
Proceedings on Privacy Enhancing Technologies ; 2021 (4):291–311

Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-Pierre Hubaux

Multiparty Homomorphic Encryption from
Ring-Learning-with-Errors
Abstract: We propose and evaluate a secure-
multiparty-computation (MPC) solution in the semi-
honest model with dishonest majority that is based on
multiparty homomorphic encryption (MHE). To sup-
port our solution, we introduce a multiparty version
of the Brakerski-Fan-Vercauteren homomorphic cryp-
tosystem and implement it in an open-source library.
MHE-based MPC solutions have several advantages:
Their transcript is public, their offline phase is com-
pact, and their circuit-evaluation procedure is non-
interactive. By exploiting these properties, the com-
munication complexity of MPC tasks is reduced from
quadratic to linear in the number of parties, thus
enabling secure computation among potentially thou-
sands of parties and in a broad variety of comput-
ing paradigms, from the traditional peer-to-peer set-
ting to cloud-outsourcing and smart-contract technolo-
gies. MHE-based approaches can also outperform the
state-of-the-art solutions, even for a small number of
parties. We demonstrate this for three circuits: private
input selection with application to private-information
retrieval, component-wise vector multiplication with ap-
plication to private-set intersection, and Beaver mul-
tiplication triples generation. For the first circuit, pri-
vately selecting one input among eight thousand parties’
(of 32 KB each) requires only 1.31 MB of communica-
tion per party and completes in 61.7 seconds. For the
second circuit with eight parties, our approach is 8.6
times faster and requires 39.3 times less communication
than the current methods. For the third circuit and ten
parties, our approach generates 20 times more triples
per second while requiring 136 times less communication
per-triple than an approach based on oblivious transfer.
We implemented our scheme in the Lattigo library and
open-sourced the code at github.com/ldsec/lattigo.

Keywords: secure multiparty computation, homomor-
phic encryption

DOI 10.2478/popets-2021-0071
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

Christian Mouchet: École polytechnique fédérale de Lau-
sanne, E-mail: christian.mouchet@epfl.ch

1 Introduction
Secure Multiparty Computation (MPC) protocols enable
a group of parties to securely compute joint functions
over their private inputs while enforcing specific secu-
rity guarantees throughout the computation. The exact
definition of security depends on how the adversary is
modeled, but the most common requirement, input pri-
vacy, informally states that parties should not obtain
more information about other parties’ inputs than that
which can be deduced from the output of the compu-
tation. Combining this strong security guarantee with
a general functionality makes the study of MPC tech-
niques highly relevant. This last decade has seen this
established theoretical field evolve into an applied one,
notably due to its potential for securing data-sharing
scenarios in the financial [12, 13], biomedical [37, 49] and
law-enforcement [10, 41] sectors, as well as for protect-
ing digital assets [5]. The use of passively-secure MPC
techniques in such scenarios has been demonstrated to
be effective and practical [4, 21, 37], notably in the med-
ical sector where data collaborations are mutually ben-
eficial and well-regulated, yet they legally require a cer-
tain level of data-protection [21, 49].

In the settings where no honest majority of parties
can be guaranteed, most of the currently implemented
MPC systems are based on secret-sharing [53] of the in-
put data according to some linear secret-sharing scheme
(LSSS), and on interactive circuit evaluation protocols
[36]. These approaches have two practical limitations: (i)
standard protocols require many rounds of communica-
tion over private channels between the parties, which
makes them inadequate for low-end devices and unre-
liable networks. (ii) current approaches require a per-
party communication that increases linearly in the cir-
cuit size (that increases at least linearly in the number

Juan Troncoso-Pastoriza: École polytechnique fédérale de
Lausanne, E-mail: juan.troncoso-pastoriza@epfl.ch
Jean-Philippe Bossuat: École polytechnique fédérale de
Lausanne, E-mail: jean-philippe.bossuat@epfl.ch
Jean-Pierre Hubaux: École polytechnique fédérale de Lau-
sanne, E-mail: jean-pierre.hubaux@epfl.ch

https://github.com/ldsec/lattigo

Multiparty Homomorphic Encryption from RLWE 292

of parties). Hence, this quadratic factor quickly becomes
a bottleneck for large numbers of parties.

Homomorphic encryption (HE) techniques are well-
known for reducing the communication complexity of
MPC [24, 30], especially in their various threshold
and multi-key variants that we generally refer to as
multiparty-HE (MHE). However, in spite of several such
schemes proposed by the cryptographic community, the
most widely known being the MHE scheme of Asharov
et al. [6], no concrete MPC solution implementing a
generic MHE-based MPC protocol has been built yet.
Instead, the use of HE in MPC is mostly confined to
the offline pre-computations of protocols based on lin-
ear secret-sharing schemes (LSSS) [39]. We argue that
homomorphic encryption has reached the required level
of usability to play a larger role in the online phase of
MPC protocols and to enable new applications.

We propose, implement, and evaluate a new in-
stance of the MHE-based MPC protocol in the passive-
adversary with dishonest-majority model. We make the
following contributions:
– We propose a novel multiparty extension of the BFV

homomorphic encryption scheme (Section 4). We fol-
low the blueprint of Asharov et al. [6] and adapt it
to the ring-learning-with-errors (RLWE) assumptions
and to the BFV scheme. We also introduce novel
single-round protocols for bridging between the MHE-
and LSSS-based approaches and for bootstrapping a
BFV ciphertext in multiparty settings.

– We instantiate our MHE scheme into a generic MPC
protocol (Section 5) and show that this approach
has several advantages over their LSSS-based coun-
terparts: Notably, its per-party communication com-
plexity is only linear in the circuit’s inputs and out-
puts, and its execution does not require private party-
to-party communication channels.

– We demonstrate the efficiency of the latter instan-
tiation for three example MPC circuits (Section 6).
We implemented and open-sourced our scheme in the
Lattigo library [1].

With these contributions, our work bridges the gap be-
tween the existing theoretical work on MHE-based MPC
and its application as privacy-enhancing technologies.

2 Related Work
We classify N -party dishonest-majority MPC ap-
proaches in two categories: (a) Linear secret-sharing at
data level (for short: LSSS-based), which is predomi-

nantly implemented in generic MPC solutions [5, 36],
consists in applying secret-sharing [53] to the input
data. (b) Multiparty encryption schemes (for short:
MHE-based), use a homomorphic scheme to encrypt and
exchange the input data, that can then be computed on
non-interactively with encrypted arithmetic.
LSSS-based MPC (a). Most of the available generic
MPC solutions, such as Sharemind [11] and SPDZ
[25, 26, 39], apply secret-sharing to the input data.
The evaluation of arithmetic circuits is generally en-
abled by the homomorphism of the LSSS, or by inter-
active protocols (when no such homomorphism is avail-
able); the most widely implemented protocol is Beaver’s
triple-based protocol [9]. The strength of approach (a)
is to enable evaluation through only simple and efficient
primitives in terms of which the circuit can be decom-
posed by code-to-protocol compilers, thus strengthening
usability. However, this approach imposes two practi-
cal constraints: First, the interactive protocols at each
multiplication gate require all parties to be online and
active during the whole computation and to exchange
messages with their peers at a high frequency that is
determined by the round complexity of the circuit. Sec-
ond, the triple-based multiplication protocol requires a
prior distribution of one-time triples; this can be per-
formed in a pre-computing phase, either by a trusted
third-party or by the parties themselves. The latter
peer-to-peer case can also be formulated as an indepen-
dent, yet equivalent, MPC task (generating the triples
requires multiparty multiplication). Hence, these ap-
proaches are hybrids that generate the triples by using
techniques such as oblivious transfer [38], plain HE [39]
or multiparty-HE [26] in an offline phase.

As a result of the aforementioned constraints, many
current applications of LSSS-based MPC target the out-
sourced models where the actual computation is dele-
gated to two parties [4, 21, 22, 37, 46, 47] that are as-
sumed not to collude (e.g., the two-cloud model). Un-
fortunately, this assumption might not be realistic in
some contexts where the parties are required to have
an active role in enforcing the access control over their
data (e.g., by law).
MHE-based MPC (b). In this approach, the par-
ties use an HE scheme to encrypt their inputs, and the
computations are performed using the scheme’s homo-
morphic operations. To preserve the inputs’ privacy, the
scheme’s secret key is securely distributed among the
parties and the decryption requires the collaboration
between the parties. We use the term multiparty en-
cryption scheme to designate these constructions in a
general way (we provide a definition in Section 3.1).

Multiparty Homomorphic Encryption from RLWE 293

The idea of reducing the volume of interaction
in MPC by using threshold homomorphic-encryption
can be traced back to a work by Franklin and Haber
[30], later improved by Cramer et al. [24]. At that
time, the lack of homomorphic schemes that preserve
two distinct algebraic operations ruled out complete
non-interactivity at the evaluation phase, thus render-
ing these approaches less attractive than approach (a).
Recently, task-specific instances that use multiparty
additive-homomorphic encryption have been successful
in supporting use-cases in distributed machine learning
[32, 56], thus highlighting the potential that a generic
and usable fully homomorphic encryption (FHE) [33]
solution could have. This is the idea behind the line
of work by Asharov et al. [6] and López-Alt et al. [43].
These contributions propose various multiparty schemes
in which the secret-key is additively shared among the
parties, and they analyze the theoretical MPC solution
these schemes enable. Although of great interest, this
line of work did not find as much echo in applications
as approach (a) has. One possible reason was the lack
of available and efficient implementations of Learning
with Errors [50] (LWE) -based homomorphic schemes,
in terms of which these schemes were presented. Today,
multiple ongoing efforts aim at standardizing homomor-
phic encryption [3] and at making its implementations
available to a broader public. This new generation of
schemes is based mostly on the Ring Learning with Er-
rors (RLWE) problem [45] and has brought HE from
being practical to being efficient.

We argue that MHE-based approaches are now ef-
ficient and flexible enough to support more than the
offline phase of LSSS-based approaches. Therefore, we
bring the theoretical work on multiparty schemes [6] to
RLWE cryptography and to an open-source implemen-
tation, and evaluate it as an MPC solution.

3 Background
We provide a general definition of the multiparty homo-
morphic encryption (MHE) primitive, relate this prim-
itive to the MPC setting and recall the plain BFV HE
scheme that we extend to the MHE in Section 4. We
consider an abstract security parameter λ and require
that an adversary’s advantage in attacking the schemes
must be a negligible function in λ. HE schemes also re-
quire proper parameterization to support the evaluation
of the desired circuits. We model this dependency by in-
troducing an abstract homomorphic capacity parameter

κ and require that the probability of incorrect decryp-
tion must be a negligible function in κ.

3.1 Multiparty Homomorphic Encryption

Let P = {P1, P2, . . . , PN} be a set of N parties; a multi-
party homomorphic encryption-scheme over P is an HE
scheme in which the secret-key is an N -party function
S(sk1, sk2, ..., skN). The structure of S determines the
Access Structure of the MHE scheme, which we define as
the set S ⊂ PowerSet(P) of all groups of parties that can
collectively reconstruct the secret-key. Indeed, S should
never be disclosed in practice. Instead, each operation
Op of the single-party scheme that requires the secret-
key is expressed as a multiparty protocol ΠOp.

Let M be a plaintext space with arithmetic struc-
ture, a Multiparty HE scheme overM is a tuple MHE =
(Setup , SecKeyGen , ΠPubKeyGen , Enc , ΠDec , Eval)
of algorithms and multiparty protocols.
– Setup: pp ← MHE.Setup(λ, κ). Takes the security

and homomorphic capacity parameters and outputs
a public parameterization. pp is an implicitly argu-
ment to the other procedures.

– Key Generation: The parties Pi ∈ P generate
ski ← MHE.SecKeyGen() and take part in the mul-
tiparty protocol pk ← MHE.ΠPubKeyGen(sk1, ..., skN).
Outputs a key pair (ski, pk) to each party.

– Encryption: ct ← MHE.Enc(m, pk). Given a public-
key pk, and a plaintext message m ∈ M, outputs a
ciphertext encrypting m under S(sk1, sk2, ..., skN).

– Evaluation: ctres ← MHE.Eval(f, pk, ct1, ..., ctl).
Given an arithmetic function f : MI → M, the
public key pk and a I-tuple of ciphertexts encrypt-
ing (m1, ...,mI) ∈ MI , outputs a result ciphertext
encrypting mres = f(m1, ...,mI).

