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Abstract: A membership inference attack (MIA) poses
privacy risks for the training data of a machine learning
model. With an MIA, an attacker guesses if the target
data are a member of the training dataset. The state-of-
the-art defense against MIAs, distillation for member-
ship privacy (DMP), requires not only private data for
protection but a large amount of unlabeled public data.
However, in certain privacy-sensitive domains, such as
medicine and finance, the availability of public data is
not guaranteed. Moreover, a trivial method for generat-
ing public data by using generative adversarial networks
significantly decreases the model accuracy, as reported
by the authors of DMP. To overcome this problem, we
propose a novel defense against MIAs that uses knowl-
edge distillation without requiring public data. Our ex-
periments show that the privacy protection and accu-
racy of our defense are comparable to those of DMP for
the benchmark tabular datasets used in MIA research,
Purchase100 and Texas100, and our defense has a much
better privacy-utility trade-off than those of the existing
defenses that also do not use public data for the image
dataset CIFAR10.
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1 Introduction

1.1 Background

Machine learning (ML) has been extensively used in var-
ious aspects of society [6]. We have seen great improve-
ments in areas such as image recognition and natural
language processing.

However, in the recent years, it has been reported
that the privacy of the training data can be significantly
undermined by analyzing ML models. Since, in most ap-
plications, privacy-sensitive data are used as the train-
ing data for the models, protecting the privacy of the
training data is crucial for getting approval from data
providers or essentially society.

Following the growing concern for privacy in society
worldwide, many countries and regions are introducing
regulations for data protection, e.g., the General Data
Protection Regulation (GDPR) [10], California Con-
sumer Privacy Act (CCPA) [2], and Health Insurance
Portability and Accountability Act (HIPAA) [13]. More-
over, guidelines and regulations designed specifically for
trustworthiness in artificial intelligence (AI) and ML are
under discussion [9].

Membership Inference Attacks: One of the most
fundamental attacks against the privacy of a ML model
is the membership inference attack (MIA) [5, 15, 23, 24,
30, 31, 34–36, 43, 44], where an attacker guesses whether
the given target data is in the training data of a ML
model.

MIAs are dangerous because they reveal the infor-
mation of individual pieces of data rather than the trend
of the whole population of training data. For instance,
consider an ML model for inferring a reaction to some
drug from a cancer patient’s morphological data. An
MIA attacker who knows the victim’s data and has ac-
cess rights to the ML model can know whether the vic-
tim has cancer or not, although the victim’s data itself
do not directly contain this information.
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Another reason that MIAs are dangerous is that
they can be executed through legitimate access to ML
models only, meaning that they cannot be prevented by
the conventional security methods such as data encryp-
tion and access control [34].

Defense against MIAs: The current state-of-the-art
defense against MIAs is Distillation for Membership
Privacy (DMP) [33]. It can protect even against vari-
ous state-of-the-art MIA attacks [5, 24, 35], which the
previous defenses [17, 23] cannot protect against very
well, and its success comes from the “semi-supervised as-
sumption” that a defender can obtain public unlabeled
data. Specifically, DMP exploits a knowledge transfer
technique [12]; a defender trains an ML model using
their own private data, feeds public data to the ML
model to obtain the outputs of them, and trains another
ML model using the public data and the correspond-
ing outputs. Such indirect usage of private data makes
knowledge distillation-based methods highly effective in
protecting the privacy of private data.

However, in many domains of ML applications, pub-
lic data are scarce due to the sensitive nature of the
data, e.g., financial and medical data. To overcome this,
utilization of synthetic data is proposed [33] as well.
However, this method decreases accuracy [33] due to
the decrease in data quality.

1.2 Our Contributions

In this paper, we propose a novel knowledge distillation-
based defense that uses only private data for model
training.

Our contributions are as follows.
– We propose a novel MIA defense called knowledge

cross-distillation (KCD)1. Unlike the state-of-the-
art defense, DMP, it does not require any public
or synthetic reference data to protect ML models.
Hence, KCD allows us to protect the privacy of
ML models in areas where public reference data are
scarce.

– For the benchmark tabular datasets used in MIA re-
search, Purchase100 and Texas100, we empirically
show that the privacy protection and accuracy of
KCD are comparable to those of DMP even though

1 After we submitted our work to PETS 2022 Issue 2, Tang et
al. [39] published a concurrent and independent work similar to
ours in arXiv.

KCD does not require public or synthetic data, un-
like DMP.

– For the image dataset CIFAR10, we empirically
show that the accuracy of KCD is comparable to
that of DMP, and KCD provides a much better
privacy-utility trade-off than those of other defenses
that do not require public or synthetic reference
data.

1.3 Other Related Works

We focus only on related works that are directly related
to our contributions. See Hu et al. [15] for a comprehen-
sive survey of MIAs.

Membership Inference Attacks: One of the earli-
est works considering MIAs is by Homer et al. [14], and
MIAs were introduced in the ML setting in a seminal
work by Shokri et al. [34]. A series of MIA attacks, which
is now called the neural network-based attack, was pro-
posed by Shokri et al. [34] and was studied in detail by
Salem et al. [31] and Truex et al. [42]. Later, a new type
of MIA attack, the metric-based attack, was proposed by
Yeom et al. [44] and studied by Song et al. [36], Salem
et al. [31], and Leino et al. [19]. Then, Song et al. [35]
summarized and improved upon them and proposed the
state-of-the art metric-based attack as well.

Choo et al. [5] and Li et al. [20] independently and
concurrently succeeded in attacking neural networks in
a label-only setting, where an attacker can get only la-
bels as outputs of a target neural network, while the at-
tackers of other known papers require confidence scores
as the outputs of it. Nasr et al. [24] proposed an MIA
attack in a white-box setting, where an attacker can ob-
tain the structure and parameters of the target neural
network.

