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Comprehensive Analysis of Privacy Leakage in
Vertical Federated Learning During Prediction
Abstract: Vertical federated learning (VFL), a variant
of federated learning, has recently attracted increasing
attention. An active party having the true labels jointly
trains a model with other parties (referred to as pas-
sive parties) in order to use more features to achieve
higher model accuracy. During the prediction phase, all
the parties collaboratively compute the predicted confi-
dence scores of each target record and the results will be
finally returned to the active party. However, a recent
study by Luo et al. [28] pointed out that the active party
can use these confidence scores to reconstruct passive-
party features and cause severe privacy leakage.
In this paper, we conduct a comprehensive analysis of
privacy leakage in VFL frameworks during the predic-
tion phase. Our study improves on previous work [28] re-
garding two aspects. We first design a general gradient-
based reconstruction attack framework that can be flex-
ibly applied to simple logistic regression models as well
as multi-layer neural networks. Moreover, besides per-
forming the attack under the white-box setting, we give
the first attempt to conduct the attack under the black-
box setting. Extensive experiments on a number of real-
world datasets show that our proposed attack is effective
under different settings and can achieve at best twice
or thrice of a reduction of attack error compared to
previous work [28]. We further analyze a list of poten-
tial mitigation approaches and compare their privacy-
utility performances. Experimental results demonstrate
that privacy leakage from the confidence scores is a
substantial privacy risk in VFL frameworks during the
prediction phase, which cannot be simply solved by
crypto-based confidentiality approaches. On the other
hand, processing the confidence scores with information
compression and randomization approaches can provide
strengthened privacy protection.
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1 Introduction
Building artificial intelligence (AI) applications often re-
quires a large amount of user data to train high-accuracy
machine learning (ML) models. Traditional centralized
learning mechanisms directly gather all relevant data
from local sites for model training. This not only leads
to a huge storage complexity and computational cost,
but more importantly, it also suffers from serious pri-
vacy issues. To mitigate these disadvantages, federated
learning (FL) [29] was proposed, where the models are
jointly trained by multiple local parties coordinated by
a central server. The framework achieves improvements
in both computational efficiency and privacy protection,
and it has been increasingly used in real-life applica-
tions, e.g., mobile keyboard prediction [16, 35], health-
care [24, 27], purchase recommendation [44, 49], and dis-
tributed synthetic data generation [3, 22, 47] systems.

Recently, vertical federated learning (VFL) [17, 38,
40, 50], a variant of FL, has gained increasing attention.
In comparison to the generic FL framework, where each
local party holds a different set of samples with the same
feature space, the local parties in VFL systems hold dif-
ferent features of the same set of samples. There are
usually two kinds of participants in a VFL system: the
active party who has the real labels of a set of samples
and the passive parties who provide additional features
of the same set of samples. Usually, the active party
initiates the training task and invites the passive par-
ties to jointly train an ML model. The increase in input
features helps improve the model’s prediction accuracy.
For instance, in a smart finance scenario, a bank wants
to train a model to produce customers’ credit scores
and predict default risk. However, it has only a few
features describing the customers’ transaction history,
which may not be sufficient for training a satisfactory
model. Therefore, the bank wants to collaborate with
an e-commerce company and use its large number of
profile features such as age, gender, and purchase his-
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tory to improve the model’s prediction accuracy. Since
both institutes cannot directly exchange real data due
to privacy issues, the training task can be performed
under a VFL framework. In addition to the data hold-
ers, existing VFL frameworks [12, 17, 48] usually also
involve a trusted coordinator, who is responsible for co-
ordinating the training and prediction process. During
the training process, both parties train part of the model
on the local side based on their data and send the in-
termediate results to the coordinator. Then, the coordi-
nator aggregates the information and sends the gradi-
ents back to both parties to update their local models.
Additionally, crypto-based technologies such as secure
multi-party computation (SMC) [53] and homomorphic
encryption (HE) [9], are applied in VFL frameworks
for privacy protection. During the prediction process,
each party computes the intermediate results using the
trained model and the features of the new record. Then,
the coordinator aggregates the results, computes the
predictions (referred to as confidence scores), and re-
turns the predictions to the active party.

Although the involvement of the trusted coordina-
tor prevents potential privacy leakage from the interme-
diate results, a recent work by Luo et al. [28] shows that
the active party can still use the confidence scores to re-
construct passive-party features during the prediction.
The authors analyzed privacy leakage under a two-party
VFL setting and respectively proposed an equation solv-
ing attack (ESA) and a generative regression network
(GRN) attack on simple logistic regression (LR) models
and complex multi-layer neural networks (NNs). Never-
theless, the work has the following limitations. First, al-
though the proposed GRN attack can be applied to com-
plex NNs, it usually requires the collection of numerous
predictions to train the attack model, which may not
always be feasible in practice. Second, the study only in-
vestigated privacy leakage under the white-box setting,
where the trained passive-party model is revealed to the
active party. However, in real-life scenarios, the passive
party may not share the trained model due to privacy
and intellectual property reasons. Thus, the proposed
attacks in [28] would no longer be applicable.

In this paper, we extend the study of [28] with
a more comprehensive analysis of the privacy leakage
during the prediction phase under the two-party VFL
setting. We address the limitations in [28] as follows.
First, we design a generic gradient-based inversion at-
tack (GIA) that can be applied to both simple and com-
plex models. The algorithm can be applied flexibly and
independently to any individual prediction. Second, we
further conduct the attack under the black-box setting,

where the active party is unaware of the passive-party
model parameters. In this setting, we assume the ac-
tive party has access to a small set of the passive-party
data (referred to as auxiliary data). For instance, the ac-
tive party may collude with a few data owners and gain
complete knowledge about their data. Subsequently, the
attacker can use these auxiliary data to build a shadow
model that mimics the performance of the passive-party
model and then perform the attack. In our experiments,
we show that for simple models such as LR, the attacker
only needs less than ten data records to achieve satis-
factory attack performance. For multi-layer NNs, it is
also possible to have similar performance with less than
25 data records. The results demonstrate the feasibility
of our black-box attack in real-life scenarios. Our con-
tributions can be summarized as follows:
– We propose a generic framework to perform re-

construction attacks on VFL during the prediction
phase. The framework can be flexibly applied to dif-
ferent ML models, such as LR models and multi-
layer NNs. The attack error of our proposed method
can be reduced by twice or three times compared to
the most relevant prior work [28].

– Besides performing the reconstruction attack under
the white-box setting, we further give the first at-
tempt to conduct the attack under the black-box
setting. Experimental results demonstrate that with
prior knowledge of a small set of auxiliary data, the
attacker can still perform the reconstruction attack
without the knowledge of the target model’s real
weights, or even the model structure.

– We conduct comprehensive experiments on real-
world datasets to evaluate the attack performance
under different settings. Experimental results show
that privacy leakage during the prediction phase
is a substantial privacy risk in VFL frameworks,
which cannot be simply solved by crypto-based ap-
proaches. We further analyze possible mitigation
approaches and show that it is necessary to apply
additional information compression and randomiza-
tion approaches during training or to the confidence
scores to strengthen the privacy protection in VFL.

2 Related Work

2.1 Vertical Federated Learning

In comparison to horizontal federated learning (HFL),
where data are horizontally partitioned and held by mul-
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tiple local clients, VFL focuses on scenarios where the
local clients hold different features of the same set of
users. The goal of VFL is to jointly build AI models
using the features from all parties. Therefore, simple
model-averaging strategies are no longer applicable in
VFL settings.

In recent decades, studies for vertically partitioned
data have been widely conducted for various data
mining and ML applications. For instance, Vaidya et
al. proposed a series of privacy-preserving protocols
for vertically-partitioned data covering association rule
mining [38], k-means clustering [39], Bayes classifier [40],
decision trees [41], and support vector machines [54] us-
ing SMC [53]. Hardy et al. [17] proposed a VFL frame-
work combined with HE [9] for training LR models
[9]. Yang [48] further applied the quasi-Newton method
in the VFL framework to reduce the communication
rounds. In addition to LR models, other works [7, 25, 46]
also proposed VFL frameworks for tree-based models.
In comparison to the above VFL frameworks, which
are limited to two parties, Feng et al. [12] proposed
a multi-participant multi-class VFL (MMVFL) frame-
work that enables label sharing of its owner with other
VFL participants in a privacy-preserving manner. More-
over, Yang et al. [51] proposed to remove the coordi-
nator to reduce the complexity of the system. On the
other hand, Hu et al. [19] and Chen et al. [6] proposed
asynchronous VFL frameworks, where the models are
updated by each party in an asynchronous manner and
do not require feature sharing between parties. Further-
more, prior VFL frameworks primarily use crypto-based
technologies such as HE and SMC to ensure secure and
private learning. Recent works proposed incorporating
differential privacy (DP) into the training process to
provide strict privacy guarantees for local data [6, 42].

