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Zen and the art of model adaptation:
Low-utility-cost attack mitigations in
collaborative machine learning
Abstract: In this study, we aim to bridge the gap be-
tween the theoretical understanding of attacks against
collaborative machine learning workflows and their prac-
tical ramifications by considering the effects of model ar-
chitecture, learning setting and hyperparameters on the
resilience against attacks. We refer to such mitigations
as model adaptation. Through extensive experimenta-
tion on both, benchmark and real-life datasets, we es-
tablish a more practical threat model for collaborative
learning scenarios. In particular, we evaluate the impact
of model adaptation by implementing a range of attacks
belonging to the broader categories of model inversion
and membership inference. Our experiments yield two
noteworthy outcomes: they demonstrate the difficulty
of actually conducting successful attacks under realis-
tic settings when model adaptation is employed and
they highlight the challenge inherent in successfully com-
bining model adaptation and formal privacy-preserving
techniques to retain the optimal balance between model
utility and attack resilience.
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1 Introduction
Collaborative learning methods such as federated learn-
ing (FL) have become increasingly popular both across
industry consortia [1] and larger public deployments [2].
A growing body of work describes attacks against this
kind of learning networks, which range from deliberately
destroying the utility of the learning process [3] to at-
tempting to extract information from the model itself
[4–6], thus compromising the network participants’ pri-
vacy.
Privacy-preserving (PP) methods have been success-
fully leveraged in the context of collaborative learning
to strengthen the training protocol and guard against
attacks from adversarial actors. However, implement-
ing PP techniques that protect input privacy, such as
Secure Multi-Party Computation (SMPC) and Homo-
morphic Encryption (HE), adds substantial computa-
tional or communication overhead to the process as well
as making the setting vulnerable to utility-oriented at-
tacks such as backdoor insertion [7]. Additional compu-
tational requirements can be problematic when these
clients are edge devices with limited resources. Methods
like Differential Privacy (DP) are concerned with output
privacy and are considered to be less computationally
demanding, however they typically drastically reduce
the accuracy of the jointly trained model, and as a con-
sequence, limit the benefits of the collaborative learning
procedure [8–11]. Moreover, even formal PP methods
don’t necessarily provide meaningful guarantees of pri-
vacy under combined attacks [12], as the adversary can
often avail themselves of multiple methods of achieving
privacy disclosure [5, 13, 14], while defense mechanisms
can only effectively provide protection against only one
of these methods at a time. Consequently, we identify a
need for mitigation strategies that:
1. Do not degrade the performance of the joint model;
2. Are effective against multiple modes of attack and;
3. Can be deployed in any learning context.

In this work, we focus on a broad category of such tech-
niques, which we summarise under the term model adap-
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tation. We define model adaptation as the selection of
specific attributes of the learning context by members
of the federation with the aim to maximise robustness
against privacy-focused attacks. Such attacks are de-
signed to disclose information that the federation does
not consent to sharing, whether intentionally or not.
Model adaptation encompasses a wide range of methods
to empirically achieve improved attack resilience. Some
of them can be chosen arbitrarily and even dynamically
during the learning process. For example, the training
batch size or the selected subset of clients participating
in each round belongs to this category. We also consider
parameters under the definition which are relevant to
the outcome of the learning task, however may not be
chosen dynamically, such as the total number of partic-
ipating clients or the model architecture, which may be
task-specific. Recent works [6, 15–18] have highlighted
that model adaptations can represent an additional mea-
sure of protection in private-by-design machine learning
workflows despite their lack of formal guarantees. How-
ever, model adaptation comes with no additional infras-
tructural or software requirement and can thus serve as
a low-cost, low probability-of-failure mechanism, from
which any learning context can benefit. We position
this study as a recommendation to the federation that
should be taken into consideration before the learning
protocol commences in order to reduce the amount of
information unintentionally shared.

1.1 Contributions

In this work, we aim to systematically illuminate the
extant techniques for model adaptation through large-
scale empirical experimentation encompassing a variety
of datasets, and have selected a broad subset that covers
a large area of mitigations across multiple prior works
[5, 15, 19]. Although we concentrate on collaborative
image classification tasks, many of our findings can be
applied to other contexts such as semantic segmentation
tasks [20]. Our main contributions can be summarised
as follows:
1. We identify the feasible attack scenarios in the do-

main of collaborative machine learning alongside
their pertinent threat models (Section 3.2).

2. We perform detailed ablation studies to illuminate
which specific characteristics of collaborative learn-
ing setups facilitate or inhibit privacy attacks to de-
duce whether it is possible to defend against them
by modifying the model or the setup itself (Section
5). Through these experiments, we aim to identify a

concrete set of model adaptations which enable the
mitigation of multiple attacks at limited or no util-
ity cost. We note that, to the best of our knowledge,
our study is the first to consider multiple simulta-
neous attacks on CML.

3. We evaluate the identified attacks and suggested
model adaptations in the real-life context of med-
ical image analysis (Section 6), showing that simple
modifications of the training protocol can substan-
tially reduce attack effectiveness in practice

4. Finally, we contrast model adaptation strategies
with formal privacy-preserving mechanisms and
identify their corresponding effects on the utility of
the joint model (Sections 7 and 9).

