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Forward and Backward-Secure
Range-Searchable Symmetric Encryption
Abstract: Dynamic searchable symmetric encryption
(DSSE) allows a client to query or update an out-
sourced encrypted database. Range queries are com-
monly needed. Previous range-searchable schemes either
do not support updates natively (SIGMOD’16) or use
file indexes of many long bit-vectors for distinct key-
words, which only support toggling updates via homo-
morphically flipping the presence bit. (ESORICS’18).
We propose a generic upgrade of any (inverted-index)
DSSE to support range queries (a.k.a. range DSSE),
without homomorphic encryption, and a specific instan-
tiation with a new trade-off reducing client-side storage.
Our schemes achieve forward security, an important
property that mitigates file injection attacks. More-
over, we identify a variant of injection attacks against
the first somewhat dynamic scheme (ESORICS’18). We
also extend the definition of backward security to range
DSSE and show that our schemes are compatible with a
generic upgrade of backward security (CCS’17).
We comprehensively analyze the computation and com-
munication overheads, including implementation details
of client-side index-related operations omitted by prior
schemes. We show high empirical efficiency for million-
scale databases over a million-scale keyword space.
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1 Introduction
Searchable symmetric encryption (SSE) allows a client
to issue (keyword) search queries over the encrypted
data outsourced to an untrusted server. SSE schemes
with different trade-offs of efficiency, security, and func-
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tionality have been proposed. Major milestones include
dynamic SSE (DSSE) by Kamara et al. [19], enabling
insertion/deletion over the encrypted database.
Forward/Backward Security. The dynamism in-
evitably introduces new attack surfaces and thus mo-
tivates new security notions [31] – Forward security [31]
requires newly updated keyword-file pairs remain pri-
vate against the server that previously got any search to-
ken of those keywords. Leakages of non-forward-secure
schemes can be exploited, as shown by Zhang et al. [37].
Bost [3] formally defined forward security, and Lai and
Chow [26] gave a generalized definition. Quite a few
forward-secure DSSE schemes have been proposed us-
ing advanced cryptographic primitives [3, 4] or novel
data structures [26]. Security under adaptive attacks is
established by formally confining the leakage.

Also regarding updates, backward security [31] en-
sures that keyword searches of any deleted keyword-file
pair ideally reveal nothing about the deleted file, e.g.,
not even any hint whether it has never been added or
has just been deleted. Bost et al. [4] defined three levels
of backward security for single-keyword DSSE.
Range-Searchable Encryption. Searching a range of
values is a common query that also constitutes more ex-
pressive ones such as skylining [35]. It should be more
efficient than searching each value in the range one by
one. Handling encrypted range queries without order-
preserving encryption [2] is posed as an important prob-
lem towards SQL on encrypted databases [15].

Demertzis et al. [10] and Faber et al. [11] are the first
in building range-searchable encryption upon SSE with
range-covering techniques of a tree-like index. However,
their frameworks apply only to static SSE, while updates
are suggested to be handled in batch by setting up a new
instance [10]. Native dynamism that processes even just
a single update in real-time is more natural.
Systemization-of-Knowledge (SoK). We start with
a mini SoK study on prior works. Demertzis et al. [10]
provided a set of range-covering techniques. To con-
struct dynamic SSE for range queries, or range DSSE,
later works [38, 39] proposed ad hoc designs, namely, a
similar tree-like index over a specific DSSE scheme [3]
or file indexes of long bit-vectors, requiring local tree
rebuilding for search/update. These designs also lead
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Table 1. Property of (Range) SSE/DSSE Schemes (→/←: Forward/Backward Security, #: Non-predefined (Large) Number of Files)

Scheme Range (Native) → ← # No False Symmetric-key Inverted Special
Query Dynamism Positive Building Block Index Feature∑

oϕoς [3] 7 3 3 7 3 3 7 3 Maliciously Secure
Cascaded Triangle [26] 7 3 3 7 3 3 3 3 Parallelizable
FASTIO [30] 7 3 3 7 3 3 3 3 Optimized I/O
Logarithmic-SRC/SRC-i [10] 3 7 3 7 3 7 3 3 O(1) Token Size
Logarithmic-BRC/URC [10] 3 7 3 7 3 3 3 3 Logarithmic Search
SEAL [9] 3 7 7 7 3 3 3 3 Adjustable Leakage
Scheme-A [38] 3 3 3 7 3 3 7 3 n/a
Scheme-B [38] 3 3 7 3 7 3 7 7 n/a
FBDSSE-RQ [39] 3 3 3 3 7 3 3 7 n/a
MoRSE(Π) 3 3 3 3 3 3 3 3 Inherited from Π
(RS)2 3 3 3 3 3 3 3 3 Reduced Storage

Table 2. Efficiency of Range SSE/DSSE Schemes with a Notation Summary for Typical Parameters of Interests (∗)

Scheme Server Computation Client Computation Communication
Search Update Search Update Search Update

Log.-SRC [10] O(N)
n/a See Sec. 7.1 n/a

O(|DB(q)|+ ε)
n/aLog.-SRC-i [10] O(wq + |DB(q)|) O(|DB(q)|+ ε′)

Log.-BRC/URC [10] O(|DB(q)|) O(|DB(q)|)

Scheme-A [38] O(nq)
O(logW )

or O(N)†
O(Wx + logwq)

O(Wx)

or O(N)†
O(|DB(q)|)

O(logW )

or O(N)†

Scheme-B [38] O(logwq)‡ O(logW ) O(Wx + logwq) O(Wx) O(logwq)‡ O(logW )
FBDSSE-RQ [39] O(nq) O(log |W|) O(|W|) O(|W|) O(logwq)‡ O(log |W|)

MoRSE(Π) O(nq) log(|W|)TUpd
s log(wq)T Srch

c log(|W|)TUpd
c O(|DB(q)|) O(log |W|)

(RS)2 O(nq) O(log |W|) O(wq) O(W + log |W|) O(|DB(q)|) O(log |W|)

* W is the number of distinct keywords in the database. Wx is the largest value of existing keywords. W is the keyword space.
wq is the number of keywords within a range query. Special notes for complexity marked with †/‡ can be found in Section 7.
nq is the total number of updates (add + del) that contain the keywords in a range query q since initialization.
nq(< nq) is the total number of updates that contain the keywords in a query q since the last search of them.
|DB(q)| (= nq if no deletion) is the number of files matching a range query q. ε/ε′ refers to the false positive, where ε′ < ε.
N is the database size (largest here), i.e., the total number of updates (add + del) since initialization.
T Srch
c /TUpd

c (resp. T Srch
s /TUpd

s ) are the client (resp. server) search/update complexity of Π. All except T Srch
s are typically O(1).

to inefficiency at different levels – handling many long
bit-vectors at the data-structure level or using homo-
morphic techniques to enable (forward-secure) searches
and updates at the cryptography level. Studying these
major designs unveils neglected complexities (detailed
in Section 7, which also explains Tables 1-3) and sheds
light on how to tackle their shortcomings.
Overview of Our Contributions. In response, we
put forward a range DSSE framework adopting the
range-covering techniques [22, 29]. We propose two
range DSSE constructions with subtle modifications that
avoid drawbacks in prior works. Particularly, they of-
fer newer functionalities (e.g., supporting native up-
dates without asymmetric or homomorphic primitives)
and better performance (e.g., further reducing client-

side storage). Tables 1 and 2 summarize our advantages
in security, efficiency, and features. We also extend the
backward security definitions [4] for range DSSE.

Despite the cryptographic nature of our study, we
also emphasize practical aspects. Notably, we give a de-
tailed performance analysis to illustrate the practical
advantages brought by the desired properties. We also
consider theoretical notions in practice and uncover vul-
nerabilities [38]. Below we highlight our contributions.
New Constructions. We start with a range DSSE
framework, abstracting existing works and distilling the
core idea of reducing a range search to multiple single-
keyword searches while handling dynamism natively. We
propose two schemes based on the framework.
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Table 3. Client Storage of (Forward-Secure) Range SSE/DSSE

Scheme Client Storage
Logarithmic-SRC [10] 3W − logW − 2
Logarithmic-SRC-i [10] 3W − logW + 3D − logD − 4
Logarithmic-BRC/URC [10] 2W − 1
Scheme-A [38] 2W − 1
FBDSSE-RQ [39] 2W + log |W| − logW

MoRSE(Π) 2W + log |W| − logW
(RS)2 W + s

We follow notations in Table 2. D is the number of distinct files.
s is the number of distinct (possibly overlapping) sub-ranges in
all queries (See Section 5.3). We assume W and D are integral
multiples of 2, and existing keywords are contiguous. Π stores a
state per keyword as typical forward-secure DSSE [3, 26, 30].

Our first scheme MoRSE is a modular approach
that upgrades any typical forward-secure DSSE (gener-
ically obtainable from DSSE [26]). While Logarithmic-
BRC [10], scheme-A [38], and MoRSE all build upon the
range-covering technique called best range cover (Sec-
tion 3.3), they have very different properties in multi-
ple dimensions. In short, MoRSE captures the essence
of prior works but avoids their design-specific prob-
lems [38, 39] (Section 7). It performs better on many
criteria, notably client search complexity (Table 2), by
avoiding indexes rebuilding at a little client-storage cost.

Our second scheme (RS)2 aims at reducing client
storage (see Table 3) with most features remaining com-
petitive. Namely, the storage is always less than that
of other round-optimal forward-secure constructions be-
fore all possible ranges have been queried.

Besides the favorable properties in Table 1, our
modular design enables i) physical deletion [1, 30] for
reclaiming the space for deleted data and ii) search re-
sults archives [14], which cache the file identifiers in prior
authorized searches and save the future search time.

In a sense, Demertzis et al. [10] studied six different
range-covering realizations for (static) SSE based on the
same skeleton (which we extract in Section 4.1), some
with extra structures (e.g., two indexes in Logarithmic-
SRC-i [10]) to tackle some shortcomings. We instead fo-
cus on getting the best out of the best range cover, but
follow a similar spirit in proposing techniques to tackle
specific shortcomings (e.g., reducing client storage).
New File Injection Attack. We identify a variant of
the adaptive file injection attack determining the range
to query (vs. a single keyword) over non-forward-secure
range DSSE. This attack breaks the forward security
claim of scheme-B [38]. Our result carries independent
interests in studying range DSSE security.

Refined Definition of Backward Security. We il-
lustrate the subtlety of backward security in range
DSSE. The only formal definition [39] (subsequent to
the preprint version of this work [32]) solely concerns a
specific case. Our three levels of backward security, ex-
tended from DSSE [4], are more generic. Following the
definition, we upgrade our schemes with a two-round
transformation [4] for backward security.
Theoretical and Experimental Evaluations. We
provide complete theoretical analyses of the proposed
constructions, followed by experimental evaluations. In
particular, we make clear the use of the range-covering
technique (with a suggested implementation) and in-
clude its overhead in Table 2. Unfortunately, these were
either not mentioned explicitly [10] or previously omit-
ted in the client-side overhead analysis [38, 39].