Known Defenses: MIAs can be mitigated using one
known method, differential privacy [7, 8], which is a
technique for guaranteeing worst-case privacy by adding
noise to the learning objective or model outputs. How-
ever, defenses designed to protect against MIAs specifi-
cally have better privacy-utility trade-offs. Three MIA-
specific defenses were proposed: AdvReg by Nasr et al.
[23], MemGuard by Jia et al. [17], and DMP [33].

An important technique for protecting MLs against
MIAs is knowledge transfer [12]. Using this technique,
PATE by Papernot et al. [26, 27] achieved DP, Cronos
[3] by Chang et al. protected ML from an MIA in a fed-
erated learning setting, and DMP [33] achieved a higher
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privacy-utility trade-off by removing public data with
low entropy.

Currently, DMP is the best defense in the sense of
the privacy-utility trade-off. However, it requires public
data. Other known defenses, AdvReg and MemGuard,
have an advantage in that they do not require public
reference data.

2 Preliminaries

2.1 Machine Learning

An ML model for a classification task is a function F pa-
rameterized by internal model parameters. It takes a d-
dimensional real-valued vector x ∈ Rd as input and out-
puts a c-dimensional real-valued vector ŷ = (ŷ1, . . . , ŷc).
The output ŷ has to satisfy ŷi ∈ [0, 1] and

∑
i ŷi = 1.

Each ŷi is called a confidence score. Its intuitive meaning
is the likelihood of x belonging to class i. The argmax

i
ŷi

is called a predicted label (or predicted class).
An ML model F is trained using a training dataset

D ⊂ {(x, y) | x ∈ Rd, y ∈ {0, 1}c}, where x is a data
point, and y is a one-hot vector reflecting the true class
label of x. In the training procedure, the model param-
eters of F are iteratively updated to reduce the prede-
termined loss

∑
(x,y)∈D L(F (x), y), which is the sum of

errors between the prediction F (x) and true label y. For
inference, F takes input x and outputs ŷ = F (x) as a
prediction.

The accuracy of F for dataset D is the ratio be-
tween the number of elements (x, y) ∈ D satisfying
argmax

i
F (x)i = argmax

i
yi. Here, F (x)i and yi are the

i-th component of ŷ = F (x) and y, respectively. The
training accuracy and testing accuracy of F are for the
training and testing datasets, respectively. Here, testing
dataset is a dataset that does not overlap with the train-
ing dataset. The generalization gap of F is the difference
between training and testing accuracies.

2.2 Membership Inference Attack (MIA)

MIA is an attack in which an attacker attempts to de-
termine whether given data (called target data) are used
for training a given ML model (called a target model). In
the discussion of MIAs, the training data of the target
model are called member data, and non-training data
are called non-member data.

There are two types of MIAs, white-box and black-
box [24, 34]. Attackers of the former can take as input
the model structure and model parameters of the target
model. Attackers of the latter do not take them as input
but are allowed to make queries to the target model
and obtain answers any number of times. A black-box
MIA can be divided into the two sub-types, MIA with
confidence scores and label-only MIA [5]. Attackers of
the former can obtain confidence scores as answers from
the target model but attackers of the latter can obtain
only predicted labels as answers.

In all types of MIAs, the attackers can take the
target data and prior knowledge as inputs. Intuitively,
the prior knowledge is what attackers know in advance.
What type of prior knowledge an adversary can obtain
depends on the assumed threat model. An example of
prior knowledge is a dataset sampled from the same dis-
tribution as the training data of the target model, not
overlapping with the training data. Another example is
a portion of the training data. The prior knowledge we
focused in this study is described in Section 4.3. The
attack accuracy of an attacker for an MIA is the proba-
bility that they will succeed in inferring whether target
data are member data. As in the all previous papers, the
target data are taken from member data with a proba-
bility of 50%.

One of the main factor causing MIA risks is overf-
fiting of an ML model on the training (=member)
data. The member data can be distinguished from non-
member data [31, 44] depending on whether it is over-
fitted to the target model, e.g. by checking whether the
highest confidence score of output of the target model
is more than a given threshold.

2.3 Distillation for Membership Privacy
(DMP)

DMP [33] is a state-of-the-art defense method against
MIAs that leverages knowledge distillation [12]. Distil-
lation was originally introduced as a model compression
technique that transfers the knowledge of a large teacher
model to a small student model by using the output of a
teacher model obtained on unlabeled reference dataset.
DMP needs public reference dataset R disjoint from the
training dataset D to train ML models with member-
ship privacy.

The training algorithm of DMP is given in Algo-
rithm 1. Here, L is the loss function. First, DMP trains
a teacher model F using a private training dataset D
(Step 1). F is overfitted to D and therefore vulnerable
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to MIA. Next, DMP computes the soft labels F (x) of
each peice of data x of public reference dataset R and
lets R̄ be the set of (x, F (x)) (Step 2). Finally, to ob-
tain a protected model, DMP trains a student model
H using the dataset R̄ (Step 3). H has MIA resistance
because it is trained without direct access to the private
D. Note that DMP uses H with the same architecture
as F . The authors of DMP [33] proposed three different

Algorithm 1 Training algorithm of DMP

Input: training dataset D ⊂ {(x, y) | x ∈ Rd, y ∈
{0, 1}c}, reference dataset R ⊂ {x | x ∈ Rd}, and
initialized parameters of F,H.

Output: Distilled student model H.
1: Train F by using D as a training dataset until the

training converges to minimize the loss∑
(x,y)∈D

L(F (x), y).

2: Let R̄ be a dataset R with soft labels,

R̄ = {(x, F (x)) | x ∈ R}.

3: Train H by using a dataset R̄ until the training con-
verges to minimize the loss∑

(x,y′)∈R̄

L(H(x), y′).

4: Return H.

ways of achieving the desired privacy-utility tradeoffs:
– increasing the temperature of the softmax layer of

F ,
– removing reference data with high entropy predic-

tions from F ,
– decreasing the size of the reference dataset.

