
Proceedings on Privacy Enhancing Technologies ; 2021 (4):575–592

Sudheesh Singanamalla, Suphanat Chunhapanya, Jonathan Hoyland, Marek Vavruša, Tanya
Verma, Peter Wu, Marwan Fayed, Kurtis Heimerl, Nick Sullivan, and Christopher Wood

Oblivious DNS over HTTPS (ODoH): A
Practical Privacy Enhancement to DNS
Abstract: The Internet’s Domain Name System (DNS)
responds to client hostname queries with correspond-
ing IP addresses and records. Traditional DNS is unen-
crypted and leaks user information to on-lookers. Recent
efforts to secure DNS using DNS over TLS (DoT) and
DNS over HTTPS (DoH) have been gaining traction,
ostensibly protecting DNS messages from third parties.
However, the small number of available public large-
scale DoT and DoH resolvers has reinforced DNS pri-
vacy concerns, specifically that DNS operators could use
query contents and client IP addresses to link activities
with identities. Oblivious DNS over HTTPS (ODoH)
safeguards against these problems. In this paper we im-
plement and deploy interoperable instantiations of the
protocol, construct a corresponding formal model and
analysis, and evaluate the protocols’ performance with
wide-scale measurements. Results suggest that ODoH is
a practical privacy-enhancing replacement for DNS.

Keywords: DNS, privacy

DOI 10.2478/popets-2021-0085
Received 2021-02-28; revised 2021-06-15; accepted 2021-06-16.

1 Introduction
The Domain Name System (DNS) is the human bridge
to the Internet. DNS returns machine-readable IP ad-

Sudheesh Singanamalla: University of Washington, and
Cloudflare Inc. sudheesh@cs.washington.edu. Sudheesh was
with Cloudflare Inc. while doing this work.
Suphanat Chunhapanya: Cloudflare Inc.
pop@cloudflare.com
Jonathan Hoyland: Cloudflare Inc. jhoyland@cloudflare.com
Marek Vavruša: Cloudflare Inc. mvavrusa@cloudflare.com
Tanya Verma: Cloudflare Inc. tverma@cloudflare.com
Peter Wu: Cloudflare Inc. pwu@cloudflare.com
Marwan Fayed: Cloudflare Inc. marwan@cloudflare.com
Kurtis Heimerl: University of Washington
kheimerl@cs.washington.edu
Nick Sullivan: Cloudflare Inc. nick@cloudflare.com
Christopher Wood: Cloudflare Inc. chris-
wood@cloudflare.com

dresses and records in exchange for queries with human-
readable hostnames [9]. This exchange is handled by
resolvers that accept queries from clients and return
responses from authoritative name servers. By default,
DNS messages are transmitted in cleartext over the User
Datagram Protocol (UDP) on port 53, hereafter referred
to as Do53. As a result, Do53 is vulnerable to eavesdrop-
ping and modification by both well-intentioned and ma-
licious third parties. Not only do these risks compromise
privacy, but they can result in denial of service (DoS)
and injection attacks [84]. Compared to the broader In-
ternet and web ecosystem, wherein traffic is increasingly
safeguarded by HTTPS, Do53 lags behind and remains
as a weak facet of a secure Internet.

Secure variants of DNS have recently been intro-
duced to fill that gap. DNS-over-TLS (DoT) [48] and
DNS-over-HTTPS (DoH) [45] are now widely supported
by browsers and increasingly supported by operating
systems. In DoT and DoH, the transport of DNS mes-
sages between client stub resolvers and upstream recur-
sive resolvers is encrypted over the TLS channel. How-
ever, at time of writing, DoT and DoH are supported by
only a comparatively small number of providers relative
to the wider resolver population.

Despite the availability of secure DNS services,
a historical omission from the DNS ecosystem makes
wider deployment a challenge: Although DNS benefits
from auto-configuration of local services in DHCP [34],
there exists no equivalent beyond the local network, nor
does there exist a discovery mechanism of any kind for
DNS. This has exposed two challenges with respect to
deployment and privacy. First, the majority of clients
leak or expose their information to on-lookers. For ex-
ample, at time of writing, we observe from a large re-
cursive DNS resolver that clients transmit 92% of their
queries (254 billion/day) using the default cleartext
Do53 protocol [66], and therefore leak their own infor-
mation. In the absence of wider deployment, discovery,
and auto-configuration supports, the only way to use
secure DNS is by manual setup.

User privacy at the resolver, which is the focus of
this paper, is particularly problematic: While any indi-
vidual website or online service can associate requests

Oblivious DNS over HTTPS (ODoH) 576

(and user data) with clients IP addresses for their own
service, DNS resolvers’ ability to observe queries makes
it possible to link all client activity. One resolution to
this issue is to rely on trust-based policies or legal agree-
ments. Public resolvers, for example, publish their own
privacy policies; but these are non-uniform, and require
domain expertise or language proficiency to understand.
Similarly, contractual agreements such as in Mozilla’s
Trusted Recursive Resolver (TRR) program [27, 60] can
define and restrict data retention, aggregation, sale or
transfer. These mechanisms, however, are hard to vali-
date and lack any technical means of enforcement.

A better approach would be to modify DNS itself to
disassociate query contents from IP addresses in a way
that makes them un-linkable. Oblivious DNS (ODNS),
for example, makes resolvers blind to both client IPs
and their queries [72]. In ODNS, stub resolvers encrypt
client queries into a new query for an .odns top level
domain (TLD). Resolvers are then forced to direct the
query to an ODNS server that presents as authorita-
tive; the ODNS authoritative server then decrypts and
resolves the query as a normal resolver, before receiv-
ing and returning an encrypted response. ODNS works
in Do53, but requires registration of a new tld, changes
the semantics of authoritative service, and redirects all
queries to their authoritative name servers instead of
local and performant recursive resolvers.

In this paper we turn attention to Oblivious DNS
over HTTPS (ODoH) [51], a recent proposal at the
IETF that builds on ODNS concepts to decouple queries
from IP addresses and ensure privacy in DoH. ODoH
works by encrypting queries into HTTP messages at the
stub resolver. The encrypted queries are forwarded by
an Oblivious HTTPS Proxy, to and from an Oblivious
Target that decrypts queries and encrypts responses.
ODoH assures server identity through TLS while also
guaranteeing reliable, in-order delivery of packets, pre-
venting the need for any state machines in ODNS. Our
specific contributions are as follows:

1. We provide public, open-source, and inter-operable
implementations of ODoH components; to the best
of our knowledge, these are the first and only im-
plementations of the standard.

2. We model ODoH using Tamarin [71] and provide a
formal analysis to prove its security properties. Our
model was able to validate a latent replay attack
that emerged during analysis, as well as the change
that prevents the attack.

3. We deploy ODoH at a popular large DNS resolver,
and evaluate ODoH performance, at scale with a

comprehensive set of wide-area measurements; we
observe marked improvement over other privacy-
preserving secure DNS variants, and minimal im-
pact on page-load times compared to standard DoH.

We use these contributions to understand and inform
ODoH as a practical privacy enhancement to DNS. In
the sections that follow, we assess promised privacy
properties against realistic threat models, identify the
barriers and enablers to large-scale ODoH infrastruc-
ture, as well as use our experience to guide practical
global adoption. Our presentation begins with wider
context and background.

2 Background & Related Work
The Domain Name System (DNS) specification makes
no confidentiality or integrity guarantees, which makes
DNS vulnerable to eavesdropping and tampering [10,
11, 43]. The collection of such queries can also paint a
revealing picture of the users’ habits and interests [78].
In this section we give an overview of work to secure
DNS in various forms, both technical and regulatory.

2.1 Encrypted DNS Protocols and Privacy

Efforts to secure DNS via message or channel encryption
include DNS-Over-TLS (DoT) and DNS-Over-HTTPS
(DoH) [45], a precursor in T-DNS [84] and, separately,
DNSCrypt [38]. Client support for DoH is increas-
ingly available among web browsers [5, 27, 67], mobile
clients [30, 31, 52], and operating systems [54]. This
has been attributed to the availability of DoH support
in public recursive resolvers offered by Cloudflare and
NextDNS, with their integration into Firefox as Trusted
Recursive Resolvers [12, 27, 56].

Organizations that operate public DoH resolvers
publish and adhere to their own privacy policies. These
policies may prohibit user tracking, and state strict data
use and retention practices [32, 41]. Other organiza-
tions may aggregate DNS traffic patterns into perma-
nent logs that omit identifiable information like IP ad-
dresses [16, 77]. Reasons may include telemetry for de-
bugging in production systems, improving response time
performance, or for identifying browsing trends by geog-
raphy [32, 39]. Such practices are important because IP

Oblivious DNS over HTTPS (ODoH) 577

addresses are often regarded as personally identifiable
or linkable information [37, 58].

In DoT and DoH the network channel is encrypted,
and serves as a secure transport for the plaintext mes-
sages that are transmitted. Conversely, DNSCrypt [38]
and its predecessor DNSCurve [7] encrypt the DNS mes-
sage before its transmission over TCP or UDP. A client
connecting to a DNSCrypt resolver receives a public set
of signed certificates that is verified by the client using
a known provider public key. Each certificate contains a
short-term resolver public key. Messages are encrypted
with a shared key generated from the resolver public
key, the client secret key, and an agreed key exchange
algorithm defined in the certificate. The shared key is
used to encrypt subsequent queries using an authenti-
cated encryption algorithm.

Neither channel, nor message-based encrypted DNS
protocols address privacy risks at the resolver, where
client address and queries can be logged, stored, and po-
tentially profiled or transferred. Anonymous DNSCrypt
addresses this issue by introducing public non-logging
proxies that forward traffic between clients and the in-
tended DNSCrypt resolver [28, 68]. However, since the
traffic is between the proxy and resolver, an adversary
that is incident to a proxy’s ingress and egress link could
link queries to clients.

Prior proposals to address privacy included Privacy
Information Retrieval (PIR) techniques. Range queries
use random noise and PIR techniques during execution
of DNS queries [82, 83]. Doing so provided confidential-
ity, integrity, and privacy when used in conjunction with
DNSSEC. Later evaluation of these techniques revealed
that substantial changes to DNS servers and clients were
necessary to make it feasible, as well as that attack-
ers with control of the channel could infer and forge
queries [15].

Cryptographic mixes or mix cascades have also been
leveraged to anonymize user traffic [8, 36], which is a
model widely adopted in Tor. Additional attempts at
privacy consist of broadcasting a desired query among
a set of other decoy queries to thwart profiling at-
tempts [36]. Doing so has practical limitations due to
large bandwidth usage and long-tailed distribution of
queries. These limitations led to a hybrid of mix cas-
cades and broadcasts [36], albeit with degraded perfor-
mance due to increased page load and DNS response
times.

