transactions are indis-
tinguishable from single-user transactions, the number
of offers merged together must remain hidden, making
merged offers appear identical to single transaction.

Sender and receiver anonymity is defined by an ad-
versary interacting with a set of oracles and then pre-
senting a maliciously crafted offer together with instruc-
tions for the security experiment on how to construct
two sets of offers. The instructions contain input ring
accounts with two possible senders and recipients to-
gether with amounts and types. In addition, they con-
tain an identifier of the party which should use the input
or output, thereby showing that the offers do not reveal
the participants. The adversary should not be able to
distinguish which set of offers is created and merged.

InitOracles()
LTP := LTS := ∅
Offrd := ∅

KeyGenO()
(ltp, lts)← KeyGen()
LTP := LTP‖ltp
LTS := LTS‖lts
return ltp

TryReceive(acc)
for all i ∈ [|LTS|] do

(tag, sk, a, ty, ck)← Receive(acc, LTS[i])
if (tag, sk, a, ty, ck) 6= ⊥ then

return (tag, sk, a, ty, ck)
return ⊥

OfferO(I, T)
S := ∅
parse I as {ji, {accRi,j}

|Ri|
j=1 }

|I|
i=1

for all i ∈ [|I|] do
Si := (tagi, ski, ai, tyi, cki) := TryReceive(accRi,ji)
// Check that the same tag was not used with another ring
if (tagi, ·) ∈ Offrd ∧ (tagi, {accRi,j}

|Ri|
j=1) 6∈ Offrd then return ⊥

R = {{accRi,j}
|Ri|
j=1 }

|I|
i=1, off = off(S,R,T), o← Offer(S,R,T)

if VfOffer(off,o) = 0 then return ⊥
Offrd := Offrd ∪ {(tagi, {accRi,j}

|Ri|
j=1)}|I|

i=1
return o

Fig. 4. Oracles for the privacy experiments

SwapCT 278

OffPvbA(1λ, 1α, 1β)
pp← Setup(1λ, 1α, 1β), InitOracles()
O = {KeyGenO,OfferO}
(I, J, off,o)← AO(pp)
o0 := o1 := o, off0 := off1 := off,S0 := S1 := T0 := T1 := ∅
if VfOffer(off,o) = 0 then return 0
parse I as {({(uSt,i, jt,i)}

1
t=0, {accRi,j}

|Ri|
j=1)}|I|

i=1
for all i ∈ [|I|] do

for all t ∈ {0, 1} do
(tagt,i, skSt,i, a

S
t,i, tySt,i, ckSt,i) := TryReceive(accRi,jt,i)

St[i] = (tagt,i, jt,i, skSt,i, a
S
t,i, tySt,i, ckSt,i)

if tagt,i ∈ Offrd ∧ (tagt,i, {accRi,j}
|Ri|
j=1) 6∈ Offrd then return 0

if a0,i 6= a1,i ∨ ty0,i 6= ty1,i then return 0
parse J as {({(uTt,i, k

T
t,i)}

1
t=0, a

T
i , tyTi)}|J|

i=1
for all j ∈ [|J|] do

for all t ∈ {0, 1} do
(accTt,j , ckTt,j)← OTGen(LTP[kt,j], aTj , tyTj)
Tt[j] = (accTt,j , a

T
j , tyTj , ckTt,j)

for all t ∈ {0, 1} do
UI
t := {uSt,i}

|I|
i=1,U

J
t := {uTt,j}

|J|
j=1

if UI
t 6= UJ

t then return 0
for all k ∈ UI

t do
Skt := {St[i]|uSt,i = k}|I|

i=1

Rkt := {{acci,j}|R|j=1|u
S
t,i = k}|I|

i=1

T kt := {Tt[j]|uTt,i = k}|J|
j=1

offkt ← off(Skt ,R
k
t ,T

k
t)

okt ← Offer(Skt ,R
k
t ,T

k
t)

if VfOffer(offkt ,o
k
t) = 0 then return 0

offt := offt ∪ off(Skt ,R
k
t ,T

k
t)

ot ← Merge(ot,okt)
b′ ← AO(offb,ob) return b′

Fig. 5. Offer privacy experiment

More formally, we specified a security experiment
OffPvb in Figure 5 with a bit b ∈ {0, 1}. An adversary A
queries the available oracles (Figure 4) and then returns
a valid offer (off, o) and instructions I and J . I contains
{({uSt,i, jt,i}1t=0, {accRi,j}

|Ri|
j=1)}|I|i=1 where uSb,i is the iden-

tifier of the party who should use input i depending
on the selected bit b. The set of all input identifiers
{uSt,i}

|I|
i=1 form the unordered set UIt for t ∈ {0, 1}. jt,i

specifies the index in the set of ring accounts {accRi,j}
|Ri|
j=1

on which the experiment calls (tagt,i, aSt,i, tySt,i, skSt,i) ←
TryReceive(accRi,jt,i) to recover the account secrets. Some
trivial cases which are easy to distinguish are excluded.
An efficient adversary exists, if the amount and type of
the two ring accounts may be different, as these values
will be published in the merged offer. Therefore, we re-
quire aS0,i = aS1,i and tyS0,i = tyS1,i for all i. We also abort
if one of the tags was already disclosed in another offer:
(tagt,i, ·) 6∈ Offrd. This implies, that when a participant
decides to create multiple offers with the identical in-
put, it is important to the sender anonymity, that the
input uses the same ring in each offer as otherwise, the
real sender is an account of the intersection of all rings.

The output instructions J are similar to I, as they
contain {({uTt,i, kTt,i}1t=0, a

T
i , tyTi)}|J|i=1 where uTt,i specifies

the party to use this output and all output identifiers
form the unordered set UJt , equal to UIt . The element
kt,i references an uncompromized long term public key

TxPvbA(1λ, 1α, 1β)
pp← Setup(1λ, 1α, 1β), InitOracles()
O = {KeyGenO,OfferO}
(I, J, off, σ)← AO(pp)
S0 := T0 := S1 := T1 := R := ∅
parse I as {({jt,i}1t=0, {accRi,j}

|Ri|
j=1)}|I|

i=1
for all i ∈ [|I|] do

for all t ∈ {0, 1} do
(tagt,i, skSt,i, a

S
t,i, tySt,i, ckSt,i) := TryReceive(accRt,jt,i)

St[i] = (tagt,i, jt,i, skSt,i, a
S
t,i, tySt,i, ckSt,i)

R[i] = {accRi,j}
|Ri|
j=1

if tag0,i 6= tag1,i ∧ {(tagt,i, ·)}1t=0 ∩ Offrd 6= ∅ then return 0
parse J as {{(kTt,j , a

T
t,j , tyTt,j)}

1
t=0}

|J|
j=1

for all j ∈ [|J|] do
for all t ∈ {0, 1} do

(accTt,j , ckTt,j) := OTGen(LTP[kTt,j], a
T
t,j , tyTt,j)

Tt[j] := (accTt,j , a
T
t,j , tyTt,j , ckTt,j)

for all t ∈ {0, 1} do
ot ← Merge(o,Offer(St,R,Tt))
offt := off(St, R,Tt) ∪ off
txt := tx(offt)
tt ← Seal(offt,ot)
if VfOffer(offt,ot) = 0 ∨ VfTx(txt, tt) = 0 then return 0

b′ ← AO(txb, tb) return b′

Fig. 6. Transaction privacy experiment

LTP[kt,i] from which a one-time account accTt,j is derived.
As the amounts aTi and types tyTi of an offer are public,
they are equivalent in both values of b. The experiment
proceeds by distributing the inputs and outputs to each
identifier in the set Ut = UIt = UJt , then creates a set of
offers and authorizes each of them. All offers offbk, along
with the malicious off are merged. The adversary wins
by correctly guessing the bit b.

Definition 5 (Offer Privacy). A SwapCT scheme
has private swaps, if for all PPT adversaries A
and all positive integers α, β ∈ poly(λ) it holds that∣∣Pr[OffPv0

A(1λ, 1α, 1β) = 1]− Pr[OffPv1
A(1λ, 1α, 1β) = 1]

∣∣
≤ negl(λ) with OffPvbA(1λ, 1α, 1β) defined in Figure 5.

The privacy of a sealed transaction extends the offer
privacy as follows. As the amounts aSi , aTi and types
tySi , tyTi of an offer are discarded in the seal operation,
the requirement on the instructions from the adversary
to have equal amounts and types are lifted. Accord-
ing to Definition 5, the number of transactors is hid-
den. Thereby, it is sufficient to show the case where the
adversary provides instructions to just one party. The
security experiment in Figure 6 then seals the merged
transaction at the end.

Definition 6 (Transaction Privacy). A SwapCT
has private transactions, if the participants are
able to share messages by an anonymous broad-
cast, and if for all PPT adversaries A and all
positive integers α, β ∈ poly(λ) it holds that∣∣Pr[TxPv0

A(1λ, 1α, 1β) = 1]− Pr[TxPv1
A(1λ, 1α, 1β) = 1]

∣∣
≤ negl(λ) with TxPvbA(1λ, 1α, 1β) defined in Figure 6.

SwapCT 279

7 SwapCT Components
Our construction of a SwapCT system as defined
above depends on the following six components. (1)
We make use of the Omniring tagging scheme [15] for
double-spend detection, which consists of the algorithms
TAG = (TagSetup, TagKGen, TagEval). It uses a se-
cret key space (χ,+), a public key space (X , ·) and
a tag space ψ. TagKGen is homomorphic, i.e. for any
x, x′ ∈ χ,TagKGen(x) · TagKGen(x′) = TagKGen(x + x′).
TagEval takes a key x ∈ χ and outputs a tag ∈ X .
We require related-input one-wayness and pseudoran-
domness as defined in Omniring. (2) Further we make
use of a labeled public-key encryption scheme PKE =
(PKESetup,PKGen,Enc,Dec) which is IND-CCA and IK-
CCA secure. (3) We base a typed homomorphic commit-
ment on the idea of confidential assets [17] to hide values
and types. It provides the algorithms THC =(ComSetup,
ComTypeGen, Commit) defined as
pp← ComSetup(1λ) generates the public parameters for
the rest of the algorithms with a randomness space R,
a type space T and message space M.
ty = ComTypeGen(i) takes an identifier i ∈ {0, 1}∗ and
outputs a base type ty ∈ T
com = Commit(ty, v; r) takes a type ty ∈ T and a
value v ∈ M with randomness r ∈ R and outputs a
commitment com. We require the following homomor-
phic property, that Commit(ty, v; r)�Commit(ty, v′; r′) =
Commit(ty, v + v′; s) with s ∈ R efficiently computable.
The security requirements to a typed homomorphic
commitment are similar to Pedersen commitments and
we therefore require binding and hiding properties, de-
tailed in Appendix A. (4) We define a Tagged Ring Sig-
nature as a Signature of Knowledge (SoK) to anony-
mously authorize spending. (5) We define a Seal signa-
ture to confidentially prove the balance of an offer, and
(6) we specify an anonymously aggregatable signature
scheme, which is parameterized with the tagged ring
signature and binds outputs to authorized inputs.