2.2 Privacy Risks in Federated Learning

Although FL achieves significant privacy benefits com-
pared to centralized ML, a number of prior works have
shown that FL still suffers from privacy attacks such
as membership inference attacks and reconstruction at-
tacks. Membership inference attacks determine whether
a sample is included in the training dataset. Prior works
[32, 37] conducted comprehensive analyses of member-
ship inference attacks against FL under both white-
box and black-box settings. As an extension to infer-
ring membership, Melis et al. [30] further investigated a
property inference attack, where the attackers can iden-
tify when a property appears in the data during train-

ing. On the other hand, reconstruction attacks aim to
recover specific training data. Phong et al. [34] firstly
showed that the input data could be mathematically de-
rived from the gradients of first-layer weights and bias
in fully-connected models. Hitaj et al. [18] and Wang et
al. [43] utilized generative adversarial networks (GANs)
to reconstruct representatives of local training data. Re-
cently, Zhu et al. [56] and other follow-up studies [15, 55]
proposed gradient-based attacks that can recover pixel-
wise accurate original images and token-wise matching
original texts.

The abovementioned attacks only focus on the HFL
frameworks. Recently, Weng et al. [45] and Luo et al. [28]
conducted privacy attacks against VFL. Weng et al. [45]
analyzed privacy leakage during the training phase,
whereas Luo et al. [28] focused on the privacy risks dur-
ing the prediction phase. In this paper, we conduct a
comprehensive analysis of the privacy leakage of VFL
during prediction. We address the limitations of [28] re-
garding complex models and further extend the attack
with a black-box setting.

3 Background

3.1 Machine Learning

An ML model Fφ : X 7→ Y is a function F with a set of
parameters φ that maps data samples from the input (or
feature) space X to the output space Y. In this paper,
we mainly focus on models for supervised classification
tasks, including LR models and NNs.

3.1.1 Logistic Regression

As one of the most commonly used linear classifiers, the
Fφ(x) of LR models can be represented as the inner
product of input x and model parameters φ followed by
a nonlinear activation function. The confidence score c
is calculated as follows:

c = Fφ(x) = ξ(f(x,φ)) = ξ(φ · x), (1)

where f(x,φ) = φ · x is the computation of the inner
product and ξ is the output activation. Let z = φ ·x be
the intermediate result. For binary LR, φ is a vector and
z is a scalar. The activation function ξ is the sigmoid
function defined as

sigmoid : c = ξ(z) = 1
1 + e−z

. (2)
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The confidence score c is a scalar between 0 and 1. For
multi-class LR (also referred to as softmax regression),
the model parameter matrix φ can be vectorized as
φ = [φ1, · · · ,φk], where k is the number of classes and
φm is the parameter vector of the mth class. Thus, the
intermediate result z = [z1, · · · , zk] is a k-dimensional
vector, where zm = φm ·x. Finally, the softmax function
is applied to normalize z and the output c = [c1, · · · , ck]
is also a k-dimensional vector where each entry cm is
calculated as

softmax : cm = ξ(zm) = ezm∑k
j=1 e

zj

. (3)

3.1.2 Neural Networks

As an extension of LR, NNs have been widely used in
ML and deep learning due to their capability to capture
hidden features and patterns of training data. The NN
model can also be generalized as Fφ(x) = ξ(f(x,φ)),
where f(x,φ) represents computations of multiple inter-
connected layers. The computation on each hidden layer
is similar to Equation (1). Besides the sigmoid function,
commonly used hidden-layer functions also include relu
and tanh:

relu : ξ(z) = max{0, z}, (4)

tanh : ξ(z) = ez − e−z

ez + e−z
. (5)

The activation on the output layer is the same as in LR
models, namely the sigmoid function for binary classi-
fiers and the softmax function for multi-class classifiers.

3.1.3 Model Learning and Prediction

Let us assume we have a set of training samples
{x1, · · · ,xn}, each with d features, and their labels
{y1, · · · ,yn} belonging to k classes. For each input xi,
the confidence score ci can be presented as ci = Fφ(xi).
The goal of the training is to find a set of parameters φ
that achieves the minimum loss over the whole batch of
inputs, which is given as

φ = argmin
φ

1
n

n∑
i=1
L(yi, ci) = argmin

φ

1
n

n∑
i=1
L(yi,Fφ(xi)),

(6)
where L(·, ·) measures the difference between the output
predictions and the true labels. Once the model Fφ is
trained, we can use it to compute the prediction of new
samples and make decisions.

Fig. 1. Comparison of HFL and VFL frameworks, where si repre-
sents the ith record, xi

j and yi represent the jth feature and the
label of the ith record, respectively.

3.2 Vertical Federated Learning

The basic idea of FL is to collaboratively train the ML
models by a number of local parties, where only model
updates are shared during the training process and lo-
cal data are never uploaded. According to the partition
strategies of local data, existing FL frameworks can be
further categorized into HFL and VFL [49]. A compar-
ison between HFL and VFL is presented in Figure 1.

Consider FL for a two-party scenario, where party A
and B respectively hold local datasets DA and DB . Let
X , Y and S be the feature, label, and sample space. In
the HFL setting, each party holds data from a different
set of samples, while these data share the same feature
space, which can be expressed as

XA = XB , YA = YB , SA 6= SB . (7)

In contrast, in the VFL setting, each party holds dif-
ferent features of the same set of samples. Moreover,
the labels are held by only one active party, while the
other passive parties only provide inputs of additional
features. In Figure 1, we have A and B as the passive
and active parties, respectively. Such VFL systems can
be expressed as

XA 6= XB , YA = ∅, YB = Y, SA = SB . (8)

Besides the local training parties, existing VFL
frameworks [12, 17, 48] usually involve an additional
trusted third-party coordinator, which can be for in-
stance a trusted execution enclave. During the inference
phase, the coordinator is responsible for privately col-
lecting and aggregating intermediate results of all local
parties, computing the confidence scores, and sending
them to the active party, as demonstrated in Figure 2.
Later studies, such as [51], also proposed to remove the
coordinator, so that the intermediate results of the pas-
sive party are directly sent to the active party for cal-
culating the prediction results. In this paper, we mainly
focus on privacy leakage under the first scenario, where
the active party only uses the confidence scores to re-
construct the inputs of the passive party. Intuitively,
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Fig. 2. Inference process of VFL systems with a coordinator.

this scenario provides higher privacy protection than
the without-coordinator scenario since the third-party
coordinator prevents the attacker from directly access-
ing the intermediate results.

4 Attack Methodologies
In this section, we present our reconstruction attack on
VFL frameworks during prediction. First, we introduce
the threat model, which can be divided into the white-
box and black-box settings. Then, we describe the pro-
posed attack methods for both settings in detail.

4.1 Threat Model

In this paper, we consider the scenario where two par-
ties holding non-overlapping features of the same set of
samples aim to jointly train a classification model un-
der the VFL framework. As described in Section 3.2,
the party with the real labels is called the active party
Pact, whereas the other party that only provides fea-
tures is called the passive party Ppas. Let φact and
φpas be the models respectively held by Pact and Ppas.
The entire model trained under VFL is denoted as
φ = [φact,φpas]. Similarly, each data record x can be
presented as x = [xact,xpas], where xact and xpas are
the inputs from Pact and Ppas. The inputs xact and xpas

have dact and dpas features, respectively. During the pre-
diction phase, given a new data record x, Pact and Ppas

calculate the intermediate result zact = f(xact,φact)
and zpas = f(xpas,φpas) and send them to the coordi-
nator. For LR models, the intermediate results zact, zpas

are directly calculated as the inner product between
the local inputs and the local model parameters. For
multi-layer NNs, we assume that φact and φpas are NNs
without the nonlinear activation function on the output

layer. The intermediate results zact, zpas are the output
of each local model. After receiving zact and zpas from
Pact and Ppas, the coordinator applies the nonlinear ac-
tivation function ξ(·) to the aggregated intermediate re-
sult and calculates the confidence score c as

c = ξ(z) = ξ(f(xact,φact) + f(xpas,φpas)). (9)

Finally, the confidence score c will be returned to Pact.
We assume the attacker to be the active

party Pact, which uses the predicted confidence
score c of each individual target record x to re-
construct the corresponding passive-party input
xpas. We further distinguish the attacks between the
white-box setting and the black-box setting:
– For the white-box setting, Pact has full access to the

entire model φ = [φact,φpas], the confidence scores
c, and its own features xact. The goal is to estimate
xpas via certain attack algorithms Awb as follows:

x̂pas = Awb(xact,φact,φpas, c). (10)

– For the black-box setting, φpas are not revealed to
Pact due to privacy and intellectual property issues.
We slightly relax the setting by assuming that Pact

is aware of a small set of passive-party data, which
are also referred to as auxiliary data. These auxiliary
data and their confidence scores can be denoted as
xaux = [xaux

act ,x
aux
pas ] and caux. The attack algorithm

Abb can be expressed as

x̂pas = Abb(xact,φact, c,x
aux, caux). (11)

4.2 Baseline Attacks

We first briefly describe the baseline attacks in [28] for
LR models and multi-layer NNs. Both attacks assume
that the active party has full access to φact, φpas, xact,
and c and aims to reconstruct xpas.

