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Unifying Privacy Policy Detection
Abstract: Privacy policies have become a focal point of
privacy research. With their goal to reflect the privacy
practices of a website, service, or app, they are often
the starting point for researchers who analyze the ac-
curacy of claimed data practices, user understanding of
practices, or control mechanisms for users. Due to vast
differences in structure, presentation, and content, it is
often challenging to extract privacy policies from on-
line resources like websites for analysis. In the past, re-
searchers have relied on scrapers tailored to the specific
analysis or task, which complicates comparing results
across different studies.
To unify future research in this field, we developed a
toolchain to process website privacy policies and pre-
pare them for research purposes. The core part of this
chain is a detector module for English and German, us-
ing natural language processing and machine learning
to automatically determine whether given texts are pri-
vacy or cookie policies. We leverage multiple existing
data sets to refine our approach, evaluate it on a re-
cently published longitudinal corpus, and show that it
contains a number of misclassified documents. We be-
lieve that unifying data preparation for the analysis of
privacy policies can help make different studies more
comparable and is a step towards more thorough anal-
yses. In addition, we provide insights into common pit-
falls that may lead to invalid analyses.
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1 Introduction
Protecting personal data in times of pervasive online
data collection raises challenges for website operators,
visitors, and legislators. Such pervasive technologies
have increasingly raised ethical concerns by privacy re-
searchers [1], leading regulators to create guidelines like
the Fair Information Practice Principles [2] and pass
new legislation, including the European Union’s General
Data Protection Regulation (GDPR) and the Califor-
nia Consumer Privacy Act (CCPA). These laws aim to
provide individuals with legal means to gain some con-
trol over their personal data. One central principle to
achieve this is transparency by informing people about
a company’s or service’s data processing practices and
individuals’ rights regarding the use of their personal
data, such as opting out of certain types of data collec-
tion. As for web technologies, the established methods
of informing are privacy notices such as privacy policies
and cookie banners [3].

Privacy and cookie policies have received increasing
attention by researchers over the last decade, with inves-
tigated aspects including content analysis [4], summa-
rization and key phrase analysis [5–7], readability mea-
surements [8], annotation of privacy practices [9, 10],
training machine learning and deep learning models [11],
and the recent discovery of potential security and pri-
vacy concerns [12–14].

The majority of these studies are based on a few
initial but crucial steps for privacy policy retrieval and
extraction:
1) identification of potential privacy and cookie policies

on websites,
2) extraction of relevant text from scraped HTML and

PDF files,
3) detection of the language of the extracted text,
4) distinguishing privacy policies from other texts (non-

privacy policies),
5) and storage of the plain text along with associated

metadata.

In this paper, we show that if each of these steps is not
performed carefully, entire studies based on the result-
ing corpus of privacy policies could lack correctness and
completeness: If a website’s privacy policy, cookie pol-
icy, or both are not detected correctly in step 1), the re-
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Fig. 1. Overview of the toolchain. The gray components are op-
tional, depending on the processed data sets.

sulting corpus can contain irrelevant documents such as
(chocolate) cookie recipes, news articles about privacy
topics, and error messages. Additionally, certain privacy
policies might be missing from the corpus because they
could not be detected. In step 2), if a privacy policy is
not correctly extracted from HTML code, either critical
information is lost or the resulting plain text contains
noise such as headings or HTML tags. In step 3), tasks
involving natural language processing, such as search-
ing for specific phrases or topic modeling, depend on
the correct detection of the privacy policy’s language. In
step 4), correctly distinguishing privacy and cookie poli-
cies from other texts requires labeled data from which
useful features can be crafted to train machine learning
or deep learning classifiers.

To aid future studies on privacy policies, we intro-
duce a new toolchain to perform these essential steps,
based on best practices we identified. Our toolchain con-
sists of multilingual heuristics for privacy policy link de-
tection, text-from-HTML and text-from-PDF convert-
ers, an ensemble of language detection libraries, well-
established key phrase extractors, and trained machine
learning classifiers for English- and German-language
privacy and cookie policies. For each step, we identify
best practices. In summary, we make the following con-
tributions to the field of privacy policy analysis:

1. We compare approaches to find privacy policies on
websites, as well as different text-from-HTML ex-
tractors, which we evaluate on privacy policies. Out
of seven text extraction libraries, Boilerpipe with
the NumWordsRules setting performs best.

2. We present machine learning classifiers trained with
the most important key phrases extracted from pri-
vacy policy texts. They achieve a balanced accuracy
of 99.1% and 99.6% for policies in English and Ger-
man, respectively.

3. While the large majority of previous research fo-
cused on English privacy policies, our toolchain pro-
vides a means to process non-English privacy poli-
cies, fostering cross-language research.

Figure 1 shows the high-level structure of our toolchain.
In Section 2, we provide an overview of the approaches
in previous work to detect and extract privacy policies.
For each component in our toolchain, Section 3 describes
our approach and Section 4 evaluates its performance.
Finally, in Sections 6 and 7, we discuss our findings, pro-
vide ideas for future research, and conclude this work.

2 Related Work
Privacy policies have been widely studied for different
aspects, from their prevalence [15, 16] to their content
to allow for automatic extraction of important infor-
mation. The focus has been mostly on the privacy and
cookie policies of websites and mobile apps. Table 1
provides an overview of previous research and shows
the various methods used to preprocess privacy policies.
The majority of studies used their own sets of tools to
collect and preprocess privacy policies from websites.
Our work draws on and compares different approaches
used in the past for text extraction, language detection,
classification, and evaluation.

Liu et al. [17] addressed the problem of extracting
privacy policy text and hired three Amazon Mechanical
Turk workers to manually find privacy policies on web-
sites and extract their text, leading to 1,010 unique pri-
vacy policies with manually collected metadata. Boldt
and Rekanar [23] also manually extracted the plain texts
of the 100 privacy policies in their corpus.

Libert [20] applied the library Readability.js to ex-
tract the policy text and titles from websites loaded in
Chrome or PhantomJS. Policies were sanity-checked for
the presence of the terms “privacy” or “cookie.” Spot
checks for containing only policy text led to an accu-
racy of 100%. Ramadorai et al. [22] analyzed a compre-
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Table 1. Comparison of related work

Study Year # Extraction Lan. Classifier Comment

Liu et al. [17] 2014 1,010 Manual/MTurk EN -
Yu et al. [18] 2016 1,197 Beautiful Soup (BS) EN Links from app store
Fabian et al. [8] 2017 49,036 Boilerpipe EN Comparison of three Decision Tree 91% F1
Gopinah et al. [19] 2018 152 ASDUS EN Manual
Libert [20] 2018 184,897 Readability.js EN Contain “cookies” or “privacy”
Fukushima et al. [21] 2018 32 Manual JP Manual
Zaeem et al. [6] 2018 400 Manual EN Google Prediction API
Harkous et al. [11] 2018 ~130,000 segmenter EN -
Ramadorai et al. [22] 2019 4,078 - EN Contain “privacy” F1 85% to 87%
Boldt and Rekanar [23] 2019 100 Manual EN Comparison of 15 classifiers Naïve Bayes was best
Degeling et al. [15] 2019 5,091 Boilerpipe Multi -
Zimmeck et al. [24] 2019 ~500,000 - EN Links from app store 99% F1 on test set
Sarne et al. [25] 2019 4,982 Goose EN Links from app store
Hosseini et al. [26] 2020 100 Beautiful Soup EN Links from app store
Kumar et al. [27] 2020 236 Mercury Parser & BS EN Same as [24]
Linden et al [28] 2020 6,278 Boilerpipe & BS EN based on [29]
Srinath et al. [16] 2020 1,005,781 Dragnet EN Random Forest F1 97%
Amos et al. [30] 2020 1,071,488 Readability.js EN Own classifier Random Forest 95% F1

hensive set of privacy policies from US companies for
different aspects such as quality, readability, and ease
of access. They applied automated Google searches and
web crawling techniques to scrape privacy policies and
kept a text only if it contained the word “privacy.”