All of the above changes reduce MIA risks but also the
accuracy of H and vice versa. When we use the second
or third way to tune DMP, we select samples from the
reference dataset and use them as R in Step 2.

3 Our Proposed Defense
In this section, we propose a new defense that can pro-
tect ML from MIAs without using a reference dataset.

3.1 Idea

The starting point with our approach is DMP [33]. That
is, we train a teacher model F using a training dataset
D, compute soft labels F (x) to x of public reference
dataset R, train a student model H using (x, F (x)), and,
finally, use H for inference. DMP can mitigate MIAs as
described in Section 2.3.

The problem with DMP is that it requires a public
reference dataset, which may be difficult to collect in
privacy-sensitive domains [33]. A naïve idea to solve this
problem is to use the original D as a reference dataset.
However, our experiment shows that this approach does
not sufficiently mitigate the MIA risk (see Section 6.1).
The main problem of the naïve idea is that data x of the
reference dataset R = D ismember data of F . Therefore,
F results in overfitting on x and the confidence score ŷ =
F (x) is close to the one-hot vector y of the true label.
Hence, H trained on (x, ŷ) results again in overfitting
on x, which can be exploited by an MIA.

Our proposed defense, denoted by knowledge cross-
distillation (KCD) is designed to overcome the above
problem. We divide the training dataset into n parts,
leave one part as a reference dataset, and train a teacher
F1 using the remaining parts. To increase the accuracy
of KCD, we prepare teachers F2, . . . , Fn as well and re-
peat the above procedure for each teacher by changing
the reference part. Finally, we use each reference part
to distill the knowledge of each corresponding teacher
into a single H. Our defense solves the problem of the
naïve idea because none of the remaining parts of the
training dataset are used to train the teacher model.

3.2 Description

The training algorithm of the our proposed defense,
KCD, is given in Algorithm 2 and is overviewed in Fig-
ure 1. Here, F1, . . . , Fn, and H are models with the same
structure as that of the model F that we want to pro-
tect2. L is the loss function.

In Algorithm 2, we divide training dataset D into n
disjoint subsets D1, . . . , Dn with almost the same size,
such that D =

⊔n
i=1Di holds3 (Step 1). Then, for i =

1, . . . , n, we train the teacher model Fi using the dataset

2 Although we use the term “distillation,” we use teacher and
student models with the same structure as in DMP [33]. This
is because we are not concerned about the size of the resulting
model.
3

⊔n

i=1 Di denotes a disjoint union of sets
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D but exclude Di (Step 2-4). Let D̄i be the dataset that
is obtained by adding soft labels Fi(x) to (x, y) ∈ Di

(Step 5). Finally, we train a student model H using the
dataset

⋃
i D̄i to minimize the combined loss function

with hyperparameter α (Step 6).
Our loss function comprises two terms; the first term

is the loss for soft labels y′, and the second is the loss
for the true label y. The hyperparameter α can tune the
privacy-utility trade-off of KCD. In fact, if α = 1, our
defense protects the privacy of the training data due
to the reason mentioned in Section 3.1. If α = 0, KCD
becomes the same as the unprotected ML.

Note that our privacy-utility trade-off based on α

cannot be directly applied to the known knowledge
distillation-based defenses, DMP [33] and Cronus [3],
because the public reference datasets for these defenses
do not have the true labels and loss for the predicted
scores and true labels cannot be computed.

Algorithm 2 Training algorithm of KCD

Input: training dataset D ⊂ {(x, y) | x ∈ Rd, y ∈
{0, 1}c}, hyperparameter α ∈ [0, 1], and initialized
parameters of F1, . . . , Fn, H.

Output: Distilled student model H.
1: Divide D into n randomly selected disjoint subsets
{Di}ni=1 with almost the same size, such that3

D =
n⊔

i=1
Di,

2: for i = 1, . . . , n do
3: Train Fi by using D \ Di as a training dataset

until the training converges to minimize the loss∑
(x,y)∈D\Di

L(Fi(x), y).

4: end for
5: Let D̄i be a dataset Di with soft label

D̄i = {(x, Fi(x)) | ∃y : (x, y) ∈ Di},

and let D̄ = ∪iD̄i.
6: Train H by using a dataset D̄ until the training

converges to minimize the loss

α
∑

(x,y′)∈D̄

L(H(x), y′) + (1− α)
∑

(x,y)∈D

L(H(x), y)

(1)

7: Return H.

Fig. 1. Outline of KCD when dividing training dataset into
three subsets. F1-F3: teacher models, H: student model.

4 Experimental Setup
We conducted our experiments using the following
datasets and model architectures as in the previous
studies [5, 17, 23, 24, 33–35].

4.1 Datasets

CIFAR 10: This is a typical benchmark dataset used
for evaluating the performance of image-classification
algorithms [18]. It contains 60, 000 RGB images. Each
image is composed of 32× 32 pixels and labeled in one
of 10 classes.

Purchase100: This is a benchmark dataset used for
MIAs. It is based on a dataset provided by Kaggle’s
Acquire Valued Shoppers Challenge [28]. We used a
processed and simplified one by Shokri et al. [34]. The
dataset has 197, 324 records with 600 binary features,
each of which represents whether the corresponding cus-
tomer purchased an item. The data are clustered into
100 classes representing different purchase styles, and
the classification task is to predict which one of the 100
classes an input is in.

Texas100: This is also a benchmark dataset used for
MIAs. It is based on the hospital discharge data [40]
from several health facilities published by the Texas De-
partment of State Health Services and was processed
and simplified by Shokri et al. [34]. It contains the 100
most frequent procedures that patients underwent. The
dataset has 67, 330 records with 6, 170 binary features
of patients, such as the corresponding patient’s symp-
toms and genetic information. The classification task is
to predict which one of the 100 procedures a patient for
a piece of an input data underwent.
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4.2 Model Architectures

Wide ResNet-28: For CIFAR 10, we used the same
model architecture as in a previous study [5], i.e., Wide
ResNet-28.