2 Related work
This work is motivated by a gap in knowledge between
the domains of privacy and practical machine learning.
In most previous works that discuss the issues of adver-
sarial interference and mitigations that are deployed to
reduce their effectiveness, the learning settings are un-
realistically biased against the adversary [13, 21–25]. It
is often the case that the adversary is assumed to be
oblivious to the fact that such defense mechanisms are
deployed, thereby only executing the most basic vari-
ations of attacks without accounting for any potential
mitigations in place.
Some prior works consider the effects of individual
model attributes (such as activation functions) on the
resulting privacy leakage during model training, such
as the works by Papernot et al. [26] or Avent et al. [27],
however, they do not consider these adaptations as a
means for defending against reconstruction attacks, but
rather investigate their effects on the formal PP mecha-
nisms and associated changes in the utility of the target
model.
Works such as Shokri et al. [4] and Chakraborty et al.
[28] discuss a broader classification of adversaries in
the context of collaborative learning, but they only pro-
pose the said classification on a specific type of attack,
whereas we explicitly keep our classification generic and
applicable to any privacy-oriented attack in the field of
CML.
Multiple prior studies [3, 7, 29–31] have investigated
the effects of formal PP mechanisms as well as learning
setting adaptations on the utility-based adversarial at-
tacks, such as backdoor insertion and model poisoning.
Our work expands these investigations into the setting
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of privacy-focused attacks, which –so far –have been less
studied.
In our study, we demonstrate attacks and mitigations
in the setting of medical ML as it represents a highly
privacy-sensitive real-life learning context. Prior works
have considered formal privacy-preserving mechanisms,
as well as limited model adaptation strategies in the do-
main of medical ML [32, 33], but none were focused on
a systematic evaluation of model adaptation strategies
in this context, but rather on the derivation of domain-
specific insights in the area of medical PPML.
A number of prior works such as [15, 21, 34] assess the
effects of single attack types, however they don’t discuss
the broader context of their findings and the conclusions
which can be drawn in the context of reconstruction at-
tack prevention on a larger scale, where such attacks
can be applied simultaneously to the same ML system.
The investigation of simultaneous attacks is a key con-
tribution of our work.

3 Background
We begin by briefly introducing the concepts, terminol-
ogy and methods utilised in our study.

3.1 Privacy-preserving mechanisms

In this section we describe both empirical and provable
privacy-preserving mechanisms that we deploy in this
work.

3.1.1 Federated learning and split learning

Collaborative machine learning can be conducted in
both a centralised and a decentralised fashion [35]. In
this work we concentrate on federated learning [36],
which allows participants to retain control over their
data, as instead of committing raw datasets to the cen-
tralised entity, they opt for sharing the model updates
that they generate after training the model locally. Once
each selected participant completes the local training
section, they send their update to the orchestration
server, where they are aggregated in order to produce
the joint model that is then sent back to the selected
clients and the process is repeated. For our experiments,
we employed federated averaging (FedAvg) as the aggre-
gation technique for its simplicity and popularity, as it

represents the most commonly used aggregation method
[35, 37] and is, hence, most likely to be at risk.
Weight-based reconstruction attacks were performed in
a setting, which utilised a variant of CML, namely
Split Learning (SL) [38]. Here, the amount of informa-
tion shared between the participants is reduced by only
sharing the outputs of a specific layer (cut layer), nor-
mally the final layer before the classifier. The rest of
the computation can be completed on a trusted server.
As such, this allows the federation to observe a lower
communication cost as well as a better empirical pri-
vacy. We note that, although FL and SL possess some
privacy-enhancing properties, they are, on their own,
not sufficient to protect the federation against privacy-
oriented attacks and should primarily be thought of as
governance-preservation mechanisms, by which we de-
fine techniques allowing alternative means of informa-
tion sharing without assuming control over other client’s
data, such as access to information through local train-
ing and a subsequent model update, e.g. FL.

3.1.2 Differential privacy

A quantifiable measure of how much information an
adversary can learn about individuals in the train-
ing data can be provided using Differentially Private
training [39]. An algorithm is considered differentially
private if its output is approximately invariant to
the inclusion/exclusion of a single entity (e.g. data
record/patient/institution based on the desired privacy
guarantee). The privacy guarantees provided (and thus
the privacy loss/ budget) are determined by a value ε,
specifying the upper multiplicative bound on the infor-
mation that can be gained by an adversary and a δ value
which can be thought of as the probability that this gain
exceeds the ε bound. DP training of neural networks is
typically performed using the DP-stochastic gradient de-
scent (DP-SGD) algorithm [40], which we also employed
in our experimentation using the pytorch-dp (now Opa-
cus) [41] framework.

3.2 Privacy attacks

3.2.1 Model inversion attacks

This class of adversarial interference concentrates on re-
covering data that participants have used to train the
joint model by reverse-engineering the internal represen-
tations of either each individually submitted or of the
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aggregated models. We chose attacks based on two dis-
tinct reconstruction strategies that have proven success-
ful in previous works described below. These attacks can
be particularly destructive in CML settings relying on
sharing unencrypted or otherwise unprotected gradient
or model updates, as they can be conducted from within
the learning consortium and are very effective under a
white-box access scheme.

Deep leakage from gradients (DLG)
DLG [23] utilises unencrypted gradient updates to re-
construct the training data. The adversary captures an
update submitted by an honest participant and runs an
optimisation algorithm on the randomly initialised data-
label pair that they control in order to mimic the data-
label pair that has generated the original model update.
In theory, the attack allows the adversary to achieve full
disclosure of sensitive training data. In practice however,
the attack requires a number of assumptions to hold (e.g.
shallow models, small batch sizes, etc.), which makes it
amenable to specific model adaptations shown below.

Generative decoder (GD)
The GD attack [6] mimics the structure of an autoen-
coder. In a collaborative setting, the encoder component
is the jointly trained model, whereas the decoder is the
adversarial model that is trained on a disjoint dataset
(which often comes from the same distribution). The
goal for the attacker is to decode the model outputs
into the corresponding training images, while only hav-
ing access to activations of the shared model. Such a
scenario is realistic for e.g. an aggregation server in FL.

3.2.2 Membership inference attacks

Membership Inference Attacks (MIA), proposed by
Shokri et al. [5] intend to determine whether or not
a specific training record has been part of the train-
ing dataset. Various techniques can be utilised to this
end, the most widely used being “shadow training”, first
proposed by the same authors, in which the adversary
trains a number of models that mimic the behaviour
of the target model on the disjoint datasets with known
ground-truth values. The outputs of these models, along-
side the data record, whose membership information is
being determined, are fed into a binary classifier that
returns the prediction of this data record being in the
training dataset.

In environments where the model has been deployed
in a black-box setting (e.g. in the setting of inference-
as-a-service in the cloud) the MIA attack can still suc-
ceed, as information about the records that have been
used to train the model is encoded into the parameters
of the network, thus predictions on these records will
have higher confidence, revealing their membership in
the original dataset. Here, we utilise the publicly avail-
able mia library [42] which utilises “shadow training”
in order to evaluate the effectiveness of our proposed
model adaptations under a black-box adversary.