Yu et al. [18] used the Python library Beautiful
Soup [31] for text extraction, followed by removing
non-ASCII symbols. Their corpus only included English
privacy policies, but we could not find any informa-
tion about language detection. The work of Hosseini et
al. [26] applied a nearly identical approach.

Kumar et al. [27] applied a text-from-HTML
pipeline that used the Postlight Mercury Parser API [32]
to identify the website’s main content, followed by Beau-
tiful Soup and the lxml [33] parser to construct the web-
site’s Document Object Model (DOM) tree to extract
the plain text segments. A similar approach was taken
by Sathyendra et al. [34]. The (English) privacy policy
classification was performed on raw HTML with a logis-
tic regression classifier – the same as used by Zimmeck
et al. [24], who report a 99.0% accuracy and an F1-score
of 99.2%. Manual inspection was performed to remove
false positives and non-English privacy policies.

Linden et al. [28] analyzed GDPR-related changes in
6,278 English privacy policies using syntactic text fea-
tures and a user study. They identified privacy policy
candidates using regular expressions to search for spe-
cific keywords. Language identification was conducted
using LangID [35], and body text extraction was per-
formed with Boilerpipe [36] and Beautiful Soup. Privacy

policies were classified with a one-layer convolutional
neural network based on Kim’s [29] work on sentence
classification. The classifier was trained on 1,600 web
pages and achieved 99.09% accuracy for 400 web pages
in the test set. The training set was the ACL/COLING
Corpus of 1,010 privacy policies collected by Ramanath
et al. [37], while the test set consisted of a selection
of unrelated texts whose title or URL did not contain
keywords associated with privacy policies. Ramanath et
al. [37] applied an unsupervised hidden Markov model
to align similar segments of privacy policies. They hired
Amazon Mechanical Turk workers to manually collect
their set of privacy policies.

Wilson et al. [9] created a manually annotated pri-
vacy policy corpus. They manually verified each privacy
policy for being written in the English language. Sarne
et al. [25] performed unsupervised topic extraction from
a set of 4,982 privacy policies from the Google Play App
Store and, after manual review by an expert, compared
their resulting topics to the work of Wilson et al. [9],
searching for new topics that could be observed due to
new privacy regulations such as the GDPR. They ap-
plied the Goose library [38] to convert the scraped doc-
uments to text, followed by langdetect [39] to filter all
non-English privacy policies. Zaeem et al. [6] created the
PrivacyCheck Google Chrome extension to automati-
cally summarize privacy policies using a keyword-based
approach. A classifier was trained using the English-only
Google Prediction API to distinguish between privacy
policies and non-privacy policies.
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Several projects have addressed summarization to
present long privacy policies in a condensed way. Audich
et al. [7] evaluated five key phrase extraction algorithms
on 21 privacy policies against manually extracted key
phrases, achieving a maximum F1 score of 27%. They
conclude that key phrase extraction algorithms evalu-
ating a single document perform better than those op-
erating on the entire corpus. In a follow-up study [10],
they trained a supervised key phrase extraction model
using the KEA algorithm, which outperforms unsuper-
vised key phrase extraction methods. Tomuro et al. [5]
used keywords identified by a human domain expert for
ensemble learning to identify the most important sen-
tences in a privacy policy.

Fabian et al. [8] studied the readability of English
privacy policies and designed a crawler using Boilerpipe
for text extraction. They compared three machine learn-
ing classification algorithms to determine whether an
extracted text is a privacy policy. The best approach
turned out to be a decision tree with an F1 score of
90.8%. A language check was performed to keep only
English texts, but no information on its performance
was provided. Tesfay et al. [40] created a privacy pol-
icy summarization tool in Java based on the GDPR.
They also used Boilerpipe to extract the main content
of privacy policies.

Harkous et al. [11] applied a segmenter to remove ir-
relevant HTML elements from privacy policy pages and
achieved a 99.08% coverage compared to manually ex-
tracted policies from the 200 most popular websites ac-
cording to the global Alexa.com ranking. Degeling et
al. [15] used a similar approach and identified privacy
policies on websites as HTML links containing specific
phrases in 46 languages.

Srinath et al. [16] created a searchable corpus of
web privacy policies. They used LangID for language
detection and the Dragnet [41] Python package for con-
tent extraction. To distinguish between privacy poli-
cies and non-privacy policies, they labeled 1,000 docu-
ments and trained a random forest classifier using word-
based and URL-based features, achieving an F1 score
of 97%. To summarize privacy policies, RAKE [42] and
TextRank [43] were applied.

Gopinath et al. [19] created ASDUS, a Java tool for
robust separation of section titles and text in web doc-
uments, irrespective of the HTML structure. ASDUS
achieved precision and recall of 82% and 98%, respec-
tively, based on a comparison with 100 manually an-
notated policies. The authors applied the Java HTML
parser jsoup [44] to extract tuples of text and its XPath.

Comparing this related work, Table 1 illustrates an
existing focus on the English language, although pri-
vacy policies are equally important outside the Anglo-
sphere. Moreover, only a limited number of studies have
evaluated whether the analyzed texts actually represent
privacy policies. Especially studies that focused on au-
tomated content analysis often used privacy policies of
mobile apps, which are easy to locate due to the uni-
form listings in app stores containing a link to the app’s
privacy policy. Approaches to identify privacy policies
on websites vary and include searching for links con-
taining specific words, looking for specific URLs (e. g.,
/privacy), or using a search engine. Various papers only
mention that the policies were scraped/collected and ex-
tracted/sanitized, without reporting on performance or
providing further details [45–49].

3 Approach
In the following, we describe the privacy policy cor-
pora we used in this work and each component of our
toolchain for the preprocessing of privacy policies.

3.1 Privacy Policy Corpora

Related work has created different corpora of privacy
policies, mostly in the English language. As a first step
towards the multi-language analysis of privacy policies,
this work also covers policies in the German language.
For both languages, separately labeled data is required
to train classifiers for privacy policy detection. Depend-
ing on the state of the corpus, it can be necessary to
manually label texts as privacy policies, cookie policies,
or neither. To avoid redundancies in the labeling pro-
cess, we partially leveraged sanitized English corpora
from previous work and a subset of the multilingual data
set compiled by Degeling et al. [15]. In the following, we
describe each of these instrumented data sets.

GDPR-2019: Degeling et al. [15] collected a mul-
tilingual data set of privacy policies to find evidence
for GDPR-related changes. Between April 2016 and
November 2018, they automatically visited the top 500
most popular domains for 28 European countries ac-
cording to the Alexa website ranking. The sites were
scraped for pages that were presumed to be privacy or
cookie policies if links to them contained specific key-
words of a multilingual list. The raw data set consists
of 127,328 scraped web pages presumed to be privacy
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or cookie policies. After data cleaning, which included
discarding duplicates and searching for common web er-
ror messages, it comprises 81,617 privacy policies from
9,461 different URLs and 7,812 domains. Since the texts
in the data set had not been labeled as privacy/cookie
policies or other texts, we manually labeled parts of the
German and English subsets of this corpus as described
in Section 3.4.