– Decryption: m ← MHE.ΠDec(ct, sk1, ...skN). Given
a ciphertext ct encrypting m and their respective key
ski, the parties take part in the decryption multiparty
protocol. Outputs m.

Semantic Security (informal). We require that for all
adversarial subsets of parties A /∈ S, for any two mes-
sages m1,m2 ∈ M, the advantage of the adversary in
distinguishing between distributions MHE.Enc(pk,m1)
and MHE.Enc(pk,m2) should be smaller than 2−λ.

Correctness (informal). We require that, for
all arithmetic functions f : MI → M, there
exist a public parametrization pp such that
MHE.ΠDec(MHE.Eval(f, pk, ct1, ..., ctI), sk1, ..., skN) =
f(m1, ...,mI) holds with probability larger than 1−2−κ.

Multiparty Homomorphic Encryption from RLWE 294

Access-structure Families. We distinguish between
two types of MHE schemes:
– In threshold [28] or distributed encryption schemes,

the secret-key S is set before the computation and
is fixed, hence so is the access structure set S. The
parties provide their inputs encrypted under S, hence
the decryption is conditioned to the participation of
the parties according to the structure of S (which is
often, but not necessarily, a secret-sharing scheme).
We use this approach for our proposed MHE scheme.

– In multi-key encryption schemes [44], the secret-key
does not have to be defined before the evaluation and
S is, instead, dynamic: The parties provide their in-
puts encrypted under their own secret-key and the
evaluation of homomorphic operations f : MI →M
yields a result that is encrypted under an on-the-fly
key S(sk1, ..., skI). Hence, only the parties involved in
a given computation are required to participate in the
decryption of its output.

In their RLWE instantiations, these two types of multi-
party schemes have different structures for their cipher-
text and public-key material, as well as different algo-
rithmic complexity figures for their homomorphic oper-
ations. In Section 4, we construct a distributed version
of the BFV scheme [29], and compare it to the multi-key
BFV scheme of Chen et al. [18] in Section 4.10.

MHE-based Generic MPC. The construction of pas-
sively secure and MHE-based generic MPC protocols
is natural from the MHE correctness and semantic se-
curity properties: Given a circuit and the desired se-
curity properties, the parties can use an MHE-scheme
enforcing the sought access structure to encrypt their
inputs (MHE.Enc), compute the circuit homomorphi-
cally (MHE.Eval), and collectively decrypt the output
(MHE.ΠDec protocol). We defer the detailed protocol de-
scription and the discussion of its features to Section 5,
where we instantiate it with the MHE-scheme proposed
in Section 4.

3.2 Notation

We denote [·]q the reduction of an integer modulo q,
and d·e, b·c, b·e the rounding to the next, previous, and
nearest integer respectively. When applied to polyno-
mials, these operations are performed coefficient-wise.
We use regular letters for integers and polynomials, and
boldface letters for vectors of integers and of polyno-
mials. aT denotes the transpose of a vector a. Given a
probability distribution α over a ring R, a← α denotes

the sampling of an element a ∈ R according to α, and
a← R implicitly denotes uniform sampling in R. For a
polynomial a, we denote its infinity norm by ‖a‖.

3.3 The BFV Encryption Scheme

We recall the plain Brakerski-Fan-Vercauteren [29]
scheme that we will extend in Section 4. It is a ring-
learning-with-errors [45] scheme that supports both
additive and multiplicative homomorphic operations.
Due to its practicality, it has been implemented in
most of the current lattice-based cryptographic libraries
[1, 48, 52] and is part of the draft HE standard [3].

Scheme 1 details the most common instantiation
of the BFV scheme. The ciphertext space is Rq =
Zq[X]/(Xn + 1), the quotient ring of the polynomials
with coefficients in Zq modulo (Xn + 1), where n is a
power of 2. We use [− q2 ,

q
2) as the set of representatives

for the congruence classes modulo q. Unless otherwise
stated, we consider the arithmetic in Rq and polynomial
reductions are omitted in the notation. The plaintext
space is the ring Rt = Zt[X]/(Xn + 1) for t < q. We
denote ∆ = bq/tc, the integer division of q by t.

The scheme is based on two kinds of secrets,
commonly sampled from small-normed yet different
distributions: The key distribution is denoted R3 =
Z3[X]/(Xn + 1), where coefficients are uniformly dis-
tributed in {−1, 0, 1}. The error distribution χ over Rq
has coefficients distributed according to a centered dis-
crete Gaussian with standard deviation σ and truncated
support over [−B,B] where σ and B are two cryptosys-
tem parameters.

The security of BFV is based on the hardness of the
decisional-RLWE problem [45] that is informally stated
as follows: Given a uniformly random a ← Rq, a secret
s← R3, and an error term e← χ, it is computationally
hard for an adversary that does not know s and e to
distinguish between the distribution of (sa + e, a) and
that of (b, a) where b← Rq.

Encrypted arithmetic operations must preserve the
plaintext arithmetic. We denote BFV.Add and BFV.Mul
the homomorphic addition and multiplication, respec-
tively, and we refer the reader to [29] for their imple-
mentation. The BFV.Mul operation outputs a ciphertext
consisting of three Rq elements that can be seen as a de-
gree two ciphertext. This higher degree ciphertext can
be further operated on and decrypted. Yet it is often
desirable to reduce this degree back to one, by using
a BFV.Relinearize operation [29]. This operation is pub-

Multiparty Homomorphic Encryption from RLWE 295

Scheme 1. BFV(t, n, q,w, σ,B)

BFV.SecKeyGen(): Sample s← R3. Output: sk = s

BFV.PubKeyGen(sk):
Let sk = s. Sample p1 ← Rq, and e← χ. Output:

pk = (p0, p1) = (−sp1 + e, p1)

BFV.RelinKeyGen(sk, w):
Let sk = s. Sample r1 ← Rlq, e← χl. Output:

rlk = (r0, r1) = (s2w− sr1 + e, r1)

BFV.Encrypt(pk, m):
Let pk = (p0, p1). Sample u← R3 and e0, e1 ← χ.
Output: ct = (∆m+ up0 + e0 , up1 + e1)

BFV.Decrypt(sk, ct):
Let sk = s, ct = (c0, c1). Output:

m′ = [b t
q

[c0 + c1s]qe]t

lic but requires the generation of a specific public key,
referred to as the relinearization key (rlk).

The decryption of a ciphertext (c0, c1) can be seen
as a two-step process. The first step requires the secret
key to compute a noisy plaintext in Rq as

[c0 + sc1]q = ∆m+ ect, (1)

where ect is the ciphertext overall error, or ciphertext
noise. In the second step, the message is decoded from
the noisy term in Rq to a plaintext in Rt, by rescaling
and rounding

[b t
q

(∆m+ ect)e]t = [bm+ at+ ve]t, (2)

where m ∈ Rt, a has integer coefficients, and v has co-
efficients in Q. Provided that ‖v‖ < 1

2 , Eq. (2) out-
puts m. Hence, the correctness of the scheme is con-
ditioned on the noise magnitude ‖ect‖ that must be
kept below q

2t throughout the homomorphic computa-
tion, notably by choosing a sufficiently large q. To pre-
serve this condition when multiplying with the rlk (as
a part of BFV.Relinearize), ciphertexts are temporarily
decomposed in a basis w < q and the product is per-
formed on each element of the decomposition [29]. We
write l = dlogw(q)e the number of coefficients in this
decomposition, and w = (w0, w1, ..., wl−1)T the base-w
reconstruction vector.

3.4 Parameter Selection

Selecting the parameters for a given application con-
stitutes a significantly more challenging task for
homomorphic-encryption schemes than for traditional
encryption. Although the standardization document [3]
is a good basis for mapping the subset of commonly
used parameter values to bit-security levels, mapping
the correctness and efficiency requirements to concrete
parameters in a systematic way is still an open question
in FHE research: it goes beyond the scope of this work.
Nowadays, we see the rise of compilers for HE [54] that
will, as they evolve, automate this process.

We describe the common heuristic approach for se-
lecting BFV parameters; the one we used for the evalu-
ation of our work (Section 6). The task consists in find-
ing (t, n, q, w, σ,B) that satisfy the required security and
homomorphic-capacity parameters (λ, κ) for the set of
considered homomorphic circuits. The standardization
document and most implementations fix the noise stan-
dard deviation and bound to σ ≈ 3.2 and B ≈ 20,
respectively. Hence, only the ring degree n, plaintext-
space and ciphertext-space moduli t and q, and the de-
composition basis w remain to be determined.

The message-space characteristics of the application
usually sets t directly, by considering the bit-width of
the input values. The targeted set of homomorphic cir-
cuits constrain q and n: Choosing larger q permits larger
circuit depth (Equation (2)) but also reduces the hard-
ness of the RLWE problem. Choosing larger w reduces
the noise incurred by Relinearize (hence enables smaller
q) and increases its computation cost and the rlk size.
Choosing larger n increases the security (hence enables
larger q for a fixed security level) but has a significant
impact on the cost incurred by polynomial multiplica-
tion. Hence, the most common strategy is to set q and w
experimentally, as an acceptable trade-off for the appli-
cation, then to choose the smallest power-of-two n for
the desired security level.

4 The Multiparty BFV Scheme
We introduce a novel multiparty version of the
Brakerski-Fan-Vercauteren (BFV) cryptosystem [29].
Although formulated for the BFV scheme, the intro-
duced protocols can be straightforwardly adapted to
other RLWE-based cryptosystems, such as BGV [16] or
the more recent CKKS [20], which enables homomorphic
approximate arithmetic. We implemented both multi-

Multiparty Homomorphic Encryption from RLWE 296

party versions for the BFV and CKKS schemes in the
Lattigo open-source library [1]. Our approach follows
the blueprint of the LWE-based protocols by Asharov
et al. [6], and introduces several improvements to their
schemes. In particular, we propose a novel procedure for
the generation of relinearization keys that adds signif-
icantly less noise in the output key. We also propose a
generalization of the distributed decryption procedure,
from which we derive novel protocols that bridge be-
tween the MHE-based and LSSS-based MPC protocols
and that enable the practical bootstrapping of a BFV
ciphertext.

In the next subsections, we reformulate all the
secret-key-dependent operations of the original BFV
scheme as secure N -party protocols. We refer to the
original centralized scheme as the ideal scheme: the
ideal centralized functionality that is emulated in a
multiparty setting. By extension, we refer to sk =
S(sk1, ..., skN) as the ideal secret key, because it exists
as such only through interaction between the parties.

4.1 Scheme Overview

Let P be a set of N parties that have access
to an authenticated channel and to a random
common reference string (CRS) [17]. Our pro-
posed multiparty BFV scheme is a tuple MBFV =
(ΠEncKeyGen,ΠRelinKeyGen,ΠKeySwitch,ΠPubKeySwitch) that
extends the BFV scheme:
– Setup: Select pp ← (t, n, q, w, σ,B), the parameters

of the BFV scheme.
– Key Generation: Each party Pi ∈ P generates

its share ski ← BFV.SecKeyGen() of sk and takes
part in the cpk ← MBFV.ΠEncKeyGen(sk1, ..., skN) and
rlk ← MBFV.ΠRelinKeyGen(sk1, ..., skN) multiparty pro-
tocols with output (cpk, rlk).

– Encryption: The usual BFV.Encrypt procedure is
used to encrypt messages under sk given the cpk.

– Evaluation: The usual BFV.Eval set of homomorphic
operations is used to evaluate functions given rlk.

– Key-switching:
ct′ ← ΠKeySwitch(ct, sk′1, ..., sk′N , sk1, ..., skN). Given a
ciphertext ct encrypted under the ideal secret-key sk
and an output ideal secret-key sk′ = S ′(sk′1, ...sk′N),
the parties re-encrypt ct under sk′.

– Public-key-switching:
ct′ ← ΠPubKeySwitch(ct, pk′, sk1, ..., skN). Given a ci-
phertext ct under sk and an output public-key pk′

for secret-key sk′, the parties re-encrypt ct under sk′.

MBFV KeySwitch-correctness. For all arithmetic func-
tions f : RIt → Rt over the parties’ inputs m1, . . . ,mI ,
there exist pp = (t, n, q, w, σ,B) such that for sk′ =
S ′(sk′1, ..., sk′N) an output secret-key and

ski ← BFV.SecKeyGen() i ∈ 1...N,
cpk, rlk← ΠEncKeyGen(sk1, ..., skN),ΠRelinKeyGen(sk1, ..., skN),

cti ← BFV.Enc(cpk,mi) i ∈ 1...I,
ctf ← BFV.Eval(f, rlk, ct1, ..., ctI),
ct′f ← MBFV.ΠKeySwitch(ct′P , sk′1, ..., sk′N , sk1, ..., skN),

it holds that Pr[BFV.Dec(sk′, ct′f)6=f(m1, ...,mI)]<2−κ.

