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Differentially private partition selection
Abstract: Many data analysis operations can be ex-
pressed as a GROUP BY query on an unbounded set of
partitions, followed by a per-partition aggregation. To
make such a query differentially private, adding noise to
each aggregation is not enough: we also need to make
sure that the set of partitions released is also differen-
tially private.
This problem is not new, and it was recently formally in-
troduced as differentially private set union [14]. In this
work, we continue this area of study, and focus on the
common setting where each user is associated with a sin-
gle partition. In this setting, we propose a simple, opti-
mal differentially private mechanism that maximizes the
number of released partitions. We discuss implementa-
tion considerations, as well as the possible extension of
this approach to the setting where each user contributes
to a fixed, small number of partitions.
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1 Introduction
Suppose that a centralized service collects information
on its users, and that an engineer wants to understand
the prevalence of different device models among the
users. They could run a SQL query similar to the fol-
lowing.

SELECT
device_model ,
COUNT( UNIQUE user_id )

FROM database
GROUP BY device_model

Many common data analysis tasks follow a simple
structure, similar to this example query: a GROUP BY op-
eration that defines a set of partitions (here, device mod-
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els), followed by one or several aggregations. To make
such a query differentially private, it is not enough to
add noise to each count. Indeed, in the example above,
suppose that a device model is particularly rare, and
that a single user is associated to this device model.
The presence or absence of this user determines whether
this partition appears in the output: even if the count is
noisy, the differential privacy property is not satisfied.
Thus, in addition to the counts, the set of partitions
present in the output must also be differentially private.
There are two main ways of ensuring this property.

A first option is to determine the set of output parti-
tions in advance, without looking at the private data. In
this case, even if some of the partitions do not appear in
the private data, they must still be returned, with noise
added to the zero value. Conversely, if the private data
has partitions that do not appear in the predefined list,
they must be dropped from the output. This option is
feasible when grouping users by some fixed categories,
or if partitions can only take a small number of prede-
fined values.

However, this is not always the case. Text-based
partitions like search queries or user agents might take
arbitrary values, and often cannot be known without ac-
cess to the private dataset. Furthermore, when building
a generic DP engine, usability is paramount, and re-
quiring users to annotate their dataset with all possible
values that can be taken by a given field is a significant
burden. This makes a second option attractive: generat-
ing the list of partitions from the private data itself, in a
differentially private way. This problem was formally in-
troduced in [14] as differentially private set union. Each
user is associated with one or several partitions, and the
goal is to release as many partitions as possible while
making sure that the output is differentially private.

In [14], the main motivation to study this set union
primitive is natural language processing: the discovery
of words and n-grams is essential to these tasks, and
can be modeled as a set union problem. In this context,
each user can contribute to many different partitions.
In the context of data analysis queries, however, it is
common that each contributes only to a small number
of partitions, often just one. This happens when the
partition is a characteristic of each user, for example
demographic attributes or the answer to a survey. In
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the above SQL query example, if the user ID is a device
identifier, each contributes to at most one device model.

In this work, we focus on this particular single-
contribution case, and provide an optimal partition se-
lection strategy for this special case. More specifically,
we show that there is a fundamental upper bound on
the probability of returning a partition associated with
k users, and present an algorithm that achieves this
bound.

This paper is structured as follows. After discussing
prior work in more detail and introducing definitions,
we present a partition selection mechanism for the case
where each user contributes to one partition, and prove
its optimality. We then discuss possible extensions to
cases where each user contributes to multiple partitions
as well as implementation considerations.

1.1 Prior work

In this section, we review existing literature on the prob-
lem of releasing a set of partitions from an unbounded
set while satisfying differential privacy. This did not get
specific attention until [14], but the first algorithm that
solves it was introduced in [21], for the specific context of
privately releasing search queries. This algorithm works
as follows: build a histogram of all partitions, count
unique users associated with each partition, add Laplace
noise to each count, and keep only the partitions whose
counts are above a fixed threshold. The scale of the noise
and the value of the threshold determine ε and δ. This
method is simple and natural; it was adapted to work
in more general-purpose query engines in [26].

In [14], the authors focus on the more general prob-
lem of differentially private set union. The main use case
for this work is word and n-gram discovery in Natural
Language Processing: data used in training models must
not leak private information about individuals. In this
context, each user potentially contributes to many el-
ements; the sensitivity of the mechanism can be high.
The authors propose two strategies applicable in this
context. First, they use a weighted histogram so that if
a user contributes to fewer elements than the maximum
sensitivity, these elements can add more weight to the
histogram count. Second, they introduce policies that
determine which elements to add to the histogram de-
pending on which histogram counts are already above
the threshold. These strategies obtain significant utility
improvements over the simple Laplace-based strategy.

In this work, in contrast to [14], we focus on the low-
sensitivity use case: each user contributes to exactly one

element. This different setting is common in data analy-
sis: when the GROUP BY key partitions the set of users
in distinct partitions, each user can only contribute to
one element to the set union. Choosing the contributions
of each user is therefore not relevant; the only question is
to optimize the probability of releasing each element in
the final result. For this specific problem, we introduce
an optimal approach, which maximizes this probability.

Public partitions
When the domain of possible partitions is known in ad-
vance and considered public data, no partition selection
is necessary. This assumption is typically made implic-
itly in existing work on histogram publication, either
by assuming that the domain is known exactly and not
too large [1, 6, 15, 27–30], or that the attributes are
numeric and bounded [24]. In the former case, no parti-
tion selection is necessary; the strategy usually revolves
around grouping known partitions together to limit the
impact of the noise. In the latter case, the possible par-
titions are also indirectly known in advance (all possible
intervals in a fixed numerical range), and the problem
is to find which intervals to use to slice the data. With
such pre-existing knowledge about the partitions, our
approach does not provide any benefit.