7.1 Signatures of Knowledge

For a generalized description of the tagged ring signa-
ture and the seal signature, we use signatures of knowl-
edge (SoK) which are efficiently constructable from ar-
guments of knowledge (AoK) [5, 15] by including a
message in the Fiat-Shamir transformation [11]. They
consist of the algorithms pp ← SoK[L]Setup, σ ←
SoK[L]Sign(stmt,wit,m), b ← SoK[L]Verify(σ, stmt,m),

σ ← SoK[L]Sim(stmt,m)) for any NP language L. They
fulfill the properties completeness, simulatability and
extractability according to [5].

We require a protocol to anonymously authorize
spending from a set of ring accounts {(pki, comi)}|R|i=1
without revealing the true source (pkj , comj) and pre-
vent double-spending. Especially the creator of the au-
thorization does not necessarily know the secret keys of
all the ring accounts nor interacts with the parties hold-
ing the secret keys. A ring signature solves exactly this
problem to sign a message without revealing the true
secret key sk used. In addition, we require linkability if
the same secret key and thereby the same account was
used in two different ring signatures. This is achieved
by publishing a tag which is anonymously bound to the
public key pkj . If two signatures have the same tag, they
were created by the same secret key. This is known as
a tagged ring signature scheme TRS, similar to the ML-
SAG scheme in Monero [1]. The TRS is parameterized
with a tagging scheme TAG and a typed homomorphic
commitment scheme THC. We define this in the form of
a SoK parameterized with the following language Lring

:=

stmt = ({(pki, comi)}|R|i=1, tag, com′) :
∃wit = (j, sk, a, ty, ck, ck′) s.t.
pkj = TagKGen(sk), comj = Commit(ty, a; ck)
tag = TagEval(sk), com′ = Commit(ty, a; ck′)

Thereby, we assure that the signer knows at least one
secret key sk of the ring accounts, and the tag matches
this account j. The TRS also shows that a commitment
com′ commits to a type ty and amount a, which is the
same as the amount and type in comj , referenced by tag
but has a different coin key ck′ to hide the link to comj .
From Lring, we see that given a binding THC scheme
and a secure TAG scheme, the SoK ring signature is set
anonymous and assures equal values in comj and com′.

The seal signature is a SoK convincing a verifier
in zero knowledge that an offer is balanced. Given a
set of temporary commitments {com′i}

|S|
i=1 and a set of

output commitments {comj}|T |j=1, a valid signature con-
vinces an honest verifier, that for each type ty present in
the transaction outputs {tyTj }

|T |
j=1 the sum of amounts

in the inputs
∑
{aSi |tySi = ty}|S|i=1 is equal to the sum of

amounts in the outputs
∑
{aTi |tyTi = ty}|T |i=1. We specify

SwapCT 280

the seal signature with the following language Lseal

:=

stmt = ({com′i}
|S|
i=1, {comTj }

|T |
j=1) :

∃wit = ({tySi , aSi , ck′i}
|S|
i=1, {tyTj , aTj , ckTj }

|T |
j=1) s.t.

∀i ∈ [|S|] : com′i = Commit(tySi , aSi ; ck′i)
∀j ∈ [|T |] : comTj = Commit(tyTj , aTj ; ckTj)
∀ty ∈ {tyTj }

|T |
j=1 :∑

{aSi |tySi = ty}|S|i=1 =
∑
{aTi |tyTi = ty}|T |i=1

From Lseal, we see that with a binding THC scheme, the
SoK signature is secure and assures the balance of two
sets of commitments.

7.2 Aggregatable Anonymous Signature

To create offers independently and merge multiple offers
into a transaction, we require a high level of privacy such
that the final transaction does not leak the individual
parties’ inputs. However, we also require an authoriza-
tion, such that signatures of offers cannot be abused to
authorize spending of the tokens to different recipients.

Without the privacy requirement, a solution to
achieve authorization of inputs spending to a fixed set
of outputs is simple. Each authorization signature signs
a message that is the subset of outputs required to be
in the final transaction. On verification, the signature is
invalid, if an output is missing or changed. However, this
reveals the mapping between the signers and outputs.

The generalized problem is a set of signers, each
with a set of messages {mj}|T |j=1 (representing trans-
action outputs) and a set of statements and witnesses
{(stmti,witi)}|S|i=1 for a SoK (representing authorization
signatures on inputs). Each of the signers create sig-
natures {ri}|S|i=1 which bind the messages to the given
signatures. However, linking signatures to specific mes-
sages must be infeasible. Verification must only succeed
on the full set of all signatures and messages.

As the aggregation is agnostic to the signature
scheme, we describe it with the notation of a SoK as
defined above. An independent use-case are e.g. authors
each writing and signing a chapter. They may then later
claim to have participated in the whole book without
revealing which part of it they wrote and signed.

An aggregatable signature scheme consists of
AS = (AsSetup, AsSign, AsVerify, AsMerge, AsSim)
parametrized with an NP Language L and its relation
RL.
pp← AsSetup(1λ,L) takes the security parameter λ and
the language L which parametrizes the SoK and outputs
the public parameters pp.

({ri}|S|i=1, a)← AsSign({(stmti,witi)}|S|i=1, {mj}|T |j=1) takes

a set of statement and witness tuples {(stmti,witi)}|S|i=1
and a set of messages {mj}|T |j=1 and outputs a set of
signatures {ri}|S|i=1 and a proof a.
b← AsVerify({(ri, stmti)}|S|i=1, a, {mj}|T |j=1) takes the sig-
natures ri and statements stmti, a proof a and the mes-
sages {mj}|T |j=1 and outputs a bit b depending on the
validity of the signatures and the proof.
a← AsMerge(a1, a2) takes two proofs a1, a2 and outputs
a combined proof a.
({ri}|S|i=1, a)← AsSim({stmti}|S|i=1, {mj}|T |j=1) takes state-
ments stmti and messages mj and outputs a set of sim-
ulated signatures {ri}|S|i=1 and a simulated proof a.

Definition 7 (Correctness). (1) For all (stmti,witi) ∈
RL and all messages {mj ∈ {0, 1}∗}|T |j=1 with ({ri}|S|i=1, a)
← AsSign({(stmti,witi)}|S|i=1, {mj}|T |j=1) it holds, that
AsVerify({(ri, stmti)}|S|i=1, a, {mj}|T |j=1) = 1 (2) Regard-
ing merging with t ∈ {1, 2}, for any (stmtt,i,witt,i) ∈
RL and all messages Mt := {mt,j ∈ {0, 1}∗}|Tt|j=1

with ({rt,i}|St|i=1, at) ← AsSign({stmtt,i,witt,i}|St|i=1,Mt)
and a ← AsMerge(a1, a2) it holds that
AsVerify(

⋃
t∈{1,2}{(rt,i, stmtt,i)}|St|i=1, a,

⋃
t∈{1,2}Mt) = 1

The formal security describing that each signature per-
manently binds a subset of messages is done by refor-
mulating the problem more rigorously. If a SoK ri is
reused, then the new set of messages must be a superset
of the signed messages, such that all previously signed
messages are included.

Definition 8 (Security). Given a secure SoK scheme,
an aggregatable signature scheme AS is secure, if
for all PPT adversaries A, all statements and
witnesses {(stmti,witi) ∈ RL}

|S|
i=1 and all mes-

sages {mj ∈ {0, 1}∗}|T |j=1 with ({ri}|S|i=1, a) ←
AsSign({(stmti,witi)}|S|i=1, {mj}|T |j=1) it must hold, that

Pr

[
{r′i}

|S′|
i=1 ∩ {ri}

|S|
i=1 6= ∅, T ′ 6⊇ T

AsVerify({(r′i, stmt′i)}
|S′|
i=1, a

′, {m′j}
|T ′|
j=1) = 1

∣∣∣∣∣
pp← AsSetup(1λ)

({(r′i, stmt′i)}
|S′|
i=1, a

′, {m′j}
|T ′|
j=1))

← A({(ri, stmti)}|S|i=1, a, {mj}|T |j=1)

 ≤ negl(λ)

To show that the scheme does not reveal the witness,
we require that an efficient simulator exists to produce
an indistinguishable transcript without the witness.

