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Abstract: Federated learning enables multiple users to
build a joint model by sharing their model updates (gra-
dients), while their raw data remains local on their de-
vices. In contrast to the common belief that this pro-
vides privacy benefits, we here add to the very re-
cent results on privacy risks when sharing gradients.
Specifically, we investigate Label Leakage from Gradi-
ents (LLG), a novel attack to extract the labels of the
users’ training data from their shared gradients. The at-
tack exploits the direction and magnitude of gradients
to determine the presence or absence of any label. LLG
is simple yet effective, capable of leaking potential sen-
sitive information represented by labels, and scales well
to arbitrary batch sizes and multiple classes. We math-
ematically and empirically demonstrate the validity of
the attack under different settings. Moreover, empirical
results show that LLG successfully extracts labels with
high accuracy at the early stages of model training. We
also discuss different defense mechanisms against such
leakage. Our findings suggest that gradient compression
is a practical technique to mitigate the attack.
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1 Introduction
In an increasingly interconnected world, the abundance
of data and user information has brought Machine
Learning (ML) techniques into daily life and many
services. Arguably, the most common ML approaches
work in a centralized fashion, typically requiring large
amounts of user data to be collected and processed by
central service providers. This data can be of sensitive
nature, raising concerns about the handling of data in
accordance with user expectations and privacy regula-
tions (e.g., the European General Data Protection Reg-
ulation, GDPR).

Federated Learning (FL) is an emerging ML setting
that allegedly enables service providers and users to uti-
lize the power of ML without exposing the user’s per-
sonal information. The general principle of FL consists
of cooperating to train an ML model in a distributed
way. Users are given a model, which they can locally
train with their sensitive data. Afterwards, users only
share the model gradients of their training endeavors
with a central server. The users’ gradients are aggre-
gated to establish the joint model [27]. This general
principle is currently believed to reduce the impact on
users’ privacy compared to the classical centralized ML
setting, since personal information does not leave the
user, and sharing learning gradients does not suppos-
edly reveal information about the user [41].

However, a considerable number of recent works
have shown that gradients can be exploited to recon-
struct the users’ training data in FL [3, 12, 35, 40]; while
protecting the users’ ground-truth labels from possible
leakage has received only limited attention [21, 38, 41],
mainly focusing on gradients generated from a small
number of data samples (small batches) or binary classi-
fication tasks. Label leakage, however, is a considerable
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risk for FL. Both, FL as well as the more superordinate
setting of distributed ML are used in many applications
where labels can contain highly sensitive information.
For example, in the medical sector, hospitals employ
distributed learning to collaboratively build ML mod-
els for disease diagnosis and prediction [11, 17]. In some
cases, the medical data is collected directly from the
patients’ personal devices [8], e.g., mobile phones [9],
where an application of FL could introduce many po-
tential benefits. Building models in this and many other
settings, while maintaining the users’ privacy, would be
crucial. Leaking the labels of the users’ data might dis-
close their diseases, which is a severe violation of pri-
vacy. It is essential to highlight this issue and explore
to what extent gradients can leak information about la-
bels. For this purpose, developing privacy attacks that
exploit gradients is of high importance in order to foster
research and development on the mitigation of respec-
tive privacy risks.

Triggered by this, we investigate Label Leakage
from Gradients (LLG), a novel attack to extract ground-
truth labels from shared gradients trained with mini-
batch stochastic gradient descent (SGD) for multi-class
classification. LLG is based on a combination of math-
ematical proofs and heuristics derived empirically. The
attack exploits two properties that the gradients of the
last layer of a neural network have: (P1) The direction
of these gradients indicates whether a label is part of
the training batch. (P2) The gradient magnitude can
hint towards the number of occurrences of a label in the
batch. Here, we formalize these properties, provide their
mathematical proofs, study an extended threat model,
and conduct an extensive evaluation, as follows.

– We consider four benchmark datasets, namely,
MNIST, SVHN, CIFAR-100, and CelebA . Results
show that LLG achieves high success rate despite
the datasets having different classification targets
and complexity levels.

– We consider two FL algorithms, namely, FedSGD
and FedAvg [27]. Results show that for untrained
models LLG is more effective under FedSGD, yet
poses a serious threat to expose labels under FedAvg
as well.

– We study LLG considering different capabilities of
the adversary. Experiments demonstrate that an ad-
versary with an auxiliary dataset, which is similar
to the training dataset, can adequately extract la-
bels with an accuracy of > 98% at the early stage
of the model training under the FedSGD algorithm
.

– We show that the simple LLG attack can outper-
form one of the state-of-the-art optimization-based
attacks, Deep Leakage from Gradients (DLG) [41],
under several settings. Furthermore, LLG is orders
of magnitude faster than DLG.

– We also investigate the effectiveness of the attack on
various model architectures including simple Con-
volutional Neural Network (CNN), LeNet [20], and
ResNet20 [16]. Results suggest that LLG is not
highly sensitive to the complexity of the model ar-
chitecture.

– We illustrate the influence of the model convergence
status on LLG. Findings reveal that LLG can per-
form best at the early stages of training and still
demonstrates information leakage in well-trained
models.

– Finally, we test LLG against two defense mech-
anisms: noisy gradients and gradient compression
(pruning). Results show that gradient compression
with ≥ 80% compression ratio can render the attack
ineffective.

In this work, we focus on the FL and distributed ML
settings because the surface of the attacks against gradi-
ents is much wider compared with the centralized train-
ing approach. However, LLG can be applied in other
scenarios where the gradients of a target user are ac-
cessible by an adversary.

We proceed as follows. We start off by reviewing the
background and our problem setting in Section 2. Next,
in Section 3, we present related work on information
leakage from gradients. We elaborate on our findings
regarding gradients properties in Section 4. The attack
is then explained in Section 5. Before concluding, we
present the results of our evaluation in Section 6.

2 Background
In this section, we present the fundamentals of neural
networks and FL. Then, we describe our problem setting
and the threat model.

2.1 Neural networks

Neural Networks (NNs) are a subset of ML algorithms;
an NN is comprised of layers of nodes (neurons) includ-
ing an input layer, one or more hidden layers, and an
output layer. The neurons are connected by links associ-
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Fig. 1. Federated learning overview with three potential adversary
access points (in red). Gradients are generated by individual users
and shared with a central server. An adversary with access to these
gradients can exploit them to estimate the presence and frequency
of labels, which can be, e.g., a result of a medical imaging technique
for disease prediction.

ated with weights W . The NN model can be used for a
variety of tasks, e.g., regression analysis, classification,
and clustering. In the case of classification, for example,
the task of the model f̂ is to approximate the function
f(x) = y where y is the class label of a multidimen-
sional data sample x, e.g., an image—matrix of pixels.
To fulfill this task, the model is trained by optimizing
the weights W using a loss function l and training data
consisting of input data xi : i ∈ [1, N ] and correspond-
ing labels yi in order to solve [12]

min
W

N∑
i=1

lW (xi, yi). (1)

Minimizing the loss function can be achieved by ap-
plying one of the optimization algorithms. Gradient de-
scent is one of the basic optimization algorithms for
finding a local minimum of a differentiable function.
This algorithm is based on gradients ∇W , which are the
derivative of the loss function w.r.t. the model weights
W . The core idea is to update the weights through re-
peated steps t in the opposite direction of the gradient
because this is the direction of steepest descent.