While recent works provide no [38] or limited eval-
uations [39], we implement ours and FBDSSE-RQ [39]
for comprehensive analyses of practical performance for
a >1 million keyword space and ∼5 million records. We
measure the client-side storage omitted in other works.
Organization. The next two sections overview the re-
lated works and the preliminaries (e.g., basic notations).
Section 4 sketches a range DSSE framework and pro-
poses our modular range DSSE construction. In Sec-
tion 5, we propose a reduced-client-storage range DSSE
scheme with forward security. Section 6 discusses back-
ward security and potential reconstruction attacks. Sec-
tion 7 thoroughly reviews prior range SSE schemes and
shows an attack breaking a wrong claim of forward se-
curity. (Also see Appendix D.) Section 8 presents our
prototypes and experiments, followed by a conclusion.

2 Related Work
Faber et al. [11] first studied how to support range
queries in SSE by utilizing a binary tree index. The tree
nodes covering the queried range are searched with an
SSE called OXT [6] (oblivious cross-tags protocol) for
disjunctive queries. Demertzis et al. [10] built six range
SSE schemes with different range-covering techniques of
tree indexes and can be deemed as more generic than the
range SSE of Faber et al. [11]. One of the schemes [10]
is later adapted for adjustable leakage [9].

Two range DSSE schemes are then proposed [38].
Both require tree construction before each query, while
one of them is indeed not forward-secure. Note that
a fix [39] appeared after we had publicized our de-
signs [32] and the attack against the non-forward-secure
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scheme [38]. The fix [39] also has its own drawbacks, e.g.,
an even worse client-side computation complexity [38].

3 Preliminary
Let negl(λ) be a negligible function in λ. PPT stands
for probabilistic polynomial-time. For a set X, x←$X

uniformly samples an x from X. In a two-party protocol
(cout; sout) ← P (cin; sin) between a client and a server,
cin and cout (resp. sin and sout) are inputs and outputs
of the client (resp. server). || means concatenation.

3.1 Dynamic SSE

Definition 3.1 (DSSE [3]). A DSSE scheme is a tuple
of PPT algorithms/protocols (Setup,Search,Update).
(K,EDB, st)← Setup(1λ) is a PPT algorithm taking a
security parameter λ. It outputs a secret key K, an (ini-
tially empty) encrypted database EDB, and state st.
((st′,R); (EDB′,R))← Search(K, st, q; EDB) is a proto-
col between the client (with a secret key K, a state
st, and a query q), and the server (with an encrypted
database EDB). The client outputs a new state st′, while
the server outputs a (possibly) updated database EDB′.
Both parties output a sequence of responses R, which
essentially consists of the (identifiers of) files matching q.
(st′; EDB′)← Update(K, st, op, up; EDB) is a protocol be-
tween the client (with a secret keyK, a state st, an oper-
ation op ∈ {add, del}, and an update input up parsed as
a keyword-file pair (w, id)), and the server (with an en-
crypted database EDB). The client outputs a new state
st′ and the server updates EDB to EDB′.

In a round-optimal DSSE scheme, for Search (resp.
Update), the client generates a search token tq (resp.
update token tu) for the server to process EDB locally.
No interaction needed before the output of responses.

A DSSE scheme is correct if for all security parame-
ters λ, all (K,EDB, st) ∈ Setup(1λ), and all sequences
of Search and Update operations, the search protocol
Search(K, st, q; EDB) returns correct responses (i.e., the
identifiers of files matching the query q) except with
negligible probability. See [5] for a formal definition.

Adaptive security is captured under the real/ideal
simulation paradigm with a stateful leakage func-
tion set L for simulation. Each component of L =
{LStp,LSrch,LUpd} corresponds to the leakage during
setup, search, and update operations, respectively.

Definition 3.2. We say DSSE = (Setup,Search,Update)
is L-adaptively-secure, where L = {LStp,LSrch,LUpd} is
a set of stateful leakage functions, if for any PPT adver-
sary A, there exists a PPT simulator S such that:

|Pr[RealA(1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ) .

RealA(1λ): The challenger executes Setup(1λ) and
sends (initially empty) EDB to A. Then A adaptively
makes a polynomial number of search queries q and up-
date queries (op, up). The challenger returns the tran-
scripts generated by running Search or Update protocol
on q or (op, up), respectively. Finally, A returns a bit b.

IdealA,S(1λ): S generates (initially empty) EDB us-
ing LStp and sends it to A. A adaptively makes a poly-
nomial number of search queries with input q and up-
date queries with input (op, up). For a query q, S re-
turns the transcripts generated with LSrch(q). For an up-
date (op, up), S returns the transcripts generated with
LUpd(op, up). Eventually, A returns a bit b.

Both probabilistic experiments output the bit b.

Search Pattern and Update History. Definition 3.2
captures the leakage of DSSE with the leakage func-
tion set L. L maintains an operation list Q to record
all operations issued so far. Assume u is the times-
tamp when an operation happens, Q records (u,w) for
a search on keyword w, or (u, op, w, id) for an update
with (op, up = (w, id)). Each individual leakage function
(LStp,LSrch,LUpd) implicitly takes Q as input, whose last
record is the last operation before evaluating the leak-
age. This pinpoints the leakage incurred due to the last
operation while considering all historical operations.

Using Q, we define the repetition of queried key-
words as the search pattern sp(w) = {u|(u,w) ∈ Q},
which is the information leaked in typical SSE schemes.
We use hist(w) = {(u, op, id)|(u, op, w, id) ∈ Q} to record
the update history for every keyword since initialization.

3.2 File Injection Attack

Zhang et al. [37] demonstrated file injection attacks
against DSSE. In their setting, the server could send files
of its choice to the client, who then encrypts and uploads
them as normal updates in DSSE schemes. LetW be the
keyword space. The server would inject dlog |W|e differ-
ent files, each containing exactly half of the keywords
from W. By observing the set of injected files returned
for a search token, the adversary could tell which key-
word is contained in the token. This is a non-adaptive
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Fig. 1. Example for the Best Range Cover of bd2, 7ce = bd010, 111ce

attack and can be mitigated by limiting the number of
keywords in a single file by a threshold T .

An adaptive attack against the above threshold-
based countermeasure divides the keyword space into
d|W|/T e subsets. The server first injects (d|W|/T e − 1)
files, each containing T keywords, to determine which
subset the keyword of the search token lies in. For the
target subset, the server only needs to inject O(log T )
files to figure out the exact keyword like the above non-
adaptive attack. This adaptive attack efficiently breaks
the threshold-based countermeasure. Zhang et al. [37]
showed that, after the target subset is known, only 8
new files have been injected when T = 200. Whereas
this attack requires the knowledge of the relation be-
tween newly injected files and the keyword in the target
search token. Such leakage is hidden by forward security
to be formally defined in Section 4.2.

3.3 Best Range-Covering Technique

We review the best range cover (BRC) technique used
by prior schemes [10, 38] and ours. For simplicity, we
assume a perfect binary tree with 2m leaves and a nu-
merical domain D = {0, . . . , 2m − 1}. Starting from the
left, the i-th leaf node is denoted by τi and assigned with
the numerical value i; thus {τi}i∈D covers D. Each non-
leaf node is denoted by τi,j , where i, j are the values as-
signed to the left-most and right-most leaf descendants
of the node, respectively, and i < j. That is, a node τi,j
is assigned with the range of values {i, . . . , j} ⊂ D.

Given a range (of contiguous values) over the do-
main D, BRC selects the minimum set of tree nodes
that exactly covers the range. For the example in Fig-
ure 1, values of domain {0, . . . , 7} are assigned to leaf
nodes accordingly. BRC of range bd2, 7ce contains τ2,3 and
τ4,7 (shown as patterned nodes). The number of nodes
in BRC is always no more than the number of values in
the range. We define the GetBRC algorithm as follows.

GetBRCm(a, b)

1 : BRC← ∅, i := 0

2 : a0 · · · am := [a]bin, b0 · · · bm := [b]bin
3 : while a0 · · · am−i < b0 · · · bm−i do

4 : if am−i = 1 then

5 : BRC := BRC ∪ {a0 · · · am−i}

6 : if bm−i = 0 then

7 : BRC := BRC ∪ {b0 · · · bm−i}

8 : a0 · · · am−i := a0 · · · am−i + [1]bin
9 : b0 · · · bm−i := b0 · · · bm−i − [1]bin

10 : i := i+ 1

11 : endwhile

12 : if a0 · · · am−i = b0 · · · bm−i then

13 : BRC := BRC ∪ {a0 · · · am−i}

14 : return BRC

Fig. 2. Suggested Implementation of Best Range Cover (GetBRC)

BRC← GetBRCm(a, b) is a deterministic algorithm that
takes as input the height m of a binary tree and two
numerical values a, b representing a range bda, bce over do-
main {0, . . . , 2m − 1}. It outputs BRC of range bda, bce.

Kiayias et al. [22] introduced how to get BRC: given
a range bda, bce, it starts by determining the last common
ancestor of a and b from the root. By checking specific
bits of a and b in their binary forms, it judges whether
a node belongs to BRC and moves down towards leaves.

We suggest an implementation the other way round:
it ascends from the leaves of a and b towards their first
common ancestor, avoiding (probably long) bit checking
from the root. Both implementations can be viewed as
extensions of the minimal dyadic cover [29], serving as
references for instantiating related structures [10, 38]
with the asymptotic complexity of O(log(b− a)).
A Suggested Implementation. We represent the
(k + 1)-bit binary form [a]bin of a numerical value a by
a0 · · · ak (prepending 0s if needed) with a0 =“ ”, a null
string denoting the root. Such an (m + 1)-bit binary
string can represent the value of every leaf node in a bi-
nary tree associated with a domain D = {0, . . . , 2m−1}.
The binary form for any parent is that for its child with
its last bit truncated. For example, in Figure 1, the bi-
nary form of node τ4 is “ 100” while its parent (τ4,5) is
“ 10”. With the knowledge of D, we can follow the node
representation without explicitly building the tree.

We detail the procedure in Figure 2. For any given
range, we first transform its upper and lower bounds to
their binary form (line 2). If the last bit of the lower
bound equals 1 (resp. the last bit of the upper bound
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equals 0), the value of the lower (resp. upper) bound
will be inserted into BRC (line 4–7). This means the
tree node for the lower (resp. upper) bound is a right
(resp. left) child of its parent, and none of its ancestors
covers solely the values in the range.