Domain of fixed size
When the domain does not conform to one of the as-
sumptions described above, the data domain might still
be a subset of some large domain. For example, integer
attributes are typically stored using 64 bits. Similarly, it
is reasonable to assume that search queries or URLs are
strings whose size is bounded by some large number.

We can use this fact to perform partition selection
by adding noise to all possible partitions, including the
ones that do not contain any data, and only return
the ones that are above a given threshold. This process
can be simulated in an efficient way, without actually
enumerating all partitions [5]. Other methods might be
possible; for example, one could imagine simulating the
sparse vector technique [8] or one of its multiple-queries
variants [9, 19, 23, 25] to ask the number of users in
all possible partitions, while ignoring the privacy cost
of answers below a threshold.

We are not aware of any work using these techniques
for the specific problem of partition selection. We also
postulate that they are likely to fail for extremely large
domain sizes (like long strings); the technique in [5] out-
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puts a number of false positive partitions linear in the
domain size.

Differences with our approach
In this work, we focus on cases where all assump-
tions above fail because the domain of the data is un-
bounded or too large. As such, the only way to learn
this domain is by looking at the private data, which
must be done in a differentially private way. This as-
sumption is particularly suited to building generic tool-
ing, like general-purpose differentially private query en-
gines [3, 18, 22, 26]. Indeed, to use such an engine, either
all the domain of the input data must be enumerated in
advance, or partition selection is necessary. But this re-
quires the analyst or data owner to document the data
domain for all input databases. This is a significant us-
ability burden, which makes it difficult to scale the use
of the query engine. This problem is the main motivator
for our work.

1.2 Definitions

Differential privacy (DP) is a standard notion to quan-
tify the privacy guarantees of statistical data. For the
problem of differentially private set union, we use (ε, δ)-
DP.

Definition 1 (Differential privacy [7]). A randomized
mechanism M is (ε, δ)-differentially private if for any
two databases D and D′, where D′ can be obtained from
D by either adding or removing one user, and for all
sets S of possible outputs:

P [M (D) ∈ S] ≤ eεP
[
M
(
D′
)
∈ S
]

+ δ.

Let us formalize the problem addressed in this work.

Definition 2 (Differentially private partition selection).
Let U be a universe of partitions, possibly infinite. A
partition selection mechanism is a mechanism M that
takes a database D in which each user i contributes
a subset Wi ⊂ U of partitions, and outputs a subset
M (D) ⊆ ∪iWi.

The problem of differentially private partition selec-
tion1 consists in finding a mechanism M that outputs
as many partitions as possible while satisfying (ε, δ)-
differential privacy.

1 Also called differentially private set union [14].

In the main section of this paper, we assume that each
user contributes to only one partition (|Wi| = 1 for all
i). We first study the simplified problem of considering
each partition independently. The only question then
is: with which probability do we release this partition?
And the strategy can simply be reduced to a function
associating the number of users in a partition with the
probability of keeping the partition. After finding an
optimal primitive for this simpler problem, we show that
it is actually optimal in a stronger sense, even among
mechanisms that consider all partitions simultaneously.

Definition 3 (Partition selection primitive). A parti-
tion selection primitive is a function π : N → [0, 1]
such that π(0) = 0. The corresponding partition selec-
tion strategy consists in counting the number n of users
in each partition, and releasing this partition with prob-
ability π(n).

We say that a partition selection primitive is (ε, δ)-
differentially private if the corresponding partition se-
lection strategy ρπ : N→ {drop, keep}, defined by:

ρπ(n) =

{
drop with probability 1− π(n)
keep with probability π(n)

is (ε, δ)-differentially private.

Note that partitions associated with no users are not
present in the input data, so the probability of releasing
them has to be 0: the definition requires π(0) = 0.

2 Main result
In this section, we define an (ε, δ)-DP partition selec-
tion primitive πopt and prove that the corresponding
partition selection strategy is optimal. In this context,
optimal means that it maximizes the probability of re-
leasing a partition with n users, for all n.

Definition 4 (Optimal partition selection primitive).
A partition selection primitive πopt is optimal for (ε, δ)-
DP if it is (ε, δ)-DP, and if for all (ε, δ)-DP partition
selection primitives π and all n ∈ N:

π(n) ≤ πopt (n) .

We introduce our main result, then we prove it in two
steps: we first prove that the optimal partition selection
primitive can be obtained recursively, then derive the
closed-form formula of our main result from the recur-
rence relation.
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Theorem 1 (General solution for πopt). Let ε > 0 and
δ ∈ (0, 1). Defining:

n1 = 1 +
⌊

1
ε

ln
(
eε + 2δ − 1
(eε + 1)δ

)⌋
,

n2 = n1 +
⌊

1
ε

ln
(

1 + eε − 1
δ

(1− πopt (n1))
)⌋

,

and m = n − n1, the partition selection primitive πopt
defined by:
– πopt (n) = enε−1

eε−1 · δ if n ≤ n1,
– πopt (n) =

(
1− e−mε

) (
1 + δ

eε−1
)

+ e−mεπopt (n1) if
n > n1 and n ≤ n2,

– 1 otherwise
is optimal for (ε, δ)-DP.

These formulas assume ε > 0 and δ > 0. We also cover
the special cases where ε = 0 or δ = 0.

Theorem 2 (Special cases for πopt).
1. If δ = 0, partition selection is impossible: the opti-

mal partition selection primitive πopt for (ε, 0)-DP
is defined by πopt (n) = 0 for all n.