Rogue-Top-100: This corpus consists of 167 Eng-
lish privacy policies from both legitimate and “rogue”
companies collected in 2016 [23]. The 100 legitimate pri-
vacy policies belong to the websites of the companies
on the Fortune Global 500 list. 67 privacy policies were
collected from the websites of rogue companies as classi-
fied by SpywareGuide.com. We included this data set to
generalize our classifiers beyond the usually well-written
privacy policies of large companies.

APP-350 contains 350 annotated English privacy
policies of Android apps [24]. We chose to include this
corpus to generalize our approach to the privacy poli-
cies of mobile apps, which are increasingly studied in
privacy policy research to reflect that Internet usage is
shifting away from desktop computers and browsers to-
wards mobile devices and designated apps [50].

OPP-115 is a corpus of 115 privacy policies from
English-language websites, manually annotated for data
and privacy practices [9]. The websites for this corpus
were selected from 15 categories such as shopping, busi-
ness, and news. We include this corpus for its variety
and detail of annotation.

Princeton-2020: This corpus contains over 1 mil-
lion privacy policies from 1990 up to 2019, collected from
the Internet Archive’s Wayback Machine [30]. The deci-
sion whether a text is a privacy policy was not based on
manual labeling but on the output of a trained machine
learning classifier. Therefore, it cannot be considered a
gold standard, and only a comparison of the assigned
labels can be performed. As this corpus also contains
non-privacy policies, it provides us with the necessary
data to evaluate our toolchain, so we did not use it to
train our classifiers but only to evaluate and compare.

Privacy news articles: We include two cor-
pora of news articles about privacy topics to enhance
our toolchain’s ability to distinguish between privacy/
cookie policies and texts that use privacy-related termi-
nology but are not privacy/cookie policies:
– The privacy incident database by Murukannaiah et

al. [51] contains 408 English news articles about pri-
vacy incidents. We managed to scrape 386 of these
articles since 22 were not available anymore.

– As we are not aware of any comparable German cor-
pus, we collected 112 privacy-related articles from
popular German (tech) news websites, mainly Heise
online, WinFuture and Bayerischer Rundfunk, pub-
lished between October 2018 and January 2021.

3.2 Text Extraction

For precise extraction of clean privacy policy texts from
their HTML pages, we identified plain-text-from-HTML
extractors used in previous research. Other output op-
tions such as Markdown could be beneficial to identify
headers and titles and output formatted text. We tested
the following extractors:
1. Boilerpipe [36]
2. HTML2Text [52]
3. Inscriptis [53]
4. Readability.js [54]

5. Goose3 [38]
6. Beautiful Soup [31]
7. Dragnet [41]

The ideal extractor is language-independent for a large
variety of applications. We still included the only
language-aware extractor on this list, Goose3, because
it was used in previous work. During the evaluation de-
scribed in Section 4.1, we noticed that Beautiful Soup’s
output with any engine often contained script tags and
CSS code. We still kept it in our set of text extractors
because it is language-independent and widely used in
the literature.

In addition, we include a text-from-PDF extractor,
PyMuPDF [55], to cover the rare case in which a website
provides its privacy policy only in PDF format.

3.3 Language Determination

Privacy policies can pose challenges for automatic lan-
guage detection. For instance, some websites provide
their privacy policy in multiple languages on a single
web page, an example of which is shown in Figure 2.
Such texts need special handling as natural language
processing libraries are language-dependent and would
output incorrect results, e. g., in stemming or removing
stop words.

Multilingual language detection may require high
effort and language expertise if done manually, with dif-
ficulty further increased by figurative speech and com-
mon words across languages. Thus, for large corpora,
like GDPR-2019 and Princeton-2020, manual language
detection is not feasible. To still ensure the highest pos-
sible accuracy in automated language detection, we in-
strumented an ensemble of the following eight popular

SpywareGuide.com
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open-source libraries for language detection and per-
formed a majority voting on their output:
1. Apache Tika [56]
2. Compact Language Detector v2 (CLD2) [57]
3. Compact Language Detector v3 (CLD3) [58]
4. Guess-language [59]
5. LangID [35]
6. Langdetect [39]
7. Textacy [60]
8. fastText [61, 62]

The trained model of fastText is able to detect 176
languages. Training data includes Wikipedia articles,
Tatoeba [63], which is a collection of sentences and their
translations, and SETimes [64], which consists of news
articles in English. Textacy includes a trained model
with a macro and micro F1 score of 96% to identify
140 languages. Besides Tatoeba and Wikipedia, we used
other training texts such as news and journalistic arti-
cles [65, 66], the Universal Declaration of Human Rights,
and a collection of Tweets in 70 languages [67] to train
this model. Langdetect applies naïve Bayesian filters
and character n-gram language profiles created using
Wikipedia to detect 53 languages with a precision of
over 99%. LangID is able to detect 97 languages and
features a model insensitive to domain-specific features
such as HTML/XML code. It was trained using sev-
eral sources including JRC-Acquis [68], a multilingual
aligned parallel corpus with more than 20 official Euro-
pean languages, the ClueWeb09 data set [69] consisting
of over 1 billion web pages in 10 languages, Wikipedia
articles, the Reuters RCV2 [70] corpus consisting of
487,000 Reuters news stories in 13 languages, and De-
bian i18n [71], the software internationalization project
of Debian Linux. Guess-language utilizes character tri-
grams to detect 60 languages. According to its documen-
tation, and in contrast to LangID, HTML/XML tags
and scripts lead to incorrect results. Google’s CLD3 in-
cludes a neural network that utilizes a trained model
to detect 107 languages. Character unigrams, bigrams,

Fig. 2. Example of a multilingual (Romanian/English) privacy
policy scraped in January 2018. Such policies challenge language
detection libraries and natural language processing toolkits.

and trigrams serve as the input of the neural network
model. CLD2 is the previous version of CLD3, capa-
ble of detecting 83 languages and receiving plain text or
HTML/XML as input. The design target is web pages of
at least 200 characters. Internally, it uses a naïve Bayes
classifier, whose input can be either unigrams or quad-
grams. The training data included at least 100 million
web pages. Both CLD2 and CLD3 are capable of detect-
ing multilingual text. CLD2 outputs the indices of each
detected text span in a specific language, which solves
the problem of segmenting multilingual privacy policies.

Some of the examined libraries also output the con-
fidence scores of the returned language(s). Due to the
different metrics used, we did not incorporate them into
our toolchain.

3.4 Training Sets for Privacy Policy
Detection

In order to prevent noise in privacy policy corpora, this
step aims to distinguish as accurately as possible be-
tween privacy and cookie policies on one hand and other
texts on the other. Our first idea was to filter the “other”
category by searching for predefined error terms such
as “error 404” in English and “Fehler 404” in German.
Unfortunately, the possible wordings of error messages
are unlimited and would not necessarily lead to filter-
ing all texts in the “other” category. A similar problem
arises when “other” texts are filtered if they lack specific
terms such as “privacy policy” in English and “Daten-
schutzerklärung” in German. The main challenge here is
to correctly assign the “other” category to texts such as
terms of service and privacy-related news articles, which
use a vocabulary similar to privacy policies and might
have been scraped from web pages due to their URL
or text body containing keywords such as “privacy” or
“cookie” (see Sections 3.6 and 5.3).