4 Methodology
For all following privacy-focused attacks we employ an
expanded classification based on the work by [4] and
distinguish between the following adversarial settings:
Attack Time (Train or Test), Position in the Network
(Client or Server or Off-path), Model Access (Black-box
or White-box) and Security Model (Malicious or Honest-
but-Curious). In accordance with these categories, we se-
lected three attack scenarios: theGenerative Decoder [6],
Deep Leakage from Gradients [23] and Membership In-
ference Attack [5] in order to cover most realistic threat
models. We find these attacks to be applicable to most
generic collaborative learning environments (such as SL,
FL or centralised model trained on securely aggregated
data), as they can target both the model that is being
trained and the model that has been deployed in an in-
ference setting. All attacks were executed by a single
adversarial entity.

4.1 Threat model

GD and DLG were conducted under the following threat
model: Train-time attack, client network position (for
2 clients) or server network position (for 3+ clients),
white-box model access. Thus, we assumed that there
is no Secure Aggregation (SecAgg) of model updates by
default, allowing us to visualise the consequences of a
federation neglecting SecAgg, facilitating training data
reconstruction. Since fully encrypted training [43] is not
yet possible without an unacceptable time complexity
penalty, we believe this threat model to cover the ma-
jority of real-life use-cases. Additionally, for GD attack
the threat model can be adapted to He et al. [6] with:
Test-time attack, server network position, white-box ac-
cess in a collaborative inference mode as per original
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work. However, we note that utilising a test-time server-
side attacker, can be considered to be a stronger adver-
sarial assumption due to them being in full control of
the pre-deployed model. For MIA, the following threat
model was chosen: Test-time attack, off-path position,
black-box model access. All attacks utilised an Honest-
but-Curious (HbC) security model.

4.2 Learning setting

We define the standard learning setting (unless explic-
itly stated otherwise) as a classification task with three
clients in the federation holding Independently and Iden-
tically Distributed (IID) image data (the dimensions
of which vary between 1x28x28, 3x32x32 and 3x64x64)
with a batch size varying between 1 and 256, depend-
ing on the learning task. This setting corresponds to a
cross-silo horizontal FL scenario, as is widely employed
in previous works [35]. In the setting of a classification
task used in our study, we define an IID distribution
as one in which each client has access to data from all
the classes present in the dataset, similar to [44]. In con-
trast, we define a non-IID distribution as one where each
client has access to a subset of individual labels disjoint
from the rest of the federation. The optimiser used was
Adam with a learning rate of 10−4, the number of train-
ing rounds was three, the number of epochs per client
was 10 and FedAvg was used as the means of update
aggregation. The choice of model depends on the data
and the nature of learning task, with most tasks utilising
LeNet [45] or AlexNet [46] with ReLU activation func-
tions, unless stated otherwise. Experiments associated
with the Generative Decoder additionally employed SL,
only allowing the clients to share the outputs of the final
pooling layer, with the classification being executed on
the aggregation server. The FL process was locally sim-
ulated. For the subset of experiments using DP, training
was performed using the SGD optimiser.
Over the course of our experiments we evaluated the fol-
lowing learning (hyper-)parameters that are common for
all settings: model depth, model width, data dimension-
ality, data complexity, data distribution among clients,
choice of specific layers (including pooling and activa-
tions), batch size, number of clients. We additionally
deployed DP as a comparative measure in order to eval-
uate the effectiveness of model adaptations on their own
and determine if these are sufficient or if additional PP
mechanisms should be employed. Finally, we also inves-
tigated the effect of final model utility on attack quality
to determine whether attacks on models with higher util-

ity were more successful.
For the DLG attack we used the L-BFGS optimiser on
the pair of adversarially controlled data and label. We
utilised the Mean Squared Error (MSE) between the
original and the computed gradients and the attack was
run for 300 iterations, similarly to the original imple-
mentation of DLG [23].
For the Generative Decoder attacks, we designed an ad-
versarial model with the same number of transposed
convolution layers as the model under attack had regu-
lar convolution layers before the cut layer. The optimiser
used by the adversary was Adam with a learning rate
of 10−4, using MSE between the reconstruction and the
original image from an attacker controlled dataset as a
loss function. The decoder was trained for 50 epochs.
Similarly to the original work, we executed the attack
on the target model that utilised SL in a FL setting. To
test the effect of weakly informative priors being used
for training the adversarial model, we performed the at-
tack on an MNIST classification task, with adversary
having access to the EMNIST dataset to train the de-
coder. Similarly, we performed an attack on CIFAR-10
while the attacker utilised the MNIST dataset or the
disjoint classes of CIFAR-100 as priors. Finally, for the
attacks on MedMNIST datasets (PneumoniaMNIST,
PathologyMNIST and DermatologyMNIST) we utilised
MNIST, ChestMNIST and CIFAR-10 datasets as adver-
sarial priors.
For MIA we used five shadow models that were trained
for 30 epochs each using an Adam optimiser with a learn-
ing rate of 10−4. Each shadow model consisted of four
fully-connected layers with 128 neurons each; utilised
ReLU activation functions separated by drop-out layers
with a probability of 0.2.
In order to evaluate the effectiveness of the GD attack,
we employ the following similarity metrics between the
original image and the reconstructed image: MSE, Struc-
tural Similarity Index Measure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) [47]. To evaluate the effective-
ness of the DLG attack we employed the MSE between
the generated and the original model updates. For MIA
we employed the accuracy metric to quantify how many
target images have been classified correctly in regards
to their membership.

5 Results
We describe the results ordered by their difficulty of
mitigation based on the corresponding threat models.
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Gradient-based reconstruction attacks can be mitigated
through the smallest number of model adaptations or
through application of a single PP mechanism (such
as DP). However, the attacker can then adapt their
methodology to exploit the intermediate activations, ef-
fectively bypassing some of the adaptations made by
the federation. Through the addition of more empirical
defenses, the federation can mitigate attacks based on
capturing intermediate activations, but this is often not
sufficient to fully mitigate other privacy-oriented attacks
such as MIA. Therefore, we concluded our experimenta-
tion section with an analysis of possible adaptations that
can be deployed to reduce the effectiveness of MIA, that
can be applied in a fully black-box setting without any
knowledge of the learning context. We deduce that be-
ing able to mitigate this attack provides the federation
with strong empirical foundations of privacy, effectively
minimizing the amount of information the adversary can
obtain irrespective of the learning setting.