W (t+ 1) = W (t)− η∇W , (2)

where η is the learning rate, which defines the step size
for the model updates in the parameter space. An ex-
tension of gradient descent, called Minibatch Stochas-
tic Gradient Descent is widely used for training NNs.
This algorithm takes a batch of data samples from the
training dataset to compute gradients ∇W and, subse-
quently, updates the weights. The batch size B is the
number of data samples given to the network for each
weight update.

2.2 Federated learning

Federated Learning (FL) is a machine learning set-
ting that enables a set of U users to collaboratively
train a joint model under the coordination of a central
server [18]. For each round t of the global training pro-
cess, a subset of users Kt � U is selected to train the
model locally on their data. In particular, they optimize
the model weights W based on the gradients∇W . Users
can take one step of gradient descent (FedSGD [27])
or multiple steps (FedAvg [27]) before sharing the gra-
dients ∇W with the server. The server calculates a
weighted average to aggregate the gradients from the
Kt users, and updates the global model

W (t+ 1) = W (t)− η
Kt∑
k=1

vk
v
∇W k, (3)

where vk is the number of data samples of user k, and
v is total number of data samples. This process is re-
peated until the model potentially converges [27]. This
setting mitigates a number of privacy risks that are typ-
ically associated with conventional machine learning,
where all training data should be collected, then used
to train a model [18].

2.3 Problem setting

We consider a federated setting where U users jointly
train an NN model for a supervised task using either
the FedSGD or FedAvg algorithm [27]. For FedSGD,
the users train the model locally for one iteration on
a batch of their data samples and labels. In FedAvg,
each user trains the model for several iterations (mul-
tiple batches). We assume the users to be honest, i.e.,
they train the model with real data and correct labels.
Then, the users share the gradients resulted from the lo-
cal training with the server. We assume that the model
consists of L layers and is trained with cross-entropy
loss [14] over one-hot labels for a multi-class classifica-
tion task. For the studied attack, we focus on the gradi-
ents∇WL w.r.t. the last-layer weights WL (between the
output layer and the layer before), where WL ∈ Rn×h:
n is the total number of classes and h is the number
of neurons in layer L − 1. The gradient vector ∇W i

L

represents gradients connected to label i on the output
layer. We note gi to refer to the sum of ∇W i

L elements:
gi = 1T · ∇W i

L .
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2.4 Threat model

We assume that an adversary applies the attack against
the shared gradients of one target user. The adversary
analyzes the gradients to infer the number of label oc-
currences in the user’s input data. In FedSGD, this con-
cerns one batch, while in FedAvg, the data consists of
multiple batches. Thus, the more information is carried
by the gradients on the labels, the higher is the privacy
risk. At the same time, the shared gradients need to re-
flect the training data of the users to optimize the joint
model, i.e., to achieve the learning objective. As a re-
sult, the learning objective and the depicted privacy risk
are mutually related to the information carried by the
gradients. Even though it might seem as a paradox, our
work is an attempt to focus on and mitigate the privacy
risk imposed by gradient sharing without jeopardizing
the learning objective of FL and the model accuracy.
Next, we define our threat model w.r.t. three aspects:
adversary access point, mode, and observation.

Access point. The distributed nature of FL increases
the attack surface as shown in Figure 1. An adversary
might be able to access the gradients by compromising
the user’s device as the gradients are calculated on the
user side before sharing with the server. We assume that
the user’s device can be compromised partially, such
that the adversary has no access to the training data
or labels [36]. Such scenario can apply, for example,
to several online ML applications, where the training
data is not stored but used for training on-the-fly. In
these cases, compromising a device during or after the
training phase would not grant the adversary full ac-
cess to the training data, while still providing access to
the model and possibly the gradients. Other scenarios
might exploit a vulnerability in the implementation of
the network protocols/interface, such that an adversary
accesses only the I/O data. The server also can access
the gradients of an individual user, in case no secure ag-
gregation [6] or other protection techniques are used. In
addition, if the connection between the server and the
users is not secure, the gradients might be intercepted
by an external eavesdropper.
Mode. We assume the adversary to act in a passive
mode. The adversary may analyze the gradients to in-
fer information about the users, but without hinder-
ing or deviating from the regular training protocol.
This adversary mode is widely common in privacy at-
tacks [26, 30, 37, 41], where the focus is on disclosing
information rather than disturbing the system.

Observation. The adversary might be capable to ob-
serve different amounts of information to launch their
attack. We consider three possibilities.
1. Shared gradients: the adversary has access only to

the shared gradients. This can apply for an external
eavesdropper or an adversary with limited access to
the user’s device.

2. White-box model: in addition to the gradients, the
adversary is aware of the model architecture and
parameters. In the case of a curious server or com-
promised user, the adversary might have this kind
of information.

3. Auxiliary knowledge: the adversary has access to
all the aforementioned information and additionally
to an auxiliary dataset. This dataset contains data
samples of the same classes as the original training
dataset. This is a common scenario in real-world
cases, given that NNs need a considerable amount
of labeled data for training to perform accurately.
Labeled data is usually expensive and a typical
adopted strategy is to train the model on the pub-
licly available datasets and, eventually, fine-tuning
the model on ad-hoc data. Therefore, it is often easy
to have access to a big part of the training data.

3 Related work
Although the training data is not disclosed to other par-
ties in FL, several works in the literature showed that
the data and ground-truth labels can be reconstructed
by exploiting the shared gradients. Next, we present ex-
isting (1) data reconstruction attacks and (2) label ex-
traction attacks.

3.1 Data reconstruction

Aono et al. [2, 3] are the first to discuss reconstruct-
ing data from gradients and illustrate its feasibility on
a simple NN with a training batch of one sample. The
authors closely examined the mathematical definition of
the gradients shared with the central server as proposed
in [32]. With the help of four examples, they showed
how the relationship between the input data, which is
unknown to the server, and the gradients can be ex-
ploited in order to leak at least some information about
the unknown input. Wang et al. [35] moved on to gener-
ative attacks, leveraging a Generative Adversarial Net-
work (GAN) to reconstruct the input data in a CNN.
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Instead of training the discriminator of the GAN on the
server side with real user data, the authors observed,
that locally training a shared model on each user like in
the FL setting is equivalent. Thus, obtaining the user
updates effectively yields updates to the discriminator
for each user. The generator of the GAN then is trained
on the server side to generate samples indistinguishable
from real user samples, which approaches the private
training data.