DNS privacy may also be achieved using DoH over
Tor (DoHoT), in which the encrypted DNS channel is
routed over the Tor anonymous network [20, 62]. Doing
so closes the linkability gap of Anonymous DNSCrypt,

but also incurs substantial performance penalties [62].
However, recent work by Muffet indicates performance
penalties due to the usage of Tor might not impact some
users significantly and could go unnoticed by users be-
cause latency is only a small fraction of the user expe-
rience and value proposition for choosing a DNS pro-
tocol [61]. While Tor provides both anonymity and pri-
vacy guarantees, Tor nodes can be actively censored or
blocked throughout the Internet [76, 81]; traffic can be
subject to DNS fingerprinting attacks [42]; and opera-
tors of exit nodes may face legal liabilities [44, 57].

ODoH achieves similar privacy guarantees as
Anonymous DNSCrypt and DoHoT, but the anonymity
of the protocol depends on non-collusion between stake-
holders in the ecosystem. ODoH incurs comparatively
minimal performance cost, and make its wide adoption
practical.

2.2 Privacy & Regulatory Considerations

DNS service provision and traffic also invokes a number
of regulatory, economic, and even philosophical consid-
erations that, while non-technical and beyond scope, are
worthwhile touching upon. Among them is the manner
in which a local DNS service is automatically configured
by upstream ISPs, and the implications that follow [9].
We stress that any configuration mechanism is necessi-
tated by the absence of a DNS discovery mechanism. Be-
yond configuration, evidence suggests that even seem-
ingly benign activities, such as monetization of only the
error traffic in DNS [80], may have unanticipated con-
sequences.

Users and clients may instead configure their DNS
to point to any of a small number of large open resolvers
that promise performance and consistent quality of ser-
vice across networks. The performance improvements
are accompanied by an implicit shift in trust to the open
resolver, and their operators to publish privacy policies
and conduct audits. A trusted policy may be sufficient,
but is unable to protect in all circumstances that include
human error or system compromise.

2.3 Prior Measurements

Large scale measurements of encrypted DNS protocols
show that adoption has been increasing [56]. Additional
measurements reveal that DoH provides security with
no significant impact on page load times [12]. Large scale
evaluations from home networks indicate that latency

Oblivious DNS over HTTPS (ODoH) 578

becomes the performance bottleneck as broadband ac-
cess speeds increase, making metrics like DNS response
time and time to first byte more important [75]. Ad-
ditional measurements suggest that the performance
of DoT and DoH vary with the choice of public re-
solver [47]. In Section 5.2, we evaluate ODoH and other
DNS protocols by directing each query to one of three
public resolvers selected at random to remove bias.

3 Oblivious DNS over HTTPS
The broad mandate of Oblivious DNS over HTTPS
(ODoH) is to address the remaining privacy concerns of
encrypted protocols like DoH/DoT i.e. to prevent recur-
sive resolvers from being able to link client IP addresses
to their queries. In this section we describe ODoH fea-
tures, the protocol, and our implementation.

3.1 Features and Properties

The design of ODoH is similar to that of DNS over
HTTPS (DoH). It differs with the addition of an in-
termediate proxy node that forwards queries and re-
sponses between a client and target in an ‘oblivious’
manner. The oblivious property derives from two at-
tributes. First, connections to and from the proxy use
HTTPS to secure the message transmissions from eaves-
droppers. However, a proxied-variant of DoH, alone,
would expose the query to the proxy. For this reason
ODoH secures the payload from the proxy with an addi-
tional layer of end-to-end encryption between the client
and target for a query. The combination of HTTPS,
with the intermediate proxy, and end-to-end encryption
ensures that only the client knows both its identity (IP
address), queries made, and responses intended for it.
Beyond this, ODoH achieves the following properties:

1. Proxies know client IP addresses (i.e., identities) but
cannot see actual queries and responses

2. Targets and entities upstream involved in resolution
know the query, but only see the IP address of the
proxy, hiding client IP information.

We discuss these properties in more detail in Section 4.4.
Each of the ODoH client, proxy, target, and protocol
specifics are described in detail next.

3.2 Protocol Description

ODoH participants, as well as the protocol, are depicted
in Figure 1. We describe the design from the view of each
of the ODoH components: (i) Clients that communicate
using a stub resolver; (ii) an Oblivious Proxy that trans-
mits messages over HTTPS between the client stub and
(iii) the Oblivious Target that encrypts and decrypts
messages between client stub and DNS resolver.

Clients (or stub resolvers) The protocol begins at
client’s stub resolver, responsible for encrypting client
queries and decrypting target responses. Clients are free
to use one or more proxies, as well as one or more tar-
gets. Pairs of proxy and target may be selected per-
query, so long as there is no collusion between them,
i.e., they are operated by separate entities. The client
encapsulates an ephemeral fixed size shared secret sym-
metric keyKs with the DNS query Q which is encrypted
using the public key of the target PK, resulting in the
encrypted message CQ which is sent to the chosen proxy
as shown in step (1) in Figure 1.

Oblivious Proxies The ODoH path consists of two
HTTPS connections that meet at an Oblivious Proxy
which acts as server to the client, and as a client to
target servers. On path from client to target, the proxy
preserves the encrypted query CQ, removes client IP
address information, then forwards the request to the
Oblivious Target indicated by the client’s message as
shown in step (2) in Figure 1. Responses from the target
are similarly returned to the client that originated the
query as shown in step (6) in Figure 1.

Oblivious Targets DNS messages in ODoH are se-
cured with Hybrid Public Key Encryption (HPKE) [6].
Targets use keying material derived from a query’s
HPKE encryption context to encrypt the response. En-
crypted queries (CQ) from the client arrive to the target
via the proxy. The target decrypts and decapsulates the
message received resulting in the query Q the shared
secret Ks. The target resolves the query, computes a
key K from the corresponding Key Derivation Function
(KDF) based on the shared secretKs, and then encrypts
and returns the answer A as an encrypted response CA

via the same proxy. These communications are shown as
steps 3,4, and 5 in Figure 1. The Oblivious Target pub-
lishes a public key which the clients securely retrieve
and use to encrypt their DNS queries before the proto-
col is run and is shown by the two dashed lines between
the client and target in Figure 1.

We note that the target is defined as being inde-
pendent of the resolver, but is expected to be coupled

Oblivious DNS over HTTPS (ODoH) 579

CQ = Enc(Q || Ks, PK)

Respond with DNSSEC Signed Public Key (PK)

Request DNSSEC Signed HPKE Public Key

Client

Proxy CQ

Proxy CA

Proxy

Query

CA = Enc(A, K)

Target

CQ

Response

Resolver

(1) ODoH Query (2) Proxied Query

ACA

(3)

(4)(5) Encrypted
Response

(6) Forwarded
Response

Q

A

Query Encryption

Answer Decryption

Q

A

Query Decryption

Answer Encryption

Ks Q

A

QKs HPKE Key
Encapsulation

Q Ks

Ks
HPKE Key

DecapsulationQ

Fig. 1. End-to-end execution of the ODoH Protocol. Clients encrypt DNS queries using a target’s public key, into an HTTP header
with the target’s name. Proxies forward to and from targets as indicated by the HTTP header. The grayed box indicates that targets
and resolvers may be co-located, in which case messages (3) and (4) are superfluous. All channels to and from the proxy are HTTPS.

with the recursive resolver to improve performance by
avoiding two additional network messages. Our imple-
mentation and evaluation focus on co-location, and we
anticipate that ODoH target features could be imple-
mented within existing resolvers.

End-to-end Message Flow The overall end-to-end
flow of an ODoH query across clients, proxies, and tar-
gets is shown in Figure 1. The dashed box with a grey
background that surrounds target and resolver indicates
their possible coupling or co-location, while respect-
ing their independence according to the definition. Co-
location trades isolation for performance, without loss
of privacy. A target co-located with the resolver has no
need for messages (3) and (4) shown in Figure 1. We re-
visit & measure the benefits of co-location in Section 5.4.
In the ODoH protocol, a proxy does not learn the con-
tents of the query from the client or the response from
the target, and similarly, a target resolver does not learn
the identity of the client.

Discovery, Verification, and Key Distribution
Strictly speaking, DNS in all its forms has no discovery
service. Aside from manual configuration, conventional
Do53 is traditionally configured (ultimately by ISPs)
with DHCP. DNS over TLS (DoT) and HTTPS (DoH)
are used by client stub resolvers by opportunistically
probing the DNS server indicated through the DHCP
configuration for support for either protocol [52]. In this
respect DoT/H and ODoH are equivalent: similar prob-
ing based approaches to discover protocol support by
the resolver can be reused. As a result, in the absence

of DHCP support and until a DNS discovery service
emerges, options for ODoH configuration are limited to
hostnames listed on centralized and trusted lists that
could additionally be bootstrapped into browsers or op-
erating systems which might choose to support the pro-
tocol or through manual explicit configuration.

Once a proxy or target is known, each client stub
resolver requests a DNSSEC signed resource record set
(HTTPSVC, SVC, or similar special fields [73]), where the
ODoH public key for the server is published. Once the
signature is validated, the stub resolver adds the obliv-
ious target to the list of verified targets and stores
the public key necessary for communication. These
records can be periodically retrieved and validated by
the client stub resolver to check for updates. A browser
or client then directs a special lookup to the resolver
for odoh.test, which returns the necessary keys for val-
idation and indicates support for ODoH. This mirrors
the use of doh.test to check a resolvers support for
DoH [59]. The choice to mirror DoH in this fashion is
intentional, reduces barriers to adoption, and deploy-
ment.

A full network evaluation of ODoH performance is
provided in Section 5, preceded next by a formal analy-
sis that states and proves ODoH’s security properties.

Oblivious DNS over HTTPS (ODoH) 580

4 Formal Analysis
In this section we provide a formal analysis to prove
that ODoH provides client query privacy. Our analysis
consists of a symbolic model generated for the Tamarin
theorem prover [71]1. We make the Tamarin model pub-
lic, along with its execution instructions and associated
proofs accompanying the artifacts of this paper [1, 2].

4.1 Model Overview

Our model is kept simple, yet precise, and focuses on
the security and privacy of the DNS request-response
exchange in ODoH. Thus, we intentionally ignore longi-
tudinal attacks and simple correlation-type attacks such
as only one client using a given proxy are either trivially
simple or impractical. Similarly, the integrity of resolver
responses or their ability to de-anonymize clients is be-
yond scope of the protocol, and our analysis. ODoH
makes no claims of resolver response integrity. A ma-
licious target or resolver could craft answers in such a
way to de-anonymize users. This is also discussed in the
ODoH protocol specification.