SwapCT 281

ASPrivacybA(1λ)
pp← AsSetup(1λ)
(I, J,Σ, STMT,M,a)← A(pp)
Σ0 := Σ1 := Σ,M0 :=M1 =M,a0 := a1 := a

parse Σ as {ri}|Σ|i=1 and STMT as {stmti}|Σ|i=1

if AsVerify({(ri, stmti)}|Σ|i=1,a, {mi}
|M|
i=1) = 0 then return 0

parse I as {({uSt,i}
1
t=0, stmti,witi)}|I|i=1

parse J as {({uTt,i}
1
t=0,mi)}|J|i=1

for all t ∈ {0, 1} do
UI
t := {uSt,i}

|I|
i=1,U

J
t = {uTt,j}

|J|
j=1

if UI
t 6= UJ

t then return 0
for all k ∈ UI

t do
STMTkt := {stmti|uSt,i = k}|I|

i=1

WITkt := {(stmti,witi)|uSt,i = k}|I|
i=1

Mk
t := {mi|uTt,i = k}|J|

i=1
(Σkt ,a

k
t)← AsSign(WITkt ,M

k
t)

// % zips: |A| = |B| and A%B := {(a1, b1), . . . , (a|A|, b|B|)}
if AsVerify(Σkt%STMTkt ,a

k
t ,M

k
t) = 0 then return 0

Mt :=Mt ∪Mk
t , Σt := Σt ∪ Σkt , at ← Merge(at,akt)

b′ ← A(Σb,ab) return b′

Fig. 7. AS privacy experiment

Definition 9 (Simulatability). AS is simulatable if{
x

∣∣∣∣∣ pp← AsSetup(1λ,L)
x← AsSign({(stmti,witi)}|S|i=1, {mj}|T |j=1)

}

=

{
x

∣∣∣∣∣ pp← AsSetup(1λ,L)
x← AsSim({stmti}|S|i=1, {mj}|T |j=1)

}

The privacy of the AS scheme is expressed by the se-
curity experiment in Figure 7 similarly to the privacy
of the SwapCT offer privacy. The mapping of inputs to
outputs and the number of participants must remain
hidden. An Adversary A generates a valid set of sig-
natures Σ, statements STMT and messagesM and pro-
vides instructions I, J for the experiment to append sig-
natures and messages. For two cases of the parameter
b ∈ {0, 1}, the adversary A specifies which party k ∈ Ut
gets access to the witnesses witi|uSt,i = k and messages
mi|uTt,i = k. A wins by calculating b correctly.

Definition 10 (Privacy). An AS scheme is pri-
vate, if for all PPT adversaries A it holds that∣∣Pr[ASPrivacy0

A(1λ) = 1]− Pr[ASPrivacy1
A(1λ) = 1]

∣∣ ≤
negl(λ) with ASPrivacybA(1λ) defined in Figure 7.

8 SwapCT Construction
With all the components specified in the previous sec-
tion, the SwapCT construction Ξ is the interaction of
the algorithms shown in Figure 8. Intuitively, we create
accounts with the public key of the tagging scheme and
store the amount and type in a commitment. For each
input of an offer, the real account is hidden in a set of

ring accounts and a tagged ring signature assures that
the published tag belongs to the account from which
the amount and type is spent. To decouple the sender
anonymity set from the remainder of the transaction, we
create an intermediate, randomized commitment with a
copy of the input values. Output accounts are derived
from the recipients long term public key. To combine
inputs with outputs, we use our anonymously aggregat-
able signature scheme which enables the simple merging
of offers. Finally, an offer is sealed by the seal signature
to become a verifiable transaction to be persisted.

For a detailed description, let χ be the key space of
TAG and R the THC randomness space. Let h : {0, 1}∗ →
χ be a random oracle. Setup generates the public param-
eters of each component by calling their setup functions.

To participate, each entity generates a long term
key (ltp, lts) with KeyGen that consists of two key pairs
of the PKE scheme: (vpk, vsk) is used for access to re-
ceived amounts and (apk, ask) is used to recover the au-
thorization key to spend the received funds. The long
term credentials further include a key pair (s̄k, p̄k) from
the TAG to later calculate tags for each derived account.

The different token types available in a SwapCT
system are not specified a priori but are dynamically
added. A new type ty is generated by specifying a new
unique name and using ComTypeGen of the commitment
scheme as described in TypeGen. The mere specification
of a type ty is not sufficient to introduce the new type
into circulation. To allow trading with this new type, a
new account acc is derived from a long term public key
ltp by OTGen. The acc is piggybacked onto a regular
transaction to pay the registration fee. The matching
lts is then allowed to spend the newly minted tokens of
type ty. The uniqueness of the name in such a type reg-
istration must be ensured by the consensus mechanism.

The one-time account generation is used in subse-
quent transactions to specify the outputs. OTGen gener-
ates a random ephemeral key ek and uses it to generate
a public key pk for which only the recipient can recover
the secret key sk. A THC com is created to the amount a
and type ty with a random coin key ck ∈ R. Finally, the
secret values ek, ty, a, ck are encrypted under the recipi-
ent’s keys apk, vpk to be decrypted with ask, vsk recover-
ing the tokens. The structure of the one-time accounts
is very similar to the Omniring construction apart from
using a typed homomorphic commitment.

The owner of the long term secret key lts is able to
receive an account acc by Receive. This is again similar to
Omniring with the exception of a different commitment.
First the recipient decrypts the ciphertexts ẽk, c̃k with
the labeled encryption scheme to get ek, the amount a,

SwapCT 282

Setup(1λ, 1α, 1β)
ppTHC ← ComSetup(1λ)
ppPKE ← PKESetup(1λ)
ppTAG ← TagSetup(1λ)
ppAS ← AsSetup(1λ,Lring)
ppseal ← SoK[Lseal]Setup(1λ, 1α, 1β , ppTHC)
pp := (ppTHC, ppPKE, ppTAG, ppAS, ppseal)
return pp

KeyGen()
(vpk, vsk)← KeyGen(ppPKE)
(apk, ask)← KeyGen(ppPKE)

s̄k := x
$
←− χ, p̄k := X ← TagKGen(x)

ltp := (vpk, apk, p̄k)
lts := (vsk, ask, s̄k)
return (ltp, lts)

TypeGen(name)
ty := ComTypeGen(name) return ty

ChkAcc(acc, ck, a, ty)
parse acc as (pk, com, ẽk, c̃k)
return com = Commit(ty, a; ck)

ChkTag(acc, sk, tag)
parse acc as (pk, com, ẽk, c̃k)
return tag = TagEval(sk)∧

pk = TagKGen(sk)

OTGen(ltp, a, ty)
parse ltp as (vpk, apk, p̄k)

ek
$
←− {0, 1}λ

ck
$
←− R

s := h(ltp, ek)
pk := p̄k · TagKGen(s)
com := Commit(ty, a; ck)
ẽk← Enc(apk, (pk, com), ek)
c̃k← Enc(vpk, (pk, com), (ty, a, ck))
acc = (pk, com, ẽk, c̃k)
return (acc, ck)

Receive(acc, lts)
parse acc as (pk, com, ẽk, c̃k)
parse lts as (vsk, ask, s̄k)
ek = Dec(ask, (pk, com), ẽk)
(ty, a, ck) = Dec(vsk, (pk, com), c̃k)
s := h(ltp, ek)
sk := s̄k + s
pk′ = TagKGen(sk)
com′ = Commit(ty, a; ck))
if (pk, com) 6= (pk′, com′) then

return ⊥
tag← TagEval(sk)
return (tag, sk, a, ty, ck)

Offer(S,R, T)
parse S as {(tagi, ji, ski, aSi , tySi , ckSi)}|S|

i=1

parse R as {{accRi,j := (pkRi,j , comRi,j , ·)}
|Ri|
j=1 }

|S|
i=1

parse T as {(accTi , a
T
i , tyTi , ckTi)}|T |

i=1

{ck′i
$
←− R, com′i ← Commit(tySi , a

S
i ; ck′i)}

|S|
i=1

{stmti =
(
{(pkRi,j , comRi,j)}

|Ri|
j=1 , tagi, com′i

)
}|S|
i=1

{witi = (ji, ski, aSi , tySi , ckSi , ck′i)}
|S|
i=1

({ri}|S|i=1,a)← AsSignSoK[Lring]({(stmti,witi)}|S|i=1, {accTj }
|T |
j=1)

return ({ri, com′i, ck′i}
|S|
i=1,a)

Merge(o1, o2)
parse o1 as ({(r1

i , com′1i , ck′1i)}
|S1|
i=1 ,a1)

parse o2 as ({(r2
i , com′2i , ck′2i)}

|S2|
i=1 ,a2)

a← AsMerge(a1,a2)
return ({(r1

i , com′1i , ck′1i)}
|S1|
i=1 ∪ {(r

2
i , com′2i , ck′2i)}

|S2|
i=1 ,a)

Seal(off, o)
if VfOffer(off,o) 6= 1 then return ⊥
tx = tx(off)
parse o as ({ri, com′i, ck′i}

|S|
i=1,a) and off as (S,R,T)

s← SoK[Lseal]Sign(stmt(tx),wit(S, {com′i, ck′i}
|S|
i=1,T), tx)

return t = (s, {ri, com′i}
|S|
i=1,a)

VfOffer(off, o)
parse off as

(
{tagi}

|S|
i=1, {{accRi,j}

|Ri|
j=1 }

|S|
i=1, {accTi , a

T
i , tyTi , ckTi }

|T |
i=1

)
parse accTi as (pki, comTi , ẽk, c̃k) and o as ({ri, com′i, ck′i}

|S|
i=1,a)

for all i ∈ [|S|] do
if com′i 6= Commit(tyi, ai; ck′i) then return ⊥
stmti := ({(pkRi,j , comRi,j)}

|Ri|
j=1 , tagi, com′i)

for all j ∈ [|T |] do
if comTj 6= Commit(tyTj , a

T
j ; ckTj) then return ⊥

return AsVerifySoK[Lring]({(ri, stmti)}|S|i=1,a, {accTj }
|T |
j=1)

VfTx(tx, t)
parse tx as

(
{tagi}

|S|
i=1, {{accRi,j}

|Ri|
j=1 }

|S|
i=1, {accTi }

|T |
i=1

)
parse accRi,j as (pkRi,j , comRi,j , ·)
parse accTi as (pki, comTi , ·)
parse t as (s, {ri, com′i}

|S|
i=1,a)

∀i ∈ [|S|] : stmti := ({(pkRi,j , comRi,j)}
|Ri|
j=1 , tagi, com′i)

b0 := |T | < 2α

b1 := AsVerifySoK[Lring]({(ri, stmti)}|S|i=1,a, {accTj }
|T |
j=1)

b2 := SoK[Lseal]Verify(s, stmt(tx), tx))
return b := b0 ∧ b1 ∧ b2

Fig. 8. SwapCT Construction

type ty and ck and then derives the tag for this account
from the tagging scheme.

