
Proceedings on Privacy Enhancing Technologies ; 2022 (1):565–585

Vinh Thong Ta* and Max Hashem Eiza

DataProVe: Fully Automated Conformance
Verification Between Data Protection Policies
and System Architectures
Abstract: Privacy and data protection by design are rel-
evant parts of the General Data Protection Regulation
(GDPR), in which businesses and organisations are en-
couraged to implement measures at an early stage of
the system design phase to fulfil data protection require-
ments. This paper addresses the policy and system ar-
chitecture design and propose two variants of privacy
policy language and architecture description language,
respectively, for specifying and verifying data protec-
tion and privacy requirements. In addition, we develop
a fully automated algorithm based on logic, for verify-
ing three types of conformance relations (privacy, data
protection, and functional conformance) between a pol-
icy and an architecture specified in our languages’ vari-
ants. Compared to related works, this approach sup-
ports a more systematic and fine-grained analysis of the
privacy, data protection, and functional properties of a
system. Our theoretical methods are then implemented
as a software tool called DataProVe and its feasibility is
demonstrated based on the centralised and decentralised
approaches of COVID-19 contact tracing applications.

Keywords: privacy, GDPR, formal verification, security

DOI 10.2478/popets-2022-0028
Received 2021-05-31; revised 2021-09-15; accepted 2021-09-16.

1 Introduction
The General Data Protection Regulation (GDPR) [1]
specifies the rights of living individuals who have their
personal data processed, and enforces responsibilities for
the data controllers and the data processors who store,
process or transmit such data. Despite the data protec-
tion laws, there were several data breaches incidents in
the past (e.g. [2–4]) and recently, such as the Cambridge

*Corresponding Author: Vinh Thong Ta: Edge Hill Uni-
versity, Ormskirk, UK, E-mail: tav@edgehill.ac.uk
Max Hashem Eiza: Liverpool John Moores University, Liv-
erpool, UK, E-mail: m.hashemeiza@ljmu.ac.uk

Analytica scandal of Facebook [5], where personal data
of more than 87 millions Facebook users has been col-
lected and used for election campaign purposes without
a clear data usage consent, due to the insufficient check
of the third party applications.

The GDPR took effect in May 2018, and hence, de-
signing compliant data protection policies and system
architectures became even more important for organi-
sations to avoid penalties. Data protection by design,
under Article 25 of the GDPR [6], requires the design of
data protection measures into the development of busi-
ness processes of service providers. User profiling is re-
stricted and businesses are required to collect consents
before personal data collection (Article 6 [7]).

Unfortunately, in textual format, data protection
principles are sometimes ambiguous and manual con-
formance verification can be error-prone. From the tech-
nical perspective, to the best of our knowledge, only a
limited number of studies in the literature has addressed
formal methods to design and verify policies and archi-
tectures in the context of data protection and privacy
(e.g. [8–16]). The advantage of using formal methods
during system design is that data protection properties
can be mathematically proved, and design flaws can be
detected at an early stage. Fully automated verification
in this context is also challenging since we need to iden-
tify appropriate abstractions of the laws.

In this paper, we focus on early stages of system
design, specifically, the policy and system architecture
design stages. We show how to model and automati-
cally verify some core and basic data protection require-
ments of the GDPR against a system architecture with
regards to the data collection, usage, storage, deletion,
and transfer phases. Core privacy requirements are also
considered such as the right to access certain data, and
the right to link certain pairs of data of given types. For
this purpose, we propose formal methods to specify pri-
vacy policies and system architectures. In addition, we
design and implement a fully automated algorithm, for
verifying the conformance between a formally specified
privacy policy and architecture. Specifically, our main
contributions are as follows:

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 566

…...

…
..
.

…...

…
..
.

…
..
.

P
ro

p
o

se
d

 lo
g

ic

in
fe

re
n

ce
 ru

le
se

t

S
y

ste
m

 A
rch

ite
ctu

re
(P

ro
p

o
se

d
 p

riv
a

cy

a
rch

ite
ctu

re
 la

n
g

u
a

g
e

)

initgoal/sub-policy requirement

P
o

li
cy

(P
ro

p
o

se
d

 p
ri

v
a

cy
 p

o
li

cy
 l

a
n

g
u

a
g

e
 v

a
ri

a
n

t)

C
o

ll
e

ct
io

n
U

sa
g

e
S

to
ra

g
e

a resolution

step
(sub-)goal (sub-)goal

Architectural elements
D

e
le

ti
o

n
Tr

a
n

sf
e

r
P

o
ss

e
ss

io
n

Li
n

k

…
..
.

Proposed logic based proof algorithm

(sub-)goal

A proof found

(sub-)goal

Proof failed

Fig. 1. A technical overview and the connection of our four main contributions. A policy that covers seven sub-policies (data collec-
tion, usage, storage, deletion, transfer, possession and link) is specified in our policy language variant. Each requirement in a sub-policy
is mapped to a logic goal. The verification engine attempts to prove each goal based on a set of logic inference rules and architectural
elements (defined in our architecture language). The proposed verification algorithm is based on a series of resolution steps, repre-
sented as a derivation tree, where the root is a goal to be proved, and the leaves are the architectural elements used to prove the goal.

1. We propose two variants of a privacy policy lan-
guage and an architecture description language, re-
spectively, designed for fine-grained specification of
data protection and privacy requirements.

2. We propose the definition of three conformance re-
lations between a policy and an architecture namely
privacy, data protection, and functional confor-
mance relations.

3. We propose an efficient logic based fully automated
conformance verification procedure for verifying the
three types of conformance relations between a pol-
icy and an architecture specified using our proposed
languages’ variants.

4. Finally, we develop a (prototype) tool, DataProVe,
based on the proposed automated conformance ver-
ification procedure, and demonstrate its usage on
real-world COVID-19 contact tracing approaches.

The technical overview of our contributions is outlined
in Figure 1. The main goals of our policy and archi-
tecture languages’ variants and DataProVe include: 1)
helping system designers with policy and architecture
design and analysis; and 2) to spot potential errors early,
prior to the lower level (such as the protocol or code
level) system specification and implementation.

The paper is structured as follows: In Section 2,
we discuss the related works in the literature. In Sec-
tions 3.1-4, we present the scope of this work and our
variants of privacy policy and architecture description
languages, respectively. The automated conformance
verification engine is detailed in Section 6. In Section 7,

we present the DataProVe tool and its operation on two
COVID-19 contact tracing approaches. In Section 8, we
discuss performance issues. Finally, we discuss the fu-
ture directions and conclude the paper in Sections 9-10.

2 Related Works
In this section, we highlight the most relevant works in
the field and compare them with our work in Section 2.1.
The Platform for Privacy Preferences (P3P) [17] enables
web users to gain control over their private informa-
tion on online services. On a website, users can express
their privacy practices in a standard format that can be
retrieved automatically and interpreted by web client
applications. Users are notified about certain website’s
privacy policies and have a chance to make a decision
on that. To match the privacy preferences between users
and web services, the authors proposed the Preference
Exchange Language (APPEL) [18], which is integrated
into the web clients. In APPEL, users can express their
privacy preferences that can be then matched against
the practices set by the online services. According to
the study [19], in APPEL, users can only specify what
is unacceptable in a policy. To rectify this, the authors
in [19] proposed a more expressive preference language
called XPref that also supports acceptable preferences.

A-PPL [9] is an accountability policy language
specifically designed for modelling data accountability
(such as data retention, logging and notification) in the

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 567

cloud. A-PPL is an extension of the PrimeLife Privacy
Policy Language (PPL) [8], which enables specification
of access and usage control rules for the data subjects
and the data controller. PPL is built upon XACML, and
allows users to define the so-called sticky policies on per-
sonal data based on obligations. An obligation defines
whether the policy language can trigger tasks that must
be performed by a server and a client, once a specific
event occurs and the related condition is fulfilled.

In [20], the authors extended the Unified Modeling
Language (UML) meta model to specify and represent
different activities on data that can be checked for pri-
vacy compliance. The operations of the data life-cycle
were modelled using the data flow diagrams (DFDs)
with relevant actors, operations, relationships and con-
ditions. It is unclear how this model can be used in
the context of designing system architectures that are
in compliance with privacy policy given the complexity
of modelling UML DFDs. Besides that, the authors did
not offer an automated approach to verify compliance
with the data privacy policy.

Celebi [10] proposed a new modelling language
called Privacy Enhanced Secure Tropos (PESTOS)
along with its meta-model, semantics and concrete syn-
tax. PESTOS can aid developers catching GDPR pri-
vacy requirements at an early stage during their system
design. Its limitations include lack of automated check
for privacy conformance, and the architecture level.

The authors in [21] presented a set of privacy-
related architectural requirements, and showed how
they may be implemented in practice in the context of
FIM (federated identity management) models. Eight re-
quirements (PP1-8) were taken from the EU Directive
95/46/EC, and mapped into five design requirements
(FDR1-5) in the context of FIMs. These include FDR1
(limit the disclosure of identity), FDR3 (make illegit-
imate linking of data difficult), FDR4 (transparency)
and FDR5 (information security). The authors also pre-
sented architectural requirements for FIM (AR1-AR8),
for example, AR1-2 specify limited observability and
linkability with regards to data aggregation across ser-
vices. AR3-4 deal with limiting the data collection cen-
trally, and linkability, while the rest address the consent
handling, data minimisation, and unique linkability.

In [13], the authors proposed a formal approach to
model the transmission of personal data. Their policy
specification focuses on the transmission of information,
and also follows a role-based model. First-order tempo-
ral logic is used to express contextual integrity require-
ments at the policy level. A communication is allowed
between agents if either its temporal condition is satis-

fied (positive norm), or unsatisfied (negative norm). The
authors defined the following logic formulas for policy
requirements: send(p1, p2, m), which captures when
agent p1 sends p2 a message m; contains(m, q, t), and
inrole(p, r) that capture a message m contains an ele-
ment, and agent p is in a role r, respectively. They also
define incontext(p, c) for contextual integrity.

The work in [14] addresses the policy enforcement
on codes during system operations in the context of
big data within an organisation such as Microsoft. In
their policy specification, users can specify requirements
on which data types are allowed/denied to be used for
which purposes. However, the strength of their approach
relies on the verification of codes against a policy. In
particular, they address codes written in languages that
support the Map-Reduce programming model (big data
context). They address the code level, hence, concen-
trate on one specific application, such as the data ana-
lytics backend of Microsoft Bing. Their automated veri-
fication is based on automated data-inventory mapping,
and has two elements: (1) labelling the data types in a
code, based on the labelled data dependency graphs, (2)
then check the labelled data types against the policy.

In [15], a systematic methodology to model privacy-
specific threats for threat analysis, focusing on software-
based systems, is proposed. Their approach relies on
data flow diagrams (DFDs), which can be seen as high-
level reasoning. In a DFD, data flows model communica-
tion data, and trusted/untrusted agents are also defined
to identify threats. This approach is good for addressing
large and complex systems, and high-level threats.

Besides the academic’s effort, some industrial ap-
proaches are also available such as the Open Policy
Agent (OPA) project [16]. OPA focuses on the cloud-
nature environment and aligns its syntax to the cloud
environment. Its policy specification is based on the
Rego (declarative) language, which provides an expres-
sive way to define fine-grained policies. In OPA, the
data or system specification is based on informal method
in JSON (JavaScript Object Notation) format. A user-
defined policy rule (in Rego) will be evaluated on the
provided data/system in JSON, which generates the so-
called virtual document that is defined by the rule. This
is then used to enforce a policy during a system run.

Finally, there are numerous formal languages pro-
posed for architectures including Darwin [22], Wright
[23], Rapid[24], and PRISMA [25]. These approaches are
based on process calculi (e.g. pi-calculus [26], and FSP
algebra [27]), to specify dynamic architectures. They de-
fine the so-called bindings to model the connections be-
tween components based on process calculi semantics.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 568

2.1 Comparison With Our Work

Table 1 shows a high-level comparison of our work and
the related works based on seven aspects. The main dif-
ferences between the policy languages above and our
method is that, for instance, P3P [17], APPEL [18],
and XPref [19] are mainly designed for web services,
and the policies are defined in an XML-based language,
with restricted options for the users, while our design
is not limited to web services. In addition, our policy
language variant is defined on data types, and supports
a more systematic policy specification, as its syntax and
semantics cover seven sub-policies capturing a represen-
tative data life-cycle (from collection till deletion).