Our proposed strategy to detect privacy and cookie
policies is to craft training sets from various data sources
and use them to train machine learning classifiers. For
the English privacy policy classifier, we could lever-
age previously published corpora of privacy policies and
privacy news articles as positive and negative training
data, respectively (see Section 3.1). However, no compa-
rably sanitized corpora exist in the German language.
Therefore, as described in Section 3.1, we collected Ger-
man privacy news articles to include them in our train-
ing set as negative samples. We also manually labeled
4,231 German texts from the GDPR-2019 corpus to use
them in the German training set.
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For the latter, we applied a hybrid approach, i. e.,
text clustering followed by labeling the resulting clusters
instead of individual texts. Each cluster was assigned
‘1’ for privacy/cookie policies or ‘0’ for other text. This
allowed us to speed up the process by labeling multi-
ple similar texts at once. One of the authors manually
quality-checked the assigned values in each cluster. Our
initial attempts to apply k-means clustering with co-
sine distance and bag-of-words failed because the result-
ing clusters did not exhibit any clear pattern. Instead,
we trained for each German and English set of texts
from the GDPR-2019 corpus two Doc2Vec [72] mod-
els, one using the distributed memory algorithm (DM)
and the other using distributed bag-of-words (DBOW).
The input for both models consisted of the lowercase to-
kens of each text without punctuation and white space.
Even though there are other NLP toolkits with a higher
tokenization accuracy [73, 74], we used the Spacy li-
brary [75] due to its justifiable speed-accuracy trade-off
on our large corpora as the more accurate alternatives
were significantly slower.

We trained the Doc2vec models using the Gensim
library [76] and concatenated the vector representations
of each of the DM and DBOW models into one vector of
size 200 for each document. This approach was inspired
by Gómez-Adorno et al. [77], who found that concate-
nation of the embeddings works best to obtain meaning-
ful representations. Next, we calculated the cosine dis-
tance metric between the vector representations of all
texts and clustered them using Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [78]
with a maximum cosine distance threshold of 0.1. This
yielded the best fine-grained clustering result with 3,675
and 963 distinct clusters for English and German texts,
respectively. These clusters could be grouped into the
following categories:
1. Texts from the “other” category such as web er-

rors (e. g., HTTP 404), CAPTCHAs, disclaimers,
and privacy-related news.

2. Privacy policies, often belonging to a single domain,
crawled before the enforcement date of the GDPR
(25 May 2018).

3. Privacy policies, often belonging to a single domain,
crawled after the enforcement date of the GDPR.

To improve data quality, we labeled 291 of the German
clusters by hand. For English, the use of pre-existing
corpora (see Section 3.1) provided us with enough posi-
tive samples, so we mainly searched for the largest clus-
ters that only contained negative samples. After label-
ing eight large clusters of English texts, we already had

over 1,000 negative samples for the English training set.
In total, 1,427 English and 4,231 German texts from
the GDPR-2019 corpus were labeled manually. Table 2
summarizes the training set size for each language. Note
that clustering was only used to accelerate the manual
labeling process.

Table 2. Number of documents in the English (en) and German
(de) training sets by origin (corpora of privacy policies and pri-
vacy news articles).

Language Corpus
Training size

Positive Negative

en OPP-115 115 0
APP-350 350 0
Rogue-Top-100 167 0
GDPR-2019 424 1003
Privacy-related news 0 386

de GDPR-2019 3559 672
Privacy-related news 0 112

3.5 Feature Engineering

Standard feature (independent variable, attribute, re-
gressor, predictor) engineering for document classifica-
tion involves extracting token n-grams along with the
filtering of, e. g., stop words, punctuation symbols, com-
mon words, and hapax and dis legomena. Due to the
highly variable and specific language of privacy policies,
this approach could lead to extremely high-dimensional
vector spaces with sparse matrices. Instead, we per-
formed key phrase extraction to condense each text into
a set of key phrases.

Algorithms extracting the most important sentences
or key phrases of a text include, in chronological order,
KEA [79], TextRank [43], SingleRank [80], Maui [81], KP-
Miner [82], WINGNUS [83], RAKE [42], TopicRank [84],
TopicalPageRank [85], SGRank [86], PositionRank [87],
Seq2seq-keyphrase [88], MultipartiteRank [89], YAKE [90–
92], and sCAKE [93]. Another proposed method is the
application of Tf-Idf weighting [94].

These algorithms differ in language dependence, ap-
plicability on single documents, and the adopted sta-
tistical measures, graph algorithms, and (un)supervised
learning approach. To ensure that the toolchain can be
integrated between a scraper and other analysis compo-
nents while still being able to process and decide on each
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text individually, we defined the following requirements
for the key phrase extractors:
1. Applicability on individual documents
2. No supervised training required
3. Domain independence
4. High performance
5. Multiprocessing support

The first and second requirements led to the exclusion
of KEA, KPMiner, Maui, WINGNUS, TopicalPageRank,
Seq2seq-keyphrase, and Tf-Idf. SGRank was excluded due
to slow performance on long texts (> 5 minutes per doc-
ument). We ensured that the remaining candidates were
compatible with the Joblib [95] multiprocessing library
for Python. The language dependence of the remaining
algorithms can be compensated with a part-of-speech
tagger and a list of known stop words for the correspond-
ing language. Although stop lists are readily available,
they should be selected with caution [96].

Evaluating the remaining algorithms against our re-
quirements, we ended up with the following key phrase
extractors for our toolchain:

1. TextRank
2. SingleRank
3. RAKE
4. TopicRank

5. PositionRank
6. MultiPartiteRank
7. sCAKE
8. YAKE

We added both their original (e. g., YAKE) and existing
Python implementations [60, 97] to our toolchain.

3.6 Finding Privacy Policies on Websites

Our work uses existing corpora of privacy policies.
While some of them (Rogue-Top-100, APP-350, OPP-
115) are based on manually extracted texts, the privacy
policies in others (GDPR-2019, Princeton-2020) were
collected by identifying hyperlinks presumed to point
to the respective policies on websites. For the latter,
different approaches can be found in the literature:
1. Simple English: Link texts that contain the word

“privacy” or the words “data” and “protection” [16].
2. Two-Step English: Link texts that fully match a pre-

defined list (e. g., “privacy policy,” “privacy state-
ment”) and, if no match is found, link texts con-
taining a wider set of words (e. g., “security,” “state-
ment,” “terms”), as used for the Princeton-2020 cor-
pus [30] based on Libert [20].

3. Multilingual: Link texts containing words from mul-
tilingual word lists as used for the GDPR-2019 cor-
pus [15].

4. Context: Besides the link texts, the text of the pre-
vious HTML element is also considered to identify
cases like "privacy policy <a>here</a>". This
approach was used by Fabian et al. [8], but no list
of words was provided.

We evaluated the performance of each approach
on the top 10,000 websites from the Tranco [98] top
list as of 31 January 2021 (ID: WQW9) and used the
OpenWPM [99] privacy measurement framework to ac-
cess and parse the websites. For context-based link iden-
tification, we used the multilingual word list. We also
devised a new approach that analyzed not only the link
text but also the URL. We downloaded all identified
documents and classified the texts using our trained
classifiers described in the next section.