The value of the lower (resp. upper) bound will be
increased (resp. decreased) by 1 afterward (line 8–9).
Then, we truncate the last bit of both bounds by mov-
ing the bit position (line 10) and setting the truncated
bit-strings as the new bounds. We repeat the above op-
erations until the lower bound is not smaller than the
upper bound. If they are equal eventually, we also insert
the value of the bound into BRC (line 12–13).

Consider BRC of bd2, 7ce in Figure 1:
– Transform 2, 7 into “ 010” and “ 111” respectively.
– As the last bit of the lower bound is not 1, increase

it by 1 (i.e., “ 011”) and get the new lower bound
by truncating the last bit of the result (i.e., “ 01”).

– As the last bit of the upper bound is not 0, decrease
it by 1 (i.e., “ 110”) and get the new upper bound
by truncating the last bit of the result (i.e., “ 11”).

– As the last bit of the lower bound is 1, insert “ 01”
into BRC and update the bound likewise (i.e., “ 1”).

– As the last bit of the upper bound is not 0, update
the upper bound as above (i.e., “ 1”).

– Insert the equal bounds “ 1” into BRC.
– BRC of bd2, 7ce consists of “ 01” (τ2,3) and “ 1” (τ4,7).

4 A Framework of Range DSSE

4.1 A Skeleton Framework of Range DSSE

Our goal is to build a server-side index for the server
to answer range queries from the client, i.e., retriev-
ing the identifiers of files containing any keyword in the
range. Let W be a set of contiguous positive integers.
(It is possible to convert a floating-point domain, e.g.,
temperatures, to W with scaling and transformation.)
We consider one-dimensional queries over W. Each file
owned by the client contains at least one keyword inW.

A core idea in range SSE [10] is to reduce a range
search to multiple single-keyword searches. This subsec-
tion is meant to distill the details from existing works,
despite their many differences in security, features, and
performance. Our framework also considers native (vs.
batched [10]) dynamism. The following will use “key-
word” to refer to an artifact denoting a sub-range for
search and update of the underlying DSSE mechanism,
which is different from real keywords in range DSSE.

Setup.
1. BreakW into a set of (potentially overlapping) sub-

ranges, and associate a unique “keyword” of the un-
derlying DSSE to every range.

2. Run DSSE.Setup to initialize an encrypted database.

Search.
1. Break the queried range into sub-ranges, and get

the “keyword” associated with each sub-range.
2. Search for each “keyword” via DSSE.Search.

Update.
1. For operation op ∈ {add, del}, parse an update input

up into a keyword and a file identifier.
2. Map the keyword to the set of sub-ranges depending

the covering technique.
3. Execute DSSE.Update associating the “keywords”

for each sub-range to the file identifier for op.

Security. The L-adaptive security for range DSSE
can be defined as that of DSSE in Definition 3.2. The
security of range DSSE obtained via the above abstract
framework is highly related to that of the underlying
DSSE. Its leakage can be obtained by augmenting the
leakage functions L = {LStp,LSrch,LUpd} of the under-
lying DSSE scheme to capture the extra leakage stem-
ming from the keyword mapping and index structure.
See [10, 11] for discussions on leakage caused by different
keyword-mapping strategies and efficiency trade-offs.

4.2 Forward and Backward Security

Forward security requires that Update reveals nothing
about which keywords are involved in the keyword-file
pairs to be updated. Its definition for single-keyword
DSSE is readily extensible to range DSSE.

Definition 4.1 (Forward Security [7, 26]). We say an
L-adaptively-secure (range) DSSE scheme is forward-
secure if the update leakage can be written as:
LUpd(op, up) = L′(op, id), where op ∈ {add, del} is an
operation, up is an update input parsed as a keyword-
file pair (w, id), and L′ is stateless and does not take w.

Backward security requires that whenever a keyword-file
pair (w, id) has been added then deleted, searching over
w reveals nothing about file id. Bost et al. [4] formal-
ized backward security via three leakage functions over
the operation list Q. TimeDB(w) contains files currently
matching w and when (u) they are added. UpdTime(w)
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is the timestamp u when all the updates on w happened.
Finally, DelHist(w) lists the timestamp-pairs of deletions
and corresponding insertions on w.

TimeDB(w) = {(u, id) | (u, add, w, id) ∈ Q
∧ ∀u′, (u′, del, w, id) /∈ Q},

UpdTime(w) = {u | (u, add, w, id) ∨ (u, del, w, id) ∈ Q},
DelHist(w) = {(uadd, udel) | ∃id s.t. (udel, del, w, id) ∈ Q

∧ (uadd, add, w, id) ∈ Q}.

With the above leakage functions, we extend three
levels of backward security [4] from single-keyword DSSE
to range DSSE. We define them by considering a range
query q for Search. Suppose KSetq is the “keyword” set
associated with the sub-ranges of q as illustrated in
Section 4.1. We parse an update up as a keyword-file
pair (w, id). Also, we omit leakages unrelated to for-
ward/backward security, e.g., the keyword-space size.

Definition 4.2 (Backward Security). We say an L-
adaptively-secure range DSSE is
– insertion-pattern revealing backward-secure if

– LUpd(op, w, id) = L′(op),
– LSrch(q) = L′′((TimeDB(k), ak)k∈KSetq ),

where ak is the total number of updates on k.
– update-pattern revealing backward-secure if

– LUpd(op, w, id) = L′(op, w),
– LSrch(q) = L′′((TimeDB(k),UpdTime(k))k∈KSetq ).

– weakly backward-secure if
– LUpd(op, w, id) = L′(op, w),
– LSrch(q) = L′′((TimeDB(k),DelHist(k))k∈KSetq ).

The earlier definition is stronger. L′ and L′′ are stateless,
i.e., their outputs solely depend on the inputs.

Note that a combination of forward security and weak
backward security is enough to limit the update leakage
to the type of involved operations [4].

Any search query on keyword w, happening between
the insertion and the deletion of keyword-file pair (w, id)
for the same keyword w, will expose the file identifier id
associated with the deletion. Bost et al. [4] excluded this
case for backward security for single-keyword DSSE.

For range DSSE, we cannot reuse the definition
verbatim. Between the insertion and the deletion of
keyword-file pair (w, id), we cannot just exclude any
search query on w. We need to exclude any search query
on (any “keyword” associated with) any range covering
the updated keyword w. For example, a file f , added for
keyword 6, will also be added for (“keyword” associated
with) bd4, 7ce. If a search query on bd4, 7ce is issued before
the deletion of the keyword-file pair (6, f), the adver-

Setup(1λ)

1 : (K,EDB, st)← Π.Setup(1λ)

2 : return (K,EDB, st)

Update(K, st, op, up; EDB)

1 : Parse up as (w, id)

2 : w0 · · ·wm := [w]bin
3 : for i := 0 to m do

4 : upi := (w0 · · ·wi, id)

5 : (st′; EDB′)← Π.Update(K, st, op, upi; EDB)

6 : st := st′,EDB := EDB′

7 : endfor

8 : return (st′; EDB′)

Search(K, st, q; EDB)

1 : Parse q as [a, b]

2 : CSet ← GetBRCm(a, b)

3 : RSet← ∅

4 : for τ ∈ CSet do

5 : ((st′,R); (EDB′,R))← Π.Search(K, st, τ ; EDB)

6 : RSet := RSet ∪R; st := st′; EDB := EDB′

7 : endfor

8 : return ((st′, RSet); (EDB′, RSet))

Fig. 3. MoRSE: Modular Range DSSE building upon DSSE Π

sary can link file f with the deleted file of 6 by simply
observing the insertion and deletion time revealed by a
subsequent query on 6. It suggests that a trivial exten-
sion cannot guarantee the privacy of the deleted file.

4.3 Our Secure Modular Construction

Our modular range DSSE construction MoRSE (Fig-
ure 3) is based on a binary-tree-like index and any typ-
ical DSSE scheme Π. The resulting scheme achieves for-
ward security, provided Π is forward-secure. Section 6.1
will show how to upgrade it with backward security.
Description. Let CSet be the covering-node set that
helps the client record elements in BRC of a given range,
and RSet be the set recording the search result during
the search operation. Without loss of generality, we as-
sume the size of keyword space W is 2m.

Our scheme uses the binary representation of the
keyword to implicitly maintain a binary tree with depth
logarithmic in the keyword space size. More specifically,
for each keyword w from W (i.e., the leaf node), its
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(w+1)-bit binary form is w0 · · ·wm := [w]bin (prepending
0s if needed) with w0 =“ ”. Then, we can represent the
ancestors for the leaf node of w by w0,w0w1,w0w1w2, . . .,
and w0 · · ·wm−1. Among these ancestors, w0 always rep-
resents the root with representation “ ”.

For a range query, the client derives its best range
cover via GetBRC (Figure 2) and stores it as CSet (line 2
of Search). For each element of CSet, the client searches
for it using the underlying DSSE (line 4–7). The server
returns the union of all results as RSet.

When adding/deleting a keyword-file pair in the in-
dex, the client represents the keyword in its binary form
(line 2 of Update). Besides the keyword itself, every an-
cestor of it will be treated as a “keyword” (line 3–4) to
be updated with the underlying DSSE scheme accord-
ingly (line 5). The client does not need to rebuild the
binary tree (cf. [38, 39]) since the ancestors’ locations
can be found with the knowledge of the (binary form
of) keyword value. The client simply records the height
of the implicit tree (and the bit length of the keyword
value) to process this binary-tree-like index correctly.
Efficiency. Let T Srch

c and TUpd
c (resp. T Srch

s and TUpd
s )

be the client-side (resp. server-side) search and update
complexity for Π. Typically [3], T Srch

c = TUpd
c = TUpd

s =
O(1) and T Srch

s = O(nq), which is parallelizable in some
schemes [26, 30], where nq is the number of matches.

The update of MoRSE(Π) takes the client (resp.
server) an overhead of log |W|·TUpd

c (resp. log |W|·TUpd
s ),

since Π.Update is executed for log |W| times. For the
search of MoRSE(Π), the client runs GetBRC once and
executes Π.Search for each element in BRC of query q,
leading to logwq · (T Srch

c + 1) client-side computation.
The server-side computation is upper-bounded by

logwq · T Srch
s . Yet, note that the server in MoRSE(Π)

just executes Search of Π for each part of the range,
taking the sum of search complexity T Srch

s for each sub-
query qi. When T Srch

s is linear in the number of matches
nqi for each sub-query qi (and logwq < nq), the sum
is linear in the number of matches for the range query,
i.e., O(nq). With a similar analysis, since BRC covers
exactly the range, the search communication adds up
to |DB(q)| (which is nq if there was no deletion).

MoRSE(Π) has a log |W| blow-up over Π for update
communication. Typical forward-secure DSSE, e.g., [3,
26, 30] features constant-size update communication.