5.1 Deep leakage from gradients

Across all experiments, the common trend was that the
success of the attack depended was associated with the
complexity of the data used to train the model. For
instance, we found that if the dimensions of the data
are larger than 32x32 pixels, the DLG algorithm (in
its original implementation) never converged, not even
providing partial reconstructions. In contrast, decoder-
based attacks were still able to reconstruct certain
features of the training image, albeit incomplete. Hence,
this attack can be circumvented if the dataset used to
train the model is complex enough. Data complexity
comes from both the dimensions of the data as well as
from the number of input channels: we note that util-
isation of single-channel images leads to better attack
performance when compared to three-channel images.
Model complexity also has a negative effect on the per-
formance of this attack. The deeper the model is, the
more difficult it is for the reconstruction to converge
as can be seen in Table 1. For the original models that
were deeper than LeNet (such as AlexNet), we failed
to obtain correctly reconstructed images at all while
utilising the original DLG implementation both in an
IID and in a non-IID setting.
Additionally we found this attack to be very sensitive
to the choice of batch size, and no reconstruction was
possible for batch sizes larger than two. Hence, we de-
duce that even simple adaptations can mitigate this
attack. However, we note that a more practical imple-

mentation of this attack by Geiping et al. [15] works
for batch sizes up to eight, which we address in the
discussion. We note that even in this implementation,
larger batch sizes can be used to mitigate the attack,
highlighting the importance of these seemingly simple
model adaptations. This allows us to put our findings
into a real-world perspective and evaluate how identical
model adaptations behave under a stronger adversary
that we showcase in Section 6.

MNIST CIFAR-10

LeNet AlexNet LeNet AlexNet
Number of iterations 31 N/A 84 N/A
for MSE of 0
Time taken to complete 0:45 0:31 1:54 0:53
300 iterations (m:ss)
Final MSE value 0.02 35112 0.05 30753

Table 1. Results of DLG with varying model architecture

We report that utilisation of certain layers have po-
tential to reduce the effectiveness of this attack: Max-
Pooling layers, as noted by Geiping et al. [15], are dif-
ficult to invert, resulting in incomplete convergence or
no convergence for certain inputs. We explored the sig-
nificance of this finding in a larger context in Section
7. Additionally, we discovered that a higher number of
filters has a potential to improve the results of the at-
tack. However, we also found that utilisation of wider
convolutional layers in an architecture similar to LeNet
did not result in a successful reconstruction. Similarly,
if the number of filters was too low, the attack did not
generate any meaningful reconstruction either. Thus, we
deduce that adaptation of convolutional layers has a po-
tential to mitigate the attack. We summarise these ob-
servations in Table 2.

Conv(16) Conv(64) Conv(128) Conv(256)
Number of iterations N/A 84 92 N/A
for MSE of 0
Time taken to complete 1:03 1:54 2:40 0:52
300 iterations (m:ss)
Final MSE value 2.65 0.02 0.06 69.7

Table 2. Results of DLG with varying number of Conv filters.

Additionally, we note that wider fully connected
(FC, also linear) layers also have an ability to reduce
the effectiveness of the attack. The results for these ex-
periments were summarised in Table 3. Moreover, this
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attack was extremely sensitive to the complexity of the
model overall, as both higher width and depth could
mitigate it. Similarly to Geiping et al. [15], we were able
to confirm that discontinuous functions such as ReLU
in the target model hinder the attacker’s convergence
while utilising L-BFGS as the adversarial optimiser,
and hence models with such activations resulted in no
convergence more often when compared to identical
models that employed TanH or Sigmoid (logistic) acti-
vation functions instead.

FC(16) FC(64) FC(128) FC(256)
Number of iterations 43 49 81 N/A
for MSE of 0
Time taken to complete 1:39 2:56 2:58 2:50
300 iterations (m:ss)
Final MSE value 0.01 0.02 0.06 3.41

Table 3. Results of DLG with varying width of FC layers

When comparing the performance of the attack on
a trained and an untrained model, we note that in most
scenarios both model types can be successfully inverted.
Of note, untrained models normally resulted in faster
and more frequent convergence, as the gradient norms
of untrained models are typically larger, therefore usu-
ally revealing more information about the data at each
training step, as has been illustrated in [15, 20]. How-
ever, we note that while there was no strong differ-
ence between the two trained models, the larger gra-
dient norms caused by the higher loss of an untrained
model meant that each update contained more infor-
mation and thus facilitated reconstruction compared to
models which were nearly fully trained and had lower
gradient update norms. This difference was particularly
apparent when models were trained on more complex
datasets such as CIFAR-10. For simpler datasets such as
MNIST, we did not observe any substantial difference
between a final round model and an untrained model,
which we assume to be caused by the simplicity of re-
construction of smaller datasets.
Finally we employed a formal PP mechanism, namely
client-level (local) DP, which resulted in full attack miti-
gation even for large values of ε > 5.0, highlighting that,
even with relatively weak privacy guarantees, such at-
tacks can be mitigated. We stress that the same does
not necessarily hold when noise addition is performed
on the aggregated model (aggregate-level DP). Thus, an
adversary controlling an aggregation server in such a set-
ting, would be able to perform such attacks more easily.

Hence, aggregate-level DP is only suitable when the ad-
versary is assumed to be a client rather than a central
server, or when SecAgg is employed.
Overall, DLG is less likely to be a threat to a collabo-
rative learning protocol due to the number of assump-
tions that have to be satisfied before the attack can be
executed. While this issue has been partially alleviated
in more recent and advanced attack implementations
([15, 24]) to e.g. support larger effective batch sizes (as-
sociated with a higher client count), the fundamental
limitation of the attack remains and does not permit
the adversary to reconstruct large batches of images.