Purchase and Texas Classifiers: For Purchase 100
and Texas 100, we used fully connected NNs with Tanh
activation functions. We used the same layer sizes as in a
previous study [23], i.e., layer sizes (1024, 512, 256, 128).

4.3 Setting of MIA

As in the previous studies of MIAs [23, 24], we con-
sider a strong setting where the attackers know the non-
member dataset and a subset of the member dataset
of the target model as prior knowledge. (This subset of
the member dataset does not contain the target data, of
course). This setting is called supervised inference [24].

One may think that the supervised inference setting
seems too strong as a real setting. However, the shadow
model technique [34] allows an attacker to achieve su-
pervised inference virtually [24]. A shadow model is an
ML model that is trained by an attacker to mimic a
target ML model. The attacker then knows the training
data of the shadow model as in the supervised inference
setting since the attacker trains it.

4.4 MIAs for Evaluations

We conducted comprehensive experiments for three
types of MIA: black-box MIA with confidence score,
black-box MIA with only labels, and white-box MIA.

4.4.1 Black-Box MIA with Confidence Score (BB
w/Score)

These are attacks such that the attackers know the con-
fidences scores as outputs of the target model. There
are two sub-types of these attacks.

NN-based Attack: This is a type of black-box MIA
using an NN, called attack classifier A. Specifically, the
attacker knows a set of non-member data and a sub-
set of member data as their prior knowledge, as men-
tioned in Section 4.3. They send these data to the target
model and obtain their confidence scores as answers.
Using these data, the answers, and the knowledge of
whether these data are members, they train A. Finally,

Name Condition

Top 1 argmax
i

F (x)i

?
≥ τ

Correctness argmax
i

F (x)i
?= argmax

i

yi

Confidence F (x)`[y]
?
≥ τ`[y]

Entropy −
∑

i
F (x)i logF (x)i

?
≤ τ`[y]

Modified Entropy
−(1 − F (x)`[y]) logF (x)`[y]

−
∑

i6=`[y] F (x)i logF (x)i

?
≤ τ`[y]

Table 1. Known metric-based attacks. Here, F (x)i and
yi mean i-th component of F (x) and y respectively and
`[y] is the label corresponding to one-hot vector y, that is,
argmaxi yi. τ and τ`[y] are thresholds determined by attackers.

they infer the membership status of the target data by
taking their label and confidence score as input to A.
There are two known NN-based attacks [31, 34]. The
difference between them is whether the attacker trains
an attack classifier for each label class; the original at-
tack by Shokri et al. [34] uses one classifier per each
class and a simplified attack by Salem et al. [31], called
ML Leaks Adversary 1, uses only one common attack
classifier for all classes.

In our experiments, we executed the attack ML
Leaks Adversary 1 [31] since it is simpler and “has very
similar membership inference” [31] to that of Shokri et
al. [34].

Metric-based Attack: This is a type of black-box
MIA that directly uses the fact that the confidence
score F (x) of the target data (x, y) differs depending
on whether (x, y) is a member. Specifically, an attacker
computes a value m = M(F (x), y), called a metric, and
infers (x, y) as a member if m satisfies a given condition
(e.g., greater than a given threshold). There are five
known attacks of this type: Top 1, correctness, confi-
dence, entropy, and m-entropy attacks (Table 1), where
Top 1 was proposed in [31], and the other four were
proposed in [35] by generalizing or improving known
metric-based attacks [19, 31, 31, 35, 36, 44].

In our experiments, we executed all five metric-
based attacks [31, 35] mentioned above.

4.4.2 Black-Box MIA Only with Labels (BB Label
Only)

These are attacks such that attackers know only the
predicted labels as outputs of the target model without
knowing the confidence scores. We call such an MIA a
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label-only MIA. There are two known label-only attacks,
boundary distance (BD) and data augmentation [5]. We
introduce only the former one because it is stronger than
the latter one [5].

A BD attack is an attack that computes the small-
est adversarial perturbation ∆x satisfying argmax

i
F (x+

∆x)i 6= argmax
i

yi for the target data (x, y). Here,

F (x+∆x)i and yi are the i-th components of F (x+∆x)
and y, respectively. The attacker then infers x is a mem-
ber if the L2 norm of ∆x is larger than a predetermined
threshold. A BD attack is a black-box MIA if adversar-
ial perturbation is crafted by HopSkipJump [4]. How-
ever, the attack becomes a white-box MIA if we use the
Carlini-Wagner method for adversarial perturbation [1].

In our experiments, we executed the BD attack with
HopSkipJump. This is because the attack accuracy of
the BD attack based on HopSkipJump is asymptoti-
cally equal to that of the BD attack with Carlini-Wagner
when the number of queries increases [5].

4.4.3 White-Box MIA (WB)

These are attacks such that attackers can take the con-
fidence score of target data besides the model structure
and model parameters of the target model as input. Two
white-box attacks have been proposed, the Nasr-Shokri-
Houmansadr (NSH) attack [24] and Hui’s attack [16].

The NSH attack exploits the fact that the gradient
for the model parameter of the target model F on (x, y)
becomes smaller if (x, y) is a member of F . Specifically,
an attacker computes the gradient of F on the target
data and infers the membership of (x, y) by inputting
the gradient as well as the confidence score and the class
label into an NN trained by the attacker. Hui’s attack
focuses mainly on reducing the assumption behind the
NSH attack. That is, it can be executed without assum-
ing that an attacker has member data as prior knowl-
edge [34].

In our experiments, we executed only the NSH at-
tack, since our assumption was stronger than Hui’s; an
attacker has member data as prior knowledge (as men-
tioned in Section 4.3).

4.5 Known Defenses

Known defenses can be categorized into the following
three types. We chose the best defense from all three
types for comparison with our method.