Our model captures cryptographic protocol details,
for example, HPKE-based [6] query encryption, and
AEAD-based response encryption. Underlying crypto-
graphic algorithms such as hashes are otherwise as-
sumed ideal. Other aspects of ODoH are both im-
practical and unnecessary. For example, the complex-
ity of TLS 1.3 needs hundreds of thousands of steps to
prove [23], so we substitute two simplifications. First,
we assume that the client and proxy can establish an
authenticated shared key, which is the end-goal of TLS.
This assumption relies on TLS being implemented, in-
stantiated, and deployed in a secure way. This is rea-
sonable, given the scale of and complexity of attack to
break this key in practice [3, 63]. Moreover, we do not
model precise wire-format details of ODoH, and only
capture message components in an idealized way since
the wire format should not affect protocol security.

As an additional simplification for the analysis, we
omit the TLS layer between the proxy and target.
Specifically, because we give the attacker the ability to
compromise TLS sessions secrets, this simplification is
equivalent to the attacker always doing so. We assert
that this is a fault-preserving simplification [49], wherein

1 Tamarin has been used successfully to analyze security prop-
erties of TLS 1.3, 5G, and other protocols in the past [22, 23].

any attack that succeeds on the true protocol also exists
in the simplified model. Thus, a proof that the simpli-
fied model is secure also implies that ODoH as specified
and deployed is secure.

4.2 Correlation Attacks

While ODoH provides strong cryptographic security
properties for individual queries, it has limited defences
against correlation attacks. Backes et al. [4] formalise
this as Sender Anonymity, i.e., whether an attacker
can identify the sender of a message with some non-
negligible probability. As discussed in Das et al. [24, 25],
resisting correlation attacks in the presence of an ad-
versary that can observe both endpoints requires added
latency or bandwidth overhead. In particular, they pro-
vide a lower bound on the latency required to achieve
strong anonymity of this type. Moreover, the amount of
latency introduced has to grow as the number of partic-
ipants grows [24, Theorem. 8]. DNS has near-real-time
performance requirements, so latency overhead is partic-
ularly problematic. We see this later in the comparison
with DoHoT, where the use of Tor incurs a performance
loss from longer circuits at the potential gain of stronger
protection against correlation attacks in practice.

We thus settle for a weaker form of anonymity,
where an attacker cannot identify the contents of a
single session beyond statistical inference. Note, impor-
tantly, that an attacker which has compromised the tar-
get is perhaps less likely capable of observing traffic be-
tween the proxy and the client.

The results of Das et al. [24, 25] do not preclude
there being any real-world gain in privacy. ODoH pro-
tects against attackers who can see large portions of the
network, and because of its cryptographic guarantees
even an attacker that can link the client and the target
still needs to compromise the target to learn the query.
DoHoT provides more anonymity protection, although
it still falls short of strong anonymity [24, Table I], but
at a cost of very substantial latency, see Figure 4. ODoH
provides a good balance between privacy protection in
the real world and usable performance. Its simplicity of
design and architecture enable it to be deployed widely,
and its relative performance compared to protocols with
stronger guarantees encourages adoption.

Oblivious DNS over HTTPS (ODoH) 581

4.3 Adversary

The adversary in our analysis is an extended Dolev-
Yao attacker [33], with the standard ability to create,
drop, and modify messages. We additionally give the
adversary the ability to compromise TLS sessions and
the target server’s long-term key (LTK). Finally we give
the attacker the ability to compromise the security of
AEADs if keys and nonces are reused. Obviously against
an adversary such as this, ODoH is not secure. However,
placing careful limits on the attackers behaviour yields
tight security bounds.

Collusion is modeled by allowing the adversary to
corrupt proxies and targets at will, and is achieved if
the adversary is able to compromise both for any sin-
gle query. An adversary that does not compromise both
effectively models a non-colluding proxy and target.

4.4 Security Properties

In our ODoH model we prove the following statement:

Core Lemma An adversary is unable to associate a
connection between client and proxy with the correspond-
ing query unless both the proxy and target are compro-
mised.

Our model also proves that if the adversary controls
all but one servers, client privacy is preserved when its
query is handled by the one uncorrupted server – re-
gardless of the server being a proxy or a target. We also
prove that the attacker can only learn the response by
compromising the target or by having advance knowl-
edge of the query. As we will discuss in Section 4.5 if
we consider nonce reuse attacks against the AEAD this
property does not hold. We suggest a fix and prove that
with the fix this property holds even in the presence of
such attacks.

Two additional lemmas are proved to ensure correct-
ness: (i) the protocol runs to completion; and (ii) the
client and target agree on the target’s identity, the
client and target’s public keys, the query, and the re-
sponse. The agreement property is an authentication
lemma that proves either that the adversary corrupted
the target, or the response was provided by the expected
target. This ensures that there are no misdirection or
message swap attacks, wherein the adversary reroutes
messages to confuse the client about which target re-
sponded. The full details of the proof are public and
made available online on GitHub [1].

4.5 A Replay Attack and Mitigation

Whilst performing our analysis, we discovered a replay
attack in older versions of the ODoH protocol. In partic-
ular, malicious proxies can log and replay the encrypted
client queries and force AEAD key and nonce reuse for
the encrypted responses. This was because ODoH pre-
viously derived the target response key and nonce en-
tirely from the client’s query. If the target’s response
changed, as is expected with DNS, the encrypted mes-
sage also changes. This allows the proxy to learn the
XOR of two different response plaintexts, which breaks
semantic security of response encryption. After discov-
ering this issue, the protocol was modified such that tar-
gets include a fresh nonce in the response encryption key
schedule. This nonce is sent alongside the ciphertext, al-
lowing clients to derive the same secrets and decrypt the
response. We were able to model both the attack and
fix in Tamarin, proving that the fix prevents the attack.
You can see the original Tamarin model in the odoh.m4
file [1], and the fixed version in odoh_fix.m4 [1].

5 Results
We furnish implementation details of the various ODoH
components mentioned in Section 3.2, perform mi-
crobenchmarks and multi-point wide-area measure-
ments to evaluate ODoH and present comparisons to
other secure and anonymous DNS variants.

5.1 Implementation and Microbenchmarks

We implemented two interoperable variants the Obliv-
ious Target and Proxy using both Go and Rust. The
implementations were deployed and tested on Google
Cloud using Google App Engine [17] and a serverless
platform - Cloudflare workers [19].

We also implemented a client in Go with a com-
mand line interface similar to dig. The client performs
ODoH queries to a chosen Oblivious Proxy and Obliv-
ious Target. The client can optionally select proxy and
target using a latency-based heuristic. For performance
evaluation, a benchmarking submodule was also imple-
mented within the client.

Our benchmarking tool launches C client processes,
each performing N queries chosen randomly from the
Tranco top million dataset [65] at a rate of R DNS re-
quests per minute.

Oblivious DNS over HTTPS (ODoH) 582

Both the client and proxy can be configured to reuse
HTTPS connections to avoid the extra costs of TCP and
TLS handshakes across queries. We revisit these options
on performance in Section 5.

To accelerate adoption we also integrated ODoH
protocol support into popular open source client stub
resolvers that support DoH or encrypted DNS protocols
like DNSCrypt. We use these stub resolver implementa-
tions to perform page load time measurements presented
in Section 5.7.

Our ODoH implementations across clients, proxy,
and target domains are publicly available and have also
been open-sourced [2].

Cryptographic Compute Overheads The default
ciphersuite in our implementations is the HPKE ci-
phersuite as published in the IETF draft [6], consist-
ing of the DHKEM(X25519, HKDF-SHA256) Key Ex-
change Mechanism (KEM), SHA256 based Key Deriva-
tion Function (KDF), and AES-128-GCM based Au-
thenticated Encryption (AEAD) algorithms. This ci-
phersuite is performant and widely supported in pro-
duction environments.

We ran our microbenchmarks on a 1 Intel Xeon 2.0
GHz CPU core with 3.75 GB of memory in a Google
Compute Engine virtual machine. The compute over-
heads incurred by HPKE were evaluated by running
microbenchmarks on the hosted client instances at sub-
microsecond granularity. A set of 10,000 domains were
randomly selected for this test from the Tranco million
dataset [65]. For each domain the encryption and de-
cryption operations are executed sequentially, i.e., en-
crypting then decrypting the query before encrypting
then decrypting the response.

The main observations are summarized in Ta-
ble 1, with entries at the 99th percentile. DNS query
encryption using the most performant ciphersuite
(DHKEM(X25519, HKDF-SHA256), HKDF-SHA256,
and AES-128-GCM) takes 360µs, while the decryption
of such an encrypted query takes 246µs. The protocol
also supports other cipher suites involving X448, P256,
and P512 KEM; SHA384 and SHA512 KDF; and AES-
256-GCM and ChaCha20Poly1305 AEADs. In some
cases P256 curve might be preferred over the X25519
KEM for NIST and FIPS standards compliance [69].
For the symmetric key operations AES performs better
than ChaCha20Poly1305 due to hardware acceleration
in some platforms [50]. The slowest encryption times at
the 99th percentile is 430µs using the DHKEM(X25519,
HKDF-SHA384) KEM with different possible permuta-

Table 1. 99th percentile (P99) Overheads incurred by the default
cryptographic suite in our HPKE implementations. HPKE uses
the DHKEM(X25519, HKDF-SHA256), HKDF-SHA256, and
AES-128-GCM ciphersuite

Microbenchmark Type P99 Overhead
Query encryption time HPKE 360µs
Query decryption time HPKE 246µs
Query size (Type A) HPKE 148 bytes
Answer size (Type A) AES-128-GCM 98 bytes

tions of the supported KDFs and AEADs; decryption is
713µs when using the SHA-384 and AES-256-GCM.

Our results reveal least compute overhead with
HPKE query encryption and AEAD response encryp-
tion. However, all the computation overheads in the life-
cycle of an ODoH query, i.e., from query encryption at
the client to decryption of the response, take less than
1ms.

Cryptographic Network Overheads Compared to
baseline cleartext DNS messages, HPKE encryption in-
creases the size of the query message on the wire by 4x,
and the and the size of the response by 1.2x. This mi-
crobenchmark was performed at the client stub resolver.
A random sample of 10,000 unique domains were used to
serialize cleartext DNS and ODoH query messages. The
average encrypted ODoH query size for type A queries
is 314% greater at 140.8 bytes. The ODoH query re-
sponse sizes for the same domains were closer in size to
their cleartext counterparts, with a size increase aver-
aging 22.37% to 87.5 bytes. Note that ODoH messages
must encapsulate the client public key used to encrypt
the query in addition to the query, itself, and appended
to an integrity hash.