MoRSE(Π) treats every accessed tree node as a key-
word, while forward-secure DSSE typically requires the
client to store a state per keyword. To baseline our
reduced-storage scheme (RS)2 in the next section, we
consider the optimal case where keywords are contigu-

ous (mostly belonging to the same subtree). The client
storage overhead is then the number of existing key-
words and the non-leaf nodes on their way to the root,
i.e., around (2W + log |W| − logW ) in Table 3.

To illustrate, suppose existing files only have 0 or 1
as their keywords, i.e., W = 2, for the keyword space in
Figure 1, the stored states are: τ0, τ1, τ0,1 (i.e., around
2W ), plus τ0, τ0,1, τ0,3, τ0,7 (i.e., log(|W|)+1 nodes along
the leaf-to-root path), minus the double-counted τ0, τ0,1
(i.e., log(W ) + 1 nodes, the subtree height).

MoRSE(Π) naturally benefits from the development
of DSSE. For example, when instantiated with forward-
secure FASTIO [30] (reviewed in Appendix A), our
scheme inherits the advantages of physical deletion and
caching the previous search results. The server search
complexity is reduced to O(nq), where nq is the num-
ber of updates that contain the keywords in the queried
range since the last search of them, boosting efficiency.
Security. The search protocol incurs the search leak-
age of Π over CSet. Since the update protocol reveals
nothing regarding the keyword beyond the leakage of Π,
our modular construction is forward-secure when Π sat-
isfies forward security. We formally provide the leakage
functions and analyze the security in Appendix B.

5 Saving Client Storage
To our knowledge, the best client storage for round-
optimal single-keyword forward-secure DSSE (e.g., [3,
26]) is linear in W , the number of distinct keywords.
Table 3 suggests that existing range DSSE schemes re-
quire client storage of at least twice as much as that of
single-keyword forward-secure DSSE, even if no range
query has been issued. Scheme-B [38] tries to solve this
problem, but it is not forward secure.

This extra client-side overhead may dampen users’
enthusiasm in outsourcing. Some clients perform range
queries but may not be as frequent as single-keyword
queries. Persistently paying a large overhead for an in-
frequent operation is uneconomical.

We thus propose a new scheme (RS)2 with reduced
client storage. If no range query happens, the client stor-
age is just W . It increases when any range is queried for
the first time. Only when all possible ranges have been
queried will the client storage grow as prior range DSSE.
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5.1 Overview

In a forward-secure DSSE database, the client needs to
store a tuple for each existing keyword to record related
information (e.g., a key and a counter). Current range
DSSE designs (scheme-A [38], FBDSSE-RQ [39], and our
MoRSE) also uses a binary-tree-like structure for storing
the same type of tuple for each node, making the client
storage at least twice the number of existing keywords.

Storing such tuples for the leaves is hard to avoid as
they are the “basis” required by existing round-optimal
forward-secure DSSE schemes. Yet, we note that some
information about the non-leaf nodes (e.g., the update
number) can be computed from the tuples of related leaf
nodes. Also, the key is useless before any search over the
node. Thus, we record the key only when necessary (af-
ter the first search happens over the node corresponding
to the key). This is how (RS)2 saves client storage.

For forward security, whenever the previous key of a
tree node is revealed, we let the client generate and store
a new random key for locating subsequent updates.

5.2 Description

Figure 4 lists the pseudocode of (RS)2. We still assume
the size of keyword space |W| = 2m.

Besides the covering-node set CSet and the result
set RSet, we use a state set SSet to record the state of
elements to be updated. tq and tu are collections of the
range-query tokens and the update tokens, respectively.

Setup. H1 and H2 are cryptographic hash func-
tions with appropriate domains and output lengths. The
client outputs two λ-bit keys K1 and K2 for the pseudo-
random function (PRF) F , together with three empty
maps W, Te, and Tc. The client keeps K = (K1,K2)
and st = W secretly, while EDB = (Te,Tc) is sent to the
server. The purpose of each map is explained as follows.

– Te is used to store the encrypted index.
– Tc is used to store the last search results.
– For each keyword w (i.e., leaf node) and each internal

node that has been searched in the implicit binary
tree, W stores a (kτ , ch, cu) tuple:
– a key kτ that is either a PRF output when the

node τ is added for the first time or a random
string after each search over the node,

– a history counter ch for the number of historical
updates over the node since the initialization, and

– an update counter cu to indicate the number of
updates over the node after the last search.

We first define histUptCnt, a function for the client
to compute ch

τ of a non-leaf node τ (without storing it)
from handy information stored at its descendant nodes.
This count is required in Search and Update.
ch
τ ← histUptCnt(W,m, τ) is a deterministic algorithm
that takes the map W, the depth of the implicit binary
tree m, and a node τ in the implicit binary tree. It
outputs ch

τ , which is essentially the sum of ch over the
existing leaf descendants of τ . See Section 5.3 for details.

Search. For a query q of range bda, bce, it takes
K1,K2,W from the client and Te,Tc from the server.

1. (Line 1) Via GetBRC (Figure 2), the client figures out
BRC of the queried range, sets it as the covering node
set CSet, and resets the query token collection tq.

2. For each τ in CSet:
(Line 2–8) If W[τ ] does not exist, i.e., the node τ has
not been retrieved before, the client uses histUptCnt
to get the historical updates ch of τ . If ch 6= 0, node τ
will be searched for the first time. The client sets kτ
as F (K1, τ) and cu to be just ch for node τ .
(Line 9–11) The client generates token (nymw, kw, c):
– nymw is a pseudonym for locating previous

records related to τ from Tc,
– kw is set as kτ retrieved from W[τ ] if cu 6= 0, and
– c is a counter indicating how many updates have

been performed on τ after the last search for it or
since the initialization if not searched.

(Line 12) W[τ ] now stores a random key kτ , the his-
tory counter ch, and update counter cu = 0.
(Line 13–15) Sends the collected search tokens tq.

3. (Line 17–18) For every search token in tq, the server
accesses the last search results in Tc with nymw and
puts them into the set RSet.
(Line 19–28) If kw 6= ⊥, the server gets its updates
since the last search from Te with locations generated
by (kw, c). If op = del, remove id from RSet; other-
wise, insert id into RSet. Slots in Te accessed by the
current search can be physically deleted afterward.
The search result RSet is archived into Tc.

4. (Line 29–31) The server outputs a responseR, a union
set of the result sets for all search tokens in tq.

Update. Update works similarly to our modular
construction, using the same implicit tree-like index but
with special housekeeping for saving client storage.

For an update tuple (op, up = (w, id)), the client
uses (K1,W) to generate for the server the update token
collection tu, which contains update tokens for nodes
corresponding to keyword w and all of its ancestors.
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Setup(1λ)

1 : K1,K2 ←$ {0, 1}λ; W,Te,Tc ← ∅

2 : return ((K1,K2), (Te,Tc),W)

Update(K1,W, op, up; Te)

Client:

1 : Parse up as (w, id)

2 : SSet, tu ← ∅; cnt := 0

3 : w0 · · ·wm := [w]bin
4 : (kτ , ch, cu)←W[w0 · · ·wm]

5 : if W[w0 · · ·wm] = ⊥ then

6 : kτ := F (K1,w0 · · ·wm)

7 : ch := cu := 0

8 : endif

9 : SSet := SSet ∪ {(kτ , cu)}; cnt := ch

10 : W[w0 · · ·wm] := (kτ , ch + 1, cu + 1)

11 : for i := m− 1 to 0 do

12 : (kτ , ch, cu)←W[w0 · · ·wi]

13 : if W[w0 · · ·wi] = ⊥ then

14 : cnt := cnt + histUptCnt(W,m,w0 · · ·wiw̄i+1)

15 : kτ := F (K1,w0 · · ·wi); ch := cnt

16 : SSet := SSet ∪ {(kτ , ch)}

17 : else

18 : SSet := SSet ∪ {(kτ , cu)}; cnt := ch

19 : endif

20 : endfor

21 : for (kτ , c) ∈ SSet do

22 : addr := H1(kτ ||(c+ 1))

23 : val := (id||op)⊕H2(kτ ||(c+ 1))

24 : tu := tu ∪ {(addr , val)}

25 : endfor

26 : send tu to server

Server:

27 : for (addr , val) ∈ tu do Te[addr ] := val

Search((K1,K2),W, bda, bce; Te,Tc)

Client:

1 : tq ← ∅; CSet ← GetBRCm(a, b)

2 : for τ ∈ CSet do

3 : (kτ , ch, cu)←W[τ ]

4 : if W[τ ] = ⊥ then

5 : ch := histUptCnt(W,m, τ)

6 : if ch = 0 then continue

7 : kτ := F (K1, τ); cu := ch

8 : endif

9 : if cu 6= 0 then kw := kτ ; kτ ←$ {0, 1}λ; c := cu

10 : else kw := ⊥; c := 0

11 : nymw := F (K2, τ)

12 : W[τ ] := (kτ , ch, 0)

13 : tq := tq ∪ {(nymw, kw, c)}

14 : endfor

15 : send tq to server

Server:

16 : R← ∅

17 : for (nymw, kw, c) ∈ tq do

18 : RSet := Tc[nymw]

19 : if kw 6= ⊥ then

20 : for i := 1 to c do

21 : addr := H1(kw||i)

22 : (id, op) := Te[addr ]⊕H2(kw||i)

23 : if op = del then RSet := RSet \ {id}

24 : else RSet := RSet ∪ {id}

25 : delete Te[addr ]

26 : endfor

27 : endif

28 : Tc[nymw] := RSet

29 : R := R∪RSet

30 : endfor

31 : send R to client

Fig. 4. (RS)2: Reduced-Storage Forward-Secure Range DSSE

1. (Line 3–10) If W[[w]bin] is not set (returning ⊥), the
client sets kτ as F (K1, [w]bin) and initializes ch and cu

to 0 for w. The tuple (kτ , cu), possibly from W[[w]bin],
is put to SSet. cu and ch in W[[w]bin] will increase by 1.

2. (Line 11–20) For every ancestor of w, the client gets
(kτ , ch, cu) from W[w0 · · ·wi]. If it is not ⊥, i.e., the
node has been retrieved, the client inserts (kτ , cu) into
SSet; otherwise, the client gets the number of histor-

ical updates ch with histUptCnt, assigns kτ to be the
PRF output, and inserts (kτ , ch) into SSet.
Note that the client is not required to store these
values currently. To avoid repetitive access to W by
histUptCnt, we use a temporary counter cnt to record
the sum of historical updates in previous nodes.

3. (Line 21–26) For each (kτ , c) in SSet, the client gener-
ates update token (addr , val), where addr is a location
based on the hash of kτ and the counter c, and val
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is both id and op ∈ {add, del} encrypted by another
hash of kτ and c. The update tokens are sent as tu.

