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Abstract: Traffic analysis attacks against encrypted web
traffic are a persisting problem. However, there is a large
gap between the scientific estimate of attack threats and
the real-world situation. As traffic analysis attacks de-
pend on very specific metadata information, they are
sensitive to artificial changes in the transmission char-
acteristics. While the advent of deep learning greatly
improves the performance rates of traffic analysis at-
tacks on Tor in research settings, deep neural networks
are known for being implicitly vulnerable to artifacts in
data. Removing artifacts from our experimental setups
is essential to minimizing the risk of evaluation bias. In
this work, we study a state-of-the-art end-to-end traffic
correlation attack on Tor and propose a novel data col-
lection setup. Our design addresses the key constraint
of prior work: instead of using a single proxy node for
collecting exit traffic, we deploy multiple proxies. Our
extensive analysis shows that in the multi-proxy design
(i) end-to-end round-trip times are more realistic than
in the original design, and that (ii) traffic correlation
attack performance degrades significantly on realistic
timings. For a reliable and informative evaluation, we
develop a general scientific methodology for replication
and comparison of machine and deep-learning attacks
on Tor. Our evaluation indicates high relevance of the
multi-proxy data collection setup and the novel dataset.
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1 Introduction
Encrypting traffic is a core security feature of the Inter-
net. An additional layer of protection becomes available
with the use of anonymity systems like Tor [42], where
multiple layers of encryption and relayed connections
conceal the activity of users. In this context, traffic anal-
ysis attacks on encrypted traffic are a persisting prob-
lem. They circumvent the data encryption by inferring
sensitive information from the transmissions metadata.

An important class of attacks in this context are
end-to-end traffic correlation attacks. The adversary
monitors traffic in both connection endpoints (client to
entry guard and exit relay to server). Based on sim-
ilarities between the incoming and the outgoing traf-
fic at both ends, they can de-anonymize Tor connec-
tions [10, 24, 27, 28]. End-to-end attacks stand in con-
trast to website fingerprinting [5, 31, 33, 38, 39], where
de-anonymization is achieved through classification of
entry traffic. The current state of the art estimates con-
siderably high success rates for both types of attacks.
However, ensuring realistic experimental setups remains
challenging for academic work in this context.

Creating a realistic test setup is not trivial due to
a diverse set of challenges. For example, as the critical
evaluation by Juarez et al. shows [19], the world size for
traffic analysis attacks still drastically limits the realism
of existing performance benchmarks. The novel attack
concepts and improved performance rates ought to be
considered together with their experimental limitations.

For the evaluation of end-to-end traffic correlation
attacks, the goal of a responsible measurement setup is
particularly challenging. The adversary monitors traffic
at both ends of the connection that makes use of a world-
wide infrastructure. While it is trivial to gain access to
the entry connection, there is no straightforward and
privacy-preserving solution to accurately monitor traffic
at generic exit links of the Tor infrastructure. Different
workarounds allow us to circumvent this problem and
still get access to the exit traffic. In the recent work by
Nasr et al. [27], the use of a proxy node between the exit
and target server provides access to the exit traffic. De-
spite the benefits of the proxy-based design, one proxy
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at a fixed location creates an additional intercontinental
hop for a large fraction of connections but not for the
others, and thus interferes with the timing character-
istics of the dataset, which are often utilized in traffic
analysis attacks [5, 6, 14, 27, 32]. The impact of such
artifacts on the quality of data and, eventually, on the
quality of attack performance estimations is unknown.

Another challenge of reliable empirical evaluations
of traffic correlation attacks stems from the probabilistic
nature of leveraged algorithms. Deep learning produces
unprecedented performance in end-to-end side-channel
attacks on time-series data, and various traffic analysis
attacks against Tor are no exception [5, 27, 33, 38]. How-
ever, high success rates come at the cost of increasing
complexity and computational costs, performance insta-
bility and low interpretability. While exhaustive evalu-
ations are infeasible, the progress of the field depends
on our ability to draw reliable conclusions from lim-
ited empirical evidence. In particular, correct selection
of metrics, proper tuning of complex models and fair
comparison between them are all fundamental aspects.

In this work, we explore the impact of the char-
acteristics of the underlying research dataset on effec-
tiveness of end-to-end traffic correlation. Based on the
preliminary statistical analysis, we introduce a novel
multi-proxy data collection setup that overcomes the
supposed key constraint of prior setups. In the second
step of our study we replicate a state-of-the-art end-to-
end traffic correlation attack DeepCorr [27] on our novel
data. To this end, we design a replication methodology
for data-driven attacks that utilizes appropriate per-
formance metrics, accounts for various sources of bias
and variability in machine and deep learning evalua-
tions and strives for reliable performance comparison.
Our extensive experimentation shows consistently lower
attack performance in the proposed multi-proxy setup,
with high statistical significance. As a result, our work
demonstrates a successful reduction of the timing bias
introduced by the proxy usage.
In summary, our paper makes three core contributions:
(i) Novel Multi-Proxy Setup. We propose a novel

data collection design for traffic correlation attacks
in research settings that uses multiple proxies in-
stead of a single proxy to capture exit traffic. Our
strategic statistical analysis of Tor traffic trans-
mission characteristics shows that the proposed
design more closely approximates realistic timing
measurements as compared to the state of the art.

(ii) Attack Replication Methodology. In order
to accurately compare traffic correlation effective-
ness in single- and multi-proxy data collection se-

tups, we devise a general methodology for scientific
replication and comparison of data-driven attacks
on novel or modified data. The proposed algorithm
aims to minimize evaluation biases and considers
statistical significance of results, which improves
over the common practices in the field.

(iii) Evaluation Results. Our empirical evaluation of
an optimized DeepCorr attack demonstrates an
average 7.95% performance decrease in a more
realistic multi-proxy setup. This outcome indi-
cates that the proposed multi-proxy setup reduces
the subtle bias introduced by the single-proxy de-
sign of prior work. We publish the corresponding
dataset and code to facilitate further research1.

2 Technical Background
In the following, we document the technical background
of Tor, provide a general overview of traffic analysis at-
tacks, and discuss existing attacker models.

2.1 Circuits and Connections

Tor circuits usually consist of three relays that transmit
information between the client and the server. As such
circuits are part of the application-layer security of Tor,
they do not directly transport TCP packets, but han-
dle multiple TCP streams of, e. g., a website request.
On startup and during runtime, Tor continuously cre-
ates new circuits and discards older ones depending on
different features, e. g., their lifetime or status flags. A
standard circuit consists of an entry guard that connects
to the client, a middle relay as the intermediate connec-
tor, and the exit relay that connects to the requested
destination. The entry guard is picked from the user’s
guard set, which consists of a static selection of candi-
date nodes and gets updated after several months [13].
All remaining nodes are selected randomly from the con-
sensus following a bandwidth-oriented preference.

A website visit results in multiple TCP streams that
load the (sub)resources of the site. For a new website
visit, Tor checks all currently available circuits and de-
termines the one that best suits the current request.
It then attaches all streams of that request to the cir-

1 https://distrinet.cs.kuleuven.be/software/tor-tc-dl/

https://distrinet.cs.kuleuven.be/software/tor-tc-dl/
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cuit. After a circuit has been used for a connection, it
is marked dirty and will not be reused.

2.2 Traffic Analysis Attacks

Traffic analysis attacks enable an adversary to learn
sensitive information from the encrypted transmissions
of a network. In the context of Tor, the worst-case
leak of sensitive information allows the adversary to de-
anonymize the connection.

Two primary types of traffic analysis attacks are
website fingerprinting (WF) and end-to-end (E2E) traf-
fic correlation, with the latter being the focus of this
study. E2E correlation attacks focus on the similarities
of transmissions at two endpoints of the connection, i. e.,
at the entry and the exit relay of the Tor circuit. In this
setting, the entry connection reveals the IP address of
the victim and the exit connection reveals the IP address
of the server. The de-anonymization is successful if the
adversary can find a related pair of entry and exit traf-
fic. The success of an E2E attack is mainly influenced
by the access to traffic in the network.

3 Challenges of Data Collection
Accessing Tor exit traffic to evaluate traffic analysis at-
tacks in practice requires the use of a proxy in the con-
nection between the exit relay and the server. Although
it is technically possible to achieve this by running an
exit node, this poses various ethical concerns (collecting
data of other Tor users) and other restrictions (lack of
intrinsic traffic patterns of real-world Tor exit nodes).
When using a proxy setup, an extra hop is added to
the connection, which affects timing characteristics of
the monitored traffic. So far it has not been investigated
what the consequences of these alterations for the attack
and its performance are. Prior data-driven state-of-the-
art E2E attacks [27] used a single proxy server located in
the US. While the authors document that the additional
latency leads to performance impairments for the attack,
we run a series of experiments to empirically analyze the
impact of an additional hops in different proxy setups in
practice. We argue that a single proxy introduces differ-
ent amounts of timing overhead, e. g., depending on how
many intercontinental hops are part of the end-to-end
route. Such timing differences might affect the distin-
guishability of traces from different groups of circuits.
We further analyze how realistic the resulting overall

Fig. 1. Overview of exit relay locations (red) and locations of
proxies (black) in the preliminary analysis.

timings are, given that a real attacker would not use a
proxy at all but instead extract the traces directly from
the exit connection.

