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Differentially Private Data Releases
Abstract: Organizations often collect private data and
release aggregate statistics for the public’s benefit. If no
steps toward preserving privacy are taken, adversaries
may use released statistics to deduce unauthorized in-
formation about the individuals described in the pri-
vate dataset. Differentially private algorithms address
this challenge by slightly perturbing underlying statis-
tics with noise, thereby mathematically limiting the
amount of information that may be deduced from each
data release. Properly calibrating these algorithms—
and in turn the disclosure risk for people described in
the dataset—requires a data curator to choose a value
for a privacy budget parameter, ε. However, there is lit-
tle formal guidance for choosing ε, a task that requires
reasoning about the probabilistic privacy–utility trade-
off. Furthermore, choosing ε in the context of statistical
inference requires reasoning about accuracy trade-offs
in the presence of both measurement error and differen-
tial privacy (DP) noise.
We present Visualizing Privacy (ViP), an interactive
interface that visualizes relationships between ε, accu-
racy, and disclosure risk to support setting and splitting
ε among queries. As a user adjusts ε, ViP dynamically
updates visualizations depicting expected accuracy and
risk. ViP also has an inference setting, allowing a user
to reason about the impact of DP noise on statistical in-
ferences. Finally, we present results of a study where 16
research practitioners with little to no DP background
completed a set of tasks related to setting ε using both
ViP and a control. We find that ViP helps participants
more correctly answer questions related to judging the
probability of where a DP-noised release is likely to fall
and comparing between DP-noised and non-private con-
fidence intervals.
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1 Introduction
Preserving people’s privacy is often necessary when re-
leasing statistics about sensitive data. For example,
many data curators currently seeking to de-identify
patient data rely on anonymization techniques like k-
anonymity [67], which requires that information for each
person in the released dataset cannot be distinguished
from at least k − 1 individuals whose information also
appear in the release. This property is usually achieved
by suppressing some sensitive record values or generaliz-
ing these values to a broader category, and can be easily
implemented by specifying a value for k. k can then be
applied to any dataset release. However, k-anonymity
has been shown to perform poorly [3] and may allow
adversaries to gain unauthorized information about sen-
sitive patient records [27, 73].

Alternatively, releasing statistics under differential
privacy (DP) [19, 20] makes it possible to provide strong
privacy guarantees for individuals whose information re-
sides in a dataset while still gleaning meaningful in-
sights about the data. In particular, differentially pri-
vate mechanisms for simple summary statistics (e.g.,
the mean of a quantitative variable) typically add a
calibrated amount of random noise to the underlying
statistic (the “query result”), reducing the disclosure
risk of individuals in the dataset while making it possi-
ble to learn about the group in aggregate. Importantly,
DP achieves security in the face of an attacker that
has access to a portion of the data and has strong
composition properties that allow for unlimited post-
processing, along with strict bounds on multiple re-
leases. As such, DP has become the gold standard of
privacy-preserving data releases, and has been deployed
by government (e.g., the U.S. Census Bureau [1, 32, 52])
and tech companies when publishing or otherwise using
user data [2, 4–6, 34, 55, 62]. There are also multiple
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open-source software projects [21, 25, 36] aimed at mak-
ing it easier to conduct differentially private analyses.

However, applying differentially private algorithms
is challenging. Even with support from DP experts,
there are numerous ways that such algorithms can be
misused and result in unintentional data leaks [31, 47,
56, 69]. One of the primary requirements of differentially
private algorithms is setting a value for an abstract “pri-
vacy budget” parameter ε, which calibrates the amount
of expected noise added to a query result. ε is inversely
related to expected noise, and therefore directly related
to accuracy (used interchangeably with utility in this
work). Increased ε values also correspond to weaker pri-
vacy guarantees. In sum, setting ε is a challenging task,
for which there is no widely accepted solution [18].

To select a value for ε for a given data release, a data
curator must negotiate two mutually antagonistic goals:
producing highly accurate results and providing strong
privacy guarantees. Because the impacts on accuracy
and disclosure risk for different ε values are probabilis-
tic, they must consider distributions of possible releases.
Moreover, while many DP tools have treated the un-
noised query result as a point value, in many settings
data are used to support statistical inference, e.g., to
make extrapolations from a query result on a sample to
a population. Hence, the data curator may also want to
release a privacy-preserving confidence interval (CI) for
a population parameter. In such cases, when selecting
ε, the data curator must consider the implications of
added DP noise along with the impacts of measurement
(e.g., sampling) error on the target inference.

Prior work has explored methods for setting ε based
on accuracy requirements [28] and maximum disclosure
risk requirements [49]. However, with a few exceptions
(e.g., [8, 26, 33, 66, 70]), research on DP has largely over-
looked the importance of providing easy-to-interpret
interfaces for differentially private algorithms. As DP
becomes more common among organizational data re-
leases, the design and evaluation of graphical user inter-
faces for making decisions about privacy budgets will
likely be critical to its popular success. In particular,
for DP to be adopted across domains, and by smaller
organizations that lack resources to hire DP experts,
data curators are likely to benefit from tools that help
them reason about key probabilistic relationships in DP
(e.g., between ε, accuracy, and disclosure risk) so that
they can effectively choose ε. For broad use, such tools
should also support scenarios that involve using DP in
the context of statistical inference, since data are of-
ten treated as a proxy for estimating unseen real world
phenomena.

To this end, we introduce Visualizing Privacy
(ViP), an interactive visualization tool for choosing
ε targeted toward clinical health researchers releas-
ing aggregate statistics on sensitive data. We focus on
the clinical research use case due to its strict privacy
needs, strong statistical background of practitioners,
and lack of experience with DP by practitioners in this
area. However, we expect this use case to generalize to
other settings with similar distributions of responsibility
across stakeholder roles and requirements.

Figure 1 depicts the user roles and workflow of a
privacy-preserving data release. The data provider refers
to a hospital that collects and stores private patient
records. The data curator refers to a clinical health re-
searcher who writes queries to be executed over the data
provider’s data. The data curator is responsible for se-
lecting ε values for these queries. They may lack specific
DP knowledge but are experienced with analyzing sen-
sitive data, including those where specific regulations
apply (e.g., HIPAA1 compliance). Finally, the data con-
sumer is a medical journal or publication (alternatively,
members of the public who may read the publication).
They receive the privacy-preserving release, and unlike
the data provider and data curator, are not permitted
to access private patient records.

The workflow begins with the data curator provid-
ing a SQL query to ViP for analysis. ViP passes the
query to the data provider who executes the query over
their private data and returns a precise query result. Us-
ing the result, ViP generates visualizations for the data
curator, who then interactively sets different values for
ε to understand the resulting privacy–utility trade-off.
When the data curator chooses an appropriate privacy
budget, ViP uses it to generate the privacy-preserving
data release ready for public consumption.

SQL Query

Query Result

Risk-Accuracy
Trade-off

SQL Query
Privacy Budget (!)

Data Curator

Data Provider

Data Consumer

Private Public

!-Private 
Result

ViP

Fig. 1. ViP data release workflow

1 Health Insurance Portability and Accountability Act
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Contributions. In this work we introduce ViP, an
interface aimed at helping users make decisions about
ε by visualizing key probabilistic relationships in DP.
Our first contribution is a novel interactive visualiza-
tion interface for privacy budget selection that decom-
poses and expresses probabilistic DP guarantees using
discrete visualizations of distributions [23, 39, 42, 45]
to help data curators reason about the accuracy and
risk associated with hypothetical noised query outputs.
ViP also presents the impact of different ε values on CIs
constructed under DP (with non-private CIs shown for
reference) to support the ε–selection task when statisti-
cal inference is required. We further contribute the re-
sults of an evaluative user study of the interface with 16
research practitioners with little to no DP experience.
We find that the interface helps participants give more
correct answers to questions related to judging where a
privacy-preserving release is likely to fall and comparing
between privacy-preserving and non-private CIs.