2. If ε = 0, the optimal partition selection primitive
πopt for (0, δ)-DP is defined by πopt (n) = min (1, nδ)
for all n.

2.1 Recursive construction

How do we construct a partition selection primitive π
so that the partition is output with the highest possi-
ble probability under the constraint that π is (ε, δ)-DP?
Using the definition of differential privacy, the following
inequalities must hold for all n ∈ N.

π(n+ 1) ≤ eεπ(n) + δ (1)
π(n) ≤ eεπ(n+ 1) + δ (2)

(1− π(n+ 1)) ≤ eε(1− π(n)) + δ (3)
(1− π(n)) ≤ eε(1− π(n+ 1)) + δ. (4)

These inequalities are not only necessary, but also
sufficient for π to be DP. Thus, the optimal partition
selection primitive can be constructed by recurrence,
maximizing each value while still satisfying the inequal-
ities above. As we will show, only inequalities (1) and (4)
above need be included in the recurrence relationship.
The latter can be rearranged as:

πopt (n+ 1) ≤ 1− e−ε(1− πopt (n)− δ)

which leads to the following recursive formulation for
πopt.

Lemma 1 (Recursive solution for πopt). Given δ ∈
[0, 1] and ε ≥ 0, πopt satisfies the following recurrence
relationship: πopt (0) = 0, and for all n ≥ 0:

πopt (n+ 1) = min(
eεπopt (n) + δ,

1− e−ε(1− πopt (n)− δ),
1)

(5)

Proof. Let π0 be defined by recurrence as above; we will
prove that π0 = πopt.

First, let us show that π0 is monotonic. Fix n ∈ N.
It suffices to show for each argument of the min function
in (5) is larger than π0 (n).
First argument. Since ε ≥ 0 implies eε ≥ 1 and δ ≥ 0,

we trivially have eεπ0 (n) + δ ≥ π0 (n).
Second argument. We have:

1− e−ε(1− π0 (n)− δ) = 1− e−ε(1− π0 (n)) + e−εδ

≥ 1− (1− π0 (n))
= π0 (n)

using that 1− π0 (n) ≥ 0 since π0 (n) ≤ 1 by (5).
Third argument. This is immediate given (5) and the

fact that π0 (0) = 0.
It follows that π0 (n+ 1) ≥ π0 (n).

Because π0 is monotonic, it immediately satisfies
inequalities (2) and (3), and inequalities (1) and (4) are
satisfied by definition.

Since π0 satisfies all four inequalities above, it is
(ε, δ)-DP. Its optimality follows immediately by recur-
rence: for each n+1, if π(n+1) > πopt (n+ 1), it cannot
be (ε, δ)-DP, as one of the inequalities above is not sat-
isfied: π0 is the fastest-growing DP partition selection
strategy, and therefore equal to πopt.

Note that the special cases for πopt in Theorem 2 can
be immediately derived from Lemma 1.

2.2 Derivation of the closed-form solution

Let us now show that the closed-form solution of The-
orem 1 can be derived from the recursive solution in 1.
First, we show that there is a crossover point n1, be-
low which only the first term of the recurrence relation
matters, and after which only the second term matters
(until πopt (n) reaches 1).

Lemma 2. Assume ε > 0 and δ > 0. There are
crossover points n1, n2 ∈ N such that 0 < n1 ≤ n2 and
– πopt (n) = 0 if n = 0,
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– πopt (n) = πopt (n− 1) eε + δ if n > 0 and n ≤ n1,
– πopt (n) = 1 − e−ε (1− πopt (n− 1)− δ) if n > n1
and n ≤ n2,

– πopt (n) = 1 otherwise.

Proof. We consider the arguments in the min statement
in (5), substituting x for πopt (n):

α1(x) = eεx+ δ

α2(x) = 1− e−ε(1− x− δ)
α3(x) = 1

This substitution allows us to work directly in the space
of probabilities instead of restricting ourselves to the se-
quence (πopt (n))∞n=0. Taking the first derivative of these
functions yields:

α′1(x) = eε

α′2(x) = e−ε

α′3(x) = 0

Since the derivative of α1(x) − α2(x) is eε − e−ε > 0,
there exists at most one crossover point x1 such that
α1(x) < α2(x) for all x < x1, α2(x1) = α1(x1), and
α1(x) > α2(x) for all x > x1. Setting α1(x) = α2(x) and
solving for x yields:

eεx+ δ = 1− e−ε(1− x− δ)

which leads to:

eεx− e−εx = 1− δ − e−ε(1− x− δ)

and finally:

x1 = (1− δ) · 1− e−ε

eε − e−ε
.

Since the derivative of α2(x) − α3(x) is e−ε > 0, there
exists at most one crossover point x2 such that α2(x) <
α3(x) for all x < x2, α2(x2) = α3(x2), and α2(x) >

α3(x) for all x > x2. Setting α2(x) = α3(x) and solving
for x yields:

x2 = 1− δ.

From the formulas for x1 and x2, it is immediate that
0 < x1 < x2 < 1. As such, the interval [0, 1] can be
divided into three non-empty intervals:
1. On [0, x1], α1(x) is the active argument of

min(α1(x), α2(x), α3(x)).
2. On [x1, x2], α2(x) is the active argument of

min(α1(x), α2(x), α3(x)).
3. On [x2, 1], α3(x) is the active argument of

min(α1(x), α2(x), α3(x)).

The existence of the crossover points is not enough
to prove the lemma: we must also show that these points
are reached in a finite number of steps. For all n ≥ 1 such
that πopt (n) 6= 1, we have:

πopt (n)− πopt (n− 1)
= min(

eεπopt (n− 1) + δ,

1− e−ε (1− πopt (n− 1)− δ)
)− πopt (n− 1)
≥ min

(
δ,
(
1− e−ε

)
(1− πopt (n− 1)) + e−εδ

)
≥ e−εδ.

