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Abstract: We study the problem of privacy-preserving
approximate kNN search in an outsourced environment
— the client sends the encrypted data to an untrusted
server and later can perform secure approximate kNN
search and updates. We design a security model and pro-
pose a generic construction based on locality-sensitive
hashing, symmetric encryption, and an oblivious map.
The construction provides very strong security guaran-
tees, not only hiding the information about the data, but
also the access, query, and volume patterns. We imple-
ment, evaluate efficiency, and compare the performance
of two concrete schemes based on an oblivious AVL tree
and an oblivious BSkiplist.
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1 Introduction

Background and Motivation. The k-nearest-
neighbor (kNN) search problem is defined as follows:
given a dataset D of points in a metric space S and
a query point q ∈ S, find the top k nearest neighbors
to q. kNN is used in computer vision and serves as a
basic yet very effective machine learning classification
technique, where it is commonly used to classify a point
based on the consensus of its neighbors. The numerous
applications include content-based image search, auto-
mated face recognition in video surveillance, stock mar-
ket predictions, medical diagnoses, risk assessment, and
credit card fraud detection.

While the existing kNN algorithms are not efficient
for dense high-dimensional data used by many applica-
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tions, one approach to deal with kNN’s inefficiency is
to use a different problem, known as the approximate
kNN. It asks to return points whose distance from the
query is no more than (1 + ε) times the distance of the
true k-th nearest-neighbor, and this can be done only
with high probability. Approximate kNN (AkNN) is ap-
propriate for many applications that can sacrifice some
precision for efficiency.

Nowadays, it is extremely common to outsource
data storage, management, and search functionality to
a cloud. For the kNN or AkNN search this means that
the client’s dataset D is outsourced to a cloud server
that answers the client’s kNN (AkNN) queries. If the
data is sensitive and the server is untrusted or subject
to compromise, it is desirable for the server to be able to
perform the search on encrypted data without knowing
the secret key of the client and learning anything about
the client’s data and queries.

Our Goal. We (quite ambitiously) aim to build a
practical searchable encryption scheme for approximate
kNN queries that provides very strong security: in ad-
dition to provably hiding information about the data
and the queries, we also aim to hide the access, query
equality and volume patterns, as such information, if
leaked, can give rise to attacks. We want our protocol
to yield working solutions for privacy-preserving data
classification and search by classifiers (labels). We want
to avoid relying on multiple non-colluding servers or se-
cure hardware, as these are hard to ensure in practice.

Prior Work and its Limitations. Searchable encryp-
tion (SE) is a hot topic in cryptography that seeks proto-
cols permitting efficient search on outsourced encrypted
data. While most solutions focus on the basic query
types such as exact match and range queries, in recent
years, there is a rise of interest in SE schemes for kNN
queries, e.g., [5, 9, 23, 29, 30]. However, there are still
no solutions for kNN or AkNN search providing strong
security guarantees. Even when papers provide formal
security notions and proofs of security for their schemes,
still the problem is that any practical SE incurs secu-
rity/efficiency/functionality tradeoffs, and there is no
acceptable balance reached for SE for kNN. The cipher-
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texts of proposed efficient solutions leak distance and/or
closeness pattern between data points for functionality
and efficiency.

Recent works by Kornaropoulos et al. [18, 19] pre-
sented efficient attacks on SE for kNN queries with
such seemingly minimal leakage. More precisely, they
show how to attack SE schemes only leaking which
k encrypted records are retrieved for a kNN query.
While their attacks are for one-dimensional data, the
authors argued how the attack also applies to high-
dimensional data. The problem with SE that permits
such attacks is the access pattern leakage (revealing
which encrypted points are queried). An even more re-
cent work by Grubbs et al. [13] observes the relation-
ship between the problem of reconstructing encrypted
databases from access pattern leakage and statistical
learning theory. This observation allowed the authors
to mount effective nearly-optimal approximate database
reconstruction attacks for richer queries such as range,
prefix and suffix type queries, and could apply to kNN
queries. These attack results make a very strong case
for targeting SE schemes that hide the access pattern.
There are works [9, 25] that target public-key SE for
kNN that hides the access pattern, but they require
the dataset to be split among two non-colluding cloud
servers.

We note that practical SE that hides the access pat-
tern is still a big open problem even for basic query
types such as exact-match. A known theoretical ap-
proach to ensure access pattern security for SE schemes
is to utilize the Oblivious RAM (ORAM) tool. However,
this approach is not very efficient since ORAM incurs
heavy computational and communication costs. More-
over, as was shown by Naveed in [22], using ORAM to
hide the access pattern in SE schemes for exact match
is more expensive (bandwidth-wise) than the straight-
forward solution where the server sends the whole en-
crypted database to the client as a query response.

Kamara et al. [17] show how to compile an SE (or
encrypted search index) for document identifiers, such
as the classical symmetric SE scheme by Curtmola et
al. [6], in order to suppress leakage of the query equality
pattern, namely, of which queries are equal. Their solu-
tion could be combined with the ORAM-based stage for
retrieving the documents for given identifiers, so that
no access pattern is leaked. The main problem with
this approach is efficiency: there are no implementa-
tions of the compiler and efficient ones seem currently
out of reach, plus the aforementioned negative result of
Naveed [22] implies that the solution cannot be reason-
able communication-wise. Moreover, the solution only

provides a static scheme without the possibility of up-
dates.

The Oblix system by Mishra et al. [21] presents a
dynamic encrypted search index that hides the access
pattern, but it relies on secure hardware such as Intel’s
SGX.

To make the situation more challenging, Grubbs et
al. [12] present attacks that apply even to schemes hid-
ing the access pattern and use only the volume of re-
sponses to reconstruct databases. Their attacks are for
the case of range queries, but there is no good reason
to assume they cannot be extended to the case of other
queries.

Our Approach. Our first observation is that the neg-
ative results of [22] consider the worst case when a key-
word in an exact-match query matches almost all docu-
ments in the database. However, for the case of AkNN
queries, we can stop after k matches are found. This fact
makes the use of ORAM-like solutions promising for our
application.

To construct a secure AkNN protocol, we first study
the existing approaches to solve AkNN for non-sensitive
unencrypted data. Since the naive approach of compar-
ing the pairwise distances between the query and data
points is not feasible for large databases, it is common to
use locality-sensitive hashes (LSH). LSH encode partial
information of locality: the closer the data, the more
likely that their hashes collide. Usually, an extended
LSH (eLSH) is used. Each eLSH application yields mul-
tiple outputs (tags). If at least one tag overlaps between
the hashes of the query and the data, the points are close
with high probability.

It is known how to use eLSH to solve a decisional ap-
proximate near neighbor problem [14], and how a solu-
tion to this problem can be used to solve AkNN [11]. We
can build on these works, but we design our own eLSH
parameter selection since prior works suggest setting
up the eLSH parameters empirically, but this approach
does not guarantee either the correctness or the upper-
bound on the size of returned results. We, on the other
hand, aim at having a protocol for which we can assess
concrete correctness. Moreover, not having a bound on
the returned results prevents us from efficiently using
oblivious data structures.

Now, to add security, we employ oblivious data
structures (ODS) [20, 28]. ODS is an abstraction of
data structures that support oblivious access: one can
retrieve and update the data, while the data, physical
addresses of the components of the data structure, and
the type of operation stay hidden. (One can view ORAM
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as ODS of an encrypted array.) We will utilize oblivious
maps to enable secure search on eLSH tags.

Wang et al.’s ODS framework [28] was inspired by
Gentry et al.’s approach in optimizing the tree-based
ORAMs for binary search [10]. Their ODS framework
utilizes tree-based ORAM (e.g., Path ORAM [27]) as
a building block and supports any tree structure with
bounded degrees. Using trees with bounded degrees is
important for efficiency and this is a good match for
us since we select parameters so that the number of
returned results for each query is bounded. One could
not use the same approach for regular keyword search.

We note that instead of ODS one could use search-
able encryption for disjunctive exact-match keyword
search, where eLSH tags would serve as keywords. How-
ever, there is no immediate choice of SE for disjunctive
keyword search because there are no efficient solutions
that hide the access (or query or volume) pattern. En-
crypted multi-maps [16] can also be used to implement
response-hiding secure keyword search, hiding the vol-
ume pattern while revealing the query-equality pattern.
As we mentioned, the approach to suppress the query-
equality pattern using structured encryption with leak-
age suppression [17] is neither efficient nor dynamic.

Our contributions. We first define the syntax for a
privacy-preserving AkNN (PP-AkNN) protocol, its cor-
rectness and security. Both definitions are inspired by
the general definitions for structured encryption with
leakage suppression by Kamara et al. [17], but we sim-
plify and customize them for our specific AkNN query
type. The security definition is simulation-based. It asks
that the protocol could be simulated without the data
or secret key and just from the outputs of the leakage
function, if any. This captures the intuition that no in-
formation other than some possible leakage is revealed
by the protocol. As common for the ODS protocols in-
cluding ORAM, we only treat honest-but-curious ad-
versaries and leave treatments of active adversaries for
future work.

Next, we present our generic construction that com-
bines the aforementioned eLSH-based algorithm to solve
AkNN, an oblivious map with encryption (OMapE) and
the parameters selection that enables concrete correct-
ness assessment. (Unlike most cryptographic schemes,
assessing the correctness of our protocol is not straight-
forward.)

We define a new adaptive security definition for
OMapE, addressing the previously omitted data pri-
vacy in oblivious map definition. We prove that our
generic protocol meets our security definition assum-

ing the building block OMapE is adaptively secure. The
only leakage our generic protocol incurs in addition to
the leakage of the specific OMapE instantiation (speci-
fied below) is the (constant) numbers of data accesses for
search and update queries. Despite this minimal leak-
age, which is independent of the data, our PP-AkNN
scheme hides the query-equality pattern for both search
and update queries, the volume pattern (since each
query yields a constant number of data accesses), and
the access pattern. It also hides the operation type of
the update query — whether it is an add or a remove
operation.

It remains to specify particular OMapE construc-
tions one can rely on. We combine a standard IND-CPA
symmetric encryption scheme and an oblivious map can-
didate, either an AVL tree [28] or a BSkiplist [24]. AVL
tree is a self-balancing tree that directly yields an ef-
ficient map structure; BSkiplist is a B-tree variant of
standard skiplist; both can be used to construct an effi-
cient map.

Both candidates we use are built using a non-
recursive position-based ORAM, such as PathORAM.
Assuming “adaptive obliviousness” and data privacy
held by the underlying ORAM with encrypted blocks,
the total leakage of the OMapE comprises the number
of nodes (blocks) in the tree, the node (block) size, the
bucket size, the tree height, and the branching factor —
for AVL tree-based instantiation, the branching factor
is 2.

With respect to PP-AkNN, these translate to very
small leakage independent of the data content: the num-
ber of items stored in the database and public parame-
ters used to initialize the structure.

We are interested in comparing the performance of
the two to see whether they are feasible for practice.
The authors of [28] initially provided no implementa-
tions, but recently they made the oblivious AVL tree
implementation available. For BSkiplist, [24] provided
implementation results in the paper, but their imple-
mentation was not public. Hence, we implemented both
schemes, incorporated the eLSH part to complete the
implementation of our PP-AkNN protocol, and evalu-
ated the two’s performance in searching and updat-
ing on multiple benchmark data sets to test their ef-
ficiency and scalability. We found that BSkiplist-based
implementation performs better in terms of the num-
ber of roundtrips incurred compared with the oblivious
AVL tree-based construction. Also, compared with the
baseline — downloading the whole encrypted database,
the BSkiplist-based scheme supports a much more effi-
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cient secure AkNN search solution, especially for a small
client storage. More details are provided in Section 7.

Applications. Our privacy-preserving protocol
PP-AkNN can be adopted in all AkNN applicable set-
tings where k is small and the database is sufficiently
large. For instance, consider performing AkNN-based
classification on images. Given a ground-truth set —
images and associated feature vectors classified into
different classes (e.g., by scenes) and attached with the
class labels, encrypt and store feature vectors and labels
on an untrusted server. On each query image and its
feature vector(s), we can first retrieve through PP-AkNN
the AkNN of the query feature vector and associated
class labels. Then perform AkNN-based classification
— assigning the query image to the majority class voted
by the returned AkNN.

2 Preliminaries

Notation and Conventions. For some n ∈ N, we let
[n] denote the discrete range [1, n], and let x[i] denote
the i-th element for some vector, or ordered set, i.e. list
x. We use (x1, x2, . . . , xn) to denote a vector of elements
xi for all i ∈ [n]. For a set T we write |T | for the size of
T . The algorithms are randomized and polynomial-time
(in the security parameter) unless otherwise specified.
Given any security parameter λ ∈ N, any x ∈ R, we let
〈x 〉 denote x in the format of a binary string of length
polynomial in the security parameter λ. For the syn-
tax of any interactive protocol (algorithm) I executed
between party A and party B, we use the convention:
(outputA, outputB)← [IA(inputA), IB(inputB)].