2 Background
We introduce a motivating example for ViP based in the
context of clinical research. Next, we describe the main
features of DP used in this paper. Last, we describe prior
research in considering sampling error in a DP context.

2.1 Motivating Scenario

We developed a motivating scenario as part of an ongo-
ing collaboration with colleagues at Northwestern Uni-
versity Feinberg School of Medicine. Our use case is
grounded in the current practices of professionals in
clinical research who query electronic health records in
many of their studies and release aggregate statistics
derived from private data. To publish their findings,
these experts must complete strict de-identification pro-
cedures using techniques such as HIPAA Safe Harbor
or k-anonymity via expert determination. If they fail to
follow these procedures, they may be subject to reper-
cussions including fines and loss of access to data.

The scenario we consider has three roles: 1) data
provider, 2) data curator, and 3) data consumer. As
seen in Figure 1, the data provider is a hospital that
maintains a dataset containing private health records
describing their patients. The data curator is a clinical
researcher with access to the private dataset. They write
queries and intend to publish their results in a medical
journal. Finally, the data consumer is an outside party,
such as a research journal, and does not have access to

private health records but receives the results published
by the data curator.

In this setting, the data provider and data cura-
tor have access to private records, while the data con-
sumer is a limited adversary. This means that the data
consumer will not maliciously interfere with the data
computation or release, but may attempt to re-identify
private records using the released query result.

When conducting clinical health research, the data
curator writes aggregate SQL queries of the form:

SELECT AGGREGATE([DISTINCT] *)
FROM <table>
[GROUP BY <attribute>]
[WHERE <condition>]

In this work, we focus on COUNT aggregate queries,
but can generalize to other aggregate functions such
as SUM or AVG by adapting the methods accordingly.
The data curator may also combine multiple aggregate
queries to determine results such as top–K or proba-
bility of superiority. They then run these queries over
the data stored in the database. The hospital database
schema may contain both protected health information
(PHI) and non-PHI [46].

After receiving query results, the data curator
wishes to release them to the data consumer. The data
curator must satisfy two competing goals. First, the
query results must not reveal any information that can
be used to deduce with too high a probability whether
any individual patient’s sensitive information was in-
cluded in the computation. Second, the query results
must be specific enough to be useful to the data con-
sumer. In order to satisfy both goals, the data curator
must balance accuracy of the release against disclosure
risk. ViP is intended to be used by a data curator in
choosing an appropriate balance.

2.2 Differential Privacy

Mechanisms that satisfy DP provide a stability guaran-
tee on the output of a function based on changes in the
input. Database systems that implement DP leverage
this guarantee to release statistics about sensitive data
while providing privacy for individuals in the database.

In this work, we use ε-DP. Formally, its guarantees
are as follows:

Definition 1 (ε-DP). [ε-Differential Privacy [19]] A
randomized mechanism M satisfies ε-differential pri-
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vacy (DP) if for any pair of neighboring databases D
and D′ that differ by adding or removing one record,
and for any O ⊆ O, where O is the set of all possible
outputs, it satisfies:

Pr [M(D) ∈ O] ≤ eεPr
[
M(D′) ∈ O

]
Note that ε controls the amount of information leaked
about the source data D from O. Say that D is a
database that contains a private record r and D′ is iden-
tical to D, except with r removed. An adversary sees the
released result ofM, but does not know if D or D′ was
used as the input. If ε is very small, then M(D) and
M(D′) are almost indistinguishable from each other.
This means that it is very difficult for the adversary
to learn whether r contributed to the released result
based on the output ofM. If ε is large, thenM(D) and
M(D′) are easily distinguishable from each other based
on the output ofM. Here, the adversary can easily learn
whether r contributed to the released result.

As previously described, choosing a value for ε is a
complex task tied to the specific query and data used.
Ideally, this decision relies on careful reasoning about
the desired balance between risk and accuracy. As later
described in Section 4, we use the Laplace mechanism to
generate privacy-preserving releases. This mechanism is
widely-used for DP and satisfies ε-DP [20] when releas-
ing a function f : D 7→ Rd. We use ∆f to denote the
l1-sensitivity of the function f , that is, the maximum
difference in the function output between any pairs of
neighboring databases. The difference is measured in
terms of the l1-norm. The Laplace mechanism is defined
as follows:

Definition 2 (Laplace Mechanism). Given a function
f : D 7→ Rd with l1-sensitivity ∆f , the Laplace mecha-
nism adds to the true answer f(D) a vector of indepen-
dent noise η ∈ Rd drawn from the Laplace distribution
Lap(∆f/ε)d.

A noisy count produced by a Laplace mechanism is cen-
tered at the true count and has an l1-sensitivity of 1. Its
possible values are defined by the probability density
function (PDF) of the Laplace distribution. (For exam-
ple, a count query has an l1-sensitivity of 1. The noisy
output of a Laplace mechanism with ε = 1 for this query
follows a Laplace distribution centered at the true count
with variance of 2.) As a result, the noisy count can be
either smaller or larger than the true count.

When invoking the DP guarantee multiple times
over disjoint data, each invocation has access to the full
privacy budget [54]. This gives a privacy guarantee that

is constant in relation to the number of groups in the
query. Hence, as shown in Section 4, the privacy bud-
get does not need to be divided between subgroups in a
query in ViP.

Theorem 1 (Parallel Composition). IfMi are each ε-
DP algorithms and Di are disjoint subsets of the input
domain D, then the sequence Mi(Di) satisfies ε-DP.

When processing a result released under DP, no ad-
ditional privacy loss is incurred. This means that any
post-processing step does not consume additional pri-
vacy budget. ViP uses this property in Algorithm 1 (de-
scribed in Section 4.2.2) to calculate privacy-preserving
CIs without requiring additional privacy budget to what
is used to calculate the privacy-preserving release.

Theorem 2 (Post-Processing Property [20]). Let M :
D 7→ R be an ε-DP algorithm and let f : R 7→ R′ be an
arbitrary randomized mapping. Then f ◦M : D 7→ R′ is
ε-DP.

2.3 Disclosure Risk Under DP

The privacy budget ε measures the stability of an algo-
rithm, i.e., the smaller the privacy budget, the more sta-
ble the algorithm is with respect to a change of a record,
and hence a better privacy guarantee. However, the
practical implication of the disclosure risk depends on
the attack model including the attacker’s prior knowl-
edge about the sensitive information and the measure
on the disclosure risk [48, 49, 51, 71].

In this work, we consider an attack model proposed
by Lee & Clifton [49]. Their attack model assumes that
an adversary knows a database D of n records and con-
siders a scenario in which one of the records is not used
for a computation due to its sensitive value. Before look-
ing at the result of the computation, the adversary has
a prior belief that all n records have the same proba-
bility of being absent from the computation. Then, the
disclosure risk is measured by the upper bound on the
probability of the adversary correctly guessing the ab-
sence/presence of a record in the computation after see-
ing the computation result. In this model, all records
are assumed to be independent.