4. (Line 27) For each (addr , val) in tu, the server stores
val for insertion/deletion of a keyword-file pair at the
location addr of the encrypted index Te.

5.3 Analysis

Efficiency. The client storage overhead is O(W + s),
where s is the number of distinct (possibly overlapping)
sub-ranges in all issued queries, i.e., the size of the union
set of all CSets (BRC’s of range queries) since initializa-
tion, which only increases when a query accesses any
implicit node that has never been retrieved. Consider
Figure 1, if the first range query is bd2, 7ce, s = 2 since
τ2,3 and τ4,7 are retrieved for the first time. Afterward,
s will not increase until querying a range beyond bd2, 7ce,
bd2, 3ce, and bd4, 7ce. If bd4, 5ce is queried next, it overlaps
with bd4, 7ce but s will still be incremented (by 1).

Information of any node besides the existing leaf
nodes will not be stored until it is retrieved for the
first time. We trade the update complexity and obtain
the following advantages that are hardly found in other
range DSSE constructions. (RS)2 has the same client
storage as single-keyword forward-secure DSSE if no
range query happens. For a “complete” database (with
all possible keywords), our client storage is always less
than the existing range DSSE schemes before every pos-
sible non-overlapping range has been queried, i.e., all
nodes in the index have been retrieved.

The client computation overhead for Update is
O(W + log |W|), i.e., an extra O(W ) is needed, which is
the worst case for histUptCnt where the client accesses
all existing leaf nodes and sums the counters of them ac-
cordingly to get the number of historical updates over
the target. However, we can compute histUptCnt in O(1)
time when the number of queried ranges increases. As
the number of historical updates over a non-leaf node is
exactly the sum of historical updates of its children, we
exploit the information for the adjacent nodes of the tar-
get that exists in the client storage. For example, if the
parent and the sibling of the target have been retrieved,
histUptCnt returns the difference of their history coun-
ters; if both children of the target have been retrieved,
histUptCnt returns the sum of their history counters.

The number of accessed nodes by histUptCnt is at
most wq, so the client-side search complexity is O(wq).

On the server side, the computation overheads for
Search and Update are the same as MoRSE(FASTIO).
Particularly, the server does not carry out any opera-

tion over the part of results that was archived into Tc
beyond putting it in the result set. (RS)2 keeps the op-
timal O(|DB(q)|) search communication overhead.
Security. Search reveals the search pattern and the up-
date history regarding the covering nodes of the queried
range, which is typical for round-optimal schemes. The
updated tuple will not be revealed to the server until a
related search is issued, hence attaining forward secu-
rity. Appendix C provides a formal security analysis.

6 Additional Security Concerns

6.1 Backward-Secure Range DSSE

We upgrade both our range DSSE constructions with
the two-roundtrip transformation of Bost et al. [4]. It
provides at least update-pattern-revealing backward se-
curity, originally for single-keyword DSSE. To carry out
update operation op for the keyword-file pair (w, id),
the transformation asks the client to operate with
(w,EncKw (id, op)) instead, where Enc is an encryption
algorithm taking Kw as the symmetric key, derived us-
ing another PRF key applying on input w. Thus, the
server can only see ciphertexts of the file identifiers and
the kind of updates during Search. The client then needs
to decrypt all retrieved results, removes the deleted file
identifiers locally to get the actual search results, takes
an additional round to get the matching files, and re-
encrypts the ciphertexts of non-deleted identifiers.

Our first construction MoRSE is generic. We omit
the repetitive description of the instantiation but high-
light the important aspects. For Update, since MoRSE
adopts an implicit binary-tree-like index, the client op-
erates along the path from the leaf, corresponding to
the updated keyword, to the root of the tree. Follow-
ing the transformation, any update over a node along
this path is encrypted under a node-specific key. Dur-
ing Search, as the server has no knowledge of the keys,
the identifiers and operations of related files will not
be exposed before the client removes the deleted ones.
After each Search, the client re-encrypts and uploads
the non-deleted files to the server with Update. The
transformed scheme satisfies update-pattern-revealing
backward-security in Definition 4.2, as it only leaks the
timestamps of related tuples and the identifiers of files
that currently contain any keyword of the queried range.

For our reduced-storage construction (RS)2, recall
that the server keeps the archives for the searched key-
word (i.e., Tc); one may worry that the adversary can
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violate backward security, say, by analyzing the searched
results in different stages to gain information of deleted
files. However, the archives are only refreshed when a
new search query is processed, i.e., any potential leakage
involved with the archive can only manifest itself after a
new search. As in Section 4.2, we exclude the backward-
security coverage when a search query happens between
the insertion and the corresponding deletion.

Concretely, for an update over a keyword, the trans-
formation over (RS)2 requires the client to insert the ci-
phertext encrypting the operation and the file identifier.
This will leak the size of SSet (i.e., the size of keyword
space), yet it is not relevant to backward privacy. For
the search of range q, the client decrypts the retrieved
ciphertexts corresponding to the best range covering set
of q, then removes the deleted file identifiers since the
last search of it, which guarantees backward privacy.
The server is informed of the identifiers, which should
be removed from the archives of each corresponding tree
node, and returns the matching files accordingly.

Despite an additional round, the transformed con-
struction maintains the same complexities, and most im-
portantly, preserves our reduced client storage.

The leakage functions LStp,LSrch,LUpd of our
backward-secure range DSSE constructions are as fol-
lows, where DB(τ) is the files matching a query over τ .

– LStp = ⊥; LUpd(op, up) = |W|.
– LSrch(q) = ((sp(τ),DB(τ),UpdTime(τ))τ∈BRC of q).

Some backward-secure (range) DSSE leak the search
pattern sp(·) too, e.g., Janus [4] and scheme-B [38].

6.2 Discussion on Reconstruction Attack

Reconstruction attacks [12, 20] exploit the fixed (vol-
umes of) search results of sufficiently many queries.
Some attacks thus simply assume the database is static.
Insertion and deletion in range DSSE will change the vol-
ume of the responses observed by the adversary, making
it less affected than SSE. It is true that the response
volume given by range DSSE may also stay unchanged,
say, when the next update is yet to happen. Even so,
the state-of-the-art attack [12] requires the observation
of O(|W|2 log |W|) uniformly distributed range queries,
which translates to ∼20 · 240 of them if |W| = 220 (the
setting in Section 8). It may be too many in practice.

Two remarks are in order. First, the attack complex-
ity is exponential when the size of the underlying space
is. Second, any such query requires the symmetric key.

Similar to the reduction of other cryptographic primi-
tives, the tightness bound often requires the tolerated
number of keyed queries to be lower than unkeyed ones.

Moreover, the client can choose to rebuild the en-
crypted database to reduce the risk when needed. The
client storage in (RS)2, which increases with the number
of distinct range queries, can indicate when to rebuild.
Another way to further foil the leakage attacks is to in-
stantiate our modular construction with advanced (e.g.,
volume-hiding [16, 33]) SSE or apply generic upgrades
(e.g., leakage suppression [17]).

Lacharité et al. [23] showed attacks that can recon-
struct the original data fully or at least within a con-
stant ratio of error. The accuracy depends on the num-
ber of observed queries and whether the adversary has
the knowledge of an auxiliary distribution. The attacks
require the target dataset to be dense. Update recovery
attack of Grubbs et al. [12] assumes the adversary has
executed the reconstruction attack or a one-time com-
promise of the database. The assumptions can be diffi-
cult to realize in practice. Meanwhile, mitigation strate-
gies are also emerging, e.g., [27].

7 Closer Look at the Prior Art
We divide range SSE schemes [10, 38, 39] into two classes
depending on the index type and do a comprehensive
review. Particularly, we explain in detail the asymptotic
complexities in Table 2 and the client storage overheads
in Table 3. We point out a common omission in their
analysis. We also note that the forward security claim of
scheme-B [38] is wrong and design an attack against it.

7.1 Inverted Index

An inverted index stores a map from a keyword to a set
of files. It is commonly used in SSE and DSSE schemes.

7.1.1 Logarithmic-SRC/SRC-i/BRC/URC [10]

Demertzis et al. [10] designed tree indexes whose leaf
nodes are associated with a numerical keyword do-
main. Based on different strategies to represent the
queried range with tree nodes (for generating tokens),
they proposed six range SSE schemes with different se-
curity/efficiency trade-offs. Among the adaptively se-
cure schemes (i.e., excluding those using delegatable
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PRFs [22]), Logarithmic-SRC (SRC stands for Single
Range Cover) covers any queried range with a single
tree node, which inevitably incurs false positive. Its
server computation could be undesirably linear in the
database size due to the data skew. Logarithmic-SRC-i
reduces the false positive and server computation by in-
volving one more round trip and an extra index for files
to double-check the search results. In terms of communi-
cation and server computation, Logarithmic-BRC/URC
(BRC/URC stands for Best/Uniform Range Cover) pro-
vides better performance without false positives.

Notably, all these constructions [10] are static. De-
mertzis et al. suggested a batched update approach, i.e.,
creating a new instance for the next batch of updates
and periodically merge different indexes. This method
is not flexible enough when updates happen frequently.
Worse still, even for the same keyword, the client needs
different tokens for different instances before the in-
stances are merged, which increases the search overhead.
Nevertheless, the combination of static SSE and batched
updates makes the consideration of forward security a
non-issue, as search tokens for existing instances fail to
identify any updates in the new instances.

Analysis. Both Logarithmic-SRC and Logarithmic-
SRC-i incur false positive in communication (ε and ε′ in
Table 2 with ε′ < ε). Due to the data skew, the false
positive leads to the worst-case server search computa-
tion of O(N) in Logarithmic-SRC, which is reduced to
O(wq + |DB(q)|) by Logarithmic-SRC-i assuming extra
interactions and indexes. Logarithmic-BRC/URC real-
izes O(|DB(q)|) of server computation and communica-
tion without false positive by issuing accurate tokens.

Different realizations of the index provide diverse
trade-offs between the search computation overhead and
the client-side storage overhead, e.g., the client needs to
reconstruct the index before the search [38]. Table 2 thus
does not provide search complexities for the schemes of
Demertzis et al. since we think that the algorithmic de-
tails are underspecified. That said, since outsourcing the
unencrypted tree structure to the server inevitably vio-
lates security, we assume that the client stores it locally.
We could thus estimate the client storage as follows.

Let W and D be the number of distinct keywords
and files (for one instance), respectively. For simplicity,
W and D are assumed as integral multiples of 2.

– Log.-BRC/URC: It is essentially a binary tree with leaf
nodes representing keywords, i.e., (2W − 1) nodes.