3.1 Measurement Setup and Overview

Over a period of one week, we run a client in our institu-
tion to measure round-trip times (RTTs) to each of the
top 100 websites in a recent Tranco list2 [20] through
15,935 standard three-hop Tor circuits. In addition, we
collect RTTs to 14 geographically distributed servers, lo-
cated in the most important data center locations in the
world (cf. Figure 1). Finally, we measure the RTTs from
each of these servers to each website. To measure the
RTT to a website, we send an HTTP HEAD request and
measure the time until our client receives the response.
To be able to compare these timings to RTTs between
our client and the servers, we run a simple HTTP re-
sponse server on each server that also responds to HTTP
HEAD requests by our client.

For each proxy, we combine the time from our client
to that proxy with the time from the respective proxy
to each website. This way, we are able to simulate the
timing overhead introduced by different proxy setups
and compare different proxy setups with each other.

3.2 Analysis of RTT Measurements

We now present the results of our preliminary timing
measurements. In particular, we conduct the following
analyses to evaluate the practical impact of different
proxy setups on timing characteristics of Tor traffic:

2 https://tranco-list.eu/list/4L8X

https://tranco-list.eu/list/4L8X
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Table 1. Numbers of inter-continental connections within Tor cir-
cuits. Since our client is located in Europe, the number of hops is
always uneven in the single (US) proxy setup. Only circuits with
all relays in Europe or North America (i. e., 96% of all circuits)
are included.

Hops Single Proxy Multi-Proxy

0 – 8,653 (54.3%)
1 10,811 (67.8%) 2,158 (13.5%)
2 – 4,131 (25.9%)
3 4,468 (28.0%) 337 (2.1%)

(i) We analyze differences in timings from our client
to a single proxy in the U.S. between groups of
circuits, that are defined by the number of inter-
continental transmissions between two subsequent
hops in the connection.

(ii) We compare timings measured with two proxy se-
tups, i. e., a single proxy in the U.S. and 14 geo-
graphically diverse proxies to the timings a realis-
tic adversary without a proxy would see.

(iii) We quantify the overhead introduced in the tim-
ings depending on the number of proxies in our set
of 14 proxies.

3.2.1 Inter-continental Connections in DeepCorr

We argue that relaying all Tor traffic through a single
proxy to evaluate the attack affects the end-to-end RTTs
of monitored Tor traffic. This may lead to unknown con-
sequences for other timing features that may affect the
distinguishablity of traces within the feature learning
process. For Tor circuits whose exit is located in Eu-
rope, the use of a single proxy in the U.S., as done in
state-of-the-art traffic correlation attack evaluations [27]
introduces the timing overhead of an inter-continental
hop at the end of the connection.

We generalize this assumption and compare the
end-to-end timings between our client and websites ac-
cross groups of circuits that are defined by the num-
ber of inter-continental hops in the connection. For the
sake of simplicity, we only consider circuits with all re-
lays located in Europe or North America, i. e., 96% of
all circuits in our set of 15,935 standard 3-hop circuits.
Table 1 lists all circuits in our set depending on the
number of inter-continental hops in the connection for
both the single US-proxy and multi-proxy setup. Due to
our client being located in Europe, the connection to the
US-based proxy includes either 1 or 3 inter-continental
hops. Effectively, the numbers of circuits with 0 and

0.0 0.5 1.0 1.5 2.0 2.5 3.0
rtt [s]

0.0

0.5

1.0

1.5

2.0 1 hop (Tor-only)
1 hop (Proxy)
3 hops (Tor-only)
3 hops (Proxy)

Fig. 2. Distribution of RTT between client and proxy by the num-
ber of inter-continental hops in the connection. Tor-only denotes
that all hops occur within the Tor circuit, proxy denotes that the
last hop is between exit relay and proxy.

2 inter-continental hops in the multi-proxy setup con-
stitute those circuits, that include an inter-continental
hop between exit relay and US proxy in the single proxy
setup. That is, for 80% of circuits, the single proxy setup
introduces an additional transfer between Europe and
North America.

Introducing an additional hop in the connection
may be a critical issue since it affects round-trip times
between client and proxy with potential consequences
for the feasibility of traffic analysis. Figure 2 illustrates
the distributions of RTTs between client and proxy de-
pending on the number of inter-continental hops in the
single proxy setup. We also distinguish whether all hops
occur within the Tor circuit (Tor-only) or if one hop is
introduced by the Proxy. Whereas we see differences in
timings depending on the number of inter-continental
hops (1: mean = 0.68 s, sd = 0.42 s, 3: mean = 1.01 s,
sd = 0.36 s), it does not seem to affect the timings at
what place in the connection the hop occurs, whether it
is in the Tor circuit or between exit and proxy.

3.2.2 Single Proxy vs. Multi-Proxy vs. No Proxy

In the next step, we compare the RTTs to all websites
in our dataset through all Tor circuits in our dataset.
We use three different proxy setups, (i) a single proxy
server located in the US (East), reflecting the setup used
for state-of-the-art evaluations of traffic correlation [27],
(ii) a set of 14 proxies out of which we select the one that
is located nearest to the exit for each circuit, and (iii) no
proxy, which reflects timing characteristics of traffic a
real adversary would access directly in-transit. For the
sake of simplicity, we technically do not measure end-
to-end RTTs but collect (i) timings through each Tor
circuit to each proxy, (ii) timings through each Tor cir-
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Fig. 3. Empirical distributions of end-to-end RTTs between
clients and websites in three proxy setups.

cuit to each website without a proxy, and (iii) timings
from each proxy to each website. We then effectively
simulate the different proxy setups, by composing re-
spective timing segments to end-to-end RTTs.

Figure 3 shows the distributions (probability den-
sity functions) of end-to-end RTTs in each of these se-
tups. We see that the timings in the multi-proxy setup
(mean = 0.72 s, sd = 0.43 s) are more similar to the
setup without proxy (none, mean = 0.76 s, sd = 0.38 s)
than those in the single-proxy setup (mean = 0.86 s,
sd = 0.41 s). The overlap of single and none distribu-
tions is 77%, whereas it is 84% for multi and none. We
also notice that timings in the multi-proxy setups tend
to be even lower than in the setup without a proxy. We
attribute this to our proxies being located in large data
centers and presumably better connected to many web-
sites (also located in data centers) than Tor exits are.
Whereas the multi-proxy setup also affects the RTTs
(we discuss this limitation in Section 7), the effect is yet
smaller in absolute numbers than for the single-proxy
setup. Therefore, we argue that the multi-proxy setup
is a better approximation of a setup without a proxy
w. r. t. their timing characteristics, which is relevant for
traffic correlation attacks.

Differences between timing distributions even in-
crease when we compare the timings measured for each
website. Table 2 lists the average RTTs for the three
proxy setups and the timing distribution overlap for
each of the single and multi proxy with the no proxy
setup. For most websites, the distributions of measured
timings in the setup with multiple proxies are more sim-
ilar (i. e., higher overlap) to the setup without proxy,
than the timing distributions of the single proxy setup.

Table 2. Mean end-to-end RTTs and timing distribution overlap.

Website Multi Overlap None Overlap Single
[s] (M,N) [s] (N,S) [s]

google.com 0.68 71% 0.77 51% 0.95
youtube.com 0.68 70% 0.78 50% 0.95
facebook.com 0.75 91% 0.76 41% 1.23
netflix.com 0.69 79% 0.76 58% 0.90
microsoft.com 0.98 88% 1.00 41% 1.23
twitter.com 0.74 86% 0.77 85% 0.81
instagram.com 0.66 82% 0.71 39% 0.94
apple.com 0.62 76% 0.71 77% 0.76
linkedin.com 0.62 82% 0.67 75% 0.76
qq.com 1.03 72% 1.12 75% 1.22

all (top 100) 0.71 84% 0.75 77% 0.85

3.2.3 Number of Proxies

Our next goal is to estimate the required number of
proxies to limit the transmission overhead. Whereas we
have seen that selecting the nearest one out of a set
of 14 server instances better reflects the timing char-
acteristics of Tor traffic without an exit proxy, we now
investigate to what extent the transmission overhead
depends on the number of proxies to choose from. For
each circuit in our dataset, we generate sets of n ran-
domly selected proxies (for each n from 1 to 14) and
calculate the distances from the exit relay to the near-
est proxy in each set. Our results in Figure 4 show that
the average minimum distance of more than 5,700 km
when only one proxy server is used, is reduced to ap-
proximately 1,000 km when 5 servers are used, and to
less than 500 km with 14 server instances in place.