We consider all possible computation results and
database instances of size n. The disclosure risk can be
computed as such:

Definition 3 (Disclosure Risk). Given a database of n
records and an ε-DP mechanism for a function f : D 7→
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Rd for this database, the disclosure risk by Lee & Clifton
[49] is equal to (1 + (n− 1)e

−ε
∆f )−1

We build upon Lee & Clifton [49]’s work by visualizing
how this risk varies with changing ε values for a given
query.

2.4 Statistical Inference Under DP

In a non-private setting, uncertainty intervals are used
to summarize what values of a target population param-
eter are consistent with observed data.

Definition 4 (Confidence Interval). We say that I is
a (1 − α)-level CI for population parameter θ if Pr(θ ∈
I) ≥ (1− α) [43].

In a DP setting, CIs must take into account error from
data collection in the form of sampling error while also
incorporating DP noise. Karwa & Vadhan [43] introduce
mechanisms for calculating a CI under DP for a popu-
lation mean where the data come from a normal distri-
bution. Biswas et al. [7] extend this work by proposing
methods for differentially private mean and covariance
calculations for sub-Gaussian data (see [61] for more on
sub-Gaussian data).

Brawner & Honaker [10] and Ferrando et al. [24] in-
troduce mechanisms for calculating CIs under DP using
statistical bootstrapping methods. Brawner & Honaker
[10]’s method calculates standard errors through post-
processing, meaning that no additional privacy budget
is consumed when determining the CIs. Ferrando et al.
[24]’s method, which we use in ViP, generates boot-
strapped replicates and uses the α

2 and 1− α2 quantiles of
the replicates as the respective lower and upper limits of
the (1−α)-CI. Their method is based on the parametric
bootstrap and performs post-processing on a DP-noised
release.

In contrast to the previous two methods, Du et al.
[17]’s methods for calculating CIs under DP require an
additional privacy budget cost when calculating stan-
dard error. Lastly, Evans et al. [22] consider how to
correct inferences after post-processing noisy answers
based on public constraints such as non-negative counts
or that percentiles must be between 0 and 1. We leave
incorporating such approaches into ViP as future work.

2.5 Uncertainty Visualization

Research has found that framing probability as fre-
quency can improve Bayesian reasoning [29], including
in a visualization context [39, 42, 45], while research in
statistical cognition and pedagogy suggests simulation
of probabilistic processes helps people build statistical
intuitions [11, 13, 15, 64]. ViP applies both approaches.
Inspired by icon arrays for binary variables, quantile
dotplots (see Figure 2a) use discrete representations
of continuous probability distributions and have been
shown to help laypeople make more consistent probabil-
ity estimates [45] and utility-optimal decisions [23]. The
quantile dotplot shown in Figure 2a is Lap(∆f/ε = 2).
In particular, quantile dotplots enable quick calculations
of the cumulative distribution function (CDF). For the
distribution in Figure 2a, Pr(X ≤ −4) ≈ 1

20 since only
one dot is to the left of −4 and there are 20 dots total.

(a) Quantile Dotplot (b) Hypothetical Outcome Plot

Fig. 2. Frequency-framed uncertainty visualizations.

Hypothetical outcome plots (HOPs) [39] (see Fig-
ure 2b) present a probability distribution more viscer-
ally by rapidly animating random draws from a distri-
bution one at a time. HOPs avoid the requirement of
most uncertainty visualizations of adding an additional
visual encoding, and particularly in multivariate proba-
bility judgments have been shown to improve probabil-
ity and effect size estimates over error bars [35, 39, 42].
The vertical line in each frame in Figure 2b displays a
random draw from the distribution shown in Figure 2a.

3 Related Work
Existing interface tools for DP, such as DPComp [33],
PSI (Ψ) [26], Bittner et al. [8], Overlook [70], and
DPP [66] provide interfaces for interacting with DP.
These systems provide extensive support for many types
of queries and provide transformations between DP
guarantees and statistical measures of accuracy. DP-
Comp [33] visually compares various differentially pri-
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vate algorithms under a selected privacy budget level for
lower-dimensional statistics. Bittner et al. [8]’s interface
focuses on showing performance of differentially private
versus non-private machine learning applications. Over-
look [70] shows users their query error owing to DP as
a function of the selected privacy budget using error
bars [70]. PSI (Ψ) [26] does not have any visualizations,
but allows users to select and split a privacy budget
across multiple queries for a desired accuracy guaran-
tee based on metadata, a chosen confidence level, and
a desired release statistic. DPP [66] visualizes relation-
ships between “risk of data sharing”—a measure that
accounts for disclosure risk, level of trust in parties with
whom the data are shared, and the damage that may
be incurred due to a confidentiality breach—and percent
added noise.

We summarize the differences between ViP and re-
lated work in Table 1. First, other than DPP, which was
developed concurrently as ViP, these systems do not
have risk visualization components, and thus do not ex-
plicitly visually communicate the privacy–utility trade-
off (though they may communicate the relationship be-
tween ε and utility non-visually). Without a visual rep-
resentation of this trade-off, users cannot see how their
privacy budget choices affect disclosure risk and may
focus only on optimizing accuracy. Furthermore, pro-
viding more immediate visual feedback on how privacy
and utility trade off may help make the trade-off more
salient [40]. ViP presents users with a risk visualization
linked to an accuracy visualization, allowing them to
visually compare and interact with the privacy–utility
trade-off.

Utility Risk Uncertainty Stat. Budget
Interface Vis Vis Vis Inference Splitting

DPComp [33] 4

Overlook [70] 4 4

PSI (Ψ) [26] 4

Bittner et al. [8] 4

DPP [66] 4 4

ViP 4 4 4 4 4

Table 1. Interface features in DP decision support systems.

Second, systems tend not to provide an explicit visu-
alization of the inherent uncertainty in DP mechanisms
(e.g., running a mechanism twice with the same inputs
can yield different outputs). ViP helps a user reason
about hypothetical values a release can take by using
discrete representations of distributions that research

in uncertainty visualization has found to be effective in
supporting probabilistic reasoning [39, 42, 45].

Third, no existing user interface systems aim to
support statistical inference settings (parameter estima-
tion), making ViP novel in its integration of dynamic
privacy-preserving CIs to aid in these tasks. Providing
CIs enables users to reflect on how reliable differences in
query results are and more generally encourages reflect-
ing on the privacy-preserving release as a composition
of different types of error.

4 ViP Interface for ε Selection
ViP (shown in Figure 3) is an interactive visualiza-
tion interface that allows a user to experiment with
setting different values of ε for multiple queries, each
with multiple subgroups, to see changes in potential
privacy-preserving releases, potential privacy-preserving
CIs, and disclosure risk. Below we describe our design
goals (DGs) and process in developing ViP, and detail
interface components. A demo version2 of the interface
with synthetic data is also available.

4.1 ViP Design Goals and Process

We developed three design goals (DGs) for an interac-
tive visualization interface for choosing ε. These DGs
are based on our knowledge of DP as well as conversa-
tions with our collaborators in health who are working
to bring DP into the healthcare research domain.
– DG1: ε–Accuracy Relationship. The interface

should help a data curator understand the expected
accuracy of a privacy-preserving data release with
a given privacy budget, and how it changes in re-
sponse to varying ε. The interface should help a data
curator understand and make decisions based on
the relationship, including the important observa-
tion that expected accuracy does not increase lin-
early as ε increases.