Some requirements in paper [21] are addressed in
our work. For example, PP2 and PP3 are addressed
in our sub-policies with regards to purposes, and PP5,
AR2-3 are addressed by our data possession policy and
cryptographic model. The requirements PDR1, FDR3,
AR4 and AR8 are addressed with our linkability/unique
linkability sub-policies. Finally, AR5 is addressed with
our consent collection requirements.

In OPA [16], the user has the freedom to specify
the policy rules, but they need expertise in Rego. On
the other hand, in our tool, the user can specify a pol-
icy without special knowledge on a declarative language.
In addition, their policy specification supports different
requirements compared to our seven sub-policies (e.g.
“servers are not allowed to expose the ’telnet’ proto-
col"). It is unclear how linkability and the attackers’ re-
lated requirements (such as an insider/external attacker
can have/link certain data types) could be defined with
their policy language. In addition, a system specified in
JSON is quite abstract, as unlike our method, it only
specifies the components and the properties of the com-
ponents, but not the communications (e.g. RECEIVE,
in our case) and none of our CALCULATE, DELETE,
STORE, etc., actions. The philosophy of OPA is merely
different from ours, as we address the (early) design
phase, while they address the policy enforcement dur-
ing a system run. Finally, the verification is based on the
query language Datalog. The advantage of our “crafted"
verification engine compared to Datalog is the formal
cryptographic model, and the attacker model in which
the attacker can eavesdrop on the communication.

Compared to [13], the send(p1, p2, m) formula
is addressed by our RECEIVE action to capture data
transmission, while contain is modelled, in our case, by
the definition of “compound" data types that contain
other data types as arguments. Their inrole(p, r) and
incontext(p, c) formulas for role-based access control

Pol. Arch. Auto Cry- Code Threat Att-
Level Level Verif pto Level Model acker

Ours Y(F) Y(F) Y(F) Y(F) - - Y(F)
[. . .] Y(F) - - - - - -
[21] Y(I) Y(I) - - - - -
[13] Y(F) - - - - - -
[15] - Y(I) - - - Y(I) -
[14] Y(F) - Y(F) - Y(F) - -
[16] Y(F) - Y(F) - Y(I) - -

Table 1. In the table, Y(F) means “The framework supports for-
mal specification of a given level or feature", while Y(I) means
“It supports only informal specification". The works in [. . .] are
[8–10, 17–20], and Pol. = Policy, Arch. = Architecture.

and contextual integrity are not considered in our ap-
proach. On the other hand, their paper did not propose
any formal architecture language, and their approach
lacks formalism for the data possession, purposes, link-
ability requirements, as well as automated verification.
Unlike our work, paper [15] does not address the policy
level but only architectures nor addresses automation
verification. The philosophy of their threat based ap-
proach is different from ours, but it can be used along-
side our method to improve the system design.

Similarly, the philosophy of the work in [14] is differ-
ent from ours, as we address the architecture level at the
design phase. With the architecture language variant we
propose, one can reason about a service that involves
different organisations with their components commu-
nicating with each other. At the code level, it would be
very complex to extend the analysis to the entire ser-
vice with many components interacting with each other
across different organisations. In addition, their policy
specification does not support data linkability and data
possession. Finally, there is neither support for a cryp-
tographic model nor the reasoning about the attackers.

Furthermore, unlike the Architecture Description
Languages (ADLs) in [22–25, 28], our ADL variant is de-
signed to capture the data protection and privacy prop-
erties. It also supports cryptographic primitives and
enables attacker modelling. Our architecture language
variant is data type centred, and its semantics does not
rely on process algebra like the ADLs in [22–25, 28],
but is based on events and event traces. This concept
was applied in some previous papers, such as in [12, 29].
The language variants in [12, 29] mainly focus on the
computation and integrity verification of data based on
trust relations. Our work is inspired by [12, 29], but un-
like them, our proposed architecture language variant
focuses on data protection and privacy properties.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 569

3 The Privacy Policy Level
In this section, we introduce the proposed policy lan-
guage variant for specifying privacy policies. We discuss
the scope and limitations of our design in Section 3.1
and present the policy language in Section 3.2.

3.1 Scope and Limitations

Due to space constraint, we mainly focus on the GDPR
rules capturing the core mandates that are also shared
by several other regulations. The relevancy of our cho-
sen rules is due to the fact that the data access and
linkability requirements are addressed in many privacy
laws, while the satisfaction of the consent collection, col-
lection and storage purposes, retention delay, data stor-
age and transfer requirements are shared by other laws
such as the Nigeria Data Protection Regulation (NDPR)
[30], the California Consumer Privacy Act (CCPA) [31],
and the Personal Information Protection and Electronic
Documents Act (PIPEDA, Canada) [32].

As will be seen in the paper, our method is expres-
sive and can be used to verify complex real-life services
efficiently; however, it does not cover the whole GDPR.
Our policy language covers seven sub-policies capturing
the core mandates of the GDPR, but for example, it
does not support the conditional and declarative con-
structs, which are required by some complex rules (e.g.
Article 46(1) [33], which states that data transfer to a
country outside the EU is only allowed if certain condi-
tions are met). Our transfer sub-policy only includes a
set of third-parties to whom personal data can be trans-
ferred (we assume that the conditions are already met).

Due to the challenge with formalising laws, we fo-
cus on the GDPR requirements that require moderate
abstraction for formalisation and automation. For in-
stance, the consent requirements we model in the cur-
rent framework is based on the fact of whether a con-
sent collection happens or not. In case of purposes, we
address the verification of whether an architecture con-
forms with the set of purposes defined in the policy or
not (which is covered by Article 6(1)(a)) [7]. However,
we neither consider the children consent issue which in-
volves the role of a guardian (Article 6(1)(f) [7]), nor
the requirement on the “vital interest of the data sub-
ject" (Article 6(1)(b) [7]), which would need further in-
vestigation due to their complexity. Finally, we do not
consider non-numerical retention delays for which the
verification requires further abstractions.

3.2 The Policy Language

Our proposed privacy policy is defined from the perspec-
tive of a data controller, who we assume to be a service
provider that collects, stores, uses or transfers the per-
sonal data of the data subjects. It covers both (i) data
protection and (ii) privacy requirements. The data sub-
jects in our case are service users whose personal data
is collected and used by the data controller.

A privacy policy is defined on a data type θ (e.g. θ
= bill). Specifically, let πθ be a policy defined on a data
type θ, and consists of seven sub-policies. Namely,

πθ = (πcol, πuse, πstr, πdel, πfw, πhas, πlink).

Each sub-policy of πθ is defined as follows:
1. Data collection sub-policy πcol = (cons, cpurp),

where cons ∈ {Y, N} specifies whether a consent
is required to be collected from the data subject
(Y) or not (N) for a data type θ, and cpurp is a
set of collection purposes. A purpose has the form
acti:θi, which specifies that a piece of data of type
θ is collected by the service provider to perform an
action acti to get some data of type θi. For instance,
θ = name is collected to create an account (i.e. the
purpose is create:account). These aim to capture the
consent and purposes limitation requirements in Ar-
ticle 6 [7] and Article 5(1)(b) [34] of the GDPR.

2. Data usage sub-policy πuse = (cons, upurp), with
a usage consent requirement, cons ∈ {Y , N}, and
upurp, a set of usage purposes. These capture the
Article 6 [7] and Article 30(1)(b)) [35] of the GDPR.

3. Data storage sub-policy πstr = (cons, where), in
which where is a set of places where a piece of
data of type θ can be stored (e.g. in a client’s
machine where = {decentralised} while on the ser-
vice provider’s main and/or backup storage where
= {mainstorage}, where = {backupstorage}). These
elements partly capture the storage limitation prin-
ciple in Article 5(1)(e) [34] of the GDPR.

4. Data deletion sub-policy πdel = (fromwhere, deld):
– fromwhere contains the locations from where a

piece of data can be deleted. This strongly de-
pends on the storage locations, where, which is
defined in the storage sub-policy πstr.

– deld is the delay value for retention. This value
can be a specific numerical time value (e.g. 1
day (1d), 10 mins (10m), 5 years (5y)).

These two elements partly capture the Article
5(1)(e) and Article 17(1)(a,e) [36] of the GDPR.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 570

5. Data forward sub-policy πfw = (cons, fwto, fwpurp),
where cons specifies the requirement for the data
transfer consent, fwto specifies a set of entities to
whom the data can be transferred to, and fwpurp
is a set of purposes for the data transfer. These
partly capture the requirement of transferring data
to third-party organisations in Article 45(1) [37].

6. Data possession sub-policy πhas = whocanhave ad-
dresses information security, where whocanhave =
{E1,. . . , Ek} is a set of entities involved in deliv-
ering the service, which have the right to have or
possess a piece of data of type θ. By default, no one
has the right to have any type of data.

7. Data connection sub-policy πlink = whocanlink,
where whocanlink = {(E1,θ1),. . . , (Em,θm)} is a set
of pairs of entities and data types. Each pair (Ei, θi)
specifies that Ei has the right to link a data type θi
to the data type θ. For instance, if a service provider
sp has the right to link a piece of information about
someone’s disease with their work place, then Ei =
sp, θi = disease, θ = workplace.

Finally, let {θ1, . . . , θm} be a set of all data types used
by the service of a service provider sp. The privacy pol-
icy of sp is defined by: PL = {πθ1 , . . . , πθm

}. The seman-
tics of the policy language is highlighted in Appendix F.

4 The Architecture Level
System architectures describe how a system is composed
of entities and how they relate to each other. These
details are abstracted away from the policy level.

4.1 ADL Variant: The Proposed Syntax

In line with the policy specification, a system architec-
ture is defined on a set of entities and data types. For a
service service, let EntitySetservicearch = {E1, . . . , Ek} be
a finite set of entities, and DataTypesservicearch = {θ1,. . . ,
θm} the set of all data types defined in an architecture.
Moreover, we assume the finite sets of data variables
Var, (Xθ ∈ Var), time variables TVar (TV ∈ TVar).
Finally, we define the finite sets of the data values Val
(Vθ ∈ Val), the time values TVal (t ∈ TVal), and dele-
tion delay values DVal (dd ∈ DVal).

Terms: A term, denoted by T , is defined as:

T ::= Xθ | Vθ | ds | E | SpecFunc | Ti.

Specifically, a term can be one of followings:
– Xθ, which is a variable that can be some non-

function data Dθ of type θ, a cryptographic func-
tion (CryptoFunc), or any service specific function.

Xθ ::= Dθ | CryptoFunc | Serv_spec_fun(Xθ1 , . . . , Xθn).

– Vθ, which is a data value of type θ (e.g. θ=bill, Vbill
= 9USD).

– ds, which is a special term that specifies the real
identity of a data subject (this will be used for mod-
elling pseudonyms).

– E, which is an entity term that specifies any soft-
ware or hardware component, organisations, de-
vices, etc. (e.g. E = phone, or server, or thirdparty).

– SpecFunc, which can be the time function, the
pseudonym function, or four functions that specify
the four types of consents as explained later.

SpecFunc ::= Time(Ti) | P(ds) | Cconsent(Data) |
Uconsent(Data) | Sconsent(Data)
| Fwconsent(Xθ, Eto) | Meta(Xθ).

– Ti, where Ti ::= dd | TT , is a time value that can
be either a numerical delay value (dd, e.g. dd=5s),
or a non-specific value (TT).

Special functions: As mentioned before, there are two
groups of functions SpecFunc and CryptoFunc. We start
by explaining SpecFunc as the following:
– Function Time(Ti), as explained earlier, specifies

the time with either a non-specific time value TT
or a numerical delay value, dd. While dd captures
numerical time values such as 3 years (3y), 5 days
(5d), etc., TT is not numerical, and is used to ex-
press the informal term “at some point/time".