4.2.1 Equation Solving Attack

The ESA attack is proposed by [28] against LR models.
For the LR model with k classes, the model parameters
of Pact and Ppas can be respectively vectorized as φact =
[φ1act

, · · · ,φkact
] and φpas = [φ1pas

, · · · ,φkpas
]. Given

a data record x = [xact, xpas], the intermediate result
z = [z1, · · · , zk] is a k-dimensional vector where each
entry zm is calculated as

zm = φmact
· xact + φmpas

· xpas. (12)
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The confidence score c is calculated as c = ξ(z), where
ξ is the softmax function (see Equation (3)). A relation-
ship between c and z can be further derived as below:

ln cm+1 − ln cm = zm+1 − zm. (13)

Let Φm = φm+1 − φm, we further have

Φmpas · xpas = (ln cm+1 − ln cm)−Φmact · xact. (14)

Obviously, for the LR model with k classes, we get k−1
linear equations. Since Φmact , xact, cm and cm+1 are all
known to the active party, we can substitute the right-
hand side of Equation (14) with Ψ. Thus, the equation
can be rewritten as

Φmpas · xpas = Ψ, (15)

where Φmpas is a matrix of size (k− 1)× dpas, xpas and
Ψ are vectors of size dpas and k − 1. It can be easily
seen that when the number of unknown passive-party
features is less than the number of linear equations, i.e.,
dpas ≤ k − 1, the system will have a unique solution of
x̂pas. If dpas > k − 1, there will be an infinite number
of solutions to Equation (15). Nevertheless, the attacker
can still estimate the target features by solving x̂pas =
Φ+

pas · Ψ, where Φ+
pas is the pseudo-inverse matrix of

Φmpas . The obtained x̂pas minimizes ‖Φmpas ·xpas−Ψ‖2
and is the solution with the minimum l2-norm, namely,
‖x̂pas‖2 ≤ ‖xpas‖2.

4.2.2 Generative Regression Network Attack

For multi-layer NNs, the activation function on each
hidden layer introduces nonlinearity into the model,
thereby causing the ESA attack not to be applicable.
Therefore, a GRN attack was proposed [28]. The attack
trains a generator model φG to learn the correlation
between the features and to “generate” the estimated
passive-party features of the new target records. Dur-
ing each iteration, the generator φG inputs the active-
party features xact and a set of random variables δpas

and produces the estimated passive-party features xpas.
Then, xpas with xact will be fed into φ = [φact,φpas]
and generate the estimated confidence score ĉ. Finally,
a distance between ĉ and the real confidence score c will
be calculated and used to update the generator model.
While the GRN attack fills the gap created by the ESA
attack with respect to complex NNs, training the gener-
ator model requires the collection of an adequate num-
ber of prediction results, e.g., more than 1000 records as
mentioned in [28]. For instance, in the scenario where

a bank collaborates with an e-commerce company to
jointly train a model for predicting the clients’ default
risk, the bank may need several weeks or months to col-
lect the prediction results from enough clients before the
attack can be applied. This may not always be practi-
cable in real life.

4.3 Gradient-based Inversion Attack

4.3.1 GIA Under White-box Setting

To address the limitations of both baseline attacks, we
propose a gradient-based inversion attack (GIA). The
main idea is to search for the optimal estimation of
passive-party input x̂pas within the feature space Xpas

that produces an estimated confidence score ĉ close
enough to the real confidence score c, namely

x̂pas = argmin
Xpas

D(c, ĉ), (16)

where D(·, ·) is a metric for measuring the distance be-
tween c and ĉ. The main workflow is presented in Fig-
ure 3 and Algorithm 1. Given the real confidence score
c, the attacker Pact first randomly initializes the esti-
mated passive-party input x̂pas and computes the esti-
mated confidence score ĉ as

ĉ = ξ(f(xact,φact) + f(x̂pas,φpas)), (17)

where φact and φpas are model parameters of Pact and
Ppas, respectively, and xact is the input of Pact. Then,
the distance between the real and estimated confidence
scores c and ĉ is calculated. Here, we use two met-
rics, the mean squared error (MSE) and the KL diver-
gence (KLD), to measure the difference between c and
ĉ, which are defined as

DMSE(c, ĉ) = 1
k

m=k∑
m=1

(cm − ĉm)2, (18)

DKLD(c, ĉ) =
m=k∑
m=1

cm · log( ĉm

cm
). (19)

Finally, D is used to update x̂pas as

x̂pas ← Opt.update(x̂pas,D, λ). (20)

The Opt can be any common ML optimizer such as
stochastic gradient descent (SGD) [4] and Adam [23],
which updates the current x̂pas according to the dis-
tance D and a predefined learning rate λ. Here, we use
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Fig. 3. Workflow of the proposed GIA attack under the white-
box setting, where the entire model φ = [φact,φpas] is revealed
to the attacker. Given the confidence score c, the goal is to find
an optimal estimated passive-party input x̂pas that produces an
estimated confidence score ĉ close enough to c.

Algorithm 1: GIA attack
Input: φact, φpas: active- and passive-party

models; xact: active-party input; c:
confidence score; Opt: optimizer for
updating the estimated input; T :
rounds of optimization; λ: learning rate
of optimization

Output: x̂pas: estimated passive-party input
1: Initialize estimated input x̂pas = [0, · · · , 0]
2: for round t = 1, · · · , T do
3: ĉ = ξ(f(xact,φact) + f(x̂pas,φpas))
4: D = DMSE(c, ĉ) or D = DKLD(c, ĉ)
5: x̂pas ← Opt.update(x̂pas,D, λ)
6: end for
7: Return x̂pas

the Adam optimizer because of its fast convergence per-
formance and use a default learning rate λ = 0.001. We
repeat the optimization for T rounds until ĉ is close
enough to c, i.e., until the distance D approaches 0.

Our GIA attack achieves the following advantages
compared to both baseline attacks. First, the attack is
model-agnostic and can be applied to both simple LR
models and complex multi-layer NNs. Second, the at-
tack adopts a gradient-based method to iteratively es-
timate xpas, which can achieve a closer approximation
of the real input values compared to the ESA attack.
Moreover, the GIA attack eliminates the requirement
for collecting a large number of predictions in the GRN
attack. Thus, it can be applied independently and flex-
ibly to any individual records.

4.3.2 GIA Under Black-box Setting

In real-life scenarios, φpas may not always be revealed
to Pact because of intellectual property and privacy is-

sues. Therefore, we further investigate the attack under
a black-box setting. We slightly relax the setting by as-
suming that Pact has prior knowledge of a small set
of auxiliary data xaux = [xaux

act ,x
aux
pas ] and their confi-

dence scores caux. For instance, Pact can collude with a
few internal employees (whose data are saved by both
parties) and use their data as auxiliary data. More-
over, Pact can manually construct a few fake data, in-
stead of using the real user data, to perform the attack.
These auxiliary data can then be used to build a shadow
model φ̂pas that imitates the performance of the real
φpas. The main workflow is presented in Algorithm 2.
Given a set of auxiliary data and corresponding confi-
dence scores (xaux, caux), we first initialize the shadow
model φ̂pas. Then, we compute the confidence scores
predicted by the current shadow model ĉaux and cal-
culate Daux, which measures the distance between caux

and ĉaux. The distance Daux will then be used to up-
date the shadow model. The goal of the optimization
is to estimate the real passive-party model parameters
by minimizing the difference between caux and ĉaux.
Once the shadow model φ̂pas is obtained, Pact can use
the model to perform Algorithm 1 for the reconstruc-
tion attack based on new prediction records as in the
white-box setting.