– DG2: ε–Privacy Relationship. The interface
should help a data curator understand how much
privacy (in terms of disclosure risk) is guaranteed
under a given privacy budget, and how privacy guar-
antees change as ε changes. Similar to DG1, the in-
terface should help a data curator develop an under-

2 https://priyakalot.github.io/ViP-demo

https://priyakalot.github.io/ViP-demo
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Fig. 3. ViP interface for queries about rates of hypertension for various subgroups (by ethnicity, age group, etc.). The user can adjust
values of ε using the privacy budget sliders (see the Privacy Use panel [H]), which dynamically update visualizations in query panels to
the left, which show expected accuracy of the privacy-preserving releases. In addition, the point on the risk curve (see Disclosure Risk
panel [I]) corresponding to the query whose slider has been updated also changes and can be hovered (K) to display the exact value.
The privacy-preserving release lines (L) animate sample draws from the distributions depicted by the dotplots. Individual dots can be
hovered (F) to display a tooltip describing the probability that a privacy-preserving release will fall into the hovered bin.

standing that disclosure risk and ε are not directly
proportional.

– DG3: Statistical Inference in the DP Setting.
The interface should help a data curator understand
the impact of the privacy budget in an inference set-
ting, particularly the propagation of sampling error
and DP noise in CIs constructed under DP.

– DG4: Privacy Budget Splitting. The interface
should help a data curator split a total privacy bud-
get across queries taking into account accuracy and
risk considerations.

The first two goals (DG1, DG2) focus on supporting
the data curator in developing intuitions about relation-
ships between accuracy, risk, and ε in order to grasp the
privacy–utility trade-off so that they may make more in-
formed decisions around setting and splitting ε (DG4).
DG3 bridges the gap between DP and real-world use
of statistics, where making inferences about the popu-
lation is often the goal.

We developed ViP using an iterative design pro-
cess with periodic feedback from our collaborators in
clinical research. We brainstormed target concepts each
visualization should communicate, created low-fidelity

digital mock-ups of visualizations, and finally created
working prototypes with animation in D3.js [9] for se-
lected ideas.

We also conducted a preliminary exploratory user
study using an early version of the interface that dis-
played just one query (the budget splitting task was
not supported yet). We recruited six clinical health re-
search professionals based in the U.S. who had experi-
ence working with health data (e.g., patient data), but
little to no experience with DP. Participants were re-
cruited through our network of clinical health research
professionals, but did not necessarily have direct collab-
oration relationships with the authors. We used a think-
aloud protocol [74], instructing participants to verbalize
their thought-processes while working through the ques-
tions. Feedback from this preliminary study, which we
report on later in Section 4.3, led to an additional design
iteration.

IRB Details. The study was approved by North-
western University’s IRB. Upon completing the study,
each participant received a $50 gift card. Each partici-
pant gave verbal consent to having their session’s video
call recorded and were told they could withdraw con-
sent at any time. Participants were not asked any per-
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sonal questions and were notified that recordings will be
deleted within a year of the study’s publication.

4.2 Interface Components

We describe components in ViP’s query panels, Privacy
Use panel, and Disclosure Risk panel shown in Figure 3.
ViP is implemented in Javascript (including D3.js [9]),
HTML, and CSS.

4.2.1 Query, Metadata, Extrapolation Tabs

Given multiple queries of interest, the system accesses
the private database to return query results. Each
query’s results are shown in a separate panel, labeled
by a shortened version of the query name (in Figure 3,
the query labels are “Ethnicity,” “Age,” etc.). The top of
each query panel has tabs labeled “Query,” “Metadata,”
and “Extrapolation” (see Figure 3A). When clicked,
the Metadata tab shows the data source, number of
records over which the query is executed (broken down
by subgroup), and whether any sensitive variables are
accessed upon query execution. For simplicity, we as-
sume the number of records to be public information, so
displaying them under the Metadata tab requires no ad-
ditional privacy considerations. We show sensitive vari-
ables since privacy requirements differ across types of
patient data and may impact privacy budget decisions.
Note that all queries shown in Figure 3 are about the
proportion of people in each subgroup (by ethnicity, age,
etc.) in a patient cohort diagnosed with hypertension
(unspecified3).

The Extrapolation tab allows the user to indicate
through a checkbox whether the data queried repre-
sent a sample from a larger population. If a user in-
dicates the data are a sample, ViP assumes that the
user is interested in performing statistical inference on
the privacy-preserving releases to make claims about the
population. The interface then displays CIs in the query
panel’s visualizations (see Figure 3B). When the check-
box is unchecked, CIs are not displayed (such as in the
Zip Code query shown in Figure 3C).

3 “Unspecified” indicates that the diagnosis was not specified
as either benign or malignant.

4.2.2 Query Panels

At a high-level, each query’s panel conveys the expected
accuracy of privacy-preserving releases under a given
privacy budget (per DG1). Figure 4 shows an up-close il-
lustration of the visualization for the Hispanic or Latino
group’s data in the Ethnicity query panel.

Privacy-Preserving Release HOP. The vertical black
line labeled “query result” remains static and shows the
un-noised query result. The vertical red line, denoted
“privacy-preserving release,” displays random draws
from the DP output distribution in an animation at
2.5 frames per second (explained in the HOPs box in
Figure 4). This is consistent with the frame rate used
in prior uncertainty visualization research [39, 42]. Users
may play/stop HOPs by using play/stop simulation but-
tons at the top of each query panel (see Figure 3D) or
in the Privacy Use panel (see Figure 3E). Hypothetical
privacy-preserving release lines do not appear when sim-
ulations are stopped. Note that the button in the Pri-
vacy Use panel stops/starts simulations for all queries.

Fig. 4. Quantile dotplot/HOP for the Hispanic and Latino group
(also shown in the Ethnicity query panel in Figure 3) where ε
for the query is 0.096. The visualization shows the distribution
from which potential privacy-preserving releases are drawn (dots
enlarged for illustration), and potential privacy-preserving CIs
(with traditional CIs as reference).

Quantile Dotplot. The quantile dotplot [45, 72] be-
neath the un-noised query result and privacy-preserving
release line displays a distribution from which potential
privacy-preserving releases are drawn (see Figure 4). In
this work, we use the Laplace mechanism (see Defini-
tion 2 in Section 2.2), and therefore display the ap-
propriately parameterized Laplace distribution. A key
parameter of the quantile dotplot is how many dots are
used to represent the distribution: more dots more faith-
fully represent the density function, but in the limit,
area perception will dominate, defeating the point of the
discrete representation. When the number of dots is rel-
atively small, users can rely on subitizing—the human
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visual system’s ability to automatically (i.e., without
counting) recognize small counts like four or fewer—to
estimate tail or other probabilities. We use 25 dots, 4%
chance per dot, to achieve a balance between precision
and ease of interpretation. When hovering over a dot, a
tooltip appears (see Figure 4 or Figure 3F), displaying
the bin lower and upper limits and approximate prob-
ability that the privacy-preserving release falls in the
bin. Without the tooltip, a user can divide the number
of dots in a bin by the total number of dots to determine
the chance that a privacy-preserving release falls into a
given bin.

We note that dot sizes stay the same regardless of
ε. It is beneficial for dot sizes to remain constant across
dotplots because users may rely on area judgments to
make comparisons between them. If a user wants to see
a larger version of a query’s dotplots, they may expand
the query panel (see Figure 3G). When expanded, the
dot sizes are enlarged, but are still consistent for all
dotplots in the query panel.