The PubKeySwitch-correctness property can be di-
rectly derived from the previous definition by comput-
ing a public key for sk′ and replacing ΠKeySwitch by
ΠPubKeySwitch.

MBFV Semantic Security. For all subsets of at most
N − 1 passive adversaries in P, for any two messages
m1,m2 ∈ Rt, the advantage of the adversary in dis-
tinguishing between distributions BFV.Enc(cpk,m1) and
BFV.Enc(cpk,m2) should be smaller than 2−λ.

As a result, the security properties of the MBFV
scheme is that of a N-out-of-N threshold encryption
scheme. We now detail each of its underlying protocols.

4.2 Ideal-Secret-Key Generation

Our scheme uses an additive structure for the combined
secret-key, denoted as s in the following. We denote si
the secret key share of party Pi, thus

sk = s =

[∑
Pi∈P

si

]
q

. (3)

We propose a simple ideal-secret-key generation
procedure in which each party samples independently
its own share as si = BFV.SecKeyGen(). Thus, the ideal
secret-key is generated in a non-interactive way. The
norm of the resulting ideal secret key grows with O(N),
which has an effect on the noise growth (analyzed in Ap-
pendix A). By using techniques such as those described
in [51], it might be possible to generate ideal secret keys
in R3 as if they were produced in a trusted setup (e.g.,
as an additive secret-sharing of a usual BFV secret-key
over Rq). However, this would introduce the need for
private channels between the parties.

Multiparty Homomorphic Encryption from RLWE 297

4.3 Collective Encryption-Key Generation

The collective encryption-key generation, detailed in
Protocol 1, emulates the BFV.PubKeyGen procedure. In
addition to the public parameters of the cryptosystem
(which we will omit in the following), the procedure re-
quires a public polynomial p1, uniformly sampled in Rq,
to be agreed upon by all the parties. For this purpose,
they sample its coefficients from the common reference
string (CRS). In the passive-adversary model, the CRS
can be implemented by any keyed pseudorandom func-
tion. We used BLAKE2b [7] in our implementation.

After the execution of the EncKeyGen protocol, the
parties have access to the collective public key

cpk =
([∑
Pi∈P

p0,i
]
q
, p1

)
=
([
−(
∑
Pi∈P

si)p1+
∑
Pi∈P

ei
]
q
, p1

)
,

(4)
that has the same form as the ideal public key pk in
Scheme 1, with larger worst-case norms ‖s‖ and ‖e‖.
The norm grows only linearly in N hence is not a con-
cern (as shown in Appendix A), even for large number
of nodes. Another notable feature of the EncKeyGen pro-
tocol is that it would apply to any kind of linear sharing
of s, as long as the shares are valid RLWE secrets and
the norm of the reconstruction is small enough. This
includes uniformly random sharing over Rq of a tradi-
tional BFV secret key in R3.

4.4 Relinearization-Key Generation

Protocol 2 (RelinKeyGen) emulates the centralized
BFV.RelinKeyGen. Informally, it produces pseudo-
encryptions of s2wb for each power b = 0, ..., l − 1 of
the decomposition basis parameter w. It requires a pub-
lic input a, uniformly sampled in Rlq from the CRS.
We use vector notation to express that these pseudo-
encryptions are generated in parallel for every element
of the decomposition base w = (w0, w1, ..., wl−1)T .

Asharov et al. proposed a method to produce re-
linearization keys for multiparty schemes based on the
LWE problem [6]. This method could be adapted to our
scheme but results in significantly increased noise in the
rlk (hence, higher noise in relinearized ciphertexts) with
respect to the centralized scheme. One cause for this ex-
tra noise is the use of the public encryption algorithm
to produce the mentioned pseudo-encryptions. By ob-
serving that the collective encryption key is not needed
for this purpose (because the secret key is collectively
known), we propose Protocol 2 as an improvement over
the method by Asharov et al.

Protocol 1. EncKeyGen

Public Input: p1 (common random polynomial)
Private Input for Pi: si = ski (secret key share)
Public Output: cpk=(p0, p1) (collect. encrypt. key)

Each party Pi:
1. samples ei ← χ and discloses p0,i = −p1si + ei

Out: from p0 =
∑
Pj∈P p0,j , outputs cpk = (p0 , p1)

Protocol 2. RelinKeyGen

Public Input: a ∈ Rlq and w the decomposition basis
Private Input of Pi: si = ski
Output: rlk = (r0, r1)

Each party Pi:
1. samples ui ← R3, e0,i, e1,i ← χl and discloses

(h0,i , h1,i) = (−uia + siw + e0,i , sia + e1,i)

2. from h0 =
∑
Pj∈P h0,j and h1 =

∑
Pj∈P h1,j ,

sample e2,i, e3,i ← χl and discloses
(h′0,i , h′1,i) = (sih0 + e2,i , (ui − si)h1 + e3,i)

Out: from h′0 =
∑
Pj∈P h′0,j and h′1 =

∑
Pj∈P h′1,j ,

outputs rlk = (h′0 + h′1 , h1)

After completing the RelinKeyGen protocol, the par-
ties have access to a relinearization key of the form

rlk = (r0, r1) = (−sb + s2w + se0 + e1 +ue2 + e3 , b),
(5)

where b = sa + e2 and ek =
∑
j ek,j for k = 0, 1, 2, 3.

Hence, compared to the keys generated with the ap-
proach of Asharov et al., our keys have lower error in r0
and no error at all in r1 (i.e., they have the same form
as those of the centralized scheme). This significantly
reduces the noise induced by relinearization.

A relevant feature of the proposed RelinKeyGen pro-
tocol is its independence from the actual decomposition
basis w: It is compatible with other decomposition tech-
niques, such as the one used for Type II relinearization
[29], those based on the Chinese Remainder Theorem
(as proposed by Bajard et al. [8] and Cheon et al. [19]),
and the hybrid approach of Bossuat et al. [15] (which
we use in our implementation).

4.5 Collective Key-Switching Protocols

The key-switching functionality enables the oblivious
re-encryption operation. Given a ciphertext ct en-
crypted under an input key s along with an out-
put key s′, the key-switching procedure outputs ct′ =

Multiparty Homomorphic Encryption from RLWE 298

Enc(s′,Dec(s, ct)). Because the first step of the plain
BFV decryption (Eq. (1)) is equivalent to switching
from the ideal secret-key to an output key s′ = 0, this
protocol generalizes the decryption protocol. The de-
coding part of the decryption (Eq. (2)) does not require
the secret-key and can be performed locally.

Smudging. We observe that the aforementioned
decryption procedure, and the MBFV key-switching pro-
cedures in general, provide the output-key owner(s) with
the ciphertext noise. Because this noise depends on in-
termediate values in the encryption, homomorphic com-
putation and key-switching procedures, it could be ex-
ploited as a side-channel by curious receivers (although
characterizing this indirect leakage in a computational
setting is still an open question). The smudging tech-
nique, as introduced by Asharov et al. [6], aims at
making the ciphertext-noise inexploitable by flooding
it with some freshly sampled noise terms in a distri-
bution of larger-variance. In the MBFV scheme, this is
achieved by sampling the relevant error terms in the
key-switching protocols from a discrete Gaussian distri-
bution χCKS(σ2

ct) of variance σ2
smg = 2λσ2

ct where σ2
ct is

the ciphertext’s noise variance (see Appendix A) and
λ the desired security level (e.g., λ=128, see Appendix
B). Hence, this technique assumes that the system keeps
track of the ciphertext noise-level and has access to this
property. For a ciphertext ct, we denote var(ct) the vari-
ance of its noise term (see Eq. (1)).

Receiver. The protocol’s instantiation depends
on whether the parties performing the re-encryption
have a collective access to the output secret-key di-
rectly, or have only its corresponding public-key. Both
these settings are relevant when instantiating the MBFV
scheme as an MPC protocol, which we discuss in Sec-
tion 5. Therefore, we develop protocols that perform
key-switching for these two settings: When s′ is col-
lectively known, the KeySwitch protocol is used. When
only a public key is known, the PubKeySwitch protocol
is used.

4.5.1 Collective Key-Switching

Protocol 3 (KeySwitch) details the steps for perform-
ing a key switching when the input parties collectively
know the output secret key s′. This protocol can be
used as a decryption protocol (s′ = 0) or for updating
the access-structure (see Section 4.6), and it is the basis
for bridging MHE-based and LSSS-based approaches, as
explained in Section 4.7.

Protocol 3. KeySwitch

Public input: ct = (c0, c1) with var(ct) = σ2
ct

Private input for Pi: si, s′i
Public output: ct′ = (c′0, c1)

Each party Pi:
1. samples ei ← χCKS(σ2

ct) and discloses

hi = (si − s′i)c1 + ei

Out: from h =
∑
Pj∈P hj ,

outputs ct′ = (c′0, c1) = (c0 + h, c1)

After the execution of the KeySwitch protocol on
input ct = (c0, c1), c0 + sc1 = ∆m+ ect where ect is the
ciphertext’s error, the parties have access to ct′ s.t.

BFV.Dec(s′, ct′)=b t
q

[c0 +
∑
j

(
(sj−s′j)c1 + ej

)
+ s′c1]qe

= b t
q

[c0 + (s− s′)c1 + eCKS + s′c1]qe

= b t
q

[∆m+ ect + eCKS]qe = m, (6)

where eCKS =
∑
j ej , and where the last equality holds

provided that ‖ect + eCKS‖ < q/(2t); i.e., if the output
ciphertext noise plus the protocol-induced noise remains
within decryptable bounds.

The use of the KeySwitch protocol is limited to the
cases where parties have collective knowledge of the out-
put secret key s′. Yet, this might not be the case, for ex-
ample, when considering an external receiver R for the
key-switched ciphertext (we elaborate on external re-
ceivers in Section 5.1). This situation would require con-
fidential channels between the receiver and each party
in P, in order either (i) to collect decryption shares from
all parties, or (ii) to distribute an additive sharing of its
secret key to the system. However, (i) would become
expensive for a large number of parties, and (ii) would
require R to trust at least one party in P. Furthermore,
confidential point-to-point channels might not fit the
system model (e.g., on smart-contract systems).

4.5.2 Collective Public-Key Switching

Protocol 4 (PubKeySwitch) details the steps for key
switching when the input parties know only a public
key for the output secret key s′. As it requires only
public input from the receiver, the PubKeySwitch en-
ables an external party (i.e., that is not part of an input
access-structure) to obtain an output without the need
for private channels with the parties. In Section 5.2, we

Multiparty Homomorphic Encryption from RLWE 299

Protocol 4. PubKeySwitch

Public input: pk′=(p′0, p′1), ct=(c0, c1), var(ct)=σ2
ct

Private input for Pi: si
Public output: ct′ = (c′0, c′1)

Each party Pi:
1. samples ui ← R3, e0,i ← χCKS(σ2

ct), e1,i ← χ and
discloses
(h0,i , h1,i) = (sic1 + uip

′
0 + e0,i , uip

′
1 + e1,i)

Out: from h0 =
∑
j h0,j and h1 =

∑
Pj∈P h1,j ,

outputs ct′=(c′0, c′1)=(c0 + h0, h1)

discuss the benefits of this property when instantiating
the MBFV as an MPC solution.

Let ct = (c0, c1) be an input ciphertext such that
c0 + sc1 = ∆m + ect and pk′ = (p′0, p′1) be a public key
such that p′0 = −(s′p′1 +epk′). After the execution of the
PubKeySwitch protocol on ct with output public key pk′,
the parties hold ct′ satisfying

Dec(s′, ct′)

=b t
q

[c0+
∑
j

(
sjc1+ujp′0+e0,j

)
+s′
∑
j

(
ujp
′
1+e1,j

)
]qe

=b t
q

[c0+sc1+up′0+s′up′1+e0+s′e1]qe

=b t
q

[∆m+ ect + ePubKeySwitch]qe = m, (7)

where ed =
∑
j ed,j for d = 0, 1, u =

∑
j uj , and the

total added noise ePubKeySwitch = e0 +s′e1 +uepk depends
on both the protocol-induced and the target-public-key
noises. If ‖ect+ePubKeySwitch‖<q/(2t), Equation (7) holds.