5.2 Measurement

Our measurement setup consisted of clients, proxies,
and targets deployed across the USA, with additional
locations in Canada and Brazil, as depicted in Fig-
ure 2. We deployed 9 client VMs into US Google Cloud
data centers. All VMs had 1 Intel Xeon 2.0 GHz CPU
core with 3.75 GB of memory on the x86_64 architec-
ture [18], with an average bandwidth of 480 Mbit/s.

For each client, corresponding proxy and target in-
stances were geo-replicated using serverless platforms
to the nearest datacenter on the Cloudflare network.
An additional proxy and a target were deployed using
Google app engine to a Google Cloud datacenter on the
west coast of the USA.

Oblivious DNS over HTTPS (ODoH) 583

Montreal

Client Vantage Points

São Paulo

GCP Instances

Serverless Instances

Resolvers:

1.1.1.1

8.8.8.8

9.9.9.9

34Fig. 2. Measurement Deployment: 9 ODoH clients deployed to
Google data centers in the USA, Canada, and Brazil. Correspond-
ing geo-replicated, serverless, proxies and targets were deployed to
the nearest Cloudflare PoP. An additional proxy and target were
deployed into GCP on the USA west coast. In ODoH a client can
choose any combination of proxy, target, and resolver.

During the experiments, 10 query processes were
launched by each of the 9 client stub resolvers. Each pro-
cess mimics real client behaviour by making 200 ODoH
queries at a rate of 15 requests per minute, or ∼21000
DNS requests/day. Parameter values were drawn from
Wireshark packet traces of real clients [53, 70]. From
each target, client queries were forwarded deterministi-
cally (lastByte mod 3) to open DoH resolvers (Cloud-
flare DNS, Google DNS and Quad9) to distribute load
and mitigate against possible upstream effects of single-
resolver selection.

Identical sets of queries to those launched by ODoH
were also launched over 8 additional DNS variants, sum-
marized by Table 2. We regard standard UDP DNS
on port 53 (Do53) and DNS over HTTP (DoH) as
our ‘best-possible’ measurements, in which clients di-
rect each query randomly to one of the three resolvers.

To better characterize different aspects of the ODoH
path, we implemented two artificial proxied variants
that inject ODoH features to DoH in a stepwise fash-
ion. First, in ‘proxied DoH’ (pDoH) the client requests
proxies to forward Do53 queries as DoH queries to a cho-
sen resolver; this is an architectural variant of the DoH
protocol that introduces one additional hop between
the client and recursive resolvers. The additional hop is
then converted to DoH in ‘cleartext ODoH’, a two-hop
DoH query without end-to-end encryption. Alongside,
we evaluate ODoH when the target and resolver are co-
located, the model that we anticipate will be dominant
in practice.

The DoH and ODoH variants described above allow
us to compare conventional DNS metrics, such as perfor-

mance, but fail to capture properties related to privacy.
For this reason we also mirror the same query measure-
ments with DNSCrypt, which encrypts UDP queries be-
tween client and resolver. Both privacy-oriented Any-
onymous DNSCrypt and DoH over the Tor network
(DoHoT) introduce proxies to achieve privacy. We used
dnscrypt-proxy [29, 38], an open source implementation
of the DNSCrypt proxy, and restrict its use to only the
DNSCrypt protocol; TCP was disabled, according to
the original specification, and dnscrypt-proxy was con-
figured to generate a new ephemeral key for each query
for fair comparison against ODoH . Our stub resolver
was configured to the lowest-latency DNSCrypt resolver
from the public list of DNSCrypt resolvers available.

DoH over Tor (DoHoT) was granted similar perfor-
mance benefits. Specifically, we allowed Tor to create its
own optimal circuit, then performed DoH queries over
Tor using the SOCKS5 proxy on each client instead of
configuring them explicitly to use a static route. How-
ever, a limitation of our measurements with Tor are that
the set of optimally chosen nodes might not all reside
within the United States matching the comparisons to
other protocols.

Measurements across DNS protocols are described
in the remainder of this section. For additional reference,
Table 2 lists the request path for each protocol with
attributes and description.

5.3 Query Response Times

In this experiment we measure the time to resolve a
query at the client, from initial request to response. We
first look at various ODoH query-path selection strate-
gies, and then compare ODoH query times with other
DNS protocols and network architectural variants sum-
marized in Table 2.

Proxy and Target Selection We configure the client
stub resolver to select proxies and targets in three
ways: (i) random selection of a proxy and a target
pair; (ii) lowest-latency proxy with random target; and
(iii) the lowest-latency proxy-target pair, i.e., fastest
ODoH path to any target. The measured response times
are shown in Figure 3, and indicate that the choice
of proxy and target does impact ODoH performance.
These measurements were performed with the separa-
tion of the target and resolver.

Observations from Figure 3 suggest the best overall
selection strategy is lowest latency proxy-target pair.
Intuitively this choice makes sense, and is most pro-

Oblivious DNS over HTTPS (ODoH) 584

Protocol Query Path Security Privacy Description
DoH - DNS over HTTPS [45] C) R Yes No∗ HTTPS based DNS over HTTPS
pDoH - Proxied DoH C) P) R Yes No Proxy performs DoH query
Cleartext ODoH C) P) T) R Yes No DoH query is proxied to a Target which performs

DoH query
ODoH - Oblivious DoH [51] C) P) T) R Yes Yes Oblivious DoH protocol
Co-located ODoH (Section 5.4) C) P) (T+R) Yes Yes ODoH with Colocated Target and Resolver
DNSCrypt [38] C) R Yes No∗ UDP-based encrypted DNS
Anonymous DNSCrypt [28] C) P) R Yes Yes UDP based, Proxy routes client query
DoHoT - DoH over Tor [20, 62] C) Tor) R Yes Yes DoH over Tor Network

Table 2. The set of Secure DNS platforms evaluated alongside ODoH with request path, attributes and description, for reference. En-
tries with citations are known and publicly available; entries without citations represent one-step at a time architectural changes to-
wards ODoH and beyond. In the ‘Query Path’ column, C - Client, P - Proxy, R - Resolver, T - Target.

*-Guarantees of privacy depend on the resolver being used, and relies on legal agreements or privacy policies.

102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ODoH using Random Proxy-Target
ODoH using Low Latency Proxy & Target
ODoH using Low Latency Proxy

Fig. 3. ODoH query response times with different proxy and tar-
get selection strategies. Measurements suggest lowest total la-
tency to target as the best strategy. The high performance of
random selection is likely due to clusters of clients, proxies, and
targets along eastern and western regions of North America.

nounced when the proxy is near- or on-path to the tar-
get. In these evaluations the median query to response
time over the lowest latency proxy-target pair is 334.85
ms compared to 411.44 ms when solely selecting the low-
est latency proxy. This marks a median improvement of
22.8%. We also observe that random selection is high-
performing than averaging across all queries; we suspect
this is because most clients in our deployment have a
higher than average set of nearby proxies and targets
from which to choose, i.e., clusters along the western-
and eastern-halves of North America.

Comparing DNS Platforms Figure 4 shows the
query performance of ODoH instantiations compared to
other DNS platforms that are summarized in Table 2.

ODoH is the best performing privacy enhancing
DNS protocol, ahead of DNSCrypt and DoH over Tor.

Also, ODoH performance is only marginally worse than
ODoH in cleartext, where a standard DoH query tra-
verses the same logical 3-hop path as an ODoH query.
This reinforces the minimal cryptographic compute
overheads as presented in Section 5.1.

Observations from Figure 4 also reinforce that the
proxy and target selection dominate performance. This
can be seen by comparing standard DoH as the baseline
to pDoH and ODoH variants. The median DoH response
of 146.12ms increases by 49.5% to 218.52ms when the
same DoH query is proxied (labeled as pDoH with the
dotted black line). The same DoH queries increases the
median response time by 109% when using the ODoH
protocol to 305.11ms and in the case of Cleartext ODoH,
when sent as DoH through both the proxy and the tar-
get, before being resolved by the resolver, we see an
increase in median DNS response times by 103.2% to
297.015ms. We estimate, however, that the additional
penalty of ODoH over pDoH is mitigated by co-locating
the oblivious target with the resolver, as explained in
Section 5.4.

If we focus on privacy-performance trade-offs, the
ability of ODoH to match proxied DoH variants is
particularly noteworthy: Compared to a median ∼50%
increase in co-located ODoH queries, the median
DNSCrypt query time of 487.68ms is 233.7% greater
than DoH, while DoHoT is 376.5% greater at 696.40ms.

5.4 Co-locating Targets with Resolvers

The specification defines Oblivious Targets as being
independent from resolvers, but allows for their co-
location or integration. While we envision direct ODoH
support in popular DoH providers, in practice, we make
the same distinction as the specification in our evalua-
tions – measurements labeled as ODoH consist of targets

Oblivious DNS over HTTPS (ODoH) 585

Fig. 4. Comparison of ODoH to other DNS Protocols. ODoH
performance matches proxied DoH (pDoH) when the target and
resolver are co-located. Note that both colocated ODoH and non-
located ODoH variants provide privacy at a substantially reduced
cost over other privacy-oriented protocols. (Left to Right order of
curves maintained in legend order)

that are physically separate and hosted individually,
while co-located ODoH targets are implemented within
resolvers’ datacenter facilities or in the resolver services
directly. Crucially, either instantiation preserves all pre-
viously stated security and privacy properties.

The effects of target location on performance are
hinted at by closer inspection of the time it takes to re-
solve queries from any single target. For example, Fig-
ure 5 shows query resolution times from our target de-
ployed inside Google Cloud datacenters. From this tar-
get, queries to Google’s DNS service consistently resolve
in less time than queries sent to resolvers not located
within Google’s datacenters.

We use this insight to estimate the values for co-
located ODoH service in Figure 4 (indicated by the
dashed blue line). Doing so allows us to isolate query
resolution time at the resolver from the cost of the last
target-to-resolver hop. We estimate the improvement
by measuring a ‘toy’ recursive DNS resolver, in which
queries resolved by a cache hit take less than 1ms at the
99th percentile, and take 120ms with a cache miss. We
conservatively assume a cache hit ratio of 70%, and use
this value to estimate the lower-bound median response
times of 228.52ms if Oblivious Targets were always co-
located with the resolver.

We further validate these estimates with live mea-
surements. The ODoH services were hardened for scale
and implemented into a large public recursive resolver
operated by Cloudflare, enabling us to measure ODoH
with production targets. Both the predicted and mea-
sured values (purple dashed and dot line) are indicated

102 103 104

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

9.9.9.9
1.1.1.1
8.8.8.8
Aggregate

Fig. 5. The time taken to resolve DoH query from target in-
stances to resolvers points to colocation benefits. Here, almost
all queries from the target deployed in Google Cloud are fastest
when directed to Google’s own DNS resolver.