Confidence Intervals. Finally, when the data are
treated as a sample from a population (specified by the
user in the Extrapolation tab), the user sees two sets
of CIs as gradients below each quantile dotplot (labeled
in Figure 4 and Figure 3B). The bottom CIs are gray,
and their shades convey 50, 80, and 95% binomial CIs
for the population proportion. Specifically, we use the
normal approximation to the binomial distribution to
construct an α-level CI for a population proportion p,
where p̂ is the sample proportion (i.e., the query result)
and n is the sample size:

p̂− zα
2

√
p̂(1− p̂)

n
≤ p ≤ p̂+ zα

2

√
p̂(1− p̂)

n

Directly above the non-private CIs, the colored in-
tervals represent potential (50, 80, and 95%) privacy-
preserving CIs for the population proportion, and
animate at the same frame rate as the line for
privacy-preserving releases. The previously mentioned
stop/start buttons controlling whether simulations are
shown also applies to privacy-preserving CIs (see Fig-
ure 3D). As mentioned in Section 2.4, we calculate these
intervals using Ferrando et al. [24]’s algorithm using a
bootstrap method for constructing CIs under DP; their
method does not require additional privacy budget since
intervals are calculated as a post-processing step de-
scribed in Theorem 2. Algorithm 1 presents how we cal-
culate replicates, where input p is a potential privacy-
preserving release, ∆f is the sensitivity of the query, N
is the group sample size, and the number of replicates

B is set to 500. We find the α
2 and 1− α

2 quantiles of the
replicates to obtain the limits of the privacy-preserving
(1 − α)-CI. In the queries shown in Figure 3, we use
Binom(N, p̃) as Pθ̂, where p̃ is an additionally noised
version of a potential privacy-preserving release p, a pro-
portion. Since the queries are count aggregates, ∆f is
1. Broadly, the algorithm generates B draws from the
Binomial distribution and adds DP noise to these draws
to create replicates.

Algorithm 1: Parametric Bootstrap for CI
Estimation
Input: p, N , B, ∆f
θ̂ ← p+ Lap(µ = 0, β = ∆f

ε )
for b from 1 to B do

p̃ ∼ Pθ̂
θ̃b ← p̃+ Lap(µ = 0, β = ∆f

ε )
end
return (θ̃1, ..., θ̃B)

Displaying the privacy-preserving CIs with the
non-private CIs as reference shows how the privacy-
preserving CIs are typically wider or as wide as the non-
private CIs due to additional uncertainty introduced by
the DP mechanism, indicating two sources of error for
the latter (helping achieve DG3).

Each query panel can be expanded (see Figure 3G)
to take up the entire height of the screen and the width
up until the start of the Privacy Use/Disclosure Risk
panels (see Figure 3H/I); expanding a query panel ex-
pands its visualizations accordingly. Additionally, if a
query has more than two subgroups, these subgroups’
visualizations can be seen by scrolling down within the
query panel. Panel heights are fixed such that the third
subgroup’s visualization is slightly visible by default
(such as in the Age, Race, and Zip query panels in Fig-
ure 3) so that users are more likely to realize that a
given query has more than two subgroups. Each sub-
group’s visualization is draggable so that subgroup vi-
sualizations can be reordered (see Figure 3J). To further
associate each query’s information on the interface, we
assign colors according to query for the query panel vi-
sualizations (dotplot, CIs, etc.) and risk dots. We assign
colors for each query according to the Tableau 10 color
palette [68] and use chroma.js [12] to help determine
color scales for the CIs.
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4.2.3 Disclosure Risk

In the Disclosure Risk panel (see Figure 3I), we plot dis-
closure risk as an upper bound on the probability that
a person’s sensitive attribute (e.g., hypertension diag-
nosis) will be correctly guessed by an adversary given
the query’s output(s). In line with Definition 3 (see Sec-
tion 2.3), we plot the following for all ε values on the
privacy budget slider, where n is the size of the dataset,
and ∆f is sensitivity of queries:

1

1 + (n− 1)e
−ε
∆f

Thus, the curve for disclosure risk shows the upper
bound on the probability that the adversary guesses the
absence/presence of a record in the computation cor-
rectly across values of ε. Note that when considering
the budget allocation problem, where different queries
receive potentially different portions of the privacy bud-
get, ViP shows multiple risk values, each represented as
a dot on the risk curve. When interacting with the visu-
alization, users may hover over a specific dot to display
a tooltip that provides the exact risk value of that dot
(see Figure 3K). Each dot in the panel corresponds to
either a single query or to all queries. For example, the
black dot shown in the Disclosure Risk panel represents
the overall risk computed using the sum of the bud-
gets allocated to each query as set in the Privacy Use
panel. Conversely, the colored dots each correspond to
a specific query, where the dot’s value equals the risk
if only that query’s results are released. The magnitude
of risk for each query’s dot is computed using Defini-
tion 3, where the privacy budget is the budget allocated
for that query and the size is the total number of records
in the database.

The disclosure risk curve directly conveys the non-
linear relationship between ε and risk (DG2) and illus-
trates how different queries have different risks accord-
ing to their allocated privacy budgets. Note that since
all queries are over the same database, if two queries
have the same privacy budget, their corresponding dots
will overlap in the visualization. For an alternative at-
tack model where all queries are over disjoint parts of
the database, each query would receive the entire pri-
vacy budget due to parallel composition and their risk
would be computed accordingly.

4.2.4 Privacy Use

The Privacy Use panel (see Figure 3H) contains sliders,
each of which corresponds to a different query. Each
slider’s minimum value is 0.001 (since ε > 0) while the
maximum value is 2 (resulting from equally dividing the
maximum total budget a user can set across all queries).

As the user updates ε on a particular slider, the
corresponding visualization panel and point on the risk
curve dynamically update. This allows the user to see
not only how accuracy and risk vary according to ε,
but also how they vary in relation to one another (thus
conveying the privacy–utility trade-off). Figure 5 shows
how the dotplot for the Hispanic or Latino group in the
Ethnicity query changes at increasing values of ε. Each
query’s dotplots/HOPs and point on the risk curve are
linked to always reflect accuracy and privacy under the
same value of ε as currently set on the slider.

Fig. 5. The figure shows how the dotplot for the Hispanic and
Latino group from the Ethnicity query (see Figure 3) updates at
three increasing values of ε.

At the top of the Privacy Use panel, the user who
has an idea of an appropriate overall budget can specify
a total budget to split among queries. Remaining budget
(to the right of the total budget) displays the total bud-
get minus the values set for the ε sliders below. When re-
maining budget is negative, this value appears in red (as
opposed to black). By default, the sliders operate under
the “manual” mode, where the user can set the ε sliders
so that the sum of their values exceed the total budget.
If the user toggles on the “responsive” mode, ViP will
assist the user in staying under the total budget by re-
sponsively equally dividing the remaining budget across
queries whenever the user adjusts one query’s slider. For
instance, if the user increases ε for a given query such
that the remaining budget is negative, ViP will auto-
matically reduce the values set for the remaining sliders
to stay under budget. The user can lock queries (using
the unlock/lock toggle to the right of each slider) so
that their ε values remain fixed upon further slider in-
teractions in responsive mode (similar to Gaboardi et al.
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[26]’s hold feature). In the default manual mode, all slid-
ers are unlocked and unlock/lock toggles are disabled.