4.6 Dynamic Access-Structure

The scenario of parties joining and leaving the system
corresponds to a secret-key update and is handled by
the KeySwitch and PubKeySwitch protocols. More specif-
ically, we consider the task of transferring a ciphertext
from an input set of parties P to an output set P ′.
If P ′ ⊂ P, the parties in P − P ′ can simply use the
KeySwitch protocol with output key s′ = 0. Otherwise
the parties use the PubKeySwitch protocol with pk′ set
to the collective public-key of P ′.

4.7 Bridging MPC Approaches

The flexibility of the KeySwitch protocol can be har-
nessed to bridge the MHE-based and LSSS-based MPC
approaches.

Protocol 5. ColBootstrap

Public input: a (from CRS), ct=(c0, c1) var(ct)=σ2
ct

Private input for Pi: si
Public output: ct′ = (c′0, c′1) with noise variance Nσ2

Each party Pi
1. samples Mi ← Rt, e0,i ← χCKS(σ2

ct), e1,i ← χ and
discloses

(h0,i , h1,i) = (sic1−∆Mi+e0,i , −sia+∆Mi+e1,i)

Out: from h0 =
∑
j h0,j and h1 =

∑
j h1,j ,

outputs (c′0, c′1) = ([b tq ([c0 + h0]q)e]t∆ + h1 , a)

Encryption-to-Shares (Enc2Share). Given an encryp-
tion (c0, c1) of a plaintext m ∈ Rt, the parties can pro-
duce an additive sharing of m over Rt by masking their
share in the decryption (i.e., KeySwitch with s′ = 0)
protocol: Each party Pi ∈ {P2, PN} samples its own ad-
ditive share Mi ← Rt and adds a −∆Mi term to its
decryption share hi before disclosing it. Party P1 does
not disclose its decryption share h1 and derives its own
additive share of m as

M1 = BFV.Decrypt(s1, (c0 +
N∑
i=2

hi, c1)) = m−
N∑
i=2

Mi.

Shares-to-Encryption (Share2Enc). Given a secret-
shared value m ∈ Rt such that m =

∑N
i=1 Mi, the

parties produce an encryption ct = (c0, c1). To do so,
each party Pi samples a from the CRS and produces a
KeySwitch share for the ciphertext (∆Mi, a) with input
key 0 and output key s. The ciphertext centralizing the
secret-shared value m is then ct = (

∑N
i=1 c0,i, a). This

is equivalent to a multiparty encryption protocol.

4.8 Collective Bootstrapping

We combine the Share2Enc and Enc2Share protocols
into a multiparty bootstrapping procedure (Protocol 5,
ColBootstrap) that enables the reduction of a ciphertext
noise to further compute on it. This is a crucial func-
tionality for the BFV scheme, for which the centralized
bootstrapping procedure is expensive. Intuitively, the
ColBootstrap protocol consists in a conversion from an
encryption to secret-shares and back, implemented as a
parallel execution of the Enc2Share and Share2Enc proto-
cols. It is an efficient single-round interactive protocol
that the parties can use during the evaluation phase,
instead of a computationally heavy bootstrapping pro-
cedure. In practice, a broad range of applications would

Multiparty Homomorphic Encryption from RLWE 300

not (or seldom) need to rely on this primitive, as the cir-
cuit complexity enabled by the practical parameters of
the BFV scheme suffices. But the ColBootstrap protocol
offers a trade-off between computation and communica-
tion (we demonstrate this in Section 6.3).

4.9 Packed-Encoding and Rotation Keys

One of the most powerful features of RLWE-based
schemes is the ability to embed vectors of plaintext val-
ues into a single ciphertext. Such techniques, commonly
referred to as packing, enable arithmetic operations to
be performed in a single-instruction multiple-data fash-
ion, where encrypted arithmetic results in element-wise
plaintext arithmetic. Provided with public rotation keys,
arbitrary rotations over the vector components [19] can
be operated homomorphically. Generating these rota-
tion keys (which are pseudo-encryptions of rotations of
the secret-key) can be done in the multiparty scheme,
by means of an RotKeyGen sub-protocol. We do not de-
tail this protocol, as it is a straightforward adaptation of
EncKeyGen. This enables a vast family of homomorphi-
cally computable linear and non-linear transformations
on ciphertexts. We will make use of rotations in the
input-selection example circuit in Section 6.2.

4.10 Comparison with Multi-key-HE

Multi-key HE schemes, as introduced by López-Alt [44],
enable the evaluation of homomorphic operations di-
rectly over ciphertexts encrypted under different secret-
keys. The access-structure of these schemes can be seen
as dynamic; they include on-the-fly each new party in
the computation circuit. Hence, the schemes do not re-
quire the generation of a collective public encryption-
key. In their current instantiation, however, they re-
quire the generation of public relinearization and ro-
tations keys for which the size depends on the number
of parties N . Furthermore, their ciphertext size and ho-
momorphic operations complexity also grows with N .
Chen et al. [18] propose multi-key extensions for the
BFV and CKKS schemes for which these dependencies
are reported in Table 1.

We observe that, when on-the-fly computation is
not required by the application (e.g., the set of nodes is
known in advance), threshold schemes result in a more
efficient construction. However, note that the multi-key
and threshold approaches are not mutually exclusive.
Hybrid constructions, where the threshold scheme is

Table 1. Comparison with the multi-key BFV: dependency in N

Size Time
Scheme Ciphertext Switch. key Mult.+Relin. Rotate
[18] O(N) O(N) O(N2) O(N)
This Work O(1) O(1) O(1) O(1)

used to emulate a single key within a multi-key setting,
are promising ways of tailoring the access structure to
the sought security and functionality requirements. For
example, in an encrypted federated learning system, a
fixed group of parties could train a model under thresh-
old encryption and enable the prediction to be evaluated
on-the-fly under multi-key encryption.

5 Secure Multiparty Computation
We discuss the instantiation of the MBFV scheme pre-
sented in Section 4 in a generic secure-multiparty-
computation (MPC) protocol. Using MHE schemes to
achieve MPC is not new [6, 24], but each new genera-
tion of HE schemes makes this approach more efficient
and flexible. However, to the best of our knowledge, no
generic MPC solution has been implemented yet to ex-
ploit those ideas. We discuss how MHE-based solutions
can lead to a new generation of MPC systems, not only
in the traditional peer-to-peer setting but also in the
outsourced one where parties are assisted by a semi-
honest entity without relying on non-collusion assump-
tions such as those of the two-clouds model.

5.1 MBFV-Based MPC Protocol

Let P = {P1, P2, . . . , PN} be a set of N parties holding
respective inputs (x1, . . . , xN) andR be a receiver. Let C
be a set of computing parties which may have non-empty
intersection with P ∪ {R}. Given a public arithmetic
function f over the parties’ inputs, the MHE−MPC pro-
tocol (Protocol 6) privately computes y = f(x1, . . . , xN)
and outputs the result to R.
Semantic Security (informal). Let A ⊂ (P ∪ C ∪ R)
be a set of corrupted parties (the adversary) in the
MHE−MPC protocol where |A ∩ P| ≤ N − 1. We re-
quire that the adversary does not learn anything more
about {xi}Pi /∈A than that which can be learnt from its
own inputs {xi}Pi∈A and, if R ∈ A, from the output.

MHE−MPC Protocol Overview. The Setup step in-
stantiates the MBFV scheme. It is independent from the
rest of the protocol: It has to be run only once for a given
set of parties and a given choice of public cryptographic

Multiparty Homomorphic Encryption from RLWE 301

Protocol 6. MHE−MPC

Public input: f the ideal functionality, pp the public
parameterization, pkR the receiver’s public-key
Private input: xi for each Pi ∈ P
Output for R: y = f(x1, x2, . . . , xN)

Setup: the parties instantiate the MBFV scheme

ski ← BFV.SecKeyGen(pp),
cpk← MBFV.ΠEncKeyGen(sk1, . . . , skN),
rlk← MBFV.ΠRelinKeyGen(sk1, . . . , skN),

In: each Pi encrypts its input and sends it to C

ci ← BFV.Encrypt(cpk, xi),

Eval: C computes the encrypted output and sends it
to the parties in P.

c′ ← BFV.Eval(f, c1, c2, . . . , cN),

Out: the parties in P re-encrypt the output under
the receiver’s key

c′R ← MBFV.ΠPubKeySwitch(sk1, . . . , skN , pkR, c′).

parameters pp = (t, n, q, σ,B). Whereas this step can re-
semble the offline phase of the LSSS-based approaches,
it is fundamentally different in that it produces public-
keys that can be used for an unlimited number of circuit
evaluations. This implies that the Setup step does not
directly depend on the number of multiplication gates
in the circuit, but on the maximum circuit depth the
parties want to support. This is because the encryption
scheme has to be parameterized to support a sufficient
homomorphic capacity.

The In step corresponds to the input phase: The
parties use the plain BFV.Encrypt algorithm to encrypt
their inputs and provide them to C for evaluation.

The Eval step consists in the evaluation of the
circuit-representation of f , using the BFV.Eval set of ho-
momorphic operations. As this step requires no secret
input from the parties, it can be performed by any semi-
honest entity C. In purely peer-to-peer settings, the par-
ties themselves assume the role of C, either by distribut-
ing the circuit computation, or by delegating it to one
designated party. In the cloud-assisted setting, a semi-
honest cloud provider can assume this role. Although
it is frequent to define the role of computing party in
current MPC applications [4, 5, 37], it is usually a part
of the N -party to 2-party problem reduction that in-
troduces non-collusion assumptions. In the MHE−MPC

protocol, the computing parties are not required to be
part of the computation data access-structure, thus re-
moving the need for such assumptions.

The Out step enables the receiver R to obtain its
output. This requires collaboration among the parties
in P to re-encrypt the output under the key of R. This
is achieved with the PubKeySwitch protocol, which does
not require online interaction between the input parties
and the receiver.
MHE−MPC Protocol Security. Provided that the
Setup phase correctly (see Equations (4) and (5) in Sec-
tion 4) and securely (see Appendix B.1) generates the
BFV keys, the private inputs are encrypted as valid
BFV ciphertexts during the computation (the In and
Eval steps). Hence, the MHE−MPC protocol security in
the semi-honest model can be formulated as a composi-
tion theorem (see Theorem 2 in Appendix B.2).

5.2 Feature Analysis

In the following subsections, we discuss the properties of
the MHE−MPC protocol, as well as the various system
models these properties enable.

5.2.1 Public Non-interactive Circuit Evaluation

Although the homomorphic operations of HE schemes
are computationally more expensive than local opera-
tions of secret-shared arithmetic, the former do not re-
quire private inputs from the parties. Hence, as long as
no output or collective bootstrapping is needed, the cir-
cuit evaluation procedure is non-interactive and can be
performed by any semi-honest entity. This not only en-
ables the evaluation to be efficiently distributed among
the parties in the usual peer-to-peer setting but also
enables new computation models for MPC:

Cloud-Outsourced Model. The homomorphic
circuit evaluation can be outsourced to a cloud-like ser-
vice, by providing it with the inputs and necessary eval-
uation keys. The parties can arbitrarily go offline during
the evaluation and reconnect for the final output phase.
In this model, the overhead for each input party is inde-
pendent of the total number of parties. Hence, resource-
constrained parties can take part in MPC tasks involv-
ing thousands of other parties. We demonstrate two in-
stances of the cloud setting as a part of our evaluation
(Sections 6.3 and 6.2).

Smart Contracts. A special case of an outsourced
MPC task is the execution of a smart contract over pri-

Multiparty Homomorphic Encryption from RLWE 302

vate data; this is feasible by means of the MHE-based
MPC solution. In this scenario, the contract stakehold-
ers (any party that has a private input to the contract)
are the MHE secret-key owners, and the smart-contract
platform acts as an oblivious contract evaluator.