4 Toolchain Performance
In this section, we present the evaluation results of our
toolchain and, for each component, identify which solu-
tion works best.

4.1 Text Extraction

During the pre-tests of potential toolchain components,
we extracted the plain text of scraped web pages us-
ing Boilerpipe’s [36] default setting. However, manual
checks revealed that large parts of the main content had
not been extracted from the crawled web pages, lead-
ing to incomplete privacy policy texts. We assume the
reason to be the non-standardized and greatly varying
HTML/XML structures of websites and their privacy
policies. More importantly, Boilerpipe was developed to
extract text from online news articles whose structure
and paragraph density differ from those of privacy poli-
cies, rendering the default setting unable to extract all
privacy policies completely.

As the correctness and completeness of the ex-
tracted texts are crucial for privacy policy content anal-
ysis, this prompted us to compare the performance of
multiple text-from-HTML extraction libraries. For this,
we selected 111 raw HTML files from the ten most com-
mon languages in the GDPR-2019 corpus. Our goal was
to create a balanced mixture of web pages that reflected
shortcomings of the initial plain text extraction attempt
and easy-to-extract privacy policies to create a test set
that posed a fair challenge to all text-from-HTML ex-
tractors. We believe that this sample set provides new
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Table 3. Fuzzy string matching scores between manually ex-
tracted policies from web pages and each tested text-from-HTML
extraction library. The web pages were sampled from 10 European
languages. The best scores are marked in bold.

Language

Library en de other overall

Boilerpipe
ArticleExtractor 81.8 ± 28.5 70.4 ± 29.9 87.1 ± 18.9 85.3 ± 21.0
ArticleSentencesExtractor 79.9 ± 29.3 67.6 ± 30.3 83.8 ± 18.6 82.2 ± 20.9
CanolaExtractor 95.6 ± 3.5 86.8 ± 15.0 86.7 ± 16.7 87.4 ± 16.1
DefaultExtractor 95.0 ± 5.9 84.7 ± 14.5 85.3 ± 19.4 86.0 ± 18.5
KeepEverythingExtractor 82.8 ± 21.8 85.4 ± 14.9 78.5 ± 22.4 79.3 ± 21.8
LargestContentExtractor 81.0 ± 20.2 61.3 ± 34.4 74.3 ± 22.3 73.7 ± 23.4
NumWordsRulesExtractor 97.5 ± 1.9 87.7 ± 15.0 89.3 ± 16.4 89.8 ± 15.8

HTML2Text 67.6 ± 32.2 72.2 ± 19.7 62.4 ± 28.4 63.6 ± 28.0
Inscriptis 82.9 ± 20.7 75.8 ± 26.7 78.9 ± 21.1 78.9 ± 21.4
Readability.js 96.3 ± 5.7 64.6 ± 39.2 91.1 ± 16.4 89.4 ± 20.0
Goose3 82.1 ± 33.7 62.4 ± 32.6 51.7 ± 39.7 54.7 ± 39.4
Dragnet 89.3 ± 29.2 62.7 ± 38.5 80.3 ± 31.3 79.5 ± 31.9
BeautifulSoup 59.6 ± 30.7 55.9 ± 21.2 49.1 ± 28.8 50.5 ± 28.3

and nuanced insights into text-from-HTML extractors
as considering only popular websites might introduce a
bias towards well-maintained websites.

We manually extracted the plain text of these 111
policies and removed extra white spaces. Converting
non-breaking spaces in Latin-1/ISO 8859-1 to normal
spaces is a preprocessing step that improves text analy-
sis quality and does not negatively influence the results.

Table 3 demonstrates the average fuzzy string
matching scores between the manually extracted texts
and the output of each text-from-HTML extractor per
language. We calculated the scores with the Python
fuzzy string matching library [100], which uses the Le-
venshtein distance to calculate the similarity between
two strings. It turned out that the Boilerpipe library
with the NumWordsRules and CanolaExtractor settings,
as well as Readability.js yield the highest similarity scores
with the manually extracted privacy policies. With the
exception of Readability.js for German, a lower two-
digit standard deviation can be observed for all three
top-performing text-from-HTML extractors in both lan-
guages.

For German, Readability.js was unable to extract
large portions of text from two websites whose privacy
policy pages hid privacy policy content under CSS ac-
cordion elements. This phenomenon requires more pro-
found analysis by front-end development experts. We
repeated the text extraction for these two websites us-
ing the version of Readability.js included in the latest
version of Firefox as of February 2021 (ver. 85.0.2). Un-
fortunately, this problem still occurred.

Following these findings, we chose Boilerpipe with
the NumWordsRules setting as the default text-from-
HTML extractor for our toolchain.

The analysis in the next section supports the selec-
tion of this extractor and demonstrates that a fallback
mechanism to the text extractors with the second and
third highest performance should be considered to also
achieve the best possible results for certain edge cases.

4.2 Language Detection

Since language detection libraries are often sensitive to
noise such as URLs, emails, or phone numbers, in this
step we removed these elements from all texts using
regular expressions and only kept alphanumeric tokens.
Texts that did not contain at least ten space-separated
tokens were filtered out as they were too short to pro-
duce a reliable outcome. We ensured that all language
detection libraries output the same ISO 639-1 codes for
the languages, e. g., “zh-cn” instead of “zh” for Chinese,
and, whenever possible, the string “un” in case the lan-
guage could not be detected instead of falling back to
English or outputting other values like “unknown.”

For each text, the statistical mode of the list of de-
tected languages obtained from all libraries determined
the language of the texts. If no mode could be deter-
mined, the text was marked to have no super seeding
language to indicate that it required further manual in-
spection. These checks revealed that such texts usually
consist of a single web page that contains the respective
privacy policy in multiple languages, as shown in Fig-
ure 2. Among the eight used libraries, CLD2 and CLD3
can determine the languages of multilingual texts in the
form of span indices and the ratios of the detected lan-
guages in a text, respectively. A text was flagged as mul-
tilingual, independently of the majority voting, if either
CLD2 or CLD3 detected the text as multilingual.

This way, we identified 24,257 multilingual and
95,880 monolingual texts in the GDPR-2019 corpus.
6,973 texts were discarded for containing less than ten
filtered tokens. In 218 cases, the language could not
be determined via majority vote, for 181 not even by
CLD2. It is not feasible to determine the language of
these texts by hand as the variety of languages detected
by the other six libraries is too large and would require
consulting language experts.

As for monolingual texts, all libraries detected the
same language for 88,976 texts, which equals 74.1% of
the GDPR-2019 data set excluding too short texts and
those in an undetermined language. For the remaining
7,068 monolingual texts, the language was determined
via majority voting because at least one library had out-
put a different language than the others.
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Fig. 3. Cramér’s V values between the outputs of the language
detection libraries and the final determined language. All values
are statistically significant (p < .0001).