With all accounts set up, Offer ensures sender
anonymity by creating a temporary commitment com′i
for each input i ∈ [|S|] with fresh randomness ck′i ∈ R.
It then calls the aggregatable signature scheme param-
eterized with the tagged ring signature language Lring.
The SoK for TRS requires the temporary commitment
com′i as well as the ring accounts as statement, which
is the input for the AsSign function. The transaction
output accounts accTi are used as messages. An offer
then consists of off(S,R, T), defined in Eq (1), and
o = ({ri, com′i, ck′i}

|S|
i=1, a).

With the underlying aggregatable signature scheme
AS, merging offers o1, o2 with Merge directly translates
to merging aggregatable signatures a1, a2. The offers
along with the temporary commitments com′ and autho-
rization signatures r are combined by using their union.

Offers are verifiable by VfOffer which checks that the
commitments com′, comT agree with the opened values
aS , tyS , aT , tyT and verifies o with AsVerify.

Once an offer is balanced and valid, it can be
sealed. Seal uses a SoK with the seal language Lseal

with a message of tx = tx(off) and a statement

stmt(tx) := ({com′i}
|S|
i=1, {comTj }

|T |
j=1) containing the

relevant intermediate commitments com′ and output
commitments comT . The matching witness is the
set of committed values: wit(S, {com′i, ck′i}

|S|
i=1, T) =

({tySi , aSi , ckSi }
|S|
i=1, {tyTj , aTj , ckTj }

|T |
j=1). The seal algo-

rithm operates on the temporary commitments com′
and keeps the real sender hidden in the set of ring ac-
counts. The TRS ensures that com′ commits to the same
type and value as the real input. The seal signature t

then contains the SoK signature s and all parts of the
offer signature o, without the temporary coin keys ck′.

Many public ledgers use financial incentives. We
suggest using a common native type for all incentives
(transactions fees and mining rewards) as it is equally
valued by every participant. A block reward is generated
by (accreward, ck) ← OTGen(ltpminer, areward, tynative)
and accreward is included in the block. A transaction
fee is handled by generating a commitment comfee =
Commit(tynative, afee, r) and appending it to the trans-
action with the plaintext values afee, r. A verifier checks
the commitment and then appends it to the Lseal state-
ment of output commitments {comTj }

|T |
j=1 ∪ {comfee}.

This assures that the inputs provide enough tokens in

SwapCT 283

the native type to satisfy all regular outputs and the fee.
In a swap, offers may include a small surplus of native
tokens not claimed by any output. The merger creates
a single commitment to the sum of surplus from each
offer and proceeds as explained above. Exchanges may
request operation fees. Therefore they accept only of-
fers which have the requested surplus to be claimed on
merging in a regular output to the exchange. Regarding
transaction size, this requires one additional input and
output for each merged transaction by the exchange.

A transaction is verified with VfTx which proceeds
similarly to VfOffer except that it does not verify the
openings of the commitments com′i and comTj but only
the aggregatable signature a. Instead, the commitments
are checked by verifying the seal signature s. ChkAcc and
ChkTag verify the consistency of the inputs by verifying
the THC and TAG schemes.

The construction is correct and adheres to the fol-
lowing security properties. The proofs thereof are pre-
sented in Appendix B.

Theorem 1 (Non Slanderability). If AS is extractable
and simulatable, TAG is related-input one-way, and h is
modeled as a random oracle, then the construction Ξ is
non-slanderable.
Theorem 2 (Theft Prevention). If THC is binding and
AS is secure and Ξ is non-slanderable, it prevents theft.
Theorem 3 (Balance). If THC is binding and
SoK[Lseal] is extractable and Ξ is non-slanderable the
construction is balanced.
Theorem 4 (Offer Privacy). If THC is hiding and
binding, PKE is IND-CCA secure and key-private, AS is
simulatable and private, and TAG is related-input pseudo
random, Ξ has offer privacy.
Theorem 5 (Transaction Privacy). If Ξ has offer pri-
vacy and SoK[Lseal] is simulatable, the construction Ξ
has transaction privacy.

9 Component Instantiation
In this section, we provide the instantiation for our ag-
gregatable anonymous signature scheme. For detailed
examples of instantiations of the tagging scheme and
the labeled public-key encryption scheme, we refer to
the Omniring paper [15]. The instantiation of the other
components are presented in Appendix A.

The main challenge of non-interactive privacy-
preserving swap transactions is to decouple authoriza-
tion signatures from the signed messages (spending

AsSign({(stmti,witi)}|S|i=1, {mj}|T |j=1)
~s, ~r

$
←− Z|T |q , C := D := ∅

for all j ∈ [|T |] do
Cj = GsjHrj

πTj ← SoK[Lped]Sign(stmt := Cj ,wit := (sj , rj),mj)
hj = h(mj ||Cj)

~x
$
←− Z|S|−1

q , x|S| :=
∑|T |

j=1
(hj + sj)−

∑|S|−1

i=1
xi

for all i ∈ [|S|] do
Di := Gxi , πSi ← SoK[Lcom]Sign(stmt := Di, wit := (xi), 42)
ri ← SoK[L]Sign(stmti,witi, Di)

a := ({(πSi , Di)}
|S|
i=1, {(π

T
j , Cj)}

|T |
j=1,
∑|T |

j=1
rj)

return ({ri}|S|i=1,a)

AsVerify({(ri, stmti)}|S|i=1, a, {mj}|T |j=1)
parse a as ({(πSi , Di)}

|S|
i=1, {(π

T
j , Cj)}

|T |
j=1, r)

Γ := H−r , ∆ = I
for all j ∈ [|T |] do

if SoK[Lped]Verify(stmt := Cj , π
T
j ,mj) = 0 then return 0

Γ := ΓCjGh(mj ||Cj)

for all i ∈ [|S|] do
if SoK[Lcom]Verify(stmt := Di, π

S
i , 42) = 0 then return 0

if SoK[L]Verify(ri, stmti, Di) = 0 then return 0
∆ := ∆Di

return b := Γ = ∆
AsMerge(a1, a2)

parse a1 as ({(πSi,1, Di,1)}|S1|
i=1 , {(π

T
j,1, Cj,1)}|T1|

j=1, r1)

parse a2 as ({(πSi,2, Di,2)}|S2|
i=1 , {(π

T
j,2, Cj,2)}|T2|

j=1, r2)

a = ({(πSi,1, Di,1)}|S1|
i=1 ∪ {(π

S
i,2, Di,2)}|S2|

i=1 ,
{(πTj,1, Cj,1)}|T1|

j=1 ∪ {(π
T
j,2, Cj,2)}|T2|

j=1, r1 + r2) return a

Fig. 9. Instantiation of AS

outputs). We, therefore, present a novel aggregatable
signature scheme AS which allows the non-interactive
merging of offers, as related aggregatable signature
schemes [3, 7] are not applicable in our setting.

Regarding privacy, our AS provides anonymity of
the mapping between individual messages and signa-
tures. Regarding security, tampering of messages is de-
tected by verifying the full set of messages and signa-
tures as a whole. The important feature which results
from these properties is the possibility for multiple par-
ties to generate such signatures which are later com-
bined into a single signature valid for the union of sig-
natures and messages. The aggregated signature is in-
distinguishable from one created by a single party.

We achieve this balance by introducing randomness
in the form of commitments and then revealing just
enough of this randomness such that verification is fea-
sible. Let G = (G, q, G,H) be a cyclic group G of prime
order q with generators G and H where the discrete log
assumption holds. Further, we require a hash function
h : {0, 1}∗ → Zq which could be implemented using a
random oracle. These, along with the language of the
actual SoK (Lring in our case) are returned as public
parameters by AsSetup.
Signing (Figure 9) Using the messages mj directly as
messages in SoK[L]Sign reveals the link between SoK

SwapCT 284

signatures and messages since the correct message is
required for verification. Therefore, a Pedersen commit-
ment Cj = GsjHrj to a random value sj ∈ Zq with
a blinding factor rj ∈ Zq is generated for each mes-
sage mj . To assure that the prover knows the random-
ness (sj , rj) and link the proof to the message, we re-
quire a SoK[Lped] πTj over the two exponents in each
commitment Cj . The language is defined as Lped :=
{C : ∃(s, r) s.t. C = Gs · Hr}. To get a scalar in Zq
we hash the concatenation of the message mj and the
commitment Cj to get hj = h(mj‖Cj). With the com-
mitment Cj and the correct message, a verifier can cal-
culate Ghj · Cj = Ghj+sj ·Hrj to verify if the messages
belong to the signatures.

The signature πTj is necessary, proving knowledge
about the values in the commitment. Without πTj , an
adversary, given r may calculateGs = Cj ·H−r and reuse
it in one of their commitments, convincing a verifier that
the original message and s are present. In conclusion, sj
is a hiding proxy for mj . Knowledge of sj is required to
change the message while keeping Ghj · Cj constant.

For a single message, the privacy is irrelevant, as
there was exactly one party involved. With multiple
messages however, we define a secret sum

∑|T |
j=1(hj+sj)

and a public sum r =
∑|T |
j=1 rj . Given the value of r, the

messages mj and commitments Cj , which imply hj , it
is infeasible for the verifier to calculate an individual sj .
It is also infeasible to change a message m∗j and adapt
some s∗j such that

∑|T |
j=1(hj + sj) stays constant with-

out knowing sj . Original signers can always replace their
offer from a merged set and add different offer.

We use this property to distribute the value
of
∑|T |
j=1(hj + sj) randomly over the messages for

SoK[L]Sign. For each signature, we create a simple com-
mitment Di = Gxi with the constraint that

∑|S|
i=1 xi =∑|T |

j=1(hj + sj). A pragmatic approach is to use |S| −
1 random values and calculate the last as x|S| :=∑|T |
j=1(hj + sj) −

∑|S|−1
i=1 xi. To assure the honest cre-

ation of these commitments, a valid SoK[Lcom] πSi must
be attached. An Argument of Knowledge is sufficient
here, so we use a constant message. The language is
defined as Lcom := {D : ∃x s.t. D = Gx}. We see
that the product of signing side commitments Di are
equal to the product of message commitments Cj with∏|S|
i=1Di = H−r ·

∏|T |
j=1(Ghj ·Cj) up to the randomness

Hr which is known to the verifier, as r is published.
Finally each SoK[L] ri is generated with the supplied
statements stmti and witnesses witi and the messages
Di. The aggregatable signature then consists of the com-

mitments Cj , Di with their SoK signatures πTj , πSi , the
SoK[L] signatures ri and the sum of blinding factors r.
Merging To merge two valid signatures a1, a2, it is suf-
ficient to add their randomness r1 + r2 = r and use the
union of the sets in a.
Verification If the publicly calculable product holds,
and all SoKs (πTj , πSi , ri) are valid, 1 is returned.