The next question is, “how many auxiliary data are
enough for constructing a satisfying shadow model?”.
We start the analysis with an LR model. Let dpas be the
number of passive-party features and k be the number of
classes. The total number of unknown model parameters
is thus dpas · k. Assuming Pact is aware of n auxiliary
data records, he/she can use n · k predicted values to
solve the linear equation system. To ensure that the
equation system has a unique solution, it should satisfy

n · k ≥ k · dpas ⇒ n ≥ dpas = τ. (21)

Here, the threshold τ is the lower bound of the num-
ber of auxiliary data n to obtain an attack performance
similar to that of the white-box setting. Note that the
black-box attack can still be conducted with fewer aux-
iliary data, but it may result in a larger reconstruction
error. Thus, τ can be used as a metric that estimates
the auxiliary data needed to obtain satisfying attack
performance. Moreover, it can be easily observed that
an increasing number of unknown passive-party features
dpas leads to a larger τ .

For complex models such as multi-layer NNs, al-
though we cannot derive the exact threshold for n, we
can follow Equation (21) to derive an approximated
threshold. Let |φpas| be the number of unknown pa-
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Fig. 4. Workflow of training a shadow model φ̂pas using the aux-
iliary data (xaux, caux), which mimics the performance of the
real passive-party model φpas.

Algorithm 2: Training the shadow model
Input: φact: active-party model;

xaux = [xaux
act ,x

aux
pas ]: auxiliary data;

caux: confidence score of xaux; Opt:
optimizer for updating the shadow
model; T : rounds of optimization; λ:
learning rate of optimization

Output: φ̂pas: shadow passive-party model
1: Initialize shadow model φ̂pas

2: for round t = 1, · · · , T do
3: ĉaux = ξ(f(xaux

act ,φact) + f(xaux
pas , φ̂pas))

4: Daux = DMSE(caux, ĉaux) or
Daux = DKLD(caux, ĉaux)

5: φ̂pas ← Opt.update(φ̂pas,Daux, λ)
6: end for
7: Return φ̂pas

rameters of the passive-party model. Then, we have

n · k ≥ |φpas| ⇒ n ≥
|φpas|
k

= τ. (22)

However, since the activation functions in multi-layer
NNs introduce nonlinearity to the model, the real re-
quired number of auxiliary data might be larger.

5 Experiments

5.1 Experimental Setup

5.1.1 Models and Datasets

Here, we investigate the performance of our proposed
attack against LR models and multi-layer NNs. For
the experiments with LR models, each party holds the
model weights of the corresponding local features. For
the experiments with NNs, each party holds a multi-
layer model. The model takes the number of local fea-
tures as input size and the number of classes as output

Table 1. Details of datasets

Dataset #Feature #Class #Records Accuracy
LR NN

Bank 20 2 41,188 0.9109 0.9506
Robot 24 4 5,456 0.6710 0.8946
Satellite 36 6 6,430 0.8152 0.8275
Drive 48 11 58,509 0.8037 0.9241

size. In the experiments, we compare the attack perfor-
mance against local models with respectively one, two,
and three hidden layers, where each layer has eight neu-
rons and uses sigmoid (Equation (2)) as the activation
function. After the model is trained, we conduct the pro-
posed reconstruction attacks during the inference phase.

We perform comprehensive privacy-utility evalua-
tions over four widely-used public datasets, which are
used for binary and multi-class classification tasks:
– Bank [31]: The dataset contains 45211 records of

contact history of a Portuguese banking institu-
tion, which are used to predict if customers will
subscribe to a term deposit by telemarketing. Each
data record consists of 20 features representing cus-
tomers’ personal information, contact details, etc.

– Robot [14]: The dataset contains records of a robot
navigating through a room. Each record has 24 at-
tributes, representing the data collected by 24 ul-
trasound sensors. The records are categorized into
four classes.

– Satellite [10]: The dataset consists of the coded
multi-spectral values of satellite images, which are
categorized into six classes. The goal is to use the
multi-spectral values to predict the type of land.

– Drive [10]: The dataset contains 58,509 records.
Each record has 48 features that are extracted from
the electric current drive signals, which are classified
into 11 different conditions.

Details of each dataset are shown in Table 1, includ-
ing the number of features, classes, and records. More-
over, we normalize the feature values in each dataset
into [0,1]. We further present the accuracy of LR models
and two-layer NNs evaluated on each dataset in Table 1.

5.1.2 Baselines

In our experiments, we use the ESA attack and the GRN
attack proposed in [28] as baselines for the LR models
and multi-layer NNs. For the GRN attack, we use the
same generator model as in [28]. Moreover, since both
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baseline methods assume access to real trained models,
we will not include them in our comparison for the at-
tacks under the black-box setting.

5.1.3 Evaluation Metrics

We evaluate the performance of the proposed attack in
terms of attack error and attack accuracy.

For attack error, we use the MSE to measure the dis-
tance between the original passive-party features xpas

and the reconstructed features x̂pas, as in [28]. More
specifically, given a batch of b records, we use the aver-
aged MSE to measure the overall attack error in differ-
ent settings, as shown below

Error = 1
b · dpas

b∑
i=1

dpas∑
j=1

(x̂i,j
pas − xi,j

pas)2, (23)

where dpas is the number of passive-party features, xi,j
pas

and x̂i,j
pas are respectively the original and reconstructed

values of the jth entry of the ith records. Obviously, the
smaller the MSE, the better the attack performance. An
MSE = 0 means that the reconstructed input has the
same values as the original input.

For attack accuracy, we analyze the prediction re-
sults of the reconstructed passive-party features in a
classification task. To this end, we first train an evalu-
ation classifier M using a set of held-out passive-party
features and the ground truth labels. Then, we test the
classifier with the original target features xpas and the
reconstructed features x̂pas and analyze whether xpas

and x̂pas have the same predicted labels. Given a batch
of b records, the attack accuracy is calculated as

Acc = 1
b

b∑
i

= 1(argmaxM(xi
pas), argmaxM(x̂i

pas)).

(24)
where argmaxM(xi

pas) and argmaxM(x̂i
pas) are the

predicted labels of the ith real and reconstructed fea-
tures. Intuitively, the higher the attack accuracy, the
closer the reconstructed features to the original features.
Here, we use the SGD classifier provided in the scikit-
learn library [33] for analyzing the attack accuracy.

We define rpas = dpas/(dact + dpas) as the ratio of
the passive-party features and analyze the attack per-
formance under different rpas. For each rpas, we inde-
pendently perform the attack against b = 100 records
and calculate the average attack error and accuracy.

5.2 Results of White-box Attacks

We first present the performance of our reconstruction
attack under the white-box setting. We conduct the at-
tack on LR models and multi-layer NNs, and evaluate
the proposed GIA attack on different datasets. For each
experiment, we vary rpas and analyze the corresponding
attack performance.

5.2.1 White-box Attacks on LR Models

We first analyze the attack performance on LR models.
For each dataset, we compare the attack error of our
proposed GIA attack with the results of random guesses
and the baseline ESA attack. The results are shown in
the upper row of Figure 5. For the GIA attack, we an-
alyze the attack performance by using the MSE and
KLD as distance metrics, which is referred to as GIA-
MSE and GIA-KLD, respectively. As discussed in Sec-
tion 4.2.1, given the total number of class k, the passive-
party input xpas can be fully recovered if dpas ≤ k − 1.
It can be seen from the results that, for both attacks,
the attack error is 0 when the requirement holds. When
dpas increases, the attack error of both methods rises
and gradually approaches the random guess. However,
the attack error of our method is mostly smaller than
that of the ESA attack. In particular, for theDrive and
Satellite datasets, when rpas = 0.9, the attack error of
our method is reduced by twice or three times compared
with that of the ESA attack. Finally, we observe that
for our attack, using the MSE or KLD as the distance
metric does not have much influence on attack perfor-
mance. Thus, we use the MSE for the remainder of the
experiments.