The 24,257 texts flagged as multilingual required
special handling, especially the 5,366 cases with a uni-
form vote on the text’s language. The language of 2,157
of these texts was detected as Modern Greek, 1,434 as
Bulgarian, and 1,410 as Russian, which sums up to 5,001
texts. As for the texts flagged as monolingual, 36 texts
were detected as Modern Greek, 255 as Bulgarian, and
189 as Russian. Although these findings must be inter-
preted with caution, we think that it might be neces-
sary to preprocess privacy policies in these languages
differently or to use more specialized language detec-
tion libraries. This is because the log files of CLD2 and
CLD3 often indicated text spans for which the language
could either not be determined or was identified as, e. g.,
Latin, Kyrgyz, or Western Frisian with a ratio of less
than 1% per text. For the remaining 18,891 texts with-
out a uniform language voting and flagged as multilin-
gual by CLD2 and CLD3, their high number made a
complete manual analysis infeasible, so we focused on
a subset of 1,808 texts with a majority vote for Eng-
lish. Manual analysis revealed that these texts could be
grouped as follows:
1. Multilingual privacy policies.
2. Multilingual error messages.
3. English texts or privacy policies whose text body

contained named entities that had been incorrectly
identified as non-English text.

4. English texts with superfluous non-English text
spans at the beginning or the end.

For the last group, manual analysis revealed that
either Readability.js or Boilerpipe with the CanolaExtrac-
tor setting had managed to strip off the superfluous
text spans. Therefore, implementing a fallback solution
to perform text-from-HTML extraction with these two
libraries followed by a recheck for multilingualism ap-
pears to yield the best result. As described in the previ-
ous section, CLD2 can output the indices of text spans
of each detected language segment, while CLD3 outputs
the text ratio of each detected language. If a text did
not reach a uniform vote regarding its language and was
flagged as multilingual, a heuristic that checks for short
text spans at the beginning or the end of the text in a
language different from the main language could solve
the issue.

To improve performance, we evaluated whether
it is possible to exclude any of the language detec-
tion libraries. Figure 3 shows the Cramér’s V cor-
relation [101] among the outputs of the language
detection libraries and the final result. The Tika
and Langdetect libraries have the highest correla-
tion value of 0.99, so one of them can be dropped
(χ2(1872, N = 127, 326) = 4, 832, 799.8, p < .0001). We
do not recommend removing any other library as high
precision is one of the objectives of this toolchain.

As a means of comparison, we applied our lan-
guage detection scheme to the Princeton-2020 corpus, in
which all non-English texts had been filtered with Poly-
glot [102], a natural language processing library that
uses CLD2 for language detection. While our voting
scheme flagged most privacy policies and non-privacy
policies in this corpus as monolingual English texts,
some texts were detected to be either in languages other
than English or multilingual, as shown in Table 4.

Table 4. Language statistics of our language voting mechanism
for the Princeton-2020 corpus.

Privacy Policy Non-Privacy Policy

Language Monolingual Multilingual Monolingual Multilingual

English 837,796 4,070 153,131 1,271
German 0 33 26 50
French 1 26 6 36
Indonesian 0 21 36 42

Other 39 241
Too short 723 14,328
No majority 19 66

We manually reviewed the privacy policies and non-
privacy policies detected to be German and found that
they either consisted of pure German text with English
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headings or a mix of English and German privacy poli-
cies. As expected, we also found some error messages.
Our evaluation of the Princeton-2020 corpus illustrates
how our language detection scheme can contribute to
improve the quality of existing corpora.

5 Privacy Policy Detection
This section describes the evaluation of the toolchain’s
last two components – extracting useful features and
training a classification scheme.

5.1 Feature Determination

Previous research has used simple tokenization and
n-gram extraction combined with Tf-Idf weighting to
build feature matrices (cf. Section 2). With our goal to
save resources, we focus on finding the most efficient
way, with the lowest possible number of features, to
distinguish between privacy/cookie policies and other
texts.

We performed pre-tests with the key phrase extrac-
tion algorithms described in Section 3.5. Among all uti-
lized libraries, YAKE has the highest default number of
20 extracted key phrases per text, while the others only
extract 10 by default. We set the maximum number of
extracted key phrases from each text for all algorithms
to 20 and lemmatized all documents to prevent repeti-
tions of nearly identical key phrases as features. As we
are not aware of any publicly available data set for eval-
uating the correctness and ideal number of key phrases
extracted from privacy policies, we conducted an exten-
sive analysis comprising manual inspection of the key
phrases extracted by each algorithm, feature selection
using the ANOVA F-value, and plotting the resulting
training set for each key phrase extraction algorithm.
Due to space constraints, we cannot provide results in
full detail. The choice of the key phrase extraction al-
gorithm remained nondistinctive in addition to the di-
versity in the wording of privacy policies, supported by
previous work [7, 10]. We thus combined the extracted
key phrases of each text into a set of key phrases, which
results in a feature matrix with each row consisting of
zeros and ones representing the presence or absence of
a key phrase in the corresponding document. The de-
cision for a binary (dichotomous) feature matrix takes
into account that the absence of a key phrase in a set of
extracted key phrases does not necessarily mean that it

does not exist in the corresponding text but was just not
selected by any of the algorithms. Therefore, weighting
the extracted key phrases by the frequency of their oc-
currence is unreasonable, while keeping them in a binary
representation is the conservative method to choose.

Not all extracted key phrases might clearly corre-
late with occurrence in a privacy/cookie policy or non-
privacy policy, so we applied ANOVA F-value feature
selection to choose the most relevant group of features.
We set p = .05 and applied family-wise error correc-
tion due to the high number of significance tests. With
this method, 570 out of 156,020 features were selected
for the English training set, while 1,820 out of 57,254
features were selected for the German training set. The
χ2 test measure led to a nearly identical selection of
features. Only three and four features selected with
ANOVA would not have been selected using χ2 for the
English and German feature sets, respectively.

As the GDPR-2019 data set captures privacy policy
changes around the GDPR enforcement date, it includes
more variety in the wordings, while the English corpora
were collected before the enforcement of the GDPR. The
positive training samples for German result from man-
ually labeling the GDPR-2019 corpus (see Section 2).
This variety can also be observed in the t-distributed
Stochastic Neighbor Embedding (t-SNE) projection in
Figure 4. Compared to the English privacy policies, the
German privacy policies are more widely distributed.

The extracted key phrases in both languages show
common themes, including data practices such as the
collection or processing of data, tracking technologies
such as “web beacon” and “flash cookie,” common
phrases in error messages, and the names of regulations,
particularly references to the GDPR in the German set.
Key phrases in other languages can also be observed be-
cause the training set should include both monolingual
and multilingual texts so that the resulting classifiers
handle multilingual texts correctly.

5.2 Policy Detection

Considering the heterogeneity of the training set in
Figure 4, we opted for an ensemble soft voting classi-
fier [103], which predicted the label with the maximum
average prediction probability of the applied classifica-
tion models. Our voting classifier comprised three differ-
ent classification models well established for text clas-
sification tasks [104, 105] – a linear support vector ma-
chine, random forest [106], and logistic regression [107].
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Fig. 5. Learning curves of the trained classifiers. Left: voting classifier for English texts. Right: voting classifier for German texts. The
gray margin illustrates the standard deviation of the mean balanced accuracy for 5-fold cross validation.