5.2 Generative decoder

As seen above, even a limited number of model adapta-
tions is sufficient to empirically protect the federation
against the gradient-based attacks. As a result, we con-
sider a separate exploitation vector that does not rely
on the shared gradients, but on the shared activations
instead. We consider this change in adversarial strategy
to be realistic, as the federation cannot assume that the
attacker to only be limited to a single model inversion
technique under the same threat model.
While adapting the attack to train time, in order to
enhance privacy of the federation without utilising ad-
ditional PP techniques, we conducted an experiment
with clients employing a combination of FL and SL
[38]. This was intended to make sharing updates less
of a burden on the network as well as added privacy
enhancement, since the model was no longer shared in
full. In this study we consider SL [38] which –similar
to FL –was proposed as a PP mechanism, however also
provides no formal privacy guarantees and is hence an
example of learning setting adaptation. For this attack
we assumed (unless explicitly stated otherwise) that
the federation sends their activations after the second
pooling layer, thus limiting the amount of information
that the attacker can reconstruct from this data.

We conducted a number of experiments to deter-
mine the relationship between the accuracy of the target
model and results of the reconstruction. We discovered
that the accuracy of the target model greatly affects the
outcomes of the attack, as poorly trained target models
models with could not be used to generate any mean-
ingful reconstructions. This was particularly noticeable
for non-standard multi-channel datasets that require
deeper models or a larger number of epochs to train,
such as PathologyMNIST or DermatologyMNIST, re-



Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning 281

Fig. 1. Reconstruction of PneumoniaMNIST with priors: ChestM-
NIST (left) and MNIST (right)

Fig. 2. Reconstruction results for PathologyMNIST (left) and
DermatologyMNIST (right)

gardless of the adversarial prior. Reconstruction results
for these two datasets are presented in Figure 2. We
therefore deduce that, model accuracy seems to repre-
sent a vital component of a successful attack, and thus
the adversary can achieve improved reconstructions af-
ter the joint model gained reasonable accuracy in the
training task. In contrast, low accuracy led to meaning-
less reconstruction results that lacked detailed features
and were not humanly recognisable. This conclusion
contradicts the results of the DLG attack, where an un-
trained model reveals more about the training data than
a fully-trained one, putting multiple training contexts
at risk. We report results associated with the choice of
target datasets and corresponding model accuracy in
Table 4.

MNIST PneumoniaMNIST CIFAR-10 PathologyMNIST

Model accuracy 91.2% 82.7% 55.2% 35.1%
Reconstruction MSE 397.4 408.3 451.3 548.5
Reconstruction SSIM 22.1 21.9 21.6 19.5
Reconstruction PSNR 0.13 0.12 0.09 0.04

Table 4. Results of GD attack (3 clients, IID, LeNet, 2nd layer
SL). Datasets 1 and 2 use FMNIST prior; datasets 3 and 4 use
CIFAR-100 prior.

Our next evaluation considered the effects of the
relative positioning of the cut layer, which determined
how much information is shared with the central server.
We found that the cut layer’s location relative to the
rest of the model can reduce the effectiveness of the at-
tack substantially, but SL alone was not a sufficient pro-

tection mechanism. Even placing the cut layer later in
the network allowed the attacker to identify the general
features associated with the training image. Similarly,
early positioning of the cut layer can significantly im-
prove the results of the reconstruction. This is because
early layers contain data of higher resolution (including
the non-robust, but highly descriptive ones). We present
results for two distinct scenarios: cut layer at the first
pooling layer and cut layer at the final pooling layer in
Figure 3. Consequently, should the federation adopt the

Fig. 3. Reconstruction of MNIST with varying position of the cut
layer (LeNet): original image (left), early cut layer (centre) and
deeper cut layer (right).

approach of sending the activations of the final convo-
lution/pooling layer to the central server, deeper mod-
els will be leaking inherently less information about the
training data. As a result, we found that deeper models
can be effectively deployed to reduce the effectiveness
of this attack. However, this can only be the case if em-
ploying a deeper model comes with a later cut layer,
thus revealing less information. Alternatively, if the cut
layer position remains unchanged, deeper models have a
much higher accuracy on complex tasks, therefore, mak-
ing the attack (along with the main learning task) more
successful. However, we also note that due to the fact
that this attack relies on decoding the features supplied
by individual clients, additional width in the convolu-
tional layers improved the reconstruction results. These
results are summarised in Figure 4. We also report that
additional width in the FC layers did not have a notable
impact on the attack.

When assessing the relevance of data distribution
across the federation, we found that on non-IID data,
the attack results were less accurate in comparison to
IID data across all datasets. As described in Section 3.2,
we consider a scenario in which each client only has ac-
cess to a disjoint subset of the dataset to be non-IID.
This observation suggests that potential overfitting in
the context of this attack either does not contribute to
a more accurate reconstruction or that the effect of over-
fitting is offset by the significance of the overall model
accuracy. We compared the performance of the attack
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Fig. 4. Effects of model width (convolutional layers) on GD

in the IID setting against the non-IID setting in Figure
5.

A further noteworthy observation is that the at-
tacker only requires data from the same distribution
as the victims and does not directly from the same
dataset as the training data for most experiments. This
result makes this attack more risky, as it extends the
possibilities for the adversary to extract the training
data without any prior assumptions on what the data
represents, but only knowing its dimensions. We con-
firmed this observation by performing the attack on
the PneumoniaMNIST dataset, utilising MNIST and
ChestMNIST as two separate priors. As can be seen in
Figure 1, while the latter provided the attacker with
more defined features, both attacks resulted in image
reconstruction.

MNIST (MaxPool) MNIST (AvgPool) CIFAR10 (MaxPool) CIFAR10 (AvgPool)

MSE 464.1 429.1 462.4 441.2

PSNR 21.5 21.8 21.7 22.0

SSIM 0.15 0.16 0.08 0.09

Table 5. Results of GD attack (3 clients, IID, LeNet, 2nd layer
SL). AvgPool and MaxPool effects on MNIST and CIFAR10.

We observed that similarly to DLG, data with
higher resolution was more difficult to invert. This is
attributed to assumptions about the data that is avail-
able to the attacker to train the decoder. When the
prior was not consistent with the data in the cases of
1x28x28 datasets, the loss in quality was insignificant.
However, when the attacker attempted to reconstruct
larger 3x32x32 datasets, they were not be able to ac-
complish an accurate reconstruction without a suitable
prior as can be seen from Figure 6.