Since πopt (n) − πopt (n− 1) is bounded from below by
a strictly positive constant e−εδ, the sequence achieves
the maximal probability 1 for finite n.

This allows us to derive the closed-form solution for n <
n1 and for n1 ≤ n < n2 stated in Theorem 1.

Lemma 3. Assume ε > 0 and δ ≤ 0. If n ≤ n1, then
πopt (n) = enε−1

eε−1 · δ. If n1 ≤ n < n2, then denoting
m = n− n1:

πopt (n) =
(
1− e−mε

)(
1 + δ

eε − 1

)
+ e−mεπopt (n1) .

Proof. For n < n1, expanding the recurrence relation
yields:

πopt (n) = πopt (n− 1) eε + δ

= δ

n−1∑
k=0

ekε

= enε − 1
eε − 1 · δ.

For n1 ≤ n < n2, denoting m = n − n1, expanding the
recurrence relation yields:

πopt (n) = 1− e−ε (1− πopt (n− 1)− δ)

=
(
1− e−ε + δe−ε

)m−1∑
k=0

e−kε + e−mεπopt (n1)

=
(
1− e−ε + δe−ε

) 1− e−mε

1− e−ε + e−mεπopt (n1)

=
(
1− e−mε

)(
1 + δ

eε − 1

)
+ e−mεπopt (n1) .

We can now find a closed-form solution for n1 and for
n2.
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Lemma 4. The first crossover point n1 is:

n1 = 1 +
⌊

1
ε

ln
(
eε + 2δ − 1
δ(eε + 1)

)⌋
(6)

Proof. Using the formula for x1 in the proof of
Lemma 2, we see that πopt (n− 1) ≤ x1 whenever:

e(n−1)ε − 1
eε − 1 · δ ≤ 1− δ

eε + 1 .

Rearranging terms, we can rewrite this inequality as:

n ≤ 1 + 1
ε

ln
[

(1− δ)(eε − 1)
δ(eε + 1) + 1

]
= 1 + 1

ε
ln
[

(1− δ)(eε − 1) + δ(eε + 1)
δ(eε + 1)

]
= 1 + 1

ε
ln
[
eε + 2δ − 1
δ(eε + 1)

]
.

Since n is an integer, the supremum value defining n1
is achieved by taking the floor of the right-hand side of
this inequality, which concludes the proof.

Lemma 5. The second crossover point n2 is:

n2 = n1 +
⌊

1
ε

ln
(

1 + eε − 1
δ

(1− πopt (n1))
)⌋

Proof. We want to find the maximal m such that:(
1− e−mε

)(
1 + δ

eε − 1

)
+ e−mεπopt (n1) ≤ 1.

We can rewrite this condition into:

−e−mε
(

1 + δ

eε − 1 − πopt (n1)
)
≤ −δ
eε − 1

which leads to:

emε ≤ eε − 1
δ

(
1 + δ

eε − 1 − πopt (n1)
)

≤ 1 + eε − 1
δ

(1− πopt (n1))

and finally:

m ≤ 1
ε

ln
(

1 + eε − 1
δ

(1− πopt (n1))
)

sincemmust be an integer, we take the floor of the right-
hand side of this inequality to obtain the result.

2.3 More generic optimality result

Theorem 1 provides an optimal partition selection prim-
itive in the sense of Definition 4: a mechanism using this

primitive on each partition separately is optimal among
the class of mechanisms that consider every partition
separately. The mechanism cannot use auxiliary knowl-
edge about relationships within partitions, and the de-
cision for a given partition cannot depend on the data
in other partitions. Can we extend the optimality result
to a larger class of algorithms, that take the full list of
partitions as input?

We can answer that question in the affirmative, in
the particular case where each user contributions a sin-
gle partition. First, we need to define what optimality
means in a more general context. Recall that a parti-
tion selection mechanism takes a database D in which
each user contributes a subset Wi ⊂ U of partitions,
and outputs a subset M (D) ⊆ ∪iWi. The goal is to
output as many partitions as possible, which we cap-
ture by maximizing the expected value of the number
of output partitions.

Definition 5 (Optimal partition selection mechanism).
A partition selection mechanismM is optimal for (ε, δ)-
DP and sensitivity κ if it is (ε, δ)-DP, and if for all
(ε, δ)-DP partition selection mechanisms M′, and all
databases D in which each user contributes at most κ
partitions:

E
[∣∣M′ (D)

∣∣] ≤ E [|M (D)|] .

We can now prove our more generic optimality result.

Theorem 3. LetMopt be the partition selection mech-
anism that, on input D, returns each partition k with
probability πopt (|{i |Wi = {k}}|). Then Mopt is opti-
mal for (ε, δ)-DP and sensitivity 1.

Proof. LetM be a partition selection mechanism. Since
we assume that every user contributes to at most one
partition (κ = 1), it is equivalent to consider the input of
M to be the histogram (ni)i∈U , where ni is the number
of users associated to partition i. Of course, if nk = 0
for some k, then k must not be in the output set.

Now, for a given partition k, fix all values of
the histogram except nk = n, and denote f(n) =
P
[
k ∈M

(
(ni)i∈U

)]
. Then f(n) must satisfy inequali-

ties 1 to 4 from Section 2.1 in order forM to be (ε, δ)-
DP. Then, by Theorem 1, f(n) ≤ πopt(n). Now, for a
given input (ni)i∈U , the expected size of the output set
is given by: ∑

k∈U

P
[
k ∈M

(
(ni)i∈U

)]
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which is bounded by
∑
k∈U πopt (nk). This is exactly

the expected output size obtained with Mopt, which
concludes the proof.