In addition, we also measured the timing overhead
per number of server instances used. Our results (cf. Fig-
ure 4) show that, while the average RTT is around 0.75 s
without a proxy, we measure an average RTT of 0.94 s
in a single-proxy setup, effectively introducing 190ms
overhead. When we increase the number of proxies to
up to 14, the average RTT gradually approximates the
value of the setup without a proxy. In summary, our
observations suggest that using a single proxy in the
U.S. for monitoring Tor exit traffic introduces a specific
timing overhead and, therefore, might also affect timing
features that play a role in the evaluation of end-to-end
confirmation attacks. We assume that a setup incorpo-
rating multiple proxies closer to the exits is a better
fit for simulating timing characteristics and, therefore,
traffic a realistic adversary would monitor in practice
without a proxy.
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Fig. 4. Distribution of Tor’s infrastructure by fractional numbers
of nodes and bandwidth shares per country.

4 Data Collection Setup
In the following, we document the experimental setup
that we use to record traffic for evaluating end-to-end
confirmation attacks.

4.1 Requirements

The setting of E2E attacks requires recording traffic at
both endpoints of a connection. In the following, we
discuss the implications of designing the experimental
setup for an E2E adversary. In general, the dataset can
also serve for evaluations of WF attacks (both closed-
and open-world) that are conducted with entry traffic
only, which is a subset of the data we collect.

4.1.1 Proxy Setup

A recent attack by Nasr et al. [27] uses deep learning for
an E2E attack. In their experimental setup, the authors
use a SOCKS5 proxy between the exit relay and server of
a connection to be able to record traffic at both ends of
the live Tor network. Using an additional proxy has the
disadvantage of adding another hop to the connection,
which extends the transmission distance and changes
the direct connection between the exit relay and the
server. However, in contrast to using a dedicated exit
relay, it does not introduce any ethical complications
and can be adjusted in a way that the additional over-
head can be minimized. The following characteristics
must be considered when using an additional proxy.
Circuit Diversity. During one browsing session, Tor
creates multiple circuits that are used and switched on
a regular basis. Despite a primary entry guard that re-
mains the same as long as possible, the remaining mid-

dle and exit relays change for different circuits. Because
of Tor’s worldwide distribution of relays, each circuit
has individual performance characteristics such as the
circuit length or the use of advertised bandwidth. Using
a proxy allows to maintain the original circuit diversity.
Server Locations. Both attacks require the generation
of a representative dataset including website requests
to a high number of different server locations. Along
with the distribution of exit relays, this creates a high
diversity in the last hop of the connection. Examples
of this are varying connections lengths between the exit
and server and individual transmission characteristics,
respectively. Using multiple proxies at different strategic
locations allows to limit the overhead of the additional
hop (cf. Section 3.2.2).
Onion Service Traffic. Using the Alt-Svc header,
web services can indicate that the website can be ac-
cessed over an alternative service. For instance, when
the website detects that it is being accessed over a Tor
connection, it can refer the user to the relevant .onion
address. The user agent will then initiate a connection
to the onion service and use it to request all subsequent
resources. Because of our proxy-based setup, websites
receive connections from a cloud provider and not a
Tor exit node. Furthermore, as all client traffic is di-
rect to the proxy, no connections to onion services will
be made. In a real-world scenario, traffic to the onion
services would still appear in the compromised guard
node but not in the exit node. Consequently, this min-
imally affects website fingerprinting attacks, but needs
to considered by the adversary in an E2E confirmation
attack. We further discuss this limitation in Section 7.

4.2 Setup Overview

The proxy setup consists of a series of clients, a central
management entity, and an additional proxy between
the exit and server of a connection (cf. Figure 5). The
clients run in virtual machines in our institute’s cloud
infrastructure and consist of the Tor Browser Bundle
(TBB), 3proxy, which allows proxy chaining in addition
to Tor’s SOCKS5 proxy, and the core Tor implementation
that establishes circuits and uses them to connect to web
servers. At each end of the connection, we use tcpdump
to capture the entry traffic between the client and the
entry guard and the exit traffic between the exit relay
and the server. The central management scripts organize
the website crawling and orchestrate tcpdump at both
endpoints of the connection.
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Fig. 5. Experimental setup.

4.2.1 Proxy Chain

3proxy3 is a lightweight proxy client and server that al-
lows us to put an additional proxy between the TBB
and core Tor implementation that connects to the cor-
responding proxy between the exit and the server. As
one goal is to minimize the overhead of the additional
proxy hop, we run multiple entities at strategic posi-
tions and pick the location with the minimum distance
between exit and proxy for each circuit established. To
this end, we run 18 proxies in 6 different locations (1 in
London, 1 in San Francisco, 3 in New York, 2 in Amster-
dam, 1 in Singapore, and 10 in Frankfurt). These proxy
locations reflect the distribution of large data center lo-
cations around the world. Each proxy has an individual
port assigned on the client side. Depending on the cir-
cuit that will be used next, we pick the best fitting proxy
by deciding for the port that matches the correct server
entity. At this point, it is very important to select a
proxy before the stream, i. e., the TCP connection, is
attached to circuit. Therefore, we must predict the cir-
cuit that will be used next and attach it to the fitting
port and proxy combination.

4.2.2 Circuit Prediction

If we do not want to interfere with the circuit establish-
ment procedure and selection of relays, we must pick a
proxy according to the circuit used in a connection. This
is challenging, as Tor builds circuits in advance, and
only decides for one of them at the moment the client
initiates a connection to a server. However, using an ad-
ditional proxy between the exit and the server requires
using a chain of proxies that adds our own SOCKS5 node
behind the initial proxy that connects the Tor client to
the entry relay. Technically, we must set up this proxy

3 3proxy.ru

chain at a specific port that later is used by Tor for the
connection establishment. That said, we need to pick
the correct candidate from the set of available circuits
that Tor will use for the next connection, identify the
best (closest) proxy for the exit of this circuit, set up
the proxy chain at the port Tor will use, and then wait
for the connection to be made.

To pick the correct circuit, we implement a small
patch in the Tor client that copies the original circuit se-
lection procedure from Tor, i. e., we apply the same rules
as Tor to determine the upcoming circuit. The patch is
a control port implementation that iterates all existing
circuits and returns the one that is most likely to be
picked for the next connection. We use this information
for two purposes. First, we estimate the location of the
exit relay in the circuit to prepare the closest proxy for
this connection. Second, we use the IP of the exit relay
to allow the incoming connection at the proxy. This al-
lows us to restrict any other connection attempt that is
unrelated to our experiments. A side effect of these ac-
cess rules is that only correctly picked circuits succeed.
In case we pick the wrong circuit (and consequently a
false proxy location), the incoming connection uses a
different IP address and is blocked at the proxy.

4.3 Data Collection Details

In total, we collected three datasets that are used in
the experiments presented in the remainder of this pa-
per. Each dataset was collected on a distributed crawler
setup using the latest Tor Browser version (9.0.1) which
was orchestrated through tbselenium [1]; for the SOCKS
proxy, we used 3proxy (version 0.9). For each data col-
lection, the most recently available tor version was used,
with the extension that allows us to predict the location
of the exit node. The 64 instances of the crawler were
distributed over 8 virtual machines that were each provi-
sioned with 4 vCPUs and 8 GB of RAM. The first two
datasets, SD and MD consist of visits to the 15,000
most popular websites according to the Tranco rank-
ing4 [20]. For the SD dataset, only a single proxy run on
Amazon’s Northern Virginia (us-east-1) datacenter was
used. For the MD dataset, we leveraged proxies that
were globally distributed over six Amazon datacenters,
covering America, Europe and Asia. The data for these
two datasets was collected between July 28, 2021 and
August 20, 2021. In the final largest dataset, MD1mln,

4 https://tranco-list.eu/list/65VX

3proxy.ru
https://tranco-list.eu/list/65VX
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we collected traces for the Tranco top 1 million sites5,
also using proxy servers geographically distributed over
six locations. The data collection for this dataset started
on March 5, 2020 for a duration of 8 days.
All datasets will be made publicly available in a parsed
form; the raw PCAPs are available upon request.

5 Evaluation Methodology
In this section, we outline our evaluation methodology.
The main goal is to establish whether the choice of
a data collection setup indeed impacts the estimated
feasibility of traffic correlation attacks. Previously we
have shown that the multi-proxy setup is much bet-
ter at approximating the timing characteristics of traf-
fic in the real Tor infrastructure. However, it is still un-
clear whether the disturbed timing measurements in the
single-proxy setup make a simulated traffic correlation
attack easier to deploy. With this evaluation, we aim to
empirically compare performance of the state-of-the-art
data-driven E2E attack (DeepCorr[27]) on two differ-
ent datasets: SD collected through a single-proxy setup
from prior work, and MD collected through a multi-
proxy setup proposed in our study.

5.1 Validity

Comparing two datasets is not a trivial task due to a
number of influential factors that are largely out of con-
trol of researchers. Such factors, like the current state of
the Tor infrastructure, the amount of users and the dy-
namically changing web content, may impact the mea-
surements in an unpredictable manner. We call these
factors the impact of time. In order to minimize the im-
pact of time on our two datasets and thus provide a
consistent ground for comparison, we have already taken
the following steps in Section 4:
(i) Both datasets are collected within the same time

frame: August 2021.
(ii) We fix the Tor browser version to 0.4.6.6.
(iii) We use the same set of 15,000 websites for one-

time visits in both datasets. After filtering the
failed web visits and traces that may be too short
for learning (less than 100 packets), we fix a set of
7948 websites that are present in both datasets.