In contrast, Zhu et al. [41] introduced an
optimization-based attack; the attacker generates
dummy input data and output labels, then optimizes
them using L-BFGS [24] to generate dummy gradients
that match the shared ones. By that, the dummy data
and labels converge to the real data and labels used
by the participants in the training process. Instead of
using the euclidean distance as a cost function and L-
BFGS, Geiping et al. [12] proposed using cosine similar-
ity and the Adam optimization algorithm. They demon-
strated that their attack is effective on trained and un-
trained models, also on deep networks and shallow ones.
Furthermore, they proved that the input to any fully-
connected layer can be reconstructed regardless of the
remaining network architecture. Wei et al. [36] provided
a framework for evaluating the reconstruction attacks
and discussed the impact of multiple factors (e.g., ac-
tivation and loss functions, optimizer, batch size) on
the cost and effectiveness of these attacks. Qian et
al. [31] theoretically analyzed the limits of [41] con-
sidering fully-connected NNs and vanilla CNNs. They
also proposed a new initialization mechanism to speed
up the attack convergence. Unlike previous approaches,
Enthoven et al. [10] introduced an analytical attack that
exploits fully-connected layers to reconstruct the input
data on the server side, and they extend this exploita-
tion to CNNs. Recently, Zhu et al. [40] proposed a re-
cursive closed-form attack. They demonstrated that one
can reconstruct data from gradients by recursively solv-
ing a sequence of systems of linear equations. Overall, all
the aforementioned attacks, except for [41], only focus
on reconstructing the input training data while over-
looking the leakage of data labels, which can be of high
sensitivity. In our research, inspired by the mathemati-
cal foundations used in these attacks, we shed more light
on the potential vulnerability of label leakage in FL and
distributed learning.

3.2 Label extraction

While the data reconstruction attacks attracted con-
siderable attention in the research community, a very
limited number of approaches were proposed to extract
the ground-truth labels from gradients.

In the work of Zhu et al. [41], the ground-truth
labels are extracted as part of their optimization ap-
proach. However, the approach requires a learning phase
where the model is sensitive to the weight initialization
and needs attentive hyperparamter selection. Yet, it can
be hard to converge in some cases. Moreover, it was
found to extract wrong labels frequently [38] and it is
effective only for gradients aggregated from a batch size
≤ 8 [28]. Actually, Zhao et al. [38] proposed a more re-
liable analytical approach to extract the ground-truth
labels by exploiting the direction of the gradients. The
authors demonstrated that the gradients of classification
(cross-entropy loss) w.r.t. the last layer weights have
negative values for the correct labels. Thus, detecting
the negative gradients is sufficient to extract correct la-
bels. However, their approach is limited to one-sample
batch, which is uncommon in real-world applications
of FL, where users typically have multiple data sam-
ples and train the model on these samples (a bunch
of them at least) before sharing the gradients with the
server. Wainakh et al. [34], in a short paper (4 pages),
introduced a basic idea to extend the attack of [38] for
bigger batches, however, their work lacks formalization
and thorough evaluation to substantially support the
validity of the approach. Li et al. [21] proposed also an
analytical approach based on the observation that the
gradient norms of a particular class are generally larger
than the others. However, their approach is tailored for
vertical split learning rather than FL, and it is valid
only for a binary classification task.

Overall, the existing approaches are not well gen-
eralized to arbitrary batch sizes nor number of classes.
Moreover, the influence of different model architectures
on these approaches is yet to be investigated. In our
work, we take into account these issues by evaluating
the LLG attack on a variety of batch sizes and datasets
with various numbers of classes, and we involve several
model architectures.

4 Gradient analysis
In gradient descent optimization, the values of the gra-
dient determine how the parameters of a model need to
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Fig. 2. Graphical representation of a basic NN model and the gra-
dients ∇W i

L of the last layer L. For simplicity, the input layer is
represented by a single neuron.

be adjusted to minimize the loss function. Through an
empirical analysis, we carefully derive two properties for
the sign and magnitude of the gradients that indicate
the ground-truth labels. In this section, we formalize
these properties, next, in Section 5, we use them as a
base to launch the attack.

Property 1. For label i and last layer L in an NN
model with a non-negative activation function, when
∇W i

L < 0, label i is present in the training batch on
which gradient descent was applied1.

Proof. We consider an NN model for a classification
task. The model is trained using the cross-entropy loss
over labels encoded with a one-hot encoding. This loss
function l is defined as

l(x, c) = − ln eyc∑
j e
yj
, (4)

where x is a multidimensional input instance and
c represents the ground-truth label of x. While,
y = [y1, y2, ..., yn] is the output vector of the model
where each yi ∈ y is the score predicted for the ith

class, yc is the score assigned to the ground-truth label,
and n is the total number of classes. A graphical repre-
sentation of a simple NN model and its gradients of the
last layer is depicted in Figure 2.

Given a batch size B, we have a set X of B sam-
ples and the set of their labels C. Thus, we can de-
fine a training batch as a set composed of the pairs
{(x1, c1), . . . , (xB , cB)}. Therefore, we can redefine the
loss function as the loss l(x, c) of Eq. (4) averaged over
a batch of B labeled samples

l(X, C) = − 1
B

B∑
k=1

ln eyc(k)∑
j e
yj(k)

, (5)

1 This property is a generalization of the main observation in
[38] to batches with arbitrary sizes.

where c(k) is the ground-truth label for the kth sample
in the batch, and yc(k) is the corresponding output score
when xk is given as input to the model. We note that
the gradient di of the loss w.r.t. an output yi is

di = ∂l(X, C)
∂yi

= − 1
B

B∑
k=1

(
∂ ln eyc(k)

∂yi
−
∂ ln

∑
j e
yj(k)

∂yi

)
(6)

= − 1
B

B∑
k=1

(
1(i = c(k))− eyi(k)∑

j e
yj(k)

)
, (7)

where 1(α = β) = 1 if α = β, 1(α = β) = 0 otherwise.

di = − 1
B

B∑
k=1

1(i = c(k)) + 1
B

B∑
k=1

eyi(k)∑
j e
yj(k)

(8)

= −λi
B

+ 1
B

B∑
k=1

eyi(k)∑
j e
yj(k)

, (9)

where λi is the number of occurrences (frequency) of
samples with label i in the training batch. When i /∈ C,
λi = 0, and eyi/

∑
j
eyj ∈ (0, 1), thus, di ∈ (0, 1). Instead,

when i ∈ C, we have −λi
B ≤ di ≤ 1− λi

B . Hence, if the
gradient di is negative, we can conclude that label i ∈ C.
Of course, the di value moves in this range accordingly
to the status of the network weights optimization, e.g.
if i ∈ C and the network performs poorly, then, di will
be closer to −λi

B . However, the gradients d w.r.t. the
outputs y are usually not calculated or shared in FL, but
only∇W , the gradients w.r.t. the model weights W . We
write the gradient vector ∇W i

L w.r.t. the weights W i
L

connected to the ith output representing the ith class
confidence in the output layer as follows

∇W i
L = ∂l(X, C)

∂W i
L

= ∂l(X, C)
∂yi

· ∂yi

∂W i
L

(10)

= di ·
∂(W i

L
T

aL−1 + biL)
∂W i

L

(11)

= di · aL−1 , (12)

where y = aL is the activation function of the out-
put layer, biL is the bias, and yi = W i

L
T

aL−1 + biL.
When non-negative activation functions (e.g. Sigmoid or
ReLU) are used, aL−1 is non-negative. Consequently,
∇W i

L and di have the same sign. Considering Eq. (9),
we conclude that negative ∇W i

L indicates that the la-
bel i is present in the ground-truth labels set C of the
training batch. However, a present label can have a pos-
itive gradient according to the value of di as discussed
earlier.



User-Level Label Leakage from Gradients in Federated Learning 233

Property 2. In untrained models, the magnitude of the
gradient gi = 1T · ∇W i

L is approximately proportional
to the number of occurrences λi of label i in the training
batch.