We further analyze the attack accuracy of the pro-
posed attack. For each dataset, we compare the attack
accuracy of our GIA attack with the baseline methods
under different rpas. The results are presented in the
bottom row of Figure 5. Intuitively, the higher the at-
tack accuracy, the closer the reconstructed features are
to the real features. For all the datasets, the attack ac-
curacy is 1 when dpas ≤ k − 1, thereby indicating that
the passive-party features are fully reconstructed. More-
over, the attack accuracy of each dataset decreases with
an increase in rpas, which implies that the reconstruc-
tion gets more difficult with an increase of unknown
features. Additionally, it can be observed that our pro-
posed attack achieves higher attack accuracy compared
to the baseline method, which also demonstrates the
better performance of our method.
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Fig. 5. Attack error (upper row) and attack accuracy (bottom row) of the proposed GIA attack on LR models under the white-box
setting, compared with random guess and the baseline ESA attack.

(a) Comparison result of the Bank dataset.

(b) Comparison result of the Drive dataset.

Fig. 6. Impact of the correlation between the passive-party and
active-party features on attack performance. Each cell corre-
sponds to the absolute correlation or reconstruction error of one
passive-party feature.

5.2.1.1 Attack Performance: Feature Correlations
In real-world datasets, features may be correlated with
each other. For instance, in the Bank dataset, each fea-
ture collected by one sensor may be related to the other
features. Therefore, we further analyze the impact of
the feature correlations on attack performance. More
specifically, for each passive-party feature xi

pas ∈ xpas,
we compute the average absolute correlation of xi

pas to
the active-party features xact as

Corr(xi
pas,xact) = 1

dact

dact∑
j=1

abs(ρ(xi
pas, x

j
act)), (25)

where xj
act is the jth active-party feature, ρ(a, b) is the

Pearson correlation coefficient between a and b, abs(·) is
the absolute function and dact is the number of active-
party features. We conduct experiments on the Bank
and Drive datasets with rpas = 0.3 and visualize the
absolute correlation and attack error of the first eight
features, as presented in Figure 6. It can be seen that
for both datasets, the passive-party features with higher
correlation usually achieve a relatively lower attack er-
ror. The results indicate that the reconstruction attack
can be more successful on the passive-party features
that are correlated with the features owned by the at-
tacker, which can lead to an increased risk of privacy
leakage.

5.2.2 White-box Attacks on NNs

In addition to LR models, we also analyze the per-
formance of the white-box attack on multi-layer NNs.
First, we compare the attack error of our GIA at-
tack with the baseline GRN attack. Here, we assume
both the active- and passive-party models are NNs
with two hidden layers. Note that the GRN attack re-
quires enough prediction records for training the at-
tacker model. Therefore, we use 100 prediction records
in each experiment for a fair comparison. The results
are shown in Figure 7. It can be observed that the at-
tack error is close to 0 when rpas ≤ 0.1, and it increases
when rpas gets larger. Moreover, the attack error of the
GIA attack is consistently lower than that of the GRN
attack, thereby indicating the advantage of our attack
in comparison to the baseline. We further present the
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Fig. 7. Attack error (upper row) and attack accuracy (bottom row) of the proposed GIA attack against NNs under the white-box set-
ting, compared with random sampling and the baseline GRN attack.

Fig. 8. Attack accuracy of the baseline GRN attack and the pro-
posed GIA attack using different number of prediction records.
The attack is conducted under rpas = 0.5.

comparison of the attack accuracy of different attack
methods. We observe that the GIA attacks can pre-
cisely reconstruct target features with small rpas. Even
for larger rpas, our attack can still achieve higher attack
accuracy compared to the baseline method.

5.2.2.1 Attack Performance: Number of Prediction
Records

As mentioned earlier, the GRN attack should collect
a batch of prediction records for satisfactory attack
performance. In contrast, our GIA attack can be ap-
plied to any single prediction. Thus, we also analyze
how both attacks perform with a different number of
prediction records. To this end, we conduct both at-
tacks using 1, 10, 100, 1000 prediction records under
rpas = 0.5 and compare the change in attack accuracy.
We present the comparison results for the Bank and
Satellite datasets, as shown in Figure 8. It can be seen
that the GRN attack obtains relatively lower attack ac-
curacy with fewer prediction records, whereas our pro-
posed attack can still achieve satisfactory performance.

Fig. 9. Attack performance with respect to model size. We re-
spectively compare the attack performance against NNs with one,
two and three hidden layers.

The results indicate that our proposed attack relaxes
the multi-prediction requirement of the baseline attack
against NN models and effectively applies to scenarios
where only few prediction records are available.

5.2.2.2 Attack Performance: Model Size
Next, we conduct experiments to analyze the impact
of model size on attack performance. For each dataset,
we compare the attack error against local models with
one, two, and three hidden layers. For each model, we
use sigmoid as the activation function. The results are
presented in Figure 9. It can be seen that for the same
rpas, the error gets larger with an increase in hidden
layers. The result can be attributed to the fact that
the activation functions introduce nonlinearity to the
model. Thus, the more hidden layers, the more diffi-
cult it is to perform the reconstruction attack. Even in
this case, it can still be observed that the attack er-
ror of our proposed attack is distinctively smaller than
random guessing, which indicates that our attack poses
significant privacy risks against different model sizes.
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Fig. 10. Attack performance against NNs with respect to differ-
ent activation functions (relu, sigmoid and tanh).

(a) Attack error against LR models under the black-box setting.

(b) Attack error against NNs under the black-box setting.

Fig. 11. Attack error on LR models and NNs under the black-box
setting with n ∈ {0.1τ, 0.25τ, 0.5τ, τ}, where τ is the threshold
of the auxiliary records and n is the actual number of auxiliary
records used during the attacks.

5.2.2.3 Attack Performance: Activation Functions
Apart from using sigmoid as the hidden-layer activation
function, one can also use the relu and tanh functions.
As such, we also investigate whether the choice of the
activation function has a distinctive impact on attack
performance. To this end, we apply the reconstruction
attack on two-hidden-layer NNs with sigmoid, tanh, and
relu as the activation functions and compare the re-
sults, as shown in Figure 10. It can be seen that the
attack shows similar performance under different acti-
vation functions. Moreover, for most of the datasets, the
attack error for NNs with relu is slightly larger than that
with the sigmoid and tanh functions. The difference in
the attack error may be because the relu function only
outputs the input directly if it is positive; otherwise, it
outputs zero. This may cause a certain amount of infor-
mation loss during the inference phase, thereby making
it more difficult to reconstruct the input features from
the output confidence scores.

5.3 Results of Black-box Attacks

Next, we evaluate the attack performance under the
black-box setting. We assume that the attacker is aware
of a few auxiliary records in the prediction set, and
he/she will use these data to build a shadow model for
conducting the reconstruction attack. We evaluate the
performance of the black-box attack on LR models and
NNs, and different datasets. As before, for each experi-
ment, we vary rpas and compare the attack error.

We first analyze the performance of the black-box
attack on LR models. For each dataset, we first calculate
the threshold τ , i.e., the required number of auxiliary
records needed to achieve similar attack performance as
in the white-box setting. As described in Section 4.3.2,
the increase in dpas (equivalently, rpas) results in an in-
crease in τ . Thus, in the experiments, we calculate τ
with rpas = 1, which is sufficient for building shadow
models with any rpas ∈ (0, 1). Then, we conduct experi-
ments respectively with n ∈ {0.1τ, 0.25τ, 0.5τ, τ}, where
n is the actual number of auxiliary records used for the
attack. In Figure 11a, we present the results for the
Bank and Robot datasets. It can be seen that for each
dataset, the attack error decreases with an increase in
n. When n = τ , the attack error is almost the same as
for the white-box attack. Nevertheless, we can already
achieve satisfactory attack performance when n ≥ 0.25τ ,
which is less than ten data records for both datasets.

We also analyze the attack performance against
NNs with two hidden layers. We first use Equation (22)
to estimate the threshold τ of NNs with rpas = 1. Then,
we conduct experiments with n ∈ {0.1τ, 0.25τ, 0.5τ, τ}.
The results for the Satellite and Drive datasets are
shown in Figure 11b. We observe that the attack per-
formance improves with more auxiliary records. Fur-
ther, the attack error is close to the results under the
white-box setting when n ≥ 0.25τ , which is less than 25
records for both datasets. The experimental results in-
dicate that even without access to the real passive-party
model, the attacker can still conduct reconstruction at-
tacks with limited prior knowledge.

5.3.1 Attack Performance: Poorly-selected Auxiliary
Records

In previous experiments, we assume that the auxiliary
records share a similar distribution as the target pre-
diction records. We now investigate whether poorly-
selected auxiliary records, such as records that are ran-
domly sampled from different distributions, can affect
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Fig. 12. Attack accuracy on LR models under the black-box set-
ting using the auxiliary records sampled from different distribu-
tions, including the original, Uniform, standard Gaussian, and
standard Laplace distribution.