– P(ds) specifies a pseudonym of a real identity ds.
– Functions Cconsent(Data), Uconsent(Data) and

Sconsent(Data) specify the consent needed for col-
lection, usage and storage, respectively, on Data
that can be expressed as follows:

Data ::= (Xθ, Econsent)
where Econsent is an entity who can do the required
action on the data Xθ (as part of the consent). Fi-
nally, Fwconsent(Xθ, Eto) specifies a transfer con-
sent on data Xθ, alongside an entity to whom the
data can be transferred to (Eto).

– Function Meta(Xθ) defines some metadata (infor-
mation about other data), or the information lo-
cated in the header of the packets (e.g. IP address).

Cryptographic model: We formalise cryptographic
primitives and operations based on cryptographic func-

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 571

tions and the so-called destructor. This approach pro-
vides an abstract representation of cryptographic prim-
itives and operations and has been applied in crypto-
graphic protocol verifiers (e.g. ProVerif). CryptoFunc
captures the basic cryptographic functions as follows:
– Sk(Xpkeytype) function defines the type of private

key used in asymmetric key encryption algorithms.
It has a public key Xpkeytype as argument.

– Senc(Xθ, Xkeytype) defines the type of a symmet-
ric key encryption (cipher text), and has two argu-
ments, a piece of data (of type θ) and a symmetric
key (of type keytype).

– Aenc(Xθ, Xpkeytype) defines the type of the cipher
text resulted from an asymmetric key encryption,
and has two arguments, a piece of data and a type
of public key Xpkeytype.

– Mac(Xθ, Xkeytype) defines the type of the message
authentication code that has two arguments, a piece
of data and a symmetric key.

– Hash(Xθ) defines the type of the cryptographic
hash that has a piece of data as argument.

Decryption/verification: The decryption and verifi-
cation of cryptographic functions can be defined by the
following function: G(T1, . . . , Tn) → T .

For instance, if Xenc = Senc(Xname, XSkey) rep-
resents the encryption of Xname with the server key
XSkey, and XSkey represents a symmetric key, then
G(Xenc, XSkey) → Xname is Dec(Senc(Xname, XSkey),
XSkey)→Xname. Note that not all functions have a cor-
responding destructor. For instance, Xhash is a one-way
cryptographic hash function Xhash = Hash(Xpassword),
due to the one-way property, there is no destructor (re-
verse procedure) that returns Xpassword from the hash.

This assumes “perfect” cryptography primitives,
namely, only the entity who has the key can access the
plaintext. Currently, we have not considered the case
of partial information leakage or guessing, which can
be important to capture privacy violation. Some formal
models for information leakage can be found in pro-
cess calculi (e.g. the applied pi-calculus) based on obser-
vational equivalence. Our approach is extendable, and
also supports the abstract modelling of complex concept
such as homomorphic encryption (see Appendix B).

4.2 The Definition of an Architecture

An architecture PA is defined as a set of actions (de-
noted by {F}), with the following formal definition:

PA ::= {F}
F ::=
OWN(E, Xθ)
| CALCULATEAT(E, Xθ, Time(TT))
| CREATEAT(E, Xθ, Time(TT))
| RECEIVEAT(E, Xθ, Time(TT))
| RECEIVEAT(sp, ConsentType,Time(TT))
| STOREAT(E, Xθ, Time(TT))
| DELETEWITHIN(E, Xθ, Time(dd)).

Fig. 2. The definition and the syntax of a system architecture. sp
is a value that denotes the service provider. ConsentType can be
collection - Cconsent(Data), usage - Uconsent(Data), storage
- Sconsent(Data), and forward - Fwconsent(Xθ, Eto). Data =
(Xθ, Econsent), where Econsent is an entity who is given con-
sent to receive/calculate/create/store Xθ, and Eto is to whom
data Xθ can be transferred.

1. Action OWN (E, Xθ) captures that E can own the
data X of type θ (and is aware of its properties).

2. CALCULATEAT(E,Xθ,Time(TT)) specifies that
an entity E can calculate the variable Xθ based on
an equation Xθ = T , for a term T at a non-specific
time TT (e.g. θ = Bill(energy, tariff), and Xθ =
{34kWh, 65USD}).

3. CREATEAT(E, Xθ, Time(TT)) specifies that E
can create a piece of data of type θ, based on an
equation Xθ = T (e.g. θ = Account(name, ID), and
Xθ can be {Peter, 1234}). The actions create and
calculate merely differ in the nature of T , for exam-
ple, we calculate a bill, while create an account.

4. RECEIVEAT(E, Xθ, Time(TT)) specifies that E
can receive Xθ at some non-specific time TT.

5. RECEIVEAT(sp, ConsentType, Time(TT))
specifies that a consent for collecting, usage, stor-
age, or transfer of data Xθ can be received by the
service provider sp at a non-specific time TT.

6. DELETEWITHIN (E, Xθ, Time(dd)) specifies that
Xθ must be deleted from a place E within a certain
time delay dd (where dd is a numerical time value,
e.g. dd = 10y (10 years)).

These actions, to the best of our knowledge, can
be found in many services, and pose high privacy
risk. The choice of the names RECEIVEAT, CALCU-
LATEAT, etc., besides being intuitive, is very useful
for automated reasoning, where the actions need to
be translated into the corresponding logic facts. Our
proposed presentation of the actions can be directly
translated to the logic facts in a very straightforward
way. For instance, an action RECEIVEAT(EntityTerm,
DataTerm, TimeTerm) can be translated to the logic

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 572

fact RECEIVEAT(EntityVar, DataVar, TimeVar). In
addition, the actions store and delete are known to
be complicated to formalise. In our case, these ac-
tions can be translated to the logic facts STOREAT
and DELETEWITHIN straightforward. Note that there
are services which require more actions (besides ours)
to model (e.g. actions STRUCTURE, ORGANISE,
RECORD). Our architecture language can be extend-
able with these additional service specific actions. Fi-
nally, the semantics of the architecture language is high-
lighted in Appendix G.

An example architecture is shown in Figure 3 about
a smart meter service. In this service, the server can
receive an energy record with the gas and electricity
readings at some non-specific time, and this record can
be stored in the main storage place(s) of sp.

Service provider(sp)

Home

smartmeter

server

mainstorage

STOREAT(mainstorage, Energy(gas, electric), Time(TT))

Fig. 3. A simple smart meter architecture. For data type θ, we
have θ = Energy(gas, electricity), while the data Xθ can take the
value {10kWh, 12kWh} during an instance of the system run.

5 The Conformance Between
Policies and Architectures

We propose three types of conformance relations: (i) pri-
vacy conformance, (ii) conformance with regards to data
protection properties (which we refer to as DPR confor-
mance in this paper), and (iii) functional conformance.
Below, we provide the definition of each.

Privacy conformance compares a policy and an ar-
chitecture based on the privacy properties. Specifically,
if we do not give an entity the right to have certain type
of data or link two types of data, then in the architecture
this entity cannot have or link those types of data.

Definition 1. (Proposed privacy conformance)
1. If in a policy πθ an entity E does not have the right

to have any data of type θ, then E cannot have this
type of data in the corresponding architecture.

2. If in a policy πθ an entity E does not have the right
to link two types of data, θ1 and θ2, then E cannot
link these in the corresponding architecture.

The DPR conformance relation deals with the data
protection requirements (specified in the first five sub-
policies), such as appropriate consent collection, the sat-
isfaction of the defined deletion/retention delay and the
appropriate storage and transfer of a given type of data.

Definition 2. (Proposed DPR conformance)
1. If in a policy πθ, the collection of a (collection, us-

age, storage, or transfer) consent is required for a
piece of data of a given type, then in the architec-
ture the reception of a consent happens before or at
the same time with the reception of the data itself.

2. If in an architecture, there is an action act (createat
or calculateat) defined on a type θ of data, then in
the policy πθ, there is a (collection, usage, storage,
or transfer) purpose act:θ′ defined for the data type
θ (for some type θ′ as the result of the action act).

3. If in an architecture, a piece of data of type θ can be
stored in some storage place, strplace, then in the
policy πθ, strplace ∈ πstr.where

4. If in the policy πθ, delplace ∈ πdel.fromwhere,
then in the corresponding architecture the data of
type θ can be deleted from the place delplace.

5. If in an architecture, a piece of data of type θ can
be deleted within a delay dd (since collection), then
in the corresponding policy πθ, dd ≤ πdel.deld. In
other words, the retention delay defined in the policy
must be respected in the architecture.

6. If in an architecture, a piece of data of type θ can be
transferred to an entity Eto, then in the policy πθ,
Eto ∈ πfw.fwto.

Finally, functional conformance compares a policy and
an architecture from the perspective of functionality or
effectiveness. This conformance can help a system de-
signer to find an appropriate trade-off between func-
tionality and privacy to provide certain services.

Definition 3. (Proposed functional conformance)
1. If in a policy πθ, an entity E has the right to have

a type of data, θ, then E can have this type of data
in the corresponding architecture.

2. If in a policy πθ, an entity E has the right to link
two types of data, θ1 and θ2, then E can link these
types of data in the corresponding architecture.

3. If in a policy πθ, the collection of a (collection, us-
age, storage, or transfer) consent is not required,

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 573

then no corresponding consent can be received in
the corresponding architecture.

4. If in a policy πθ, there is a (collection, usage, stor-
age, or transfer) purpose act:θ′ defined, then in the
corresponding architecture there is an action act de-
fined on a data type θ (for some θ′).

5. If in a policy πθ, (strplace ∈ πstr.where) for some
storage place strplace, then in the architecture the
data of type θ can be stored in strplace.

6. If in an architecture, a piece of data of type θ can
be deleted from a storage place, delplace, then in
the corresponding policy πθ, we have (delplace =
πdel.fromwhere).

7. If in the policy πθ, Eto ∈ πfw.fwto, then in the ar-
chitecture, the data of type θ can be transferred to
the same entity Eto.

6 The Automated Conformance
Verification Procedure

We apply the (logic) resolution based proof concept
(widely used in semi-automated theorem provers) in a
new context, and crafted the proof algorithm to make it
fully automated, and designed the inference rules specif-
ically for the privacy, DPR and functional conformance.

6.1 The Inference Rules Used in the Proof

Definition 4. An inference rule R is denoted by R =
H ` F1, . . . , Fn, where H is the head of the rule and
F1, . . . , Fn is the tail of the rule. Each element Fi of the
tail is called a fact, and a head is called a “consequence".
The rule R reads as “if F1, . . . , Fn, then H".

In the following, let EV, θV , TV and DD denote an en-
tity variable, data type variable, non-specific time vari-
able and numerical delay variable, respectively. The en-
tity value sp denotes the service provider. We start with
the proposed rules used in the verification of the privacy
conformance relation (wrt. data possession):

Rule P1 says that if an entity EV can store data of
type θV , and can delete it within a delay, DD, then the
entity can have this data up to DD time.

P1. HASUPTO(EV, θV , Time(DD)) `
STOREAT(EV, θV , Time(TV)),
DELETEWITHIN(EV, θV , Time(DD)).

Rule P2 says that if a trusted authority or organi-
sation has any data that contains a pseudonym (P(ds)),
alongside some other data, then the trusted authority
(trusted) can also have the same data that contains the
“real" identity ds.

P2. HAS(trusted, Anytype(ds, θV)) `
HAS(trusted, Anytype(θV , P(ds))).

Where Anytype /∈ {Senc, Aenc, Mac, Hash}). In
addition, trusted and ds are constant values.

Rule P3 says that if EV can own a type of data
(regardless of time), then it can have this data.

P3. HAS(EV, θV) ` OWN(EV, θV).

Rule P4 says that if EV can receive θV at some
non-specific time TV, then it can have this data. Rules
P5 -P7 can be interpreted in a similar way.

P4. HAS(EV, θV) ` RECEIVEAT(EV, θV , Time(TV)).
P5. HAS(EV, θV) ` STOREAT(EV, θV , Time(TV)).