Proof. Based on Eq. (12), we have

gi = 1T · ∇W i
L = di

(
1T · aL−1

)
. (13)

We substitute di with its expression from Eq. (9) as
follows

gi =

(
−λi
B

+ 1
B

B∑
k=1

eyi(k)∑
j e
yj(k)

)(
1T · aL−1

)
. (14)

When
∑B
k=1

e
yi(k)∑
j
e

yj(k) is close to zero, we can write

gi ≈ −
λi
B

(
1T · aL−1

)
, (15)

thus, gi is proportional to λi. We denote m to be

m = −1
T · aL−1
B

, (16)

therefore, gi ≈ λim. We define the parameter impact m
as the change of the gradient value caused by a single
occurrence of a label in the training batch. This value is
negative and constant across labels, thus, label-agnostic.

However, for an untrained model, the value of∑B
k=1

e
yi(k)∑
j
e

yj(k) strongly depends on the model weight

initialization. The prediction score yi can be randomly
distributed around an uniform random guess P = 1/n,
which the more classes exist in the dataset, the lower
is its value, thus, the aforementioned summation goes
closer to zero. In some cases, yi might be notably high,
although the label i is not present in the training batch.
This comes as a result of misclassification and leads to
a positive shift in the gradient values. We call this shift
offset s, and based on Eq. (14), we can write

si =

(
1
B

B∑
k=1

eyi(k)∑
j e
yj(k)

)(
1T · aL−1

)
. (17)

This offset value varies from a label to another, so it
is a label-specific value. Using our defined parameters
impact m and offset si, we can reformulate Eq. (14) as
follows gi = λim + si. From this equation, it follows
easily that the number of occurrences λi of label i can
be derived from the parameters m, si, and gi.

To demonstrate the two gradient properties, we ran-
domly initialize the weights of a CNN composed by

three convolutional layers. Then, we check the gradi-
ents gi by evaluating the network on a batch of samples
taken from the MNIST dataset [20], which contains 10
classes. We repeat the experiment 1, 000 times with dif-
ferent batch sizes B ∈ {2, 8, 32, 128}. Figure 3 (a) depicts
the distribution of the resulting gradients, where each
data point represents the gradient value of one label in
one experiment. The y-axis shows the gradient values
and the x-axis represents the number of occurrences for
the corresponding label i : ∀i ∈ [1, n].

We can see that there are no negative gradients at
λi = 0 (framed in red), i.e., the negative gradients al-
ways correspond to an existing label in the batch λi > 0,
which confirms Property 1. For all the batch sizes, we
notice that the values of the gradients decrease con-
sistently with the increase of the occurrences. This, in
turn, confirms Property 2 and our definition of the im-
pact parameter. We also observe that the decrease of
gradient values is roughly constant regardless of the la-
bel. This confirms the impact being label-agnostic, as
we described earlier. Furthermore, we notice that the
magnitude of the impact is negatively correlated with
the batch size. Meaning, the more samples are present
in a batch, the smaller are the changes of the gradients
for a different number of occurrences. This is also clear
from the definition of impact in Eq. (16). We also can
see that there are positive gradients that correspond to
λi > 0. The positive value of these gradients is mainly
caused by the offset si defined in Eq. (17). To illustrate
their ratio, we depict a heatmap in Figure 3 (b). We
observe that only part of the gradients (18%) are posi-
tive, i.e., shifted by the offset, while the majority of the
gradients have negative values when the corresponding
labels are present in the batch. In Section 5.1, we de-
scribe our methods to estimate the offset and elaborate
on Figure 3 (c).

5 Label extraction
In this section, we present Label Leakage from Gra-
dients (LLG), to extract the ground-truth labels from
shared gradients. We first introduce different methods
to estimate the attack parameters, impact and offset.
Then, we explain the attack.
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Fig. 3. Distribution of gradients obtained from a randomly initialized CNN on a batch of samples of MNIST varying the batch size
in {2, 8, 32, 128}: (a) the distribution shows the correlation between the gradients and the label occurrences, (b) heatmap shows that
the majority of the gradients have negative values when the corresponding label is present in the batch, (c) gradients after calibration
exhibit a more prominent correlation with label occurrences. Given this strong correlation, it is possible to accurately estimate the label
occurrences in the training batch basing on the gradient values.

5.1 Attack parameters estimation

In the light of different threat models, we empirically
developed several heuristic methods to estimate the
impact and offset.

Shared gradients. In this scenario, the adversary has
access only to the shared gradients. As mentioned ear-
lier, the impact refers to the change in the value of the
gradients corresponding to one occurrence of a label.
Our intuition is that a good estimation for the impact
is obtained by averaging the gradients over the number
of data samples |D| used by a user in a training round.
For FedSGD, |D| = B the batch size, while for FedAvg,
|D| = γ.B, where γ is the number of local iterations
(batches). Based on Property 1, we know that all neg-
ative gradients are indeed indicating existing labels in
the training samples. Therefore, we average only the
gradients with negative values. Consequently, this av-
erage is an underestimation since some gradients may
be positive because they are shifted with an offset. We
empirically observed that multiplying by a factor that
depends on the total number of classes n is a good ad-
ditive correction, precisely, we multiply by (1 + 1/n).
Thus, we estimate the impact m as follows

m = 1
|D|

n∑
i:gi<0

(gi)
(

1 + 1
n

)
. (18)

For this threat model, the offset si cannot be estimated,
thus, considered to be zero in the attack.
White-box model. When the adversary additionally
has access to the model architecture and parameters,
they can use it to generate more gradients and gain

more insights about the behavior of the gradients in
this model. Consequently, better estimations for the im-
pact and offset can be achieved. The approximation in
Eq. (15) indicates that the impact m can be estimated if
the gradient gi and number of occurrences λi are known,
regardless the quality of the input data. Thus, dummy
data samples, e.g., dummy images of zeros (black), ones
(white), or random pixels, can be used to generate gi
under known λi. More precisely, we form a collection
of dummy batches, each batch contains data samples
assigned to one label i. For impact estimation, we pass
these batches to a shadow model (a copy of the original
model), one at a time, and calculate the average ḡi for
all the batches corresponding to each label i ∈ [1, n].
Then, we average over all classes n and the batch size
B as follows

m = 1
nB

n∑
i=1

(ḡi)
(

1 + 1
n

)
. (19)

As mentioned earlier, we assume the offset si to be an
approximation of misclassification penalties, when the
model mistakenly predicts i to be ground-truth. These
penalties are mainly related to the status of the model
weights, which can be biased to specific classes. Based
on this intuition, we estimate the offset si by passing
batches full of other labels ∀j ∈ [1, n] : j 6= i, each batch
full of one label, one batch per run. We repeat this for
various batch sizes, in total of z runs. In these runs, the
gradients of label i reflect to some extent the misclassi-
fication penalties. Therefore, we calculate the mean of
these gradients to be our estimated offset, thus, we have
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si = 1
z

z∑
k=1

(gik ) . (20)

Auxiliary knowledge. In this scenario, the adversary
has access to the shared gradients, model, and auxil-
iary data that contains the same classes as the training
dataset. Here, the adversary can follow the same meth-
ods of the white-box scenario, however, using real input
data instead of dummy data. This in turn is expected to
yield better estimations for the impact and offset. The
goodness of the auxiliary data, i.e., the similarity of the
content and class distribution to the original dataset,
might play a role in the quality of the estimations. This
aspect can be investigated in further research.
To demonstrate the quality of our offset estimation,

we calibrate the gradients of Figure 3 (a) by subtracting
the estimated offset and plot the results in Figure 3 (c).
We can see how the gradients become mainly negative
and strongly correlated with the label occurrences. To
measure the correlation, we use the Pearson correlation
coefficient −1 ≤ ρ ≤ 1 [4], which yields, for all the stud-
ied batch sizes, values of |ρ| > 0.99 . The calibration
process mitigates the effect of the offset and makes the
gradient values more consistent, thus, easier to be used
for extracting the labels.