– Log.-SRC: This is the same as Logarithmic-BRC/URC
except that a common node exists between every two
neighboring nodes at the same level. More precisely,

the number of common nodes is (2W − 1) nodes for a
perfect binary tree, minus the number of leaf nodesW
(as the common nodes at this level have been built by
the tree), and minus logW (as the number of common
nodes is less than the regular nodes at the same level
by one). Thus, (3W − logW − 2) nodes in total.

– Log.-SRC-i: In addition to a tree for keywords like the
one in Logarithmic-SRC, the same structure is used
for existing files, i.e., extra (3D− logD−2) nodes are
needed and (3W − logW + 3D − logD − 4) in total.

Table 3 provides the concrete number of stored tu-
ples of these schemes [10]. This evaluation is purely for
the index. There may be some other storage overhead
omitted, e.g., the storage needed by the underlying SSE.

7.1.2 Scheme-A [38]

Scheme-A [38] uses a similar design as Logarithmic-
BRC/URC [10] with

∑
oϕoς [3] as its underlying DSSE.

Before searching/updating, the client reconstructs a bi-
nary tree (whose number of leaf nodes equals Wx, the
largest value of existing keywords) to get the relations
between tree nodes. It also incurs heavy update over-
heads whenever the update for a new keyword meets a
perfect binary tree. As admitted [38], the client needs
to get back all historical updates of the old root and
re-encrypt them for the new root, which is undesirable,
especially for large databases. Scheme-A inherits for-
ward security of

∑
oϕoς [3] using (public-key) trapdoor

permutations without considering backward security.
Analysis. The client storage is (2W − 1) since∑

oϕoς requires the client to store a state per keyword.
For the search and update complexities, the reconstruc-
tion incurs a client-side overhead of O(Wx), on top of an
O(logwq) overhead for using BRC during each search.

The worst case of updates (marked with † in Ta-
ble 2) returns and re-encrypts all historical updates,
leading to O(N) in all update complexities, where N
is the database size. It can be easily illustrated when
keywords are inserted in order; the tree will reach the
full capacity as a perfect binary tree (of size 2, 4, 8, . . .)
for log |W| times. The reconstruction requires the server
to add all file indexes of the old tree to the new one, keep
processing everything added so far again and again.
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7.2 A Remark on Client-Side Computation

The client computation overhead for operating the tree-
like index before searching or updating seems to be not
seriously considered in existing works [10, 38, 39], no
matter those reviewed in Section 7.1 or to be reviewed
in Section 7.3. Demertzis et al. [10] omitted details for
this in their instantiations. It is later explained in the
subsequent schemes [38], which require rebuilding the
index whenever there is a search or update. Yet, this
overhead is still not included in comparison (Table 1
in [38]). The search/update efficiency may not be as
good when it is implemented. Even worse, its follow-
up [39] simply did not provide any complexity analysis1.

7.3 Homomorphically-Encrypted Index

A file index refers to bit-vectors of length being the
maximum number of files. The i-th bit of a file in-
dex for a keyword w denotes whether the i-th file con-
tains w. Scheme-B [38] and FBDSSE-RQ [39] exploit the
homomorphically-encrypted file-index (HE file-index).
As no file-index bits are revealed before client-side de-
cryption, HE file-index prevents the server from know-
ing the deleted files, so it is naturally backward secure.

7.3.1 Scheme-B [38]

Scheme-B was proposed to save the client storage and
avoid the worst-case update overhead of scheme-A. It
is still a tree-based approach using BRC. Instead of an
inverted index, the server stores one HE file-index for ev-
ery node. Any query still needs reconstructing the tree
for the largest existing keyword as scheme-A. The server
then accesses the locations according to BRC and re-
turns those ciphertexts. The client decrypts them to get
bit-vectors denoting the identifiers of matching files and
retrieves the files with another communication round.

Updates also need tree reconstruction. The client
finds the path from the leaf node of the keyword to the
root of the tree and encrypts a bit-vector for toggling
between presence/absence. The server homomorphically
adds it to the ciphertext of the indicator-vector at each
node along the path to flip every presence bit.

1 A reviewer’s remark: “over the past few years, cases of hand-
wavy treatment of efficiency analysis and unsubstantiated claims
of optimality and/or low client storage in STE and SSE papers
have increased. We should not let it become the new norm.”

Analysis. Due to the reconstruction and BRC,
the client-side search complexity remains the same as
scheme-A, i.e., O(Wx + logwq). Both communication
and server-side computation overheads (marked with ‡

in Table 2) for the search protocol are O(logwq) as re-
ported [38], which is the number of HE file-indexes ac-
cessed and returned. We stress that this cost does not
include any processing on (the identifiers of) matching
files, which is typically present in the analysis, even for
the complexity of O(|DB(q)|) in their scheme-A [38].

Update overheads are O(Wx) for the client for the
reconstruction and O(logW ) for the server for homo-
morphically adding O(logW ) ciphertexts (putting aside
executing Search for confirming the bit before flipping).

7.3.2 FBDSSE-RQ [39]

FBDSSE-RQ [39] improves the efficiency of scheme-B
by encrypting the file-index using symmetric encryp-
tion with homomorphic addition. Since initialization,
the number of leaf nodes in the tree index is linear in
the keyword space size, and the client reconstructs such
a tree before any search or update. The search and up-
date procedures of FBDSSE-RQ are similar to scheme-B
but with the forward security vulnerability fixed.

Analysis. The tree reconstruction of FBDSSE-RQ
requires O(|W|) client computation, which is even worse
than the tree reconstruction of scheme-A/B. Same
as scheme-B, the reported search communication is
O(logwq), without considering any processing on (the
identifiers of) matching files. The server-side search
overhead becomes O(nq) as they also employ the trick
of archiving previous search results. FBDSSE-RQ also
requires the client to store a state per node, mak-
ing the client storage the same as our MoRSE, i.e.,
(2W+log |W|−logW ), which we analyzed in Section 4.3.

7.3.3 Drawbacks of HE File-Index

Both schemes possess inherent drawbacks of HE index:

– The server cannot retrieve any files until the client
decrypts the query results and sends them back.

– The element size of (a)symmetric cryptographic prim-
itives should be large enough to cover the predefined
maximum number of files, which in turn impacts the
dynamism. No file can be added when it is reached.

– The predefined maximum affects the time complex-
ity of all operations and the storage complexity of
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every object in the encrypted index. For example,
each query and index node will bear the cost incurred
by many empty slots when the predefined maximum
should be large to accommodate unforeseen usage.

– Updates are restrictive since they crucially rely on the
additive homomorphism and can only flip the pres-
ence bit of a file over the file (vs. inverted) index to
indicate whether it contains a keyword (vs. pointing
to all the files containing a particular keyword). With-
out another search (or keeping a local copy of the
database, which nullifies outsourcing), the client can
hardly confirm any insertion/deletion operation.

They are not necessary for range DSSE (e.g., MoRSE
and (RS)2). We remark that other techniques, such as
puncturable encryption, can achieve backward privacy
without another communication round [4].

7.4 Attack on Scheme-B [38]

We have the following observations of scheme-B [38]. If a
range covering a specific keyword was searched before,
the update for this keyword (e.g., add a file contain-
ing this keyword) would let the server operate over at
least one location accessed in the previous search. In
other words, scheme-B leaks to the server whether the
keyword in a later update is contained in any previ-
ous search, which obviously violates Definition 4.1. The
construction is thus not forward-secure as claimed. (The
update leakage LUpd of scheme-B is claimed [38] to be
the number of updates made to the keyword w and when
the update happened. As we show, it leaks more.) We
then concretely show how an adversary with the power
of file injection would exploit this information to effi-
ciently determine the queried range.

Consider the threshold setting [37] in Section 3.2.
The server first injects d|W|/T e − 1 files, each contains
T contiguous keywords in the keyword space W, and
records the accessed locations for each injected file. For
a target search query from the client, the server se-
lects the previous injected files associated with at least
one identical location accessed in this search phase. The
server generates a union set of contiguous keywords in
the selected files, whose size is an integral multiple of T .
Specifically, if the set size is nT and wq is the number of
keywords within the target range, the parameters satisfy
the relation that wq < nT < wq + 2T .

For the first and last T contiguous keywords in the
selected set, the server adaptively injects files to accu-
rately determine the target range. Concretely, for the

first T keywords, the server injects a file containing the
first half of these keywords. If the update does not ac-
cess any locations overlapped with those of the search,
the server injects a file containing the first T/4 keywords
of the second half; otherwise, it injects a file containing
the first T/4 keywords of the first half. The operation re-
peats until the server rules out all false keywords whose
updates do not access any location in the target search,
i.e., these keywords are out of the searched range. Above
operations are also executed over the last T contiguous
keywords in the selected set. Finally, we can figure out
the range for the previous search.

This variant of attack against scheme-B exploits its
lack of forward security. The server adaptively injects
only O(log T ) files after fixing a rough range of size nT .

8 Experimental Evaluation
We implement our modular construction MoRSE and
reduced-storage construction (RS)2 in C++11. We in-
stantiate the underlying DSSE of MoRSE with an
adaptation of FASTIO, a recent forward-secure single-
keyword DSSE scheme [30]. For cryptographic functions,
we instantiate our PRFs and hash functions with AES-
128 and SHA-256 from crypto++ library, respectively.
For non-cryptographic parts, we store the maps with
RocksDB and build the communication between the
client and the server with gRPC. The server is equipped
with a single Intel Core i7-4790 3.60GHz CPU and 16GB
of RAM, and the client with a single Intel Core i5-6500
3.20GHz CPU and 8GB of RAM in a LAN setting.

Our experiments consider the keyword domain to
be W = {0, . . . , 1048575} of size 220. For comparison,
we also implement FBDSSE-RQ [39] with 106 as its
file-index length, which upper-bounds the number of al-
lowed files and governs its time for an atomic operation.

8.1 Update and Search Evaluation

Table 4 shows the time needed to update keyword-file
pairs. We measure the average time of updating a sin-
gle keyword-file pair over {103, 104, 105, 106} update op-
erations (with 9 · {102, 103, 104, 105} distinct keywords,
respectively). MoRSE and (RS)2 outperform FBDSSE-
RQ [39] as they do not need to rebuild indexes. (RS)2 is
a bit slower than MoRSE for its reduced client storage.