Fig. 13. Attack error under the black-box setting when the struc-
ture of the passive-party model is unknown. In the experiments,
the real models are two-hidden-layer NNs. We respectively use
the same NNs, LR models and some other multi-layer NNs as the
guessed model structure and analyze the attack performance.

the attack performance. To this end, we manually con-
struct a set of random auxiliary records, whose fea-
ture values are independently sampled from the uni-
form, standard Gaussian, and standard Laplace distri-
butions and are not related to the real data. We use
these random auxiliary records and their corresponding
confidence scores to build the shadow model and ap-
ply the attack. We then compare the attack accuracy
of using the auxiliary records sampled from the orig-
inal and random distributions and present the results
in Figure 12. It can be observed that using randomly
sampled auxiliary records can decrease the attack ac-
curacy. Nonetheless, the attack accuracy is still distinc-
tively higher than the random guess. When rpas is small,
the attack performance is even close to using auxiliary
data from the original distribution. As such, the results
indicate that even when using randomly sampled aux-
iliary records under the black-box setting, the attacker
may still be able to infer certain sensitive information
about the passive-party features and cause potential pri-
vacy leakage.

5.3.2 Attack Performance: Prior Knowledge of
Passive-party Model Structure

Finally, we investigate whether the knowledge of the
passive-party model structure is essential for performing
the reconstruction attack under the black-box setting.
We let the real passive-party model be NNs with two
hidden layers. Then, we build a list of shadow models
with different structures, including LR models and NNs
with different numbers of hidden layers and neurons.
For each dataset, we conduct the black-box reconstruc-
tion attack on different shadow models with the same
number of auxiliary records, i.e., n = τ . Our goal is to
explore whether changing structures of shadow models
will have a distinctive impact on attack performance.
The results are presented in Figure 13. It can be seen
that using LR models as shadow models usually causes
a higher attack error. This may be because the acti-
vation functions applied in NNs’ hidden layers result
in nonlinear mapping between the input and output,
which cannot be well-preserved in linear LR models. On
the other hand, for the experiments that also use NNs
as shadow models, we observe a similar attack perfor-
mance when the shadow model has similar structures
as the real model. More specifically, in our experiments,
the real passive-party models are NNs with two hidden
layers, each with eight neurons. For the same rpas, we
can achieve the smallest attack error when the shadow
model is of the same structure as the real model. We can
still reach a similar attack performance using shadow
models with one and two hidden layers. However, the at-
tack performance can degrade when the shadow model
is much more complex than the real model, e.g., when
using three-hidden-layer NNs. This is because complex
models increase the number of unknown model param-
eters and require more auxiliary data to achieve a sat-
isfactory simulation of the real model.

6 Defenses Against the Attack
In this section, we conduct comprehensive experiments
to investigate the capability of several potential defense
techniques against reconstruction attacks. We will first
briefly describe each defense technique and then show
their performance with privacy-utility trade-off analy-
ses.
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6.1 Defense Techniques

6.1.1 Private Set Intersection

Private Set Intersection (PSI) [8, 13, 20] is a crypto-
based technique that allows two parties to compute the
intersected elements in a private manner. The technique
has been recently used in VFL for privately identify-
ing the intersection of training samples from all parties
[2, 26]. Here, we investigate whether PSI can help pre-
vent the attack during the inference phase. To this end,
we use the open-source framework PyVertical [36] to
train models under the two-party VFL setting. Then,
we simulate the attack during the inference phase and
analyze the attack performance.

6.1.2 Differentially-private Training

DP [11], as a strong mathematical formalization of pri-
vacy, has recently shown its effectiveness in preventing
membership and property inference attacks [5, 21]. In-
spired by the success of DP in defending against infer-
ence attacks, we wonder whether the technique can also
effectively prevent privacy leakage during inference. To
this end, we train the model using the differentially-
private stochastic gradient descent (DPSGD) algorithm
[1]. During each training iteration, the algorithm clips
the real gradients with a predefined l2-clipping bound γ
and perturbs the clipped gradients with Gaussian noise.
The noise scale is based on the clipping bound γ and
the privacy budget ε. A smaller ε leads to a larger noise
scale. In our experiments, we set γ = 1 and train DP
models with ε ∈ {0.1, 1, 10}. We then apply the recon-
struction attack on all DP models and compare their
defense capabilities.

6.1.3 Processing the Confidence Scores

6.1.3.1 Rounding Defense
Besides the protection techniques during the training
phase, some other defenses can be directly applied to
the predicted confidence scores before revealing them to
the active party. The rounding defense is to approximate
confidence scores to a limited number of decimals. In
our experiments, we apply the attack on the confidence
scores rounded to one or two decimal places as well as
to integers (i.e., only revealing the predicted label) and
compare the attack performance with the unprotected
results.

6.1.3.2 Noising Defense
In addition to the rounding defense, we investigate the
performance of the noising defense, where a certain
amount of random noise is added to the confidence
scores. In our experiments, we perturb the confidence
scores with the random noise sampled from a Gaussian
distribution N (0, σ2), where the noise scale σ equals 1,
0.1, and 0.01.

6.1.3.3 Purification Defense
Finally, we analyze the performance of the purification
defense [52], which has recently been proposed against
data inference attacks. The main idea is to reduce the
dispersion of the predicted confidence scores using a pre-
trained autoencoder, which is also referred to as a puri-
fier. More specifically, the autoencoder can learn com-
pressed representations of the inputs and helps the de-
coded outputs belonging to the same class to be tighter
and indistinguishable from one another. Let G be the
autoencoder, c and G(c) be the input and decoded con-
fidence scores. In the original work [52], the autoencoder
G is trained to minimize the following objective function:

L = L1(c,G(c)) + λ · L2(argmax c, argmax G(c)), (26)

where L1 measures the l2 distance between the input
and the decoded output, L2 is the cross-entropy between
the two predicted labels, and λ is a balancing coefficient.

In our experiments, we use autoencoders with one
hidden layer for each dataset. The size of the hidden
layer is half the input size. In addition, we find that
using only L1 is already good enough to achieve lower
attack accuracy while preserving the model accuracy.
Note that the autoencoder in [52] is trained on a set
of real confidence scores. However, in realistic settings,
the autoencoder should be trained before the VFL train-
ing process, when the real confidence scores are unavail-
able. Therefore, we also construct a random training set,
where the confidence scores for training the autoencoder
are randomly sampled from the standard Gaussian dis-
tribution. We respectively compare the performance of
the autoencoders trained on the real and random train-
ing set.

6.2 Privacy-utility Analysis

We implement the abovementioned defense techniques,
and evaluate the privacy-utility performance of all
datasets on LR models and NNs. For each dataset and
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Fig. 14. Privacy-utility analysis on LR models under white-box (upper row) and black-box (lower row) setting with rpas = 0.5. The F
marker represents the ideal privacy-utility trade-off, where the model accuracy is high and attack accuracy is low.

Fig. 15. Privacy-utility analysis on NNs under white-box (upper row) and black-box (lower row) setting with rpas = 0.5. The F
marker represents the ideal privacy-utility trade-off, where the model accuracy is high and attack accuracy is low.

model type, we compare the model and attack accuracy
of all techniques under both white-box and black-box
settings. Intuitively, an ideal defense technique should
have distinctively lower attack accuracy while having no
effects on model accuracy.

In Figure 14 and Figure 15, we present the privacy-
utility analysis of the defense techniques against LR
models and NNs. Here, we show the evaluation results
with rpas = 0.5. It can be seen that PSI is unable to
prevent reconstruction attacks. This is because the goal
of the protocol is to privately align the data instances
that are held by both parties using crypto-based algo-
rithms. However, during the prediction phase, the active
party is still aware of the correspondence between the re-
turned confidence scores and the input features. Thus,
the attack can still take effect. Additionally, training
the model with DP also fails to achieve a satisfactory

privacy-utility balance against the proposed attack. It
can be observed that the defense cannot effectively pre-
vent the attack when the privacy budget is large, e.g.,
when ε = 10. Although the attack accuracy reduces with
a smaller ε, the model accuracy is unfavorably affected.
This is because using DPSGD during training aims to
protect the privacy of the training dataset. As such, the
attack cannot easily infer any sensitive information of
the training data from the model parameters or outputs.
Since we focus on reconstructing the test data during
the prediction phase, the technique is unsuitable for the
proposed attack.