4.3 Feedback from Preliminary User Study

As described in Section 4.1, our iterative design process
involved a preliminary user study with six health pro-
fessionals accustomed to working with sensitive data.
The interface4 for this study supported just one query
at a time. The single query panel’s visualization was
the same, except the number of dots in each dotplot
was slightly higher and the dot sizes decreased as the
dotplot’s underlying Laplace distribution’s peak became
taller/narrower (i.e., when ε was increased) to fit the
dotplot within its maximum fixed height. We asked
questions to see how well participants could describe re-
lationships between ε, accuracy, and risk and how easily
they could satisfy accuracy/risk requirements.

Overall, all participants (P1–P6) articulated key
DP relationships and made more nuanced observations
about these relationships (e.g., that expected accuracy
does not increase linearly as ε increases), particularly
when prompted. Additionally, all participants (P1–P6)
easily met risk requirements but only half (P1, P4, P5)
satisfied the accuracy requirements, perhaps owing to
confusion around representations of the DP output dis-
tributions.

In particular, two participants (P3, P6) expressed
confusion over how to interpret the quantile dotplot,
specifically misinterpreting the meaning of each dot
(e.g., one participant thought each dot represented a
dataset). We concluded that in addition to keeping dot
sizes constant across dotplots, dotplots may require fur-
ther up front explanation before users interact with
them since they are not commonly used.

Finally, participants had mixed reactions to the
HOPs. P2 and P6 thought they were “distracting”
while P4 found it to be one of the most helpful parts
of the interface. As a result, we added the play/stop
simulation feature (see Figure 3D).

We observed some heterogeneity in strategies for us-
ing the interface, and we observed some common chal-
lenges to interpretation across participants. First, we
found that participants employed different strategies
when choosing values for ε for a given query/dataset.
Two participants (P1, P4) described primarily risk

4 Note that participants saw a version of the interface where
“disclosure risk” was referred to as “re-identification risk.”
Throughout this section we refer only to “risk” for clarity.

considerations. P1 explained how they would consider
“some of the non-mathematical features of the popula-
tion” including whether the data describe sensitive top-
ics such as “illegal activities, sexual practices” in order
to determine acceptable risk levels. Four participants
(P2, P3, P5, P6) described taking into account both
risk and accuracy, though with differing strategies. P6,
for example, said they would be more concerned with
accuracy since at very low ε values, it would be possible
to release a privacy-preserving value that “represents
almost a different outcome than what you’re trying to
show,” but followed this concern up with the need to
consider “the consequences of not setting the privacy
stringently enough.” P2 said they would focus on accu-
racy (but briefly mentioned risk concerns) and wondered
whether a privacy-preserving release would impact sta-
tistical significance, particularly in health where “it’s
so often you barely find any significance in the first
place.” Additionally, most participants (P2, P3, P5,
P6) said that their general approach and/or recommen-
dations would not change whether privacy-preserving
CIs were released alongside privacy-preserving point es-
timates. One participant (P4) was “puzzled” about the
impact of the privacy-preserving CI on risk, indicating
that they may have been expecting the risk to change
since the CI appeared to reveal additional information
about the data. Note that since privacy-preserving CIs
are constructed through post-processing, no additional
information is revealed. When describing their approach
when releasing only a point estimate, the remaining par-
ticipant (P1) was primarily concerned with risk. When
asked about also releasing privacy-preserving CIs, they
went into detail about taking level of necessary accuracy
into account, for instance as it relates to clinical action
thresholds.

Second, participants commented on challenges that
may occur when using DP or how tools can better sup-
port their needs. Half of the participants (P1, P3, P4)
expressed either confusion or concern over the meaning
or practical significance of the risk. P1 seemed to have
concerns over whether risk could be taken at face value,
since they felt “like it’s putting an absolute number on
something that’s hard to quantify.” P4 noted that the
risk visualization was clear, but that interpreting the
risk in practice might pose challenges. Two participants
(P1, P4) said that a tool that could assist with sample
size calculations in contexts where DP will be applied
would be useful in practice to help assist in a priori rea-
soning about how much data are needed to achieve de-
sired accuracy under DP. Last, three participants (P1,
P2, P6) mentioned the importance of making infer-



Visualizing Privacy-Utility Trade-Offs in Differentially Private Data Releases 612

ences to a larger population in their work, indicating
that it may be useful for future tools to continue sup-
porting the release of privacy-preserving CIs.

5 Evaluative User Study
We conducted a within-subjects user study to assess
how well ViP helps users complete tasks related to set-
ting/splitting a privacy budget. Our study compares
users’ performance between ViP5 and a baseline non-
visualization spreadsheet equipped with basic capabil-
ities seen in other user interface tools for DP deci-
sion making. We recruited 16 U.S.-based participants
with experience analyzing private or sensitive data but
who were unfamiliar with DP. We recruited participants
through email lists with people likely to be using sen-
sitive data (e.g., health data) in their work. The study
was conducted under the same IRB approval as the pre-
liminary study; details are in Section 4.1.

Spreadsheet (“Control”) Condition. We de-
signed the spreadsheet to reflect the tools that a practi-
tioner looking to use differentially private mechanisms
might have available. The spreadsheet allowed partic-
ipants to change ε for each query and see numerical
updates for disclosure risk and error estimates describ-
ing likely privacy-preserving releases. The spreadsheet
contained query results, error estimates for privacy-
preserving releases that adapted with changes to ε, dis-
closure risk associated with each query and the overall
disclosure risk (all of which adapted with changes to ε),
95% CI lower and upper bounds, and error estimates for
privacy-preserving 95% CI lower and upper bounds that
also adapted with changes to ε. The error estimate for
each privacy-preserving release was the maximum dis-
tance from the query result that the release would be
with 95% probability (based on the error estimate pro-
vided by Gaboardi et al. [26]). Error estimates for the
privacy-preserving CI bounds were the maximum dis-
tances the bounds would be from their respective 95%
traditional CI bounds 95% of the time. The equation for
the PDF of the Laplace distribution was provided as ref-
erence. The spreadsheet also allowed participants to set
a total privacy budget and observe a remaining bud-
get based on what they were spending on the queries.
To enable comparison with ViP’s inference mode, we

5 Note that participants saw a version of the interface where
“disclosure risk” was referred to as “re-identification risk.” We
have edited task questions referring to risk in the paper to main-
tain consistency.

created two sheets (or versions) of the spreadsheet, one
without CIs (non-inference setting) and one with (infer-
ence setting). When completing tasks using either ViP
or the control, we told participants whether to use the
extrapolation version/mode.

Tasks. We designed tasks to reflect judgments and
decisions that might arise in real-world privacy budget
splitting contexts. Task types are below:
1. Accuracy Comparison

– At ε = x for the X query, which subgroup in the X
query do we expect to have the most accurate privacy-
preserving release?

2. CDF Judgment
– At ε = x for the X query, what is the probability that

the privacy-preserving release for the X1 subgroup will
be greater than y?

3. Risk Requirement
– Set ε for the X query such that its corresponding dis-

closure risk is x%.
4. CI Comparison

– Set ε for the X query to x. For the X1 subgroup, es-
timate how many times wider we expect the privacy-
preserving 95% CI to be compared to the traditional
95% CI.

5. Equalize Accuracy
– Find the smallest ε values for each query (W,X, Y, Z)

where the privacy-preserving releases for the subgroups
W1, X1, Y1, and Z1 are within x of their query results
(i.e., query result− x ≤ release ≤ query result + x).