We calculate how many search tokens our schemes
(and FBDSSE-RQ) can reduce from single-keyword

https://rocksdb.org
https://grpc.io
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Table 4. Update Performance

Range DSSE Time for updating n pairs (s) Avg. time
Scheme 103 104 105 106 for n = 1 (s)
FBDSSE-RQ 3.09 29.12 316.75 3029.34 3.04× 10−3

MoRSE 1.43 14.15 141.41 1483.32 1.47× 10−3

(RS)2 3.38 22.80 223.42 2225.14 2.23× 10−3

Table 5. Average Number of Search Tokens

Scheme/Queried Range 5× 102 5× 103 5× 104

Single-keyword DSSE 5× 102 5× 103 5× 104

MoRSE/(RS)2 8.17 9.67 13.16

Table 6. Search Performance with or without (w/o) Cache

Range Time for searching a range of ` (ms)
DSSE ` = 5× 102 ` = 5× 103 ` = 5× 104

Scheme w/o Cache w/o Cache w/o Cache
FBDSSE-RQ 157.2 46.8 207.8 60.7 355.2 206.2
MoRSE 71.3 41.8 110.3 57.4 283.0 195.1
(RS)2 74.2 45.4 121.8 61.8 298.7 204.2

DSSE. The number of search tokens is exactly the size
of BRC for the queried range, while it is the size of the
queried range in single-keyword DSSE. We issue multi-
ple queries with ranges of 5×10i, i ∈ {2, 3, 4}, uniformly
distributed over the keyword domain, and measure the
average number of search tokens. As shown in Table 5,
the gap can be large, especially when the query covers a
wide range. Note that the network latency is a common
bottleneck for DSSE in practice; we save the communi-
cation overhead and the time needed for Search.

We also measure the search time from the start of
token generation until the client receives the search re-
sults over a database of 5× 107 keyword-file pairs with
5× 105 distinct keywords. We use multiple queries with
ranges of 5 × 10i, i ∈ {2, 3, 4}, while the range bound-
aries are uniformly distributed over the keyword do-
main. Table 6 shows that both MoRSE and (RS)2 outper-
form FBDSSE-RQ in search performance (and caching
was not implemented by their paper [39]). Searching in
MoRSE is slightly faster than (RS)2 since (RS)2 reduces
the client storage via the histUptCnt computation.

8.2 Storage Evaluation

We first measure the client storage for outsourcing a
database of size 103–106. We issue a different number
of queries (0, 20, . . . , 20000) since the storage of (RS)2

increases with the number of newly queried elements
(i.e., s in Table 2). In Tables 7 and 8, s is appended to

Table 7. Client Storage Overhead

Range DSSE Storage for n keyword-file pairs (MB)
Scheme n = 103 n = 104 n = 105 n = 106

FBDSSE-RQ 0.87 6.21 38.75 125.81
MoRSE 0.86 6.19 37.08 123.17
(RS)2-0 0.16 1.31 12.32 38.87
(RS)2-20 0.16 1.32 12.34 38.90
(RS)2-200 0.17 1.68 14.92 46.12
(RS)2-2000 0.30 2.45 18.60 55.23
(RS)2-20000 0.63 4.97 28.33 71.02

Table 8. Number of Tuples stored in the Local State

Range DSSE # of state tuples for n keyword-file pairs
Scheme n = 103 n = 104 n = 105 n = 106

FBDSSE-RQ 11178 78319 454955 1610020
MoRSE 11178 78319 454955 1610020
(RS)2-0 996 9955 95457 644650
(RS)2-20 1009 10005 95572 644814
(RS)2-200 1101 10487 96710 646445
(RS)2-2000 1765 14536 106126 659573
(RS)2-20000 4350 33076 165537 754111

the scheme name (RS)2. Each query, covering a range of
500, is uniformly distributed over the keyword domain.

Table 7 illustrates that our (RS)2 requires less
client storage than our modular construction MoRSE or
FBDSSE-RQ even after many range queries. We remark
that it only reflects the client storage to some degree,
as RocksDB requires storage for the long-term startup
information and periodically updated log files. The per-
formance may vary when instantiated differently.

We also measure the number of state tuples be-
ing stored in the same setting. (RS)2 only stores infor-
mation of leaf nodes in the implicit binary tree, while
MoRSE/FBDSSE-RQ additionally stores those from the
leaf to the root. Table 8 confirms that the client stor-
age of (RS)2 is significantly less than others, e.g., it is
essentially the number of existing keywords for (RS)2-0.

9 Conclusion
We propose a generic construction and a reduced-client-
storage construction of dynamic searchable symmetric
encryption for range queries, both forward-secure and
backward-secure. Our modular approach frees us from
many design-specific shortcomings of existing works, al-
lowing our schemes to be competitive in security, effi-
ciency, and features. We also empirically show their high
efficiency on a million scale. We left it as future work to
consider multi-writer extensions [34].
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A Review of FASTIO
Figure 5 reviews the FASTIO scheme [30]. We refer the
readers to [30] for a more detailed treatment. H1 and
H2 are cryptographic hash functions of appropriate do-
mains and output lengths. F denotes PRF using key ks.

For Setup, the client outputs three empty maps: W
stores a random key and a counter (i.e., state) per key-
word, Te stores the encrypted index, and Tc stores pre-
vious search results if any keyword was searched before.
The client keeps ks and W. Te and Tc are outsourced.

During updates, the client first retrieves the state of
the keyword to be updated from W. The state is used
to generate the encryption of the update and determine
the location to store it in Te, so the server can update Te
accordingly. Each update increments the counter by 1.
To search a keyword, the client provides its pseudonym
to retrieve its previous search results in Tc and its state
to retrieve its recent updates in Te; the server retrieves
entries from the related locations of Tc and Te, and
updates Tc with the new results. After the search, the
client refreshes the random key and resets the counter
of the keyword for forward security.

Regarding efficiency, it takes O(1) time for both the
client and the server to update. Meanwhile, the client
can generate the search token in O(1) time. As previous
search results are archived in Tc, it only requires O(nq)
for the server to perform a search query, where nq is
the number of updates since the last search of the same
keyword. As the client needs to store a key and a counter
per keyword in W, the client-side storage overhead is
O(W ), where W is the number of distinct keywords.

B Security of MoRSE(Π)

Our modular construction MoRSE(Π) relies on an un-
derlying forward-secure DSSE Π, which usually leaks
the search pattern (sp) and the update history (hist)
for the keywords (e.g., [3, 26, 30]). Beyond that, the
only information leaked by our construction for Search
is a partitioning of sp and hist, which exposes the over-
lapping nodes induced by the overlapping ranges. We
summarize the leakages as follows.

– LStp = ⊥.
– LSrch(q) = ((sp(τ), hist(τ))τ∈BRC of q).
– LUpd(op, up) = |W|.

Theorem 1. Let Π be a forward-secure DSSE scheme.
Our modular construction is L-adaptively secure for L =
{LStp,LSrch,LUpd} as defined above.

Proof. To see the security of our modular construc-
tion, we extend the simulator of the underlying forward-
secure DSSE scheme Π and explain how it can deal with
the simulation for (range) queries.

The simulator directly invokes the simulator algo-
rithm of Π to simulate Setup and Update. For LStp, our
scheme leaks nothing. LUpd only leaks the keyword space
size |W|, a constant value since the initialization.

To simulate a range query q, the simulator exploits
the search pattern sp to determine if any element in
BRC of q has been retrieved before. Then the simula-
tor updates hist for elements that exist in any previous
search and have been updated afterward. As a result,
it leaks the overlapping elements induced by the over-
lapping queried ranges. With LSrch, which includes the
leakage of underlying DSSE, the simulator invokes the
simulator algorithm of Π for every element in BRC of q
to simulate Search.

Since Π is forward secure and our construction only
additionally leaks the size of keyword space |W| dur-
ing Update, our construction is forward secure and thus
immune to the adaptive file injection attack [37].

C Security of (RS)2

The leakage functions LStp,LSrch,LUpd of our reduced-
storage range DSSE scheme (RS)2 are as follows.

– LStp = ⊥.
– LSrch(q) = ((sp(τ), hist(τ))τ∈BRC of q).
– LUpd(op, up) = |W|.

Theorem 2. Let F be a pseudorandom function, H1
and H2 be two hash functions modeled as random or-
acles. Our reduced-storage range DSSE scheme is L-
adaptively secure for L = {LStp,LSrch,LUpd} as above.

Proof. We derive a game sequence from the real-world
game RealA(1λ) to the last game, which is exactly the
ideal-world game IdealA,S(1λ). By showing that each
game (except the first) is indistinguishable from its pre-
vious one, we conclude that the adversary cannot distin-
guish RealA(1λ) from IdealA,S(1λ) with non-negligible
probability. Without loss of generality, we assume that
adversary A makes at most q1 and q2 queries to the
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Setup(1λ)

ks ←$ {0, 1}λ; W,Te,Tc ← ∅

return (ks,W, (Te,Tc))

Update(ks,W, op, (w, id); Te)

Client :

(kτ , c)←W[w]

if W[w] = ⊥ then kτ ←$ {0, 1}λ; c := 0

u := H1(kτ ||(c+ 1))

e := (id||op)⊕H2(kτ ||(c+ 1))

W[w] := (kτ , c+ 1)

send (u, e) to server

Server :

Te[u] := e

Search(ks,W, w; Te,Tc)

Client : Server :

(kτ , c)←W[w] R := Tc[nymw]

if (kτ , c) = ⊥ then return ⊥ if kw = ⊥ then return R

nymw ← F (ks, w) for i := 1 to c do

if c 6= 0 then ui := H1(kw||i)

kw := kτ (id, op) := Te[ui]⊕H2(kw||i)

kτ ←$ {0, 1}λ if op = del then R := R \ {id}

W[w] := (kτ , 0) else R := R∪ {id}

else delete Te[ui]

kw := ⊥ endfor

endif Tc[nymw] := R

send (nymw, kw, c) to server send R to client

Fig. 5. The Construction of FASTIO

H1 oracle and the H2 oracle, respectively. The output
lengths of F , H1, and H2 are λ, µ1, and µ2, respectively.

Game G0: G0 is Real in the real world.
Pr[RealA(1λ) = 1] = Pr[G0 = 1].

Game G1: Instead of invoking PRF with K2 when
generating nymw, G1 maintains a map Tn to store
(τ,nymw) pairs. When a new τ is queried, G1 returns a
random string from {0, 1}λ and stores it in Tn[τ ]. Other
parts of G1 are exactly the same as those of G0. If an ad-
versary can distinguish G0 from G1, we can distinguish
between the PRF and a truly random function.

Game G2: We obtain G2 from G1, similar to how
G1 is derived fromG0. Instead of invoking PRF withK1,
G2 maintains a map Ts and processes the map like Tn
in G1. With the same argument before, G1 and G2 are
indistinguishable.

Game G3: Instead of querying H1 in Update, i.e.,
H1(kτ ||(c+ 1)), G3 picks a random string from {0, 1}µ1

and stores it in a map Ta:

addr ←$ {0, 1}µ1 , Ta[kτ ||c+ 1] := addr .

Then, during Search of the client, if kw 6= ⊥ when
(nymw, kw, c) is collected in tq, we update the refer-
ence table H1 for the random oracle H1 by setting
H1[kw||i] := Ta[kw||i] for i ∈ [1, c].