5.2.2 Public-Transcript Protocols

All the protocols of Section 4 have public transcripts,
which removes the need for direct party-to-party com-
munication. Hence, not only the evaluation step, but
the whole MHE−MPC protocol can be executed over
any public authenticated channel. This also brings new
possibilities in designing MPC systems:

Efficient Communication Patterns. The pre-
sented protocols rely solely on the ability of the parties
to publicly disclose their shares and to aggregate them.
This gives flexibility for using efficient communication
patterns: The parties can be organized in a topologi-
cal way, as nodes in a tree, where each node interacts
solely with its parent and children nodes. We observe
that for all the protocols, the shares are always com-
bined by computing their sum. Hence, for a given party
in our protocols, a round consists in
Gen: computing its own share in the protocol,
Agg: collecting and aggregating the share of each of

its children and its own share,
Out: sending the result up the tree to its parent, or

outputting it.
Such an execution enables the parties to compute

their shares in parallel and results in a network traffic
that is constant at each node. By trading-off some la-
tency, the inbound traffic can be kept low by ensuring
that the branching factor of the tree (i.e., the number of
children per node) is manageable for each node. As the
share aggregation can also be computed by any semi-
honest third-party, the tree can contain nodes that are
not part of P (i.e., nodes that would not have input in
the MPC problem and have no share of the ideal secret
key) and are simply aggregating and forwarding their
children’s shares. We demonstrate the efficiency of the
tree topology in the multiplication triple generation ex-
ample benchmark in Section 6.4.

Cloud-Assisted MPC Model. The special case
of a single root node that does not hold a share of the key
can be mapped to a cloud-assisted setting where parties
run the protocols interacting solely with a central node.
This model complements the circuit evaluation out-
sourcing feature by removing the need for synchronous
and private party-to-party communication and the need

for the input parties to be online and active for the pro-
tocol to progress. Hence, the cloud-assisted MHE−MPC
protocol has a clear advantage in terms of tolerance
to unreliable parties, which is a significant step toward
large-scale MPC. We use the cloud-assisted model for
the first two example circuits of Section 6 and demon-
strate its practicality for computations involving thou-
sands of parties. Adapting the multiparty BFV scheme
(Section 4) to a T -out-of-N threshold scheme is a nat-
ural next step to address the challenge of parties going
offline for an arbitrary amount of time; indeed, the se-
curity requirements of the application must tolerate a
weaker access-structure.

5.3 Current Limitations

We discuss the current limitations of the MHE−MPC
protocol and outline potential solutions. We observe
that our proposed MBFV scheme is not the source of
these limitations. Instead, they are current constraints
of the MHE-based MPC approach that were not ad-
dressed in this work.

5.3.1 Arithmetic Circuits

A purely MHE-based MPC solution is indeed limited to
computing arithmetic functions over its plaintext space.
The MBFV plaintext space, (Rt[X],+,×), is particularly
suited for expressing vector and matrix arithmetic, due
to the ability to rotate vectors of Zt elements. Further-
more, analytic functions such sin(x) or ex can be ef-
ficiently evaluated through polynomial approximations.
Although mapping application-specific functionalities to
this computing model and finding the appropriate pa-
rameters is still a fairly manual process, the current ef-
fort in HE-compilers will significantly simplify it [54].

Non-arithmetic functions such as comparisons and
branching programs constitute a more fundamental lim-
itation that also applies to LSSS-based MPC. How-
ever, the compilers of these solutions already propose
workarounds either by mapping them back to an arith-
metic representation or by accepting the conditional
variable leakage.

As the sets of functions supported by the LSSS-
and MHE-based approaches continue to grow, we ex-
pect that each system will have its own strengths and
weaknesses. Hence, the ability to switch between the
two representations with the Enc2Share and Share2Enc
protocols is pivotal.

Multiparty Homomorphic Encryption from RLWE 303

5.3.2 Active Adversary Model

Zero-knowledge-proof systems for lattice-based schemes
are another active research topic [14, 55] which is es-
sential to extend the MHE−MPC protocol to active se-
curity. We observe that, as the local operations of the
MBFV scheme are of relatively low depth, proving their
correct execution in zero-knowledge is practical. Rotaru
et al. propose an actively secure distributed-key genera-
tion procedure for the BGV cryptosystem [51] that, de-
spite its performance impact, could be adapted to BFV.

Proving the correct execution of the homomorphic
execution by the abstract computing party C, however,
can be significantly more challenging and is circuit-
dependent. As the MHE−MPC has a public transcript,
a trivial solution is to publish this transcript as a proof.
But this non-compact solution might be unsatisfactory
in some applications.

Presently, honest-but-curious is the de-facto threat
model for cloud services and passively-secure MPC pro-
vides a way of protecting sensitive client-data in these
scenarios. In the peer-to-peer model, prototypes of such
systems have been deployed in operational settings [49].
An example is the medical sector where data collabo-
rations are mutually beneficial and well-regulated, yet
they legally require a certain level of data-protection.

6 Performance Analysis
We implemented the multiparty BFV scheme in the Lat-
tigo open-source library [1]. It provides Go implementa-
tions of the two most widespread RLWE homomorphic
schemes: BFV and CKKS, along with their multiparty
versions. The library uses state-of-the-art optimizations
based on the Chinese remainder theorem [8]. In addi-
tion to around an order of magnitude acceleration, the
RNS variant enables a more efficient way (i) of repre-
senting the key-switching intermediary basis w [35] and
(ii) of implementing the smudging technique through
RNS modular-reduction and rounding [27].

In order to analyze the performance of the
MHE−MPC protocol in both the cloud-assisted and the
peer-to-peer settings, we evaluate three generic yet pow-
erful circuits. These circuits represent common building
blocks for more complex functionalities (that we briefly
discuss), yet they do not introduce advanced domain-
specific requirements and constraints. Thus, these cir-
cuits enable a compact and reproducible comparison
with a baseline system for generic MPC. For a more

Table 2. Experimental cryptographic parameters: Overview
Set log2 t log2 n log2 q log2 w σ sec. (bits)
I 32 13 218 26 3.2 128
II-A 32 14 438 110 3.2 128
II-B 16 14 438 110 3.2 128
II-C 16 15 880 180 3.2 128
III 32 13 218 55 3.2 128

complex example, we refer the reader to the work of
Froelicher et al., who used the CKKS implementation
of our proposed scheme for machine-learning training
and prediction tasks [31].

In the cloud-assisted setting, we consider two ex-
ample circuits: (i) A multiparty input selection circuit
and its application to multiparty private-information-
retrieval (Section 6.2). (ii) The element-wise product
of integer vectors and its application as a simple mul-
tiparty private-set-intersection protocol (Section 6.3).
We compare the performance for both circuits against
a baseline system that uses a LSSS-based approach:
the MP-SPDZ library implementation [2] of the Over-
drive protocol [39] for the semi-honest, dishonest major-
ity setting. In the peer-to-peer setting, we consider the
task of generating Beaver multiplication triples (i.e., the
"offline" phase of LSSS-based approaches, Section 6.4).
We compare the performance against the SPDZ2K [23]
Oblivious-Transfer-based and the Overdrive [39] HE-
based triple-generation protocols.

6.1 Experimental Setup and Parameters

For the cloud-assisted setting, the client-side timings
were measured on a MacBook Pro with a 3.1 GHz Intel
i5 processor. The server-side timings were measured on
a 2.5 GHz Intel Xeon E5-2680 v3 processor (2x12 cores).
For the peer-to-peer setting, we run all parties on the
latter machine, over the localhost interface. We measure
the network-related cost in terms of number of commu-
nicated bytes (upstream + downstream), which does not
account for network-introduced delays. We observe that
this could slightly advantage the baseline LSSS-based
system due to its non-constant number of rounds.
Cryptographic Parameters. Each experiment rep-
resents a different circuit hence uses a different set of
parameters (see Section 3.4). Therefore, we discuss the
choice of parameters for each experiment. For conve-
nience, we summarize all the parameters in Table 2,
along with their security levels according to the Homo-
morphicEncryption.org standardization document [3].

Multiparty Homomorphic Encryption from RLWE 304

Algorithm 1. InputSelection(ctr, ct2, ..., ctN)

1 : for i = 2...N do

2 : maski ← BFV.PlainMul(ctr, ui)

3 : for j = 1... log(d) do

4 : maski ← BFV.Sum(maski,BFV.Rotate(maski, 2j))

5 : ctout ← BFV.Sum(ctout,BFV.Mul(cti,maski))

6 : return BFV.Relinearize(ctout)

6.2 Multiparty Input Selection

Setting. We consider N input parties in the cloud-
assisted setting. Party P1 seeks to select one among
N − 1 bit-string inputs x2, . . . , xN held by other parties
P2, . . . , PN , while keeping the selector r private. This
corresponds to the ideal functionality f(r, x2, . . . , xN) =
xr for internal receiver P1.

This selection circuit can be seen as a generaliza-
tion of an oblivious transfer functionality to the N -
party setting, and can directly implement an N -party
PIR system where a requester party retrieves a row in
a database partitioned across multiple provider parties.
We represent inputs as d-dimensional vectors in Zdp for
p a 32-bit prime and d a power of two. We denote ui the
plaintext-space encoding of a vector in ZN for which all
components are equal to 0, except for the i-th compo-
nent which is equal to 1.
MHE−MPC Protocol Instantiation.
Setup: The parties run EncKeyGen, RelinKeyGen and

RotKeyGen to produce the encryption, relin-
earization and rotation keys.

In: Each Provider Pi embeds its input in the coef-
ficients of a polynomial in Rt, encrypts it using
the cpk as cti and sends it to the cloud.
The Requester generates its selector as ur, en-
crypts it as ctr and sends it to the cloud.

Eval: The cloud computes the output ctout =
InputSelection(ctr, ct2, ..., ctN) (Algorithm 1).

Out: The Providers engage in the KeySwitch protocol
with target ciphertext ctout, input key s and out-
put key 0. By aggregating the decryption shares,
the cloud computes an encryption of xr under
the Requester secret-key (for which no decryp-
tion share was produced).

Parameterization. We use the parameter set I in Ta-
ble 2 for all system sizes N (the multiplicative depth of
InputSelection is 1). This set uses a 32-bits t (packing-
compatible) to match the default computation domain
of the baseline system [2] and a modulus q enabling the
depth-1 circuit.

Table 3. Input selection: Baseline comparison (Set I)
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

[2]
Offline 0.35 1.04 3.56 6.58 25.74 101.82
Online 0.02 0.04 0.07 1.31 4.72 17.83
Total 0.37 1.08 3.66 7.89 30.46 119.65

MHE Setup 0.59 0.58 0.69 42.93 42.93 42.93
Circ. 0.27 0.28 0.31 1.31 1.31 1.31

Table 4. Input selection: Cost for each phase (Set I)
Party Cloud

Time [ms] Com. [MB] Wall time|CPU time [s]

#Parties indep. indep. 32 64 128
Setup 262.58 42.93 0.85 1.68 3.38
In 6.22 0.52 0.01 0.01 0.02
Eval 0.00 0.00 0.4|8.1 0.8|23.4 1.6|62.1
Out 3.34 0.79 0.01 0.02 0.02

Results. Table 3 shows a comparison with the baseline
system. The generation of rotation keys accounts for
approximately 75% of the setup cost and is the main
overhead of the protocol. For 2 parties, this setup takes
more time and communication than the baseline’s offline
phase. For 4 parties, the MHE setup becomes faster than
the triple generation but still requires 1.4 times more
communication. For 8 parties, the MHE setup cost is
5.2× faster and requires 2.4× less communication. In-
deed, comparing the MHE setup to the baseline’s offline
phase is only valid when considering a single, isolated
circuit execution. This is because the MHE keys can be
reused for an unlimited number of circuit evaluations
and the cost of generating them can be amortized. When
considering non-amortizable costs (Total and Circ. in
Tables 3), the MHE-based solution has a lower response
time and a lower communication-overhead per party us-
age than the baseline. Moreover, the per-party commu-
nication overhead of the MHE approach does not de-
pend on N . Table 4 shows the MHE−MPC per-phase
cost for larger number of parties. The parallelization of
the circuit computation over multiple threads yields a
very low response-time.Our choice for t enables 32.8
kilobytes of raw application data to be packed into each
ciphertext (i.e., to be retrieved at each request). For
the eight-party setting, this yields a plaintext through-
put of 105.7 kB/s (baseline: 9.0 kB/s) and a band-
width usage of only 40× the size of an insecure plain-
text system (baseline: 3650×). We ran the same ex-
periment for N = 8000 parties; the response time was
61.7 seconds. These results show that the MHE ap-
proach can solve large MPC problems, even for resource-
constrained clients, by delegating all the storage and the
heavy computation to a cloud.