MNIST (ReLU) MNIST (Tanh) CIFAR10 (ReLU) CIFAR10 (Tanh)

MSE 464.1 558.5 462.4 498.4

PSNR 21.5 20.7 21.7 21.6

SSIM 0.15 0.10 0.08 0.10

Table 6. Results of GD attack (3 clients, IID, LeNet, 2nd layer
SL). ReLU and TanH effects on MNIST and CIFAR10

Another adaptation that had a similar effect on
the GD attack as on the DLG attack was the usage
of pooling layers. Similar to our findings above, Max-
Pooling tended to reveal less information in compari-
son to Average-Pooling; to our knowledge, this finding
has not been discussed in prior work in this particu-
lar attack setting. The results of these experiments are
summarised in Table 5. Thus, as these two experiments
showcase, the usage of a specific pooling layer type can
reduce the effectiveness of multiple attacks simultane-
ously. Contrary to DLG, where ReLU had a mitigating
effect, we found Sigmoid (logistic) activations to miti-
gate GD, however this may be due to the, on average,
lower accuracy of models utilising this activation func-
tion. The results of these experiments are summarised
in Table 6.
Finally, we note that increasing the batch size at train
time also rendered the attack ineffective, similar to DLG.
At inference time, similarly to He et al. [6] we assumed
that clients were interested in obtaining the results for
one image at a time. If this assumption was violated, the
attacker was facing the same difficulty as before and the
attack could be circumvented.
In order to evaluate the effects of formal PP mecha-
nisms, we applied client-level Differential Privacy (DP-
SGD, adapted from [41]) during training on each indi-
vidual client node, resulting in inaccurate noisy recon-
structions for the adversary. However, we note this re-
sult could be attributed to a performance degradation
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Fig. 5. Effects of data distribution on the reconstruction results

associated with DP as well as to the application of DP
itself.

Fig. 6. Reconstruction of CIFAR-10 with priors: CIFAR-100 (left)
and MNIST (right)

5.3 Membership inference attack

We now study the situation in which the attacker is
prevented from a successful reconstruction attack due
to them being positioned outside of the network, or be-
cause the federation utilises security and confidentiatlity
measures that mask their contributions (such as SMPC).
In such cases, attacks such as MIA can still succeed.
In line with previous works [5, 12], we assessed the sig-
nificance of model complexity on the results of MIA. By
model complexity we define the number and width of
model layers. Our experiments showed that for models
under MIA, the deeper the model is, the less accurate
the result of the attack is likely to be. This suggests
that an addition of more convolutional layers reduces
the amount of information that is memorised by the net-
work about each individual training instance, but may
improve generalisation, resulting in higher accuracy for
the federation and lower accuracy for the attacker. How-
ever, as noted by Shokri and colleagues [4], more com-

plex models are at a higher risk of overfitting, resulting
in more accurate MIA due to an increased propensity
for data memorisation. Our experimental evidence fur-
ther suggested that increasing the number of filters in
the convolutional layers could significantly increase the
accuracy of the attack. In contrast, neither an increase
in the number or the width of the FC layers resulted in
notable difference in MIA results. For this experiment,
differently to GD and DLG, we utilised the CIFAR-10
dataset, as simpler datasets produced negligible varia-
tion across most experiments, showing very marginal
changes in regards to model complexity. Findings of the
model complexity experiments are shown in Table 7.

After analysing the effects of the target model it-
self on the results of the attack, we now consider the
effects of the training data. We noted that the more
complex the training dataset is, the more uniquely iden-
tifiable features each individual training image has that
allow the adversary to link it to a specific client. Us-
ing the fact that each model memorises the data it was
trained on and behaves differently during the update
phase in comparison to the data it was not trained on,
it is easier to exploit images of larger dimensions with
three channels in comparison to simpler single-channel
images. This is likely to be the case because there are
fewer features that help distinguish simple data points
from each other in comparison to more complex data
points with more diverse feature sets that describe them
more uniquely. Additionally, we determined that over-
fitting of the target model (and hence attacking during
an earlier training round in the non-IID setting) results
in a more accurate inference. We also noted that the
accuracy of the target model has on its own an insignifi-
cant effect on the results of the attack, when comparing
two trained models. However, since MIA relies on the
model being able to memorise information about indi-
vidual data points, poorly trained or untrained models
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Conv(16) Conv(32) Conv(64) Conv(128) FC(64) FC(128) FC(256) FC(512) FC(1024) FC(2048)

Model accuracy 74.8% 80.1% 85.1% 92.1% 77.3% 76.9% 78.8% 78.1% 78.0% 78.1%
Attack accuracy 54.0% 57.5% 59.2% 64.2% 54.1% 53.5% 55.2% 54.4% 53.8% 54.3%

Table 7. Impact of model width on MIA (3 clients, IID, LeNet, 30 epochs, CIFAR-10)

provide severely worse inference results. Overall for MIA
we found it much more difficult to determine the effects
of each individual adaptation, since the attack can ben-
efit significantly from overfitting [5] and each of these
factors can have an effect on the overfitting of the tar-
get model as well as on the attack itself. Results from
both the data complexity and model complexity exper-
iments can be found in Table 8

MNIST FMNIST CIFAR-10 CIFAR-100

Model accuracy (LeNet) 99.8% 92.7% 65.5% 43.5 %
Attack accuracy (LeNet) 51.1% 51.4% 60.1% 54.6%
Model accuracy (AlexNet) 99.1% 93.4% 77.6% 62.7%
Attack accuracy (AlexNet) 50.9% 52.5% 56.5% 51.5%

Table 8. Results of MIA with varying model and data complexi-
ties (3 clients, 30 epochs)

Finally we note that were no effects on the results
of the attack when adapting batch size or activation
functions in the target models across all datasets. This
distinguishes the attack from the previously discussed
ones, as MIA can hence be deployed in settings, which
have been adapted to withstand the reconstruction at-
tacks discussed above.

MNIST MNIST DP CIFAR-10 CIFAR-10 DP

Model accuracy 98.8% 98.6% 77.2% 71.5%
Attack accuracy 50.8% 50.4% 59.8% 54.3%

Table 9. Impact of DP on MIA (3 clients, DP-SGD, LR=1e − 2,
50 epochs, ε = 1.751, α = 14.0)

After evaluating the empirical defenses, we deployed
a provable privacy-preserving strategy, namely DP. The
addition of DP reduced the effectiveness of this attack,
but for small values of ε (up to 1.8) resulted in a per-
formance degradation as can be seen in Table 9. Thus,
while DP substantially reduces the success of inference
attacks, it also negatively impacts model utility.