The random forest was trained with 500 decision trees.
The class for each text was determined as follows:

prediction = arg max
i

m∑
j=1

pij ,

where pij is the predicted probability of each classifier
j for each class i ∈ {0, 1}. No extra weights were as-
signed to the classifiers, and all were calibrated to out-
put precise prediction probabilities [108]. We evaluated
our models’ performance using stratified 5-fold cross-
validation on the labeled texts. Stratification was ap-
plied because our training sets are not balanced, so the
percentage of samples is preserved for each of the two
classes in each fold. Figure 5 displays the learning curve
for the resulting classifiers for each of the English and
German texts. It can be observed that the voting classi-
fier achieves excellent results by combining the strengths
of its underlying calibrated classifiers. We measure its
performance using the balanced accuracy score to pre-

vent artificial performance estimates for our imbalanced
training sets, and consider both sensitivity and speci-
ficity in our performance evaluation. The balanced ac-
curacy score is calculated as the average of sensitivity
and specificity as follows:

score = 1
2

(
TP

TP + FN
+ TN

TN + FP

)
with TP meaning true positive, TN true negative, FN
false negative, and FP false positive. Overall, the re-
spective English and German classifiers achieve bal-
anced accuracy scores of 99.1% and 99.6%, F1 scores
of 99.1% and 99.8%, and precision scores of 99.2% and
99.8% in 5-fold cross-validation. The best performing
classifier in the literature [24] reported an F1 score of
99.2% and a precision of 99.0% for English privacy poli-
cies. Given the use case of correctly identifying priva-
cy/cookie policies, we achieve an improvement of 0.2
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percentage points and provide the first classifier for
German-language privacy policies.

We used the voting classifier to classify the unla-
beled English and German texts in the GDPR-2019 cor-
pus. We partially reviewed the labels assigned to the
unlabeled policies and could not find any significant er-
rors except for a few edge cases, like mixtures of terms of
service and data practices, cases where surrounding text
of short privacy policies had been extracted, or cookie
banners, which are out of scope of this work. All three
classifiers output the same label for 92.5% and 91.6% of
the unlabeled English and German texts, respectively.

As there is no gold standard for benchmarking
privacy policy classifiers, we compared our trained
classifier’s predictions with the assigned labels in the
Princeton-2020 corpus, which includes both privacy
policies and non-privacy policies. The authors of this
corpus had labeled each text with a trained random
forest classifier using word n-grams with n = [1, 4] and
other features extracted from the title of the texts.

First, we applied our voting classifier to the 109
texts in this corpus we identified to be in German (cf.
Table 4). 32 out of the 33 texts labeled as privacy poli-
cies were also detected to be privacy policies. The sin-
gle exception turned out to be a short multilingual pri-
vacy policy in both English and German. For texts la-
beled as non-privacy policies, we observed that 57 out
of 76 were classified as privacy policies by our classi-
fier. Manual review confirmed the labeling of these 57
cases, with one case only having a 60% predicted prob-
ability of being a privacy policy. We checked the two
mentioned cases using SHAP [109] to better understand
them. The reason turned out to be the absence of spe-
cific key phrases in these short policies related to “cook-
ies,” “usage,” “personal data,” and “processing” while
they included key phrases related to “data storage” and
“purpose.” The remaining texts were not privacy poli-
cies but error messages or advertisement text correctly
classified as “other.” For English texts, our classifier had
a 96.7% agreement with the labels of the 841,866 Eng-
lish privacy policies and a 41.7% agreement with la-
bels of the 154,402 English non-privacy policies. Manual
spot checks revealed that our classifier was able to iden-
tify privacy policies that had been incorrectly labeled
as non-privacy policies in the Princeton corpus. We can
therefore confirm the approach of Amos et al. [30] that
mainly focused on increasing the precision of their clas-
sifier, while the focus of our classifiers is to increase
the balanced accuracy. Therefore, we are able to sig-
nificantly reduce the number of false negatives.

5.3 Finding Privacy Policies on Websites

As described in Section 3.6, we compared different ap-
proaches to identify privacy policies on 10,000 websites
from the Tranco list. Using OpenWPM, we were able to
access 8,624 websites and identified documents match-
ing any search pattern on 7,353 (85%) of them. Overall,
26,433 of the 33,246 downloaded documents were classi-
fied as either English or German. Of the 23,848 English
documents 13,475 (57%) and 1,564 (60%) of the 2,587
German documents were classified as privacy policies.

Table 5. Overview of different approaches to search for privacy
policies on 10,000 websites. Results are reported relative to the
total number of reachable websites and in absolute numbers.

Site Statistics Absolute

Approach Doc. Avg. at least 1 PP Doc. TP

Simple 4,938 (57%) 1.41 4,185 (49%) 6,942 5,200 (75%)
2-Step 5,784 (67%) 1.59 4,554 (53%) 9,200 6,000 (65%)
Multilingual 6,712 (78%) 2.78 4,919 (57%) 18,726 10,513 (56%)
Context 6,782 (79%) 3.44 4,944 (57%) 24,082 10,630 (56%)
Link+URL 6,989 (81%) 2.81 4,999 (58%) 19,062 11,881 (49%)

Combination 7,353 (85%) 3,91 5,173 (60%) 28,747 12,639 (44%)

Table 5 presents an overview of the results. As ex-
pected, the more extensive the rule set, the higher the
number of found links and privacy policy candidates.
For the simple methods (links that contain the word
“privacy” or the words “data” and “protection”), policy
candidates were found on 57% of the reachable web-
sites, with 75% (and 49% of all websites) being actual
(true positive) privacy policies according to our classi-
fier. The absolute numbers highlight that the number
of false positives, where a link was identified but the
downloaded text is not a privacy policy, increases with
more extensive search lists.

No single approach could identify all 7,353 URLs re-
trieved with a combination of the Simple, 2-Step, Con-
text, and Link+URL methods, with the latter using a
multilingual set of words. With this combination, pri-
vacy policy candidates were identified on 85% of the
websites, and for 60% the classifier confirmed that at
least one text contained information about privacy prac-
tices.

6 Discussion
In this section, we discuss the findings of our exper-
iments for each component of the toolchain. We also
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point out limitations of our approach and provide sug-
gestions how to possibly improve our toolchain and, con-
sequently, the preprocessing of privacy and cookie poli-
cies.

6.1 Experimental Results

The results show that the preprocessing phase is cru-
cial for producing valid and comparable results in pri-
vacy policy analysis. Our findings reveal that choos-
ing improper components for text extraction, language
detection, and classification leads to incompletely ex-
tracted privacy policies, incorrectly detected languages,
and false positives and false negatives in the data set.
We carefully selected and evaluated candidate tools for
each of these components in our toolchain and deter-
mined the best existing solution. Although there already
is extensive research on the content of privacy policies,
we believe that such a well-tested toolchain is a crucial
prerequisite for the validity and quality of the results of
privacy policy research.

As demonstrated in this work, if the text-from-
HTML extractor is not carefully selected, either sub-
stantial portions of privacy policies are not extracted
or superfluous text is included in the output. For this
component, we recommend the Boilerpipe library with
the NumWordsRules extraction setting. In the case of
privacy policies whose beginning and end contain small
amounts of text in a language other than that of the
main text, a solution could be to fall back to Boilerpipe
with the CanolaExtractor setting or Readability.js.

Inaccuracies in the language identification process
lead to an incorrect classification of policies regard-
ing their language(s), which affects subsequent anal-
yses such as text classification, text mining, or ques-
tion answering. For instance, filtering out stop words, a
common step in text processing, cannot be accurately
performed. A stop word list that does not match the
text’s actual language causes key phrase extraction al-
gorithms such as RAKE to perform worse because stop
words (and punctuation symbols) are used to partition
a text into candidate key phrases. Our proposed so-
lution is a majority voting scheme consisting of eight
language detection libraries that has the ability to de-
tect individual language segments in multilingual texts.
This voting mechanism has the benefit of self-correction
and prevents loss of information if one of its underly-
ing language detection libraries is unable to handle spe-
cific edge cases. This solution was able to identify non-
English texts in the Princeton-2020 corpus, for which

the Polyglot library had been used for language detec-
tion. While the number of errors regarding detected lan-
guages is relatively small in this corpus, our majority
voting scheme provides an easy-to-apply solution to im-
prove the data quality of a privacy policy corpus.