6. Budget Splitting
– Suppose that you have a total budget of x that you

want to allocate across queries. The risk corresponding
to each query should be no more than y% and the
release should be guaranteed to be within z of the query
result for W1, X1, Y1, and Z1 subgroups with roughly
90% probability.

7. Probability of Superiority
– Estimate the probability that the release for the X1

subgroup will be greater than the release for the X2
subgroup when the X query’s ε = x.

We designed two sets of eight questions corresponding to
the above question types, which we refer to as versions
A and B. There were two CDF Judgment questions and
one of each of the other question types in each set.

Evaluation Metrics. For tasks under types 2–
7, we calculated the absolute error from ground truth
for participants’ responses. For tasks where participants
had to give multiple responses (i.e., multiple ε values),
we scored answers by the sum of absolute errors from
ground truth over responses. We also timed how long
participants took to complete each task, and asked par-
ticipants their confidence in their answers (on a scale
from 0–10, where 0 indicates answers were no better
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Fig. 6. Absolute error |response − ground truth| for question categories described in Section 5. Dots represent observed error for both
versions (A and B) of each task category’s questions. Note that we asked two CDF Judgment questions in both versions A and B. Ad-
ditionally, if a question required multiple responses (i.e., multiple ε values for questions under Equalize Accuracy and Budget Splitting),
we plot the sum of absolute errors.

than random and 10 indicates full confidence in answers)
once after using ViP and once after the spreadsheet.

Protocol. The first author led the 90 minute study
sessions while the second author took notes. To provide
an initial, gentle introduction to DP, we first required
that participants view a four-minute introductory video
to DP explaining, at a high level, that differentially pri-
vate mechanisms often inject a calibrated amount of
random noise to a query result to calculate a privacy-
preserving release. Next, participants completed tasks
using both ViP and the spreadsheet. We counterbal-
anced the order of ViP/spreadsheet and sets of tasks.
As in the preliminary study, we used a think-aloud pro-
tocol [74]. After completing the tasks, participants an-
swered a set of follow-up questions.

5.1 Results
Data Preliminaries. Participants took an average of
19.4 minutes (95% CI: [16.7, 22.1]) to complete tasks us-
ing ViP, and 23.1 minutes using the spreadsheet (95%
CI: [19.0, 27.3]). We observed no reliable difference in
total time between interface conditions (95% CI around
the difference in mean times between ViP and spread-
sheet: [−8.5, 1.1]). Participants were given eight ques-
tions to answer per interface; on average they were able
to answer 7.8 questions with ViP (95% CI: [7.6,8.0]) and
6.4 questions (95% CI: [5.6, 7.2]) with the spreadsheet.

Accuracy of Responses.Wemeasure accuracy by
absolute error (|response−ground truth|) or sum of ab-
solute errors for questions eliciting multiple responses.
Figure 6 shows absolute error with 95% CIs, by question
version and whether the question was answered using
the spreadsheet or ViP.

All task types are shown in Figure 6 except for Accu-
racy Comparison—all participants answered these ques-
tions correctly, when using both ViP and the spread-
sheet, and these questions elicited categorical responses,
so we omit them from the figure.

Participants gave more correct answers for CDF
Judgment questions when using ViP. On average, ab-
solute error for these questions was 13 percentage
points lower (95% CI around the difference in means:
[−.18,−.07]). Participants counted the number of dots in
the requested range and multiplied by each dot’s value
(4%) to find an answer. On the other hand, participants
often made guesses using the privacy-preserving release
error in the spreadsheet, leading not only to more inac-
curate, but also more variable answers.

Participants also performed considerably better us-
ing ViP for comparing expected width of the privacy-
preserving CI with the width of the traditional CI (CI
Comparison). Absolute error for these questions was, on
average, 1.36 lower using ViP (95% CI around the differ-
ence in means: [−1.73,−.98]). For example, participants
using the spreadsheet for the task’s version A question
gave answers with errors of 1.69 on average (where the
ground truth answer was that we expect the privacy-
preserving CI to be 2.1 times as wide as the non-private
CI); using ViP, participants were off by only 0.1 on av-
erage. Participants were able to get estimates of the
expected width by viewing multiple privacy-preserving
CIs (animated as a HOP) and easily compare the width
to that of the traditional CI directly below. In addition
to bias, we observed higher variance in responses made
using the spreadsheet interface.

The mean sum of absolute errors (of ε allocation
across queries) is only slightly lower for responses given
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using ViP versus the spreadsheet for Equalize Accuracy
questions (0.42 and 0.45, respectively; 95% CI around
the difference in means: [−.17, .11]). However, the differ-
ence in means is greater for the Budget Splitting ques-
tions (0.11 for ViP to 0.18 for the spreadsheet; 95% CI
around the difference in means: [−.17, .02]), suggesting
that ViP may improve the ability to split ε across queries
when requirements are more complex. Last, we find that
using either ViP or the spreadsheet, participants per-
formed similarly in setting ε for the Risk Requirement
tasks (95% CI around the difference in means between
ViP and the spreadsheet: [0, .01]), and worse (by 3 per-
centage points, on average) for the Probability of Supe-
riority tasks using ViP (95% CI around the difference
in means: [−.08, .14]). When using ViP for the Proba-
bility of Superiority tasks, participants often incorrectly
counted the number of dots in the first dotplot above
(on the x-axis) the second dotplot’s maximal dot. Had
participants instead focused on the privacy-preserving
HOP, they may have performed better, as HOPs are
designed for this type of probability judgment.

Self-Reported Confidence. Participants re-
ported feeling an average of 2.3 points (on a scale from
0 to 10) more confident in their answers using ViP com-
pared to the spreadsheet (95% CI around the difference:
[1.4, 3.2]). Only one participant was more confident in
their answers using the spreadsheet, and one partici-
pant was equally confident with the spreadsheet and
ViP. When describing why ViP was helpful, 7 partic-
ipants described how ViP helped them understand or
keep track of DP relationships.

Timing of Responses. Average time to answer
each question ranged from 29 seconds (Version A, CDF
Judgment) to about 8 minutes (Version B, Budget Split-
ting). Participants answered CDF judgment questions
more quickly with ViP (average time: 34 seconds) com-
pared with the spreadsheet (average time: 1.8 minutes)
(95% CI around the difference in means, in minutes:
[−1.8,−0.6]). Participants took slightly longer to an-
swer the Risk Requirement questions using ViP (aver-
age time of 1.6 minutes compared with 1 minute; 95% CI
around the difference in means: [−0.2, 1.4]) and longer to
answer CI Comparison questions with the spreadsheet
(average time of 53 seconds compared with about 1
minute; 95% CI around the difference of means, in min-
utes: [−2.2,−0.1]). Otherwise, we did not observe other
clear patterns in difference in response times across the
spreadsheet and ViP.

Current Practices. Participants primarily de-
scribed three practices for protecting privacy in their
current workflows. Eleven participants described de-

identifying data, seven participants mentioned using
some combination of passwords, secure servers or sys-
tems, and encrypted folders. Finally, four participants
described aggregating data. These findings suggest that
DP may represent a significant enough departure from
current practices that tools explaining DP may be use-
ful.

6 Discussion
Despite significant progress made in research toward for-
mal privacy guarantees for data releases, DP presents
challenges to understand and use. Our work under-
lines the need to think critically about what users of
DP require in practice and to design tools that sup-
port decisions and understanding among different types
of stakeholders. We discuss high-level takeaways from
this work, including opportunities for further human-
centered work in DP.