P6. HAS(EV, θV) ` CALCULATEAT(EV, θV , Time(TV)).
P7. HAS(EV, θV) ` CREATEAT(EV, θV , Time(TV)).

Rules P8 -P9 capture the decryption/verification of
the cryptographic data types. P8 says that if EV can
have the encryption of a piece of data of type θV using
a symmetric key K, and it can also have K, then it
can have the data. Rule P9 deals with the asymmetric
decryption process, where Sk(PK) denotes a private key.

P8. HAS(EV, θV) ` HAS(EV, Senc(θV , K)), HAS(EV, K).
P9. HAS(EV, θV) ` HAS(EV, Aenc(θV , PK)),

HAS(EV,Sk(PK)).

One reason we add cryptography at the architec-
ture level is to, for example, distinguish architectures
that apply client-side encryption from the server-side
encryption. Note: We do not have decryption rules for
MAC/hash functions due to their one-way property.

Figure 4 presents the proposed rules used in the ver-
ification of the DPR conformance relations: D1 specifies
that if the service provider sp can receive a transfer con-
sent on θV to EV to at some non-specific time TV , and
the entity (defined by the variable) EV to can receive
this at the same time or later (this is abstractly mod-
elled by the same non-specific time variable TV), then
we say that sp can collect the transfer consent on θV

to EV to. The rest of the rules can be interpreted in a
similar way, as rule D2 is defined for the data collection

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 574

D1. FWCONSENTCOLLECTED(sp, θV , EV to) `
RECEIVEAT(sp, Fwconsent(θV , EV to), Time(TV)),
RECEIVEAT(EV to, [θV], Time(TV)).

D2. CCONSENTCOLLECTED(sp, θV) `
RECEIVEAT(sp, Cconsent(Data), Time(TV)),
RECEIVEAT(EV consent, [θV], Time(TV)).

D3. UCONSENTCOLLECTED(sp, θV) `
RECEIVEAT(sp, Uconsent(Data), Time(TV)),
CALCULATEAT(EV consent, [θV], Time(TV)).

D4. STRCONSENTCOLLECTED(sp, θV) `
RECEIVEAT(sp, Sconsent(Data), Time(TV)),
STOREAT(EV consent, [θV], Time(TV)).

Fig. 4. The proposed inference rules for DPR conformance check.
EV, θV , TV denote an entity variable, data type variable, and
a non-specific time variable, respectively. [θV] denotes a type of
data (except for Senc/Aenc/Mac/Hash) that contains a piece of
data of type θV , or equal to θV itself.

consent, rule D3 deals with the usage consent collection,
while D4 is related to the storage consent.

Figure 5 highlights some examples of the proposed
rules for the verification of the privacy conformance re-
lation (wrt. linkability). Specifically:
– Rule L0 says that if an entity EV can have two

pieces of data of types θV1 and θV2, inside any com-
pound data types with the same metadata, then EV
can link θV1 and θV2.

– Rule L1 says that if an entity EV can have any
data that contains two pieces of data of types θV1,
and θV3 besides any other data (denoted by θV and
θV ′), and any data that contains two pieces of data
of types θV2 and θV3, then EV can link θV1 and θV2.
Note that this is not a “unique" linkability, meaning
that EV cannot be sure that the data of types θV1
and θV2 belong to the same individual (although it
can narrow down the set of possible individuals to
some extent).

– Rule U0 says that if EV owns θV1 and θV2, then
it can uniquely link those (as it is aware of their
nature and properties).

– Extending L1, rule U1 says that if a type θV3 is
unique (e.g. passport numbers with country codes),
then EV can also “uniquely" link the data of types
θV1 and θV2, namely, it can also be sure that they
belong to the same individual.

We define linkability between the arguments of com-
pound data types. We assume that all the data types
inside a compound data type belong to the same living
individual. For example, in the compound data type
Bill(name, amount, address), name, amount, and ad-

dress belong to the same individual. This assumption
can be seen as a simplification; however, it holds in
many situations and compound data types. We also de-
fine that if E can calculate two pieces of data D1, D2
from a piece of data D that belongs to the same indi-
vidual, then E can link D1 and D2. In addition, we also
define “trivial" linkability between data types that are
owned by an entity as we assume that the owner is aware
of the nature of the data it owns. Linkability can also be
resulted from unique meta information. However, cur-
rently, we have not considered the case of linkability
that is resulted from partial information leakage.

L0. LINK(EV, θV1, θV2) `
HAS(EV, Anytype1(θV1, θV , Meta(θV3))),
HAS(EV, Anytype2(θV2, θV ′, Meta(θV3))).

L1. LINK(EV, θV1, θV2) `
HAS(EV, Anytype1(θV1, θV , θV3)),
HAS(EV, Anytype2(θV2, θV ′, θV3)).

U0. LINKUNIQUE(EV, θV1, θV2) ` OWN(EV, θV1),
OWN(EV, θV2).

U1. LINKUNIQUE(EV, θV1, θV2) `
HAS(EV, Anytype1(θV1, θV , θV3)),
HAS(EV, Anytype2(θV2, θV ′, θV3)), UNIQUE(θV3).

Fig. 5. Rules for privacy conformance check (linkability, unique
linkability). Where we assume that in any compound type, i.e.,
Anytype(θ1,. . . ,θk), θ1,. . . , θk belong to the same individual.

6.2 Proposed Conformance Check
Algorithm

The automated conformance verification is based on the
execution of resolution steps and backward search. Res-
olution is well-known in logic programming and widely
applied in logic programming languages and theorem
provers. The formal definition of resolution is based on
the so-called unification steps. A unifer, denoted by σ,
binds/assigns a value (e.g. E, θ, TT, dd) to a variable
(e.g. EV, θV , TV, DD, respectively).

Definition 5. A unifier σ is the most general unifier of
a set of facts F if it unifies the facts in F, and for any
unifier µ of F, there is a unifier λ such that µ = σ◦λ.

Definition 6. (Sub-goals) Given a fact F , and a rule
R = H ` F1,. . . , Fn, where F is unifiable with H with
the most general unifier σ, then the resolution F ◦(F,H)R

results in sub-goals F1σ, . . . , Fnσ.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 575

Fσ denotes the application of the unifier σ to the vari-
ables inside a fact F . For instance, σ = {sp 7→ EV, bill
7→ θV , TT 7→ TV, 5y 7→ DD}, F = RECEIVEAT(θV ,
EV, Time(TV)).

Algorithm 1: ConformanceCheck(initgoal, Ar-
chitecture, Rulesets, N)

Result: Proof found (1) /Proof not found (0)
Inputs: 1. Ruleset; 2. Architecture; 3. initgoal
(initgoal ∈ AG); 4. Allowed layers of nested crypto
functions: N .

if initgoal ∈ Architecture or can be unified with an
element of it then

return 1
else

if initgoal cannot be proved with any rule in
Ruleset (i.e. Algorithm 2 returns 0 for all rules)
then

return 0
else

return 1
end

end

Algorithm 2: Prove initgoal with a rule, rule ∈
Ruleset

if initgoal can be unified with the head of rule, rule ∈
Ruleset, which results in a set of sub-goals,
SetofSubgoals (Definition 6) then

if ∃ subgoal in SetofSubgoals that contains more
than N nested layers of crypto functions and
rule ∈ {P8, P9} then

return 0
else

if ∃ subgoal in SetofSubgoals that cannot be
proved with any rule in Ruleset and is not
unifiable with any fact in Architecture then

return 0
else

return 1
end

end
else

return 0
end

The verification goals: In the following, we high-
light how the verification goals are generated. Each goal
is related to a requirement in the sub-policies in πθ.

For instance, for the data collection sub-policy πcol
with cons ∈ {Y, N}, and the collection purpose values
{cp1:θ′1,. . . , cpn:θ′n}, the corresponding verification goals
are defined by Gθcol = Gθccons ∪ Gθcpurp, where Gθcol is a
set of goals related to πcol, and:
1. Gθccons = {CCONSENTCOLLECTED(sp, θ)}, the

set of verification goals that capture whether sp col-
lected the consents for collecting data of type θ.

2. Gθcpurp =
⋃n
j=1{CPURPOSE(θ′j , cpj)}, the set of

goals that capture the collection purposes, where θ′j
is the resulted data after the service provider applies
an action cpj on a piece of data type θ.

Similarly, the verification goals Gθuse, Gθstr, Gθdel, Gθfw,
Gθhas, Gθlink for the data usage (πuse), storage (πstr),
deletion (πdel), transfer (πfw), possession (πhas) and
linkability (πlink) sub-policies, respectively, can be de-
rived (see Appendix C for more details).

Let us define the following sets that we will use in
the automated proof (Algorithm 1), namely:
– Ruleset contains all the inference rules in sub-

section 6.1 (Figures 4-5).
– All the goals generation rules AG =⋃

∀θ∈DataTypeservice
pol

{Gθcol ∪ Gθuse ∪ Gθstr ∪ Gθdel

∪ Gθfw ∪ Gθhas ∪ Gθlink}.
– Architecture contains the logical facts that define

the architecture, Architecture = set of actions ∪
PurpSet ∪ UniqueTypes.
Here, PurpSet denotes the set of logic facts that
specifies the collection, usage, storage and trans-
fer purposes derived from actions, while Unique-
Types specifies the set of facts for unique data
types. Specifically, UniqueTypes = {UNIQUE(θ1),
. . . , UNIQUE(θn)}.

Explanation: As inputs, Algorithm 1 expects the set of
inference rules Ruleset, a set of facts Architecture that
captures the actions in an architecture, a verification
goal initgoal, and N , which is a finite number that de-
notes the maximum layers of nested cryptographic func-
tions in a piece of data that the algorithm examines.
1. If initgoal is an action, then we check whether it can

be unified with or equal to a fact in Architecture, in
which case, 1 is returned, or 0 otherwise.

2. During a proof attempt of either initgoal or a sub-
goal with the facts in Architecture, we also check if
the goal can be unified with purpose-fact (in the set
PurpSet), or a unique type fact (in UniqueTypes).

3. If initgoal is not an action fact, purpose-fact, or a
unique type, then we check if it can be proved with
any inference rule in Ruleset. In case there is no rule
that can be used to prove the goal, 1 is returned,
otherwise, 0.

4. In Algorithm 2, a step initgoal ◦(initgoal, head of rule)
rule can be successful or unsuccessful (in case there
is no unifier σ for initgoal and the head of rule).
This step results in the new sub-goals to be proved.
If there is a new sub-goal that contains more than

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 576

N layers of nested cryptographic functions (Senc,
Aenc, Mac, Hash), then we return 0 (i.e. this
“branch" of the proof was unsuccessful). A proof can
be seen as a derivation tree (as shown in Figure 1),
with initgoal in the root and the actions/facts in Ar-
chitecture are the leaves. If there is a new sub-goal
which corresponds to an architectural action, then
we attempt to prove it using the facts in Architec-
ture (like in points 1-2 above).

5. The proof process is applied recursively on all the
sub-goals resulted from each resolution step, until
we run out of sub-goals to be proved.

Two simple examples of how Algorithms 1-2 work can
be found in Appendix E. More details about the verifi-
cation steps can be found in the pre-print report on the
GitHub page of the tool [38].

DataProVe supports any layer of nested encryption
and will terminate if N is finite. N is defined to achieve
termination, completeness, and to make the verification
quicker if the user defined actions only contain small
number of nested encryptions. This is because our veri-
fication engine attempts to search for all possible proof
trees (to achieve completeness, in case no proof can be
found for a goal). Note that in practice, we can mostly
see 1-2 layers of encryption in data. Regarding the repre-
sentation of encryption, in terms of programming tech-
nique, there are several ways to make it effective. A
solution we use is storing an encrypted data in a dic-
tionary, where the plaintext is a dictionary key, and the
cryptographic keys required to decrypt the plaintext are
the dictionary values. This speeds up the search for the
resolution/unification steps for decryption.