5 https://tranco-list.eu/list/KW8W

(iv) The only controlled variable is the amount of prox-
ies used in the setup: one for the single-proxy eval-
uation and 18 for the multi-proxy evaluation.

With this set of actions, we try to ensure that any
differences in data originate from the number and loca-
tions of proxies, and not from artifacts or inconsistencies
in data collection.

Furthermore, for a valid comparison between two
datasets we recognize several influential aspects of de-
veloping and evaluating data-driven attacks. These in-
clude (i) correctly chosen performance metrics, (ii) a
proper attack replication algorithm for evaluating deep
learning models on novel data, and (iii) explainability
analysis. Careful incorporation of these aspects will en-
sure that the observed difference in attack performance
can be attributed to the actually present semantic dif-
ferences in data, and not to incorrect interpretation of
results, biases or chance. This is especially important for
attacks based on deep neural networks, whose learning
mechanisms are hardly interpretable and heavily rely on
randomness and a multitude of hyperparameters with
complex relations. Further in this section, we explain
each of these parts of our evaluation methodology.

5.2 Performance Metrics

Scientific empirical evaluations of traffic analysis attacks
against Tor aim to estimate the technical threat to pri-
vacy of Tor users. However, in lab conditions, these at-
tacks are deployed in simulated scenarios that operate
under a set of simplified assumptions, which makes per-
formance estimation technically feasible and systematic,
but inevitably limits the attack realism. E.g., related
work has focused on perfecting performance estimation
for WF attacks, to respect the open-world evaluation
challenges [19, 43]. Estimation of actual E2E traffic cor-
relation attack performance for powerful adversaries in
the wild is extremely difficult in lab conditions, as it
depends on the realism of the threat model in terms of
coverage of Tor relays and amount of concurrent connec-
tions. However, in this paper, we set the scope on the
realism of measurements for E2E attacks affected by the
choice of the data collection setup as is used in scientific
studies. For comparing relative attack performance on
similar data with two different data collection setups, a
fixed large number of traces is sufficient. Nevertheless,
in a simplified research setting the exact choice of met-
rics and correct interpretation of results are especially
important. We look into metrics used by the state-of-
the-art and propose improvements.

https://tranco-list.eu/list/KW8W
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In prior work, a common approach employed to es-
timate E2E correlation performance is to report and
compare the False Positive Rate (FPR), exemplifying
the fraction of non-associated pairs that were incor-
rectly predicted as correlated, and the True Positive
Rate (TPR), or Recall, that illustrates the fraction of
truly associated pairs that were rightfully predicted as
correlated. We argue that using these scores for perfor-
mance estimation is insufficient and may even be mis-
leading, as they do not provide a complete view over
the attacker’s capabilities. The reason is the base rate
fallacy specific to the E2E attack use case. This prob-
lem originates from the inherent imbalance of positive
and negative pairs in the test set: the adversary has to
correlate all combinations of traces (N ×N), while only
1 out of N intercepted connections is truly associated.
In other words, the base rate of positive samples is very
low – 1

N , and decreases with the growth of the volume of
traffic. With such a low base rate, even a high TPR and
a seemingly low FPR do not make the attack reliable.

To understand this with an example, consider the
asserted optimal performance values of DeepCorr: a
TPR/Recall of 0.80 and a FPR of 10−3 obtained for a
number of associated pairs N = 25, 000. While this may
seem effective, when translated to absolute numbers, the
actual True Positives amount to TP = TPR ×#pos =
0.80× 25, 000 = 20, 000, while the actual False Positives
amount to FP = FPR × #neg = 0.001 × (25, 000 ×
24, 999) = 624, 975. This means that for each correctly
detected associated pair of flows, the DeepCorr model
mistakenly predicts with the same confidence around
30 non-associated pairs as correlated, and is there-
fore extremely imprecise. This issue is not visible from
TPR and FPR, or the corresponding ROC-curve, alone.
What happens is that precision is ignored during opti-
mization: for this model, precision in fact equals Pr =
TP/(TP + FP ) = 20, 000/(20, 000 + 624, 975) = 0.031,
with the maximum possible value of 1.0 and a baseline
of 25, 000/(625× 106) = 0.00004.

DeepCorr performance is decidedly superior to the
E2E correlation attacks previously reported in the liter-
ature [10, 22, 24, 28], and further improves when using
more packets in a flow. However, it is crucial to report
all relevant metrics for the sake of transparent and in-
formative estimations. Depending on the attacker goals
and the costs of false positives and false negatives, one
may choose to optimize the precision-recall trade-off to
obtain a more trustworthy (precise) detector.

Prior work optimizes the attack based on loss – the
optimization function used in deep neural networks to
learn from data and to detect when to stop learning.

However, specifically for DeepCorr, there is no theoret-
ical guarantee that the optimal loss will correspond to
optimal precision-recall trade-off (the final goal of the
attack). So instead, an adversary may choose to also
evaluate a chosen domain-specific metric on every train-
ing epoch in addition to the standard loss. In our evalua-
tion, we tackle the inherent disconnect between loss and
attack target metrics by optimizing for Average Preci-
sion (AP ) that summarizes area under the PR-curve.

5.3 Attack Replication

We aim to analyze the performance difference of E2E
correlation attack when deployed on a dataset collected
with a single proxy versus a dataset collected with mul-
tiple proxies. Higher attack performance on the single-
proxy dataset would confirm that the deviation of end-
to-end timing characteristics from the real-world setup
favorably impacts attack simulation. At the same time,
lower attack performance on the multi-proxy dataset
would indicate that correlation of traffic is a harder
problem than it appears from prior research, and in-
cluding multiple proxies in data collection is a more ac-
curate way to model the problem. The difference in E2E
attack performance thus serves as an indirect signal of
quality of the two data collection setups and is obtained
through experimental analysis.

The challenge of experimental analysis is in deriv-
ing reliable and generalizable conclusions from limited
empirical evidence, which is especially pronounced with
data-driven approaches. WF and E2E correlation at-
tacks have long leveraged traditional statistical meth-
ods and machine learning algorithms, before at last
considering deep learning in 2018 as a novel, powerful
approach for both Tor traffic analysis attacks [27, 33].
While relaxing the need for domain knowledge through
eliminating manual engineering of salient traffic fea-
tures, deep learning does increase the complexity and is
overall not straightforward in deployment. A common
challenge comes from the need of replicating state-of-
the-art deep learning attacks on a novel dataset col-
lected in different conditions. In this case, it is not suf-
ficient to reuse the exactly same configuration of a deep
neural network reported in prior work. The reason is
that the change of any origin in the underlying data
distribution may affect the nature and difficulty of the
learning problem. To account for that, the deep learning
attack needs to be retrained on novel data.

In the context of Tor, many factors may affect the
underlying data distribution in traffic and thus change
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Algorithm 1. Replication and comparison of a ML/DL
attack on two different datasets. Here, with AP as a
target metric and t-test for statistical significance.

Input: Datasets D1 and D2, ML/DL attack A,
hyperparameter search space S.

Output: Dataset with highest mean attack
performance; the difference between means;
statistical significance.

1 Set number of cross-validation folds K

2 Set maximum number of attack configurations C

3 Set number of randomized training runs n

4 APD1 ← {}, APD2 ← {}
5 for dataset d ∈ {D1, D2} do
6 Split d into K equal folds d1,...,K

7 for k ∈ {1, ..., K} do
8 Put aside fold dk as testk

9 Assign the remaining folds to traink

10 Sample tunek ⊆ traink

11 APbest ← 0
12 for i ∈ {1, ..., C} do
13 Sample config ci from S using the chosen

optimization strategy
14 Split tunek into tunetrain, tuneval

15 Train A with config ci on tunetrain

16 Compute AP on tuneval

17 if AP > APbest then
18 ck = ci, APbest = AP

19 repeat n times
20 Change random seed
21 Train A with config ck on traink

22 Compute AP on testk

23 APd ← APd ∪AP

24 Compute t-test and p-value on (APD1 , APD2 )
25 return argmax(AP D1 , AP D2 ); |AP D1 −AP D2 |;

p-value.

problem complexity. These could be fundamental up-
dates in the protocol itself, such as defenses against
traffic analysis. A deep neural network tuned on un-
protected traffic is unlikely to possess enough learning
capacity to learn the problem on a harder concept of
defended traffic and thus needs to be retuned and then
retrained. Moreover, there could be changes in the input
representation, such as addition or omission of informa-
tion or input preprocessing. Finally, as is the case in
our study, the impact of time and changes in the data
collection methodology may affect the data distribution
and the overall problem complexity.

Therefore, to properly deploy and compare Deep-
Corr on our two new datasets, we develop an attack
replication algorithm for evaluating and comparing a
deep learning or machine learning-based attack on dif-
ferent datasets. The general replication algorithm is de-

picted in Algorithm 1, it is applicable to all the afore-
mentioned cases and trivially extends to more than two
datasets. Further on we clarify some of the steps of the
algorithm and discuss why they are meant to account
for the primary sources of evaluation bias.
Hyperparameter Tuning. There are several impor-
tant considerations regarding tuning. Firstly, while the
attack used for replication (e.g., a state-of-the-art DL
approach) is the same for both datasets, it has to be
re-tuned for each given dataset separately for fair com-
parison. This is to ensure that each dataset is assessed
with its own best model configuration (architecture and
hyperparameters). Not only because that would be the
procedure followed by a real-world adversary, but also
because with the best configuration, we are able to more
accurately assess the expressive power of the dataset.