Metric Spaces. We adopt the definition from [3]. (D, d)
is a metric space if D is a set and d (the metric) is a real-
valued function on D×D such that for all x, y, z ∈ D the
distance function d satisfies the conditions as follows,

d(x, y) ≥ 0 d(x, y) = 0 iff x = y

d(x, y) = d(y, x) d(x, z) ≤ d(x, y) + d(y, z).

Ball. Over some metric space (D, d), we define the ball
B by, for any message Q ∈ D, any radius (distance
threshold) r ∈ R, B(Q, r) = {M : M ∈ D, d(M,Q) ≤ r}.

approximate k-NN. We use the following definition for
AkNN throughout the work.

Definition 2.1 ((ε, δ)-AkNN). For metric space (D, d),
database DB ⊆ D, integer k ≥ 1, failure probability δ >

0, construct a data structure so that on every query Q ∈
D, with at least 1− δ probability, it efficiently returns k
points {Pi}i∈[k] in the database such that for all i ∈ [k],
d(Q,Pi) ≤ (1 + ε) · d(Q,DB)i, where d(Q,DB)i is the
distance from Q to its ith-nearest neighbor in DB and
ε > 0 is the error factor.

Locality-sensitive Hashing. Our constructions uti-
lize locality-sensitive hashing (LSH), especially its ex-
tension form eLSH, so we start with recalling the LSH
primitive introduced in [15]. Below, we give definitions
for an arbitrary metric space (D, d).

Definition 2.2 (Locality-sensitive Hashing). A family
H is called (r, cr, p1, p2)-sensitive if for any two points
x, y ∈ D [26]:
- If d(x, y) ≤ r then PrH[h(x) = h(y)] ≥ p1;
- If d(x, y) ≥ cr then PrH[h(x) = h(y)] ≤ p2.

We now recall the definition of extended LSH. Given
(r, cr, p1, p2)-sensitive H, one can think of (l, s)-eLSH
extension of H as a locality sensitive hashing function
with improved sensitivity (r, cr, p′1, p′2), where p′1 ≥ p1
and p′2 ≤ p2, formally defined as follows.

Definition 2.3 (eLSH). Let H be a (r, cr, p1, p2)-
sensitive hash family. For positive integers s, l, choose
random hi,j ∈ H for all i ∈ [l], all j ∈ [s] and define the
hash functions gi(·) by

gi(x) = (hi,1(x), hi,2(x), . . . , hi,s(x)) for all i ∈ [l].

We refer to the set of functions {gi}i∈[l] as the
(l, s)-eLSH extension of H:
- If d(x, y) ≤ r then Pr{ there exists i ∈ [l] such that
gi(x) = gi(y)} ≥ p′1, where p′1 ≥ p1;

- If d(x, y) ≥ cr then Pr{ there exists i ∈ [l] such that
gi(x) = gi(y)} ≤ p′2, where p′2 ≤ p2.

3 Secure AkNN Search Protocol
We start with defining syntax and correctness for a
privacy-preserving approximate kNN (PP-AkNN) proto-
col primitive.

Over metric space (D, d), associated domain DA, let
message space MS be D × DA. A PP-AkNN protocol
between two parties: client C and server S, is defined by
two algorithms Setup, Dec and two two-party protocols
Search, Update as follows:

The client C first runs the following algorithm:
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- (kmax,K,EDS) $← Setup(1λ, ε, δ, Z,M): is a (possi-
bly) randomized algorithm. It takes as input secu-
rity parameter 1λ, error factor ε > 0, probability of
failure δ ∈ [0, 1], auxiliary information Z ∈ {0, 1}∗, a
set of messages M ⊆MS, and outputs a public pa-
rameter kmax ∈ N, a secret key K, and an encrypted
data structure EDS.

The following interactive algorithms are between
parties C and S:

- (M′,EDS′) ← [SearchC(K,QD, k),SearchS(EDS)]: C
inputs secret key K, a query message QD ∈ D, pa-
rameter k ∈ [kmax], and server S inputs EDS. At
the end, C gets a set M′ ⊆ MS; S updates the
encrypted data structure to EDS′.

- (⊥,EDS′)← [UpdateC(K,U,M∗),UpdateS(EDS)]: C
inputs secret key K, an update operation type U ∈
{add, remove}, message M∗ ∈ MS, and server in-
puts EDS; S updates the encrypted data structure
to EDS′.

The client C can also run the following decryption
algorithm:

- M ← Dec(K,EDS): is a deterministic algorithm. It
takes as input secret key K, encrypted data struc-
ture EDS, and outputs a set of messages M.

Correctness. For all security parameter λ ∈ N, all Z ∈
{0, 1}∗, all ε > 0, all δ ∈ [0, 1], all (kmax,K) generated
by KeyGen(1λ, ε, δ, Z), all M ⊆ MS, all EDS generated
by Setup (1λ, ε, δ, Z,M), Dec(K,EDS) = M:

- Search is (ε, δ)-correct if for all query message QD ∈
D, all k ∈ [kmax], all set M′ client C receives from
running [SearchC(K,QD, k),SearchS(EDS)], size of
set M′ equals to k, and it holds with at least (1− δ)
probability that set M′ contains QD’s approximate
i-th nearest neighbor in M with error factor ε (Def-
inition 2.1), for all i ∈ [k]; Dec(K,EDS′) = M with
no error.

- Update is correct if for all update operation type
U ∈ {add, remove}, all message M∗ ∈ MS,
all EDS′ updated by the server S from running
[UpdateC(K,U,M∗),UpdateS(EDS)], the following
conditions hold:
- If U is add, Dec(K,EDS′) = M ∪ {M∗};
- If U is remove, Dec(K,EDS′) = M \ {M∗} .

Efficiency. We require that the communication band-
width induced in both Search and Update protocol is
O(polylog(N)), where N is number of items in the
database, and the computational complexity for Search
and Update is O(polylog(N)).

Remark 1. Note that in typical AkNN applications, k
is a variable, and can be set by the client in each search
query, and hence our scheme also supports different
k ∈ [kmax]. We allow the message space to contain the
auxiliary data to accommodate common applications.
For example, for an image classification application,
D will contain vector(s) extracted from images (e.g, a
deep-neural-network feature), d will be the Euclidean
distance, and DA will contain class labels. For each im-
age, client first extracts a feature vector (e.g, using a
deep neural network), retrieves approximate k nearest
neighbors for the feature, and performs kNN-based clas-
sification — assigning the image to the labeled class
voted by majority of the k returned labels. In some ap-
plications, update operations are not important, but we
consider dynamic datasets for completeness. Similarly,
it may not be necessary to demand decryptability of
the encrypted data structure. We consider decryptabil-
ity because clients may need to extract the data stored
on the cloud. Moreover, having decryptability simplifies
defining correctness.

Remark 2. Our syntax above is inspired by that for
structured encryption with leakage suppression defined
by Kamara et al. [17]. Their definition is very gen-
eral and captures structured and searchable encryption,
ORAM and oblivious data structure. We do not need
such generality as we target specific AkNN queries only
and hence prefer a simpler syntax. In particular, we do
not need the Rebuild protocol they have in order to
capture suppressing the leakage of existing structured
encryption schemes (STE).

4 Security Definition
We present the security definition for PP-AkNN proto-
cols. It is simulation-based and asks that for an adver-
sary who knows the dataset and the encrypted database
and can adaptively make queries, the transcript of the
protocol can be simulated by a simulator who only has
access to some leakage information, which the security
statement for each construction has to specify. The def-
inition captures the intuition that the protocol hides
all information about the data and queries besides the
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specified leakage. For some protocols, leakage may in-
clude access, query and/or volume patterns, but for our
construction we show that such leakage is absent.

Our definition is similar to that by Kamara et
al. [16], though, as typical for ODS and ORAM-
like primitives, we only consider passive (honest-but-
curious) attackers and leave treatment of active attack-
ers to future works. In applications where tampering
with the software is not likely, considering passive at-
tackers may be sufficient.

We provide the formal definition and follow with
more discussion.

Definition 4.1 (Adaptive Security for PP-AkNN).
Let Π be a PP-AkNN protocol. Let LPP-AkNN =
{LSetup,LSearch,LUpdate} be the leakage profile describing
leakages of Π’s algorithms.

SetupHΠ(1λ, ε, δ, Z,M) :
(kmax,K,EDS) $← Setup(1λ, ε, δ, Z,M).
Return (kmax,K,EDS).

SearchHΠ(Qt, kt,K,EDSt) :
Run honest execution (M′t,EDSt+1)←
[SearchC(K,Qt, kt), SearchB(EDSt)].
Return (M′t,EDSt+1).

UpdateHΠ(Ut,M∗t ,K,EDSt) :
Run honest execution (⊥,EDSt+1)←
[UpdateC(K,Ut,M∗t ), UpdateB(EDSt)]
Return EDSt+1.

Fig. 1. Helper Functions for Defining PP-AkNN Security.

Consider the probabilistic experiments RealΠ,A(1λ)
and IdealΠ,A,S(1λ) defined in Figure 2 with helper func-
tions defined in Figure 1, associated with a stateful ad-
versary A and simulator S.

We say that Π is adaptively LPP-AkNN secure if
there exists a PPT simulator S such that for all (non-
uniform) PPT adversaries A, all Z ∈ {0, 1}∗, all ε > 0,
all δ ∈ [0, 1], the following is negligible (in λ):∣∣∣Pr

[
RealΠ,A(1λ) = 1

]
− Pr

[
IdealΠ,A,S(1λ) = 1

]∣∣∣.

RealΠ,A(1λ) :
Given 1λ, ε, δ, Z, adversary A outputs a
message set M1 ⊆MS.
(kmax,K,EDS1) $← Setup(1λ, ε, δ, Z,M1).
A is given kmax and EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Search(Qt, kt), where Qt ∈ D, kt ∈ [kmax]
returns to A the transcript of honest
execution (M′t,EDSt+1)←
[SearchC(K,Qt, kt), SearchB(EDSt)],
C’s output M′t and B’s output EDSt+1.

Update(Ut,M∗t ), where Ut ∈ {add, remove},
M∗t ∈MS, returns to A the transcript of
honest execution (⊥,EDSt+1)←
[UpdateC(K,Ut,M∗t ), UpdateB(EDSt)]
and B’s output EDSt+1.

Finally, A outputs bit b.
The experiment returns the same bit b.

IdealΠ,A,S(1λ) :
Given 1λ, ε, δ, Z, adversary A outputs a
message set M1 ⊆MS.
(kmax,K,EDS1) $← SetupH(1λ, ε, δ, Z,M1).
A is given kmax.
Given 1λ, kmax,LSetup(M1), simulator S
outputs encrypted structure EDS1
and sends it to A.
Let B be an honest server and given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Search(Qt, kt), where Qt ∈ D, kt ∈ [kmax] :
(M′t,EDSt+1)← SearchH(Qt, kt,K,EDSt).
Return to A the transcript of
[S(LSearch(Mt, Qt, kt)),SearchB(EDSt)],
SearchH’s output M′t,
and B’s output EDSt+1.
Mt+1 ←Mt.

Update(Ut,M∗t ), where Ut ∈ {add, remove},
M∗t ∈MS :

(M′t,EDSt+1)← UpdateH(Ut,M∗t ,K,EDSt).
Return to A the transcript of
[S(LUpdate(Mt, Ut,M

∗
t )),UpdateB(EDSt)]

and B’s output EDSt+1.
If Ut = add then

Mt+1 ←Mt ∪ {M∗t };
Else if Ut = remove then

Mt+1 ←Mt \ {M∗t }.
Finally, A outputs bit b.
The experiment returns the same bit b.

Fig. 2. Experiments for Defining PP-AkNN Security.
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Remark 3. Our security definition follows the common
approach: whatever the attacker can learn from the real
protocol’s transcript should be simulatable in the ideal
world without the secrets, data and the queries. How-
ever, there is one important issue we had to take care
of. In the searchable/structured encryption literature,
the distinguisher between real and ideal worlds is not
given the output of the client. This is because the works
usually deal with deterministic functionalities where the
client’s output is determined be the inputs and the tran-
script. But we deal with the randomized functionality of
approximate search. It is known from the MPC litera-
ture, that it is necessary to give the distinguisher access
to the client’s output in this case. And in the ideal world
this output is computed using the ideal functionality.

However, we are facing a problem the MPC litera-
ture does not address. Namely, our ideal functionality,
which is not explicitly defined, but follows from the pro-
tocol’s correctness requirement, does not specify the ex-
act probabilities of the data appearing or not appearing
in the client’s output. Instead, it only specifies bounds
for such probabilities. Hence, in the ideal world we can-
not easily compute the client’s output without it being
trivially distinguished from that in the real world. We
resolve this issue by computing the output by running
the protocol. To the best of our knowledge, this problem
has not been treated before in the searchable-encryption
literature. Note that even though we run the protocol
in the ideal world, this is just to ensure correctness, and
does not affect security or cause a tautology, as the sim-
ulator is not involved.