InG3, addr for tuple (kτ , c+1) is generated in Update
but will not be updated in H1 until a corresponding
search query is executed. If the adversary queries H1 for
(kτ , c+1) before Search, the random oracle will return a
random string. With a non-negligible probability, it will
be different from the one programmed for H1[kw||i] (i.e.,
H1[kτ ||i]) later during Search. Once this inconsistency is

observed, the adversary could figure out the game is G3.
As other parts of G3 are exactly the same as those of
G2, Pr[G2 = 1] − Pr[G3 = 1] ≤ Pr[BAD], where BAD is
the event that the inconsistency happens.

Since kτ is sampled from {0, 1}λ, the probability
that the adversary queries H1 for kτ is 2−λ. As we as-
sume the adversary could at most make q1 queries to the
H1 oracle, we have Pr[BAD] ≤ q1

2λ , which is negligible.
Thus, we conclude that G2 and G3 are indistinguishable.

Game G4: We obtain G4 from G3 in a similar way
as how G3 is derived from G2. Instead of querying H2 in
Update (i.e., val := (id||op)⊕H2(kτ ||(c+1))), G3 picks a
random string from {0, 1}µ2 and stores it in a map Ta:

v←$ {0, 1}µ2 , Tv[kτ ||c+ 1] := v,

val := (id||op)⊕ v.

Then, during Search of the client, if kw 6= ⊥ when
(nymw, kw, c) is collected in tq, we update the refer-
ence table H2 for the random oracle H2 by setting
H2[kw||i] := Tv[kw||i] for i ∈ [1, c]. Like G3, the prob-
ability that the adversary discovers the inconsistency of
the random oracle H2 is at most q2

2λ , which is negligible.
Thus, we conclude that G3 and G4 are indistinguishable.

Game G5: We present G5 in Figure 6. The server
part is omitted as all our protocols are round-optimal,
and the transcripts of the client are not influenced by
the server. For every element, we use UpTkSet to record
all updates over it since its last search. Different from
G4, kw (i.e., kτ ) is sampled during Search. Also, instead
of directly mapping kτ ||(c + 1) to the values picked for
Tv and Ta, we implicitly map kτ ||(c + 1) to the global
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time index via UpTkSet and update the random oracle
accordingly during Search.

We argue that G4 and G5 are indistinguishable.
Update protocols in both games output two uniformly
random values. The distributions of (nymw, kw, c), i.e.,
the client-side output of Search, are the same. So,
Pr[G4 = 1] = Pr[G5 = 1].

Game G6: G6 is exactly Ideal, where the simulator
S generates a view only based on the leakage function
L. The only update leakage LUpd is the size of the key-
word domain |W|. The search leakage LSrch contains the
search pattern sp and the update history hist for every
element in BRC of the queried range.

We present G6 in Figure 7. u := sp(τ).min denotes
the timestamp when τ is retrieved for the first time.
Instead of using the unknown τ directly, the simula-
tor uses u to uniquely identify the items related to τ

from Ts and Tn. u := sp(τ).max denotes the timestamp
when τ is retrieved last time. We define hist(τ)>u as
{(u, op, id)|u > u∧(u, op, w, id) ∈ Q}. We use |hist(τ)>u|
to indicate whether there is any update after τ is re-
trieved last time. Then we program the random oracles
accordingly with hist(τ)>u. The view of G6 is exactly
the same as that of G5. So Pr[G5 = 1] = Pr[G6 = 1].

By combining the above (in)equalities, we have
|Pr[RealA(1λ) = 1] − Pr[IdealA,S(1λ) = 1]| ≤
negl(λ).

D More Related Work
Update in (range) DSSE is known to be tricky be-
cause it complicates leakage in general for maintain-
ing search and update efficiency. Stefanov et al. [31] de-
signed an oblivious sorting protocol to perform house-
keeping over the deleted records and minimizes update
leakages. Some DSSE schemes [18, 25, 26] support par-
allel search and update. Kamara and Papamanthou [18]
use a red-black tree of indicator bit-vectors, while Lai
and Chow [25] realize a regular inverted index. Parallel
DSSE is tricky since maintaining the data-structure in-
variant for parallelism could make the update too leaky.
A subsequent work of Lai and Chow [26] proposed a
new data structure called cascaded triangle, which is
a parallel-traversable structure. A distinctive feature is
that any update can be localized without affecting par-
allelism. In other words, any potential update leakage
is thus minimized.

Proposing modular design is instrumental in un-
derstanding the intrinsic values of different techniques.

Meanwhile, formulating a formal security definition
requires a dedicated effort. Lai and Chow [26] also
proposed a generic transformation from any DSSE to
forward-secure DSSE and a generalized definition of for-
ward privacy. Notably, it guarantees protection not via
omission of the inputs to the leakage function, but the
typical indistinguishability framework subject to a gen-
eral condition over the inputs. Most definitions [3, 7] are
restricted to a specific list of allowed inputs.

Supporting richer queries is a popular pursuit.
Cash et al. [6] consider boolean queries, mainly con-
junctive keyword searches, with an information retrieval
perspective on optimal search efficiency and its implica-
tion in inherent leakage. Faber et al. [11] built on top of
their work [6] for boolean queries over range, substring,
wildcard, and phrase sub-queries. Lai and Chow [24–
26] generalize the notion of searchable encryption over
typical keyword-file relation into the notion of struc-
tured encryption (STE) with meta-data [8] over bipar-
tite graphs. The meta-data is semi-private in the sense
that it remains secure until locked by a search token.
It can be used to support richer queries, such as rank
queries, by using it to store ranking information.

SEAL [9], a recent oblivious-primitive-based SSE,
can be extended to static range SSE with prior tech-
niques [10]. It aims for a set of obliviousness/efficiency
trade-offs but still incurs high overheads in all aspects.

Order-preserving encryption (OPE), which pre-
serves the plaintext order in the ciphertext domain [2],
is another way to support range queries over encrypted
data. Unfortunately, it is often too leaky, especially
under plaintext-guessing attacks [13]. Kerschbaum and
Tueno [21] proposed a linear server-side storage scheme
(cf., replicated index [10, 11, 38]) that is free from the
above attack. However, a query takes multiple rounds.

Wu et al. [36] consider multi-dimensional range
queries using a hierarchical encoding system to map
data of different dimensions to a single dimension. The
encoded data are also arranged in the leaf nodes of a
binary tree. Non-leaf nodes are associated with Bloom
filters to determine whether a query involves its de-
scendants, incurring false positives. This is especially
dangerous in the DSSE context since the adversary can
break the security trivially once they discover a false
positive, which the probability is often not confined to
be negligible in the security parameter. The scheme is
claimed to support updates, yet the security analysis
does not consider the update leakage, let alone forward
or backward security. Their work also considers verifia-
bility, which (no-dictionary) generic upgrade exists [28].
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Setup(1λ)

Ta,Tv,UpTkSet ← ∅

u := 0

Update(k1,W, op, up; Te)

Client :

Parse up as (w, id)

tu ← ∅

w0 · · ·wm := [w]bin
for i := m to 0 do

Append (u, op, id) to UpTkSet[w0 · · ·wi]

Ta[u]←$ {0, 1}µ1

Tv[u]←$ {0, 1}µ2

tu := tu ∪ {(Ta[u],Tv[u])}

u := u+ 1

endfor

send tu to server

Search((k1, k2),W, q; Te,Tc)

Client :

tq ← ∅

for τ ∈ BRC of q do

if Tn[τ ] = ⊥ then

Tn[τ ]←$ {0, 1}λ

endif

nymw := Tn[τ ]

c := |UpTkSet[τ ]|

if c = 0 then

kw := ⊥

else

kw ←$ {0, 1}λ

if Ts[τ ] = ⊥ then

Ts[τ ] := kw

endif

Parse UpTkSet[τ ] as ((u1, op1, id1), . . . , (uc, opc, idc))

for i := 1 to c do

H1[kw||i] := Ta[ui]

H2[kw||i] := (idi||opi)⊕Tv[ui]

endfor

endif

tq := tq ∪ {(nymw, kw, c)}

UpTkSet[τ ] := ∅

endfor

send tq to server

Fig. 6. Description of Game G5

S.Setup(1λ)

Ta,Tv ← ∅

u := 0

S.Update(|W|)

Client :

tu ← ∅

for i := 0 to log |W| do

Ta[u]←$ {0, 1}µ1

Tv[u]←$ {0, 1}µ2

tu := tu ∪ {(Ta[u],Tv[u])}

u := u+ 1

endfor

send tu to server

S.Search((sp(τ), hist(τ))τ∈BRC of q))

Client :

tq ← ∅

for each (sp(τ), hist(τ)) do

u := sp(τ).min, u := sp(τ).max

if Tn[u] = ⊥ then

Tn[u]←$ {0, 1}λ

endif

nymw := Tn[u]

c := |hist(τ)>u|

if c = 0 then

kw := ⊥

else

kw ←$ {0, 1}λ

if Ts[u] = ⊥ then

Ts[u] := kw

endif

Parse hist(τ)>u as ((u1, op1, id1), . . . , (uc, opc, idc))

for i := 1 to c do

H1[kw||i] := Ta[ui]

H2[kw||i] := (idi||opi)⊕Tv[ui]

endfor

endif

tq := tq ∪ {(nymw, kw, c)}

endfor

send tq to server

Fig. 7. Description of Simulator S


	Forward and Backward-Secure Range-Searchable Symmetric Encryption
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Dynamic SSE
	3.2 File Injection Attack
	3.3 Best Range-Covering Technique

	4 A Framework of Range DSSE
	4.1 A Skeleton Framework of Range DSSE
	4.2 Forward and Backward Security
	4.3 Our Secure Modular Construction

	5 Saving Client Storage
	5.1 Overview
	5.2 Description
	5.3 Analysis

	6 Additional Security Concerns
	6.1 Backward-Secure Range DSSE
	6.2 Discussion on Reconstruction Attack

	7 Closer Look at the Prior Art
	7.1 Inverted Index
	7.1.1 Logarithmic-SRC/SRC-i/BRC/URC sigmod/DemertzisPPDG16
	7.1.2 Scheme-A esorics/ZuoSLSP18

	7.2 A Remark on Client-Side Computation
	7.3 Homomorphically-Encrypted Index
	7.3.1 Scheme-B esorics/ZuoSLSP18
	7.3.2 FBDSSE-RQ TDSC/ZSLS20
	7.3.3 Drawbacks of HE File-Index

	7.4 Attack on Scheme-B esorics/ZuoSLSP18

	8 Experimental Evaluation
	8.1 Update and Search Evaluation
	8.2 Storage Evaluation

	9 Conclusion
	10 Acknowledgements
	A Review of FASTIO
	B Security of MoRSE ()
	C Security of (RS)2
	D More Related Work