Secondly, we need to consider resource constraints,
as the algorithm involves many intensive iterations
through the datasets. There is a trade-off between on
one hand a thorough evaluation that addresses possible
biases, and on the other hand staying within reasonable
computational time. In terms of tuning, the amount of
required resources is mainly controlled by the size of a
search space S, the maximum number of evaluated at-
tack configurations C, and the chosen size of a subset
sampled from the training data for tuning (step 10),
which could be a smaller fraction or a full training set.

Nevertheless, it is important to use a consistent op-
timization strategy that determines which hyperparam-
eter configuration is evaluated at each iteration (step
13). The common options are Grid search (exhaus-
tive search), Random search and Bayesian optimiza-
tion (probabilistic search). We use Bayesian optimiza-
tion and elect to start from a small model and gradually
increase its complexity. This approach is consistent with
the heuristic in Bayesian statistics of preferring simpler
models when performance is similar, as they are more
likely to represent the underlying distribution of data
more accurately [17].
Cross-Validation. To counter selection bias which
could arise from evaluation on one fixed data split, the
algorithm deploys a procedure similar to the classical
k-fold cross-validation: different portions of the dataset
are used to train, validate and test the model on differ-
ent iterations [26]. This way we can assess if the results
generalize well, i.e., the attack performs better on one
of the datasets over most or even all of the folds. This
analysis may increase the confidence in the outcome, or
on opposite may show that the result is inconclusive,
when the behavior is not consistent across the K folds.
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Randomization. We also account for the non-
deterministic nature of deep neural networks. Namely,
we do several runs (n) for each cross-validation fold with
a varied random seed, which impacts random initializa-
tion of weights in a deep neural network and random
data shuffling between training epochs. Experimenting
with more random seeds allows to assess stability of the
attack and solidifies the observed trends in performance.
Statistical Significance. The algorithm returns the
dataset that yielded the highest average attack perfor-
mance based on the chosen metric, and the difference
between the two averages. It is crucial to compute sta-
tistical significance to assess generalization and relia-
bility of the findings, instead of reporting best runs or
averages alone, which could be random and hence unin-
formative or misleading. Our algorithm assesses signifi-
cance by performing a two-sample t-test, which is appli-
cable to comparing performance of data-driven models
with equal variances [11].

For completeness, in Appendix C we provide Algo-
rithm 2 – a version of Algorithm 1 that compares two
different data-driven attacks on the same dataset, to di-
minish evaluation biases when proposing new attacks.

5.4 Explainability Analysis

Our data collection approach and attack replication al-
gorithm are meant to ensure validity of the conducted
comparison between the single- and multi-proxy setups.
The evaluation aims to assert one of the two datasets
as the harder one to attack, thus indicating a quality
difference between the two data collection setups. How-
ever, drawing strong claims from numerical performance
metrics is challenging, due to the high complexity and
limited interpretability of deep neural networks.

In order to further support the results of the eval-
uation, we conduct additional explainability analysis of
the two attack models. We aim to assess whether the
models trained on different datasets utilize the inputs
differently, e.g., by prioritizing different features.

We conduct explainability analysis through visual-
ization of activation maps – a known technique in com-
puter vision that is most commonly applied to Convo-
lutional Neural Networks (CNNs) for image classifica-
tion [45]. This approach allows to directly analyze the
importance of input features for prediction, because it
is applied in the first layer of the network, where the
input is still interpretable.

Specifically, we look at the output of the first convo-
lutional layer of the network, which produces a volume

of activation maps – two-dimensional arrays of activa-
tions. These activations are the inner products of the
chunk of the input trace and the convolutional filter
(kernel). Because the size of one activation map is linear
to the size of the input trace, we can relate the highest
activation values to certain areas in the original input.
Such areas are considered important by the kernels in
the first layer. By repeating this process across all ac-
tivations maps in the first layer and averaging across
many input traces, we reveal which areas in the traf-
fic trace the model finds most relevant for correlation.
In our experiments we perform this analysis separately
for truly associated and non-associated pairs for each
dataset and report the results.

6 Experimental Results
In this section, we apply our proposed methodology aim-
ing to compare performance of the state-of-the-art E2E
correlation attack on collected datasets.

First we discuss the input format used for learning,
which is the same as is used in prior work which evalu-
ates the attack on the public dataset collected through
a single proxy. We do not alter this representation. Our
main evaluation methodology is applied as described in
Section 5. We perform E2E attack replication on both
datasets with single- and multi-proxy designs, which in-
cludes hyperparameter tuning and cross-validation with
training and testing. Finally we report main perfor-
mance results, scalability results on the bigger dataset,
and the explainability analysis achieved through visual-
ization of activation maps.

6.1 Experimental Setup

All deep learning models used in our experiments are
implemented with Tensorflow version 2.2.0 and Keras
version 2.3.0-tf. We modified the publicly available im-
plementation of DeepCorr 6 to fit our experiments and
implemented the replication procedure on top. The ex-
periments are run on a server with 2 NVIDIA GeForce
RTX 2080 Ti GPUs each with 12GB of RAM and an
Intel Xeon CPU with 256GB of RAM.

Hyperparameter tuning is implemented with
Tune [21] – a research platform for distributed model

6 https://github.com/woodywff/deepcorr
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selection on top of Ray [23]. We used the HyperOpt [40]
algorithm for model selection with Bayesian optimiza-
tion [4]. We deployed a cluster on 6 Amazon EC2 P3
instances with 8 NVIDIA Tensor V100 GPUs each with
16GB RAM and an Intel Xeon CPU with 488GB RAM.

We make attack tuning, evaluation and analysis
code available on our website provided in footnote 1.

Table 3. Architecture and tuned hyperparameters of the eval-
uated T DC models on single- and multi-proxy datasets. Fixed
kernel sizes: (2, 30),(4, 10). Fixed strides: (2, 1), (4, 1).

Hyperparam Search space T DCSD T DCMD

kernels [[64, 128],[64, 64] [64, 128] [64, 128]
[128, 128]]

pool size {3, 5} 5 5
dense layers [[1000],[500, 100] [500, 100] [500, 100]

[1000, 100]]
optimizer — Adam Adam

lr {0.001, 0.0001} 0.0001 0.0001
batch size [32, 64, 128] 32 64
dropout [0.0, 0.4, 0.6] 0.6 0.6

wp [1, 2, 5, 25] 5 5
Nneg [9, 49, 199] 49 49

6.2 Data Input Format

Deep learning-based traffic correlation relies on auto-
mated feature extraction from a chosen representation
of input traffic. In our experiments, we follow the prior
work [27] in representing a bidirectional network flow
as a time-series that combines packet sizes, timing and
direction features. Therefore, a traffic flow F is format-
ted as a time-series with 4 features: F = [T u, T d, Su, Sd],
where T is inter-packet delays, S is packet sizes, and the
u and d refer to the uplink (client to server) and down-
link (server to client) directions. For all experiments re-
ported in this study, we use maximum 300 packets in
each of the 4 dimensions. Note that attack performance
may increase with more packets included, however, to
deploy our extensive evaluation methodology for com-
paring two E2E correlation datasets, one fixed length is
considered representative. We also filter out traces with
less than 100 packets in the uplink or downlink direc-
tion, as the prior work demonstrated that short traces
impede the learning capacity of the attack.

Therefore, a deep learning attack attempts to cor-
relate a pair of traffic segments Fi and Fj , where seg-
ment i is captured at a controlled Tor entry guard
and segment j is captured at a controlled exit relay

(or a proxy server in a research setting). And thus
one input instance becomes of shape (8, 300): Fi,j =
[T u

i , T u
j , T d

i , T d
j , Su

i , Su
j , Sd

i , Sd
j ].

6.3 Attack Replication – Tuning

In this part of evaluation we zoom in to the hyperpa-
rameter tuning (HT) part of the Algorithm 1 (steps 10-
18). We tune a given deep neural network individually
on each dataset SD and MD. We explore two different
kinds of search spaces: those informed by the original
DeepCorr model DC (which we found to be visibly prone
to overfitting), and those that drastically reduce com-
plexity of the network to optimize evaluation. We call
the reduced architecture T DC - Tiny DeepCorr. The
main difference between T DC and DC is in the number
of kernels used by each convolutional layer. We observe
that decreasing the first layer from 2000 to 64 or 128
kernels, and the second layer from 800 to 128 kernels
yields a significant multi-fold improvement in speed (9
hours training time down to 20 minutes, 13 hours test-
ing time down to 40 minutes) and easier interpretable
activation maps, while the average AP decreases by only
≈ 3%. Since we are mostly interested in reliably eval-
uating the relative performance of the attack on two
datasets, we consider this performance drop justified.
For transparency, we tune both models and report DC
results in the Appendix A, but we focus the rest of the
evaluation on the more optimal design – T DC.