Multiparty Homomorphic Encryption from RLWE 305

6.3 Element-Wise Vector Product

Setting. We consider N input parties (with ideal secret
key s) in the cloud-assisted setting. Each party holds
a private integer vector xi of dimension d = 214 and
they all seek to provide an external receiver R (with
secret key sR) with the element-wise product (which
we denote �) between the N private vectors. Thus, the
ideal functionality is f(x1,x2, . . . ,xN) = x1�x2�· · ·�
xN = y with external receiver R.
MHE−MPC Protocol Instantiation.
Setup: The parties use the EncKeyGen and RelinKeyGen

protocols to produce the public encryption and
relinearization keys for their joint secret key s.

In: Each input party Pi ∈ P encodes its input vector
xi as a polynomial xi using packed plaintext en-
coding. Then, it encrypts this vector under the
collective public key and sends Encs(xi) to the
cloud.

Eval: The cloud computes the overall product by
using the BFV.Mul operation (with intermedi-
ary BFV.Relinearize operations). This results in
Encs(y) where y is the packed representation of
y. The cloud sends Encs(y) to the input parties.

Out: The input parties use the PubKeySwitch protocol
to re-encrypt Encs(y) into EncsR(y).

Parameterization. This is a demanding circuit, as its
multiplicative depth is equal to dlogNe. Therefore, the
choice of parameters depends on the number of parties.
For up to 8 parties (Table 5), we use the parameter set
II-A from Table 2 and compare MHE solution against
the baseline system. This set uses a 32-bits t (packing-
compatible) to match the default computation domain
of the baseline system [2]. For up to 128 parties (Table
6), we use the parameter set II-B that differs from II-A
in its smaller plaintext-space, which enables the circuit
to have a depth up to 9. For 1024 parties (Table 7), a cir-
cuit of depth 10 is required. We present two approaches
to this problem: (i) Increase the size of q; this forces us
to increase n to preserve the security level (parameter
set II-C). (ii) Keep the same parameter set II-B and
use the ColBootstrap protocol to refresh the ciphertexts
when reaching depth 9 in the circuit.
Results. Table 5 shows the comparison with the base-
line. We observe very similar results between the MHE
approach and the baseline for the two-party case and
a clear advantage for the former for larger numbers of
parties. Table 6 shows the performance of the MHE ap-
proach for large numbers of parties. This demonstrates
how re-balancing the cost of MPC toward computation
time enables efficient multi-core processing and yields

Table 5. Element-wise product: Baseline comparison (Set II-A)
Time [s] Com./party [MB]

#Parties 2 4 8 2 4 8

[2]
Offline 0.21 1.19 5.33 3.42 29.13 156.06
Online 0.02 0.04 0.10 1.05 6.29 29.36
Total 0.24 1.24 5.52 4.47 35.42 185.42

MHE Setup 0.18 0.20 0.25 25.17 25.17 25.17
Circ. 0.29 0.41 0.64 4.72 4.72 4.72

Table 6. Element-wise product: Cost for each phase (Set II-B)
Party Cloud

Time [ms] Com. [MB] Wall time|CPU time [s]

#Parties indep. indep. 32 64 128
Setup 96.41 25.17 0.49 0.85 1.99
In 20.02 1.57 0.04 0.04 0.15
Eval 0.00 0.00 0.8|4.5 1.0|10.3 1.5|22.7
Out 25.38 3.15 0.05 0.10 0.21

Table 7. Element-wise product: N = 1024 parties, comparison
between Set II-B+ColBootstrap and Set II-C

Party Cloud
CPU Time [ms] Com. [MB] Wall|CPU Time [s|m]

II-B II-C II-B II-C II-B II-C
Setup 110.2 467.5 25.2 121.8 13s 57s
In 21.6 78.4 1.6 6.3 1s 3s
Eval 202.4 0.0 18.9 0.0 6s|3.8m 29s|19.2m
Out 27.2 107.5 3.1 12.6 1.2s 4.3s

very low response times (e.g., < 1 sec. of end-to-end
computations for 32 parties). Finally, Table 7 illustrates
how the ColBootstrap protocol (used with the set II-B
but not with the set II-C) introduces a trade-off between
network usage and CPU usage. In this case, for an ad-
ditional 4.7 MB of communication per party in the on-
line phase, refreshing ciphertexts is more cost-effective
(for bandwidth and CPU, by a factor between 4× and
5×) than using larger parameters, even if it requires one
more communication round.

This circuit could be used, for example, to im-
plement efficient multiparty private-set-intersection for
very large number of parties. In its most simple instan-
tiation, the parties could encode their sets as binary
vectors and use this functionality to compute the bit-
wise AND between them. By mapping the results to this
application, we can compare with the special purpose
multiparty PSI protocol by Kolesnikov et al. [40]. For
the standard semi-honest model with dishonest major-
ity, the set size 212 and 15 parties (the largest evaluated
value in [40]), the MHE solution is 1029× faster (in the
LAN setting) and requires 15.3× less communication to
compute the intersection. However, our encoding of sets
limits the application to finite sets. More advanced en-
codings should be investigated to match the flexibility
of the approach by Kolesnikov et al.

Multiparty Homomorphic Encryption from RLWE 306

6.4 Multiplication Triples Generation

In a peer-to-peer setting, we apply the MHE−MPC
protocol to LSSS multiplication-triples generation. We
compare the performance against the SPDZ2K [23]
Oblivious-Transfer-based and the Overdrive [39] HE-
based triple-generation protocols. We used the Multi-
Protocol SPDZ library [2] implementation of SPDZ2K
(in semi-honest mode) and implemented the HE and
MHE approaches with the Lattigo library [1].
Setting. We consider N parties that seek to generate
multiplication triples in a peer-to-peer setting. They
use the tree-based communication-pattern described in
Section 5.2.2. Let xi = (ai,bi) ∈ Zn×2

p be the in-
put of party Pi, where n is the number of generated
triples and p is a prime. The ideal functionality for each
party Pi is fi(x1,x2, . . . ,xN) = ci such that

∑N
i=1 ci =

(
∑N
i=1 ai)� (

∑N
i=1 bi) = a � b.

MHE−MPC protocol instantiation.
Setup The parties run the RelinKeyGen protocol to gen-

erate a relinearization key rlk.
In: The parties use the Share2Enc protocol to obtain

encryptions of a and b. Hence, the root node
holds cta=Enc(a) and ctb=Enc(b).

Eval: The root computes ctc = Relin(Mult(cta, ctb),rlk)
and sends ctc down the tree.

Out: The parties use the Enc2Share protocol to obtain
an additive sharing of c from Enc(c).

Parameterization. We target the 32-bits integers as
our LSSS-computation domain, hence set t as a 32-bits
prime (parameter set III for the HE and MHEmethods).
The OT-based generator produces Z232 triples1.
Results. Figure 1 plots the results for the three tech-
niques, with a varying number of parties. To report on
the steady regime of the systems, we do not include the
setup step costs of all methods in the measurements.
After the MHE setup step, the parties can loop over
the In-Eval-Out steps to produce a stream of triples in
batches of n = 213. Except for the two-party through-
put, the MHE approach outperforms the HE-based and
OT-based approaches.

6.5 Discussion

We observe that the main cost of MHE-based solutions
is the network load of their setup phase, primarily due to

1 At the time of writing, MP-SPDZ does not implement a
benchmark for the OT-based triple-generation in a prime field.

2 4 6 8 10 12 14 16
Number of parties

0

20

40

60

T
hr
ou
gh
pu
t
[1
03
×

tr
ip
le
s
/s
]

2 4 6 8 10 12 14 16
Number of parties

0

1

2

3

E
ffi
ci
en
cy

[1
03
×

tr
ip
le
s/
M
B
]

OT-based

HE-based

MHE-based

Fig. 1. Number of generated triples per second (throughput, left)
and per megabyte of communication (efficiency, right).

the generation of evaluation keys (e.g., relinearization,
rotation). Hence, in scenarios with a single evaluation of
a circuit with few multiplication gates and small number
of input parties, the MHE-based solution would not be
as efficient as an LSSS-based approach that generates
triples on-the-fly. However, as the MHE setup is per-
formed only once, it is quickly amortized when consid-
ering circuits with a few thousands multiplication gates
and with more than two parties; in this scenario, the
cost of the LSSS-based approach is dominated by the
generation of multiplication triples. Evaluating where
the decision-boundary stands regarding which system
to use for smaller use-cases is a crucial question to be
investigated as a future work.

7 Conclusions
In this work, we have introduced a novel MHE scheme
based on the BFV cryptosystem, and have instanti-
ated this scheme in an efficient and versatile MPC solu-
tion. We have observed that the public-transcript prop-
erty of the MHE−MPC protocol enables new compu-
tation models for MPC. Besides the traditional peer-
to-peer model, this includes outsourced cloud-assisted
models that reduce the communication cost per party
to be constant in the number of parties, without rely-
ing on non-collusion assumptions. We have implemented
our scheme and made it available in the Lattigo open-
source library [1]. We have analyzed the performance
of the cloud-based solution and noticed a net improve-
ment ranging between one and two orders of magni-
tude in both response time and communication com-
plexity compared to the LSSS-based approaches. There-
fore, this cloud-assisted model enables new opportuni-
ties for large scale MPC-as-a-service that we view as a
promising driver for adoption of HE and MPC solutions
as privacy-enhancing technologies.

Multiparty Homomorphic Encryption from RLWE 307

Acknowledgments
The authors would like to thank Henry Corrigan-Gibbs
and our shepherd, Peeter Laud, for their valuable re-
views and comments. This work was supported in
part by the grant #2017-201 of the Strategic Focal
Area “Personalized Health and Related Technologies
(PHRT)” of the ETH Domain.

References
[1] 2020. Lattigo v2.1.1. Online: http://github.com/ldsec/

lattigo. EPFL-LDS.
[2] 2020. MP-SPDZ. Online: https://github.com/data61/MP-

SPDZ/.
[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding,

Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey
Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele
Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and
Vinod Vaikuntanathan. 2018. Homomorphic Encryption
Security Standard. Technical Report. HomomorphicEncryp-
tion.org, Toronto, Canada.

[4] Andreea B Alexandru, Manfred Morari, and George J Pap-
pas. 2018. Cloud-based MPC with encrypted data. In 2018
IEEE Conference on Decision and Control (CDC). IEEE,
5014–5019.

[5] David W Archer, Dan Bogdanov, Yehuda Lindell, Li-
ina Kamm, Kurt Nielsen, Jakob Illeborg Pagter, Nigel P
Smart, and Rebecca N Wright. 2018. From Keys to
Databases—Real-World Applications of Secure Multi-Party
Computation. Comput. J. 61, 12 (2018), 1749–1771.

[6] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran
Tromer, Vinod Vaikuntanathan, and Daniel Wichs. 2012.
Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In Annual In-
ternational Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 483–501.

[7] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. 2013. BLAKE2: simpler,
smaller, fast as MD5. In International Conference on Applied
Cryptography and Network Security. Springer, 119–135.

[8] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and
Vincent Zucca. 2016. A full RNS variant of FV like some-
what homomorphic encryption schemes. In International
Conference on Selected Areas in Cryptography. Springer,
423–442.

[9] Donald Beaver. 1991. Efficient multiparty protocols using
circuit randomization. In Annual International Cryptology
Conference. Springer, 420–432.

[10] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril
Vaht. 2015. How the estonian tax and customs board eval-
uated a tax fraud detection system based on secure multi-
party computation. In International Conference on Financial
Cryptography and Data Security. Springer, 227–234.

[11] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Share-
mind: A framework for fast privacy-preserving computations.
In European Symposium on Research in Computer Security.
Springer, 192–206.

[12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. 2012.
Deploying secure multi-party computation for financial data
analysis. In International Conference on Financial Cryptogra-
phy and Data Security. Springer, 57–64.

[13] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
et al. 2009. Secure multiparty computation goes live. In In-
ternational Conference on Financial Cryptography and Data
Security. Springer, 325–343.

[14] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler.
2019. Algebraic techniques for short (er) exact lattice-based
zero-knowledge proofs. In Annual International Cryptology
Conference. Springer, 176–202.

[15] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-
Pastoriza, and Jean-Pierre Hubaux. 2020. Efficient boot-
strapping for approximate homomorphic encryption with
non-sparse keys. IACR Cryptol. ePrint Arch (2020), 1203.

[16] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
2014. (Leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory
(TOCT) 6, 3 (2014), 13.

[17] Ran Canetti and Marc Fischlin. 2001. Universally com-
posable commitments. In Annual International Cryptology
Conference. Springer, 19–40.