Remark 4. In our security definition, the leakage pro-
file is abstract. Depending on the protocol, leakage may
include identity and/or equality patterns for responses
and queries. We refer to [17] for the formal definitions
of such patterns. Access/query patterns usually mean
the union of the corresponding equality and identity
patterns. In ORAM-related community, access pattern
is defined differently as the sequence of physical mem-
ory addresses accessed. Volume pattern is information
about the relation between the queries and the amount
of communication and rounds of interactions. We do not
provide formal definitions since for our construction it
will be immediate that such patterns are not leaked.

5 Solving Approximate k-Nearest
Neighbors Problem

Before we present our protocol we need to study known
approaches to solving the (un-secured) Approximate k-
Nearest Neighbors Problem (AkNN) problem (Defini-
tion 2.1).

A straightforward approach is storing the data in
an array, then searching the approximate k-NN by com-
paring the pairwise distances of data points, clearly not
feasible for large databases. It is possible to improve ef-
ficiency and construct a data structure by partitioning
the whole metric space, such as k-d tree, but this ap-
proach has severe scalability issues when dealing with
high-dimensional data as the size of space grows expo-
nentially in the number of dimensions.

Therefore, a randomized approach is used, usually
equipped with an approximation algorithm that allows
some error in correctness, but greatly improves the ef-
ficiency. First, one uses extended LSH (eLSH Defini-
tion 2.3) [7] to solve a decisional approximate near
neighbor problem [14]. Next, a solution to this problem
is used to solve AkNN, possibly by solving the approx-
imate nearest neighbor 1-NN first.

We note that practitioners sometimes prefer using
an eLSH look-up map directly to tackle the AkNN prob-
lem. They examine all the points that share overlapped
eLSH tags with the query point, specifically, by select-
ing eLSH parameters by training a subset of the data
and choose parameters with reasonable accuracy and a
smaller cost (size of matched points divided by the size
of data set).

This approach, though, does not provide a guaran-
tee on either the correctness or the upper-bound on the
size of returned results. We are interested in solving the
AkNN problem without relying heavily on the training
procedure — estimating intrinsic parameters of the data
distribution. In particular, we focus on providing a the-
oretical guarantee on setting the parameters to achieve
concrete correctness of AkNN with an upper-bound on
the returned results. Moreover, not having a bound on
the returned results prevents us from efficiently using
oblivious data structures.

So we turn back to discuss the aforementioned steps
in solving AkNN problem in more detail. But first we
recall some related definitions. Given any query point
Q ∈ D, for any data point P ∈ D, we say P is a “r-
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near neighbor” of Q if and only if P ∈ B(Q, r)1. We now
formally define the 1-NN problem.

Definition 5.1 ((c, r)-NN). Fix a set M ⊆ D, and
closeness thresholds r > 0, failure probability δ > 0, con-
struct a data structure such that, given any query point
Q ∈ D, with probability at least 1 − δ: if M ∩ B(Q, r)
is not empty, it reports some cr-near neighbor of Q and
outputs “YES” in M where c is the approximation factor
and if M ∩ B(Q, r) is empty, it outputs “NO”.

To solve this problem, one uses an LSH-based algorithm
introduced in [7], which we will refer to as eLSH-cRNN.
It works as follows. Given a set of locality-sensitive hash
families, set eLSH parameters s, ` based on approxi-
mation factor c, closeness threshold r, and probability
of failure δ (E.1, E.2). To ensure the cr-near neigh-
bors of the query point share at least one overlapped
eLSH tag. Construct (l, s)-eLSH instances I times, each
with fresh independent randomness, which yields (l, s)-
eLSHi. Then initialize an empty look-up map; for each
(li, si)-eLSH instance, where i ∈ [I]; for each point P in
the data set, compute its eLSH tags; for each eLSH tag
T , add (T, P ) pair to the map. We may only use a single
map by pre-appending 〈 i 〉 to each eLSH tag to indicate
that the (li, si)-eLSH instance is used.

During the search stage, given query point Q, for
all i ∈ [I], if any point share with at least one eLSH
tag with the query point, then add the point to a set S.
At the end, if S is not empty, report a point in S that
is a cR-NN of Q, and output “YES”; otherwise output
“NO”. It is proved that such an algorithm indeed solves
the (c, r)-NN problem in [7]. For simplicity, we may refer
“eLSH look-up map” to the map used in eLSH-cRNN in
later discussion.

Now, as the next step, the approximate 1-NN prob-
lem can be reduced to a sequence of (c, r)-NN problems
by utilizing eLSH maps with varying closeness thresh-
olds and approximation factors. Usually, theoreticians
focus on using as few (c, r)-NN problems as possible
[7, 14], even at the cost of increasing the complexity of
the data structure — more complicated than a look-up
map. And then it is not hard to solve AkNN, though
one would need to prove correctness.

Looking ahead, dealing with encrypted data ex-
cludes such an option, mainly due to practical issues
or security concerns. Also, we focus on finding approxi-
mate k nearest neighbors instead of a single approximate

1 Cf. the ball definition in Section 2.

nearest neighbor discussed in the prior works. This rules
out the possibility of reusing their correctness results.

Therefore, we turn to a simpler but less optimized
reduction idea of solving AkNN using (c, r)-NN, pro-
posed without a proof of correctness in [11]. The re-
duction works as follows: Suppose there are multiple
eLSH maps solving a sequence of (ci, ri)-NN problems,
i ∈ [sizer] for some parameter sizer, with (ci, ri) crafted
carefully, ri in increasing order. Start searching from
the smallest closeness threshold rmin by returning all
the data points (with some upper-bound) sharing at
least one eLSH tag overlaps with the query point. If
not enough points are found, then next eLSH map of a
larger ri+1 will be examined in the (i+ 1)-th iteration.

6 Our PP-AkNN Construction

6.1 Overview

We build a generic PP-AkNN protocol Π using
the following key ingredients: eLSH-based algorithm
(eLSH-cRNN), utilized to solve the approximate near-
neighbor problem, solving AkNN using the approximate
near-neighbor problem, and securing AkNN using an
oblivious map with encryption (OMapE). We described
the first two steps in Section 5 (however, we will still
need to provide extra work to enable proofs of correct-
ness).

To add security to the AkNN solution we need a
secure data structure with efficient search functionality
to store eLSH tags. Because standard SSE schemes leak
access and query pattern (aka response equality pattern
and query equality pattern, defined in [17]), and also the
volume pattern, this potentially may incur substantial
security damage, as discussed in Section 1. Therefore we
turn to an oblivious map [28] to prevent such leakage.

An oblivious map protocol allows the client to per-
form a sequence of operations on the oblivious map lo-
cated on the server, so that the server will know neither
the operation types nor the underlying node ids (logical
addresses) the operations access. Privacy of data can be
achieved by using encryption.

In our construction we use an oblivious map in-
stantiated with an oblivious tree structure of bounded
degree. The bounded degree requirement is to ensure
O(logN) communicational blow-up for efficiency (over-
all bandwidth is O(log2N)). A tree structure of bounded
degree can be interpreted as a sequence of nodes, where
each node contains a node id (logical address) and node
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data. The oblivious map can be represented as a se-
quence of encrypted nodes. For the feasibility of such
approach, it is crucial to observe that while solving ap-
proximate k-NN search using a sequence of eLSH-cRNN
algorithms with eLSH look-up maps, we can bound the
number of items associated with each eLSH tag in k in-
stead of the size of the database, and store them in a
single node of the oblivious tree implementing the map.
This allows us to avoid potential blowup in storage and
bandwidth, and thus have a practical solution.

6.2 Building Block: OMapE

Oblivious map with Encryption. We adopt the stan-
dard map definition: Let L be a label (keyword) space
V be a value space. A map is a set of label (key-
word) and value pairs, denoted by map = {(`i, vi)}i∈N,
where `i ∈ L, vi ∈ V. Both maps and oblivious maps
support standard operations including Find, Insert, and
Delete, specified in the following definition F̃OMap (Def-
inition 6.1). Let map[`i] = vi denote the map look-up
on label `i, where vi is `i’s associated value. We use the
latest definition of oblivious simulation of reactive func-
tionality as in [1]. The reactive functionality is a func-
tionality that keeps an internal state between the execu-
tions, defined similarly to FORAM provided in [1] except
that we make the state explicit and output by F̃OMap.
A similar obliviousness definition is used in [24, 28] for
their oblivious map constructions. However, both works
used a non-reactive definition of the functionality, fall
short of capturing the adaptiveness in their oblivious-
ness definition — adversary chooses the input to f adap-
tively, based on previous returned function output.

Definition 6.1 (F̃OMap). The functionality is reactive,
and holds a state — N memory blocks, each of (ex-
pected) size w denoted by X[1, . . . N ] storing map ⊆
L× V.
– Access(map, op, `, v): where op ∈ {Find, Insert,Delete},
` ∈ L, and v ∈ V.
1. If op = Find, if ` is in map then v∗ ← map[`];

otherwise v∗ ← ⊥.
2. If op = Insert, map[`]← v and v∗ ← v.
3. If op = Delete, map[`]← ⊥ and v∗ ← ⊥.
4. Output (v∗,map).

Remark 5. For Find,Delete operation, input v is set by
⊥. We use F̃OMap(map, op, `, v) as a shorthand notation
for Access(map, op, `, v) defined in F̃OMap.

Moreover, [1] and ODS framework [28] suggest pro-
viding data privacy using symmetric encryption (e.g.,
blockcipher-based mode of operation), while omitting
the discussion. Similarly, [24] mentions using AES-based
encryption scheme encrypting the blocks stored in the
underlying ORAM.We elaborate on the data privacy as-
pect, providing a unified syntax OMapE combining the
oblivious map with standard symmetric encryption, and
a security definition in the style of structured encryption
capturing adaptive obliviousness and data privacy.

For security parameter λ ∈ N, any map DS ⊆ L×V
implemented using a tree structure of bounded degree,
an OMapE protocol between client C and server S, is
defined by three algorithms and one two-party protocol
as follows:

- K $← OMapE.KeyGen(1λ): is a randomized algorithm
run by C that takes as input a security parameter
λ, and outputs a secret key K.

- EDS $← OMapE.Setup(1λ, Z,K,DS): is a randomized
algorithm run by C that takes as input a security
parameter λ, auxiliary information Z ∈ {0, 1}∗ (e.g.,
upper-boundN on the number of labels in the map),
secret key K, map DS and outputs an encrypted
data structure EDS.

- (v∗,EDS∗) ← [OMapE.AccessC(K, op, `, v),
OMapE.AccessS(EDS)]: is a two-party protocol
executed between client C and server S, where
C inputs a secret key K, an operation op ∈
{Find, Insert,Delete}, ` ∈ L, v ∈ V and server in-
puts EDS; at the end, C receives v∗ ∈ V; S updates
the encrypted data structure to EDS∗.

- DS ← OMapE.Dec(K,EDS): is a deterministic algo-
rithm that takes as input secret key K, encrypted
data structure EDS and outputs DS.

The security experiment in Figure 3 with ideal func-
tionality F̃OMap (Definition 6.1) also captures the cor-
rectness requirement of OMapE. We define the adaptive
security for OMapE with leakage profiles in the STE
style, except we specify the correctness and security in
a single definition for compactness. Note that we cannot
have a compact definition similarly for PP-AkNN since
the protocol does not have perfect correctness. Also, we
consider transcripts can be simulated in our definition
instead of the sequence of physical addresses Addrs [1].
Our security definition is stronger than ODS’s, as it ad-
dresses both the adaptive obliviousness and data pri-
vacy. Moreover, it is stronger than STE’s if all leakage
profiles are empty since the map operation type is hid-
den by our definition. In contrast, STE divides the ac-
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cess protocol into query and update algorithms and thus
leaks the operation type by syntax.

Definition 6.2 (Adaptive Security for OMapE).
Let Φ be an OMapE protocol. Let LOMapE =
(LOMapE.Setup,LOMapE.Access) be the leakage profile de-
scribing leakages of Φ’s algorithms. Let λ ∈ N be the
security parameter. Consider the probabilistic experi-
ments defined in Figure 3. We say that Φ is adaptively
LOMapE-secure if there exists a PPT simulator S such
that for all PPT adversaries A, all Z ∈ {0, 1}∗, the
following is negligible (in λ):∣∣∣Pr

[
RealΦ,A(1λ) = 1

]
− Pr

[
IdealΦ,A,S(1λ) = 1

]∣∣∣.
6.3 Generic PP-AkNN Construction

We now describe our protocol, providing an outline
of each algorithm, and clarify certain parts via bullet
points.