When tuning T DC, apart from reducing the com-
plexity of the network, we also vary the main learning
and regularization parameters and the amounts of ker-
nels and nodes for each layer. In order for the neural net-
works to process this input format in the way intended
by DeepCorr, we preserve the original kernel width and
the stride values in both convolutional layers. This way
the timing and size features are analyzed independently.

Next, we vary the tunable Nneg parameter intro-
duced by DeepCorr: it defines the number of non-
associated pairs per each truly associated pair provided
as negative examples to the network during training. A
smaller Nneg results in less training data available to
the network, but a bigger Nneg contributes to a more
pronounced imbalance in the data between positive and
negative samples, which also has an adverse impact on
learning. In order to compensate for this imbalance, we
propose to account for the imbalance in training data
by using a weighted loss function. This is a known mech-
anism which modifies a learning process by augmenting
the loss function with a predefined class weight value to
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(a) Validation AP of tested configura-
tions on single-proxy dataset SD.
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(b) Validation AP of tested configura-
tions on multi-proxy dataset MD.

(c) Validation AP during training.

Fig. 6. Hyperparameter tuning T DC: average precision (AP ) of top-120 configurations over 50 epochs on (a) SD and (b) MD. Note
that runs are terminated early when they do not progress well enough. (c) Cross-validation of T DC on both datasets with seed 10.

penalize the error on the underrepresented class (truly-
associated pairs). So we tune the weight of the positive
class wp within the range from 1 (standard non-weighted
loss) to Nneg (achieves a fully balanced loss).

The resulting search spaces for T DC are listed in
Table 4 columns 1 and 2. We limit the number of ex-
periments to C = 200 various configurations (combina-
tions of an architecture and hyperparameters) for each
dataset (and to 24 for the much more computationally
intensive DC). While exhaustive HT of deep neural net-
works is out of reach, the automated framework we use
adopts Bayesian optimization to guide the search of best
parameters. To decrease computational costs of the al-
gorithm, we run HT once on a subset of approximately
5, 000 traces (step 10).

Columns 3 and 4 in Table 4 report the final best con-
figurations for single- and multi-proxy, while the top-5
configurations are listed in Table 6 in Appendix B. As
explained in Section 5, we select the optimal configura-
tion based on the top achieved AP.

Figure 6 illustrates the training process for the top-
120 runs on SD (a) and MD (b) in terms of AP on
the validation data (convergence in terms of loss can be
found in Appendix B). There are several conclusions to
derive from the images. First, as expected, the loss and
AP are not linearly related: at first AP grows with the
minimized validation loss, but then often stabilizies even
when the loss starts to increase again (indicating over-
fitting). The dual-optimization problem is not trivial,
and finding the most optimal point in training the at-
tack deserves further exploration. For our experiments,
it suffices to select the optimal point in a consistent way
for comparing single- to multi-proxy data.

The second and main observation is that in gen-
eral, tuning on MD presents a harder challenge than
tuning on SD with the same search space. We see that

T DCSD performance is predominantly higher, and the
model reaches convergence on earlier epochs. Overfitting
is also more present with SD. We also notice that some
of the best runs for MD require more kernels in the first
convolutional layer, showing a demand for higher learn-
ing capacity. All this is the first indication that the noise
produced in the single-proxy setup may indeed increase
feasibility of traffic correlation.

We denote the best configuration on the single-
proxy data T DCSD and on the multi-proxy data –
T DCMD. While learning from the two datasets presents
tasks of varying difficulty, the nature of the problem re-
mains the same such that T DCSD and T DCMD are very
similar: the only difference is in batch size. It is theoret-
ically possible that further advanced tuning of T DCMD

could potentially improve the attack, e.g., by increas-
ing complexity and employing additional regularization
techniques to counteract overfitting. However, our HT
experiment succeeds in showing that the dataset gen-
erated in a more realistic multi-proxy setup presents a
harder problem for learning.

6.4 Attack Replication – Training & Test

In the main stage of attack replication (steps 19-23 and
24-25 of Algorithm 1), we estimate and compare at-
tack performance on both datasets by using the whole
amount of traffic traces and the best model configura-
tions. Both SD and MD consist of N = 7, 948 truly-
associated pairs of traces. We perform 5-fold cross-
validation (k = 5) where for each fold we train and
validate on 80% of correlated traces with Nneg = 49
negative examples each (0.8N × (1 + Nneg) = 317, 900)
and test on 20% of positive traces paired with each
other (0.2N × (0.2N − 1) = 2, 526, 510 traces). For each
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Table 4. E2E attack performance of the tuned T DC models on the single- and multi-proxy datasets SD and MD. APval is computed
on validation data of size N × Nneg (15, 895 for SD and MD, and 50, 000 for MD1mln). Other metrics are computed on the test
set of N ×N traces (2.5 million for SD and MD, and 25 million for MD1mln), imitating actual attack. AP indicates the area under
P R-curve. T P R, F P R and P r are first optimized for a low F P R = 0.001 then for a high T P R = 80 %.

Model APval(%) APtest(%) T P RF P R=0.001(%) P rF P R=0.001(%) F P RT P R=80 % P rT P R=80 %

T DCSD 79.22± 6.80 24.55± 6.98 47.76± 9.01 21.40± 3.27 0.0071± 0.003 7.68± 2.82
T DCMD 71.27± 9.84 13.83± 6.60 32.43± 10.59 15.02± 5.19 0.0154± 0.008 4.08± 1.98

p−value 0.007568 0.000028 – – – –

T DCMD−1mln 95.3± 1.2 5.099± 1.22 35.93± 2.77 39.37± 1.75 0.775± 1.12 7.09± 2.03

fold, we also repeat the evaluation n = 3 times with
random initialization. The final result for each dataset
is therefore averaged over k×n = 15 runs, aiming to ac-
count for potential selection bias and non-deterministic
behavior of deep learning models. Having more samples
should allow to analyze significance of the results.

Same as with HT, we use AP for early stopping, i.e.,
we obtain the weights of a model that yield the high-
est AP (area under the PR-curve). The question is then
whether these weights generalize well to the unseen data
amounting 2, 5 million pairs of traces. Table 4 shows
the final performance metrics (extended version can be
found in Appendix B). Figures 6a and 6b depict the
training process of every run for SD and MD in terms
of AP and validation loss. Overall, E2E attack corre-
lation is more successful on the single-proxy dataset:
we observe the difference in AP means of 7.95%. For
the same optimized FPR of 0.001, TPR on MD drops
by 15.33%, while for the optimized TPR of 80%, FPR
increases from 0.007% to 0.015%, which translates to
100% more false positives. T DCSD also converges faster
and appears to be more prone to overfitting.

The difference between means obtained through ex-
periments is not informative on its own, as it could be
due to random variations or chance. To show statisti-
cal significance of this comparison, we apply the two-
sample Welch t-test (for unequal standard deviations)
to compute the expected difference between two popu-
lations’ means. If according to this test the difference
is significant (e.g., p-value lower than 0.05), we can as-
sume even on basis of these limited observations that
the observed trend would generalize well to other ex-
periments and data splits. Namely, that the attack gen-
erally performs worse on MD. We apply the test to 40
test set AP values obtained by T DCSD and T DCMD,
achieving t-value= 4.866 and p-value= 0.000028, which
indicate high statistical significance. In Appendix B, we
shed more light on variability of performance on differ-
ent dataset folds and random seeds.

Scalability. To assess how well the attack scales to a
larger dataset, we evaluate T DCMD on 25,000 associ-
ated pairs from the MD1mln dataset with Nneg = 5.
The results in Table 4 indicate worsened performance on
25mln test traces. The experiment illustrates the intrin-
sic challenge of E2E correlation attacks (cf. Section 5):
the growing amount of intercepted traffic traces leads to
a quadratic growth of the test set, which in turn causes
a sharp decrease in the overall attack performance.
Results. To sum up, based on the extensive tuning and
systematic evaluation, we can conclude that the E2E
correlation attack performs significantly better on SD
than on MD, which corresponds to our initial hypoth-
esis. Namely, the realism issue with the single-proxy
data collection setups that was exposed in Section 3
appears to favorably impact estimated performance of
data-driven E2E attacks. As this may be due to the
noisy timings present in the input, we further explore
this connection with explainability analysis.
Explainability. To get the insight behind the observed
difference in performance, we compute mean activations
maps in the first convolutional layer, separately for cor-
related and non-correlated inputs, for both datasets. As
explained in Section 5, the attacks may assign different
levels of importance to various input features or certain
areas of input traffic traces, indicating where the signal
for traffic correlation is stronger in each dataset.