Our construction fulfills all required definitions
which are proven in Appendix B.

Theorem 6 (Secure). The construction for the aggre-
gatable signature is secure according to Definition 8.
Theorem 7 (Simulatable). The AS construction is
simulatable according to Definition 9.
Theorem 8 (Private). The construction for AS is pri-
vate according to Definition 10.

10 Evaluation
The offer and transaction sizes of our SwapCT system
are competitive. The parameters which influence the
transaction size are the number of inputsm, the number
of outputs n, and the size of the anonymity set r. We
denote the size of an elliptic curve point G̃ and a field
element Z̃, both 32 Bytes in our implementation with
curve25519. The final transactions consist of an offer
and a nearly constant seal signature (≈ 800B) which is
independent of r. Both together with outputs total to
rings: m · (5Z̃ + (2 + 1 + 4 + 2 · dlog2(r + 5)e)G̃)
aggregation: +m(1Z̃ + 2G̃) + n(2Z̃ + 2G̃) + 1Z̃
seal: +5Z̃ + (4 + 2dlog2(2 +m+ n+m ∗ n+ n ∗ 64)e)G̃
outputs +3G̃
While significantly better than Monero’s proofs (O(m ·
r + log(n))), we observe our size to be asymptotically
linear in m and n while the single type Omniring trans-
action has no linear components: O(log(r ·m+n)). The
possibility to non-interactively merge offers requires in-
dependent proofs for each input and output, prohibiting
aggregation. However, we achieve a similar logarithmic
dependency on r. Absolute transaction sizes are shown
in Figure (10a) where a common transaction (4 in/4
out) requires approximately 5 kB (offer: 4.5 kB, seal:
0.8 kB). These sizes even hold for ring sizes of 1000, out
of reach for the current Monero transaction signatures.

To show the applicability of our SwapCT scheme,
we implemented a prototype in rust based on
curve25519_dalek [14]. All benchmarks are compiled
with rustc 1.48 and run on a ThinkPad T460p with
a i7-6820HQ CPU running kubuntu 20.10 on kernel

SwapCT 285

24 26 28 210

103

104

105

106

(a) Ring size

si
ze

in
B
yt
es

Monero, 4 Monero, 2

SwapCT, 4 SwapCT, 2

Omniring, 4 Omniring, 2

seal sig, 4 seal sig, 2

0 10 20
0

1

2

(b) # inputs and outputs

G
en

er
at
io
n
tim

e
in

s offer+seal, 123

offer+seal, 11

seal

Omniring, 123

Monero, 123

Monero, 11

0 10 20
0

200

400

(c) # inputs and outputs

Ve
rifi

ca
tio

n
tim

e
in

m
s offer+seal, 123

offer+seal, 11

seal

Omniring, 123

Monero, 123

Monero, 11

Fig. 10. a)Transaction size for 4 and 2 inputs and outputs depending on the ring size. For Omniring, we assumed a common ring size
of r. Run time for (b) transaction generation with ring size independent sealing time part and (c) transaction verification with a ring
independent seal verification in SwapCT, Omniring and Monero (RCTsimple) with same number of inputs and outputs for two different
ring sizes r ∈ {11, 123} (Monero’s default is 11 and there is no Omniring data for 11, as the ring size must be larger than number of
inputs). The points show the median and the error bars the minimum and maximum time of 30 runs.

5.8.0-43. Timings for your hardware are easily generated
by running our published code at https://github.com/
SwapCT/SwapCT. We provide a Dockerfile with all de-
pendencies, however execution in a container might im-
pact performance. For comparison, we chose Monero’s
RCTsimple as it is the only system with an implementa-
tion available, which includes all aspects of transaction
generation, e.g. encryption of account values. For a bet-
ter comparison to Omniring, we implemented a full Om-
niring system and provide a performance comparison in
the omniring branch.

Compared to systems without swaps, the total time
to create a SwapCT transaction consists of creating an
offer and then sealing it (Figure 10b). Either a single
signer creates a balanced offer themselves, or multi-
ple offers are merged by a sub millisecond operation
of adding randomness. Signing an offer depends on the
anonymity set size. A transaction always requires a seal-
ing operation, independent of the anonymity set size,
which is shown as an offset.

The verification in SwapCT consists of the same two
parts (Figure 10c). An ring size independent seal signa-
ture verification and the offer verification. As Monero
only supports complete transactions, we compare the
sum of necessary steps in SwapCT (offer+seal and ver-
ify offer+verify seal) to the Monero implementation.

While our prototype is slightly slower than Mon-
ero, it is comparable to a deployed production system
with fewer features. The largest discrepancy for low ring
size transaction verification is the result of meticulous
optimization of the Monero verification code over mul-
tiple years, as it is run by every participant. For larger
anonymity sets, we perform on par, showing that our

protocol works efficiently and is production-ready after
a security audit of the implementation.

11 Conclusion
With our SwapCT, we present a novel decentral-
ized transaction system which supports both privacy-
preserving transactions and non-interactive atomic
swaps. We formalize the system and provide an efficient
instantiation which offers logarithmically sized transac-
tions for large anonymity sets. For this, we propose our
novel aggregatable anonymous signature, a new scheme
for non-interactive merging of partial transactions. Our
prototype implementation demonstrates equal perfor-
mance to current systems that do not support multiple
tokens or swap transactions. Thereby, our SwapCT sys-
tem enables secure and private trading of multiple types
for decentralized transaction systems and digital cur-
rencies. At a larger scale, our system allows anyone to
operate a fully functional decentralized token exchange.

Acknowledgements
We thank the anonymous reviewers and our shepherd,
Pedro Moreno-Sanchez, for their helpful comments in
improving this work. This work was partially supported
by a fellowship within the IFI programme of the Ger-
man Academic Exchange Service (DAAD) and partially
funded by the Carlsberg Foundation under the Semper
Ardens Research Project CF18-112 (BCM).

https://github.com/SwapCT/SwapCT
https://github.com/SwapCT/SwapCT

SwapCT 286

References
[1] K. M. Alonso and J. Herrera-Joancomartí. Monero - privacy

in the blockchain. IACR Cryptology ePrint Archive, 2018.
[2] O. Andreev, B. Glickstein, V. Niu, T. Rinearson, D. Sur, and

C. Yun. Zkvm: fast, private, flexible blockchain contracts.
Technical report, 2019.

[3] A. Bagherzandi and S. Jarecki. Identity-based aggregate and
multi-signature schemes based on rsa. In P. Q. Nguyen and
D. Pointcheval, editors, Public Key Cryptography – PKC
2010. Springer, 2010.

[4] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018.

[5] M. Chase and A. Lysyanskaya. On signatures of knowledge.
In International Cryptology Conference. Springer, 2006.

[6] U. W. Chohan. The problems of cryptocurrency thefts and
exchange shutdowns. Available at SSRN 3131702, 2018.

[7] J. M. de Fuentes, L. González-Manzano, J. Tapiador, and
P. Peris-Lopez. Pracis: Privacy-preserving and aggregatable
cybersecurity information sharing. Computers & Security,
2017. Security Data Science and Cyber Threat Mgnt.

[8] A. Deshpande and M. Herlihy. Privacy-preserving cross-chain
atomic swaps. In International Conference on Financial
Cryptography and Data Security. Springer, 2020.

[9] J. Don, S. Fehr, and C. Majenz. The measure-and-
reprogram technique 2.0: multi-round fiat-shamir and more.
In Annual International Cryptology Conference, pages 602–
631. Springer, 2020.

[10] S. Eskandari, S. Moosavi, and J. Clark. Sok: Transparent
dishonesty: front-running attacks on blockchain. 2019.

[11] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In A. M.
Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86.

[12] G. Fuchsbauer, M. Orrù, and Y. Seurin. Aggregate cash
systems: A cryptographic investigation of mimblewimble. In
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 2019.

[13] Z. Gao, L. Xu, K. Kasichainula, L. Chen, B. Carbunar,
and W. Shi. Private and atomic exchange of assets over
zero knowledge based payment ledger. arXiv preprint
arXiv:1909.06535, 2019.

[14] Isis Agora Lovecruft and Henry de Valence.
curve25519_dalek https://doc.dalek.rs/curve25519_dalek/.

[15] R. W. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K.
Thyagarajan, and J. Wang. Omniring: Scaling private pay-
ments without trusted setup. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communica-
tions Security, 2019.

[16] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Sri-
vastava, K. Hogan, J. Hennessey, A. Miller, A. Narayanan,
et al. An empirical analysis of traceability in the monero
blockchain. PoPETs, 2018.

[17] A. Poelstra, A. Back, M. Friedenbach, G. Maxwell, and
P. Wuille. Confidential assets. In Financial Cryptography
Bitcoin Workshop, 2017.

[18] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza. Zerocash: Decentralized anony-

mous payments from bitcoin. In Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 2014.

[19] F. Vogelsteller and V. Buterin. Erc-20 token standard.
Ethereum Foundation, Switzerland, 2015.

[20] T. H. Yuen, S.-f. Sun, J. K. Liu, M. H. Au, M. F. Esgin,
Q. Zhang, and D. Gu. Ringct 3.0 for blockchain confidential
transaction: Shorter size and stronger security. In Inter-
national Conference on Financial Cryptography and Data
Security. Springer, 2020.

[21] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-Kogias,
P. Moreno-Sanchez, A. Kiayias, and W. J. Knottenbelt. Sok:
Communication across distributed ledgers. 2019. https:
//eprint.iacr.org/2019/1128.

[22] Y. Zheng, H. Ye, P. Dai, T. Sun, and V. Gelfer. Confidential
assets on mimblewimble. rin, 1000:1, 2020.