Over some metric space (D, d), associated do-
main DA, let the message space be MS = D ×
DA. Let M ⊆ MS and QD ⊆ D, where M =
{(MD[i],MDA [i])}i∈[n] and |QD| = t. Fix a security
parameter λ ∈ N, an error parameter ε > 0, and
a parameter for probability of failure δ ∈ [0, 1]. Let
Φ = (KeyGen, Setup,Access,Dec) be an OMapE proto-
col. Given MD,QD ⊆ D, |MD| = n, |QD| = t, α ∈
[0, 1], kmax � n, run Z

$← genAuxInfo(α,MD,QD, kmax),
where genAuxInfo is the algorithm outputting the proto-
col parameters Z = kmax‖n‖t‖α‖rmin‖rmax. In practice,
such parameters can be selected empirically, and we re-
fer to Section 7 for more details. But for our formal
protocol specification we need to choose the parame-
ters that enable us to formally evaluate correctness. We
specify such algorithm genAuxInfo in Section 6.4.

Algorithm Setup(1λ, ε, δ, Z,M) (part 1)

1: K[1] $← Φ.KeyGen(1λ)
2: map← empty map {}
3: Parse Z as kmax‖n‖t‖α‖rmax‖rmin
4: I ← dlog1/e+1/3

ξ
nte,

5: with 0 < ξ ≤ δ
2·kmax·dlog1+ε

rmax
rmin

e

6: c← 1 + ε, γ ←
√
c

7: sizer ← dlogγ rmax
rmin
e

8: K[2]← n‖t‖rmin‖rmax‖sizer‖I
9: numAccess← 0

RealΦ,A(1λ) :
Given 1λ, Z, adversary A outputs a
map DS1 over L× V.
K

$← KeyGen(1λ).
EDS1

$← Setup(1λ, Z,K,DS1).
A is given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Access(opt, `t, vt):
where opt ∈ {Find, Insert,Delete},
`t ∈ L, vt ∈ V,
returns to A the transcript of honest
execution (v∗t ,EDSt+1)←
[OMapE.AccessC(K, optt, `t, vt),
OMapE.AccessB(EDSt)],
B’s output EDSt+1,
and C’s output v∗t .

Finally, A outputs bit b.
The experiment returns the same bit b.

IdealΦ,A,S(1λ) :
Given 1λ, Z, adversary A outputs a
map DS1 over L× V.
Given 1λ,LSetup(DS1), simulator S
outputs encrypted structure EDS1
and sends it to A.
Let B be an honest server and given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Access(opt, `t, vt):
where opt ∈ {Find, Insert,Delete},
`t ∈ L, vt ∈ V,
returns to A the transcript of
[S(LOMapE.Access(DSt, opt, `t, vt)),
OMapE.AccessB(EDSt)],
B’s output EDSt+1,
and v∗t output by
(v∗t ,DSt+1)← F̃OMap(DSt, opt, `t, vt).

Finally, A outputs bit b.
The experiment returns the same bit b.

Fig. 3. Experiments for Defining OMapE Adaptive Security.

The Setup algorithm is divided into two parts for
ease of presentation. The first nine lines in part 1 involve
running the key generation algorithm of OMapE, initial-
izing an empty map, computing the number of eLSH
instances needed based on the input. In the loop from
Line 10 to Line 29 in part 2, we prepare the eLSH in-
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stances by randomly sampling the hash functions and
store the eLSH instances as part of the secret key. Line
31 to Line 37 deal with computing the eLSH tags from
eLSH instances and messages, then adding them to the
map. Finally, Setup ends with running the setup algo-
rithm of OMapE on the map.

We now discuss the details related to parameter se-
lection. Given ε, δ correctness bounds, upper bound n on
the number of messages stored in the database, and up-
per bound t on the number of query messages supported
by the system, we set the parameters theoretically in the
Setup algorithm for provable correctness as follows:

- Line 3 to Line 7: We choose I with ξ to guaran-
tee (ε, δ)-Search correctness following the results of
Lemma D.6 and Lemma D.5. For each (γi, ri)-NN
problem, I number of eLSH instances are used to
amplify the probability of capturing the approxi-
mate near neighbors.

- Line 11 to Line 13 compute the parameters so that
the union of (γi, ri)-NN for all i ∈ [sizer] output by
an algorithm called eLSH-cRNN in Search — finding
(γi, ri)-NN by checking the data points sharing over-
lapped eLSH tags with the query point, contains the
approximate k-NN with high probability.

- Line 28: The numAccess is used to enforce each
search query to yield a fixed number of Φ.Access
and is stored as part of the secret key.

- Line 36, 37: We compute and initialize OMapE with
the upper bound on the number of items stored
in the map based on the maximal number of data
points associated with each eLSH tag.

As we mentioned, in practice, the parameters for
eLSH instances including sizer, si, li, and I can be set
empirically to improve efficiency. Also, locality-sensitive
hashing family Hi with sensitivity (ri, γri, pi,1, pi,2) are
replaced by specific LSH construction instantiated with
appropriate parameters in the implementation (e.g.,
LSH construction based on stable distribution [7]), and
we refer to more details in Section 7.2. Our experi-
ments and prior work [11] show that selecting one single
threshold sizer is usually sufficient. Parameters si, li are
part of the eLSH instances. In our experiments, both si,
li are small constants, less or equal to 10.

Algorithm Setup(1λ, ε, δ, Z,M) (part 2)
10: for i = 1, . . . , sizer do
11: ri ← γi · rmin
12: Hi ← (ri, γri, pi,1, pi,2)-sensitive hash family
13: ρi ← ln 1/pi,1

ln 1/pi,2 ; si ← dlog1/pi,2 ne; li ← dn
ρi/pi,1e

14: K[2i+ 1]← li
15: numAccess← numAccess + li · I
16: for j = 1, . . . , I do
17: for k = 1, . . . , li do
18: for u = 1, . . . , si do
19: hi,j,k,u(·) $←Hi
20: end for
21: ĝi,j,k(·)← (hi,j,k,1(·), . . . , hi,j,k,si(·))
22: end for
23: gi,j ← (ĝi,j,1(·), ĝi,j,2(·), . . . , ĝi,j,li(·))
24: end for
25: Gi ← (gi,1,gi,2, . . . ,gi,I)
26: K[2i+ 2]← Gi

27: end for
28: K[2 · sizer + 3]← numAccess
29: for each M in M do
30: Parse M as (MD,MDA)
31: Tags← T (K,MD)
32: for each T in Tags do
33: map← map ∪ {(T,M)}
34: end for
35: end for
36: m← n · I ·

∑
i∈[sizer] li

37: EDS $← Φ.Setup(1λ,m,K[1],map)
38: return (kmax,K,EDS)

Algorithm T (K,MD)
1: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
2: for i = 1, . . . , sizer do do
3: li ← K[2i+ 1]; Gi ← K[2i+ 2]
4: for j = 1, . . . , I do do
5: gi,j ← Gi[j]; Si,j ← ∅
6: for k = 1, . . . , li do do
7: ĝi,j,k(·)← gi,j [k]
8: T ← 〈 i 〉‖〈 j 〉‖〈 k 〉‖ĝi,j,k(MD)
9: Si,j ← Si,j ∪ {T}

10: end for
11: end for
12: Ti ← (Si,1,Si,2, . . . ,Si,I)
13: end for
14: Tags← (T1,T2, . . . ,Tsizer )
15: return Tags
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Algorithm [SearchC(K,QD, k),SearchS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: u← 1
5: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
6: numAccess← K[2 · sizer + 3]
7: Y← ∅; ctrI← 0; Tags∗ ← T (K,QD)
8: for i = 1, . . . , sizer and ctrI < I do
9: li ← K[2i+ 1]; ctrI← 0

10: T∗i ← Tags∗[i]
11: for j = 1, . . . , I do
12: tempi,j ← ∅
13: loop For each T in T∗i [j]
14: Run (data∗,EDSu+1)←
15: [Φ.AccessC(K[1],Find, T,⊥),
16: Φ.AccessS(EDSu)]
17: interactively with server S;
18: Parse data∗ string into a set S
19: u← u+ 1
20: if S 6= ∅ then
21: tempi,j ← tempi,j ∪ S
22: end if
23: if |tempi,j | = 3li + k − 1 then
24: ctrI← ctrI + 1
25: exit loop
26: end if
27: end loop
28: Y← Y ∪ tempi,j
29: end for
30: for u < numAccess + 1 do
31: Run (data∗,EDSu+1)←
32: [Φ.AccessC(K[1],Find,⊥,⊥),
33: Φ.AccessS(EDSu)]
34: interactively with server S
35: u← u+ 1
36: end for
37: end for
38: Client C:
39: if |Y| ≥ k then
40: return QD’s k nearest neighbors in Y
41: else
42: for i = 1, . . . , k − |Y| do
43: Mi

$←MS; Y← Y ∪ {Mi}
44: end for
45: end if
46: return Y

The tagging algorithm T is used as a subroutine in
Setup, Search, and Update. It takes as input a message in
the metric space, a secret key encapsulating the eLSH
instances, then computes and outputs the eLSH tags
of the message. Note that at Line 7, gi,j is a vector,
where the k-th position denoted by gi,j [k] is a place-
holder for ĝi,j,k(·); ĝi,j,k(·) is an eLSH instance (Def-
inition 2.3) where (hi,j,k,1(·), hi,j,k,2(·), . . . , hi,j,k,si(·))
denotes a concatenation of hash functions.

In interactive algorithm Search, from Line 8 to Line
37, we find the AkNN of the query message by retriev-
ing the messages associated with the query message’s
eLSH tags from the oblivious map. More specifically,
from Line 8 to Line 29, we solve a sequence of (γi, ri)-
NN problems using eLSH-cRNN algorithm with an eLSH
map. In each iteration, we perform oblivious look-ups on
the corresponding eLSH map (cf. the correctness sum-
mary in Section 6.4 for more discussion). Note that at
Line 25, the loop stops early when enough messages
with matched eLSH tags are found. Lemma D.3 shows
that the search algorithm with the early exist satis-
fies the correctness requirement. If enough messages are
found, the algorithm stops the loop early. Line 30 to
Line 36 enforce a constant number of accesses across
the query messages. In particular, at Line 32 and 33,
we use [Φ.AccessC(K[1],Find,⊥,⊥), Φ.AccessS(EDSu)]
to denote the dummy accesses for padding needed for
security, so that each search query will yield a fixed
number of Φ.Access requests. Finally, Line 39 to Line
46 deal with post-processing and finding the AkNN. If
not enough messages are found, random messages are
selected to ensure the output set size is fixed at k.

Algorithm Dec(K,EDS)
1: DS← Φ.Dec(K[1],EDS)
2: M← ∅
3: for each (T,M) in DS do
4: M←M ∪ {M}
5: end for
6: return M

The decryption algorithm Dec of PP-AkNN follows
from the decryption algorithm of the underlying OMapE.
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Algorithm [UpdateC(K,U,M∗),UpdateS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: Parse M∗ as (M∗D,M∗DA

); u← 1
5: Tags← T (K,M∗D)
6: if U = add then op← Insert
7: else if U = remove then op← Delete
8: end if
9: for each T in Tags do

10: Run (⊥,EDSu+1)← [Φ.AccessC(K[1],
11: op, T,M∗),Φ.AccessS(EDSu)]
12: interactively with server S
13: u← u+ 1
14: end for
15: return ⊥

The Update algorithm utilizes the update algorithm
of the underlying OMapE straightforwardly.

6.4 Correctness & Efficiency

Parameter generation. To be able to evaluate
correctness of our PP-AkNN protocol, we capture
the approaches adopted by theoreticians by defining
genAuxInfo algorithm that outputs parameters on a
given distribution.

Over some metric space (D, d), we define a random-
ized algorithm Z

$← genAuxInfo(α,M,Q, kmax) that takes
as input some failure probability α ∈ [0, 1], (sufficiently
large) M and Q ⊆ D, n = |M|, t = |Q|, kmax � n,
and outputs auxiliary information Z in the form of
kmax‖n‖t‖α‖rmin‖rmax, where rmin, rmax ∈ R+ are dis-
tance thresholds such that, for each Q ∈ Q, with at least
1 − α probability, there exists a subset S ⊂ M of size
kmax such that Q ∈

⋂
M∈S B(M, rmax), and Q does not

fall into the ball of radius rmin centered on any message
of M, namely, Q 6∈

⋃
M∈M B(M, rmin).

Parameters n, t are set as the upper-bound on the
size of the message set, the query set respectively sup-
ported by the system.

The proof of the following correctness theorem is in
Appendix D.

Theorem 6.3 (Main Correctness Theorem). For data
distribution where genAuxInfo exists, PP-AkNN con-
structions instantiated with OMapE (OAvlTreeE or
OBSkiplistE) satisfies (ε, δ)-Search correctness.