6.1 Toward Interpretable User Interfaces

6.1.1 Interactive Visualizations and DP Relationships

In contrast to previous work (e.g., [26, 33, 70]), ViP
presents users with separate risk and accuracy visual-
izations within the same interface, where moving pri-
vacy budget sliders dynamically updates risk and accu-
racy visualizations to reflect implications of the current
choices of ε. In our first qualitative study, we found that
participants performed well on tasks designed to com-
pare different privacy budget values and their effect on
a privacy-preserving data release, as evidenced by their
ability to reflect on the privacy–utility trade-off and ex-
plain their reasoning for choosing specific values. Our
second study provides evidence that visualizations may
help users understand DP more intuitively by helping
them keep track of relationships between ε, accuracy,
and risk, and make quick calculations relevant to set-
ting ε (e.g., CDF of a DP output distribution). While
users may bring domain expertise to the budget set-
ting/splitting task, they may need additional guidance
in what constitutes, for example, appropriate disclosure
risk for a given context. Looking forward, one idea to
support judgments about appropriate risk is to integrate
ε anchor points into the interface that provide guid-
ance around acceptable values of ε in a given context.
For example, we might indicate on ViP’s privacy bud-
get slider(s) points that correspond to organizational
or legal requirements around maximum disclosure risk.
This will involve incorporating ways of mapping cur-
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rent requirements (e.g., specified by k-anonymity) to
guarantees offered by DP, which would further allow
practitioners to combine their domain knowledge with
previously set standards.

6.1.2 Additional Attack Models

Definition 3 details how ViP presents disclosure risk.
One future research direction is to incorporate and eval-
uate alternative attack models with this interface.

For example, hypothesis testing for differentially
private mechanisms [51, 71] quantifies risk in terms of an
adversary rejecting or failing to reject the null hypoth-
esis dependent on an individual’s record being present
in the database. These attack models start with a deci-
sion criteria [30, 59, 65] that models how an adversary
rejects the null hypothesis for a given privacy budget.
The disclosure risk is measured by the probability that
the adversary correctly rejects/fails to reject the null
hypothesis. The failure rate is usually measured by two
types of errors in hypothesis testing: the rejection of H0
when H0 is true and the failure to reject H0 when H1
is true. Hence, visualizing these two errors will involve
more complex visualizations or a post-processing of the
errors.

Another attack model uses Bayesian DP to convey
risk [44, 76] when considering correlated data. As our
setting centers around DP for tables with independent
rows, visualizing the risk of correlated data does not
apply.

6.1.3 Visualizations for More Complex Mechanisms

Our approach to visualizing DP noise generalizes to
other more complex mechanisms that rely primarily
on one statistical distribution, as quantile dotplots and
HOPs can be generated for any distribution.

For more complex mechanisms, such as median es-
timation using smooth sensitivity [60], that do not
have an explicit PDF, we can run these mechanisms
on datasets of interest many times for a given privacy
budget parameter to obtain estimates of the DP out-
put distribution. We can then use these sampled esti-
mates to compute quantiles and construct a quantile
dotplot, where the more sample estimates we have, the
closer the visualized distribution will be to the true out-
put distribution. Similarly, this visualization technique
applies to complex mechanisms for high-dimensional
queries [50, 53]. Note that some algorithms (e.g., smooth
sensitivity algorithm) have output distributions depen-

dent on the input, and hence the output distribution
should not be directly released to the data consumer.

Additionally, we note that future work may include
expanding ViP to support (ε, δ)–DP. Supporting ap-
proximate DP would require a user-provided δ value,
where δ is typically very small, and a modified dotplot
that reflects an approximate DP mechanism, such as the
Gaussian mechanism. In addition, the risk curve must
be modified to account for δ, but we note that the gen-
eral trend of higher privacy budget corresponding to
higher risk remains. Additionally, advanced composition
theorems, such as Rényi DP [57], must be used to deter-
mine the used privacy budget. We leave specifics of the
computation of this modified risk and privacy budget as
future work.

6.1.4 Domain- and Context-Specific Considerations

Our collaboration with colleagues in a medical school
allowed us to develop ViP with feedback from po-
tential users. In general, for interactive interfaces for
DP to be effective, it will be important to employ
user-centered design techniques to ensure that con-
textual considerations around use of DP in an orga-
nization are acknowledged. For example, our under-
standing of clinical health workflows helped us estab-
lish the importance of supporting statistical inference
tasks and the statistics background that a likely user
of the interface would have. Similarly, we recognize the
need to bridge currently-used procedures such as k-
anonymity with DP. Mappings between k and ε for
a given query/dataset, and integrating such mappings
into interfaces for DP, could help clinical researchers
more easily adopt DP.

Additionally, more work is needed to create tools
aimed at people who are contributing (or deciding
whether to contribute) their data. Prior work has ex-
plored this topic for local DP [75], proposed an eco-
nomic framework for potential participants determin-
ing whether to take part in a study [37], and investi-
gated how end users interpret DP guarantees [14]. In-
terfaces that help potential data contributors make deci-
sions around data sharing could help to increase people’s
agency around their own data. For example, interfaces
might explain disclosure risk in ways that emphasize the
individual’s cost of disclosure (versus, for instance, the
cost that an organization might incur for a data leak).
Such interfaces could help to fill a glaring omission in
the DP pipeline—systems cannot release data that peo-
ple do not consent to having collected and shared.
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6.1.5 Leakage from ε Experimentation

In theory, seeing the un-noised query result may fac-
tor into the data curator’s chosen level of ε as they ex-
periment with different values, thus leaking information
about the data. However, counting experimentation of
parameter values toward the total privacy budget has
been argued to make DP unusable for real-world pur-
poses [16]. To ameliorate the impacts of such leakage,
one option may be to spend a higher privacy budget
than what is actually allocated to a query. However,
this leads to less accurate releases/higher privacy costs.
In other instances, the leakage may be acceptable, such
as when the data curator is highly trusted and known
not to collude with others, and when the privacy budget
is limited.

6.2 Toward Evaluative Frameworks

An important step for future work is to identify norma-
tive frameworks for evaluating DP interfaces; that is,
well-defined approaches in which the quality of a pri-
vacy budget decision can be measured. Without a clear
normative standard for decisions, it is difficult to know
for sure whether a given interface helps an organization
use DP more effectively. For example, economic and
decision-theoretic approaches have been employed in
evaluating uncertainty visualizations (e.g., [23, 38, 41]).
In a DP setting, we might ask people to split a pre-
specified total privacy budget over a set of analysis-
decision tasks where decision tasks are of varying stakes
(e.g., measured by cost of disclosure and inaccurate re-
sults). Comparing outcomes of decisions made with and
without an interface to decisions that would have been
made using results from non-private analyses (signifying
ground truth) within a decision-theoretic (expected util-
ity) framework [58, 63] will help further pinpoint aspects
of interfaces that people find useful in decision-making
around DP.

7 Conclusion
In this work, we present ViP, a novel interactive visual-
ization interface designed to help users understand the
privacy–utility trade-off within DP in order to make in-
formed privacy budget decisions. ViP presents accuracy
and disclosure risk visualizations that leverage tech-
niques from uncertainty visualization research to aid
user understanding. Through an evaluative user study
with research practitioners, we examine how well ViP

helps users more accurately complete tasks related to
setting and splitting privacy budgets. We find that the
interface helps users make more accurate judgments
about how likely it is to see a privacy-preserving release
in a given range and more accurate assessments when
comparing privacy-preserving CIs to traditional CIs.
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