5.2 Label leakage from gradients attack

LLG extracts the ground-truth labels from gradients by
exploiting Property 1 and 2. The attack consists of three
main steps summarized in Algorithm 1.

1. We start with extracting the labels based on the
negative values of the gradients (Property 1). Thus,
the corresponding label of each negative gradient
is added to the list of the extracted labels E. As
Property 1 holds firm in our problem setting, we
can guarantee 100% correctness of the extracted la-
bels in this step. As preparation for the next step,
every time we add a label to E, we subtract the
impact from the corresponding gradient following
Property 2 (Lines 1-5).

2. We calibrate the gradients by subtracting the offset.
In case the offset is not estimated, it is considered to
be zero. This step increases the correlation between
the gradient values and label occurrences, which fa-
cilitates better label extraction based on these val-
ues (Line 7).

3. After calibration, the minimum gradient value (neg-
ative with maximum magnitude) is more likely cor-

Algorithm 1: Label Leakage from Gradients
Data: G = [g1, .., gn]: vector of gradients,

m: impact, S = [s1, .., sn]: vector of
offsets, D: data samples used to
generate G.

Result: E: list for extracted labels.
1 for gi ∈ G do
2 if gi < 0 then
3 append i to E;
4 gi ← gi −m;
5 end
6 end
7 G← G− S;
8 while |E| < |D| do
9 Select gi : gi = min(G);

10 append i to E;
11 gi ← gi −m;
12 end

responding to a label occurred in the batch (see Fig-
ure 3 (c)). Therefore, we select the minimum and
add the corresponding label to the extracted labels.
We repeat Step (3) until the size of the extracted
labels list E matches the number of data samples
D used to generate the gradients. Assuming that
|D| is known or can be guessed by the adversary
(Lines 8-11).

Finally, the output of the LLG attack is the list of ex-
tracted labels E, precisely, the labels existing in the
batch and how many times they occur.

6 Empirical evaluation
We evaluate the effectiveness of LLG with varying set-
tings including: different FL algorithms, threat models,
model architectures, and model convergence statuses.
We also test the robustness of LLG against two defense
mechanisms, namely, noisy and compressed gradients.
For the sake of simplicity, we refer to gi = 1T · ∇W i

L as
the gradient of label i in the rest of this section. Next,
we describe the experimental setting, then we discuss
our results. The source code of the experiments can be
found in https://github.com/tklab-tud/LLG.

https://github.com/tklab-tud/LLG
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6.1 Experimental setup

Default model. We use a CNN model with three con-
volutional layers (see Appendix, Table 2) as our default
model for a classification task. The activation function
is Sigmoid, and we use SGD as an optimizer with learn-
ing rate 0.1 and cross-entropy as loss function. We use
batches of varying sizes B = 2k : k ∈ [0, 7]. When apply-
ing the attack for FedSGD, we feed the model with one
batch, and we use γ = 10 batches for FedAvg. The label
distribution in a batch can be balanced or unbalanced.
For balanced data, the samples of the batch are selected
randomly from the dataset. For unbalanced data, we se-
lect 50% of the batch samples from one random label i
and 25% from another label j. The remaining 25% of the
batch is chosen randomly. We initialize the model with
random weights and repeat each experiment 100 times,
then report the mean values for analysis and discussion.
Datasets. We conduct our experiments on four widely
used benchmark datasets: MNIST [20] consists of 70,000
grey-scale images for handwritten digits, with 10 classes
in total. SVHN [29] has 99,289 color images of house
numbers with 10 classes. CIFAR-100 [19] contains
60,000 color images with 100 classes. And CelebA [25] is
a facial attributes dataset with 202,599 images. In our
experiments, we consider only the hair color attribute
with 5 classes.
Threat model. We assume the users to train the
model on real data and correct labels. The adversary
has access to the shared gradients of only one target
user. We consider three different scenarios for the ob-
servation capabilities of the adversary (see Section 2.3).
Based on these scenarios, the estimation of the impact
and offset parameters differs (see Section 5.1), while the
same attack applies for all. We refer to the application
of the attack under these different scenarios as follows:
1. LLG for accessing only the shared gradients sce-

nario.
2. LLG* for the white-box model, where we employ

various dummy images to estimate the impact and
offset. Empirically, we observed the dummy images
with which the attack achieves better performance
on each dataset. This resulted in using zeros (black)
images for MNIST, random pixels for SVHN, ones
(white) for CIFAR, and zeros (black) for CelebA.

3. LLG+ for auxiliary knowledge, where it is assumed
that the adversary has access to auxiliary data that
contains 10 batches of images from each class.

Metrics. To measure the attack effectiveness, we use
the attack success rate (ASR) metric [36], which is ex-
pressed as the ratio of the correctly extracted labels over

the total number of the extracted labels. We also em-
ployed the Hellinger distance [7] to measure the distance
between the distribution of the extracted labels and the
ground-truth. However, during our experiments, we ob-
served that both aforementioned metrics yielded very
similar measurements, therefore, we present our results
only with the ASR metric.
Baselines. We compare LLG with two baselines. First,
the DLG attack [41], which aims to reconstruct the
training data and labels using an optimization ap-
proach. For our experiments, we run DLG for 100 itera-
tions and focus only on the label reconstruction results.
We used the DLG implementation provided by Zhao
et al. [38]2. Second, we consider a uniform distribution-
based random guess as a baseline. An adversary without
any shared gradients might partially succeed in guessing
the existing labels frequency by assuming that the la-
bels distribute uniformly, especially in the case of large
balanced batches. The random guess serves as a risk
assessment curve. Having any attack performing better
than the random guess means that there is information
leakage.

6.2 Attack success rate

We run our experiments under two FL algorithms,
namely, FedSGD and FedAvg [27]. For FedSGD, we pass
one batch to the model and attack the generated gra-
dients. While for FedAvg, we feed the model with 10
batches and attack the aggregated gradients, i.e., the
sum of the gradients over 10 iterations. During our ex-
periments, we observed a very limited difference in the
ASR of the LLG attacks for balanced and unbalanced
batches. Therefore, and because the unbalanced data is
closer to real-world scenarios [27], we focus on present-
ing the results of the unbalanced data case, while pro-
viding a part of the balanced data results (for FedSGD)
in the Appendix, Figure 8.