Remark 6. Note that the above correctness theorem
stands for distributions where genAuxInfo exists, and
we illustrate its existence by construction in Proposi-
tion D.7. It is common for AkNN related works in the
theory community to assume that parameters output
by genAuxInfo such as closeness thresholds rmin, rmax
are given. In practice, we do not need to construct
genAuxInfo in order to compute the eLSH parameters,
instead we rely on empirically selecting eLSH param-
eters on data samples. We discuss this aspect in Sec-
tions 6.3 and 7.

Remark 7. Since Update straightforwardly calls
Φ.Access on the update operation and every eLSH tag
of the update messages, its correctness directly follows
from that of the underlying OMapE scheme Φ.

Efficiency. The bandwidth cost of the AkNN proto-
col relies on the underlying oblivious map. If built on
an oblivious map that costs O(log2N) bandwith (obliv-
ious AVL tree and Bskiplist), assuming the underlying
non-recursive ORAM operation incurs bandwidth cost
O(logN) (e.g., PathORAM), the overall bandwith cost
for Search or Update in PP-AkNN is O(kmax · log2N),
kmax � N . The computational complexity on the server
side is small since each search or update operation only
incurs O(log2N) number of accesses on the memory
blocks. The client requires a small temporary storage
(O(log2N)), and small computational capacity since the
client only needs to perform basic AES-based encryp-
tion, decryption and linear scan with size bounded in
logN as part of ORAM operations; also for each Search
query, filtering out the top AkNN requires one linear
scan in kmax (O(kmax)) is very efficient since kmax � N .

Although the above analysis is sufficient from the
asymptotic complexity perspective, the constants hid-
den may heavily influence the efficiency in terms of com-
municational overheads, and thus we implemented the
protocol using two instantiations of OMapE and pro-
vided performance evaluation on multiple benchmark
data sets in Section 7.

6.5 Security Analysis

We state security of our generic PP-AkNN Π.

Theorem 6.4 (Main Theorem). The PP-AkNN proto-
col Π with building block OMapE Φ is adaptively LΠ-
secure (cf. Definition 4.1), if Φ is adaptively LΦ-secure
(cf. Definition 6.2), where LΠ = (LSetup,LSearch,LUpdate)
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with

LSetup = LΦ.Setup,LSearch = (LΦ.Access, numAccesss),
LUpdate = (LΦ.Access, numAccessu),

where numAccesss, numAccessu denote the total number
of executions of Φ.Access on single operation within each
search query, each update operation respectively.

Remark 8. Due to lack of space, we provide the proof
sketch of Theorem 6.4 in Appendix A and the full proof
in the full version [4]. We discuss the implications of
the leakage profile when we present the protocol instan-
tiations.

6.6 Instantiations and their Security

Oblivious Maps Instantiations and their Secu-
rity. We refer to the same adaptive obliviousness no-
tion as defined in [1] (also provided in Appendix Def-
inition B.1). It is known and can be proved that the
two candidates OAvlTree [28] and OBSkiplist [24] built
on non-recursive position-based ORAM satisfies the
adaptive obliviousness. However, the above two obliv-
ious map candidates do not address the privacy as-
pect, captured by our OMapE adaptive security (Defini-
tion 6.2). Therefore, we will discuss two OMapE instan-
tiations built on these two oblivious map candidates.
Let OAvlTreeE denote the OMapE built on OAvlTree
with standard symmetric encryption scheme SE (e.g.,
AES-based mode of operation). Let OBSkiplistE denote
OMapE built on OBSkiplist with SE . We provide their
constructions in detail in Appendix B.3. The efficiency
statements in Section 6.4 also apply to these two instan-
tiations.

We state the security of the two OMapE candidates
— OAvlTreeE and OBSkiplistE. A proof sketch on their
adaptive security is provided in Appendix B.4.
Theorem 6.5. The OMapE protocol instantiated
with OAvlTreeE is adaptively L̃OAvlTreeE-secure if
OAvlTree is adaptively oblivious and SE is IND-
CPA, where L̃OAvlTreeE = (L̃Setup, L̃Access), L̃Setup =
(N, nodeSize, bucketSize, height), and L̃Access = ⊥;
N is total number of nodes or the upper-bound on
the number of items can be stored in the OAvlTreeE;
nodeSize is the size of every node of the tree in bits;
bucketSize is the size of every bucket in bits, used by
its underlying ORAM.

Theorem 6.6. The OMapE protocol instantiated
with OBSkiplistE is adaptively L̃OBSkiplistE-secure if

OBSkiplist is adaptively oblivious and SE is IND-
CPA, where L̃OBSkiplistE = (L̃Setup, L̃Access), L̃Setup =
(N, nodeSize, bucketSize, β, height) and L̃Access = ⊥,
defined the same in Theorem 6.5, with extra branching
factor β.

Protocol Security Analysis. We now combine the
above results and the generic PP-AkNN security result
(Theorem 6.4) to get the following two security state-
ments for PP-AkNN instantiated with OAvlTreeE and
OBSkiplistE, respectively.

Theorem 6.7. The PP-AkNN protocol Π instanti-
ated with OAvlTreeE is adaptively-LOAvlTreeE secure, if
OAvlTree is adaptively oblivious and SE is IND-CPA,
where LOAvlTreeE = (LSetup,LSearch,LUpdate),

LSetup = (N, nodeSize, bucketSize, height),
LSearch = numAccesss, LUpdate = numAccessu,

defined the same as in Theorem 6.4 and Theorem 6.5.

Theorem 6.8. The PP-AkNN protocol Π instanti-
ated with OBSkiplistE is adaptively-LOBSkiplistE secure, if
OBSkiplist is adaptively oblivious and SE is IND-CPA,
where LOBSkiplistE = (LSetup,LSearch,LUpdate),

LSetup = (N, nodeSize, bucketSize, β, height),
LSearch = numAccesss, LUpdate = numAccessu,

defined the same as in Theorem 6.4 and Theorem 6.6.

Security Implications. As the above security state-
ments show, the leakage profile of our construction only
comprises public parameters from Setup and the num-
ber of OMapE accesses incurred from Search and Update,
respectively. Since the above public parameters from
Setup apply to all messages stored in the system and
the queries, and because the number of OMapE accesses
is fixed for every search query and update query re-
spectively, we conclude that our construction hides the
query pattern (query-identity and query-equality pat-
tern defined in [17]) and the access pattern (response
identity and response-equality). Moreover, our construc-
tion hides the volume pattern since the transcript size
and the number of interactions are fixed for every query
request.
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7 Implementations

7.1 Overview

We completed our PP-AkNN protocol incorporating the
existing eLSH library LSH-kit [8] together with two
OMapE implementations — OAvlTreeE and OBSkiplistE.
We evaluated the performance of the two on stan-
dard AkNN benchmark data sets provided in [2] on a
commercial laptop with 16 GB RAM running Ubuntu
20.04. Through our experiments, we found the effi-
ciency bottleneck of our protocol is at the stage of
transferring data between the client and the server.
This is a direct product following from the communi-
cational overhead of the underlying OMapE protocol. In
comparison, extracting eLSH tags and post-processing
in Search are both significantly efficient. In this sec-
tion, we first provide a guideline on selecting param-
eters for our PP-AkNN constructions built on OAvlTreeE
and OBSkiplistE, then evaluate the two on benchmark
data sets and compare their performance. Furthermore,
we provide two optimization methods — one involves
batched search queries which reduces the bandwidth
cost by a multiplicative factor (up to

∑sizer
i=1 I · li), and

the other incorporates parallel accesses that reduces the
total number of roundtrips incurred in each Search query
by a multiplicative factor in the number of OMapE in-
stances available on the server.

7.2 Parameter Selection

We used the following benchmark data sets in our ex-
periments: MNIST, F-MNIST (i.e., Fashion-MNIST), SIFT,
and GIST [2]. They are all high-dimensional data points
in the Euclidean space. In both F-MNIST and MNIST,
each data point is a 28 × 28 grayscale image that we
treat as a single feature vector and is associated with
one label from 10 classes. SIFT and GIST are data sets
containing feature vectors only with no labels attached.
To select eLSH parameters, we run the parameter selec-
tion algorithm provided by LSH-kit for 1000 number of
queries on the training set of size 60, 000, finding approx-
imate 10-nearest neighbors (i.e., kmax = 10). Looping a
range of possible values for l, ε, the algorithm will out-
put different s, width w (projection width), cost, and re-
call respectively. We selected eLSH parameters with low
cost (the fraction of data points shared the same eLSH
tags as the query and the lower the better) and high
recall — the fraction that the correct AkNN captured

in the response set. We found that setting I = 1 and
sizer = 1 are sufficient to reach 95% recall for approx-
imate k-nearest neighbors for every query point across
the benchmark data sets with ε ≥ 0.1. We present the
parameters for our constructions in the following Ta-
ble 1 after fixing l = 10, kmax = 10, and ε = 0.1:

Dataset MNIST F-MNIST SIFT GIST

Dimension 784 784 128 960

Train size 60 K 60 K 1 M 1 M

Test size 10 K 10 K 10 K 1 K

Total storage 217 MB 217 MB 501 MB 3.6 GB

Feature size 3140 B 3140 B 516 B 3844 B

eLSH s 7 9 8 8

w 4275 4563 888 4.65

A Node size 120 KB 120 KB 20 KB 147 KB

Bucket size 480 KB 480 KB 80 KB 588 KB

B BNode size 120 KB 120 KB 20 KB 147 KB

Bucket size 720 KB 720 KB 120 KB 882 KB

Table 1. Parameters for PP-AkNN scheme A and B instantiated
with OAvlTreeE and OBSkiplistE respectively

As shown in the above table, eLSH parameter s does
not vary much. In contrast, projection width parameter
w used as part of the eLSH construction in the Eu-
clidean space is significantly smaller in GIST than the
rest since the values’ magnitude is small. Nevertheless,
each eLSH tag of all the data points with the above
parameters can fit in 8 bytes (stored as uint64_t). Af-
ter fixing l and kmax, the feature size (i.e., dimensions)
plays a critical role determining the node size. We can
bound the total number of data points associated with
each eLSH tag using 3 · l + kmax − 1. Namely, we only
need to store and check at most 39 points to capture
approximate 10-nearest neighbors with high probabil-
ity. Therefore, we have greatly improved the perfor-
mance compared with retrieving all the responses —
even suitable eLSH parameters with a low cost of 0.006
still imply the response set for every query containing
0.006× 60, 000 = 360 points in expectation.

To clarify how to initialize the parameters for the
PP-AkNN protocol, we guide through the procedure us-
ing OAvlTreeE on SIFT benchmark as an example. Given
l = 10, kmax = 10, the number of data points stored in
every node with one associated eLSH tag is at most
39. Hence, for SIFT features, each node occupies at
least 39 × 516 = 19.5 KB. As other attributes in the
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node barely occupy the storage and standard blockci-
pher based IND-CPA encryption scheme incurs almost-
negligible storage blow-up, it suffices to set the node
size to 20 KB. Also, we set the bucket size 4 times of
the block size for OAvlTreeE as suggested in [28]. For
OBSkiplistE-based construction, we set bucket size Z, 6
times the expected block size B (20 KB), i.e., 120 KB,
and branching factor β = 12 as in [24].

7.3 Efficiency Comparison

We evaluated the two instantiations on all benchmark
data sets listed in Table 1, fixing the query size to 1, 000
and initialize the PP-AkNN protocol with parameters
presented in Table 1.

Time Costs. We identified the efficiency bottleneck for
our constructions is at the transmission stage due to the
large bandwidth costs incurred from OMapE.Access. (1)
Setup: Extracting the eLSH tags for every data point
across the data sets takes less than 0.2 ms on average.
The total setup time on the largest database (GIST) took
around 2 hours for OBSkiplistE-based construction and
3 hours for OAvlTreeE-based one. Note that the setup
algorithm only needs to be run once. (2) Search: The
processing time for data retrieving and post-processing
are both efficient, incurring negligible time costs — a
sharp contrast to the time costs incurred in data trans-
mission based on our simulation results. We simulated
the transmission time under the network conditions:
roundtrip latency = 30 ms and bandwidth capacity = 150
mbps. (3) We found that the time costs for Update and
Search are similar for the setting where I = 1, sizer = 1,
and l = 10, as both protocols run an equal number of
OMapE.Access. In the following table, we present the
average statistics for running OMapE.Access on single
eLSH tag — the most time-consuming procedure of the
whole protocol and discuss its implications.