3 Thresholding interpretation
In this section, we show that modulo a minor change in
ε or δ, the optimal partition selection primitive πopt can
be interpreted as a noisy thresholding operation, simi-
lar to the Laplace-based strategy, but using a truncated
version of the geometric distribution. We first define this
distribution, then we use it to prove this second charac-
terization of πopt.

Definition 6 (k-TSGD). Given p ∈ (0, 1) and k ∈ N
such that k ≥ 1, the k-truncated symmetric geometric
distribution (k-TSGD) of parameter p is the distribution
defined on Z such that:

P [X = x] =

{
c · (1− p)|x| if x ∈ [−k, k] ∩ Z
0 otherwise

(7)

where c = p

1+(1−p)−2(1−p)k+1 is a normalization con-
stant ensuring that the total probability is 1.

This distribution can also be obtained by taking a sym-
metric two-sided geometric distribution2 [13], with suc-
cess probability p and conditioning on the event that the
result is in [−k, k]. As such, the k-truncated symmetric
geometric distribution is the discrete analogue of the
truncated Laplace distribution [11]. A similar construc-
tion was also defined in [12] to prove a lower bound on
loss with (ε, δ)-differential privacy, but is not a proper
probability distribution, since its total mass does not
sum up to one3.

Given privacy parameters ε and δ, we can set the
values of p and k such that adding noise drawn from
the truncated geometric distribution achieves (ε, δ)-
differential privacy for counting queries.

Definition 7 (Truncated geometric mechanism).
Given privacy parameters ε > 0 and δ > 0, let
p = 1 − e−ε and k =

⌈
1
ε ln

(
eε+2δ−1
(eε+1)δ

)⌉
. Let the true

result of an integer-valued query with sensitivity 1 be
µ ∈ Z. Then the truncated geometric mechanism returns

2 Also called the discrete Laplace distribution [17].
3 In the proof of Theorem 8, the sum for non-negative i is as-
sumed to sum up to 1/2, but 0 is counted twice when summing
non-negative and non-positive i.

µ+X, where X is drawn from the k-TSGD with success
probability p. The result has the distribution:

P [Y = y] =

{
c · e−|y−µ|ε if y ∈ [µ− k, µ+ k] ∩ Z
0 otherwise

where c = 1−e−ε

1+e−ε−2e−(k+1)ε is a normalization constant
ensuring that the total probability is 1.

The value of k is the smallest value such that

P [X = k] = e−kε(1− e−ε)
1 + e−ε − 2e−(k+1)ε ≤ δ

for the k-TSGD.

Theorem 4. The truncated geometric mechanism sat-
isfies (ε, δ)-differential privacy.

Proof. This follows the same line of reasoning as the
proof of Theorem 1 in [11]. The only difference is the
change from a continuous distribution to a discrete dis-
tribution, since all the values are integers. If the result
of the query before adding noise is µ, then for an ad-
jacent database, the corresponding value µ′ must be in
{µ− 1, µ, µ+ 1}. If µ′ = µ, the distribution of the out-
put after adding noise is unchanged, trivially satisfying
the (ε, δ)-differential privacy property. By symmetry, it
is sufficient to analyze the case when µ′ = µ + 1. Here,
the new distribution of the output of the mechanism is

P
[
Y ′ = y

]
= c · e−|y−µ−1|ε

if y ∈ [µ− k + 1, µ+ k + 1]∩Z, and P [Y ′ = y] otherwise.
By symmetry, to show that (ε, δ)-differential privacy

is satisfied, we only need to show that P [Y ′ ∈ S] ≤
eεP [Y ∈ S] + δ for all S ⊂ Z. For all values
y ∈ Z except µ + k + 1, P [Y ′ = y] ≤ eεP [Y = y].
Also, P [Y = µ+ k + 1] = 0 and P [Y ′ = µ+ k + 1] =
P [X = k] > 0. Therefore, P [Y ′ ∈ S] − eεP [Y ∈ S] is
maximized when S = {µ+ k + 1}. This means that the
condition is satisfied if P [X = k] ≤ δ. From the defini-
tion of k in the truncated geometric mechanism:

k =
⌈

1
ε

ln
(
eε + 2δ − 1
(eε + 1)δ

)⌉
which leads to:

ekε ≥ eε + 2δ − 1
(eε + 1)δ

thus:
(ekε)(eε + 1)δ − 2δ ≥ eε − 1

and:

(1 + e−ε − 2e−(k+1)ε)δ ≥ e−kε(1− e−ε)
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and finally:

δ ≥ e−kε(1− e−ε)
1 + e−ε − 2e−(k+1)ε

≥ P [X = k] .

Let us get some intuition why thresholding the trun-
cated geometric mechanism leads to an optimal par-
tition selection primitive. First, we compute the tail
cumulative distribution function for the output of the
truncated geometric mechanism. Summing the proba-
bility masses gives a geometric series:

P [Y ≥ y] =


1 if y ≤ µ− k
1− e(k+y−µ)ε−1

eε−1 ce−kε if µ− k ≤ y ≤ µ− 1
e(µ+k+1−y)ε−1

eε−1 ce−kε if µ ≤ y ≤ µ+ k

0 if y > µ+ k.

If we define δ = ce−kε and rearrange the the cases
as functions of µ, we get:

P [Y ≥ y] =


0 if µ < y − k
e(µ+k+1−y)ε−1

eε−1 δ if y − k ≤ µ ≤ y
1− e(k+y−µ)ε−1

eε−1 δ if y + 1 ≤ µ ≤ y + k

1 if µ ≥ y + k.