FedSGD. Figures 4 (a-d) illustrate the ASR scores (y-
axis) with batches of different sizes (x-axis). We can see
that all LLG variants show some level of ASR degra-
dation when the batch size increases. However, it ap-
pears to be stabilized to some extent for bigger batches,
e.g., 64 and 128. This is due to the fact that the first
step of the algorithm (see Section 5.2) is based on Prop-

2 https://github.com/PatrickZH/Improved-Deep-Leakage-
from-Gradients
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(a) MNIST - FedSGD
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(b) SVHN - FedSGD
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(c) CIFAR-100 - FedSGD
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(d) CelebA - FedSGD
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(e) MNIST - FedAvg

1 2 4 8 16 32 64 128
Batch size (log2)

0

20

40

60

80

100

A
tt

a
ck

su
cc

e
ss

ra
te

(%
)

(f) SVHN - FedAvg
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(g) CIFAR-100 - FedAvg
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(h) CelebA - FedAvg

Fig. 4. Attack success rate of (1) LLG with shared gradients, (2) LLG* with white-box model, (3) LLG+ with auxiliary knowledge, (4)
DLG [41], and (5) random guess on MNIST, SVHN, CIFAR-100, and CelebA. Label extraction is based on gradients generated from
passing (1) one batch for FedSGD (first row), and (2) 10 batches for FedAvg (second row), to a randomly initialized CNN. DLG runs for
100 iterations. LLG methods outperform the baselines in most of the cases.

erty 1 and yields 100% correct labels. This step extracts
a maximum of n labels. Thus, its results are dominant
when B ≤ n. Where as if B > n, the second and third
steps, which are based on heuristic estimations, con-
tribute more to the final extracted labels. As a result,
we notice a degradation of the ASR. However, the dif-
ferent batch sizes do not seem to massively affect the
correctness of the results of these steps. This might be
explained by the fact that the batch size B is always
considered as a parameter in the heuristic estimations
of the impact and offset.
Overall, LLG+ outperforms all the other LLG vari-

ants and DLG. The LLG and LLG* scores range from
100% to a minimum of 77% across the different datasets.
Whereas LLG+ remarkably exhibits a high level of sta-
bility for various batch sizes and number of classes (in
datasets) with an ASR > 98%. This mainly reflects the
quality of our estimation methods for impact and offset.
In contrast, DLG achieves varying accuracy scores.

However, no clear behavior can be concluded w.r.t. the
changes in the batch sizes. This might be due to the
fact that DLG requires a training phase, which is highly

sensitive to model initialization, i.e., it might fail to con-
verge for some randomly initialized models or might
take different amounts of time for reaching a specific
accuracy, unlike LLG, which yields more deterministic
results, while at the same time being orders of mag-
nitude faster. For example, the execution time of those
experiments illustrated in Figure 4 (a) is as follows: LLG
54s, LLG* 32.2m, LLG+ 14.6m, DLG 17.4h, and Ran-
dom 50s, using a Tesla GPU V100-SXM3-32GB. It is
worth mentioning that LLG* requires more time than
LLG+ due to the dummy images generation.
The ASR of each LLG attack is similar to some ex-

tent on MNIST and SVHN respectively. This can be
explained by the fact that both datasets have the same
number of classes, i.e. 10. On CIFAR-100 (100 classes),
interestingly, we notice that LLG performs quite closely
to LLG+ (both have ASR > 96%), as shown in Fig-
ure 4 (c), while it drops to around 75% on CelebA (5
classes). This observation suggests that LLG performs
better for datasets with a bigger number of classes. This
can be explained by the fact that LLG solely depends
on the quality of the impact parameter, which is derived
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(a) FedSGD
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(b) FedAvg

Fig. 5. Attack success rate of LLG+ and DLG on unbalanced batches of different sizes from MNIST with different model architectures:
CNN, LeNet, ResNet20. For FedSGD, LLG+ achieves around 100% accuracy on CNN and LeNet while its accuracy slightly decreases
on ResNet20. DLG achieves > 80% for most batch sizes on CNN, while drops remarkably on more complex architectures i.e. LeNet and
ResNet20. For FedAvg, the ASR of LLG+ is slightly different form architecture to another, while DLG shows higher sensitivity to the
architectures.

from Eq. (15) under the assumption that the untrained
model performs poorly. This assumption is more valid
when the number of classes is bigger, as we explained
earlier in the proof of Property 2, Section 4. Therefore,
the estimation of the impact yields better results leading
to higher ASR.
LLG*, with its dummy data for the parameter estima-

tion, shows a notable drop on CIFAR-100. It is known
that the complexity of CIFAR-100 images is higher than
the one of MNIST and SVHN. Therefore, we can con-
clude that the complexity of the dataset might influence
LLG* in a negative way, while it has no observable effect
on LLG and LLG+. For DLG, we notice in Figure 4 (d)
a remarkable decrease in accuracy on CelebA. This can
be due to the fact that the images are of higher dimen-
sions (178 × 218), unlike the other datasets. Thus, the
convergence of the attack is much more difficult.
FedAvg. In Figures 4 (e-h), we can see that the ASRs
of all the LLG variants considerably decrease compar-
ing with FedSGD, ranging between 55% and 90%. This
is expected as the shared gradients are generated from
multiple iterations (10 batches). Thus, the correlation
between the gradient values and label occurrences is
less prominent. In other words, the gradients are ac-
cumulated several times over iterations, such that the
correlation (Property 1 and 2) become more difficult to
detect and exploit. However, the LLG attacks achieve
higher ASRs than the random guess on all the datasets,
thus, they are still posing a serious threat. The superior-
ity of LLG+ is maintained on CIFAR-100 and CelebA,
while in MNIST and SVHN, LLG* and DLG surpris-
ingly perform the best.

6.3 Model architecture

Here, we study the influence of the model architecture
on the studied attacks; for that, we consider two mod-
els besides our default CNN: (1) LeNet [20], a basic
CNN that contains 3 convolutional layers with 2 maxi-
mum pooling layers as shown in the Appendix, Table 3.
(2) ResNet20 [16], a successful residual architecture with
convolutions, which introduces the concept of “identity
shortcut connection” that skips one or more layers to
avoid the problem of vanishing gradients in deep neu-
ral architectures. ResNet20 contains 20 layers in total: 9
convolutional layers, 9 batch normalization, and 2 linear
layers.

Both aforementioned architectures, alongside their
principal components, namely, convolutions and resid-
ual blocks, have achieved and contributed to state-of-
the-art results on several classification tasks.

The two main conditions for Property 1 to hold
are: (1) using the cross-entropy loss and (2) having a
non-negative activation function in the last layer before
the output. Thus, we assume the labels extracted in the
first step of the attack (see Algorithm 1, Line 1-5) based
on this property to be correct regardless of the rest of
the model architecture. While the next steps of LLG
are based on the impact, offset, and their estimations,
which might be of different accuracy from one model
architecture to another. To run our analysis, we use
MNIST with varying batch sizes and measure the ASR
of LLG+ and DLG.