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0.0

0.2

0.4

0.6

0.8

C
D

F

ODoH Without Connection Reuse
ODoH With Connection Reuse

103 104

0.900

0.925

0.950

0.975

1.000

Fig. 6. ODoH Connection reuse: ODoH query resolution times
increase if a new connections is used for each query.

in Figure 4. Their performance is similar to proxied
DoH, with the median response time from co-located
ODoH being 238.60ms, suggesting that predicted me-
dian value 228.52ms are reasonable, as are the potential
performance improvements of co-location.

5.5 Connection Reuse

Persistent connections, or connection reuse, are HTTPS
optimizations that enable clients to establish and re-use
a connection to transmit multiple requests to the same
host, rather than to open a new connection for each
request.

In all of our experiments described from here, the
proxy-target connections are persistent and use the co-
located target case. However, the measurements pre-

Oblivious DNS over HTTPS (ODoH) 586

Fig. 7. Time to resolve a ODoH query over different network
conditions. The Figure shows the comparison of the usage of
ODOH and DOH due to various network types. (Left to Right
order of curves maintained in legend order)

sented in Figures 3 and 4 benefit from persistent client-
proxy connections for best performance. The use of per-
sistent connections does not limit the ODoH security
properties; however, we consider the impact of initiat-
ing a new HTTPS connection for each query in Fig-
ure 6. In our measurements the median query response
times with a client creating a new connection for each re-
quest without reuse, increase by 92.5% from 238.60ms to
459.42ms. We revisit concerns due to connection reuse
and re-iterate its benefits in Section 5.8.

5.6 Impact of Network Type

Previous work suggests that DoH performance is sig-
nificantly impacted by poor mobile network connectiv-
ity [9]. We emulate similar network conditions to un-
derstand their effect on ODoH, with results summa-
rized by Figure 7. Using the qdisc scheduler we con-
figure and shape our network traffic by throttling egress
bandwidth to (i) 0.56 Mbps with 350 ms latency for
2G, (ii) 1.25 Mbps with 200 ms latency for 3G, and
(iii) 12 Mbps with 100 ms latency for 4G [55, 74]. Com-
pared to the unthrottled colocated ODoH median re-
sponse time of 238.06ms, the throttled ODoH response
times increase by 59.3%, 121.5% and 252.8% for 4G,
3G and 2G network connections, respectively. DoH in
the unthrottled case has a median response time of
146.12ms, and the throttled variants increase by 86.6%,
177.1%, and 382.6% respectively. However, in compar-
ing ODoH against DoH under identical conditions, the
performance gap diminishes. ODoH response times are
39.4%, 30.5%, and 19.4% higher compared to DoH in

(a) DNS response times for 10000 Page Loads from Local Stub Resolver

(b) First Contentful Paint (FCP) and Page Load Time (PLT) measure-
ments for 10000 webpages based on DNS protocol used

Fig. 8. Impact of page load time due to usage of ODoH com-
pared to other DNS protocols

the same 4G, 3G and 2G networks. This suggests that
the network effects dominate over protocol differences.

5.7 Page Load Times with ODoH

Previous DoH evaluations concluded that the perfor-
mance penalty of DNS-over-HTTPS over clear text DNS
is absorbed into page load times with no significant per-
ceived effect [12]. We similarly evaluate page load times
with ODoH by replacing the DoH stub resolver in a pop-
ular open source DNS proxy with an ODoH compatible
stub resolver.

In this experiment a set of 10000 websites selected,
composed of the top 5000 from the top million Tranco
dataset [65], and another 5000 randomly selected from
the remainder of the list. Page load times are captured
across three configurations for both the top 5000 and
the randomly chosen 5000 websites: (1) Do53 to Cloud-
flare’s 1.1.1.1; (2) DoH to 1.1.1.1; (3) ODoH with an
off-path proxy to a colocated ODoH resolver; The client
stub resolver reuses connections when possible to avoid
additional TCP and TLS handshakes.

To measure page load times we use Google Chrome
and capture the page load session into an HTTP Archive

Oblivious DNS over HTTPS (ODoH) 587

(HAR) file additionally recording the results of the
window.performance API [64]. Each experimental run
is launched with a new profile to remove caching ef-
fects and uses the same set of 10000 websites loaded
in the same order. This is done to ensure that the re-
sults captured during the page load time measurement
does not include order effects. We believe that loading
the same set of pages, from the same starting state, in
the same sequence would balance out additional effects
due to browser artifacts such as caching. Maintaining
the sequence of page loads across all the experimental
settings indicates the same cache state of the browser
after each web page load with a high probability. Ad-
ditionally, the local DNS stub resolver cache is flushed
for each configuration forcing an empty starting state
for each evaluation. Page load time is calculated from
page load event information in the defined HAR format,
and measure the DNS lookup times as the difference be-
tween domainLookupEnd and domainLookupStart events
recorded by the browser. These values are validated with
the DNS time for the request captured in the HAR file.
This is recommended by the W3C standard for page
navigation time and perceived page load time [79].

We present our results on page load times with dif-
ferent DNS protocols in Figure 8. Figure 8a shows the
time taken to resolve queries for the websites. The me-
dian DNS response time when using Do53 is 41.28ms
and increases by 298.01% to 164.30ms for DoH and
335.70% to 179.86ms for ODoH indicating a 9.47% dif-
ference between usage of DoH and ODoH. The CDF re-
sults for DoH and ODoH indicate a sharp increase close
to 100ms possibly indicating an artifact of the local stub
resolver.

Page load measurements for the websites are shown
in Figure 8b. The median page load time when us-
ing Cloudflare DNS in cleartext UDP Do53 packets
is 3830.22ms. We consider this the baseline and find
that the median page load times increase by 6.76%
when using the DoH protocol to Cloudflare resulting
in 4089.35ms median page load time respectively. The
usage of colocated ODoH with the resolver increases me-
dian page load times by 9.83% compared to the cleartext
baseline usage to 4207.10ms. To understand the impact
of colocation in page load performance, the usage of
ODoH with separation between the target and the re-
solver increases the median page load time by 20.12%
to 4601.03ms. At the 95th percentile, we notice that the
difference between DoH and ODoH protocols compared
to the baseline cleartext UDP based DNS protocol re-
duces to 0.66% and 5.86% respectively resulting in page

load times of 11524.59ms and 12113.84ms when com-
pared to 11448.89ms with Do53 Cloudflare DNS.

The performance difference between ODoH and
DoH (and Do53) can be attributed to the network path
topology differences. With an on-path proxy to the re-
solver, clients can benefit from slightly better page load
times for the ODoH protocol than the measurements
described in this section. The complete page load time
measurements might skew results due to intensive client
side javascript operations. To mitigate, in Figure 8b we
also present our results for the First Contentful Paint
(FCP) measurements for the website loads and identify
that the median FCP time for client using the Do53
protocol is 2065.17ms and increased with the usage of
DoH protocol by 6.15% to 2192.33, and ODoH by 8.03%
to 2231.12ms which are in-line with the total page load
time measurements indicating the impact of protocol
choice.

Our results indicate that client choice of proxy
and targets strongly impacts the user-facing perfor-
mance of the ODoH protocol and the corresponding
page load time measurements. Additionally, we show
that co-location of the oblivious target services with
the recursive resolver improves performance. Our exper-
iments show that the median page load times increase
by 2% when using ODoH compared to secure DNS pro-
tocols like DoH while providing both security and pri-
vacy guarantees making it a practical replacement for
the Do53 DNS protocol and could be used by clients
adopting DoH needing additional privacy guarantees.
We further believe that the usage of ODoH will have no
adverse impact on video streams or gaming since there
is no constant need to rely on DNS once an IP address
is obtained and a successful connection is established.

5.8 Discussion

HTTPS Reuse In our experimental evaluations,
client stub resolvers try and reuse the HTTPS connec-
tion for multiple queries to amortize the cost of connec-
tion establishment. This is acceptable in practice since
there is no correlation between client-proxy connections
and proxy-target connections. In fact, if a proxy estab-
lished and reused a per-client tunnel to upstream target
resolver, it would be possible for the resolver to link
all queries on that session to the same client. Addition-
ally, the proxy is a TLS terminating proxy indicating
that the TLS connection from the client is not passed
through to the target resolver to establish an end to end

Oblivious DNS over HTTPS (ODoH) 588

TLS connection. The usage of TLS passthrough proxies
could leak client IP addresses. Clients could disable con-
nection reuse and create new HTTPS connections for
every query to the proxy, similar to DNSCrypt users.
However, this would introduce substantial performance
overhead as shown in Section 5.5, with no practical pri-
vacy improvement.

Page Load Time Triggers For the page load time
measurements in Section 5.7, we use the full page load
events obtained from the page load session timeline that
is triggered after all the sub resources of the page have
been obtained. This represents the worst case perfor-
mance compared to other metrics such as First Mean-
ingful Paint (FMP), and Time to Interactive (TTI) met-
rics which could be used for page load times. We believe
and show that ODoH with colocation of the target with
the resolver services, in addition to the existing usage of
DNS resolvers like Cloudflare, NextDNS, or Google will
result in better page load and DNS response times.

6 Wider Deployment
Considerations

Our controlled experiments and experimental setup in
Section 5 overcome or ignore a wider set of deployment
challenges. Service availability and discovery, potential
abuse or attack vectors, as well as organizational con-
siderations are discussed in further detail below.

6.1 A Practical Roadmap for Adoption

ODoH activities at the IETF increase the likelihood of
adoption, and are facilitated by a substantial overlap
with DoH, which is increasingly being supported post-
standardization. At time of writing, DoH is natively sup-
ported in iOS andWindows [31, 54], in applications such
as Firefox and Chrome, and with client stub resolvers
across multiple platforms. We share the following set of
insights and experience from our own deployment.

Target Integration into DNS Resolvers As open
anycast DNS resolvers continue to grow, it would make
sense that operators reinforce promises of user privacy
by supporting ODoH in their resolvers. Support begins
with a test domain like odoh.test, and the correspond-
ing DNSSEC signed HPKE public key information to
be registered in the resolver for client discovery. In ad-
dition, the resolver should support ODoH messages with

content type application/oblivious-dns-message on
the DoH API interface, respecting the DNS wireformat.
Lastly services are needed to decrypt queries and en-
crypt answers. Support for HPKE is available in pop-
ular cryptographic libraries like BoringSSL [40] and in
language specific libraries written in Go or Rust [2].