In Figure 7 we show one example of the differences
between mean activations obtained from correlated and
non-correlated pairs by single and multi-proxy models.
Activations produced by T DC’s first layer have shape
(4, 64, 271) (features, kernels, activation positions), and
we plot the two computed timing features [T u

ij , T d
ij ] for

positive and negative pairs. As the visual interpretation
is limited, we also calculate a sum of the differences for
each pair of models - the total difference in mean acti-
vations (see Table 8 in Appendix D). The first obser-
vation to be made here is that in general, uplink tim-
ings appear to be more important to correlation than
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Fig. 7. Differences between mean activation maps computed
over 1590 correlated (pos) and non-correlated (neg) traces. Left:
single-proxy, right: multi-proxy. Datasets fold: 4, seed: 10. Uplink
timings: T u, downlink: T d. Dark color indicates higher intensity.

downlink timings. This is surprising, as downlink in-
formation contains server responses, i. e. is richer and
of greater volume. As there are no studies that look
into explainability of DL-based traffic correlation, more
in-depth analysis is required to explain the mechanism
through understand the exact involvement of kernels.
Requests could facilitate E2E correlation if they were
indeed more unique than responses. However, that does
not have to be the case: DL-based nature of the attack
may be causing the attention skew from downlink to
uplink data simply because it is easier to analyze. Neu-
ral networks are known for simplicity bias [37]: they can
exclusively rely on the simplest features and remain in-
variant to other more complex predictive patterns. To
verify this idea, we suggest that future work needs to
investigate the inner workings of DL-based traffic cor-
relation attacks, similar to the recent work for WF [9].

Secondly, we compare the activation differences of
SD and MD and notice that on the single-proxy data,
uplink timings are in general more impactful on the at-
tack. This preliminary analysis indicates stronger tim-
ing signal in single-proxy traces; however, more research
is needed to study the exact mechanism. We refer the
reader to Appendix D for more details.

Overall, the problem of reliable and robust AI evalu-
ation remains an open research question. The guidelines
proposed in this paper address common sources of sam-
pling and evaluation bias in experimental setups and
can be further improved in future research.

7 Discussion
Here we discuss limitations and future work directions.
Representativeness of Traffic. Our dataset consists
of website requests that only consider visits to the main
homepage while omitting the pages within. This simpli-
fication allows us to create a dataset comparable with
prior work on E2E correlation, so the main quality dif-

ference is manifested through much more accurate tem-
poral characteristics. However, we did not aim to move
the dataset beyond the state-of-the-art in terms of rep-
resentativeness of simulated human behavior. While our
specific analysis of E2E attacks remains largely undis-
turbed by this limitation and yields novel results, the
browsing activity stays within the abstraction of home-
page visits, as is common for many other known WF
and E2E datasets [27, 29, 33, 38, 39]. There have been
notable advances in the area of approximating real Tor
user profiles and addressing complex website infrastruc-
tures during traffic generation for WF [31]. Using our
novel setup to collect an E2E (and WF) dataset that
is also more representative of human behavior and as-
sess the impact of traffic analysis attacks would be a
challenging but valuable extension.
Proxy-Related Overhead. A proxy-based data col-
lection setup for end-to-end correlation allows to esti-
mate attack success rates in a research setting without
compromising safety of Tor users. In this study we show
that the novel multi-proxy data collection setup reduces
the timing overhead introduced by the state-of-the-art
single-proxy design. However, the impact of any involve-
ment of proxies on traffic metadata, in comparison to
the real-world Tor, remains an open research question.
The complex proxy-related overhead and its indirect im-
pact on traffic correlation feasibility can technically only
be measured by collecting real exit traffic. As this is as-
sociated not only with the loss of node location diver-
sity but also with strong ethical concerns, it would be
pertinent to minimize privacy risks by consulting the
community for coordination of effort (e. g. through the
Tor Research Safety Board7).
Ethics Considerations. Work on traffic analysis at-
tacks requires realistic datasets that resemble Tor’s
daily transmission characteristics. Measurements in the
real network must not harm or deanonymize Tor users
by any means or affect the overall performance of the
system. For all decisions we made when designing our
real-world experimental setup, we closely followed Tor’s
guidelines for ethical research [41]. Although frame-
works like the Shadow simulator [16] are able to mimic
transmissions through Tor, we collected real-world traf-
fic to allow for comparison with previous research.
Defenses Against Traffic Analysis. The analysis
in our paper is focused on unprotected traffic. While
this is sufficient for validating our proposed data collec-

7 https://research.torproject.org/safetyboard/

https://research.torproject.org/safetyboard/
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tion setup, evaluation of known protection schemes is
a worthwhile future research direction. To this end, we
make our dataset on closed-world and open-world WF
and E2E attacks publicly available to foster research on
a joint evaluation of defensive schemes against both at-
tacks. To the best of our knowledge, our dataset is the
first effort in combining both threat models in one large-
scale data collection setup, enabling this exploration.
Onion Services. When browsing a typical website,
it could be indicating that it can be accessed over an
onion service, using the Alt-Svc response header. In our
setup, the targeted websites observed incoming connec-
tions from our proxies, hosted on the network of a cloud
provider. Consequently, the websites would not send the
Alt-Svc header, and thus our Tor Browser client did
not attempt to access the them over the onion service.
Moreover, because the Tor Browser used a proxy chain,
it would not be able to resolve or connect to .onion
addresses. Consequently, our data collection setup de-
viates from a real-world data capture for websites that
would redirect users to an onion service.

In practice, we find that Cloudflare, a large CDN
provider, provides an optional feature for all the web-
sites it hosts that allows them to be accessible via an
onion service [34]. However, because of our proxy-based
setup, no traffic was sent to onion services, possibly
affecting the representativeness of our dataset. More
specifically, we captured data at our proxy that might
have otherwise been sent to an onion service, and thus
would not be captured by an adversary who only con-
trolled the client’s guard node and the exit node. In a
real-world attack, the adversary needs to take the asym-
metry of requests sent to exit nodes and onion services
into account. In preliminary tests, we found that onion
services are rarely contacted when loading a new web-
site. Nevertheless, an extensive evaluation of the impact
of loading resource from onion services on attacks is an
important aspect to be addressed in future work.

8 Related Work
Our work builds on DeepCorr, the first traffic correla-
tion attack that leverages deep learning [27]. While the
system undoubtedly outperforms existing approaches to
flow correlation, we critically replicated its evaluation
focusing on a more realistic research setup for mod-
eling the attack. Our study provides additional novel
insights on performance evaluation, tuning, scalability
and explainability of the DL-based attack. Concurrently

to our work, Oh et al. [12] have proposed a novel end-to-
end correlation attack by utilizing metric learning tech-
niques. As their learning approach is fundamentally dif-
ferent from the CNN used in DeepCorr, an interesting
research direction would be to investigate performance
of their attack in our proposed multi-proxy setup.

Previously, critical evaluations of attack techniques
in the light of their real-world applicability have been
conducted in the context of website fingerprinting [19],
with focus on access to traffic as operational require-
ments for end-to-end confirmation [18, 35], and for de-
anonymization attacks targeted at specific users [15].

As a widely adopted technique for end-to-end pro-
cessing of time-series, DL is favored for unprecedented
performance and efficiency. With the analysis of Tor
traffic being one of the most prominent applications in
privacy [30, 33], DL was also employed, e.g., for proto-
col detection [44], encrypted video stream analysis [36],
and for inferring (mobile) applications from encrypted
traffic [2]. Limitations and challenges of DL evaluations
in security have been recently explored by Arp et al. [3].
However, most progress on sound practices for DL eval-
uations are conducted in the AI domain [7, 8, 25].

9 Conclusion
In this work, we introduced new methodologies for data-
driven end-to-end correlation attacks on Tor. We pro-
posed a new experimental setup that allows to col-
lect Tor traffic with more realistic timing characteristics
by minimizing the additional overhead in proxy-based
end-to-end measurements. Furthermore, we introduced
a systematic replication strategy along with appropri-
ate evaluation metrics to allow for a fair comparison
of data-driven attacks on novel data. Our empirical re-
sults demonstrate the relevance of the suggested multi-
proxy design: we find that the novel end-to-end corre-
lation dataset that contains more realistic timing mea-
surements also presents a significantly harder learning
problem. This indicates that utilizing multiple proxies
approximates attacker capabilities more accurately than
prior work – a positive step towards realistic attack eval-
uation. Finally, we open source the research code and
the multi-proxy dataset to enable further research on
traffic correlation and website fingerprinting attacks.
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Appendix

A Original DeepCorr Performance
We list the search spaces and chosen hyperparameters
for the original DeepCorr architecture in Table 5. Hy-
perparameter tuning process of DC in Figure 8 depicts
average precision (AP) of different configurations evolv-
ing over 30 epochs. Note that the runs are terminated
early when they stop progressing. The longest runs take
over 8 hours, so we set patience for early stopping to 5
epochs (vs. 10 epochs for T DC). We refer the reader to
our website in footnote 1 for more details on reproduc-
ing original DeepCorr on public and novel datasets.

Table 5. Hyperparameters of the DC model on the multi-proxy
dataset and final chosen configuration for T DC. Fixed kernel
sizes: (2, 30),(4, 10), strides: (2, 1), (4, 1).