FedSGD. As we can see in Figure 5 (a), LLG+ per-
forms best on CNN and LeNet, achieving approximately
100% of success rate, while a degradation starts from
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(a) FedSGD
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(b) FedAvg

Fig. 6. Influence of model convergence status on ASR of LLG, LLG*, LLG+, DLG, and random guess for CNN with unbalanced batches
from MNIST dataset. On the left y-axis it is plotted the attack success rate, while on the right y-axis, it is plotted the model test
accuracy. The number of training iterations (×103) is on the x-axis. All different LLG methods achieve remarkable success rates even if
the models are well-trained and gradients become less informative.

batches with size > 2 for ResNet20. This is mainly due
to the residual blocks in the ResNet20 architecture that
prevents the vanishing gradients problem in deep neu-
ral networks. In other words, ResNet20 implicitly alters
and controls the range of the gradient values in order
to not let them vanish (gradients close to zero) or to ex-
plode (gradients go towards +∞) during training. This
manipulates our definitions of the impact and offset pa-
rameters in Eq. (16) and (17), thus, directly affecting
the attack performance.
On the other hand, DLG shows much higher sensi-

tivity towards the model architecture. As we can see
it achieves > 80% for most batch sizes on CNN, while
dropping remarkably on more complex models, LeNet
and ResNet20. Such a strong influence of the model
architecture on DLG is expected, as DLG includes an
optimization phase, where optimizing complex models
typically requires much more iterations.
FedAvg. In Figure 5 (b), we observe that under small
batch sizes B ≤ 16, the ASR of LLG+ is higher for
CNN. While for bigger batches, LLG+ only slightly dif-
fers from one model to another. This supports the find-
ing that the model architecture has limited effect on
LLG+. In contrast, DLG shows again higher sensitiv-
ity with bigger variance of the ASR over the different
architectures.

6.4 Model convergence status

The gradients guide the model towards a local mini-
mum of the loss function. As the model converges to
this minimum, the information included in the gradi-
ents becomes less prominent. Therefore, we expect the

convergence status of the model to have a strong influ-
ence on the attack effectiveness. All the previous exper-
iments are conducted in one communication round, i.e.,
the gradients are generated and shared with the server
only once. In this section, we go further with training
the model and observe the implications on the attack.

We train the model in a federated setting, where
the data of MNIST is distributed among 750 users, each
has 80 unbalanced data samples. The server selects ran-
domly 100 users for every communication round to train
the global model locally and share their gradients. The
CNN model is trained with batches of size 8 for 103 iter-
ations. We chose the batch size 8 to be able to apply the
DLG attack in its most effective setting B ≤ 8 [41]. In
every communication round, we attack the shared gra-
dients of one target user (victim) with DLG and LLG
variants, where the impact and offset are estimated dy-
namically. Figures 6 (a,b) depict the attacks ASR (on
the left y-axis) versus the model accuracy at testing
time (on the right y-axis), while the x-axis represents
the number of training iterations.

FedSGD. We can see in Figure 6 (a) that the growth of
the model accuracy incurs a notable decrease of the ASR
for all LLGs. However, although the model converges
close to 93% accuracy, LLG and LLG+ keep achiev-
ing ASR > 60%, considerably higher than the random
guess which is around 32%. Meaning, the attacks are
still able to take advantage of the reduced information
in gradients over the course of the whole training pro-
cess. Similarly, DLG shows degradation in accuracy, yet
it remains effective for well-trained models.
FedAvg. Figure 6 (b) shows more stability of ASR
over the training process, especially for LLG and DLG.
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(a) Pure noise - FedSGD
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(b) Differential privacy - FedSGD
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(c) Gradient compression - FedSGD
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(d) Pure noise - FedAvg
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(e) Differential privacy - FedAvg
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(f) Gradient compression - FedAvg

Fig. 7. Effectiveness of different defenses against LLG+ on an unbalanced batch from MNIST with a randomly initialized CNN: (a) defense
by adding Gaussian distributed noise to gradients with σ ∈ {0.01, 0.1, 1}, (b) defense by user-side differential privacy with σ = 0.1, and
clipping bound β ∈ {1, 5, 10}, (c) defense by pruning gradients with varying compression ratios θ ∈ {20%, 40%, 80%}. Pure noise is
not successful in eliminating the risk completely, since LLG+ maintains a higher ASR than the random guess. While, differential privacy
mitigates the attack with β = 1 for FedAvg, and for FedSGD when batch size B ≥ 16. Gradient compression is effective in FedSGD when
a high compression ratio (≥ 80%) is used with B ≥ 4. For FedAvg, even the compression ratio 40% with B ≥ 8 is an effective defense.

Even in the early stages of the training, the multiple
local iterations in FedAvg improve the model accuracy,
thus, make the accumulative gradients less informative.
Therefore, the attacks start with lower ASR compar-
ing with FedSGD. However, this leads also to mitigat-
ing the notable degradation of ASR observed in Fig-
ure 6 (a). LLG* and LLG+ exhibit volatile behavior
in the early iterations, where they have an increasing
success rate between iteration 100 and 300. Then, they
decrease again from 80% to close to 70% and 60%, re-
spectively. Interestingly, DLG maintains a high success
rate (around 80%) outperforming the LLG variants in
most parts of the training process. This shows that DLG
is less sensitive to convergence status under FedAvg and
thus can cope with the decreasing amount of informa-
tion in the gradients. Overall, all the attacks stay ef-
fective with ASR > 40%, which is the random guess
success rate.

6.5 Defense mechanisms

As LLG is mainly based on the gradients, thus, sensitive
to changes in their values, obfuscating them can be a di-
rect mitigation mechanism. In this section, we use two
obfuscation techniques: noisy gradients and gradients
compression. We apply these techniques on the user side
before sharing the gradients with the server and thus,
protecting against external eavesdroppers and curious
servers. Then, we attack the gradients of one target user
in one communication round for a randomly initialized
CNN model (untrained). In general, applying obfusca-
tion techniques incurs a loss in the model accuracy. To
cover this aspect, we train the model to convergence
under conditions similar to those in Section 6.4 while
applying the defenses, and report its accuracy.
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6.5.1 Noisy gradients

Many researchers consider adding noise to gradients as
the de facto standard for privacy-preserving ML [22].
In this experiment, we evaluate LLG+ against two
techniques of noise addition: (1) Pure noise: we add
noise on gradients before sharing, similar to [36, 41],
where no formal privacy properties are guaranteed, and
(2) differential privacy: following differentially private
FL [13], we clip the gradients to bound their sen-
sitivity, then, we add noise to them. The clipping is
defined as ∇W ← ∇W /max

(
1, ‖∇W ‖2

β

)
, where β is

the gradient norm bound. In both noise addition tech-
niques, we use the Gaussian noise distribution. For pure
noise, the standard deviation of the noise distribution is
σ ∈ {0.01, 0.1, 1} with central 0. For differential privacy,
we use σ = 0.1 and varying norm bound β ∈ {1, 5, 10}.
We track the privacy loss for the model trained with dif-
ferential privacy using the moments accountant [1]. For
100 communication rounds and δ = 10−5, the privacy
budget is estimated ε ≈ 11.5.