6 Application to medical imaging
datasets

To evaluate our results from benchmark datasets, we
finally performed experimentation on medical imaging,
which represents a particularly privacy-sensitive domain.
This allowed us to place our findings from Section 5
into a real-world context and assess the applicability
of model adaptation on sensitive datasets. Initially, we
utilised a similar learning setting as described above,
with a batch size of one, two clients with IID data and
unencrypted non-private gradient sharing. Moreover, to
accommodate for a more complex model (ResNet18),
we employed an improved version of DLG by Geiping
et al. [15] on the publicly available dataset of paediatric
chest radiographs originally published by Kermany et al.
[48], and recovered chest x-rays that were almost indis-
tinguishable from the original images used for training.
This exemplifies that such attacks can lead to catas-
trophic violation of privacy in standard collaborative
settings. Reconstruction results can be found in Figure
7

Fig. 7. Reconstruction results for the paediatric pneumonia
dataset: original (left) and reconstructed (right)

To showcase the empirical privacy improvements
from simple model adaptations, we changed a small
number of training settings and compared the results
to an unprotected reconstruction. We changed the effec-
tive batch size to 30 (batch size of 10 per each client
in a federated setting with three clients), which did not
result in an accurate reconstruction for the adversary.
Additionally, we conducted an attack on a DP-trained
model (with ε = 6.0, δ = 1.9×10−4, α = 4.4) for compar-
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ison. The results can be found in Figure 8. This allows
us to observe that while simple model adaptations are
empirical methods, they can reduce the effectiveness of
this attack, without the utility penalty typically associ-
ated with information-theoretic PP protocols. Moreover,
a higher effective batch size can be obtained through two
distinct adaptations: an increase in training batch size
per client, as well as an increase in the size of the federa-
tion. The latter would also allow to empirically mitigate
attacks performed by an HbC client, since they would
not be able to distinguish the updates submitted by
their victim from an aggregated update shared by the
central server.

Fig. 8. Reconstruction of 4P while deploying: Model adaptation
(left) and DP training (right)

7 Discussion
In this study we experimentally evaluated the effects
that simple adaptations of the collaborative learning
setup have on privacy-oriented adversarial attacks. Af-
ter analysing the results of our experiments, we observed
a number of model adaptations that reduce adversarial
effectiveness under all attack scenarios.
For instance, deeper models reduced the effectiveness
of the attack, regardless of which adversarial method
is used. Under MIA, these models are more difficult to
attack, as they have an improved capacity for model
generalisation and do not memorise the features that
distinguish specific data points or clients. However, at
the same time as noted by Shokri et al. [5], more com-
plex models tend to be prone to overfitting, generating
additional risk of data memorisation, which should be
taken into account when training the model in data-
deficient regimes. When compared to other attacks, GD
relies on the filters of the attacked model having cap-
tured sufficient information from the dataset to recon-
struct the training data and therefore, the deeper the

model is (and while utilising SL, the further away from
the input the cut layer is), the more difficult it is for the
attacker to achieve reasonable reconstruction accuracy.
This is due to a loss of features through additional pool-
ing layers. For a DLG adversary, a deeper model means
a higher computation cost associated with the attack,
resulting in no convergence for simpler attack implemen-
tations. Utilisation of specific pooling techniques is also
associated with a reduction in adversarial information
gain across all reconstruction attacks. This finding be-
comes significant in the context of application of formal
PPML techniques: utilisation of Max-Pooling layers re-
mains non-trivial when computed privately through pro-
tocols such as SMPC and HE for which the necessary
comparison operators are not easily or efficiently imple-
mented. The federation is then forced to either adapt
their models’ architectures to be compatible with such
protocols by replacing layers, or opt for an empirical
model adaptation approach instead, without taking an
associated utility penalty. Lifting limitations to unlock
the full extent of model architectures when implemented
over blind computing protocols is an active area of re-
search both in the fields of SMPC [49, 50] and HE [51].

Similarly, for a larger number of clients, all at-
tacks we discuss failed to obtain meaningful results, be
it a high confidence inference prediction or an image
similar to the one used during the training process.
These results are summarized in Table 10 and highlight
a suitable baseline for most CML contexts that are
empirically shown to reduce the effectiveness of privacy-
centred attacks. This allows collaborators to benefit
from a higher empirical privacy, while not paying the
associated performance penalty associated with formal
PPML mechanisms. While this can be considered as
a setting adaptation rather than a model adaptation,
such finding allows us to recommend that smaller fed-
erations employ formal PPML mechanisms, as they
are more vulnerable to all attack types that we have
discussed in this work, instead of relying on model
adaptations alone. One important observation is that
deploying adaptations such as increasing client popu-
lation or making changes to the batch size, can result
in attacker’s threat model being ineffective. This issue
arises when the adversary can no longer reliably deter-
mine which update corresponds to which data-client
pair as an HbC client-side attacker, forcing them to
assume the position of an HbC server, which they often
cannot do in practise, rendering the attack unsuccessful
in such settings. However, we note that adaptations
that involve changing the learning setting, rather than
the model itself can be more challenging to implement
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Model Adaptations Privacy-Preserving Mechanisms

Increasing the Increasing Deeper Wider Large Discontinuous Differential Secure
number of clients data dimensionality models models batch sizes activations Privacy Aggregation

Generative Decoder Yes Yes Yes No Yes No Yes Yes
Deep Leakage from Gradients Yes Yes Yes Yes Yes Yes Yes1 Yes
Membership Inference Yes No Yes2 No No No Yes No