Proxy Operators We expect that ODoH proxy ser-
vice will primarily flourish as a value-added service of-
fered to the customers of publicly funded national net-
works, and of data-center operators that provide in-
frastructure for private cloud and CDN networks; In-
ternet Exchanges may also recognize value in offering
ODoH proxy service to tenants and customers. The in-
tegration of ODoH into the tooling of DNSCrypt and
its ecosystem also increases protocol adoption. Since
having an on-path proxy improves performance, ISPs
could provide ODoH proxy services to privacy-focused
customers. On-path proxy service could run contrary
to some ISP business models, however we believe that
this may be tractable given recent efforts by Mozilla
in onboarding Comcast, a large ISP in the USA, to
Mozilla’s Trusted Recursive Resolver list [59]. An ad-
ditional incentive for ISPs may present in the form of
regulatory backlash [9, 80]. We make it easy for users
to deploy their own proxies to popular platform as a
service (PaaS), and to deploy and provide ODoH proxy
services to private home networks or communities [2].

Client Stub Resolver Modifications Clients can
use ODoH in multiple ways. Support for the protocol
could be implemented directly in the operating system
stub resolver. Alternatively, ODoH service could be pro-
vided by a DoH local proxy DNS service that users in-
stall on their devices, such as dnscrypt-proxy, Acrylic
(the experimental DoH-Proxy from Facebook), or appli-
cations like BraveDNS on Android devices [13, 21, 35].
Support for ODoH in these tools requires minimal
changes, given existing support for DoH. We imple-
mented the protocol in one such popular open source
tool (cloudflared) and used it to perform page load
time measurements. Firefox and Chrome browser sup-
port for DoH make them candidates for ODoH support,
bypassing the need for users to rely on the operating
system or a system resolver. In the case of both browser
and operating system support, additional considerations
need to be made regarding usability, ease of configura-
tion for users, and the manner in which local proxy and
target lists are populated.

Proxy and Target Service Discovery One open
problem that is as old as DNS is service discovery. The

Oblivious DNS over HTTPS (ODoH) 589

DNSCrypt community resorts to a published list of host-
names, which is difficult to maintain, and unlikely to
scale. Another solution consists of sets of trusted prox-
ies and targets that are curated by developers and pre-
sented to users in a manner akin to Mozilla’s Trusted
Recursive Resolvers program [60]. Alternatively clients
might automatically upgrade DNS to ODoH and choose
a public list of proxies if support is detected by the re-
solver, as recently introduced into Android for DoT [52].

6.2 Potential Attacks

Beyond the boundaries of ODoH privacy properties, cer-
tain attacks may be possible. These attacks are either
prohibitively expensive, or are due to known vulnerabil-
ities of the underlying mechanisms, as described below.

Association Attacks A requirement of ODoH is that
per-query proxy and target pairs are selected from non-
colluding parties. There remains, however, a few scenar-
ios in which it becomes possible to link or infer queries
with clients’ subsequent request activity. For example, a
selected target within the clients’ ISP could conceivably
be used by the ISP to link IP addresses returned by the
target with subsequent requests to those addresses. An
Oblivious Proxy selected within the ISP could be used
in a similar manner. Specifically, an ISP might be able
to deduce the contents of a query, and link that query to
a client, if the subsequent request or its destination IP
address reveal any information about the activity. The
usage of ODoH in these scenarios increases the effort
needed to reliably track clients and is no more or a risk
than what already exists with DoH.

Denial-of-Service Resolvers may throttle IP ad-
dresses associated with malicious clients attempting to
perform denial of service (DoS) attacks. ODoH would
seem to shift this responsibility downstream to the
Oblivious Proxy or Target that is receiving the mali-
cious queries. Proxies should therefore implement rate
limiting or other mitigation strategies like the usage of
an allow list of targets to prevent clients from launching
large numbers of DNS requests and choosing arbitrary
targets in an attempt to perform DNS Tunneling at-
tacks or as a form of abuse. Malicious clients can how-
ever distribute their requests to different proxies des-
tined to the same targets. Targets should implement
similar strategies to protect against malicious proxies,
and contact proxy operators. Well-behaved clients that
are negatively impacted by target rate-limiting of the
selected proxy could shift queries to different proxies.

Alternatively, malicious clients could also encrypt
malformed DNS queries or check for non-existent do-
mains in an effort to make the resolver spend compute
cycles in decryption of the message or spend time com-
municating with various name servers [14]. We argue
that with reasonable DoS prevention in place for de-
ployed artifacts, such amplification or denial of service
attacks can be made impractical in practice.

Public Key Linkability ODoH targets may give
each client a unique HPKE key for query encryption
in an attempt to deanonymize them. This is a common
problem with protocols of this form, including Privacy
Pass [26]. Multiple mitigations exist against this type
of attack. For example, a trusted third party may fetch
target keys on behalf of multiple clients, so that a target
is unable to uniquely tag clients with public keys. The
exact mechanism for mitigating against this problem is
a general problem that is far from unique to ODoH.

Compromised Proxies and Targets An adversary
that wants to link queries to clients must compromise
both proxy and target (see formal analysis in Section 4).
Given the proxy’s (IP, CQ) tuples and the target’s
(CQ, Q) tuples, the attacker in possession can perform
a JOIN to map client IP addresses to their queries. In
a practical setting, a malicious proxy can correlate en-
crypted queries to encrypted responses (CQ, CA) but
does not gain much due to replay attack resistance. Net-
work adversaries at the ingress and egress could perform
correlation attacks but are practically limited due to
encrypted transport enabled by TLS [3]. Like DoT and
DoH, ODoH was never designed to prevent such attacks.

6.3 Organizational Implications

Encrypted DNS protocols pose challenges to enterprise
system administrators that rely on DNS to keep organi-
zations safe or provide controls that protect users inside
the network from content deemed harmful or malicious.
In these situations, we believe ODoH can be used to in-
crease organizational safety. For example, an enterprise
could use DoH for queries to the internal resolver, and
use ODoH for any outbound queries from the organiza-
tion’s gateway. This protects potentially sensitive orga-
nization web traffic information from being recognized
by upstream ISPs and other DNS name servers.

Techniques to protect Internet traffic while main-
taining local control over DNS can also be implemented
in a home network with tools such as PiHole [46]. For

Oblivious DNS over HTTPS (ODoH) 590

example, the Internet gateway for all web traffic from
the home can convert insecure Do53 queries to ODoH.

7 Concluding Remarks
Cleartext DNS queries continue to be the most popu-
lar way in which users communicate with DNS ecosys-
tem. In this paper we implement, analyze, and evaluate
Oblivious DNS over HTTP. It is instructive to compare
ODoH to its secure and private counterparts. Where
DoT and DoH secure the DNS messages in transit,
ODoH additionally guarantees that only the client has
knowledge of both its query and its IP address. Our eval-
uations show that this level of privacy incurs marginal
performance cost relative to DoH, while substantially
out-performing privacy-oriented DNSCrypt and DoH
over Tor. Our formal analysis finds and fixes an attack
on a previous version of ODoH and demonstrates that
the new version of ODoH achieves the desired privacy
goals. We use our experience to identify ecosystem chal-
lenges and inform a roadmap to wide adoption.

Our implementations are available, open-source [2],
and being used on the Internet to provide ODoH ser-
vice. Overall, we find that ODoH has the potential to
be deployed at scale with good performance, at the same
time contributing to a safe and secure Internet.

Acknowledgements
We would like to thank our shepherd, Tobias Pulls,
and the anonymous reviewers for their valuable feed-
back. We would also like to thank Eric Kinnear, Tommy
Pauly, Paul McManus, Edo Ryker, Alissa Starzak, and
John Graham-Cumming for their suggestions through-
out. In addition, Anbang Wen for the work to harden
and transition ODoH services to production at Cloud-
flare, Joost Van Dijk for operating a production ODoH
proxy at SURF NL, Stephen Spencer at UW CSE for
provisioning measurement infrastructure. This research
received no specific grant from any funding agency in
the public, commercial, or not-for-profit sectors.

References
[1] ODoH Analysis Tamarin Model. https://github.com/cloud

flare/odoh-analysis.

[2] ODoH Artifacts. https://github.com/sudheesh001/ODoH-
Artifacts.

[3] N Aifardan, D Bernstein, K Paterson, B Poettering, and
J Schuldt. On the security of RC4 in TLS and WPA. In
USENIX Security, 2013.

[4] Michael Backes, Aniket Kate, Praveen Manoharan, Sebas-
tian Meiser, and Esfandiar Mohammadi. AnoA: A Frame-
work for Analyzing Anonymous Communication Proto-
cols. In 2013 IEEE 26th Computer Security Foundations
Symposium, pages 163–178, 2013.

[5] Kenji Baheux. Chromium blog: A safer and more private
browsing experience with secure DNS. https://blog.chrom
ium.org/2020/05/a-safer-and-more-private-browsing-
DoH.html, 05 2020. (Accessed on 09/15/2020).

[6] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp,
and Christopher A. Wood. Hybrid Public Key Encryption.
Internet-Draft draft-irtf-cfrg-hpke-08, Internet Engineering
Task Force, February 2021. Work in Progress.

[7] Daniel J Bernstein. DNSCurve: Usable security for DNS.
dnscurve.org, 4, 2009.

[8] Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web
MIXes: A system for anonymous and unobservable Internet
access. In Designing privacy enhancing technologies, pages
115–129. Springer, 2001.

[9] Kevin Borgolte, Tithi Chattopadhyay, Nick Feamster,
Mihir Kshirsagar, Jordan Holland, Austin Hounsel, and
Paul Schmitt. How DNS over HTTPS is Reshaping Pri-
vacy, Performance, and Policy in the Internet Ecosystem.
Performance, and Policy in the Internet Ecosystem (July 27,
2019), 2019.

[10] Stephane Bortzmeyer. DNS privacy considerations. Work in
Progress, draft-ietf-dprive-problem-statement-06, 1, 2015.

[11] Stephane Bortzmeyer. Dns query name minimisation to
improve privacy. RFC7816, 2016.

[12] Timm Böttger, Felix Cuadrado, Gianni Antichi, Eder Leão
Fernandes, Gareth Tyson, Ignacio Castro, and Steve Uhlig.
An Empirical Study of the Cost of DNS-over-HTTPS. In
Proceedings of the Internet Measurement Conference, pages
15–21, 2019.

[13] BraveDNS. BraveDNS - A fast, secure, configurable, private
DNS + Firewall for Android. https://www.bravedns.com/.
(Accessed on 09/16/2020).

[14] Nevil Brownlee, Kimberly C Claffy, and Evi Nemeth. DNS
measurements at a root server. In GLOBECOM’01.
IEEE Global Telecommunications Conference (Cat. No.
01CH37270), volume 3, pages 1672–1676. IEEE, 2001.

[15] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. Evaluation
of two privacy-preserving protocols for the DNS. In 2009
Sixth International Conference on Information Technology:
New Generations, pages 411–416. IEEE, 2009.