[18] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. 2019.
Efficient multi-key homomorphic encryption with packed ci-
phertexts with application to oblivious neural network infer-
ence. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 395–412.

[19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim,
and Yongsoo Song. 2018. Bootstrapping for approximate ho-
momorphic encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques. Springer, 360–384.

[20] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo
Song. 2017. Homomorphic encryption for arithmetic of ap-
proximate numbers. In International Conference on the The-
ory and Application of Cryptology and Information Security.
Springer, 409–437.

[21] Hyunghoon Cho, David J Wu, and Bonnie Berger. 2018.
Secure genome-wide association analysis using multiparty
computation. Nature biotechnology 36, 6 (2018), 547.

[22] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private,
robust, and scalable computation of aggregate statistics. In
14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17). 259–282.

[23] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter
Scholl, and Chaoping Xing. 2018. SPDZ2k : Efficient MPC
mod 2k for Dishonest Majority. In Annual International
Cryptology Conference. Springer, 769–798.

[24] Ronald Cramer, Ivan Damgård, and Jesper B Nielsen. 2001.
Multiparty computation from threshold homomorphic en-
cryption. In International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 280–
300.

http://github.com/ldsec/lattigo
http://github.com/ldsec/lattigo
https://github.com/data61/MP-SPDZ/
https://github.com/data61/MP-SPDZ/

Multiparty Homomorphic Encryption from RLWE 308

[25] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pas-
tro, Peter Scholl, and Nigel P Smart. 2013. Practical
covertly secure MPC for dishonest majority–or: breaking
the SPDZ limits. In European Symposium on Research in
Computer Security. Springer, 1–18.

[26] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Za-
karias. 2012. Multiparty computation from somewhat homo-
morphic encryption. In Advances in Cryptology–CRYPTO
2012. Springer, 643–662.

[27] Leo de Castro, Chiraag Juvekar, Analog Devices, and Vinod
Vaikuntanathan. 2020. Fast Vector Oblivious Linear Eval-
uation from Ring Learning with Errors. IACR Cryptology
ePrint Archive (2020).

[28] Yvo G Desmedt. 1994. Threshold cryptography. European
Transactions on Telecommunications 5, 4 (1994), 449–458.

[29] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat
Practical Fully Homomorphic Encryption. IACR Cryptology
ePrint Archive 2012 (2012), 144.

[30] Matthew Franklin and Stuart Haber. 1996. Joint encryp-
tion and message-efficient secure computation. Journal of
Cryptology 9, 4 (1996), 217–232.

[31] David Froelicher, Juan R. Troncoso-Pastoriza, Apostolos
Pyrgelis, Sinem Sav, Joao Sa Sousa, Jean-Philippe Bossuat,
and Jean-Pierre Hubaux. 2021. Scalable Privacy-Preserving
Distributed Learning. To be presented at PETS’21 (2021).

[32] David Froelicher, Juan R. Troncoso-Pastoriza, Joao S.
Sousa, and Jean-Pierre Hubaux. 2020. Drynx: Decentral-
ized, Secure, Verifiable System for Statistical Queries and-
Machine Learning on Distributed Datasets. IEEE Trans-
actions on Information Forensics and Security (2020), 1–1.
https://doi.org/10.1109/TIFS.2020.2976612

[33] Craig Gentry and Dan Boneh. 2009. A fully homomorphic
encryption scheme. Vol. 20. Stanford University Stanford.

[34] Oded Goldreich. 2009. Foundations of Cryptography: Vol-
ume 2, Basic Applications. Cambridge University Press.
636–638 pages.

[35] Kyoohyung Han and Dohyeong Ki. 2020. Better bootstrap-
ping for approximate homomorphic encryption. In Cryptogra-
phers’ Track at the RSA Conference. Springer, 364–390.

[36] Marcella Hastings, Brett Hemenway, Daniel Noble, and
Steve Zdancewic. 2019. SoK: General Purpose Compilers
for Secure Multi-Party Computation. In Symposium on Se-
curity and Privacy (SP). IEEE, 1220–1270.

[37] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier,
Dan Boneh, and Gill Bejerano. 2017. Deriving genomic
diagnoses without revealing patient genomes. Science 357,
6352 (2017), 692–695.

[38] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016.
MASCOT: faster malicious arithmetic secure computation
with oblivious transfer. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security. 830–842.

[39] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018.
Overdrive: making SPDZ great again. In Annual Interna-
tional Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 158–189.

[40] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike
Rosulek, and Ni Trieu. 2017. Practical Multi-party Private
Set Intersection from Symmetric-Key Techniques.. In ACM
Conference on Computer and Communications Security.

1257–1272.
[41] Joshua Kroll, Edward Felten, and Dan Boneh. 2014. Secure

protocols for accountable warrant execution. See https:
//www.jkroll.com/papers/warrant_paper.pdf. (2014).

[42] Yehuda Lindell. 2017. How to simulate it–a tutorial on the
simulation proof technique. In Tutorials on the Foundations
of Cryptography. Springer, 277–346.

[43] Adriana López-Alt, Eran Tromer, and Vinod Vaikun-
tanathan. 2011. Cloud-Assisted Multiparty Computation
from Fully Homomorphic Encryption. IACR Cryptology
ePrint Archive 2011 (2011), 663.

[44] Adriana López-Alt, Eran Tromer, and Vinod Vaikun-
tanathan. 2012. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In
Proceedings of the forty-fourth annual ACM symposium on
Theory of computing. ACM, 1219–1234.

[45] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010.
On ideal lattices and learning with errors over rings. In An-
nual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1–23.

[46] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A
system for scalable privacy-preserving machine learning. In
2017 38th IEEE Symposium on Security and Privacy (SP).
IEEE, 19–38.

[47] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc
Joye, Dan Boneh, and Nina Taft. 2013. Privacy-preserving
ridge regression on hundreds of millions of records. In Se-
curity and Privacy (SP), 2013 IEEE Symposium on. IEEE,
334–348.

[48] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. 2018.
PALISADE lattice cryptography library. https://git.njit.edu/
palisade/PALISADE.

[49] Jean Louis Raisaro, Juan Troncoso-Pastoriza, Mickaël Mis-
bach, João Sá Sousa, Sylvain Pradervand, Edoardo Mis-
siaglia, Olivier Michielin, Bryan Ford, and Jean-Pierre
Hubaux. 2018. MedCo: Enabling Secure and Privacy-
Preserving Exploration of Distributed Clinical and Genomic
Data. IEEE/ACM transactions on computational biology
and bioinformatics 16, 4 (2018), 1328–1341.

[50] Oded Regev. 2009. On lattices, learning with errors, random
linear codes, and cryptography. Journal of the ACM (JACM)
56, 6 (2009), 34.

[51] Dragos Rotaru, Nigel P Smart, Titouan Tanguy, Frederik
Vercauteren, and Tim Wood. 2019. Actively Secure Setup
for SPDZ. IACR Cryptol. ePrint Arch. 2019 (2019), 1300.

[52] SEAL 2019. Microsoft SEAL (release 3.2). https://github.
com/Microsoft/SEAL. Microsoft Research, Redmond, WA.

[53] Adi Shamir. 1979. How to share a secret. Commun. ACM
22, 11 (1979), 612–613.

[54] Alexander Viand. 2021. SoK: Fully Homomorphic Encryption
Compilers. In IEEE Symposium on Security and Privacy.

[55] Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu,
Zuoxia Yu, and William Whyte. 2019. Efficient lattice-
based zero-knowledge arguments with standard soundness:
construction and applications. In Annual International Cryp-
tology Conference. Springer, 147–175.

[56] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and
Ion Stoica. 2019. Helen: Maliciously secure coopetitive learn-
ing for linear models. In 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 724–738.

https://doi.org/10.1109/TIFS.2020.2976612
https://www.jkroll.com/papers/warrant_paper.pdf
https://www.jkroll.com/papers/warrant_paper.pdf
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

Multiparty Homomorphic Encryption from RLWE 309

A Noise Analysis
We analyze the effect that distributing the BFV cryp-
tosystem has on the ciphertext noise. As distribution
affects only the magnitude of the scheme’s secrets (key
and noise), the original cryptosystem analysis [29] di-
rectly applies, though with a larger worst-case error
norm that we express as a function of the number of
parties N in the following.
Ideal Secret-Key and Encryption-Key. As a result
of the secret-key generation procedure, where each ad-
ditive share si is sampled from R3 (see Section 4.2), we
know that ‖s‖ ≤ N .

As a result of the EncKeyGen protocol, the collective
public key noise is ecpk =

∑N
i=1 ei (see Eq. (4)), which

implies that ‖ecpk‖ ≤ NB, where B is the worst-case
norm for an error term sampled from χ.
Fresh Encryption. Let ct= (c0, c1) be a fresh encryp-
tion of a message m under a collective public key. The
first step of the decryption (Eq. (1)) under the ideal
secret key outputs c0 + sc1 = ∆m+ efresh, where

‖efresh‖ ≤ B(2nN + 1). (8)

Thus, for a key generated by the EncKeyGen proto-
col, the worst-case fresh ciphertext noise is linear in the
number N of parties.
Collective Key-Switching. Let ct = (c0, c1) be an
encryption of m under the collective secret key s, and
ct′ = (c′0, c1) be the output of the KeySwitch protocol on
ct with target key s′. Then, c′0 + s′c1 = m+ efresh + eCKS
with

‖eCKS‖ ≤ BsmgN, (9)

where Bsmg is the bound of the smudging distribution.
We observe that the additional noise does not depend
on the destination key s′.
Public Collective Key-Switching. Let ct = (c0, c1)
be an encryption of m under the collective secret key
s, and ct′ = (c′0, c′1) be the output of the PubKeySwitch
protocol on ct and target public key pk′ = (p′0, p′1), such
that p′0 = −sp′1+epk′ . Then, c′0+s′c′1 = m+efresh+ePCKS
with

‖ePCKS‖ ≤ N(nBpk′ + n‖s′‖B +Bsmg), (10)

where ‖epk′‖ ≤ Bpk′ , and Bsmg is the bound on the
smudging noise. Note that in this case, the smudging
noise should dominate this term.

B Security Analysis
We first provide a security argument for the proposed
multiparty BFV scheme in the standalone passive-
adversary model (Appendix B.1), that we base on the
decision ring-learning-with-errors assumption [45]. In
Appendix B.2, we provide a security argument for the
MHE−MPC protocol that we express as a composition
theorem. We formulate these arguments in terms of the
ideal/real simulation formalism [42]: We show that, for
every possible adversarial subset A of P, there exists
a simulator program S that can simulate A’s view in
the protocol, when provided only with A’s input and
output. To achieve semantic security, we require that
A must not be able to distinguish the simulated view
from the real one. We observe that, in our case, the view
of the adversary is always the full transcript (public-
transcript property). For a given value x, we denote x̃ its
simulated equivalent. Unless otherwise stated, we con-
sider computational indistinguishability between distri-
butions denoted x̃ c≡ x.

B.1 Standalone MBFV Security

Let P = {P1, P2, . . . , PN} be a set of N parties in the
MBFV scheme with public parameters pp:

si ← BFV.SecKeyGen(pp),
s′i ← BFV.SecKeyGen(pp),

cpk← MBFV.ΠEncKeyGen(s1, ..., sN),
rlk← MBFV.ΠRelinKeyGen(s1, ..., sN).

We denote viewEncKeyGen, viewRelinKeyGen and viewKeySwitch

the transcript of the ΠEncKeyGen, ΠRelinKeyGen and
ΠKeySwitch protocols, respectively. Additionally, for ct a
ciphertext encrypted under s, let

fKeySwitch({si, s′i, e′i}Pi∈P , ct) = s′c1+∆·Decrypt(s, ct)+esmg

denote the ideal output of protocol ΠKeySwitch where
esmg =

∑
Pi∈P e

′
i.