Regularization-based Methods: These methods use
the fact that the regularization techniques of ML mod-
els mitigate overfitting, one of the main reasons behind
the MIA risk [44]. Regularization techniques, such as
L2-regularization, dropout [37], and early-stopping, also
mitigate the MIA risk, as pointed out by Nasr et al.
[23], Shokri et al. [34], and Song et al. [35], respectively.
Meanwhile, Adversarial Regularization (AdvReg) [23] is
a regularization that is focused on mitigating MIAs. To
conduct our experiment, we chose AdvReg from this
type of attack since it mitigates the MIA risk the best.

AdvReg is based on a game theoretic framework
similar to GANs [11]. Specifically, we train a model F we
want to protect and a pseudo attacker A alternatively.
The aim of the A is to distinguish member data from
non-member data. It corresponds to a discriminator of
a GAN, and the gain of the A is added to the loss of F
as a regularization term.

AX (Adversarial eXample)-based Method: This
method exploits an AX [38] to mitigate the MIA risk,
where AX is a technique for deceiving ML by adding
small noise to the input of the ML. We used MemGuard
[17] in our experiments. MemGuard adds AX noise to
the output of F , which we want to protect. Then, an
attacker who uses an NN to attack F is deceived by the
noise and cannot accurately determine the membership
of the target data.

KT (Knowledge Transfer)-based Methods: These
methods exploit KT to mitigate the MIA risk. Here, KT
means knowledge distillation (explained in Section 3.1)
or its variants. There are three known KT-based meth-
ods: DMP [33], PATE [26], and an improved variant
of PATE, PATE with confident-GNMax [27]. We used
DMP and PATE with confident-GNMax in our experi-
ments for image data. However, we used only DMP for
tabular data because PATE with confident-GNMax re-
quires GANs.

Details on DMP have already been given in Section
2.3. Meanwhile, PATE trains multiple teacher models
with disjoint subsets of private training data, gives pub-
lic data hard labels chosen by noisy voting among the
teachers, and finally trains a student model using la-
beled public data. A noisy voting mechanism provides
differential privacy guarantees with respect to the train-
ing data. Confident-GNMax is a new noisy aggregation
method for improving the original PATE. To achieve a
smaller privacy budget ε, instead of labeling all pub-
lic data, it selects the samples among public data to
be labeled by checking if the result of a noisy plural-
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ity vote crosses a threshold. Once the threshold and
noise parameters are determined, ε can be computed.
We train a student model using semi-supervised learn-
ing with GANs [32].

4.6 ML Setups and Hyperparameter
Choosing

4.6.1 ML Setups

In all experiments, we used a batch size of 64, the SGD
optimizer with a momentum of 0.9 and weight decay
of 10−5, and the ReduceLROnPlateau scheduler with
default hyperparameters. The model that recorded the
best validation accuracy in five trials was evaluated to
test the accuracy and risks against the four types of
MIAs. We conducted all experiments using the PyTorch
1.7 framework on a Tesla V100 GPU with 32-GB mem-
ory.

Table 2 shows how we split the above datasets in our
experiments. Here, validation dataset is a dataset used
to select the best model parameters that does not over-
lap with the training dataset in our experiment. Follow-
ing the previous studies [23, 24], we considered strong
attackers who know the non-member dataset and a sub-
set of the member dataset of the target model as their
prior knowledge (see Section 4.3). We used the rest of
the training/testing data as the target data to execute
an MIA. The amounts of known data and target data
are also depicted in Table 2.

4.6.2 Hyperparameter Tuning

Unprotected, AdvReg, MemGuard, DMP, and
KCD: Using Optuna [25], we optimized hyperparame-
ters for each scheme.
– For unprotected models, we chose learning rates

that maximize validation accuracies.
– For AdvReg, MemGuard, DMP, and KCD, we

tuned the learning rates and their specific parame-
ters, i.e., the penalty parameter λ (AdvReg), learn-
ing rate β of a pseudo attacker, the weights c2, c3 of
the loss function (MemGuard), the size of the pub-
lic reference data4 (DMP), and the intensity α of

4 There are three privacy-utility trade-off hyperparameters de-
picted in the DMP paper [33], temperature, entropy criterion,
and the number of reference data as explained in Section 2.3.

the distillation in Algorithm 2 (KCD), respectively.
We optimized their hyperparameters toward a high
validation accuracy and low MIA risk.

The hyperparameters of the defenses were basically cho-
sen to have almost the same accuracy as the unpro-
tected model and a considerably low MIA risk, except
for some defenses whose accuracy inevitably drops no
matter which hyperparameters we chose for them with
low MIA risk.
– In Tables 3, 4, and 5, we chose hyperparameters for

AdvReg, that enable a better privacy-utility trade-
off (i.e., relatively small validation accuracy drop
and mid-level MIA resistance) since almost the same
validation accuracy as the unprotected model (mak-
ing the MIA risk similar to a random guess, resp.)
results in an MIA risk that is the same as that of
an unprotected model (deterioration of validation
accuracy, resp.).

– For MemGuard, we fixed ε = 1.0 and tuned the
other parameters toward a low MIA risk.

– The hyperparameters of DMP were chosen to repli-
cate the performance of the original paper [33].

– For KCD, we chose a model whose validation accu-
racy is close to that of DMP.

PATE: For PATE, we trained four ensembles of teach-
ers, i.e., 3, 5, 10 and 25, and selected five different pri-
vacy levels (ε, δ) for each ensemble (where δ is fixed
to 10−4 as the order of the size of the public refer-
ence dataset is 104 [27]). Since our interest is empiri-
cal MIA resistance, not DP guarantees, we chose var-
ious values for ε. For example, for three teachers, we
chose ε = 229, 1473, 6291, 36849, 83535, 141923 (These
cannot be round numbers because these values are auto-
matically computed after we choose the thresholds and
noise parameters). Epsilon 141923 was the minimum
value that maximized the validation accuracy (i.e., cor-
responding to the non-private case), and epsilon 229 was
the minimum value that provided enough labeled pub-
lic data to train a student. Using Optuna, we optimized
the learning rates toward a high validation accuracy for
each ε.