[16] A Chau and S Hertzberg. California Consumer Privacy Act
of 2018 1798.140 (v). https://leginfo.legislature.ca.gov/fac
es/codes_displaySection.xhtml?lawCode=CIV§ionNu
m=1798.140., 2018. (Accessed on 02/27/2021).

[17] Google Cloud. App Engine Application Platform - Google
Cloud. https://cloud.google.com/appengine. (Accessed on
02/27/2021).

[18] Google Cloud. Google Compute Engine - Machine Types.
https://cloud.google.com/compute/docs/machine-types.
(Accessed on 09/16/2020).

https://github.com/cloudflare/odoh-analysis
https://github.com/cloudflare/odoh-analysis
https://github.com/sudheesh001/ODoH-Artifacts
https://github.com/sudheesh001/ODoH-Artifacts
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://blog.chromium.org/2020/05/a-safer-and-more-private-browsing-DoH.html
https://www.bravedns.com/
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=CIV§ionNum=1798.140.
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=CIV§ionNum=1798.140.
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=CIV§ionNum=1798.140.
https://cloud.google.com/appengine
https://cloud.google.com/compute/docs/machine-types

Oblivious DNS over HTTPS (ODoH) 591

[19] Cloudflare. Cloudflare Workers®. https://workers.cloudflare
.com/. (Accessed on 09/15/2020).

[20] Cloudflare. DNS over Tor | Cloudflare Developer Docs.
https://developers.cloudflare.com/1.1.1.1/fun-stuff/dns-
over-tor/. (Accessed on 09/15/2020).

[21] Cloudflare. Argo Tunnel Client. https://github.com/cloudfla
re/cloudflared, 2020.

[22] Cas Cremers and Martin Dehnel-Wild. Component-based
formal analysis of 5G-AKA: Channel assumptions and ses-
sion confusion. In Network and Distributed Systems Security
(NDSS) Symposium 2019, February 2019.

[23] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott,
and Thyla van der Merwe. A comprehensive symbolic anal-
ysis of TLS 1.3. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1773–1788, 2017.

[24] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi,
and Aniket Kate. Anonymity trilemma: Strong anonymity,
low bandwidth overhead, low latency - choose two. In 2018
IEEE Symposium on Security and Privacy (SP), pages 108–
126, 2018.

[25] Debajyoti Das, Sebastian Meiser, Esfandiar Mohammadi,
and Aniket Kate. Comprehensive anonymity trilemma:
User coordination is not enough. Proceedings on Privacy
Enhancing Technologies, 2020(3):356–383, 2020.

[26] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tanker-
sley, and Filippo Valsorda. Privacy pass: Bypassing internet
challenges anonymously. Proceedings on Privacy Enhancing
Technologies, 2018(3):164–180, 2018.

[27] Selena Deckelmann. Firefox continues push to bring DNS
over HTTPS by default for US users - The Mozilla Blog.
https://blog.mozilla.org/blog/2020/02/25/firefox-continue
s-push-to-bring-dns-over-https-by-default-for-us-users/, 02
2020. (Accessed on 09/15/2020).

[28] Frank Denis. Anonymized DNSCrypt specification. https:
//github.com/DNSCrypt/dnscrypt-protocol/blob/master
/ANONYMIZED-DNSCRYPT.txt, 06 2020. (Accessed on
09/15/2020).

[29] Frank Denis and Contributors. A flexible DNS proxy, with
support for encrypted DNS protocols. https://github.com/D
NSCrypt/dnscrypt-proxy/. (Accessed on 09/17/2020).

[30] Apple Developer. DNS Proxy Provider | Apple Developer
Documentation. https://developer.apple.com/documentat
ion/networkextension/dns_proxy_provider. (Accessed on
09/15/2020).

[31] Apple Developer. Enable encrypted DNS - WWDC 2020. ht
tps://developer.apple.com/videos/play/wwdc2020/10047/.
(Accessed on 09/15/2020).

[32] Google DNS. Your Privacy - Public DNS - Google Devel-
opers. https://developers.google.com/speed/public-
dns/privacy. (Accessed on 02/27/2021).

[33] Danny Dolev and Andrew Yao. On the security of public
key protocols. IEEE Transactions on information theory,
29(2):198–208, 1983.

[34] Ralph Droms. RFC2131: Dynamic Host Configuration Pro-
tocol, 1997.

[35] Facebook. DNS Over HTTPS Proxy | Facebook. https:
//github.com/facebookexperimental/doh-proxy, 2020.

[36] Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann,
and Christopher Piosecny. Privacy-preserving DNS: anal-

ysis of broadcast, range queries and mix-based protection
methods. In European Symposium on Research in Computer
Security, pages 665–683. Springer, 2011.

[37] Michèle Finck and Frank Pallas. They who must not be
identified—distinguishing personal from non-personal data
under the GDPR. International Data Privacy Law, 10(1):11–
36, 03 2020.

[38] Frank Denis and Yecheng Fu. DNSCrypt: A protocol to
improve DNS security. https://www.dnscrypt.org/, 02 2021.
(Accessed on 02/20/2021).

[39] Google. DNS-over-HTTPS (DoH) | Public DNS | Google
Developers. https://developers.google.com/speed/public-
dns/docs/doh. (Accessed on 09/15/2020).

[40] Google. crypto/hpke - boringssl - Git at Google. https:
//boringssl.googlesource.com/boringssl/+/refs/heads/mast
er/crypto/hpke/, 07 2020. (Accessed on 09/17/2020).

[41] John Graham-Cumming. Announcing the Results of the
1.1.1.1 Public DNS Resolver Privacy Examination. https:
//blog.cloudflare.com/announcing-the-results-of-the-1-
1-1-1-public-dns-resolver-privacy-examination/, 03 2020.
(Accessed on 09/15/2020).

[42] Benjamin Greschbach, Tobias Pulls, Laura M Roberts,
Philipp Winter, and Nick Feamster. The effect of DNS
on Tor’s anonymity. arXiv preprint arXiv:1609.08187, 2016.

[43] Christian Grothoff, Matthias Wachs, Monika Ermert, and
Jacob Appelbaum. NSA’s morecowbell: Knell for dns, 2015.

[44] Ansel Herz. Judge Who Authorized Police Search of Seattle
Privacy Activists Wasn’t Told They Operate Tor Network.
https://web.archive.org/web/20191210114929/https:
//www.thestranger.com/slog/2016/04/08/23914735/judge-
who-authorized-police-search-of-seattle-privacy-activists-
wasnt-told-they-operate-tor-network/, 04 2016. (Accessed
on 09/15/2020).

[45] Paul Hoffman and Patrick McManus. DNS queries over
HTTPS (DoH). Internet Requests for Comments, IETF,
RFC, 8484, 2018.

[46] Pi Hole. Pi-hole – A black hole for Internet advertisements.
https://pi-hole.net/. (Accessed on 09/16/2020).

[47] Austin Hounsel, Paul Schmitt, Kevin Borgolte, and Nick
Feamster. Measuring the Performance of Encrypted DNS
Protocols from Broadband Access Networks, 2020.

[48] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane
Wessels, and Paul Hoffman. Specification for DNS over
transport layer security (TLS). IETF RFC7858, May, 2016.

[49] Mei Lin Hui and Gavin Lowe. Fault-preserving simplifying
transformations for security protocols. Journal of Computer
Security, 9(1-2):3–46, 2001.

[50] Franziskus Kiefer. Improving AES-GCM Performance -
Mozilla Security Blog. https://blog.mozilla.org/security/
2017/09/29/improving-aes-gcm-performance/, 09 2017.
(Accessed on 09/16/2020).

[51] E. Kinnear, P. McManus, T. Pauly, and C. Wood. Oblivious
DNS Over HTTPS–IETF Draft. https://tools.ietf.org/html/
draft-pauly-dprive-oblivious-doh-01, 2019.

[52] Erik Kline. DNS over TLS support in Android P Developer
Preview. https://android-developers.googleblog.com/20
18/04/dns-over-tls-support-in-android-p.html, 04 2018.
(Accessed on 09/15/2020).

[53] Ulf Lamping and Ed Warnicke. Wireshark user’s guide.
Interface, 4(6):1, 2004.

https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://developers.cloudflare.com/1.1.1.1/fun-stuff/dns-over-tor/
https://developers.cloudflare.com/1.1.1.1/fun-stuff/dns-over-tor/
https://github.com/cloudflare/cloudflared
https://github.com/cloudflare/cloudflared
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://blog.mozilla.org/blog/2020/02/25/firefox-continues-push-to-bring-dns-over-https-by-default-for-us-users/
https://github.com/DNSCrypt/dnscrypt-protocol/blob/master/ANONYMIZED-DNSCRYPT.txt
https://github.com/DNSCrypt/dnscrypt-protocol/blob/master/ANONYMIZED-DNSCRYPT.txt
https://github.com/DNSCrypt/dnscrypt-protocol/blob/master/ANONYMIZED-DNSCRYPT.txt
https://github.com/DNSCrypt/dnscrypt-proxy/
https://github.com/DNSCrypt/dnscrypt-proxy/
https://developer.apple.com/documentation/networkextension/dns_proxy_provider
https://developer.apple.com/documentation/networkextension/dns_proxy_provider
https://developer.apple.com/videos/play/wwdc2020/10047/
https://developer.apple.com/videos/play/wwdc2020/10047/
https://developers.google.com/speed/public-dns/privacy
https://developers.google.com/speed/public-dns/privacy
https://github.com/facebookexperimental/doh-proxy
https://github.com/facebookexperimental/doh-proxy
https://www.dnscrypt.org/
https://developers.google.com/speed/public-dns/docs/doh
https://developers.google.com/speed/public-dns/docs/doh
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/hpke/
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/hpke/
https://boringssl.googlesource.com/boringssl/+/refs/heads/master/crypto/hpke/
https://blog.cloudflare.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/
https://blog.cloudflare.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/
https://blog.cloudflare.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/
https://web.archive.org/web/20191210114929/https://www.thestranger.com/slog/2016/04/08/23914735/judge-who-authorized-police-search-of-seattle-privacy-activists-wasnt-told-they-operate-tor-network/
https://web.archive.org/web/20191210114929/https://www.thestranger.com/slog/2016/04/08/23914735/judge-who-authorized-police-search-of-seattle-privacy-activists-wasnt-told-they-operate-tor-network/
https://web.archive.org/web/20191210114929/https://www.thestranger.com/slog/2016/04/08/23914735/judge-who-authorized-police-search-of-seattle-privacy-activists-wasnt-told-they-operate-tor-network/
https://web.archive.org/web/20191210114929/https://www.thestranger.com/slog/2016/04/08/23914735/judge-who-authorized-police-search-of-seattle-privacy-activists-wasnt-told-they-operate-tor-network/
https://pi-hole.net/
https://blog.mozilla.org/security/2017/09/29/improving-aes-gcm-performance/
https://blog.mozilla.org/security/2017/09/29/improving-aes-gcm-performance/
https://tools.ietf.org/html/draft-pauly-dprive-oblivious-doh-01
https://tools.ietf.org/html/draft-pauly-dprive-oblivious-doh-01
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html

Oblivious DNS over HTTPS (ODoH) 592

[54] Brandon LeBlanc. Announcing windows 10 insider preview
build 20185. https://blogs.windows.com/windows-
insider/2020/08/05/announcing-windows-10-insider-
preview-build-20185/, 08 2020. (Accessed on 09/15/2020).