In the following, we discuss the correctness, termi-
nation and completeness properties of our algorithms.
In Properties 1-3, πθ.π∗ refers to the sub-policy π∗ in
πθ, and ConformanceCheck(. . .) refers to Confor-
manceCheck(initgoal, Architecture, Rulesets, N).

Property 1. (Correctness) We distinguish several
cases based on the value of initgoal:
1. If initgoal ∈ {HAS(E, θ), HASUPTO(E, θ, Time(dd))},

and E ∈ πθ.πhas at the policy level, then when-
ever ConformanceCheck(. . .) == 1, Architecture
functionally conforms with πθ (with regards to the
requirement E ∈ πθ.πhas).

2. If initgoal ∈ {HAS(E, θ), HASUPTO(E, θ, Time(dd))},
and E /∈ πθ.πhas, then whenever Confor-
manceCheck(. . .) == 1, Architecture does not pri-
vacy conform with the policy πθ.

3. If initgoal ∈ {LINK(Ei,θ,θi), LINKUNIQUE(Ei,θ,θi)},
and (Ei, θi) ∈ πθ.πlink, then whenever Confor-
manceCheck(. . .) == 1, Architecture functionally
conforms with πθ (with regards to the requirement
(Ei, θi) ∈ πθ.πlink).

4. If initgoal ∈ {LINK(Ei,θ,θi), LINKUNIQUE(Ei,θ,θi)}
and (Ei, θi) /∈ πθ.πlink, then whenever Confor-
manceCheck(. . .) == 1, Architecture does not pri-
vacy conform with πθ.

5. If initgoal is a consent collection (e.g. initgoal
∈ Gθccons), and πcol.cons = Y , πuse.cons = Y ,
πstr.cons = Y , or πfw.cons = Y in πθ, then Ar-
chitecture DPR conforms with the corresponding
sub-policy (e.g. πcol.cons = Y) whenever Confor-
manceCheck(. . .) == 1.

Property 2. (Termination up-to N) Let N be the max-
imum number of nested layers of cryptographic functions
that Algorithm 2 examines. Also, we assume that all the
defined data types contain only finite layers of other data
types inside them. Beside a finite N , the proof process
never get into an infinite loop.

The completeness property is a consequence of the ter-
mination property (Property 2), as follows:

Property 3. (Completeness) If all the data types spec-
ified in Architecture contain a finite number of layers of
cryptographic functions, and all the defined data types
have a finite number of layers of other data types, then:
1. If initgoal ∈ {HAS(E,θ), HASUPTO(E,θ,Time(dd))},

and E ∈ πθ.πhas at the policy level, then whenever
ConformanceCheck (. . .) == 0, Architecture does
not functionally conform with πθ.

2. If initgoal ∈ {LINK(E,θ,θ′), LINKUNIQUE(E,θ,θ′)},
and (E, θ′) ∈ πθ.πlink, then whenever Confor-
manceCheck(. . .) == 0, Architecture does not
functionally conform with πθ.

Similarly, the completeness properties for consent collec-
tion can be defined. The proof outline of Properties 1-3
can be found in Appendix D.

7 Implementation and Usage
DataProVe is written in Python, and is available for
download (with its user manual) from GitHub [38]. We
demonstrate the usage of the tool on a decentralised
contact tracing approach (DP3T [39]) and a version
of a centralised approach (PEPP-PT [40]), which are

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 577

adapted in some European countries. In the following,
we define a common data protection policy (PL1), with
the focus of being privacy friendly, but at the same
time being effective functionally (e.g. enabling a kind of
“global monitoring" of the cases). We will then compare
a version of DP3T and PEPP-PT against this policy.
To compare the two architectures, PL1 combines some
principles and data types from both the decentralised
and centralised designs (such as long-term ID, which
normally can only be found in the centralised case).

We define the following entities that are involved
in the service, (i) the service provider (sp), (ii) phone,
(iii) health authority (healthauth), (iv) user (user), and
(v) backend server (backend). We assume that sp and
healthauth are two different entities, while sp operates
the app and the backend server, healthauth deals with
testing and notifying users (not via the same app).

The data types we define are (i) types of long-
term pseudo IDs (longID), (ii) ephemeral IDs of an
“own" phone (ephIDown), (iii) ephemeral IDs of “other"
phones (ephIDother), (iv) ephemeral IDs sent by the
backend server (ephIDbackend), (v) the “own" exposure
levels (exposLevelown), (vi) test results (testResultown),
(vii) statistics (statistics), and (viii) notifications of be-
ing at risk (atRisk). Hence, the policy is defined by:

PL1 = {πephIDown, πephIDother, πephIDbackend, πlongID,
πexposLevelown, πtestResultown, πstatistics, πatRisk}.

For brevity, instead of detailing all the seven sub-
policies for each data type in PL1, in the following, we
focus on the most relevant requirements for contact trac-
ing apps (see the tool’s GitHub page [38] for the rest).
– For data usage sub-policy in πephIDown, ephIDs are

used to calculate the exposure level, and its us-
age require prior consent (i.e. πuse.upurp = {cal-
culate:exposLevelown}, and πuse.cons = Y). As
for storage, ephIDs are not stored at the ser-
vice provider’s place, hence πstr.where = {decen-
tralised}, and consent is required (πstr.cons =
Y). ephIDs are deleted within 14 days from the
users’ phone (i.e. πdel.fromwhere = {phone}, and
πdel.deld = 14d). ephIDs are only shared with the
(other) phones and backend/service provider, hence
πfw.cons = Y, πfw.fwto = {phone}. We set that the
phones, backend/service provider have the right to
have ephIDs (i.e. πhas= {backend, phone}). Finally,
only phones have the right to link two of their own
ephIDs (i.e. πlink = {(phone, ephIDown)}).

– For the data storage sub-policy in πlongID, to be
more privacy-friendly, we set that long-term IDs

can only be stored on an own phone (i.e. πstr.where
= {phone}, and πstr.cons = Y). We set its reten-
tion delay to 3 years, the anticipated duration of
the pandemic (i.e. πdel.fromwhere = {phone}, and
πdel.deld = 3y). In addition, we set that only the
phones have the right to have the long-term ID (i.e.
πhas= {phone}), and only the own phones have the
right to link longID with the ephemeral IDs, the
exposure levels, and the test results (i.e. πlink =
{(phone, ephIDown)}).

– In πexposLevelown, the exposure level is stored lo-
cally on the own phones, and only the users and
their own phones have the right to have exposLevel-
own, and link exposLevelown with ephIDs. Hence,
πstr.where = {phone}, πdel.fromwhere = {phone},
πdel.deld = 14d, πhas= {user, phone}, and πlink =
{(user, ephID), (phone, ephID)}).

– For data possession and connection in
πtestResultown, only the user and the health au-
thority have the right to have testResultown, and
only the user has the right to link its own test
result with its own ephemeral ID. Hence, πhas=
{user, healthauth}, and πlink = {(user, ephID)}).

– Finally, in πstatistics, we set that the health author-
ity has the right to have the statistics about the
“global cases" (i.e. πhas= {healthauth}). In πatRisk,
we set that the phones have the right to have the at
risk notifications (i.e. πhas= {phone}).

In the common policy PL1, we mapped the require-
ments in the policy text (white papers) into our seven
sub-policy formats. For example, the retention delay in
Section 3 (21 days), and consent collection in Section
4 of the PEPP-PT white paper [40]. The data posses-
sion policy in PL1 is from Section 1.2.1 (F-REQ-10 and
F-REQ-8). While the linkability property addresses the
requirement NF-REQ-8 in Section 1.2.2. Similarly, some
requirements are taken from the white paper of DP3T
[39], including the 14 days retention delay (page 16 [39]).

7.1 Decentralised Architecture (DP3T)

We consider the low-cost version of DP3T, where
each phone generates a list of random ephemeral IDs
(EphIDs) from a seed, SK, and broadcasts them. A
phone stores its own EphIDs, and the ones it heard from
other phones for 14 days. For security reason, the people
tested positive for COVID-19 have a choice to upload a
pair of a seed and the time, (SK, t), for the contagious
period to a backend server, which can be downloaded

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 578

by phones to calculate the ephemeral IDs (EphIDs) to
assess the exposure level by comparing them with the
previously heard EphIDs. As we focus on privacy prop-
erties, for simplicity, we assume that EphIDs (instead of
the seeds) are uploaded to the backend server and down-
loaded by phones for calculating the exposure level.

The architecture actions that model the collection
of consents can be found in Appendix A (the full list of
actions can be found on the GitHub page of the tool).

Architecture: We define the architecture for the
low-cost version of DP3T as PADP3T that contains:

1. OWN(user, ephIDown),
2. OWN(user, expoLevelown),
3. OWN(user, testResultown),
4. OWN(phone, expoLevelown),
5. OWN(phone, ephIDown),
6. CALCULATEAT(phone, ListEphOwn, Time(TT)),
7. CALCULATEAT(phone, expoLevelown, Time(TT)),
8. RECEIVEAT(phone, ephIDother, Time(TT)),
9. STOREAT(phone, ephIDown, Time(TT)),
10. STOREAT(phone, ephIDother, Time(TT)),
11. STOREAT(phone, expoLevelown, Time(TT)),
12. DELETEWITHIN(phone, ephIDown, Time(14d)),
13. DELETEWITHIN(phone, ephIDother, Time(14d)),
14. DELETEWITHIN(phone, expoLevelown, Time(14d)),
15. RECEIVEAT(backend, ListEphOwn, Time(TT)),
16. RECEIVEAT(backend, ListEphOther, Time(TT)),
17. STOREAT(mainstorage, ephIDown, Time(TT)),
18. RECEIVEAT(phone, ephIDbackend, Time(TT)).

7.2 Centralised Architecture (PEPP-PT)

In case of PEPP-PT, the backend server calculates
ephIDs and sends them to the phones, and it also
calculates the long-term pseudo ID (longID) for each
phone/app. The infected users can volunteer to upload
the emphemeral IDs (ephIDs) their phones heard from
other phones. Upon receiving a list of ephIDs, the back-
end server identifies the long-term IDs corresponding to
the ephIDs, and notify the users at risk as well as the
health authority about those users at risk. As stated in
Section 4 of [40], ephIDs are stored until 21 days on the
phones. To show better the ability of our tool and high-
light more differences between the two architectures, we
also assume an example implementation IMP of PEPP-
PT, where for the authority to calculate case statistics,
longID of an infected person is sent to the health au-
thority (but ephIDs are not).

Architecture: The architecture of the implemen-
tation IMP of PEPP-PT is defined as PAPEP−IMP

that contains the following 24 actions:

1. OWN(user, ephIDown),
2. OWN(user, testResultown),
3. OWN(backend, ephIDown),
4. OWN(backend, ephIDother),
5. OWN(backend, longID),
6. OWN(backend, exposLevelown),
7. CALCULATEAT(backend, ListEphOwn, Time(TT)),
8. CALCULATEAT(backend, ListEphOther, Time(TT)),
9. CALCULATEAT(backend, longID, Time(TT)),
10. CALCULATEAT(backend, exposLevelown, Time(TT)),
11. STOREAT(mainstorage, ephIDown, Time(TT)),
12. STOREAT(mainstorage, longID, Time(TT)),
13. STOREAT(mainstorage, exposLevelown, Time(TT)),
14. DELETEWITHIN(mainstorage, longID, Time(3y)),
15. RECEIVEAT(phone, ephIDown, Time(TT)),
16. RECEIVEAT(phone, ephIDother, Time(TT)),
17. RECEIVEAT(phone, atRisk, Time(TT)),
18. RECEIVEAT(backend, ephIDother, Time(TT)),
19. STOREAT(phone, ephIDown, Time(TT),
20. STOREAT(phone, ephIDother, Time(TT),
21. DELETEWITHIN(phone, ephIDown, Time(21d)),
22. DELETEWITHIN(phone, ephIDother, Time(21d)),
23. RECEIVEAT(healthauth, longID, Time(TT)),
24. CALCULATEAT(healthauth, statistics, Time(TT).

ListEphOwn and ListEphOther denote List(ephIDown,
ephIDown) and List(ephIDother, ephIDother), respec-
tively, in the architectures.