Our feature engineering scheme leverages the power
of eight selected unsupervised key phrase extraction li-
braries. In combination with ANOVA F-value feature se-
lection, the trained and calibrated ensemble voting clas-
sifier shows confident handling of the decision whether
a text is a privacy/cookie policy or not. Although the
selected features contain names of international corpo-
rations such as Google or Microsoft, filtering out or-
ganizations’ names is non-trivial. Still, we believe that
keeping these names does not lead to issues such as over-
fitting. Compared to the classifier applied in the creation
of the Princeton-2020 corpus, our classifier shows much
higher correctness in distinguishing privacy policy texts
from other texts. Out of the 76 texts initially classified
as non-privacy policy texts in German, we were able to
identify 56 as privacy policies. This contribution pre-
vents the loss of valuable information for this corpus
and future research.

6.2 Limitations & Future Work

As the introduced toolchain is implemented in the
Python programming language, it cannot include li-
braries of other programming languages that do not
(yet) support Python. We consider the analysis of li-
braries in other programming languages important fu-
ture work to further improve our toolchain.

We found many privacy policies to contain HTML
tables with additional information about the website’s
privacy practices, e. g., third-party libraries used by the
website or the purposes for which different types of data
are being collected. The extraction process may lead to
table headers and content being disordered in the plain
text output. This is an example of how the lack of le-
gal requirements for the format of privacy policies can
lead to policy structures that are hard to automatically
extract without massive data loss. Correctly handling
these differences in structure and format during text
extraction would require closer investigation and spe-
cialized well-tested heuristics.

Future work could also investigate possible require-
ments for retraining and adapting classifier models when
new privacy regulations are passed to keep the models
accurate and up to date.
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All open-source libraries and tools have high value
for the research community. Therefore, we would like
to emphasize at this point that each of the tested tools
we found unable to produce the required results might
have been performing well in other specific use cases and
us excluding them does not mean they are weak tools
per se. However, their performance had not yet been
evaluated in the specific domain of this research, i. e.,
privacy policy analysis, and this evaluation is one of the
main contributions of this research.

7 Conclusion
Previous work studying the content of privacy policies
usually makes use of tailor-made processes and tools to
obtain and prepare data. Due to a wide variety in the
structure and implementation of these policies on web-
sites, the resulting analyses lack common ground, mak-
ing it difficult to compare the results of different studies.
We introduced a uniform process and a best-practice
toolchain to mitigate these shortcomings and to harmo-
nize future research. We addressed how to extract and
prepare relevant information from a corpus of privacy
policies, as well as the core task of detecting whether
or not a given text is indeed a privacy or cookie policy
and not some other type of text. The correct operation
of our toolchain has been evaluated utilizing state-of-
the-art privacy policy corpora, and we have given in-
sights into data handling and preparation for this type
of analysis. Our findings empower future work, provid-
ing methods for thorough data handling accessible to
fellow researchers in the field of privacy policy content
analysis.

Code Availability
To foster our aim of unifying privacy policy analysis and
making future work comparable, we publish the devel-
oped toolchain and its code with this paper. The code
of the toolchain is available at:
https://github.com/ITSec-WWU-Munster/Unifying-
Privacy-Policy-Detection
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9 Appendix
Table T1. Top 100 selected key phrases in our training sets. This list does not include all key phrases due to space restrictions.

English German

information, use, service, possible, problem, default setting,
connect, clock, firefox, -pron- computer’s clock, -pron- se-
curely, change -pron- date, correct time, hsts, http strict, http
strict transport, http strict transport security, malicious site,
mozilla identify, network security setting, report error, restore,
restore default setting, secure connection, strict transport,
strict transport security, time setting, transport security, wrong
time, mozilla, result, setting, date, -pron- computer, computer,
server, http, device, -pron- service, firewall, network connec-
tion, content, third party, certificate, exception, connection,
privacy policy, cookie, personal information, -pron- personal
information, product, privacy, privacy statement, use -pron-
service, policy, example, -pron- personal datum, good faith be-
lief, -pron- information, time, use -pron- product, credit risk
reduction, collect, feature, -pron- microsoft account, health
care professional, microsoft service, other microsoft service, -
pron- device use delete browse history, -pron- health datum,
-pron- health record datum, -pron- other device, -pron- per-
sonal device, -pron- personal microsoft onedrive account, child
use -pron- device, control -pron- personal datum, internet ex-
plorer use -pron- search query, microsoft donot use -pron- in-
dividual recovery key, microsoft edge, microsoft health, mi-
crosoft health service, office use other microsoft, other app
-pron- install, other microsoft software such, personal mi-
crosoft, personal microsoft account, personalized computing
environment, privacy shield principles, stick figure representa-
tion, use -pron- device, -pron- device use, certain microsoft of-
fice product, cortana, headache / migraine, microsoft privacy,
microsoft privacy statement, microsoft product, microsoft up-
date service, other microsoft product, website use -pron- per-
sonal microsoft account

datum, cookies, personenbezogenen datum, information,
ander datum, google, bitte direkt, angezeigt sponsored,
angezeigt sponsored listings, beziehung, dienstanbieter, di-
enstanbieter in irgendeiner, domaininhaber, domaininhaber
noch, dritt seite, dritt seite automatisch, irgendeiner
beziehung, markenrechtliche problem, markenrechtliche prob-
lem auftreten, problem auftreten, seite automatisch gener-
ieren, sponsored listings, stehen weder, wenden, whois, whois
ersichtlich, all rights, reserved, rights, rights reserved, per-
sonenbezogene datum, seite automatisch, welch, all rights
reserved, copyright, direkt, 2018 copyright, nutzung, daten-
schutzerklärung, person, erhoben datum, dienst, beispiel,
browser, website, google weit, google-konto, ander geeignet
vertraulichkeitsund sicherheitsmaßnahmen, dienst erhoben da-
tum, identifizierend datum, streng vertraulichkeitsverpflich-
tungen unterwerfen, websites, google analytics, dienst nutzen,
nutzern gut dienst, konto, startseite, verarbeitung, suche,
weitere information, url, werbeanzeigen, personenbezogener
datum, fehler, angefordert datum, ander technologieund kom-
munikationsunternehmen, google analytics generieren datum,
google regelmäßig anfrage, partner google analytics, art,
leider, welch datum, verarbeitung personenbezogener da-
tum, sonstig datum, nicht-personenbezogene datum, aktiv-
ität, besonder kategorie personenbezogener datum, ander di-
enst, beispiel werbung, apps, welch datum google, sensibel
personenbezogenen datum, datum google, erhobene datum,
haben, inhalt, einstellung, google datum, google cookies ver-
wenden, nutzer, sensible personenbezogene datum, google
cookies, b. google analytics, neu dienst, alle browsersitzun-
gen beibehalten, ander öffentlich quelle verfügbar, automatis-
che produktupdates anbieten, beispielsweise, beschwerde ein-
reichen haben, bestehend dienst erhoben datum
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