Dataset MNIST F-MNIST SIFT GIST

A # roundtrips 84 84 102 102

Bandwidth (MB) 826.88 826.88 199.22 1464.26

Time (s) 45.16 45.16 10.88 79.97

B # roundtrips 13 13 15 15

Bandwidth (MB) 191.95 191.95 43.95 323.00

Time (s) 10.48 10.48 2.4 17.64

Table 2. Efficiency evaluation for PP-AkNN scheme A and B
instantiated with OAvlTreeE and OBSkiplistE respectively

The path length for each node access is dlog2(N)e+
1 = 25. The number of roundtrips incurred is d2 · (1 +
logβ N)e ≈ 15. The overall (downloading) bandwidth
cost for each eLSH tag search is 15 × 120 × 25 = 43.95
MB. We provide an example using OBSkiplistE-based
PP-AkNN on SIFT to interpret the results in Table 2.
Given l = 10, the encrypted data set with eLSH tags
occupy approximately 595 MB in storage, this imple-
mentation can facilitate at least 1 AkNN query satis-
fying the strong security guarantee. The temporary re-
quirement on the client storage is around 3 MB. The
baseline approach yields more than 198 roundtrips, com-
pared with 150 roundtrips with OBSkiplistE in the same
setting. Note that such a comparison is not fair con-
cerning downloading the whole database involves linear
scan, which may not be feasible for a large database. In-
stead, if compared with the same structured data — a
search tree based on eLSH tags with duplicated data
points, the encrypted storage is at least 5187.9 MB,
then our construction can facilitate at least 11 AkNN
queries reaching the bandwidth cost of downloading
an encrypted database. Note that for a much larger
database, or a smaller kmax, such an offset compared
with the baseline increases since the overall bandwidth
overhead is O(kmax · log2(N)), where N the is number of
items stored in OMapE.

7.4 Optimizations

Batched queries. We can further optimize the effi-
ciency of the search by batching the queries, specified
in Appendix C. The idea is comparing the distances
between the returned points and the queries points, if
enough points for AkNN are found, abort the search
early and continue the next query. To hide the vol-
ume leakage, we only need to ensure that the number
of OMapE accesses is a multiple of that incurred from
one AkNN search. This method will result in efficiency
enhancement

∑sizer
i=1 li · I times of the non-optimized

scheme in terms of bandwidth cost.

Parallel Access. We can also optimize the protocol
using parallel access, reducing the number of roundtrips
incurred in each Search query. Similar approaches also
mentioned in multi-user ORAM literature — creating
multiple OMapE instances, so that eLSH tag look-ups
can be run in parallel. The number of roundtrips for one
AkNN search will equal the number of one single eLSH
tag look-up, while the overall bandwidth cost does not
change.
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A Proof Sketch for Security of
Generic PP-AkNN
Construction

We provide a proof sketch for the main security theorem
Theorem 6.4) for generic PP-AkNN construction.

Proof Sketch. As discussed in Section 4, our security
definition captures that the query outputs are revealed
to the adversary for randomized functionality AkNN. To
prove our generic PP-AkNN construction Π satisfies the
security definition, we need to show that the joint distri-
butions of the query outputs and the transcripts either
output by the simulator or incurred from the honest
execution of the protocol are computationally indistin-
guishable.

Since parameter kmax is output by Setup in both ex-
periments, and the query outputs are yielded from run-
ning the honest execution of protocol Search, the ad-
versary cannot distinguish the two worlds from those
outputs. It suffices to show that the transcripts in both
worlds are computationally indistinguishable if the ad-
versary is given the query outputs and kmax.

Let S1 be the simulator for OMapE scheme Φ operat-
ing the same as in Appendix B.4, and recall the leakage

profile for generic PP-AkNN Π,

LSetup = LΦ.Setup,LSearch = (LΦ.Access, numAccesss),
LUpdate = (LΦ.Access, numAccessu).

We construct simulator S2 for PP-AkNN scheme Π with
S1 as a subroutine. Simulator S2 operates as follows:
at the setup stage, S2 outputs the same encrypted
data structure as simulator S1 on given leakage pat-
tern LΦ.Setup, and sends to the adversary. On Search
queries: S2 runs S1 simulating Access with LΦ.Access as
input numAccesss times. S2 outputs the same as S1. Sim-
ilarly, for Update queries: S2 runs S1 simulating Access
with LΦ.Access as input numAccessu times, and outputs
the same as S1. Since the transcripts are computation-
ally indistinguishable for each Φ.Access for underlying
Φ, the transcripts for Π in both worlds are computa-
tionally indistinguishable. Although the query outputs
are revealed to the adversary together with prior infor-
mation on the message set, the adversary still can not
distinguish the transcripts produced by the simulator
S2 and the one incurred in the honest executions of the
real protocols because of the IND-CPA security of the
transcripts ensured by underlying OMapE scheme Φ.

B Oblivious Map with Encryption

B.1 Overview

At a high level, OAvlTree and OBSkiplist both are trees
of bounded degree, stored in a non-recursive position-
based ORAM. Running Access protocol on each map
operation will incur multiple Access executions on Read
or Write operations to the underlying ORAM. “Position-
based” ORAMs are a class of ORAMs relying on that
the client stores a (secret) position map — mapping
between logical addresses (block ids) and sets of ran-
dom physical addresses; for each Read or Write opera-
tion on some logical address addr, the client first con-
ducts a position map look-up for addr’s associated phys-
ical addresses, and then requests the server to access
those memory blocks. After each access, the client will
write back the accessed blocks to new random positions
and updates its local position map. Therefore the over-
all access protocol hides the logical address from ob-
serving the access pattern in a computational setting.
The “non-recursive” property guarantees that a single
ORAM access only incurs one roundtrip communica-
tion. In practice, if the position map is large and can-
not fit the client’s local storage, it is then stored re-
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cursively in a recursive ORAM on the server, yielding
multiple roundtrips for a single ORAM block access. To
solve this issue, achieving a more efficient look-up in
the map structure stored in the ORAM, both OAvlTree
and oblivious OBSkiplist exploit their underlying tree
structures and smartly store the position maps. More
specifically, other than regular data, each tree node also
contains its children nodes’ position maps, and is then
stored as an ORAM block in a non-recursive position-
based ORAM (e.g., PathORAM). For the search look-
up, starting from the root node, accessing each tree node
through ORAM will automatically retrieve the position
maps of its children nodes. Hence, it saves the commu-
nication costs for position-map look-up — a logN mul-
tiplicative factor improvement in bandwidth compared
with performing a naive search on a recursive position-
based ORAM.

B.2 Adaptive Obliviousness

RealMA (1λ) :
(commandi, inpi)← A(1λ),
where commandi ∈ {Access,⊥}
Loop while commandi 6= ⊥:

(outi,Addrsi)←M(1λ, commandi, inpi)
(commandi, inpi)← A(1λ, outi,Addrsi)

IdealFA,S(1λ) :
(commandi, inpi)← A(1λ),
where commandi ∈ {Access,⊥}
Loop while commandi 6= ⊥:

outi ← F(commandi, inpi)
Addrsi ← S(1λ, commandi)
(commandi, inpi)← A(1λ, outi,Addrsi)

Fig. 4. Experiments for Defining Adaptive Obliviousness.

In the following definitions, the functionality F implic-
itly specifies the command space and input space, and
are omitted. For ORAM and OMap, it is sufficient to let
the command space be {Access,⊥} as both use Access
protocol but with different input space specified in the
functionality.

Definition B.1 (Adaptive Obliviousness). LetM be a
reactive machine that implements functionality F . Let
probabilistic experiments be defined in Figure 4 (Ap-

Algorithm OMapE.KeyGen(1λ):
K

$←K(1λ)
return K

Algorithm OMapE.Setup(1λ, Z,K,DS):
(nodei)i∈N ′ ← Helper.Init(Z,DS)
EDS← ()
for all i ∈ [N ′] do

EDS[i] $←E(K, nodei)
return EDS

Algorithm [OMapE.AccessC(K, op, `, v),
OMapE.AccessS(EDSu)]:

Client C:
v′ ← E(K, `‖v)
OMap.AccessC(op, `, v′)
Run (v∗,EDSu+1)←
[OMap.AccessC(op, `, v′),
OMap.AccessS(EDSu)]
interactively with server S
v̂ ← D(K, v∗)
return v̂

Algorithm OMapE.Dec(K,EDS):
DS← {}
for each i ∈ [|EDS|] do

nodei ← D(K,EDS[i])
Parse nodei’s data field as (`i, vi)
if `i 6= ⊥ then

DS← DS ∪ {(`i, vi)}
return DS

Fig. 5. OMapE Constructions.

pendix). We say that reactive machineM is an oblivious
implementation of F if there exists a PPT simulator S
such that for all non-uniform stateful PPT adversaries
A, the views of A in the real experiment and ideal exper-
iment are computationally indistinguishable (negligible
in λ) [1].

B.3 Constructions

We show how we build OMapE schemes with
LOMapE.Access = ⊥, and LOMapE.Setup comprising public
parameters. The two instantiations are OAvlTreeE and
OBSkiplistE. The type of the atomic data object node in
ODS framework for trees of bounded degree by a tuple
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of three attributes:

node = (nid, ndata, nchildren),

where the value of nid attribute is in [N ], and N is
the number of nodes of the data structure; the value
of ndata attribute is in {0, 1}w by some fixed param-
eter w, nchildren are pointers to every its child node,
which we can parse as a list (nchildren1, . . . , nchildrent),
where each nchildreni ∈ {0, 1}∗, for all i ∈ [t]. Each ele-
ment of the map is stored in the ndata field. To connect
the logical addresses and physical addresses. The ODS
framework stores each node as a block in the underlying
ORAM. Note in Figure 5, we provide a helper function
Helper.Init(Z,DS), which can be instantiated differently
based on the underlying oblivious map. In the context
of [24, 28], Helper.Init(Z,DS) can be interpreted as run-
ning Access(Insert, `, v) locally on the client side for all
(`, v) pairs in the map, then output the plain array stor-
ing all the node data. This procedure involves random
shuffling, and thus the output (nodei), for each nodei,
its physical address does not reveal its logical address.

Remark 9. In the constructions of non-recursive
position-based ORAMs, bucketization is a common
technique used (e.g. PathORAM) — each bucket con-
tains multiple blocks and has a fixed size in bits. Bucket-
wise accessing operation is used when accessing the
blocks in the access protocol. OBSkiplist [24] utilizes this
fact — fixed bucket size, relaxes the block size from a
constant w to w in expectation, while still achieves the
oblivious simulation of the map functionality.

Remark 10. In the construction, Z is typically set by
N , the upper-bound on the number of labels stored in
the map. λ is the security parameter used to ensure
the obliviousness. More discussion on λ and N can be
refereed in [1].

B.4 Adaptive Security of OMapE Schemes

Referring to the security theorems Theorem 6.6 and
Theorem 6.5. We first build F̃OMap using FORAM, then
provide a proof sketch on their adaptive security. First
let us recall FORAM.

Definition B.2 (FORAM [1]). The functionality is reac-
tive, and holds an internal state — N memory blocks,
each of size w (Block size). Denote the internal state
an array X[1, . . . , N ]. Initially, X[addr] = 0 for every
addr ∈ [N ].

– Access(op, addr, data): where op ∈ {Read,Write},
addr ∈ [N ], and data ∈ {0, 1}w.
1. If op = Read, data∗ ← X[addr].
2. If op = Write, X[addr]← data and data∗ ← data.
3. Output data∗.

Remark 11. For Read operation, input data is set by ⊥.

We first show that OAvlTree and OBSkiplist using FORAM
to implement F̃OMap. For tree nodes defined the same
as in [24, 28]. Let nid ∈ [N ] be the logical address of the
block in ORAM. Let node = (nid, ndata, nchildren). Con-
sider the reactive map functionality in Definition 6.1.
The functionality is reactive, and holds an internal
state — N memory blocks, each of (expected) size
w denoted by X[1, . . . N ] storing map ⊆ L × V. Let
(node)i ← Helper.Init(map). For each node, store X[i]←
ndata‖nchildren. Load root node in the local stash, parse
root node as (`1, v1), and access using the algorithms
specified in [24, 28] implementing F̃OMap with FORAM.
For oblivious AVL tree it also needs to make dummy ac-
cess to hide the operation type, and thus each tree oper-
ation (rotation, insert, delete) will result in a constant
number of ORAM accesses. Similarly, each operation
on BSkiplist also incurs a fixed number of ORAM ac-
cesses. Since each ORAM access incurs constant band-
width cost for PathORAM instantiation (fixed bucket
size in bits). Both OAvlTree and OBSkiplist hide the vol-
ume pattern.