7.3 Verification Results

Using our tool, DataProVe, the automated verification
returns that PADP3T violates some functional proper-
ties against PL1. Examples of these violations include:
1. The long-term IDs cannot be stored on the phones,

as specified in PL1.
2. The phones cannot have a long-term ID (longID).
3. The phones cannot link longID with ephID.
4. The health authority cannot have the statistics

about “global cases" (statistics).

Since PL1 favours the decentralised approach, we can
mostly see functional violations for DP3T (e.g. statistics
calculation, and requirements on longID, which can be
found only in PEPP-PT, but also defined in PL1). Dat-
aProVe also returns that PADP3T conforms with the
privacy properties regarding data possession and linka-
bility (e.g. backend cannot link two ephIDown-s). Note
that points 1-3 can be eliminated with a policy dedi-
cated for DP3T, PLDP3T , in which we remove the type
longID. As normally, the designers would define ded-
icated policies with just the data types supported by
a service. The combined policy PL1 is only defined to

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 579

demonstrate the ability of DataProVe to compare the
two architectures, and detect functional violation.

On the other hand, PAPEP−IMP also violates PL1
in several aspects. Examples of these violations include:
1. In PAPEP−IMP , backend can link two ephemeral

IDs of a phone (ephIDown), and it can link ephID-
own with the exposure level (exposLevelown), which
are not allowed in PL1.

2. In PAPEP−IMP , backend can have the long-term
ID (longID) and the exposure level (exposLevelown),
which is not allowed in PL1.

3. In PAPEP−IMP , backend can link a long-term ID
with a ephemeral ID, and with the exposure level of
a phone, which are not allowed in PL1.

4. In PAPEP−IMP , the ephemeral IDs, the long-term
IDs, and the exposure levels are stored in the back-
end server, which are not allowed in PL1.

5. In PAPEP−IMP , ephIDown are stored until 21 days
on the phone, while only 14 days is allowed in PL1.

To summarise, from the analysis above, we can see that
the examined version of DP3T seems to be stricter re-
garding the data handled by the backend server, which
is privacy friendly. However, from the functionality per-
spective, the PEPP-PT design seems to enable better
cases-monitoring possibilities, as in PAPEP−IMP , the
health authority can have statistics (actions 23-24).

Finally, in the table below, we provide the time it
takes for DataProVe-v0.9.8 to return the results above,
besides the system parameter of an Intel i7 9700 CPU,
32 GB RAM, Windows 10 and Python 3.8.

PADP 3T PAP EP −IMP

PL1 6.432 sec (29 actions) 11.605 sec (39 actions)

We note that the table indicates the time for verify-
ing all the sub-policies requirements defined in PL1 at
once. Each goal took different time between the range
of 9ms - 314ms. PEP-IMP takes more time because it
has to deal with more intensive verification for a greater
number of architecture actions (39 in total).

8 Performance
The verification takes the longest time for the link goals,
as all inference rules (for the link property) and all the
combinations of the data in the actions are checked.
The worst case scenario is when no proof is found. The
verification time for a goal increases with the number of

architecture actions and arguments in compound data
types (that contains other data types as arguments).

Figures 6-7 show the verification time for a single
link goal, besides the growing number of actions and
arguments in compound data types. In each case, we
choose representative sets of the different actions, and
the data types with arguments that would generate high
number of verification steps in case no proof is found
(i.e. all different data types). In Figure 6, the actions do
not contain any cryptographic data types, while in Fig-
ure 7, each action contains one layer of encryption. The
(colored) lines in the figures are distinguished by the
number of arguments. For example, the line with the
label “5 args" refers to the settings where each action
includes a data type that contains 5 data types as argu-
ments (e.g. Account(name, address, age, job, salary)),
while “0 arg" captures where each action only contains
a simple data type (e.g. name). We run each settings 10
times, and took their average (with DataProVe-v0.9.8
and an Intel i7 6700 CPU).

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

m
se

c

Number of actions

LINK goal: data does not contain any crypto

element

5 args

4 args

3 args

2 args

1 arg

0 arg

Fig. 6. The verification time of a single LINK goal, with data that
does not contain any crypto element. All different data types.

0

100

200

300

400

500

600

700

800

900

10 20 30 40 50 60 70 80 90 100

m
se

c

Number of actions

5 args

4 args

3 args

2 args

1 arg

0 arg

LINK goal: Each data in an action contains 1 layer of encryption

Fig. 7. The verification time of a single LINK goal, with each
data containing 1 layer of encryption. All different data types.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 580

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

m
se

c

Number of actions

HAS goal: data does not contain any crypto

element

5 args

4 args

3 args

2 args

1 arg

0 arg

Fig. 8. The verification time of a single HAS goal, with data that
does not contain any crypto element. All different data types.

The more arguments a data type has and more ac-
tions an architecture has, the more steps are required to
find a proof. This can increase the verification time in
the worst case scenario when all combinations of argu-
ment and action pairs needed to be checked. In Figure 7,
the verification time for the encryption cases is slightly
higher, than the corresponding non-encryption cases be-
cause to access the same data, first, decryption rules
need to be invoked. The time difference is small, be-
cause rules P8-9 are still invoked in the non-encryption
cases (to check for the existence of encryption in data).

The time of the other goals for consent collection,
purposes, deletion delay and storage is much lower, than
the link cases as their proofs do not involve a recursive
application of the inference rules. The verification time
for these is up to 47 msec besides 100 actions, and 5 ar-
guments. The data possession goal requires recursive ap-
plication of rules, however, it does not require matching
all possible combinations of arguments and data types
like the link goals (see Figure 8). The cryptographic ele-
ments such as hash/MAC functions do not increase the
verification time compared to the non-encryption case,
as (being one-way) they do not include any decryption.

9 Future Directions
We discuss some future directions to address the limi-
tations discussed in Section 3.1. To capture the require-
ments on children consent (Article 6(1)(f)), for example,
an architecture relation Role(guardian, E1, E2) could be
defined to specify that E1 is the guardian of E2, and the
consent can be received from E1. For Article 6(1)(b), an
abstract set of interests could be defined. As for Article
9, which deals with the processing of special category
data, it could be modelled by defining a set of special

category data types (a subset of all data types). Then,
based on each condition in Article 9(2), the special pur-
poses of employment, health-check, public health, and
research could be defined in the collection and usage
sub-policies (πcol, πuse) of these data types.

There are some possibilities to improve the transfer
sub-policy as well, for example, the GDPR covers the
case when personal data is transferred to an interna-
tional organisation (in a third country), and appropriate
agreement and arrangement must be done prior to data
transfer [37]. This agreement could be specified in the
form of a sticky or conditional policy between a service
provider and an organisation. Sticky policies are used
in PPL [8] to match the expectation of a client and the
obligation offered by a service provider.

Regarding the deletion sub-policy, in the GDPR,
the data subject also has the right to request a dele-
tion for their collected data. This can be modelled with
an event/action that captures the reception of a deletion
request (e.g. recvdelreq(θ, place, t)) and a corresponding
deletion action within a specified delay. Finally, trans-
parency, another important part of the GDPR as it cap-
tures the “right to be informed", can be defined by an
action called notify happening before the data collec-
tion, usage, storage, deletion, and transfer.

10 Conclusion
In this paper, we addressed the problem of formal spec-
ification and automated verification of data protection
requirements at the policy and architecture levels. To
do that, we proposed two variants of policy and archi-
tecture languages to specify a set of data protection re-
quirements set in the GDPR. In addition, we proposed
DataProVe, a tool based on the syntax of our languages’
variants and an automated verification engine to check
the conformance between a policy and an architecture.

The notifications about violation and conformance
can help system designers adjust their new policies and
architectures to meet their objective regarding privacy,
data protection and functionality. However, our method
can be used for existing real systems as well, as it can
model and analyse any architecture that supports the
transmission, calculation, storage and deletion of data.

The syntax and semantics of the languages can be
extended to specify more complex laws, such as Article
6 and 9 in the GDPR, as well as automated verifica-
tion between system architectures and implementations,
connecting three levels of system design.

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 581

11 Acknowledgement
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

References
[1] EU Parliament. General Data Protection Regulation, 2018.

https://eur-lex.europa.eu/eli/reg/2016/679/oj.
[2] Karen Kullo. Facebook sued over alleged scanning of pri-

vate messages. Bloomberg, 2 January 2014. http://www.
bloomberg.com/news/articles/2014-01-02/facebook-sued-
over-alleged-scanning-of-private-messages.

[3] Samual Gibbs. Belgium takes Facebook to court over pri-
vacy breaches and user tracking. The Guardian, 15 June
2015. http://www.theguardian.com/technology/2015/jun/
15/belgium-facebook-court-privacy-breaches-ads.

[4] Sean Buckley. Deleting Google Photos won’t stop your
phone from uploading pictures. Engaget.com, 13 July 2015.
http://www.engadget.com/2015/07/13/deleting-google-
photos-wont-stop-your-phone-from-uploading-pict/.

[5] K. Granville. Facebook and Cambridge Analytica: What You
Need to Know as Fallout Widens. The New York Times,
19 March 2018. https://www.nytimes.com/2018/03/19/
technology/facebook-cambridge-analytica-explained.html.

[6] EU Parliament. GDPR, Article 25, 2018. https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

[7] EU Parliament. GDPR, Article 6, 2018. https://eur-lex.
europa.eu/eli/reg/2016/679/oj.

[8] S Trabelsi, Akram Njeh, Laurent Bussard, and Gregory
Neven. Ppl engine: A symmetric architecture for privacy
policy handling. W3C Workshop on Privacy and data usage
control, pages 1–5, 04 2010.

[9] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Karin
Bernsmed, Anderson Santana De Oliveira, and Jakub
Sendor. A-ppl: An accountability policy language. In
Joaquin Garcia-Alfaro, Jordi Herrera-Joancomartí, Emil
Lupu, Joachim Posegga, Alessandro Aldini, Fabio Martinelli,
and Neeraj Suri, editors, Data Privacy Management, Au-
tonomous Spontaneous Security, and Security Assurance,
pages 319–326, Cham, 2015. Springer.

[10] I. Çelebi. Privacy enhanced secure tropos : A privacy model-
ing language for gdpr compliance. Master Thesis, 2018.

[11] Vinh-Thong Ta, Denis Butin, and Daniel Le Métayer. For-
mal accountability for biometric surveillance: A case study.
In Bettina Berendt, Thomas Engel, Demosthenes Ikonomou,
Daniel Le Métayer, and Stefan Schiffner, editors, Privacy
Technologies and Policy, pages 21–37. Springer, 2016.

[12] Vinh-Thong Ta and Thibaud Antignac. Privacy by design:
On the conformance between protocols and architectures. In
Frédéric Cuppens, Joaquin Garcia-Alfaro, Nur Zincir Hey-
wood, and Philip W. L. Fong, editors, Foundations and
Practice of Security, pages 65–81. Springer, 2015.

[13] A. Barth, A. Datta, J.C. Mitchell, and H. Nissenbaum. Pri-
vacy and contextual integrity: framework and applications.

In 2006 IEEE Symposium on Security and Privacy (S P’06),
page 15pp., 2006.

[14] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Raja-
mani, Janice Tsai, and Jeannette M. Wing. Bootstrapping
privacy compliance in big data systems. In 2014 IEEE Sym-
posium on Security and Privacy, pages 327–342, 2014.

[15] Mina Deng, Kim Wuyts, Riccardo Scandariato, Bart Preneel,
and Wouter Joosen. A privacy threat analysis framework:
supporting the elicitation and fulfillment of privacy require-
ments. Requirements Engineering Journal, 16(1):3–32, 2011.

[16] Open policy agent. https://www.openpolicyagent.org/.
Accessed: 2021-05-24.

[17] The Platform for Privacy Preferences. P3P, 2012. http:
//www.w3.org/P3P/.

[18] The Platform for Privacy Preferences (P3P). APPEL 1.0,
2012. http://www.w3.org/TR/2002/WD-P3P-preferences-
20020415/.