[55] Ken Lo. Download Speeds: Comparing 2G, 3G, 4G & 5G
Mobile Networks. https://kenstechtips.com/index.php/d
ownload-speeds-2g-3g-and-4g-actual-meaning, 11 2018.
(Accessed on 09/16/2020).

[56] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan,
Mingming Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang,
and Jianping Wu. An End-to-End, Large-Scale Measure-
ment of DNS-over-Encryption: How Far Have We Come? In
Proceedings of the Internet Measurement Conference, pages
22–35, 2019.

[57] Electronic Frontier Foundation Marcia Hoffmann. Why IP
Addresses Alone Don’t Identify Criminals. https://www.ef
f.org/deeplinks/2011/08/why-ip-addresses-alone-dont-
identify-criminals, 08 2011. (Accessed on 09/15/2020).

[58] Erika McCallister, Tim Grance, and Karen Scarfone. Guide
to protecting the confidentiality of Personally Identifiable
Information (PII): Recommendations of the National
Institute of Standards and Technology. NIST special pub-
lication ; 800-122. Computer security. U.S. Dept. of Com-
merce, National Institute of Standards and Technology,
Gaithersburg, MD, 2010.

[59] Mozilla. Comcast’s Xfinity Internet Service Joins Firefox’s
Trusted Recursive Resolver Program - The Mozilla Blog.
https://blog.mozilla.org/blog/2020/06/25/comcasts-xfinity-
internet-service-joins-firefoxs-trusted-recursive-resolver-
program/, 06 2020. (Accessed on 09/15/2020).

[60] Mozilla. Mozilla Policy Requirements for DNS over HTTPs
Partners. https://wiki.mozilla.org/Security/DOH-resolver-
policy, 09 2020. (Accessed on 09/15/2020).

[61] Alec Muffet. No Port 53, Who Dis?; A Year of DNS over
HTTPS over Tor. In NDSS DNS Privacy Workshop, 02
2021.

[62] Alec Muffett. DoHoT: making practical use of DNS over
HTTPS over Tor. https://github.com/alecmuffett/dohot,
07 2020. (Accessed on 09/15/2020).

[63] NIST. NVD - CVE-2013-2566. https://nvd.nist.gov/vuln/de
tail/CVE-2013-2566, 03 2013. (Accessed on 09/16/2020).

[64] Jan Odvarko. HAR 1.2 Spec. http://www.softwareishard.c
om/blog/har-12-spec/. (Accessed on 02/28/2021).

[65] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. Network and Distributed Systems
Security (NDSS) Symposium, 2019.

[66] Matthew Prince. Introducing 1.1.1.1 for Families. https:
//blog.cloudflare.com/introducing-1-1-1-1-for-families/,
2020.

[67] Chromium Projects. DNS over HTTPS (aka DoH). https:
//www.chromium.org/developers/dns-over-https. (Accessed
on 09/15/2020).

[68] DNSCrypt Proxy. Anonymized DNS Wiki. https://github
.com/DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS.
(Accessed on 09/15/2020).

[69] FIPS PUB. Security Requirements for Cryptographic Mod-
ules. FIPS PUB, 140, 1994.

[70] Reddit Communities. DNS query average : PiHole. https:
//www.reddit.com/r/pihole/comments/a8ngnu/dns_query
_average/, 12 2018. (Accessed on 09/15/2020).

[71] Benedikt Schmidt, Simon Meier, Cas Cremers, and David
Basin. Automated Analysis of Diffie-Hellman Protocols and
Advanced Security Properties. In Stephen Chong, editor,
25th IEEE Computer Security Foundations Symposium, CSF
2012, Cambridge, MA, USA, June 25-27, 2012, pages 78–
94. IEEE, 2012.

[72] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick
Feamster. Oblivious DNS: Practical Privacy for DNS
Queries: Published in PoPETS 2019. In Proceedings of
the Applied Networking Research Workshop, ANRW ’19,
page 17–19, New York, NY, USA, 2019. Association for
Computing Machinery.

[73] Benjamin M. Schwartz, Mike Bishop, and Erik Nygren. Ser-
vice binding and parameter specification via the DNS (DNS
SVCB and HTTPS RRs). Internet-Draft draft-ietf-dnsop-
svcb-https-03, Internet Engineering Task Force, February
2021. Work in Progress.

[74] Milan P Stanic. TC–Traffic Control. Linux QOS Control
Tool, 2001.

[75] Srikanth Sundaresan, Nazanin Magharei, Nick Feamster,
Renata Teixeira, and Sam Crawford. Web performance
bottlenecks in broadband access networks. In Proceedings
of the ACM SIGMETRICS/international conference on
Measurement and modeling of computer systems, pages
383–384, 2013.

[76] TracBot. Tor blocked in UAE (#25137) · Issues · Legacy
/ Trac · GitLab. https://gitlab.torproject.org/legacy/trac/-
/issues/25137, 02 2018. (Accessed on 09/15/2020).

[77] European Union. What is considered personal data under
EU GDPR. https://gdpr.eu/eu-gdpr-personal-data/.
(Accessed on 02/27/2021).

[78] Upturn. What ISPs Can See. https://www.upturn.org/r
eports/2016/what-isps-can-see/, 03 2016. (Accessed on
09/15/2020).

[79] Zhiheng Wang. Navigation Timing - World Wide Web Con-
sortium (W3C). https://www.w3.org/TR/navigation-
timing/, 12 2012. (Accessed on 09/17/2020).

[80] Nicholas Weaver, Christian Kreibich, and Vern Paxson.
Redirecting DNS for Ads and Profit. FOCI, 2:2–3, 2011.

[81] Xynou, Maria, and Filasto, Arturò. Iran Protests: OONI
data confirms censorship events (Part 1) | OONI. https:
//ooni.org/post/2018- iran-protests/. (Accessed on
09/15/2020).

[82] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. Analy-
sis of privacy disclosure in DNS query. In 2007 International
Conference on Multimedia and Ubiquitous Engineering
(MUE’07), pages 952–957. IEEE, 2007.

[83] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai.
Two-servers PIR based DNS query scheme with privacy-
preserving. In The 2007 International Conference on
Intelligent Pervasive Computing (IPC 2007), pages 299–302.
IEEE, 2007.

[84] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison
Mankin, and Nikita Somaiya. T-DNS: Connection-oriented
DNS to improve privacy and security. ACM SIGCOMM
Computer Communication Review, 44(4):379–380, 2014.

https://blogs.windows.com/windows-insider/2020/08/05/announcing-windows-10-insider-preview-build-20185/
https://blogs.windows.com/windows-insider/2020/08/05/announcing-windows-10-insider-preview-build-20185/
https://blogs.windows.com/windows-insider/2020/08/05/announcing-windows-10-insider-preview-build-20185/
https://kenstechtips.com/index.php/download-speeds-2g-3g-and-4g-actual-meaning
https://kenstechtips.com/index.php/download-speeds-2g-3g-and-4g-actual-meaning
https://www.eff.org/deeplinks/2011/08/why-ip-addresses-alone-dont-identify-criminals
https://www.eff.org/deeplinks/2011/08/why-ip-addresses-alone-dont-identify-criminals
https://www.eff.org/deeplinks/2011/08/why-ip-addresses-alone-dont-identify-criminals
https://blog.mozilla.org/blog/2020/06/25/comcasts-xfinity-internet-service-joins-firefoxs-trusted-recursive-resolver-program/
https://blog.mozilla.org/blog/2020/06/25/comcasts-xfinity-internet-service-joins-firefoxs-trusted-recursive-resolver-program/
https://blog.mozilla.org/blog/2020/06/25/comcasts-xfinity-internet-service-joins-firefoxs-trusted-recursive-resolver-program/
https://wiki.mozilla.org/Security/DOH-resolver-policy
https://wiki.mozilla.org/Security/DOH-resolver-policy
https://github.com/alecmuffett/dohot
https://nvd.nist.gov/vuln/detail/CVE-2013-2566
https://nvd.nist.gov/vuln/detail/CVE-2013-2566
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/
https://blog.cloudflare.com/introducing-1-1-1-1-for-families/
https://blog.cloudflare.com/introducing-1-1-1-1-for-families/
https://www.chromium.org/developers/dns-over-https
https://www.chromium.org/developers/dns-over-https
https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS
https://github.com/DNSCrypt/dnscrypt-proxy/wiki/Anonymized-DNS
https://www.reddit.com/r/pihole/comments/a8ngnu/dns_query_average/
https://www.reddit.com/r/pihole/comments/a8ngnu/dns_query_average/
https://www.reddit.com/r/pihole/comments/a8ngnu/dns_query_average/
https://gitlab.torproject.org/legacy/trac/-/issues/25137
https://gitlab.torproject.org/legacy/trac/-/issues/25137
https://gdpr.eu/eu-gdpr-personal-data/
https://www.upturn.org/reports/2016/what-isps-can-see/
https://www.upturn.org/reports/2016/what-isps-can-see/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://ooni.org/post/2018-iran-protests/
https://ooni.org/post/2018-iran-protests/

	Oblivious DNS over HTTPS (ODoH): A Practical Privacy Enhancement to DNS
	1 Introduction
	2 Background & Related Work
	2.1 Encrypted DNS Protocols and Privacy
	2.2 Privacy & Regulatory Considerations
	2.3 Prior Measurements

	3 Oblivious DNS over HTTPS
	3.1 Features and Properties
	3.2 Protocol Description

	4 Formal Analysis
	4.1 Model Overview
	4.2 Correlation Attacks
	4.3 Adversary
	4.4 Security Properties
	4.5 A Replay Attack and Mitigation

	5 Results
	5.1 Implementation and Microbenchmarks
	5.2 Measurement
	5.3 Query Response Times
	5.4 Co-locating Targets with Resolvers
	5.5 Connection Reuse
	5.6 Impact of Network Type
	5.7 Page Load Times with ODoH
	5.8 Discussion

	6 Wider Deployment Considerations
	6.1 A Practical Roadmap for Adoption
	6.2 Potential Attacks
	6.3 Organizational Implications

	7 Concluding Remarks