On the other hand, some defenses that directly pro-
cess the confidence scores can also enhance privacy pro-
tection. Regarding the noising defense, adding noise
with σ = 0.1 achieves a relatively good privacy-utility
balance on both datasets. However, too much noise may
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lead to significant utility degradation. As for the round-
ing defense, only returning the label instead of confi-
dence scores achieves a distinctive reduction in attack
accuracy, and it does not affect the model accuracy. Fi-
nally, we observe that purifying the confidence scores
could also provide satisfactory privacy protection while
maintaining negligible utility loss. Additionally, using
randomly-sampled data to train the purifier can achieve
an even better privacy-utility trade-off in comparison to
using real data. This further relaxes the requirements
in the original algorithm and makes the technique more
practical in real-life scenarios.

7 Limitations and Future Work
Here, we will discuss the limitations of this work and
potential future research directions.

In this paper, we use the attack error and attack
accuracy to evaluate attack performance. Nevertheless,
there are still limitations for both metrics. On the one
hand, although the MSE is a common metric to mea-
sure the overall distance between the real and recon-
structed features, it lacks the similarity information of
individual features. On the other hand, the attack ac-
curacy might depend on feature correlations. For the
extreme case where the passive-party features are in-
dependent of the label, the evaluation classifier cannot
effectively capture the correlation between the feature
values and the predicted labels. In this case, the attack
accuracy will be close to random guessing regardless of
the reconstructed values, which may cause a lower es-
timation of privacy risks. Based on the limitations of
both metrics, a future task is to explore better metrics
to evaluate the privacy risks of reconstruction attacks.
Moreover, even though we have shown that the proposed
attack can lead to increased privacy vulnerability com-
pared with the baseline algorithms and random guesses,
the results do not indicate a complete defeat of privacy
in VFL frameworks. Privacy leakage in real-life appli-
cations should still be carefully evaluated based on the
semantic meaning and sensitivity level of the features.

Furthermore, besides the basic two-party VFL set-
ting, there are other variants of VFL frameworks, such
as VFL without a trusted coordinator and multi-party
VFL, as discussed in Section 2.1. These variants may
highlight different aspects and levels of privacy leakage.
For instance, for the multi-party VFL, the existence of
multiple passive parties may increase the rate of passive-
party features, but the attacker may also collude with

some of the passive-parties to increase the privacy risk.
Thus, one of the essential future works is to system-
atically compare the potential privacy leakage of dif-
ferent VFL frameworks and analyze the capability of
privacy-enhancing techniques regarding these variants.
In addition, another direction is to analyze the perfor-
mance of the reconstruction attack on deep models. As
shown in Section 5.2.2, an increase in model size and
a different choice of activation function may impact at-
tack performance. Moreover, the use of different types
of layers, e.g., convolution or recurrent layers, may also
increase attack difficulty. As such, studying enhanced
attack algorithms against these deep models under the
VFL setting is also meaningful future work.

Finally, compared to the HFL setting, there are still
only few studies conducting privacy and security anal-
yses under the VFL setting. For instance, a malicious
attacker can also apply the reconstruction attack dur-
ing training [45] or stage a backdoor attack. In addition,
during the prediction phase, the attacker may use the
predicted confidence vectors to steal the passive-party
model. As such, further explorations of security and pri-
vacy attacks under VFL should be considered fruitful
research directions.

8 Conclusion
In this paper, we investigate the privacy leakage in two-
party VFL frameworks during the prediction phase. We
first present a generic attack framework. In comparison
to previous work, our attack is model-agnostic and can
be flexibly applied to different ML models. Furthermore,
we conduct a comprehensive privacy risk analysis under
both white-box and black-box settings. Extensive exper-
iments on a number of public datasets demonstrate that
the reconstruction attack during the prediction phase is
a substantial privacy risk in VFL frameworks, which
cannot be simply avoided by crypto-based confidential-
ity approaches. Additional information compression and
randomization approaches should be applied to the con-
fidence scores to provide strengthened privacy protec-
tion.

Acknowledgements
We thank the anonymous reviewers for their construc-
tive comments for improving this paper. In particular,



Comprehensive Analysis of Privacy Leakage in Vertical Federated Learning During Prediction 279

we thank our shepherd, Soteris Demetriou, for his valu-
able suggestions during the revision process.

References
[1] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 308–318. ACM, 2016.

[2] Nick Angelou, Ayoub Benaissa, Bogdan Cebere, William
Clark, Adam James Hall, Michael A. Hoeh, Daniel Liu, Pav-
los Papadopoulos, Robin Roehm, Robert Sandmann, Phillipp
Schoppmann, and Tom Titcombe. Asymmetric private set
intersection with applications to contact tracing and private
vertical federated machine learning. CoRR, abs/2011.09350,
2020.

[3] Sean Augenstein, H. Brendan McMahan, Daniel Ramage,
Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv
Mathews, and Blaise Agüera y Arcas. Generative mod-
els for effective ML on private, decentralized datasets. In
8th International Conference on Learning Representations.
OpenReview.net, 2020.

[4] Léon Bottou. Large-scale machine learning with stochas-
tic gradient descent. In 19th International Conference on
Computational Statistics, pages 177–186, 2010.

[5] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos,
and Dawn Song. The secret sharer: Evaluating and test-
ing unintended memorization in neural networks. In 28th
USENIX Security Symposium, pages 267–284, 2019.

[6] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. VAFL:
A method of vertical asynchronous federated learning.
CoRR, abs/2007.06081, 2020.

[7] Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen,
Dimitrios Papadopoulos, and Qiang Yang. Secureboost:
A lossless federated learning framework. IEEE Intelligent
Systems, 2021.

[8] Emiliano De Cristofaro and Gene Tsudik. Practical private
set intersection protocols with linear complexity. In 14th
International Conference on Financial Cryptography and
Data Security, volume 6052 of Lecture Notes in Computer
Science, pages 143–159. Springer, 2010.

[9] Ivan Damgård and Mads Jurik. A generalisation, a sim-
plification and some applications of Paillier’s probabilistic
public-key system. In Kwangjo Kim, editor, Public Key
Cryptography, 4th International Workshop on Practice and
Theory in Public Key Cryptography, volume 1992 of Lecture
Notes in Computer Science, pages 119–136. Springer, 2001.

[10] Dheeru Dua and Casey Graff. UCI machine learning reposi-
tory, 2017. http://archive.ics.uci.edu/ml.

[11] Cynthia Dwork and Aaron Roth. The algorithmic foun-
dations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[12] Siwei Feng and Han Yu. Multi-participant multi-class verti-
cal federated learning. CoRR, abs/2001.11154, 2020.

[13] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Effi-
cient private matching and set intersection. In International

Conference on the Theory and Applications of Cryptographic
Techniques, volume 3027 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2004.

[14] Ananda L. Freire, Guilherme A. Barreto, Marcus Veloso,
and Antonio T. Varela. Short-term memory mechanisms in
neural network learning of robot navigation tasks: A case
study. In 6th Latin American Robotics Symposium, pages
1–6. IEEE, 2009.

[15] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients - How easy is it to
break privacy in federated learning? In Advances in Neural
Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020. Curran Asso-
ciates Inc., 2020.

[16] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon,
and Daniel Ramage. Federated learning for mobile keyboard
prediction. CoRR, abs/1811.03604, 2018.

[17] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard
Nock, Giorgio Patrini, Guillaume Smith, and Brian Thorne.
Private federated learning on vertically partitioned data via
entity resolution and additively homomorphic encryption.
CoRR, abs/1711.10677, 2017.

[18] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz.
Deep models under the GAN: Information leakage from
collaborative deep learning. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications
Security, pages 603–618. ACM, 2017.

[19] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou.
FDML: A collaborative machine learning framework for dis-
tributed features. In Ankur Teredesai, Vipin Kumar, Ying
Li, Rómer Rosales, Evimaria Terzi, and George Karypis, ed-
itors, Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages
2232–2240, 2019.

[20] Yan Huang, David Evans, and Jonathan Katz. Private set
intersection: Are garbled circuits better than custom pro-
tocols? In 19th Annual Network and Distributed System
Security Symposium. The Internet Society, 2012.

[21] Bargav Jayaraman and David Evans. Evaluating differen-
tially private machine learning in practice. In 28th USENIX
Security Symposium, pages 1895–1912. USENIX Associa-
tion, 2019.