[19] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and
Yirong Xu. Xpref: a preference language for p3p. Computer
Networks, 48(5):809 – 827, 2005. Web Security.

[20] M. Alshammari and A. Simpson. A model-based approach
to support privacy compliance. Information and Computer
Security,, 26(4):437–453, 2018.

[21] Rainer Hörbe and Walter Hötzendorfer. Privacy by design in
federated identity management. In 2015 IEEE Security and
Privacy Workshops, pages 167–174, 2015.

[22] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff
Kramer. Specifying distributed software architectures. In
Wilhelm Schäfer and Pere Botella, editors, Software Engi-
neering — ESEC ’95, pages 137–153, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[23] Robert Allen and David Garlan. A formal basis for architec-
tural connection. ACM Transaction on Software Engineering
and Methodology, 6(3):213–249, July 1997.

[24] D. C. Luckham and J. Vera. An event-based architecture
definition language. IEEE Transactions on Software Engi-
neering, 21(9):717–734, 1995.

[25] J. Perez, I. Ramos, J. Jaen, P. Letelier, and E. Navarro.
Prisma: towards quality, aspect oriented and dynamic soft-
ware architectures. In Third International Conference on
Quality Software, 2003. Proceedings., pages 59–66, 2003.

[26] R. Milner. A calculus of mobile processes, i. Information and
Computation, 100(1):1 – 40, 1992.

[27] Amelia Bădică and Costin Bădică. Fsp and fltl framework
for specification and verification of middle-agents. Int. J.
Appl. Math. Comput. Sci., 21(1):9–25, March 2011.

[28] R. B. Franca, J. Bodeveix, M. Filali, J. Rolland,
D. Chemouil, and D. Thomas. The aadl behaviour annex
– experiments and roadmap. In 12th IEEE International
Conference on Engineering Complex Computer Systems
(ICECCS 2007), pages 377–382, 2007.

[29] Thibaud Antignac and Daniel Le Métayer. Privacy architec-
tures: Reasoning about data minimisation and integrity. In
Sjouke Mauw and Christian D. Jensen, editors, Security and
Trust Management, pages 17–32. Springer, 2014.

[30] National Information Technology Development Agency.
Nigeria Data Protection Regulation, 2019.

[31] State of California Department of Justice. California Con-
sumer Privacy Act, 2018.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://www.bloomberg.com/news/articles/2014-01-02/facebook-sued-over-alleged-scanning-of-private-messages
http://www.bloomberg.com/news/articles/2014-01-02/facebook-sued-over-alleged-scanning-of-private-messages
http://www.bloomberg.com/news/articles/2014-01-02/facebook-sued-over-alleged-scanning-of-private-messages
http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
http://www.theguardian.com/technology/2015/jun/15/belgium-facebook-court-privacy-breaches-ads
http://www.engadget.com/2015/07/13/deleting-google-photos-wont-stop-your-phone-from-uploading-pict/
http://www.engadget.com/2015/07/13/deleting-google-photos-wont-stop-your-phone-from-uploading-pict/
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://www.nytimes.com/2018/03/19/technology/facebook-cambridge-analytica-explained.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.openpolicyagent.org/
http://www.w3.org/P3P/
http://www.w3.org/P3P/
http://www.w3.org/TR/2002/WD-P3P-preferences-20020415/
http://www.w3.org/TR/2002/WD-P3P-preferences-20020415/

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 582

[32] Office of the Privacy Commissioner of Canada. Personal
Information Protection and Electronic Documents Act, 2000.

[33] EU Parliament. GDPR, Article 46, 2018. https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

[34] EU Parliament. GDPR, Article 5, 2018. https://eur-lex.
europa.eu/eli/reg/2016/679/oj.

[35] EU Parliament. GDPR, Article 30, 2018. https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

[36] EU Parliament. GDPR, Article 17, 2018. https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

[37] EU Parliament. GDPR, Article 45, 2018. https://eur-
lex.europa.eu/eli/reg/2016/679/oj.

[38] Dataprove. https://github.com/Dataprove/Dataprovetool/.
[39] Carmela Troncoso et. al. Decentralized Privacy-Preserving

Proximity Tracing. GitHub, 25 May 2020. https://github.
com/DP-3T/documents.

[40] Pan European Privacy Preserving Proximity Tracing. Data
Protection and Information System Architecture. GitHub,
20 April 2020. https://github.com/pepp-pt/pepp-pt-
documentation.

A Actions for Consent
In the following, we define the actions for consent col-
lections. We use the notations in the table below:

Notation Data = (θV , EVconsent)
EphOwn (ephIDown, phone)
EphOther (ephIDother, phone)
EphOwnSp (ephIDown, backend)
EphOtherSp (ephIDother, backend)
LongIDSp (longID, healthauth)

EphBackend (ephIDbackend, phone)
EphOwnSp (ephIDown, mainstorage)
ExpoStorage (exposLevelown, mainstorage)

For PADP3T , we define the following actions:
1. RECEIVEAT(sp, Uconsent(EphOther), Time(TT)) de-

fines the collection of a usage consent on ephIDother.
2. RECEIVEAT(sp, Uconsent(EphBackend), Time(TT)) is

the same as the first one but on EphBackend.
3. RECEIVEAT(sp, Fwconsent(EphOther), Time(TT))

deals the consent for sharing ephIDother with phone.
4. RECEIVEAT(sp, Sconsent(EphOwn), Time(TT)) deals

with the consent for storing ephIDown on phone.
5. RECEIVEAT(sp, Sconsent(EphOther), Time(TT)) cap-

tures the consent for storing ephIDother on phone.
6. RECEIVEAT(sp, Sconsent(ExpoStorage), Time(TT))

deals with the storage consent of the exposure level.
7. RECEIVEAT(sp, Fwconsent(EphOwnSp), Time(TT))

deals with the consent of sharing ephIDown with backend.
8. RECEIVEAT(sp, Sconsent(EphOwnSp), Time(TT))

deals with the storage consent for ephIDown at backend.

Similarly, for PAPEP−IMP , we define the actions:

1. RECEIVEAT(sp, Uconsent(EphOwnSp), Time(TT)),
2. RECEIVEAT(sp, Uconsent(EphOtherSp), Time(TT)),
3. RECEIVEAT(sp, Uconsent(LongIDSp), Time(TT)),
4. RECEIVEAT(sp, Fwconsent(EphOther), Time(TT)),
5. RECEIVEAT(sp, Fwconsent(LongIDSp), Time(TT)),
6. RECEIVEAT(sp, Sconsent(EphOwn), Time(TT)),
7. RECEIVEAT(sp, Sconsent(EphOther), Time(TT)),
8. RECEIVEAT(sp, Sconsent(EphOwnSp), Time(TT)),
9. RECEIVEAT(sp, Sconsent(ExpoStorage), Time(TT)).

B Cryptographic and Attacker
Models

In the following, we provide an abstract model
for homomorphic encryption. We define the function
HomEnc(Sum(Xnum1, Xnum2,. . . , Xnumn), Xkey),
where HomEnc denotes homomorphic encryption, and
Sum models summation, but other operation can also
be defined in place of it. We also define the action

CALCULATEFROMAT(E, Xθ1, Xθ2, Time(TT)),

which for brevity, we did not include in Fig. 2. This
specifies that E can calculate Xθ1 from Xθ2 at time TT .
Then, for HomEnc, we define n corresponding actions:
– CALCULATEFROMAT(E, Xθ, Xθ1,Time(TT1)),

. . . ,
– CALCULATEFROMAT(E,Xθ,Xθn ,Time(TTn))),

where Xθ = HomEnc(Sum(Xnum1, Xnum2,. . . ,
Xnumn), Xkey), and Xθ1 = Enc(Xnum1, Xkey),. . . ,
Xθn = Enc(Xnumn, Xkey).

The decryption for HomEnc is defined based on a de-
structor similar to the asymmetric decryption.

B.1 Our Attacker Model

We consider three types of attackers. First, the external
attackers can only eavesdrop on the communication if a
message can be received on public channels (modelled
by the RECEIVEAT action). Encryption can be used
if the designer wants to “hide" the content from the at-
tacker. Eavesdropping can be formalised/modelled with
the following inference rule:

HAS(att, θV) ` RECEIVEAT(EV, θV , Time(TV)), where att
denotes the attacker entity.

Specifically, if EV can receive θV at some non-
specific time TV via a public channel, then the attacker

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://github.com/Dataprove/Dataprovetool/
https://github.com/DP-3T/documents
https://github.com/DP-3T/documents
https://github.com/pepp-pt/pepp-pt-documentation
https://github.com/pepp-pt/pepp-pt-documentation

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 583

can have θV . The external attackers can decrypt, pos-
sess or link the received data if it can have the key, or
apply one the HAS or LINK inference rules on the data.

The insider attackers are compromised entities, and
therefore, they can only receive, possess or link the data
that the entity can. The case of collusion among insider
attackers is more interesting as the attackers can share
the data of the compromised entities with each other.
This can be formalised by specifying that the attacker
has access to the compromised entities (with the con-
struct HasAccessTo(att) = {E1,. . . , En}). Finally, the
hybrid case is the most powerful attacker model, as it as-
sumes the collusion (data shared) between external and
insider attackers. Its formalisation is the combination of
the formalisations of the previous two cases.

C Verification Goals Generation
We provide the other rules for the generation of verifi-
cation goals.

1. For πuse with cons ∈ {Y, N}, and the usage pur-
pose values {up1:θ′1,. . . , upn:θ′n}, the following verifica-
tion goals are generated:

Gθuse = Gθucons ∪ Gθupurp, where Gθucons = {UCONSENT-
COLLECTED(sp, θ)}, and

Gθupurp =
⋃n

j=1{UPURPOSE(θ′
j , upj)}.

2. For πstr with cons ∈ {Y, N}, and the storage
place values {E1,. . . , En}, the next verification goals
are generated:

Gθstr = Gθscons ∪ Gθplaces, where
Gθscons = {STRCONSENTCOLLECTED(sp, θ)},
Gθplaces =

⋃n

j=1{STORE(Ej , θ)} ∪
⋃n

j=1{STOREAT(Ej ,
θ, Time(TT))}.

Note that Ej/E denotes an entity value (e.g. E = phone).

3. If πdel = ({E1,. . . , En}, dd), where E1,. . . , En
are the values of the deletion places, and dd is the value
of the deletion delay, then:

Gθdel = Gθhasupto ∪ Gθwithin, where Gθhasupto =⋃n

j=1{HASUPTO(Ej , θ, Time(dd))},
Gθwithin =

⋃n

j=1{DELETEWITHIN(Ej , θ, Time(dd))}.

4. If πfw = (cons, {E1,. . . , En}, {fwp1:θ′1,. . . ,
fwpm:θ′m}), where E1,. . . , En are the entities who can
receive the transferred data, and fwp1,. . . , fwpm are the
transfer purpose values, then:

Gθfw = Gθfwcons ∪ Gθfwto ∪ Gθfwpurp, where
Gθfwto =

⋃n

j=1{RECEIVE(Ej , θ), RECEIVEAT(Ej , θ,
Time(TT))}

Gθfwcons =
⋃n

j=1{FWCONSENTCOLLECTED(sp, θ,
Ej)},

Gθfwpurp =
⋃m

j=1{FWPURPOSE(Ej , θ′
j , fwpj)}.

5. For πhas, if {E1,. . . , En} is a set of all defined
entities in an architecture, then:

Gθhas =
⋃n

j=1{HAS(Ej , θ)}.

6. For πlink, if {E1,. . . , En} is a set of all the defined
entities in an architecture, and {θ1,. . . , θm} is the set
of all defined data types (different from θ), then:

Gθlink =
⋃n,m

i=1,j=1{LINK(Ei, θ, θj)} ∪⋃n,m

i=1,j=1{LINKUNIQUE(Ei, θ, θj)}.