A Components
We construct THC like confidential assets which satisfies
the following properties.
Definition 11 (Binding). A THC scheme is value bind-
ing, if for any adversary A and any λ, it holds that

Pr

 ty = ComTypeGen(i), ty′ = ComTypeGen(i′)
Commit(ty, v; r) = Commit(ty′, v′; r′)

i 6= i′ ∨ (i = i′ ∧ v 6= v′)

∣∣∣∣∣∣
pp← ComSetup(1λ), (i, i′, v, v′, r, r′)← A(pp)

]
< negl(λ)

Definition 12 (Hiding). A THC scheme is hiding, if
for any λ and any adversary A it holds that∣∣∣∣∣∣∣∣∣∣
Pr
[
b′ ← A(pp, com), b = b′

∣∣
pp← ComSetup(1λ), r $←− R, b $←− {0, 1}

(i0, i1, v0, v1)← A(pp)
com = Commit(ComTypeGen(ib), vb; r)

− 1
2

∣∣∣∣∣∣∣∣∣∣
< negl(λ)

Let G = (G, q, G) be a secure group and H : {0, 1}∗ →
G a hash function. The randomness space is R := Z2

q ,
M := Zq. A type is the hash of its name ty = H(name)
and thereby T := G. To commit, calculate (ty ·Gr, tya ·
Gra+s) := Commit(ty, a; (r, s)).
Theorem 9 (Updatable). For any i, i′ ∈ {0, 1}∗

and ty = ComTypeGen(i), ty′ = ComTypeGen(i′)
with (T, V) = Commit(ty, a; (r, s)) and (T ′, V ′) =
Commit(ty′, a′; (r′, s′)) it holds that i = i′, if there ex-
ists a PPT algorithm to compute φ1 in T · T ′−1 = Gφ1 .
If additionally φ2 in V ·V ′−1 = Gφ2 is PPT computable,
ty = ty′ and a = a′ holds. Proof in Appendix B.
The Omniring tagging scheme is used as an ex-
ample: Let TagKGen(x) = Hx with H ∈ G and
TagEval(x) = G

1
x . We denote the vector exponentia-

tion as G◦~v := (Gv1 , . . . , Gvn). For a scalar s we define

https://doc.dalek.rs/curve25519_dalek/
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2019/1128

SwapCT 287

~sn := (s0, s1, . . . , sn−1). An ordered set {Ai}ki=1 may be
interchangeably written as vector ~A = (A1, . . . , Ak).

For the languages Lcom and Lped we use a standard
sigma protocol and transform it to a SoK. As both the
Tagged Ring Signature and the Seal Signature are based
on a Signature of Knowledge, we first describe a generic
efficient SoK based on the Bulletproof and Omniring
structure and then parametrize it for each of the pur-
poses. Let again be G = (G, q, G,H) a cyclic group G of
prime order q with generators G and H where the dis-
crete log assumption holds. The goal of this signature is
to prove the knowledge of the vectors ~cL,~cR which sat-
isfy a set of conditions relative to publicly known group
elements ~K and inner product relations. The parameters
of the system consist of two witness vectors ~cL ∈ Zmq and
~cR ∈ Zmq of length m. They may be dependent on the
challenge variables u, v. Each vector is composed of two
parts ~cL = (~cL,1‖~cL2) and ~cR = (~cR,1‖~cR2) where ~cL,1
and ~cR,1 are both of length n with n ≤ m. The second
parameter is a vector of public group elements ~K ∈ Gn,
which may depend on u, v and fulfills the condition that
the product of element-wise exponentiation by ~cL,1 re-
sults in the identity element I =

∏
~K◦~cL,1 . Additionally

it accepts constraints in a very specific form. Each con-
straint ~vi,~v′i ∈ Zmq may be parameterized by u, v, y. For
each i, the structure of the constraint can fall into one
of the following four constraints classes, where ci is effi-
ciently computable by the verifier: mul: 〈~cL,~cR◦~vi〉 = ci,
dir: 〈~cL,~vi〉 = ci, sum: 〈~cL,~vi〉 + 〈~cR,~v′i〉 = ci, and one:
〈~cL − ~cR − ~1m,~vi〉 = ci. The prover P and verifier V
engage in the following interaction:
V: u, v $←− Zq, F

$←− G, ~P $←− Gn, ~G′ $←− Gm−n, ~H $←− Gm

P ← V: u, v, F, ~P , ~G′, ~H
P,V: For w ∈ Zq define ~Gw := (~K◦w ◦ ~P‖~G′)
P: rA

$←− Zq, A := F rA ~G~cL0
~H~cR and P → V: A

V: w $←− Zq and P ← V: w

P: 1. ~sL
$←− Zmq , ~sR = (∀i ∈ [m] :

{
0 if ~cR[i] = 0

s
$←− Zq else

)

2. rS
$←− Zq, S := F rS ~G~sLw

~H~sR and P → V: S
V: y, z $←− Zq and P ← V: y, z

Now the prover and the verifier compress the
constraints of the parametrization. Each constraint
~vi has an index i and cls(~vi) returns the class
{mul, dir, sum, one} of the constraint. Define:

~Θ :=
∑

i:cls(~vi)=mul
zi~vi ~µ :=

∑
i:cls(~vi) 6=mul

zi~vi
~ν :=

∑
i:cls(~vi)=one

zi~vi ~ω :=
∑

i:~v′
i
6=0 z

i~v′i
~α := ~Θ◦−1 ◦ (~ω − ~ν) ~β := ~Θ◦−1 ◦ µ
δ := 〈~α, ~µ〉+ 〈~1m, ~ν〉+

∑
i
zici

P: Define polynomials in X: l(X) := ~cL+~α+~sL ·X and
r(X) := ~Θ · (~cR + ~sR ·X) + ~µ with
t(X) := 〈l(X), r(X)〉 = δ + t1X + t2X

2 for some t1
and t2, let τ1, τ2

$←− Zq, T1 := Gt1F τ1 , T2 := Gt2F τ2

P → V: T1, T2 and V: x $←− Zq, Q
$←− G and P ← V: x,Q

P: 1. τ := τ1x+ τ2x
2, r := rA + rSx

2. (~l, ~r, t) := (l(x), r(x), t(x))
3. padd ~l and ~r with 0 to the next power 2 length.
4. πIP ← IPprove(~l, ~r, ~Gw, ~H

~Θ◦−1
, Q)

P → V: τ, r, πIP, t

V: calculate P = ASx ~G~αw
~H
~β · F−r · Qt and verify

IPvf(πIP, ~Gw, ~H
~Θ◦−1

, P,Q) = 1∧ GtF τ = GδTx1 T
x2

2
We use the inner product protocol (IPprove, IPvf)
from Bulletproofs which satisfies the language LIP :=(

(P,Q,G,H) ∈ G : ∃~l, ~r ∈ Zmq s.t. P = ~G◦
~l ~H◦~rQ〈

~l,~r〉
)

We instantiate the tagged ring signature by spec-
ifying the parameters of the previously defined effi-
cient SoK. Using the concrete instantiations for THC
(com := (T, V)) with Theorem 9 and TAG, we get the
following language LringTHC,TAG

:=

stmt = ({(pki, (Ti, Vi))}

|R|
i=1, tag, (T ′, V ′)) :

∃wit = (j, x, a, ty, (r, s), (r′s′)) s.t.
~pk
◦~ej = Hx, tag = Gx

−1
,
∏

(~T · T ′−1)◦~ej = Gφ1∏
(~V · V ′−1)◦~ej = Gφ2 , ~ej unit vector , |~ej | = |R|

Given the challenge variables u, v from the SoK sys-
tem, we compress the conditions into ~K′ := ~pk ◦ (~T ·
T ′−1)◦u ◦ (~V · V ′−1)◦u2 . To satisfy

∏
~K◦~cL,1 = I and

check for a correct tag, we extend ~K′ with tag, G,H.
The encoding for ~cL,1 is chosen appropriately with
ξ = −uφ1 − u2φ2 − u3x−1 with φ1(r, r′) = r − r′ and
φ2(a, r, s, r′, s′) = ar + s− ar′ − s′. It combines to

K :=
(

tagu3
‖G‖ H ‖ ~K′

)
~cL := (1 ‖ ξ ‖ −x ‖ ~ej ‖φ1‖φ2)
~cR := (0 ‖0‖x−1‖~ej − ~1|R|‖ 0 ‖ 0)

To enforce correct witness encoding, we define inner
product relations. A constraint is parameterized by the
variables u and v as well as a new challenge y:

~v0 := (0‖0‖ 0 ‖~y|R|‖0‖ 0) 〈~cL, ~cR ◦ ~v0〉= 0
~v1 := (0‖0‖ 0 ‖~y|R|‖0‖ 0)〈~cL − ~cR − ~1m, ~v1〉= 0
~v2 := (y‖0‖ 0 ‖1|R|‖0‖ 0) 〈~cL, ~v2〉= 〈~12, ~y2〉
~v3 := (0‖1‖ 0 ‖~0|R|‖u‖u2)
~v′3 := (0‖0‖u3 ‖~0|R|‖0‖ 0) 〈~cL, ~v3〉+ 〈~cR, ~v′3〉= 0
~v4 := (0‖0‖−y‖~0|R|‖0‖ 0) 〈~cL, ~cR ◦ ~v4〉= y

Using these parameters, we get an efficient SoK for the
Tagged Ring Signature which has logarithmic communi-
cation size in the members of the ring allowing for large
anonymity sets with small proof sizes.