[22] Xue Jiang, Xuebing Zhou, and Jens Grossklags. Privacy-
preserving high-dimensional data collection with federated
generative autoencoder. Proceedings on Privacy Enhancing
Technologies, 2022(1):481–500, 2022.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, Conference Track
Proceedings, 2015.

[24] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke,
Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng,
Sébastien Ourselin, M. Jorge Cardoso, and Andrew Feng.
Privacy-preserving federated brain tumour segmentation. In
10th International Workshop on Machine Learning in Med-
ical Imaging, volume 11861 of Lecture Notes in Computer
Science, pages 133–141. Springer, 2019.

[25] Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi
Meng, Junbo Zhang, and Yu Zheng. Federated forest. IEEE

http://archive.ics.uci.edu/ml


Comprehensive Analysis of Privacy Leakage in Vertical Federated Learning During Prediction 280

Transactions on Big Data, 2020.
[26] Linpeng Lu and Ning Ding. Multi-party private set intersec-

tion in vertical federated learning. In 19th IEEE International
Conference on Trust, Security and Privacy in Computing
and Communications, pages 707–714. IEEE, 2020.

[27] Songtao Lu, Yawen Zhang, and Yunlong Wang. Decentral-
ized federated learning for electronic health records. In 54th
Annual Conference on Information Sciences and Systems,
pages 1–5. IEEE, 2020.

[28] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin
Ooi. Feature inference attack on model predictions in ver-
tical federated learning. In 37th IEEE International Confer-
ence on Data Engineering, pages 181–192. IEEE, 2021.

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Proceedings of the 20th International Conference on Arti-
ficial Intelligence and Statistics, volume 54 of Proceedings of
Machine Learning Research, pages 1273–1282, 2017.

[30] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and
Vitaly Shmatikov. Exploiting unintended feature leakage in
collaborative learning. In 2019 IEEE Symposium on Security
and Privacy, pages 691–706. IEEE, 2019.

[31] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven
approach to predict the success of bank telemarketing. Deci-
sion Support Systems, 62:22–31, 2014.

[32] Milad Nasr, Reza Shokri, and Amir Houmansadr. Compre-
hensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and feder-
ated learning. In 2019 IEEE Symposium on Security and
Privacy, pages 739–753. IEEE, 2019.

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in Python. The Journal
of Machine Learning Research, 12:2825–2830, 2011.

[34] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua
Wang, and Shiho Moriai. Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Transactions
on Information Forensics and Security, 13(5):1333–1345,
2017.

[35] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and
Françoise Beaufays. Federated learning for emoji prediction
in a mobile keyboard. CoRR, abs/1906.04329, 2019.

[36] Daniele Romanini, Adam James Hall, Pavlos Papadopoulos,
Tom Titcombe, Abbas Ismail, Tudor Cebere, Robert Sand-
mann, Robin Roehm, and Michael A. Hoeh. PyVertical:
A vertical federated learning framework for multi-headed
splitNN. CoRR, abs/2104.00489, 2021.

[37] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and
Wenqi Wei. Demystifying membership inference attacks in
machine learning as a service. IEEE Transactions on Services
Computing, 2019.

[38] Jaideep Vaidya and Chris Clifton. Privacy preserving associ-
ation rule mining in vertically partitioned data. In Proceed-
ings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 639–644.
ACM, 2002.

[39] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-
means clustering over vertically partitioned data. In Pro-

ceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
206–215. ACM, 2003.

[40] Jaideep Vaidya and Chris Clifton. Privacy preserving naive
Bayes classifier for vertically partitioned data. In Proceedings
of the 2004 SIAM International Conference on Data Mining,
pages 522–526. SIAM, 2004.

[41] Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu, and
Scott Patterson. Privacy-preserving decision trees over
vertically partitioned data. ACM Transactions on Knowledge
Discovery from Data, 2(3):1–27, 2008.

[42] Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun
Bai, and Hao Li. Hybrid differentially private federated learn-
ing on vertically partitioned data. CoRR, abs/2009.02763,
2020.

[43] Qian Wang, Minxin Du, Xiuying Chen, Yanjiao Chen, Pan
Zhou, Xiaofeng Chen, and Xinyi Huang. Privacy-preserving
collaborative model learning: The case of word vector train-
ing. IEEE Transactions on Knowledge and Data Engineering,
30(12):2381–2393, 2018.

[44] Yichuan Wang, Yuying Tian, Xinyue Yin, and Xinhong Hei.
A trusted recommendation scheme for privacy protection
based on federated learning. CCF Transactions on Network-
ing, 3(3-4):218–228, 2020.

[45] Haiqin Weng, Juntao Zhang, Feng Xue, Tao Wei, Shouling
Ji, and Zhiyuan Zong. Privacy leakage of real-world vertical
federated learning. CoRR, abs/2011.09290, 2020.

[46] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen,
and Beng Chin Ooi. Privacy preserving vertical federated
learning for tree-based models. Proceedings of the VLDB
Endowment, 13(11):2090–2103, 2020.

[47] Bangzhou Xin, Wei Yang, Yangyang Geng, Sheng Chen,
Shaowei Wang, and Liusheng Huang. Private fl-gan: Differ-
ential privacy synthetic data generation based on federated
learning. In 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 2927–2931. IEEE,
2020.

[48] Kai Yang, Tao Fan, Tianjian Chen, Yuanming Shi, and
Qiang Yang. A quasi-Newton method based vertical fed-
erated learning framework for logistic regression. CoRR,
abs/1912.00513, 2019.

[49] Liu Yang, Ben Tan, Vincent W. Zheng, Kai Chen, and
Qiang Yang. Federated recommendation systems. In Feder-
ated Learning - Privacy and Incentive, volume 12500 of Lec-
ture Notes in Computer Science, pages 225–239. Springer,
2020.

[50] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong.
Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology,
10(2):12:1–12:19, 2019.

[51] Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu.
Parallel distributed logistic regression for vertical feder-
ated learning without third-party coordinator. CoRR,
abs/1911.09824, 2019.

[52] Ziqi Yang, Bin Shao, Bohan Xuan, Ee-Chien Chang, and
Fan Zhang. Defending model inversion and member-
ship inference attacks via prediction purification. CoRR,
abs/2005.03915, 2020.

[53] Andrew Chi-Chih Yao. Protocols for secure computations
(extended abstract). In 23rd Annual Symposium on Founda-



Comprehensive Analysis of Privacy Leakage in Vertical Federated Learning During Prediction 281

tions of Computer Science, pages 160–164. IEEE Computer
Society, 1982.

[54] Hwanjo Yu, Jaideep Vaidya, and Xiaoqian Jiang. Privacy-
preserving SVM classification on vertically partitioned data.
In 10th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, volume 3918 of Lecture Notes in Computer
Science, pages 647–656. Springer, 2006.

[55] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen.
iDLG: Improved deep leakage from gradients. CoRR,
abs/2001.02610, 2020.

[56] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Pro-
cessing Systems, pages 14747–14756, 2019.


	Comprehensive Analysis of Privacy Leakage in Vertical Federated Learning During Prediction
	1 Introduction
	2 Related Work
	2.1 Vertical Federated Learning
	2.2 Privacy Risks in Federated Learning

	3 Background
	3.1 Machine Learning
	3.1.1 Logistic Regression
	3.1.2 Neural Networks
	3.1.3 Model Learning and Prediction

	3.2 Vertical Federated Learning

	4 Attack Methodologies
	4.1 Threat Model
	4.2 Baseline Attacks
	4.2.1 Equation Solving Attack
	4.2.2 Generative Regression Network Attack

	4.3 Gradient-based Inversion Attack
	4.3.1 GIA Under White-box Setting
	4.3.2 GIA Under Black-box Setting


	5 Experiments
	5.1 Experimental Setup
	5.1.1 Models and Datasets
	5.1.2 Baselines
	5.1.3 Evaluation Metrics

	5.2 Results of White-box Attacks
	5.2.1 White-box Attacks on LR Models
	5.2.2 White-box Attacks on NNs

	5.3 Results of Black-box Attacks
	5.3.1 Attack Performance: Poorly-selected Auxiliary Records
	5.3.2 Attack Performance: Prior Knowledge of Passive-party Model Structure


	6 Defenses Against the Attack
	6.1 Defense Techniques
	6.1.1 Private Set Intersection
	6.1.2 Differentially-private Training
	6.1.3 Processing the Confidence Scores

	6.2 Privacy-utility Analysis

	7 Limitations and Future Work
	8 Conclusion