Table 10. Proposed mitigations
1Client/patient-level DP
2Can be ameliorated through model overfitting

in practice, thus making them only effective under a
number of assumptions are satisfied.
Additionally, as can be seen from Table 10, certain
adaptations that are deployed can conflict with each
other when it comes to mitigating different attacks si-
multaneously. In a case of privacy based attacks, MIA
benefits from more complex data, whereas DLG can fail
to converge on a data that’s dimensions are too large.
There are also factors such as batch size that have an
ability to fully mitigate reconstruction attacks to a cer-
tain extent, while being completely irrelevant under a
MIA adversary. The most notable adaptation that does
not have a singular defined affect on the attacks is the
model width. While wider convolutional layers tend to
provide the adversary with more information about the
training data, they also make certain reconstruction
tasks, such as DLG, more challenging. Additionally,
there is no clear affect of the deployment of wider FC
layers on the attacks, as wider layers either do not affect
certain attack at all or, in fact, marginally reduce the at-
tack’s effectiveness, but are offset by the effects of wider
convolutional layers in the context of more complex
models overall. Consequently, we deduce that forming
a single set of adaptations that would hold effective
against any attack type is still an open challenge, but
we hope that our work provides a suitable baseline and
outlines directions that the future work may take. As
a first step, some of our findings are effective not only
against a number of privacy-centred attacks discussed
above, but also against their derivatives relying on sim-
ilar exploitation vectors. For example, the utilisation
of larger models is not only effective against the MIA
implementation our work is based on [5] but is also
effective against variants [52, 53] which, like MIA, are
based on the concept of shadow training.
Furthermore, we note that based on our experimental
evaluation of model adaptations under MIA, the results
that we obtain raise a number of questions on the de-
pendency between overfitting, model architecture and
data complexity. Particularly, we find it challenging to
determine to what extent each one of these components

individually affects the results of the attack. Such chal-
lenge arises from the fact that these components are
often tightly coupled and it is difficult to isolate their
effects when it comes to evaluating the results of a
seemingly “more successful” attack. Consequently, we
see an open area of future work in determining the pre-
cise relationship between these components in regards
to MIA accuracy.
Our experimental results raise questions about the ef-
fectiveness of solely adjusting the learning settings as
opposed to leveraging methods that can be deployed
alongside the training protocol such as SMPC or DP.
However, most of these formal protocols do not have the
ability to circumvent all privacy-centred attacks either:
protecting data from reconstruction does not provide
the methods that achieve perfect secrecy and confiden-
tiality, such as HE or SMPC, with provable guarantees
of privacy when under MIA. Indeed, most attacks that
target membership information only require black-box
access to the model [4, 54–57] and achieve high attack
accuracy without utilising any additional information
about the victim. The utilisation of DP can result in an
unacceptable utility penalty and HE is typically very
computationally expensive for the training of deep neu-
ral networks [58–60]. However, the utilisation of SecAgg
(even without fully encrypted training) can still miti-
gate reconstruction attacks, and may integrate better
in the context of collaborative learning. This is due to a
smaller effect on the performance of the model [10, 61]
and the attacker’s inability to utilise shares of individual
updates to achieve privacy violation. We note that a hy-
brid system that utilises DP and SecAgg is an optimal
choice for tasks that prioritise confidentiality over per-
formance, as such a combination of algorithms allows
the clients to be provably defended against both recon-
struction and inference attacks simultaneously [20].
Moreover, similarly to other works [62] we note that, in
addition to performance degradation, DP is associated
with further challenges, such as the selection of optimal
noise parameters [63], issues of unfairness to underrep-
resented datasets during training [64] and a false sense
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of privacy for large values of ε. This last issue can prove
problematic as it leads clients to believe that their data
is secure and maintains high utility, while it may be in-
sufficient to prevent adversarial interference [65]. Thus,
we highlight the requirement for further investigation
to facilitate the large-scale deployment of DP.

8 Limitations
We consider a number of limitations to model adap-
tion, which arise from the experimental evidence and
discussion above, especially compared to formally secu-
rity and/or privacy mechanisms. Firstly, we highlight
that the adaptations we discuss are mostly applica-
ble to privacy-centred adversarial contexts, therefore
providing limited protection against utility-centred at-
tacks such as backdoor insertion [7] or model poisoning
attacks [3]. However, we note that a similar line of dis-
cussion is also applicable to formal PETs such as SMPC
or HE which would, in fact, even allow the adversary to
remain concealed while performing such utility-centred
attacks. Secondly, as mentioned above, a subset of the
discussed adaptations cannot be dynamically altered
as the learning progresses. Thus, adversaries can, in
principle, choose the attack method they deploy based
on prior knowledge of which adaptations have been
deployed by the training consortium. In addition, we
highlight that there exist other variations of privacy-
centred attacks such as Attribute Inference Attacks [4]
or Generative Adversarial Model-based inversion at-
tacks [13], which we have not discussed in this study.
We consider these a promising area of future work in-
vestigating mitigations that are specific to exploitation
vectors that the adversaries rely on in these contexts.
For example, perturbation of the weights of the trained
model can prevent attribute inference attacks, but is
inapplicable to attacks occurring during model train-
ing. Finally, although we have covered a plethora of
techniques (such as model width and depth, batch size,
etc.) which represent fundamental choices in the learn-
ing process, we have omitted a detailed treatment of
more situational techniques, such as examining the large
number of available regularisers, or the use of mixed
precision training and quantisation, which are not yet
common practice in every machine learning context.

9 Conclusion
This work investigated the use of model adaptation tech-
niques to mitigate privacy attacks in a collaborative
learning setting. We selected three attacks from the lit-
erature that were designed to extract sensitive data in a
joint learning task. We then evaluated the possibility of
tuning parameters of the learning task itself to mitigate
the attacks. Our experiments show the impact of factors
such as model depth or layers forming its architecture on
diminishing the success of an attack. However, we also
noted that adaptations such as data complexity, model
width, accuracy of the target model or batch size do not
have a consistent effect on the fidelity of attacks when
the threat model can be adapted to incorporate multi-
ple attack simultaneously. Should the same adversary
be able to utilise multiple attacks from various entry
points, they would find certain reconstruction attacks
benefiting from simpler data, whereas membership at-
tacks might fail to achieve meaningful results.
We conclude that both model adaptations and formal
PP techniques follow the exact same trade-off principle:
prevention strategies deployed against privacy-oriented
attacks increase the adversarial gain in scenarios of util-
ity destruction and malicious model augmentation. Fu-
ture work will thus explore the unified strategies com-
bining model adaptation and privacy-preserving meth-
ods [16–18, 32] to simultaneously protect the federation
from both privacy- and utility-focused attacks.
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