SwapCT 288

The seal signature uses the same efficient generic
SoK. Here we describe the preparation of the parame-
ters. Using THC and Theorem 9, we get LsealTHC

:=

stmt = ({(T ′i , V ′i)}|S|i=1, {(TTi , V Ti)}|T |j=1) :
∃wit = ({ty′i, a′i, (r′i, s′i)}

|S|
i=1, {tyTj , aTj , (rTj , sTj)}|T |j=1) :

∀j ∈ [|T |] :

{∏
TTj · ~T ′

◦−eij = Gφ1,j

V Tj = TTj
aTj Gs

T
j , aTi ∈ {0, . . . , 2β − 1}∏|S|

i=1 V
′
i ·
∏|T |
j=1 V

T
j
−1 = Gφ2

To compress this into a compact form with the least
group elements possible, we require G, ~TT , ~T ′ and one
publicly computable element V̂ which contribute to ~K.
The secret exponent ~cL,1 of ~K to enforce the constraints
and result in the identity, are constructed as follows:

K :=
(
G‖ ~TS ‖~T ◦u·~v

|T |
T ‖V̂

)
~cL,1 := (ξ ‖ ~̂e ‖ ~aT ‖1‖ v(E) ‖ v(B))
~cL,1 := (0‖~0|S|‖ ~0|T | ‖0‖v(E)− ~1|T |·|S|‖v(B)− ~1|T |β)

V̂ =
∏

~T ◦−~v
|T |

T︸ ︷︷ ︸
Surjection

·
∏

~V ◦−u·~v
|T |

T︸ ︷︷ ︸
Commitments

·
∏

~V ◦u
2

S ·
∏

VT
◦−u2︸ ︷︷ ︸

Equality
φ1(~rT , ~r′,E, v) = 〈~v|T |, ~rT + E~r′〉 =

∑
j φ1,j

φ2(~r′, ~s′,~a′, ~rT , ~sT ,~aT) = 〈~1|S|,~a′ ◦ ~r′ + ~s′〉 − 〈~1|T |,~aT ◦
~rT + ~sT 〉, ξ = −φ1 + u〈~v|T |, ~sT 〉 − u2φ2

v(E) := (~e1j‖~e2j‖ . . . ‖~e|T |j) and ~̂e = ~v|T |E
bin(a) := β -bit binary representation of a
v(B) := (bin(aT1)‖ . . . ‖bin(aT|T |))
To enforce the two constraints above on the encoded
witness, we again define inner product relations similar
to Bulletproofs. They are parameterized by u, v, y:

~v0 := (0‖ ~0|S| ‖ ~0|T | ‖ 0 ‖ ~y|T |·|S|+|T |β)
~v1 := (0‖ ~0|S| ‖ ~0|T | ‖ 0 ‖ ~y|T |·|S|+|T |β)
~v2 := (0‖ ~0|S| ‖ ~0|T | ‖y|T |‖~y|T | ⊗ ~1|S|‖ ~0|T |β)
~v3 := (0‖ ~0|S| ‖−~y|T |‖ 0 ‖ ~0|T |·|S| ‖~y|T | ⊗ ~2β)
~v4 := (0‖−~y|S|‖ ~0|T | ‖ 0 ‖~v|T | ⊗ ~y|S|‖ ~0|T |β)

with 〈~cL,~cR ◦~v0〉 = 0, 〈~cL−~cR−~1m,~v1〉 = 0, 〈~cL,~v2〉 =
〈~1|T |+1, ~y|T |+1〉, 〈~cL,~v3〉 = 0, and 〈~cL,~v4〉 = y.

Theorem 10 (SoK Signatures). Given the parameters
above, the resulting protocols are perfectly complete, per-
fectly special honest-verifier zero-knowledge and loga-
rithmic round arguments of knowledge schemes for Lring

and Lseal. Given witness-extended emulation and com-
putationally unique responses, they are transformable to
perfectly complete, extractable, perfectly simulatable sig-
natures of knowledge for the languages and any message
m ∈ {0, 1}∗ using Fiat-Shamir [11] which holds for mul-
tiple rounds [9, Thm. 23]. As the simulator and an ex-

traction proofs follow the same structure as Omniring
proofs we refer the reader to Lai et al. [15].

B Construction Security Proofs
As we use the same TAG scheme as Omniring, and their
security proof for non-slanderability requires only a sim-
ulator for the transaction signature, Theorem 1 holds in
our setting, as our new transaction signature is simulat-
able by AsSimLring (Theorem 7) and SoK[Lseal]Sim.

Proof of Theorem 2 (Theft). For ChkTag to be compu-
tationally binding, assume a PPT adversary which
outputs two valid openings (acc, sk, tag, sk′, tag′). The
validity requires pk = TagKGen(sk) = TagKGen(sk′)
which forces sk = sk′ because TagKGen is a bijection.
As TagEval is deterministic, tag = tag′, contradicting
(sk, tag) 6= (sk′, tag′)

ChkAcc is binding because it requires
Commit(ty, a; ck) = Commit(ty′, a′; ck′) with (ty, a) 6=
(ty′, a′) which contradicts the THC binding property.

We show that an adversary cannot change a valid of-
fer off := ({tag, ·}|S|i=1,R, {accTi , ·}

|T |
i=1), o := ({ri, ·}|S|i=1, a)

to off′ := ({tag′, ·}|S
′|

i=1,R′, {acc′Ti , ·}
|T ′|
i=1), o′ :=

({r′i, ·}
|S′|
i=1, a

′), such that it is valid (VfOffer(off′, o′) = 1),
reuses a tag from off ({tag′i}

|S′|
i=1 ∩ {tagi}

|S|
i=1 6= ∅) and

changes or removes an output accT from off.
Assume that some tag∗ ∈ {tagi}

|S|
i=1 from off

is reused in off′ (tag∗ ∈ {tag′i}
|S′|
i=1) and an output

accT∗ ∈ {accTi }
|T |
i=1 was modified or removed (accT∗ 6∈

{acc′Ti }
|T ′|
i=1). As the offer off′ is valid, this implies that

a′ is valid by AsVerify in VfOffer. The security of the AS
scheme from Definition 8 then implies that no signature
was reused ({ri}|S|i=1 ∩ {r′i, }

|S|
i=1 = ∅), as at least one out-

put message, namely accT∗ , was changed. An efficient ad-
versary against Theorem 2 can be used to construct an
efficient adversary against the security of SoK[Lring] as
the verification in AsVerifySoK[Lring] requires that for each
SoK[Lring]Verify(ri, stmti, ·) = 1. The non-slanderability
of Theorem 1 prevents exactly this.

Proof of Theorem 3 (Balance). To show the bal-
ance property, we proceed by constructing an effi-
cient extractor E . As VfTx(tx, t) = 1 implies that
SoK[Lseal]Verify(t, stmt(tx), tx) = 1. Then there ex-
ists an efficient extractor SoK[Lseal]EA extracting a
wit for stmt(tx). Parse the statement as stmt =
({com′i}

|S|
i=1, {comTj }

|T |
j=1) and the witness as wit =

({tySi , aSi , ck′i}|S|i=1, {tyTj , aTj , ckTj }
|T |
j=1) where ∀i ∈ [|S|] :

SwapCT 289

com′i = Commit(tySi , aSi ; ck′i) ,∀j ∈ [|T |] : comTj =
Commit(tyTj , aTj ; ckTj) ,∀ty ∈ {tyTj }

|T |
j=1 :

∑
{aSi |tySi =

ty}|S|i=1 =
∑
{aTi |tyTi = ty}|T |i=1 holds. This directly

implies the following conditions of the balance ex-
periment: ∀i ∈ [|T |],ChkAcc(accTi , aTi , tyTi , ckTi) = 1 ,
∀i ∈ [|T |], tyTi ∈ {tySj }

|S|
j=1 and ∀ty ∈ {tyTi }

|T |
i=1 :∑

{aSi |tySi = ty}|S|i=1 =
∑
{aTi |tyTi = ty}|T |i=1.

The validity of VfTx(tx, t) = 1 additionaly re-
quires AsVerifySoK[Lring]({(ri, stmti)}|S|i=1, a, {accTj }

|T |
j=1) =

1. This is only true, if for each i ∈ [|S|]:
SoK[Lring]Verify(ri, stmti, ·) = 1 holds. Due to
the extended witness emulation of SoKs, there
exist efficient extractors SoK[Lring]EA,i extract-
ing witi for stmti. Parse the statements as
stmti = ({(pki,k, comi,k)}|R|k=1, tagi, com′i) and the
witnesses as witi = (ji, ski, aSi , tySi , ckSi , ck′i). Lring
then enforces pkji = TagKGen(ski), tagi =
TagEval(ski), comi,ji = Commit(tyi, ai; cki) and
com′i = Commit(tyi, ai; ck′i) which implies the re-
maining conditions of the balance experiment,
namely for each i, ChkTag(accRi,ji , ski, tagi) = 1 and
ChkAcc(accRi,ji , a

S
i , tySi , ckSi) = 1 hold. With a binding

THC, intermediate commitments com′i commit to the
same witnesses (aS , tyS) in Offer and Seal.

Proof of Theorem 4 (Offer Privacy). We use a series of
hybrids to prove the offer privacy by progressing in in-
distinguishable steps from the experiment with b = 0 to
b = 1. The hybrids are defined as:
OHyb1 is the same as OffPv0

A
OHyb2 differs in that the aggregatable signature AS
in Offer is simulated by AsSimLTRS (). The information
available to the Adversary are off0 which includes off0 =(
{tag0,i, a

S
0,i, tyS0,i}

|S|
i=1, {{accRi,j}

|Ri|
j=1 }

|S|
i=1, {accT0,i, aTi , tyTi ,

ckT0,i}
|T |
i=1
)
and the intermediate commitment with coin

key {com′0,i, ck′0,i}
|S|
i=1. Everything else in the signature

o0 = ({(r0,i, com′0,i, ck′0,i)}
|S|
i=1, a0) is simulated. Val-

ues indepent of b are ignored, reducing the data to(
{tag0,i}

|S|
i=1, {accT0,i, ckT0,i}

|T |
i=1

)
and {com′0,i, ck′0,i}

|S|
i=1

OHyb3 changes the intermediate commitment to

{com′1,i, ck′1,i}
|S|
i=1, leaving

(
{tag0,i}

|S|
i=1, {accT0,i, ckT0,i}

|T |
i=1

)
OHyb4 changes the tags to the experiment with

b = 1, resulting in
(
{tag1,i}

|S|
i=1, {accT0,i, ckT0,i}

|T |
i=1

)
and

{com′1,i, ck′1,i}
|S|
i=1

OHyb5 : The output accounts consist of a public key and
a commitment accT0,i = (pkT0,i, comT0,i). First we change

the public keys to
(
{tag1,i}

|S|
i=1, {pkT1,i, comT0,i, ckT0,i}

|T |
i=1

)
and {com′1,i, ck′1,i}

|S|
i=1

OHyb6 changes output commitments and coin

keys to
(
{tag1,i}

|S|
i=1, {pkT1,i, comT1,i, ckT1,i}

|T |
i=1

)
and

{com′1,i, ck′1,i}
|S|
i=1

OHyb7 reverts to the real signature AsSign instead of
the simulated one, which results in OffPv1