(8)
The µ ≤ y cases of the formula are the same as the

closed-form formula for πopt in Theorem 1 for values
less than n1. The µ > y cases are simply the symmetric
reflection of the former. We formalize this intuition and
show that whenever 1

ε ln
(
eε+2δ−1
(eε+1)δ

)
is an integer, the

two approaches are exactly the same.

Theorem 5 (Noisy thresholding is optimal). If δ ∈
(0, 1) and ε > 0 are such that k = 1

ε ln
(
eε+2δ−1
(eε+1)δ

)
is

an integer, then for all n:

πopt (n) = P [n+X ≥ k + 1]

where X is a random variable sampled from a k-
truncated symmetric geometric distribution of success
probability (1− e−ε).

Proof. When k = 1
ε ln

(
eε+2δ−1
(eε+1)δ

)
is an integer, we have

n1 = k + 1, and

ekε = eε + 2δ − 1
(eε + 1)δ

which leads to

(ekε)(eε + 1)δ = eε − 1 + 2δ

and
(e(k+1)ε − 1)δ + (ekε − 1)δ = eε − 1.

On further rearranging, we get

e(k+1)ε − 1
eε − 1 · δ + ekε − 1

eε − 1 · δ = 1,

and thus:

1− πopt (n1) = πopt (n1 − 1) .

From Lemma 2, we also get

1− πopt (n) = e−ε((1− πopt (n− 1))− δ)

if n1 < n ≤ n2. Since we also have

πopt (n) = eε(πopt (n− 1) + δ)

if 0 < n ≤ n1, we find that for n1 < n ≤ n2,

πopt (n) = 1− πopt (2n1 − 1− n)

= 1− e(2k+1−n)ε − 1
eε − 1 · δ.

Consequently, for such special combinations of ε and δ

n2 = 2n1 − 1 = 2k + 1.

Now, rewriting the formula for πopt in Theorem 1
using µ = n and k = n1 − 1 gives us that πopt (µ) is:
– 0 if µ ≤ 0,
– e(µ+k+1−(k+1))ε−1

eε−1 · δ if µ ≤ k + 1,
–
(
1− e(µ−(k+1))ε) (1 + δ

eε−1
)

+e(µ−(k+1))ε e(k+1)ε−1
eε−1 ·

δ if k + 1 < µ ≤ 2k + 1,
– 1 otherwise.

Comparing this with (8) shows that for this com-
bination of ε and δ, and for the corresponding derived
values of p and k,

πopt (µ) = P [Y ≥ k + 1] .

This characterization suggests a simple implementation
of the optimal partition selection primitive, at a minor
cost in ε or δ. Given arbitrary ε and δ, one can replace ε
by ε̂ ≤ ε, or δ by δ̂ ≤ δ to ensure that k from Theorem 5
is an integer. In our definition of the truncated geomet-
ric mechanism, we choose the latter strategy, requiring
a slightly lower δ by using an integer upper bound on
k, and using p = 1 − e−ε to fully utilize the ε budget.
We then apply the truncated geometric mechanism to
the number of unique users in each partition, and return
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this partition if the noisy count is larger than k. Fur-
ther, this noisy count may also be published for such a
partition, while still satisfying (ε, δ)-differential privacy.

To see this, consider an arbitrarily large finite family
of partitions4 Q such that each user in a database D is
associated with at most one partition q ∈ Q. Consider
the following mechanism.

Definition 8 (k-TSGD thresholded release). For a
database D, let cq(D) be the number of users associ-
ated with partition q. Let QD ⊂ Q be the finite sub-
set {q | q ∈ Q and cq(D) > 0} of partitions present in
the dataset D. Let the noise Xq for q ∈ Q be i.i.d.
random variables drawn from the k-TSGD of param-
eters p = 1 − e−ε and k =

⌈
1
ε ln

(
eε+2δ−1
(eε+1)δ

)⌉
. Let

ĉq(D) = cq(D) + Xq. Then, the k-TSGD thresholded
release mechanism produces the set

{(q, ĉq(D)) | q ∈ QD and ĉq(D) > k} .

Theorem 6. The k-TSGD thresholded release mecha-
nism satisfies (ε, δ)-differential privacy.

Proof. Consider the mechanism that adds a k-TSGD
of parameter p = 1 − e−ε and k =

⌈
1
ε ln

(
eε+2δ−1
(eε+1)δ

)⌉
to every possible partition count, including those not
present in the dataset. That is, we apply the truncated
geometric mechanism to the unique-user counts for all
possible partitions (even partitions not contained in the
database), which produces the set

{(q, ĉq(D)) | q ∈ Q} .

This mechanism is (ε, δ)-differentially private: a sin-
gle user’s addition or removal changes only one par-
tition, and on this partition, Theorem 4 shows that
the output satisfies (ε, δ)-differential privacy. Combined
with the condition that the noise values are indepen-
dent, this means that the entire mechanism is also (ε, δ)-
differentially private.

Adding a thresholding step to release the noised val-
ues only when they are greater than k is only post-
processing. Therefore, the entire mechanism that re-
leases

{(q, ĉq(D)) | q ∈ Q and ĉq(D) > k}

is also (ε, δ)-differentially private.
Now, notice that this mechanism is exactly the same

as if we had only added noise to the partitions inQD: the

4 For example, all possible partitions representable by
bytestrings that fit within available data storage

noise added to zero in empty partitions will be at most
k, so these partitions will be removed from the output
in the thresholding step. Since these two mechanisms
are identical and one is (ε, δ)-differentially private, both
are (ε, δ)-differentially private.