FedSGD. In Figure 7 (a), we can see that the higher
the magnitude of the noise the less accurate the attack.
This is expected as the attack partially uses the magni-
tude of the gradients to infer the labels following Prop-
erty 2. Interestingly, we observe that the noise has less
effect on the attack when the batch size is increasing. We
investigated this observation further by inspecting the
values of the gradients before and after noise addition.
Our empirical analysis showed earlier in Figure 3 (a,
b) that the majority of gradients gi have values close
to zero when they correspond to labels not present in
the batch. Adding noise to such small gradient values
might lead to flipping their sign, and consequently, dis-
rupting Property 1, which is one of the basis of the at-
tack. For batch sizes B < n with n as the number of
classes, not all the labels will be present in the batch, so
the flipping effect can be prominent on the attack suc-
cess rate. Whereas, in bigger batches, it is more likely
to have more differing labels, thus, their gradients val-
ues are not close to zero. As a result, adding a small
amount of noise does not lead to sign flipping. This also
explains the stability of ASR values when B ≥ n. Over-
all, adding noise does not eliminate the risk completely
while reducing the model accuracy (see Table 1). As we
can see, LLG+ maintains higher ASRs than the random
guess for all the test noise scales.
Figure 7 (b) shows that adding noise of σ = 0.1 with

clipping bound β = 1, is an effective defense against

LLG+ for batch sizes B > 16, where the ASR drops be-
yond the random guess. However, this leads to a signif-
icant drop in the model accuracy as shown in Table 1.
FedAvg. Unlike in FedSGD, the magnitude of the pure
noise does not have a clear effect on ASR for FedAvg as
shown in Figure 7 (d). That is due to the fact that the
shared gradients are generated from 10 batches. Thus,
the gradient values reflect 10×B labels, which is always
greater or equal n for MNIST, where n = 10. Therefore,
it is likely that most of the labels appear in one of the
batches at least, consequently, no gradient values will
be close to zero. As a result, the pure noise does not im-
pact ASR remarkably, and LLG+ remains effective. In
Figure 7 (e), we notice that noise σ = 0.1 with bound of
β = 1 is able to mitigate LLG+, reducing its success rate
close to 20% for bigger batch sizes. However, the model
accuracy degrades remarkably to 52.5%. Additionally,
other differential privacy approaches, e.g., DP-SGD [1]
can also be applied and investigated as a defense.

6.5.2 Gradient compression

Gradient compression [23, 33] prunes shared gradients
with small magnitudes to zero. Pruning some gradi-
ents reduces the information that the attack exploits
to extract the labels. In this set of experiments, we
evaluate LLG+ under various gradient compression ra-
tios θ ∈ {20%, 40%, 80%}, i.e., θ denotes the percentage
of the gradients to be discarded in each communica-
tion round with the server. We use the sparsification
approach proposed in [23], where users send only the
prominent gradients, i.e., with a magnitude larger than
a specific threshold. The threshold is calculated dynam-
ically based on the desired compression ratio. The small
gradients are accumulated across multiple communica-
tion rounds and sent only when they are large enough.

FedSGD. Figure 7 (c) illustrates that when the ratio
is ≤ 20%, there is only a slight effect on the success
rate of the attack. When the compression ratio is 80%,
we notice that LLG+ becomes completely ineffective for
B ≥ 4, dropping below the random guess. Notably, the
model accuracy is maintained high 91.9% in this case.
Consequently, gradient compression with θ > 80% can
practically defend against the attack while producing
accurate models.
FedAvg. Similar to FedSGD, we observe a limited ef-
fect of the ratio θ ≤ 20% in Figure 7 (f), whereas the
ratio of θ = 40% with B ≥ 8 can mitigate the risk of
LLG+, as well as θ ≥ 80% for any batch size. Under both
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FedSGD (Acc. = 93.3%) FedAvg (Acc. = 94.5%)
PN (σ) 0.01 0.1 1 0.01 0.1 1
Acc. (%) 93.4 89.9 ≤ 10.1 94.6 91.4 ≤ 13.5
DP (β) 10 5 1 10 5 1
Acc. (%) 89 86.1 ≤ 52.4 91.2 90.5 52.5
GC (θ%) 20 40 80 20 40 80
Acc. (%) 93.4 93.7 91.9 92.8 91.6 89.3

Table 1. Model accuracy while applying the defense mechanisms.
PN: pure noise, DP: differential privacy, GC: gradient compression.

compression ratios, the model converges at high accu-
racy scores, 91.6% and 89.3%, respectively. Additional
improvements on the accuracy can be achieved by ap-
plying error compensation techniques, such as momen-
tum correction and local gradient clipping, which are
proposed in [23].

In addition to the aforementioned defenses,
cryptography-based approaches exist [3, 5, 15, 39],
which can protect gradients from external eavesdroppers
and even curious servers. However, besides the compu-
tation and communication overhead introduced by these
approaches, they prevent the server from evaluating the
utility and benignity of users’ updates.

7 Conclusion
We identified and formalized two properties of gradients
of the last layer in deep neural network models trained
with cross-entropy loss for a classification task. These
properties reveal a correlation between gradients and
label occurrences in the training batch. We investigate
Label Leakage from Gradients (LLG), a novel attack
that exploits this correlation and extracts the ground-
truth labels from shared gradients in the FedSGD and
FedAvg algorithms. We demonstrated the validity of
LLG through mathematical proofs and empirical anal-
ysis. Results demonstrate the scalability of LLG to ar-
bitrary batch sizes and number of classes. Moreover, we
showed the success rate of LLG on various model archi-
tectures and in different stages of training. The effective-
ness of noisy gradients and gradient compression as de-
fenses was also investigated. Findings suggest gradient
compression to be an efficient technique to prevent the
attack while maintaining the model accuracy. With this
work, we hope to raise the awareness of the privacy risks
associated with gradients sharing schemes, encouraging
the community and service providers to give careful con-
sideration to security and privacy measures in this con-

text. As future work, we are developing improvements
for the attack under FedAvg and against trained mod-
els. Additionally, we are investigating the implications
of combining LLG with DLG on the overall accuracy of
the data reconstruction.
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Appendix

Layer Size Activation function
(input) - -
Conv 2D channels x 12 Sigmoid
Conv 2D 12 x 12 Sigmoid
Conv 2D 12 x 12 Sigmoid

Table 2. Architecture of CNN, the default model in the experimen-
tal setting.

Layer Size Activation function
(input) - -
Conv 2D 1 x 6 ReLU
Maxpool 2 x 2 -
Conv 2D 6 x 16 ReLU
Maxpool 2 -
Linear 16 x 6 ReLU
Linear 120 x 84 ReLU
Linear 84 x 10 ReLU

Table 3. Architecture of LeNet network, a very common architec-
ture adopted in computer vision.
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(a) MNIST - FedSGD
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(b) SVHN - FedSGD
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(c) CIFAR-100 - FedSGD
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(d) CelebA - FedSGD

Fig. 8. Attack success rate of (1) LLG with shared gradients, (2)
LLG* with white-box model, (3) LLG+ with auxiliary knowledge,
(4) DLG [41], and (5) random guess on MNIST, SVHN, CIFAR-100,
and CelebA. Label extraction is based on gradients generated from
passing one balanced batch (FedSGD) to a randomly initialized
CNN.


	User-Level Label Leakage from Gradients in Federated Learning
	1 Introduction
	2 Background
	2.1 Neural networks
	2.2 Federated learning
	2.3 Problem setting
	2.4 Threat model

	3 Related work
	3.1 Data reconstruction
	3.2 Label extraction

	4 Gradient analysis
	5 Label extraction
	5.1 Attack parameters estimation
	5.2 Label leakage from gradients attack

	6 Empirical evaluation
	6.1 Experimental setup
	6.2 Attack success rate
	6.3 Model architecture
	6.4 Model convergence status
	6.5 Defense mechanisms
	6.5.1 Noisy gradients
	6.5.2 Gradient compression


	7 Conclusion