In Table 5, we chose the hyperparameters “3 teach-
ers, ε = 141923, δ = 10−4,” which maximized the valida-

We chose the number of pieces of reference data from them for
our experiments since this number shows the best trade-off in
our environment.
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Train. Ref. Val. Test.
Dataset All Known Target All Known Target
Purchase 10000 5000 2500 10000 5000 5000 2500 2500
Texas 10000 5000 2500 10000 5000 5000 2500 2500

CIFAR10 25000 12500 2500 25000 5000 5000 2500 2500

Table 2. Dataset splits. “All”: All data used to train or test, “Known”: Known data that attacker can exploit to execute MIA,
“Target”: Target data for which attacker attempts to infer membership.

tion accuracy because all the trained models had almost
the same MIA risks.

4.6.3 Choice of Loss Function

The loss functions for most of the defenses were chosen
from the original studies. The exception is DMP with
synthetic reference data [33]; we chose the mean squared
error (MSE) as a loss function since “synthetic” DMP
with this loss function performed better than the orig-
inal loss function, KL divergence, in our experiments.
We chose a suitable loss function on the basis of known
facts about distillation: the KL loss at a high tempera-
ture T asymptotically approaches the MSE, and which
of these performs well is an empirical question [12] (the
loss with T = 1 is KL loss). Therefore, we examined the
KL divergence loss at various T for “synthetic” DMP
and found that a higher T leads to better performance
and that MSE loss is the best. By doing similar experi-
ments for our defense, KCD, we determined the suitable
loss to be the MSE for the Purchase100 and CIFAR10
datasets and KL divergence with T = 1 for the Texas100
dataset.

4.6.4 Notes on Implementation of DMP

The published code5 does not include reference data se-
lection but nonetheless achieved good results. Therefore,
we did not implement entropy-based criteria for DMP
in our experiments.

For DMP with synthetic reference data, we trained
(unconditional) DCGAN as in the original study [33].
We trained them to obtain generated images in accor-
dance with the implementation of PyTorch examples6.
Since the resulting images (Figure 6) were natural and

5 https://github.com/vrt1shjwlkr/AAAI21-MIA-Defense
6 https://github.com/pytorch/examples/blob/master/dcgan/
main.py

showed large diversity, we considered them to be suffi-
cient for the reference dataset of DMP.

5 Experimental Results

5.1 Tabular Dataset

Tables 3 and 4 show the accuracies and MIA attack
accuracies of our KCD and known defenses for two tab-
ular datasets, Purchase100 and Texas100. Here, KCD is
compared with the best defenses chosen in Section 4.5
from each of the three categories described in the same
section. We stress that one can succeed in an MIA with
a probability of 50% by random guessing. Hence, the
baseline of the attack accuracies of these tables is 50%.

Note that the values for the attack accuracy of
MemGuard on these tables are much higher than the
values reported in the original paper [17]. This is be-
cause the setting we consider, described in Section 4.3,
is more advantageous for attackers than that of [17].

Figure 2 shows the privacy-utility trade-off of KCD
and DMP. The results of our experiments for the tabular
datasets Purchase100 and Texas100 are summarized as
follows.
1. Tables 3 and 4 show that KCD was much better

than the known defenses that also do not use a pub-
lic reference dataset, AdvReg and MemGuard, in
all of the three categories of MIAs, the black-box
MIA with confidence score [31, 34, 35], the label-
only MIA [5], and the white-box MIA [24].
For Purchase100, for instance, the testing accuracy
of KCD was 11.5% higher than that of AdvReg and
its attack accuracy was 13.3% smaller than that of
MemGuard for “BB w/score” attacks.

2. Surprisingly, Tables 3 and 4 also show that, in both
privacy and utility senses and for all of the three
categories of MIAs, KCD is comparable to the state-
of-the-art MIA defense, DMP, with public reference
data, although KCD does not use public reference
data. As mentioned in Section 1, the availability of

https://github.com/pytorch/examples/blob/master/dcgan/main.py
https://github.com/pytorch/examples/blob/master/dcgan/main.py
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Defense Purchase100

Train Test BB WBCategory Name w/score label only

Reg-based AdvReg [23] 82.3% 64.2% 59.9% 58.9% 60.2%
@Public Ref. AX-based MemGuard [17] 100.0% 77.0% 72.1% (68.6%) (74.3%)

KT-based KCD 93.8% 75.7% 58.8% 58.7% 59.5%
∃Public Ref. KT-based DMP [33] 89.3% 75.4% 57.1% 57.5% 57.3%

Unprotected 100.0% 77.0% 73.7% 68.6% 74.3%

Table 3. Comparisons on Purchase100.

Defense Texas100

Train Test BB WBCategory Name w/score label only

Reg-based AdvReg [23] 60.5% 45.5% 59.5% 56.7% 58.0%
@Public Ref. AX-based MemGuard [17] 90.7% 52.5% 68.6% (69.7%) (70.0%)

KT-based KCD 59.2% 52.0% 56.2% 53.6% 55.8%
∃Public Ref. KT-based DMP [33] 65.1% 51.9% 56.3% 56.1% 56.5%

Unprotected 90.7% 52.5% 69.9% 69.7% 70.0%

Table 4. Comparisons on Texas100.

Defense CIFAR10

Train Test BB WBCategory Name w/score label only

@Public Ref.