Proof Sketch. We have showed that we can implement
the F̃OMap using FORAM, and thus it follows that it
satisfies adaptive obliviousness definition. Moreover,
OAvlTree and OBSkiplist both implement a map con-
struction with perfect correctness. Although the lat-
ter uses random coins for underlying data structure,
it does not sacrifice the exact correctness of the map
functionality. Thus it is left to argue that we can
simulate the encrypted data structure and the tran-
scripts. We construct a simulator S that generates a
fake encrypted data structure and argue that no effi-
cient adversary A can distinguish a real encrypted data
structure from the fake one. Also, the simulator gen-
erates transcripts with an honest party indistinguish-
able from real executions of OMapE.Access between two
honest parties. It suffices to show that the distribu-
tion of the encrypted data structure; the transcripts
for OMapE.Access in the real world and simulated one
are computationally indistinguishable. Our main tech-
nique is that, given the setup leakage including total
N number of nodes in the tree, node size nodeSize,
the simulator S first encrypts N ′ (computed based on
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N) 〈 0 〉’s of bit length nodeSize. For simplicity, assume
underlying ORAM is PathORAM built on a complete
binary tree containing 2N − 1 buckets to store up to N
blocks (nodes); let N ′ = (2N − 1) × bucketSize. Then
for i = 1 to N ′, EDS1[i]← EKS (〈 0 〉), where 〈 0 〉 is of bit-
length nodeSize. At the end, S outputs the encrypted
structure EDS1 and sends it to A. Adversary A adap-
tively makes q queries, simulator S simulates the tran-
script of the interactions with honest party B. For each
OMapE.Access: The simulator S sends B a transcript
which is a fixed-size list of physical addresses. Honest
party B will then send all encrypted nodes associated
with those physical addresses to S. Simulator S then
writes back a list of updated encrypted nodes and asso-
ciated addresses to B. Finally, honest B will update and
output EDSt+1. The “adaptive obliviousness” of obliv-
ious map implemented using ORAM ensures the phys-
ical addresses are computationally indistinguishable in
both worlds, and together with IND-CPA property of
each encrypted block (node), ensure computational in-
distinguishability in transcripts in OMapE.Access and
OMapE.Access between the real world and the ones in
ideal world.

C Batch Queries
We outline how we optimize the PP-AkNN protocol to
support multiple secure AkNN search queries more effi-
ciently.

Correctness. We can directly reuse the arguments as
in the correctness analysis for single query, since we only
abort the search early if enough data points are found
by examining the distances between the query point and
the returned points.

Efficiency. It is straightforward that the optimiza-
tion yields a multiplicative factor improvement in both
the number of roundtrips and the bandwidth cost. The
multiplicative factor in these two aspects will be up to∑sizer
i=1 I · li, and the exact number depends on the data

distribution.

Security. In the optimization, with batched queries,
we may abort the search query early and continue the
eLSH tag look-up for next query. The total number of in-
curred OMapE accesses is padded with dummy accesses,
ensuring it is a multiple of numAccess — fixed number of
OMapE accesses for single AkNN search query. Together
with other public parameters, using similar arguments
as before, there exists a PPT simulator that can output

Algorithm Helper.Query(K,u,QD, k)
1: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
2: numAccess← K[2 · sizer + 3]
3: Y← ∅; Tags∗ ← T (K,QD)
4: abortFlag← false
5: for i = 1, . . . , sizeR and abortFlag = false do
6: Li ← K[2i+ 1];
7: T∗i ← Tags∗[i]
8: for j = 1, . . . , I and abortFlag = false do
9: loop each T in T∗i [j]

10: Run (data∗,EDSu+1)←
11: [OMapE.AccessC(K[1],Find, T,⊥),
12: OMapE.AccessS(EDSu)]
13: interactively with server S;
14: Parse data∗ string into a set S
15: u← u+ 1
16: if S 6= ∅ then
17: for each P in S and |Y| < k do
18: Parse P as (PD, PDA)
19: if d(PD, QD) ≤ γi · rmin then
20: Y← Y ∪ {P}
21: end if
22: end for
23: end if
24: if |Y| = k then
25: abortFlag← true
26: exit loop
27: end if
28: end loop
29: end for
30: end for
31: if |Y| < k then
32: for i = 1, . . . , k − |Y| do
33: Mi

$←MS; Y← Y ∪ {Mi}
34: end for
35: end if
36: return (u,Y)
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Algorithm [SearchC(K,QD,k), SearchS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
5: numQuery← |QD|
6: numAccess← K[2 · sizer + 3]
7: u← 1
8: for i = 1, . . . , numQuery do
9: (u,Yi)← Helper.Query(K,u,QD[i],k[i])

10: end for
11: for ((u− 1) mod numAccess) 6= 0 do
12: Run (data∗,EDSu+1)←
13: [OMap.AccessC(K[1],Find,⊥,⊥)
14: OMap.AccessS(EDSu)]
15: interactively with server S
16: end for
17: Y′ ← (Y1,Y2, . . . ,YnumQuery)
18: return Y′

19: Server S:
20: return EDSu

transcripts computationally-indistinguishable from that
yielded by the real executions of the protocol as long as
the underlying map holds the “obliviousness” property,
and the symmetric encryption used to encrypt all data
is IND-CPA.

D Proof of Correctness
In the following discussion, for all M,Q ⊆ D,
|M| = n and |Q| = t, where genAuxInfo exists. For
kmax ∈ N, Z $← genAuxInfo(α,M,Q, kmax), parse Z as
n‖t‖kmax‖α‖rmin‖rmax. We refer (ε, δ, β)-Search to a
shorthand notation of (ε, δ)-Search correctness with a
size restriction parameter β on the total number of mes-
sages needed to be examined to determine the AkNN.
We also discuss how the failure probability δ (depends
on α in genAuxInfo) affects parameter selection and com-
pute the size restriction parameter β.

Over arbitrary metric space (D, d), given α ∈ [0, 1],
all M,Q,⊆ D, |M| = n, |Q| = t where genAuxInfo ex-
ists, all kmax � |M| (e.g., kmax =

√
|M|), all Q ∈ Q,

all k ∈ [kmax], we parse Z as n‖t‖kmax‖α‖rmin‖rmax. Let
sizer = dlogγ rmax

rmin
e, where γ =

√
1 + ε. We first set pa-

rameter I by Lemma D.6 with ξ chosen by Lemma D.5,
and select parameter si, li for all i ∈ [sizer] by Proposi-
tion E.2. We may use “α-query-valid” source to denote

for M,Q ⊆ D, where genAuxInfo exits, and Z is output
by genAuxInfo(α,M,Q, kmax). We introduce the follow-
ing main theorem for our eLSH-based construction.

Proof of Main Correctness Theorem 6.3.
It suffices to show that the eLSH-based construc-
tion satisfies (ε, δ, β)-Search correctness on plain
LSH tags. For all M,Q ⊆ D, |M| = n and
|Q| = t, where genAuxInfo exists. For α ∈
[0, 1], kmax ∈ N, Z $← genAuxInfo(α,M,Q, kmax), parse Z
as n‖t‖kmax‖α‖rmin‖rmax, i.e., For every Q ∈ Q, with at
least 1− α probability, both the following events hold,

A1: Q 6∈
⋃
M∈M B(M, rmin).

A2: There exists a subset S ⊂M of size kmax such that
Q ∈

⋂
M∈S B(M, rmax).

We will show setting I based on Lemma D.6 with
ξ set by Lemma D.5 guarantees that the eLSH-based
scheme satisfies (ε, δ, β)-Search correctness.

Since each genAuxInfo is a randomized algorithm, we
need to establish a relation between failure probability
α and δ. First consider a simpler case when α = 0, which
we prove separately as Lemma D.1.

Now consider the general case with α ∈ [0, 1]. By
definition, Pr(A1 ∩ A2) ≥ 1 − α. To connect α and δ,
we first define event A3. Given any eLSH-based con-
struction Π with some source, let A3 denote the event
that Π satisfies the exact correctness, i.e., (ε, 0, β̂)-Search
correctness for some constant β̂. Then suppose there
is an eLSH-based construction Π′ with “0-query-valid”
source satisfying (ε, δ′, β′)-Search correctness, where 0 ≤
δ′ ≤ δ − α and β′ is some constant, in other words,
Pr(A3) ≥ 1 − δ′. We show that the scheme Π′ with ar-
bitrary α-query-valid source M satisfies (ε, δ, β)-Search
correctness by bounding the probability that all events
A1, A2, A3 hold from below.

Pr(A1 ∩A2 ∩A3) = 1− Pr(A1 ∩A2 ∪A3)
≥ 1− Pr(A1 ∩A2)− Pr(A3)
≥ 1− α− δ′

≥ 1− δ,

where the last inequality is due to 0 ≤ δ′ ≤ δ − α. To
complete the proof, we show that scheme Π′ does exist
with Lemma D.1, and the new size restriction β can be
computed according to Lemma D.1.

Lemma D.1. Setting I (Lemma D.6) with ξ

(Lemma D.5) guarantees with genAuxInfo, by setting
α = 0, the construction satisfies (ε, δ, β)-Search correct-
ness with β =

∑sizer
i=1 I · (3li + kmax − 1).
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Proof. Since we are interested in the setting where
kmax � n with n denoting the size of M, it suffices
to focus on the loop in the (ε, δ, β)-Search algorithm for
correctness analysis. In particular, we break it down into
Lemma D.2 and Lemma D.3 targeting at the termina-
tion of the loop. It is easy to see that the size restriction
parameter β can be computed as follows,

β ≤ max
k∈[kmax]

sizer∑
i=1

I · (3li + k − 1)

≤
sizer∑
i=1

I · (3li + kmax − 1).

Lemma D.2. If the loop stops after the Xth iteration
where X = sizer, the output Y will include Q’s k ap-
proximate nearest neighbors in M with at least 1 − δ

probability.

Proof. Given approximation factor c = 1 + ε, γ =
√
c

and sizer = dlogγ rmax
rmin
e.

Proof by introduction on 1 ≤ k ≤ kmax:
Base case: k = 1. SupposeM1 is Q′s nearest neigh-

bor in M and d(Q,M1) = r1, then by definition of rmin
and rmax, r1 ∈ [γi · rmin, γ

i+1 · rmin] for some integer
1 ≤ i ≤ sizer, and eLSH instances will output a mes-
sage M ′1 ∈M with

d(Q,M ′1) ≤ γi+2 · rmin = c · γi · rmin ≤ c · r1,

which satisfies the correctness requirement of Q’s ap-
proximate nearest neighbor in M.

Inductive step: assume k ≤ kmax − 1 and the al-
gorithm has already output Q’s k approximate nearest
neighbors in M, then consider k = k + 1 case.

Suppose Mk is Q’s kth nearest neighbor in M and
d(Q,Mk) = rk.

– Case rk = rk−1: the eLSH instances for (γ, rk)-NN
have already output kth approximate nearest neigh-
bor, referring to Lemma D.4.

– Case rk > rk−1: we use the similar argument as in
the base case, rk ∈ [γi · rmin, γ

i+1 · rmin] for some
integer 1 ≤ i ≤ dlogγ rmax

rmin
e, and the eLSH instances

will output a message M ′k ∈M with

d(Q,M ′k) ≤ γi+2 · rmin = c · γi · rmin < c · rk.

Thus, we have found Q’s k approximate nearest
neighbors in M.

Since the algorithm involves multiple randomized proce-
dures, it is left to compute the accumulated error. There

are sizer number of iterations in total, and we ensure
that the properties in induction hold for all iterations.

For each iteration i with i ∈ [sizer], we define events
A1 and A2 as follows,

A1: rk = rk−1 with the above property holds.
A2: rk > rk−1 and base case with the above property

holds.

Note that event A1 and A2 are mutually exclusive.
Pr(A1) ≥ 1 − τ1 (τ1 = kmax · ξ in Lemma D.4) and
Pr(A2) ≥ 1 − ξ (same as in Lemma D.6). Let τ =
max{τ1, ξ}. We bound the accumulated error for X it-
erations. Let Ai1, Ai2 denote event A1, A2 in the ith iter-
ation respectively.

Pr(
X⋂
i=1

(Ai1 ∩Ai2)) = 1− Pr(
X⋃
i=1

Ai1 ∩Ai2)

(Union bound) ≥ 1−
X∑
i=1

[Pr(Ai1) + Pr(Ai1)]

(A1, A2 mutually exclusive) ≥ 1−X ·max{τ1, ξ}

= 1− dlogγ
rmax
rmin

e · τ.

τ = max{τ1, ξ}, X = sizer = dlogγ
rmax
rmin

e.

We set parameters satisfying the following inequal-
ity in Lemma D.5,

dlogγ
rmax
rmin

e · τ ≤ δ, (1)

and thus completes the proof.

Lemma D.3. If the loop stops after the Xth iteration
where 1 ≤ X < sizer, and the counter ctrI = I, the
output Y will include Q’s k approximate nearest neigh-
bors in M with at least 1− δ probability.

Proof. We analyze the case when ctrI = I, which oc-
curs if and only if every i-th eLSH instance, i ∈ [I] for
(γ, rX)-NN problem (Definition 5.1) outputs 3li + k− 1
different messages in some X-th iteration, where 1 ≤
X ≤ sizer. Due to Lemma D.2, we only need to focus
on the situation where 1 ≤ X < sizer.