We note that this can be extended to the case where
the set of allowed partitions Q is countably infinite, us-
ing standard techniques from measure theory [16]. Thus,
this mechanism is the (ε, δ)-differential privacy equiva-
lent of Algorithm Filter in [4], which achieves (ε, 0)-
differential privacy when the set of possible partitions
is known beforehand and not very large.

To demonstrate the utility of such an operation,
consider a slight variation of the example query pre-
sented in the introduction.

SELECT
device_model ,
COUNT( user_id ),
AVG( latency )

FROM database
GROUP BY device_model

For simplicity, let us assume that each user con-
tributes only one row with a single value for the latency.
Then, this may be implemented in the following way.

SELECT
device_model ,
COUNT( user_id ),
SUM( latency ) / COUNT ( user_id )

FROM database
GROUP BY device_model

The available (ε, δ) budget must be split up for the
partition selection, sum and count. Instead of instanti-
ating separate noise values for partition selection and
the count and having to split up the (ε, δ), we can use
noisy thresholding on the count. This may be used to
obtain a more accurate count or to leave more of the
(ε, δ) budget for the sum estimation.

4 Numerical evaluation
Theorem 1 shows that the optimal partition selection
primitive πopt outperforms all other options. How does
it compare with the naive strategy of adding Laplace
noise and thresholding the result?

Definition 9 (Laplace partition selection [21]). We
denote by Lap(b) a random variable sampled from a
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Laplace distribution of mean 0 and of scale b. The fol-
lowing partition selection strategy ρLap, called Laplace-
based partition selection, is (ε, δ)-differentially private:

ρLap(n) =

{
drop if n+ Lap

( 1
ε

)
< 1− ln(2δ)

ε

keep otherwise.

We denote by πLap the corresponding partition selection
primitive: πLap(n) = P

[
ρLap(n) = keep

]
.

As expected, using the optimal partition selection prim-
itive translates to a larger probability of releasing a par-
tition with the same user. As exemplified in Figure 1, the
difference is especially large in the high-privacy regime.

To better understand the dependency on ε and δ,
we also compare the midpoint obtained for both parti-
tion selection strategies ρ: the number n for which the
probability of releasing a partition with n users is 0.5.
For Laplace-based partition selection, this n is simply
the threshold. As Figure 2 shows, the gains are espe-
cially substantial when ε is small, and not significant
for ε > 1. Figure 3 shows the dependency on δ: for a
fixed ε, there is a constant interval between the mid-
points of both strategies. Thus, the relative gains are
larger for a larger δ, since the midpoint is also smaller.

We also verified experimentally that on each par-
tition, the selection mechanism runs in constant, very
short time, on the order of 100 nanoseconds on a
standard machine. This is not surprising: Theorem 1
provides a simple, closed-form formula for computing
πopt(n), and generating the random decision based on
this probability is computationally trivial. The perfor-
mance impact of Laplace-based thresholding is similarly
negligible: the only real cost of such simple partition se-
lection strategies is to count the number of unique users
n in each partition, which is orders of magnitude more
computationally intensive than computing π(n).

5 Discussion
The approach presented in this work is both easy to im-
plement and efficient. Counting the number of unique
users per partition can be done in one pass over the
data and is massively parallelizable. Furthermore, since
there is a relatively small value k such that the proba-
bility of keeping a partition with n ≥ k users is 1, the
counting process can be interrupted as soon as a par-
tition reaches k users. This keeps memory usage low
(in O(k)) without requiring approximate count-distinct

algorithms like HyperLogLog [10] for which a more com-
plex sensitivity analysis would be needed.

Extension to multiple partitions per user
Our approach could, in principle, be extended to cases
where each user can contribute to κ > 1 partitions. Fol-
lowing the intuition of Lemma 1, we could list a set
of recursive equations defining πopt (n) as a function of
πopt(i) for i < n. Sadly, the system of equations quickly
gets too large to solve naively. Consider, for example,
the case where κ = 2. The differential privacy constraint
requires, for all n ≥ i ≥ 0 and all S ⊆ {drop, keep}2:

P [(ρπ(n+ 1), ρπ(i+ 1)) ∈ S]
≤ eε · P [(ρπ(n), ρπ(i)) ∈ S] + δ

P [(ρπ(n), ρπ(i)) ∈ S]
≤ eε · P [(ρπ(n+ 1), ρπ(i+ 1)) ∈ S] + δ

Thus, to maximize π(n), we have to consider 32n
inequalities: n possible values of i, 2(22) = 16 possible
values of S, and two inequalities. When κ increases, the
total number of inequalities to compute all elements up
to n is O

(
nκ2κ2

)
. Some of these inequalities are trivial

(e.g., when S = ∅ or S = {drop, keep}κ), but most are
not. We do not know whether it is possible to only con-
sider a small number of these inequalities, and obtain
the others “for free”.

Furthermore, the recurrence-based proof of opti-
mality of πopt only holds when we assume that each
user contributes to exactly κ partitions in the original
dataset. As discussed previously, this is relatively fre-
quent when κ = 1, but it rarely happens for larger values
of κ: in typical datasets, some users contribute to more
partitions than others. In that case, weighing the con-
tributions of each user differently can bring additional
benefits, as can changing each user’s strategy based on
those of previous users [14]. For this generalized prob-
lem, it seems difficult to even define what optimality
means.