D Proofs

D.1 Proof of Property 1

Proof. ConformanceCheck(initgoal, Architecture,
Rulesets, N) == 1 means that a proof of initgoal can
be found with Architecture. Whenever initgoal can be
proved with a rule rule = H ` T1,. . . ,Tn (in Algo-
rithm 2), there is at least one fact in Architecture that
can be used to prove the sub-goals T1,. . . , Tn. Besides,
since Data includes the entity who is given consent for
carry out a given action, i.e. Data = (θV , EV consent),
we can avoid that in the rules for consent collections
(e.g. D1-D2), the consent contains a different data from
the one that can be received by EV consent.

Therefore, in case of points 1 and 3 (of Property 1),
the first two points of Definition 3 are satisfied, respec-
tively. In case of points 2 and 4, the two points of Defi-
nition 1 are unsatisfied, respectively. In case of point 5,
ConformanceCheck(initgoal, Architecture, Rulesets,
N) == 1 means that the first point of Definition 2 is
satisfied. We refer the readers to the tool’s GitHub page
for the rest points of Definition 3.

D.2 Proof of Property 2

Proof. We will show that the number of resolution steps
is always finite in the proof of initgoal. As a result of a
resolution goal ◦(goal, head of rule) rule, where rule ∈
{P8, P9}, we get the two new (sub-)goals in the tails
of the rules (e.g. goal ◦ P8 = HAS(EV, Senc(θV ,K))σ,
HAS(EV, K)σ). Since Algorithm 2 does not prove any
goal with more than N layers of cryptographic func-
tions (e.g. HAS(sp,Senc(Senc,. . . (Mac(name, key))),
. . . ,key),key), there are maximum N recursive calls of

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 584

the resolution step goal ◦(goal, head of rule) rule, where
rule ∈ {P8, P9}. Each recursive call produces two sub-
goals, hence, N recursive calls result in at most 2N sub-
goals to be proved. In the worst case, this would mean
2N*|Ruleset| resolution steps (between each goal and
rule, where |Ruleset| is the number of rules in Ruleset).

In case rule is one of P3 -P7, a step goal
◦(goal, head of rule) rule would generate a single goal
(e.g. goal ◦(goal, head of P4) P4 = RECEIVEAT(EV,
θV , Time(TT))σ). Then, the resulted (sub-)goals will
be checked against the facts in Architecture, which yields
|Architecture| + 1 resolution steps for each rule (where
|Architecture| is the number of facts in Architecture).

In case rule is one of D1 -D5 or P1, 2*|Architecture|
+ 1 resolution steps are carried out. For P2, a step
goal ◦(goal, head of P2) P2 generates a single (sub-
)goal. The (sub-)goals are then be checked against the
rule set (Ruleset), including rules P3 -P7, which yields
2*|Architecture| + 1 resolution steps in each case. In ad-
dition, when these (sub-)goals are checked against P8 -
P10, it yields 2N*|Ruleset| resolution steps in each case.
By invoking P2, we cannot have an infinite number of
recursive resolution steps between these rules and the
resulted sub-goals, because ds cannot be unified with
P(ds), and θV cannot be unified with either ds or P(ds),
as being of different types.

In case rule is a LINK or LINKUNIQUE rule (Fig-
ure 5), a resolution step goal ◦(goal, head of rule) rule
generates two (sub-)goals. Each (sub-)goal will be ex-
amined against every rule (in Ruleset), but a resolution
step can only be successful in case of P3 -P9. The reso-
lution with each of these rules results in a finite number
of further resolution steps (as we argued above).

D.3 Proof of Property 3

In order to prove Property 3, we need to show that
whenever ConformanceCheck(. . .) == 0:
1. Algorithm 1-2 checked all the possible proof

branches (if we imagine the proof process as a tree
like in Figure 1).

2. The inference rules can capture all possible data
types (including the compound data types that con-
tain other data types) can be defined by the user.

The first point is achieved by attempting to prove init-
goal with all the rules in the inference rule set. We
try to unify initgoal with the head of the first rule in
the rule set, then we attempt to prove the resulted
sub-goals with the rule set and architecture, recur-

sively. We also take into account the fact that there
can be several proof trees for initgoal, and we explore
all the possible proof trees. For the second point, we
define the inference rules that the Algorithms 1-2 use
besides the basic rules in Section 6.1 for the com-
pleteness property. Rule D6 is similar to D1, but in-
clude the data type Anytypeinccrypto[θV] to deal with
complex data that contains other data inside it. E.g.
Anytypeinccrypto[θV] can be Sicknessrec(θV ,. . .); Sick-
nessrec(Anytypeinccrypto1[θV],. . .); Senc(θV , K); or
Senc(Anytypeinccrypto1[θV], K).

D6. FWCONSENTCOLLECTED(EV, θV , EV to) `
RECEIVEAT(EV, Fwconsent(θV , EV to),Time(TV)),
RECEIVEAT(EV to, Anytypeinccrypto[θV], Time(TV)).

L0/b. LINK(EV, θV1, θV2) `
HAS(EV, Anytype1(θV1, θV , Meta(θV3))),
HAS(EV, Anytype2([θV2], θV ′, Meta([θV3])))

L1/c. LINK(EV, θV1, θV2) `
HAS(EV, Anytype1([θV1], θV , [θV3])),
HAS(EV, Anytype2(θV2, θV ′, θV3))

U1/b. LINKUNIQUE(EV, θV1, θV2) `
HAS(EV, Anytype1([θV1], θV , [θV3])),
HAS(EV, Anytype2(θV2, θV ′, θV3)), UNIQUE(θV3)

P1/b. HASUPTO(EV, θV , Time(DD)) `
STOREAT(EV, [θV], Time(TV)),
DELETEWITHIN(EV, [θV], Time(DD)).

P3/b. HAS(EV, θV) ` OWN(EV, [θV]).

P8/b. HAS(EV, θV) ` HAS(EV, Senc([θV], K)),
HAS(EV, K).

Fig. 9. The generic version of the basic rules in Section 6.1,
which include [θV] instead of θV . [θV] can be either a data type
that contains θV inside it, or θV itself.

E Proof Examples (Alg.1-2.)
Example 1. Let Architecture = {RECEIVEAT(sp,
name, Time(TT))} and initgoal = HAS(sp, name),
namely, we want to prove that sp can have name. This
can be proven with rule P4 in Section 6.1 and a resolu-
tion step in Definition 6.
– Step 1: initgoal ◦(initgoal, HAS(EV,θV)) P4 = RE-

CEIVEAT(sp, name, Time(TT))), as initgoal can
be unified with HAS(EV, θV), the head of rule

DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures 585

RECEIVEAT(sp,name,client,TIME(TT))

HAS(sp, name) !"#$
%

Resolution between

HAS(sp, name) and rule P4

RECEIVEAT(sp,Senc(name,key),

client,TIME(TT))

OWN(sp, key)

HAS(sp, K)HAS(sp, Senc(name, K))

example1 example2

P3P4

P8

Architecture

initgoal generated by the HAS sub-policy

HAS(sp, name) !"#$
%

Fig. 10. Two example proofs (without and with encryption).

P4, with the unifier σ = {sp 7→ EV, name 7→
θV , TT 7→ TV}. We have RECEIVEAT(EV, θV ,
Time(TV))σ as a result, which is equal to RE-
CEIVEAT(sp, name, Time(TT))).

– Step 2: As RECEIVEAT(sp, name, Time(TT)))
∈ Architecture, therefore, we get Confor-
manceCheck(initgoal, Architecture, Rulesets, N)
== 1, for any natural N .

Example 2. Let Architecture = {RECEIVEAT(sp,
Senc(name,key), Time(TT)), OWN(sp, key)} and
initgoal = HAS(sp, name). This can be proven with
rules P8, then P3, P4 as shown in Figure 10.

F Proposed Policy Semantics
The semantics of the policy syntax is based on the events
that capture the actions performed by entities during
an instance of a system run. An event is defined by
a tuple starting with an event name that denotes an
action carried out by an entity, followed by the time of
the event, and some further action-specific parameters.

Our language supports the events cconsentat, col-
lectat, uconsentat, sconsentat, service_spec_use_event,
storeat, deleteat, fwconsentat, forwardat.

To verify the compliance with a policy, we define
event trace (τ) that captures a sequence of events hap-
pening during a system run. Therefore, the semantics of
the policy is defined based on a set of compliant event
traces. A compliant event trace contains a sequence of
events that complies with the defined sub-policies. For
example, if consent is set to “required" in πcol (πcol.cons
= Y), then an event trace, in which the event collectat
is preceded by a corresponding event cconsentat, can
be seen as compliant. Events can have parameters, for
example, as follows:

Ev1 : (cconsentat, t, Econsent, θ). This event specifies that
a data collection consent is being collected at time t by the
service provider (sp), in which Econsent is given consent to
do some actions (e.g. receive, calculate, create) on θ.

Ev2 : (collectat, t, θ, v) specifies when a piece of data of
type θ and value v is collected by sp at time t.

Ev3 : (uconsentat, t, Econsent, θ) specifies that a data us-
age consent is collected by sp at time t on Econsent and θ.
E.g. (uconsentat, 2020.01.21.11:18, server, gas).

Ev4 : (storeat, t, θ, v, place) specifies that a piece of data
of type θ and value v is stored at a place place at time t.

Ev5 : (deleteat, t, θ, v, place) specifies that at some time t,
sp deletes a piece of data of type θ and value v from place.

Ev6 : (fwconsentat, t, Eto, θ) specifies that sp is collecting
a data transfer consent on a piece of data of type θ.

G Architecture Semantics
Similar to the policies, the semantics of an architecture
is based on events and system run traces. A trace Γ is
a sequence of high-level events Seq(ε) taking place in
during a service, as presented in Figure 11.

Γ ::= Seq(ε)
ε ::= own(E, Xθ:Vθ, ∀t), for all t in any traces of a service

| calculateat(E, Xθ:T , t)
| createat(E, Xθ:T , t)
| receiveat(E, Xθ:Vθ, t)
| receiveat(E, Cconsent(Data):Vcconsent, t)
| receiveat(E, Uconsent(Data):Vuconsent, t)
| receiveat(E, Sconsent(Data):Vsconsent, t)
| receiveat(E, Fwconsent(Data):Vfwconsent, t)
| storeat(E, Xθ:Vθ, t)
| deletewithin(E, Xθ:Vθ, dd, t).

Where Data = (Xθ, Econsent).

Fig. 11. Events defined for architectures.

An event can be seen as an instance of an action
defined in Figure 2 that happens at some specific time
t (e.g. 2020.01.30.15:45) during a system run trace.
Events are given the same names as the correspond-
ing actions, but in lower-case to avoid confusion. An
event specifies that during a system run, at some time
t, a piece of data Xθ in an action takes a value V . For
example, event calculateat(E, Xθ:T , t) captures that at
some time t, E calculates a piece of data of type θ that
is equal to a term T (based on the equation Xθ=T , e.g.
Xhash = Hash(Xpassword)). Event receiveat(E, Xθ:Vθ,
t) says that E receives data Xθ of value Vθ at time t.

	DataProVe: Fully Automated Conformance Verification Between Data Protection Policies and System Architectures
	1 Introduction
	2 Related Works
	2.1 Comparison With Our Work

	3 The Privacy Policy Level
	3.1 Scope and Limitations
	3.2 The Policy Language

	4 The Architecture Level
	4.1 ADL Variant: The Proposed Syntax
	4.2 The Definition of an Architecture

	5 The Conformance Between Policies and Architectures
	6 The Automated Conformance Verification Procedure
	6.1 The Inference Rules Used in the Proof
	6.2 Proposed Conformance Check Algorithm

	7 Implementation and Usage
	7.1 Decentralised Architecture (DP3T)
	7.2 Centralised Architecture (PEPP-PT)
	7.3 Verification Results

	8 Performance
	9 Future Directions
	10 Conclusion
	11 Acknowledgement
	A Actions for Consent
	B Cryptographic and Attacker Models
	B.1 Our Attacker Model

	C Verification Goals Generation
	D Proofs
	D.1 Proof of Property 1
	D.2 Proof of Property 2
	D.3 Proof of Property 3

	E Proof Examples (Alg.1-2.)
	F Proposed Policy Semantics
	G Architecture Semantics