Reg-based AdvReg [23] 84.9% 76.3% 54.6% 54.7% 55.2%
AX-based MemGuard [17] 100.0% 82.1% 64.3% (55.6%) (66.0%)

KT-based DMP [33] (synth. ref.) 81.1% 75.5% 52.5% 52.5% 52.6%
KCD 94.0% 82.2% 55.8% 55.6% 56.2%

∃Public Ref. KT-based DMP [33] 84.2% 82.2% 51.1% 50.9% 51.4%
PATE [27] 74.2% 72.8% 51.2% 50.2% 51.4%

Unprotected 100.0% 82.1% 65.9% 65.4% 66.0%

Table 5. Comparisons on CIFAR10

Explanatory notes on above three tables:
– Rows

– “@Public Ref.” (resp. “∃Public Ref.”) means defense methods for ML models not using (resp. using) public reference data.
– The bold means the best value in each column among the defenses of “@Public Ref.”
– In Table 5, “DMP [33] (synth. ref.)” is DMP with public reference data generated using DCGAN [29].
– In Table 5, “PATE” is PATE with confident-GNMax [27].

– Columns
– “Train” and “Test” are the training and testing accuracies.
– “BB w/score” is the maximum attack accuracies of the following black-box MIAs using confidence scores, ML Leaks

Adversary 1 [31] and five metric-based attacks [31, 35]. See Appendix A for the attack accuracy of each attack.
– “BB label only” and “WB” are the attack accuracies of the BD attack [5] and NSH attack [24], respectively.

– Others
– The values of MemGuard in “BB label only” were not obtained in the experiments. We included the same values as the

unprotected models because, as explained in [5], MemGuard works in such a manner that a model’s predicted labels are
not changed using the defense; therefore, the attack accuracies of label-only attacks for MemGuard become the same as
those of unprotected models.

– Similarly, we included the same values as the unprotected models for MemGuard in “WB” because MemGuard is designed
for black-box MIAs, and attackers using white-box MIAs can easily recover an unprotected model from MemGuard.
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Fig. 2. Privacy-utility trade-off of DMP and KCD for
Purchase100.

Fig. 3. Privacy-utility trade-offs among defenses for
CIFAR10.

Fig. 4. Privacy-utility trade-off of our KCD, “split-
ting” DMP, “reusing” DMP, and unprotected model
for Purchase100.

Explanatory notes on above three figures:
– The points towards the bottom right are better defenses, i.e., more accurate and more private ones.
– A larger point means a larger parameter.
– The vertical axis “Attack Accuracy” means “BB w/score” from Table 3.
– The privacy-utility trade-off hyperparameters are as follows.

– KCD: α of Algorithm 2 (α = 0.6, 0.8, 1.0 for Purchase100, α = 0.25, 0.5, 1.0 for CIFAR10)
– DMP: the number of pieces of reference data (n = 2000, 4000, . . . , 20000); this is the best privacy-utility trade-off parameter

in our experiment as described in Section 4.6.2 and our α cannot be used directly for DMP as described at the end of
Section 3.2.

– DMP with synthetic data: the number of pieces of synthetic reference data (n = 12500, 37500, 50000)
– AdvReg: the penalty parameter λ = 2.623, 3.019, 8.847
– MemGuard: the distortion budget ε = 0.1, 0.5, 1.0
– “Splitting” DMP and “Reusing” DMPs: the percentages θ of training data used to train the student models (θ = 7%

to 50% for “splitting” DMP, θ = 20% to 100% for “reusing” DMPs). Note that the accuracy of “reusing DMP” with
θ = 100% is better than the unprotected model. This kind of increasing accuracy is observed in knowledge distillations
[12].



Knowledge Cross-Distillation for Membership Privacy 373

public data is not guaranteed [33]. The above results
show that KCD could avoid this problem without
sacrificing privacy or utility in these experiments.

3. Figure 2 shows that, for Purchase100 and for the
“BB w/score” attack, the privacy-utility trade-off of
KCD was also comparable to that of the state-of-
the-art MIA defense requiring public reference data,
DMP.
We also executed similar experiments for “label
only” and “WB.” They showed that the privacy-
utility trade-off of KCD was comparable to that of
DMP for these two types of attacks as well.

5.2 Image Dataset

Our experiments for the image dataset CIFAR10 were
conducted in a similar manner as the above experiment.
We additionally compared KCD with two more defenses.
The first one was PATE (with confident-GNMax) [27].
The second one was DMP with synthetic reference data
[33] generated using deep convolutional GANs (DC-
GANs) [29]. Note that these two defenses were not used
in our experiment with the tabular datasets because
they use GANs.

The results of these experiments are summarized as
follows.
1. Table 5 and Figure 3 show that the privacy-utility

trade-off of KCD was much better than that of the
known defenses without public reference data, Ad-
vReg and MemGuard, and DMP with synthetic ref-
erence data for the “BB w/score” attack.
We also executed similar experiments for “label
only” and “WB.” They showed that the privacy-
utility trade-off of KCD is much better than the
known defenses without public reference data as
well.

2. Table 5 also shows that KCD was comparable to
DMP and performed much better than PATE in
terms of testing accuracy. DMP and PATE were
better in terms of privacy, but KCD is better in
the sense that it does not require public reference
data.

6 Discussions and Limitations

6.1 Discussions

Best Number n of Teacher Models: Figure 5 shows

Fig. 5. Effect of number n of teacher models on per-
formance of our KCD for CIFAR10. We examined
n = 2, 3, 5, 7, 9, 11, 13, and 15 (a larger point means a larger
n). Note that points indicating n = 11 and 13 are too close to
distinguish.

the performance of our KCD for various teacher mod-
els on CIFAR10. Generally, a higher number of teacher
models implies better privacy and utility, and they per-
form the best when n = 15.

The computational cost of KCD is greater than
those of DMP and PATE but less than those of some of
the other defense methods, such as AdvReg. A large
computational cost may limit applications for train-
ing large models with limited computational resources.
However, we believe that the advantage of KCD, “public
reference dataset not necessary,” makes other applica-
tions possible.

We stress that, for inferring, KCD incurs only
the same computational cost as an unprotected target
model, unlike MemGuard.