We prove the lemma using the property of the eLSH
instances. Lemma D.6 guarantees that in at least one
of I eLSH instances both events E1 and E2 (Defini-
tion E.1) hold with at least 1−ξ probability for ξ set by
Lemma D.5. Moreover, condition ctrI = I implies that
|M ∩ B(Q, γ · rX)| ≥ k, and those k points are included
in the results with high probability.
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We prove the lemma in a similar way as in
Lemma D.2 with some variation due to condition
ctrI = I.

Proof by introduction on 1 ≤ k ≤ kmax:
Base case: k = 1. SupposeM1 is Q′s nearest neigh-

bor in M and d(Q,M1) = r1, then by definition of rmin
and rmax, r1 ∈ [γi · rmin, γ

i+1 · rmin] for some integer
1 ≤ i ≤ sizer,

– Case 1 ≤ i ≤ X: refer to Lemma D.2.
– Case X < i ≤ sizer: implies Mk 6∈ M ∩ B(Q, γX ·
rmin), which contradicts ctrI = I.

Inductive step: assume k ≤ kmax − 1 and the al-
gorithm has already output Q’s k approximate nearest
neighbors in M, then consider k = k + 1 case.

Suppose Mk is Q’s kth nearest neighbor in M and
d(Q,Mk) = rk.

– Case rk = rk−1: refer to Lemma D.2.
– Case rk > rk−1: suppose rk ∈ [γi · rmin, γ

i+1 · rmin]
for some integer 1 ≤ i ≤ sizer,
– Case 1 ≤ i ≤ X: refer to Lemma D.2.
– Case X < i ≤ sizer: impliesMk 6∈M∩B(Q, γX ·
rmin), which contradicts ctrI = I.

Now we compute the accumulated error. Since we
set parameters to ensure events A1 and A2 defined in
Lemma D.2 hold for all iterations, which cover the case
1 ≤ X < sizer, it is only left to bound the probability
on the extra property we require in the induction holds
when ctrI = I. Let set {M1, . . . ,Mk} ⊂ M denote the
Q’s k messages that are within M∩B(Q, γ ·rX). We need
to ensure that they all have hash overlaps with Q with
high probability in at least one of I eLSH instances, so
they are included in the results.

Pr(
k⋂
i=1

E1(Q,Mi)) = 1− Pr(
k⋃
i=1

E1(Q,Mi))

(Union bound) ≥ 1−
k∑
i=1

Pr(E1(Q,Mi))

(Lemma D.6) ≥ 1− k · ξ
≥ 1− kmax · ξ

(Lemma D.5) ≥ 1− δ.

Hence completes the proof.

Lemma D.4. After the Xth iteration for 1 ≤ X ≤
sizer, if there are vX ≥ 1 data points in M ∩ B(Q, rX)
with rX = γX · rmin, the set Y includes at least

min{vX , k} points in M∩B(Q, γrX) with constant prob-
ability.

Proof. For all i ∈ [sizer], we choose si, li parameters to
ensure the same probability bound for solving (γ, ri)-
NN problem in all eLSH instances (Proposition E.2). In
addition, we set parameter I to guarantee that, for each
(γ, ri)-NN problem, i ∈ [sizer], in at least one of its I
eLSH instances, event E1 and event E2 (Definition E.1)
both hold with high probability (Lemma D.6). Without
loss of generality, we assume at the Xth iteration, the
jth instance satisfies this property where j ∈ [I]. Now
consider the following discussion.

Let event B1 denote
∑LX
u=1|g

−1
X,j,u(gX,j,u(Q))∩M| ≥

3LX + k − 1; otherwise denoted by event B2. Event B1
and B2 are mutually exclusive.

If vX ≥ k, then

– B1: event E2 guarantees that there are fewer than
3LX eLSH hash overlaps with Q from the set
M \ B(Q, γrX), and event E1 guarantees that those
points in M ∩ B(Q, rX) have high probability of
hash collisions with Q, thus at least k messages in
M ∩ B(Q, γrX) are included in Y with high proba-
bility for selected parameters.

– B2: Y includes all data points which have eLSH
hash collisions with Q.

If vX < k, then

– B1: with high probability this event will not occur,
as it contradicts the assumption that both E1 and
E2 hold.

– B2: Y includes all vX data points with high proba-
bility.

It is left to compute the error. Let w = min{vX , k}. We
need to ensure that all w points are included. We require
that k ≤ kmax � n, and vX ≤ n, where n = |M|. We
write M ∩ B(Q, rX) as {Mi}i∈[w], then we obtain,

Pr(
w⋂
i=1

E1(Q,Mi)) = 1− Pr(
w⋃
i=1

E1(Q,Mi))

(Union bound) ≥ 1−
w∑
i=1

Pr(E1(Q,Mi))

(since w ≤ kmax) ≥ 1− kmax · ξ
= 1− o(1).

The last equality is due to kmax = o(n), ξ = o(n−1) and
Lemma D.5. Thus completes the proof.
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Lemma D.5. For fixed kmax, setting I in Lemma D.6
with ξ satisfying the following inequality ensures the
(ε, δ, β)-Search correctness for some β,

0 < ξ ≤ δ

2 · kmax · dlog1+ε
rmax
rmin
e
.

Proof. In Lemma D.4, for all X ∈ [sizer] iteration, we
let w = min{vX , k}. Since we can only upperbound vX
by n, we instead limit kmax to ensure w = min{vX , k} ≤
kmax. Recall that τ = max{τ1, ξ}, and we have τ1 =
kmax ·ξ (Lemma D.4), which implies τ = kmax ·ξ. Consider
Inequality 1 in Lemma D.2,

δ/dlogγ
rmax
rmin

e ≥ τ

= kmax · ξ

ξ ≤ δ

kmax · dlogγ rmax
rmin
e

= δ

2 · kmax · dlog1+ε
rmax
rmin
e
.

Lemma D.6. Given set M,Q, ξ ∈ (0, 1), let n =
|M|, t = |Q|, if there are I = dlog1/e+1/3

ξ
nte eLSH in-

stances with same parameters (fixed by (c,R)-NN prob-
lem), then for all M ∈M, all Q ∈ Q, there exists j ∈ [I]
such that

Pr[Both Ej1(Q,M) and Ej2(Q) hold ] ≥ 1− ξ.

Proof. For eLSH construction solving (c,R)-NN prob-
lem (Definition E.1), we choose parameter s, L to en-
sure both event E1 and E2 hold with probability at least
2
3 −

1
e ≥ 0.299 (Proposition E.2). We amplify the proba-

bility by having I copies of eLSH instances constructed
with independent random coins.

We bound the error from above using union bound,

nt(1/e+ 1/3)I ≤ ξ.

For construction, we can simply choose I =
dlog1/e+1/3

ξ
nte.

To illustrate the existence of genAuxInfo, we provide a
proposition setting distance threshold rmin and rmax
based on uniform distribution for some constant α ∈
(0, 1).

Proposition D.7. In Hamming metric space where
D = {0, 1}d, if all the messages output by the source
are sampled independently and uniformly at random
from {0, 1}d, then for all (sufficiently large) M,Q out-
put by M(1λ) with size restriction t · 2−n < 1 and
t · n · d · 2−d < 1, where n = |M| and t = |Q|, all pos-
itive integer kmax � |M|, setting rmin = 1, rmax = d/2

guarantees that there exists some constant α ∈ (0, 1)
such that for each Q ∈ Q, with at least 1−α probability
(1) there exists a set S ⊂ M with |S| = kmax such that
Q ∈

⋂
M∈S B(M, rmax); (2) Q 6∈

⋃
M∈M B(M, rmin).

Proof. In Hamming metric space where D = {0, 1}d,
without loss of generality, we assume d is even, and sup-
pose Q = {Q1, . . . , Qt} and M = {M1, . . . ,Mn}, where
each element of both sets is sampled independently and
uniformly from {0, 1}d.

Assume 1 ≤ rmin < rmax ≤ d/2. For any i ∈ [t], any
j ∈ [n], let event Ai,j,rmin denote d(Qi,Mj) > rmin, we
obtain

Pr(Ai,j,rmin) =
∑

1≤j≤rmin

(
d
j

)
2d

.

Substitute rmin with 1, we obtain

Pr(Ai,j,rmin) = d · 2−d.

Let random variable X :=
∑t
i=1
∑n
j=1 1{Ai,j,rmin}

,
then

EX =
t∑
i=1

n∑
j=1

E1{Ai,j,rmin}
=

t∑
i=1

n∑
j=1

Pr(Ai,j,rmin)

≤ t · n · d · 2−d.

Let α ∈ (0, 1), we bound the expectation from above,

EX ≤ α
t · n · d · 2−d ≤ α.

Then by Markov inequality, Pr(X ≥ 1) ≤ E(X) ≤ α.
For any i ∈ [t], any j ∈ [n], let event Ai,j,rmax de-
note that d(Qi,Mj) ≤ rmax. Let event Bi,rmax denote
that there exists a subset S ⊂ M, |S| = kmax s.t.
Qi ∈

⋂
M∈S B(M, rmax).

Pr(Ai,j,rmax) =
∑

1≤j≤rmax

(
d
j

)
2d

= 1/2.

Substitute Pr(Ai,j,rmax) with 1/2 in the following equa-
tion,

Pr(Bi,rmax) = Pr(Ai,j,rmax)kmax−1 Pr(Ai,j,rmax)n−kmax+1

= 2−n.

Similarly, let random variable Y :=
∑t
i=1 1{Bi,rmax}

, we
have

EY ≤ α
t · 2−n ≤ α.

By Markov inequality, Pr(Y ≥ 1) ≤ E(Y ) ≤ α.



Privacy-Preserving Approximate k-Nearest-Neighbors Search 574

E Extra Definitions &
Propositions

Definition E.1. Given parameter c,R, we choose s, l to
ensure that with constant probability the following two
events hold. We define the two events for any q, p∗ ∈ D,
– E1(q, p∗) occurs iff either p∗ 6∈ B(q,R) or p∗ ∈
B(q,R) and gj(p∗) = gj(q) for some j = 1, . . . , l.

– E2(q) occurs iff the total number of collisions of q
with points from P \ B(q, cR) is less than 3l, i.e.,

l∑
j=1
|(P \ B(q, cR)) ∩ g−1

j (gj(q))| < 3l.

Proposition E.2. Setting s = dlog1/p2 ne and l =
dnρ/p1e guarantees E1 and E2 both hold with probability
at least 2

3 −
1
e ≥ 0.299.

Proof. Let P ∗1 , P ∗2 denote the probability that the event
E1, E2 defined above holds respectively. We define ρ =
ln 1/p1
ln 1/p2

, s = dlog1/p2 ne, l = nρ/p1, then it is easy to see
that P ∗1 ≥ ps1.

We have

ps1 ≥ p
log1/p2 n+1
1 = p1 · nlogn p

log1/p2
n

1 .

Together with

logn p
log1/p2 n

1 = log1/p2 n · logn p1 = −
ln 1

p1

ln 1
p2

= −ρ.

Therefore,

P ∗1 ≥ ps1 = p1 · n−ρ.

Also, let q be some query point from the domain
D, p′ be a point in P \ B(q, cR), and p∗ be a point in
B(q, cR).

Then the probability for gj(p′) = gj(q) for any j ∈ [l]
is at most ps2,

P2 = Pr[gj(p′) = gj(q)] ≤ ps2 = p
log1/p2 n

2 = 1
n
.

For all j ∈ [l], let random variable Xj denote the
total number of hash overlaps of all points that are in
P \ B(q, cR) with query point q under gj , i.e.,

Xj := |(P \ B(q, cR)) ∩ g−1
j (gj(q))|.

Then we have,

E(Xj) =
∑

v∈P\B(q,cR)

P ′2 ≤ n ·
1
n

= 1.

Let random variable Y denote the sum of all hash
overlaps for points that are in P \ B(q, cR), i.e.,

Y :=
l∑

j=1
|(P \ B(q, cR)) ∩ g−1

j (gj(q))|.

By linearity of expectation,

E(Y ) = E
l∑
1
Xi = l.

By Markov inequality,

Pr [Y ≥ 3l ] ≤ E(Y )
3l = l

3l ≤
1
3 .

P ∗2 = Pr [Y < 3l ] ≥ 1− 1
3 = 2

3 .

Then setting l = dnρ/p1e, we bound P ∗1 from below,

P ∗1 = 1− (1− n−ρ · p1)l ≥ 1− e−n
−ρ·p1·nρ/p1 = 1− e−1.

The lower-bound on the probability that both prop-
erties hold is, by union bound 1− [(1−P ∗1 )+(1−P ∗2 )] =
P ∗1 + P ∗2 − 1 ≥ 2

3 −
1
e .
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