Theorem 1 (MBFV Security in the semi-honest model).
For each possible set of corrupted parties A ⊂ P (the
adversary) where |A| ≤ N − 1, there exist a tuple of
simulator programs (SEncKeyGen, SRelinKeyGen, SKeySwitch)
such that

SEncKeyGen({si}Pi∈A, cpk) c≡ viewEncKeyGen

SRelinKeyGen({si}Pi∈A, rlk) c≡ viewRelinKeyGen

SKeySwitch({si, s′i}Pi∈A, ct) c≡ viewKeySwitch

Multiparty Homomorphic Encryption from RLWE 310

and the following equation holds

fKeySwitch({si, s′i, e′i}Pi∈P , ct) c≡ ΠKeySwitch({si, s′i}Pi∈P , ct)

Proof. First, we observe that Theorem 1 states that
there is at least one honest player that we denote Ph.
The choice for Ph, among multiple honest parties, does
not reduce generality. We denoteH the set P\(A∪{Ph})
of all other honest parties. Hence, the tuple (A,H) can
represent any partition of P\{Ph}. In particular, both A
and H can be empty in the following arguments. To sim-
plify the notation, we consider the various error terms
sampled as a part of the protocols as private inputs to
these protocols (as if they were sampled before the pro-
tocol starts). We proceed by constructing simulators for
each sub-protocol.

We observe that the PubKeySwitch, Enc2Share,
Share2Enc and ColBootstrap protocols can all be derived
from the KeySwitch protocol and their associated simu-
lators can be straightforwardly adapted from SKeySwitch.
Construction of SEncKeyGen. The output of the
ΠEncKeyGen({si, ei}Pi∈P) protocol (Protocol 1) is cpk =
(p0, p1) as defined in Equation (4) and its transcript is
the tuple (p0,1, p0,2, . . . , p0,N) of all the players’ shares;
this tuple corresponds to an additive sharing of p0.
SEncKeyGen can simulate these shares by randomizing
them under two constraints: (1) The simulated shares
must sum up to p0, and (2) the adversary shares must
be equal to the real ones (otherwise, it could easily dis-
tinguish them). Hence, SEncKeyGen generates the share
p̃0,i of party Pi as

p̃0,i =

[−sip1 + ei]q if Pi ∈ A
← Rq if Pi ∈ H
[p0 −

∑
Pj∈A∪H

p̃0,j]q if Pi = Ph .

Lemma 1. For the adversary as defined in Theorem 1,
it holds that (p̃0,1, p̃0,2, . . . , p̃0,N) c≡ (p0,1, p0,2, . . . , p0,N).

Proof (informal). We first observe that, when H = ∅,
SEncKeyGen outputs the real view and the statement triv-
ially holds. When H 6= ∅, all p̃0,iPi ∈ H are uni-
formly random in Rq and p̃0,h is pseudo-random (be-
cause [

∑
Pj∈H p̃0,j]q is pseudo-random). Indeed, any

polynomial-time adversary distinguishing (p̃0,i, p1) from
(p0,i, p1) with non-negligible probability would directly
yield a distinguisher for the decision-RLWE problem.
Construction of SRelinKeyGen. The output of the
RelinKeyGen({si, ui, e0,i, e1,i, e2,i, e3,i}Pi∈P) protocol
(Protocol 2) is rlk = (r0, r1), the relinearization
key defined in Eq. (5). Its transcript consist in two

rounds for which each party discloses a share in R2×l
q :

(h1, ...,hN ,h′1, ...,h′N). These shares represent an ad-
ditive sharing of values h = (h(0),h(1)) and h′ =
(h′(0),h′(1)), with the constraints that r0 = h′(0) + h′(1)

and r1 = h(1). Hence, similarly as for SEncKeyGen, they
can be generated for the honest parties by randomizing
them under these constraints. Specifically, SRelinKeyGen

outputs (h̃1, ..., h̃N , h̃′1, ..., h̃′N) where

h̃i =

([−uia + siw + e0,i]q , [sia + e1,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(← Rlq , [r1 −

∑
Pj∈A∪H

h̃(1)
j]q) if Pi = Ph

,

h̃′i =

([sih̃(0) + e2,i]q , [(ui − si)h̃(1) + e3,i]q) if Pi ∈ A
← R2×l

q if Pi ∈ H
(b← Rlq , [r0 − b−

∑
Pj∈A∪H

h̃′(1)
j]q) if Pi = Ph

,

Lemma 2. For the adversary as defined in Theorem 1,
it holds that

(h̃1, ..., h̃N , h̃′1, ..., h̃′N) c≡ (h1, ...,hN ,h′1, ...,h′N)

Proof (informal). We first observe that, for the first
round, (−uia + e0,i,a) and (−sia + e1,i,a) are two l-
tuples of RLWE samples (with secrets si and ui) and
the same argument as for Lemma 1 applies (l times).
Therefore, they can be considered pseudo-random and
can be generated by the simulator. Next, we observe
that h, their sum in R2×l

q , is also pseudo-random. Hence,
the shares of the second round can be considered as two
sets of l fresh RLWE challenges (sih(0) + e2,i,h(0)) and
((ui−si)h(1)+e3,i,h(1)). This corresponds to the general
idea that the RLWE assumption can be applied recur-
sively to prove that, for s, u ← R3, e0, e1 ← χ, a ← Rq,
the distribution (usa + ue0 + e1, sa + e0, a) is indistin-
guishable from the uniform distribution in R3

q .
Output of ΠKeySwitch. Given a ciphertext ct = (c0, c1)
decrypting under s, the ideal functionality of the
KeySwitch protocol (Protocol 3) is to compute ct′ =
(c′0, c1) such that c′0 + s′c1 = ∆ · Decrypt(s, ct) + esmg,
where esmg is a fresh noise term sampled from an error
distribution χsmg. Indeed, this noise must be fresh in
order to not leak the error terms in ct to the output-key
holder. Hence, the ideal output of the ΠKeySwitch proto-
col is fKeySwitch({si, s′i, e′i}Pi∈P , ct) = ĥ such that ct′ =
(c0+ĥ, c1) satisfies the above equation. However, the real
output of the protocol ΠKeySwitch({si, s′i, e′i}Pi∈P , ct) = h

differs from the ideal one in that it contains the error
of ct. Simulation-based proofs permit this difference, as
long as it can be proven that the ideal and real outputs

Multiparty Homomorphic Encryption from RLWE 311

are undistinguishable for the adversary. We formulate
the property as Lemma 3. Then, we show that, even
when the adversary has access to the real output, the
adversary cannot distinguish the simulated view from
the real one. This is enunciated as Lemma 4.

Lemma 3. Let ĥ = fKeySwitch({si, s′i, ei}Pi∈P , ct) be
the ideal output of the ΠKeySwitch protocol and h =
ΠKeySwitch({si, s′i, ei}Pi∈P , ct) be its real output. For any
adversary as defined in Theorem 1 provided with s′ =∑
Pi∈P s

′
i, it holds that ĥ

c≡ h.

Proof (sketch). The adversary knowledge of s′ enables
the extraction of the noise of ct′ as ect′ = c′0 +h+ s′c1−
∆m. This noise component has the form ect = ect +esmg
where ect is the noise of component after a decryption
of ct with s and esmg =

∑
Pi∈P ei is the sum of all

the fresh noise terms added as a part of the ΠKeySwitch
protocol. Hence, for Lemma 3 to hold, the distribution
of ect + esmg must be indistinguishable from that esmg.

We observe that both ect and esmg follow centered
Gaussian distributions of different variances that we de-
note σ2

ct and σ2
smg, respectively. From the protocol defi-

nition, we know that each ei is sampled from a χKeySwitch
of variance 2λσ2

ct. Hence, the ratio σ2
ct/σ

2
KeySwitch is neg-

ligible, and ect + esmg is statistically indistinguishable
from esmg by the Smudging lemma [6].
Construction of SKeySwitch. The transcript of the
ΠKeySwitch protocol is a tuple of the parties’ shares
(h1, h2, ..., hN) that constitute an additive sharing of
h in Rq. This transcript is simulated by SKeySwitch as
(h̃1, h̃2, ..., h̃N) where

h̃i =

[(−si + s′i)c1 + e′i]q if Pi ∈ A
ai ← Rq if Pi ∈ H
[h−

∑
Pi∈A∪H

h̃i]q if Pi = PH .

Lemma 4. For the adversary as defined in Theorem 1,
it holds that (h̃1, h̃2, ..., h̃N) c≡ (h1, h2, ..., hN).

Proof (sketch). When considering the distribution of
the simulated and real views alone, the usual decision-
RLWE assumption suffices: (−sic1 + e′i, c1) is indistin-
guishable from (a ← Rq, c1) for an adversary that does
not know si and e′i. However, we need to jointly consider
this distribution and the real output. We recall that an
adversary who has access to s′ can extract e+e′ from the
output and might be able to estimate e′i for i /∈ A. Con-
sequently, we need to make sure that the uncertainty
the adversary has in estimating e′i is sufficiently large

to protect each share hi in the KeySwitch protocol. We
formalize this requirement as

Condition 1. An input ciphertext (c0, c1) to the
KeySwitch protocol is such that c0 + sc1 = ∆m + ect
where ect = eA+ eh includes a term eh that is unknown
to, and independent from, the adversary. Furthermore,
eh follows a distribution according to the RLWE hard-
ness assumptions.

If Condition 1 holds, we know that A can only approx-
imate the term eh up to an error ect,h; this is enough
to make (hh, c1) indistinguishable from (a← Rq, c1). In
the scope of the MHE−MPC protocol, as long as all par-
ties provide at least one input (for which the noise will
be fresh), the requirement of Condition 1 is satisfied. ¨

B.2 MHE−MPC Protocol Security

Given a public arithmetic function f over the parties’
inputs {xi}Pi∈P , the ideal functionality fMHE−MPC of
MHE−MPC protocol (Protocol 6) is to output a BFV
encryption under the secret-key sR of f({xi}Pi∈P) to a
receiver R that holds sR. Clearly, the correctness of the
BFV scheme and of the KeySwitch protocol imply that
the MHE−MPC protocol outputs its ideal functionality.
Theorem 2 states that it privately does so.

Theorem 2 (MHE−MPC Security for semi-honest model).
For each possible set of corrupted parties A ⊂ P (the
adversary) where |A| ≤ N − 1, there exists a simulator
program SMHE−MPC such that

SMHE−MPC({xi}Pi∈A, f({xi}Pi∈P)) c≡ viewMHE−MPC.

Proof (sketch).We observe that the MHE−MPC protocol
is privately reducible to the EncKeyGen, RelinKeyGen and
KeySwitch protocols. This is, it privately computes its
functionality f when provided with oracle access to
fEncKeyGen, fRelinKeyGen and fKeySwitch. In fact, this prop-
erty directly follows from the fact (a) that these func-
tionalities have public outputs (i.e, all query-response
to the corresponding oracle can be simulated) and (b)
that the view of the resulting ΠfEncKeyGen,fRelinKeyGen,fKeySwitch

MHE−MPC
protocol are valid keys and ciphertexts for the single-
party BFV scheme, only with higher-norm secret-key
(Section 4.2) and error bounds (Appendix A), which in-
deed preserves its semantic security. Then, the security
of the MHE−MPC protocol follows from the standalone
security of each protocol (Theorem 1) by applying the
Composition Theorem for semi-honest model [34].

	Multiparty Homomorphic Encryption from Ring-Learning-with-Errors
	1 Introduction
	2 Related Work
	3 Background
	3.1 Multiparty Homomorphic Encryption
	3.2 Notation
	3.3 The BFV Encryption Scheme
	3.4 Parameter Selection

	4 The Multiparty BFV Scheme
	4.1 Scheme Overview
	4.2 Ideal-Secret-Key Generation
	4.3 Collective Encryption-Key Generation
	4.4 Relinearization-Key Generation
	4.5 Collective Key-Switching Protocols
	4.5.1 Collective Key-Switching
	4.5.2 Collective Public-Key Switching

	4.6 Dynamic Access-Structure
	4.7 Bridging MPC Approaches
	4.8 Collective Bootstrapping
	4.9 Packed-Encoding and Rotation Keys
	4.10 Comparison with Multi-key-HE

	5 Secure Multiparty Computation
	5.1 MBFV-Based MPC Protocol
	5.2 Feature Analysis
	5.2.1 Public Non-interactive Circuit Evaluation
	5.2.2 Public-Transcript Protocols

	5.3 Current Limitations
	5.3.1 Arithmetic Circuits
	5.3.2 Active Adversary Model

	6 Performance Analysis
	6.1 Experimental Setup and Parameters
	6.2 Multiparty Input Selection
	6.3 Element-Wise Vector Product
	6.4 Multiplication Triples Generation
	6.5 Discussion

	7 Conclusions
	A Noise Analysis
	B Security Analysis
	B.1 Standalone MBFV Security
	B.2 MHE-MPC Protocol Security