Comparison with Naïve Ideas: To clarify the effect
of our “knowledge cross-distillation” idea for KCD in
terms of privacy and utility, we compared KCD with
two naïve improvements to DMP to make it “without
reference data.”

The first naïve improvement, “splitting” DMP, is
as follows. Split the training dataset into two distinct
parts; the former and the latter parts contain (100 −
θ)% and θ% of training data, respectively. Then, train
the teacher model using the former part as a training
dataset and train the student model through distillation
by using the remaining one as a reference dataset.

The second naïve improvement, “reusing” DMP, is
as follows. Train a teacher model using all of the train-
ing data, take a subset containing θ% of training data,
and reuse this subset as the reference dataset to train a
student model.



Knowledge Cross-Distillation for Membership Privacy 374

Figure 4 shows that, for the CIFAR10 dataset, the
privacy-utility trade-off of our KCD was better than
those of these two variants of DMP in our experi-
ments. Our KCD contains two ideas, “splitting train-
ing dataset” and “reusing training data for reference
data.” The above result shows that the performance of
our KCD is achieved only when both of these ideas are
used, and it cannot be achieved with only one of these
ideas.

6.2 Limitations

Duplication in Dataset: If certain data appear twice
in the training dataset, KCD cannot ensure defense
against MIAs for such a pair of data. In fact, the defense
against MIAs as depicted in Algorithm 2 is ensured be-
cause inputs x ∈ Di to Fi are not contained in dataset
D \ Di used in the training of Fi. However, this is not
the case when the same data fall into Di and D \ Di,
respectively.

Similarly, a training dataset that contains two pieces
of data that are not the same but very similar would
affect the privacy-utility trade-off of KCD. Investigating
and solving this is for future work.

Outlier Data, Imbalanced Dataset: Long et al. [21,
22] showed that an ML model became weaker against
MIAs when the target data were outliers or selected
carefully by an attacker, even if the ML model was well-
generalized.

We selected the target data uniformly at random in
our experiments. Hence, KCD, as well as other known
defense methods, may have weak MIA resistance against
carefully selected data.

Truex et al. [41] showed that MIAs against mi-
nority classes of imbalanced data were more likely to
be successful. Here, imbalanced data means a dataset
with skewed class proportions. Minority classes mean
the classes that make up a smaller proportion. Hence,
KCD, as well as other defense methods, may also have
weak protection against MIAs in this case.

7 Conclusion
We proposed a new defense against MIAs, knowledge
cross-distillation (KCD), which does not require any
public or synthetic reference data to protect ML models
unlike the state-of-the-art defense, DMP.

Our experiments showed that the privacy protec-
tion and accuracy of our defense were comparable to
those of DMP for the tabular datasets Purchase100 and
Texas100, and our defense had a much better privacy-
utility trade-off than those of the existing defenses for
the CIFAR10 image dataset.

Our defense is a feasible method for protecting the
privacy of ML models in areas where public reference
data are scarce. Future work includes ensuring the pri-
vacy of duplicated or similar data in a dataset, investi-
gating privacy for outlier and/or imbalanced data, and
guaranteeing the privacy of KCD theoretically.
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A Appendix

Category Defense Leaks 1 [31] Top 1 [31] Corr. [35] Conf. [35] Entr. [35] m-Entr. [35]

@Public Ref.
Reg-based AdvReg [23] 57.0% 56.8% 58.9% 59.9% 55.3% 59.7%
AX-based MemGuard [17] 66.6% 71.9% 61.3% 72.1% 70.1% 72.1%
KT-based KCD 54.9% 55.0% 58.8% 57.0% 53.7% 57.3%

∃Public Ref. KT-based DMP [33] 53.9% 53.9% 57.1% 55.8% 52.8% 55.7%

Unprotected 72.8% 72.0% 61.3% 73.6% 71.2% 73.7%

Table 6. BB attacks with confidence scores on Purchase100

Category Defense Leaks 1 [31] Top 1 [31] Corr. [35] Conf. [35] Entr. [35] m-Entr. [35]

@Public Ref.
Reg-based AdvReg [23] 52.5% 52.1% 56.7% 58.8% 53.2% 59.5%
AX-based MemGuard [17] 57.7% 58.0% 68.6% 68.2% 57.7% 68.2%
KT-based KCD 54.8% 54.9% 53.1% 56.2% 54.8% 55.4%

∃Public Ref. KT-based DMP [33] 51.2% 51.5% 56.1% 56.3% 51.0% 56.1%

Unprotected 58.8% 58.6% 68.6% 69.7% 59.4% 69.9%

Table 7. BB attacks with confidence scores on Texas100

Category Defense Leaks 1 [31] Top 1 [31] Corr. [35] Conf. [35] Entr. [35] m-Entr. [35]

@Public Ref.

Reg-based AdvReg [23] 53.1% 52.7% 54.6% 54.6% 51.9% 54.6%
AX-based MemGuard [17] 63.0% 63.4% 58.6% 64.3% 63.1% 64.3%

KT-based DMP [33](synth. ref.) 51.0% 51.2% 52.5% 51.8% 50.3% 52.0%
KCD 52.1% 52.2% 55.6% 55.3% 51.3% 55.8%

∃Public Ref. KT-based DMP [33] 50.8% 50.7% 50.7% 50.4% 51.1% 50.2%
PATE [27] 50.0% 49.8% 50.5% 50.4% 50.0% 51.2%

Unprotected 64.2% 63.8% 58.6% 65.6% 63.9% 65.9%

Table 8. BB attacks with confidence scores on CIFAR10

The above tables show the attack accuracies of each black-box MIA with confidence scores. “Leaks 1” means ML
Leaks Adversary 1 [31]. “Top 1,” “Corr.,” “Conf.,” “Entr.,” “m-Entr.,” mean five metric-based attacks [31, 35],
Top 1, correctness, confidence, entropy, and m-entropy attacks, respectively.

Fig. 6. Images generated by (unconditional) DCGAN
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