The simplest option to use our approach for κ > 1
is to divide the total privacy budget in κ. For generic
tooling with strict scalability requirements where the
analyst manually specifies κ, we recommend using our
method (splitting the privacy budget) for κ ≤ 3, and
weighted Gaussian thresholding (described in [14]) for
κ ≥ 4. Figure 4 compares the mid-point of the partition
selection strategy between πopt, Laplace-based thresh-
olding, and (non-weighted) Gaussian-based threshold-
ing. It shows that the crossing point happens for κ = 3,
this stays true for varying values ε and δ.
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Fig. 1. Probability of releasing a partition depending on the number of unique users, comparing Laplace-based partition selection with
πopt. On the left, ε = 1 and δ = 10−5, on the right, ε = 0.1 and δ = 10−10.
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mid-point is plotted as a solid line, while the 5th and 95th percentiles are dashed.

10−12 10−10 10−8 10−6 10−4
0

100

200

300

δ

n
s.
t.

P
[ρ

(n
)=

ke
ep

]=
0.

05
,0
.5

0,
0.

95 πopt
πLap

10−12 10−10 10−8 10−6 10−4
0

10

20

30

δ

πopt
πLap

Fig. 3. Comparison of the 5th, 50th and 95th percentile of the partition strategy ρ as a function of δ, for ε = 0.1 (left) and ε = 1
(right). The mid-point is plotted as a solid line, while the 5th and 95th percentiles are dashed.



Differentially private partition selection 350

Comparison with weighted Gaussian thresholding
is less trivial, since its benefits depend on the data dis-
tribution. However, weighted Gaussian thresholding is
always better than Gaussian-based thresholding, and
is straightforward to implement in a massively paral-
lelizable fashion. We have also observed that its utility
benefits are only significant for large κ, so our recom-
mendation to use πopt for κ ≤ 3 is likely robust.

Policy-based approaches like those described in [14]
also provide more utility, but they are not as scalable:
since the strategy for each user depends on the choices
made by all previous users, the computation cannot be
parallelized. It also requires to keep an in-memory his-
togram of all partitions seen so far, which also does not
scale to extremely large datasets. Improving the scala-
bility of such policy-based approaches is an interesting
open problem, on which further research would be valu-
able.

Extension to bounded differential privacy
In the definition of differential privacy we use in this
work, neighboring databases differ in a single user be-
ing added or removed. This notion is called unbounded
differential privacy in [20], by contrast to bounded dif-
ferential privacy, in which neighboring datasets differ
in a single user changing their data. (ε, δ)-unbounded
DP implies (2ε, 2δ)-DP, which provides a trivial way to
extend our method to the bounded version of the def-
inition: simply divide the privacy budget by two. This
method outperforms Laplace-based thresholding, since
Laplace noise of scale 2/ε must be added in the bounded
setting (since L1-sensitivity is 2 and no longer 1). Fur-
ther, when k from Theorem 5 is an integer, this noise
distribution exactly achieves the lower bound on the loss
from [12], and is therefore optimal for arbitrary symmet-
ric loss functions.

Other possible extensions
The truncated geometric mechanism can be used as a
building block to replace the Laplace or geometric mech-
anism in situations where (ε, δ)-DP with δ > 0 is accept-
able. Similarly to the truncated Laplace mechanism [11],
this building block is optimal for integer-valued func-
tions.

To see how such a building block could be used in
practice, consider the problem of releasing a histogram
where some partitions are known in advance (call them
public partitions), and some are not and must be discov-
ered using the private data (private partitions). Note

that some public partitions might be absent from the
private data. In that case, one could add truncated ge-
ometric noise to all partitions (public and private), and
use two distinct thresholds: one given by the formula for
k in Definition 7, and an arbitrary one t.

– k is used to threshold the partitions present in the
private data but not in the list of public partitions;

– t is used to threshold the public partitions (whether
or not they are also in the private data).

The second threshold t can be arbitrary, and allows an
analyst to control the trade-off between false positives
and false negatives. For example, setting t = 0 guaran-
tees that all public partitions that appear in the private
data are present in the output (no false negatives), at
the cost of having a potentially large number of pub-
lic partitions appearing in the output even though they
were not present (many false positives). Conversely, set-
ting t = k guarantees that only the partitions present in
the private data can be present in the output (no false
positives), at the cost of dropping potentially many of
them (many false negatives). Intermediate values of t
can allow an analyst to more finely tune this trade-off
depending on the application.

We postulate that this building block could be used
in a variety of different settings, and combined with ex-
isting techniques. For example, one could build a vari-
ant of the standard vector technique [8] that uses the
truncated geometric mechanism instead of the Laplace
mechanism to add noise to the output of the queries
and to the threshold. This could be used to efficiently
simulate the standard vector technique on a very large
number of queries, most of which are deterministically
below the threshold and can be skipped during compu-
tation. Formalizing this intuition and using it for parti-
tion selection with κ > 1 is left to future work.

6 Conclusion
We introduced an optimal primitive for differentially
private partition selection, a special case of differentially
private set union where the sensitivity is 1. This optimal
approach is simple to implement and efficient. It outper-
forms Laplace-based thresholding; the utility gain is es-
pecially significant in the high-privacy (small ε) regime.
Besides the possible research directions outlined previ-
ously, this work leaves two open questions. Is it possible
to extend this optimal approach to larger sensitivities in
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Fig. 4. Comparison of the mid-point of the partition selection strategy ρ as a function of κ, for ε = 1 and δ = 10−5. For κ > 1, the
privacy budget is divided by κ for πopt and πLap; for πGauss, we use the formula in [2] to derive the standard deviation of Gaussian
noise, and we split the δ between noise and thresholding to minimize the threshold.

a simple and efficient manner? Furthermore, is it possi-
ble to combine this primitive with existing approaches
to differentially private set union [14], like weighted his-
tograms or policy-based strategies?
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