A.
We now show the indistinguishability of the hybrids.

OHyb1 ≡ OHyb2 follows from the simulatability of AS.
OHyb2 ≡ OHyb3 : To show the equivalence, we define
|S| + 1 sub-hybrids where each changes one interme-
diate commitment. The first sub-hybrid is equal to
OHyb2,0 = OHyb2 and the last is OHyb2,|S| = OHyb3.
In OHyb2,l the information available to the adversary is(
{tag0,i}

|S|
i=1, {accT0,i, ckT0,i}

|T |
i=1

)
and {com′1,i, ck′1,i}li=1 ∪

{com′0,i, ck′0,i}
|S|
i=l+1. To show that OHyb2,l−1 ≡ OHyb2,l

we know that the amount aSl and type tySl committed
to in com′k,l are equal for both k ∈ {0, 1}. The coin keys
ck′k,l are distributed uniformly at random. Thereby, the
commitment com′1,l is fully defined.
OHyb3 ≈c OHyb4 : To show the indistinguisha-
bility of the tags, we again define |S| +
1 sub-hybrids with OHyb3,0 = OHyb3 to
OHyb3,|S| = OHyb4. The information in OHyb3,l

is
(
{tag0,i}li=1 ∪ {tag1,i}

|S|
i=l+1, {accT0,i, ckT0,i}

|T |
i=1

)
and {com′1,i, ck′1,i}

|S|
i=1. The indistinguishability

OHyb3,l−1 ≈c OHyb3,l holds because TagEval is called
with a uniformly random value x + s. According to
the related-input pseudorandomness of TAG, tag0,l and
tag1,l are indistinguishable.
OHyb4 ≡ OHyb5 : To show the equivalence, we define
|T | + 1 sub-hybrids where each changes one public
key of the account. The first sub-hybrid is equal to
OHyb4,0 = OHyb4 and the last is OHyb4,|T | = OHyb5.
In OHyb4,l the information available to the adversary is(
{pkT1,i, comT0,i, ckT0,i}li=1 ∪ {pkT0,i, comT0,i, ckT0,i}

|T |
i=l+1

)
,

{tag1,i}
|S|
i=1 and {com′1,i, ck′1,i}

|S|
i=1. As pkT0,l and pkT1,l are

identically distributed, OHyb4,l−1 ≡ OHyb4,l holds.
OHyb5 ≡ OHyb6 : To show the equivalence, we define
|T |+1 sub-hybrids where each commitment and coin key
is changed by the same argument as in OHyb2 ≡ OHyb3.
OHyb6 ≡ OHyb7 holds by the simulatability of AS.

Proof of Theorem 5 (Transactions). Similarly to
the offer privacy, we prove the transaction pri-
vacy with a set of hybrids. First, simulate with
SoK[Lseal]Sim(stmt(tx), tx) in Seal and AsSimLTRS in
Offer. Then gradually change the information to the ad-
versary from

(
{tag0,i}

|S|
i=1, {accT0,i}

|T |
i=1

)
and {com′0,i}

|S|
i=1

SwapCT 290

to the hybrid with b = 1:
(
{tag1,i}

|S|
i=1, {accT1,i}

|T |
i=1

)
and

{com′1,i}
|S|
i=1. Finally change the simulated proofs back

to real ones. The hybrids are indistinguishable due to
the existence of simulators, hiding commitments and
tags as in the previous proof.

C Component Security Proofs
Proof of Theorem 9 (Update). We show that THC is
binding according to Definition 11. Given a discrete log
challenge chl = (G,Gγ) ∈ G2, we define an oracle HO for
the adversary to use. Sample a secret sk $←− {0, 1}λ and
define a new hash function h : {0, 1}∗ → Zq. On input
of i, calculate b = h(i‖sk) mod 2 and return (Gγ)h(i‖sk)

if b = 0 and Gh(i‖sk) otherwise. The output is indistin-
guishable from a uniformly random distribution over G.

Assume that an efficient adversary A exists, which
returns i, i′, v, v′, (r, s), (r′, s′) ← AHO (pp) for which
Commit(ty, v; r, s) = Commit(ty′, v′; r′, s′) ∧ (i 6= i′ ∨ (i =
i′ ∧ v 6= v′)) holds with ty = ComTypeGen(i) and
ty′ = ComTypeGen(i′).

This is equal to HO(i)Gr = HO(i′)Gr′ and
HO(i)vGrv+s = HO(i′)v′Gr′v′+s′ . We have two cases:
For i = i′ the pre-image is equal, so v 6= v′ is true and
v−v′ 6= 0. Then HO(i)v−v′ = Gr

′v′+s′−rv−s. In 1
2 of the

executions, h(i‖sk) ≡ 0 mod 2, and thereby (Gγ)v−v′ =
Gr
′v′+s′−rv−s from which we return γ = r′v′−rv

v−v′ to chl.
For i 6= i′ with different identifiers, it holds
with 1

2 probability, that h(i‖sk) 6≡ h(i′‖sk)
mod 2. Without loss of generality, assume
HO(i) = Gh(i‖sk) and HO(i′) = Gγh(i′‖sk). From(
Gh(i‖sk))v Grv+s =

(
Gγh(i′‖sk)

)v′
Gr
′v′+s′ we calcu-

late γ = vh(i‖sk)+rv+s−r′v′−s′
v′h(i′‖sk) and return γ to solve chl.

In both cases, independent of the adversary’s choice of
i, i′, we have 1

2 > negl(λ) chance to solve the dlog chal-
lenge. Therefore we conclude that no efficient adversary
against the binding property exists.

We show that from an efficient adversary A
against the update Theorem 9, we can derive an ef-
ficient Adversary for the binding property of Def. 11
which proceeds as follows: Sample i

$←− {0, 1}∗ and
v, r, s, v′, r′, s′

$←− Zq with v 6= v′. Then commit
(T, V) = Commit(ComTypeGen(i), v; r, s) and (T ′, V ′) =
Commit(ComTypeGen(i), v′; r′, s′). Invoke the adversary
to get a φ2 for which V · V ′−1 = Gφ2 holds. From
this calculate the discrete logarithm of H(i) to base G

as φ2−vr−s+v′r′+s′
v−v′ from which an efficient adversary

against the binding property is easily constructed.

Proof of Theorem 6 (Security). To show the security of
our AS scheme, we start with the most simple scenario
of one signature and one message. Then we use the ad-
versary A to efficiently construct an adversary against
the discrete logarithm problem. Given a challenge chl =
(G,Gγ) we proceed as follows. 1. Sample a statement
and witness (stmt1,wit1) ∈ RL. 2. Sample a message
m1 ∈ {0, 1}∗ and r1 ∈ Zq. 3. Calculate C1 = GγHr1 .
4. Simulate πT1 = SoK[Lped]Sim(stmt = C1,m1). 5. Cal-
culate h1 = h(m1||C1) and D1 = Gγ · Gh1 . 6. Simulate
πS1 = SoK[Lcom]Sim(stmt = D1, 42). 7. Sign D1 with
r1 = SoK[L]Sign(stmt1,wit1, D1). This results in a valid
aggregated signature

(
{r1}, ({(πS1 , D1)}, {(πT1 , C1)}, r)

)
for stmt1 and m1. The adversary A, given the signa-
ture above, is able to output a new valid signature
for
(
{r1} ∪ {ri}|S|i=2, ({(π′

S
i , D

′
i)}
|S|
i=1, {(π′

T
j , C

′
j)}
|T |
j=1, r

′)
)

which uses the same r1 along with possible other sig-
natures {ri}|S|i=2 but a set of messages M = {m′j}

|T |
j=1

which does not include m1 (m1 6∈ M). As r1 is a
secure signature, it follows that D′1 = D1 = Gγ ·
Gh1 . For all other {D′i}

|S|
i=2 created by A, we use

the efficient extractor SoK[Lcom]E which exists due to
SoK[Lcom]Verify(π′Si , D′i, 42) = 1 to extract {x′i}

|S|
i=2 from

{π′Si }
|S|
i=2 for which D′i = Gx

′
i holds. On the message

side all proofs are valid SoK[Lped]Verify(πSi , Ci,mi) = 1
and are created by A, as our simulated πT1 is invalid
for all m′ ∈M . Therefore, we extract {(s′i, r′i)}

|T |
i=1 from

{π′Ti }
|T |
i=1 with SoK[Lped]E . As the new signature is valid,

the products are equal and by comparing exponents of
G we calculate γ =

∑|T |
j=1 s

′
j − h1 −

∑|S|
i=2 x

′
i.

Proof of Theorem 7 (Simulatability). The witnesses
witi are used only in SoK[L]Sign, for which an efficient
simulator exists. An efficient simulator AsSim is defined
by replacing ri with ri ← SoK[L]Sim(stmt, Di).

Proof of Theorem 8 (Privacy). The information given
to the adversary in the experiment about b is Σb, ab.
Let Σb be simulated by AsSim. Sets are closed un-
der the union operation and thereby reveal nothing
about b. For both b ∈ {0, 1} it holds that ab =
({πSb,i, Db,i}

|I|
i=1, {πTb,i, Cb,i}

|J|
i=1, rb). Again, the union of

the sets does not reveal the initial subsets. The random-
ness rb is the sum of random values and thereby itself
uniformly random. As none of the values is dependent
on the signer’s identity ub,i, Theorem 8 holds.

	SwapCT: Swap Confidential Transactions for Privacy-Preserving Multi-Token Exchanges
	1 Introduction
	2 Related Work
	3 Private UTXO Transactions
	4 Formalizing Swap Transactions
	5 Security
	6 Privacy
	7 SwapCT Components
	7.1 Signatures of Knowledge
	7.2 Aggregatable Anonymous Signature

	8 SwapCT Construction
	9 Component Instantiation
	10 Evaluation
	11 Conclusion
	A Components
	B Construction Security Proofs
	C Component Security Proofs