Hyperparam Search space T DCSD T DCMD

kernels [2000,800] [64, 128] [64, 128]
pool size {3, 5} 5 5

dense layers {[2000],[2000, 500]} [500, 100] [500, 100]
optimizer — Adam Adam

lr {0.001, 0.0001} 0.0001 0.0001
batch size [32, 64, 128] 32 64
dropout [0.0, 0.4, 0.6] 0.6 0.6

wp [1, 2, 5, 25] 5 5
Nneg [9, 49, 199] 49 49
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Fig. 8. Validation AP of tuned DeepCorr configurations.
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B Tuning & Training Details
Table 6 lists 5 top tuning experiments for T DC models
on both datasets (based on the search spaces defined
earlier in Table 3). While the tuning framework sorts
the runs by their final validation AP (i. e., at the last
or early stopping epoch), we choose the best configu-
ration based on the maximum validation AP over the
whole training process. Note that there are several iden-
tical configurations among the top 10. This is due to
the framework evaluating some of the most promising
hyperparameter configurations repeatedly, in order to
account for variability of the training process and verify
superiority of given parametrizations.

Figure 9 depicts the complementing part of Figure 6
in Section 6, with the validation loss instead of AP. Ta-
ble 7 provides information on all individual evaluation
runs of T DCSD and T DCMD on five folds of each dataset
over four varied random seeds. These results illustrate
high variability of deep neural networks (even on the
exactly same data and configurations), thus underlining
the importance of Algorithm 1.

Table 6. Top performing hyperparameter tuning runs for the
T DC model on a subset of the single-proxy dataset SD (top)
and multi-proxy dataset MD (bottom). Dropout = 0.6. Sorted
by the final AP. The best configuration is chosen based on the
maximum achieved AP, marked in bold.

lr batch size wp dense layers kernels loss final AP

SD

0.001 128 1 [500, 100] [128, 128] 0.031 0.821
0.0001 32 5 [500, 100] [64, 128] 0.089 0.748
—"— 32 1 —"— —"— 0.034 0.747
—"— 64 5 —"— —"— 0.114 0.744
—"— 64 1 —"— —"— 0.047 0.740

lr batch size wp dense layers kernels loss final AP

M
D

0.0001 64 5 [500,100] [64, 128] 0.184 0.667
—"— —"— 5 —"— [128, 128] 0.192 0.664
—"— —"— 1 —"— [64, 128] 0.065 0.637
—"— —"— 1 —"— —"— 0.061 0.635
—"— —"— 5 —"— —"— 0.178 0.608
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(a) Validation loss of tested configurations on
single-proxy dataset SD.

Number of epochs

Lo
ss

4020 30 5010

0.2

0.1

0.3

0.4

0.5

0

0.6

(b) Validation loss of tested configurations on
multi-proxy dataset MD.

(c) Validation loss during training.

Fig. 9. Hyperparameter tuning T DC: validation loss of top-120
configurations over 50 epochs on (a) SD and (b) MD. Note that
runs are terminated early when they do not progress well enough.
(c) Cross-validation of T DC on both datasets with seed 10.
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Table 7. Detailed attack results for single-proxy model T DCSD (top half) and multi-proxy model T DCMD (bottom half) with cross-
validation and varied seeds. Two outlier runs (T DCMD, seed=101, fold=2,4) marked red were excluded from computation of mean
and statistical significance.

T DCSD F P R = 0.001 T P R = 80 %

Test fold APval(%) APtest(%) T P R(%) P r(%) F P R P r(%)

Se
ed

=
1

����� 77.67 26.08 48.55 21.83 0.0066 7.05
����� 77.34 17.98 38.24 18.04 0.0091 5.19
����� 86.13 27.24 53.02 23.29 0.0046 9.71
����� 64.87 11.79 31.82 15.42 0.0135 3.57
����� 81.3 33.27 55.97 24.3 0.0051 8.9

Se
ed

=
10

����� 84.69 29.09 55.47 24.14 0.0039 11.34
����� 82.57 24.46 47.74 21.51 0.0059 7.75
����� 85.99 27.99 54.4 23.91 0.0046 9.68
����� 83.44 34.17 59.12 25.28 0.0036 12.01
����� 84.65 29.3 55.28 24.1 0.0048 9.48

Se
ed

=
10

1 ����� 67.49 14.38 33.9 16.31 0.0115 4.16
����� 81.2 29.95 53.52 23.65 0.0054 8.4
����� 84.76 26.04 52.08 22.99 0.0047 9.56
����� 71.83 16.05 36.86 17.47 0.0114 4.19
����� 76.34 17.51 39.87 18.59 0.0109 4.37

Se
ed

=
10

2 ����� 66.05 13.01 31.76 15.47 0.0143 3.36
����� 83.69 31.74 55.03 23.98 0.0047 9.54
����� 84.01 27.61 49.87 22.39 0.0059 7.82
����� 84.04 30.34 56.16 24.35 0.0037 11.86
����� 76.43 23.1 46.6 21.06 0.0081 5.8

Mean± std 79.22± 6.80 24.55± 6.98 47.76± 9.01 21.40± 3.27 0.0071± 0.003 7.68± 2.82

T DCMD F P R = 0.001 T P R = 80 %

Test fold APval(%) APtest(%) T P R(%) P r(%) F P R P r(%)

Se
ed

=
1

����� 61.27 6.73 20.38 10.45 0.0281 1.74
����� 60.2 6.21 19.87 10.24 0.0246 1.98
����� 62.2 9.05 26.04 13.07 0.0196 2.48
����� 84.75 24.23 47.92 21.62 0.0063 7.27
����� 75.38 19.37 40.94 18.99 0.0091 5.18

Se
ed

=
10

����� 81.85 14.41 35.03 16.73 0.01 4.74
����� 75.43 15.83 34.84 16.65 0.0104 4.56
����� 78.44 21.45 46.42 21.01 0.0065 7.12
����� 65.13 7.7 22.58 11.44 0.0237 2.06
����� 78.75 16.59 37.99 17.86 0.009 5.25

Se
ed

=
10

1 ����� 79.44 18.33 41.13 19.11 0.0084 5.58
����� 22.35 0.96 4.97 2.78 0.1313 0.38
����� 51.77 4.84 15.66 8.35 0.0343 1.43
����� 13.19 0.53 3.02 1.71 0.2103 0.24
����� 76.96 18.37 37.99 17.93 0.0101 4.71

Se
ed

=
10

2 ����� 60.97 6.26 21.57 11.1 0.0243 2
����� 68.64 9.81 26.92 13.35 0.0173 2.8
����� 60.83 6.93 21.19 10.83 0.0216 2.25
����� 80.4 19.8 42.83 19.7 0.0077 6.04
����� 80.51 23.03 44.47 20.28 0.0074 6.32

Mean± std 71.27± 9.84 13.83± 6.60 32.43± 10.59 15.02± 5.19 0.0154± 0.008 4.08± 1.98
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C Comparison of Attacks
With Algorithm 2, we present our proposal for repli-
cation and scientific comparison of DL-based attacks
against Tor, including E2E traffic correlation and web-
site fingerprinting. The main intended usage is a sys-
tematic evaluation of novel attacks against the state-of-
the-art. This algorithm follows the general logic of Algo-
rithm 1 and has similar motivation. Namely, in order to
aim for reliable conclusions on superiority of one data-
driven approach over the other based on limited empiri-
cal evidence, it is essential to account for major sources
of potential bias and variability. While cross-validation
is usually used to diminish possible sampling bias, other
aspects are not very often considered in the literature:
(1) re-tuning on data that was not used for the original
tuning of the state-of-the-art attack; (2) coordination of
tuning processes for both attacks in terms of time and
memory resources, available search spaces, and condi-
tions and metrics for early stopping; (3) randomization
in training of neural networks, which is manifested e. g.
in random weight initialization and random data shuf-
fling during stochastic gradient descent. And finally, the
algorithm suggests a Welch t-test for statistical signifi-
cance in case of unequal standard deviations.

As already discussed in Section 5, exhaustive eval-
uations are unattainable. The ideal evaluation may be-
come too computationally intensive and tedious to per-
form, especially with large datasets and models. This
often prompts researchers to compromise on some as-
pects of a thorough evaluation, to obtain a desirable
cost/benefit trade-off in terms of computational costs
and reliability of results. In such situations, we encour-
age to explicitly acknowledge which parts of the algo-
rithm have been omitted or reduced for a computation-
ally feasible comparison. For example, compared attacks
might have had inconsistent tuning conditions, or per-
formance samples of one attack were collected over a
bigger range of random seeds because of a higher vari-
ance. Reporting these experimental limitations along
with the results is instrumental for transparency and
for estimation of certainty in a given outcome.

D Explainability Graphs
In Section 6, we perform explainability analysis to find
out whether certain timing characteristics are more in-
fluential for one data collection setup than the other.
Here we give more detailed results of the explainabil-

Algorithm 2. Replication and comparison of two ML/DL
attacks on the same dataset. Here, with AP as a target
metric and t-test for statistical significance.

Input: Dataset D; ML/DL attacks A1, A2;
hypeparameter search spaces SA1 , SA2 .

Output: Attack with the highest mean performance on
D; diff between means; statistical significance.

1 Set number of cross-validation folds K

2 Set maximum numbers of attack configurations CA1 ,
CA2 (or consistent time and memory resources)

3 Set number of randomized training runs n

4 Split D into K equal folds D1,...,K

5 APA1 ← {}, APA2 ← {}
6 for k ∈ {1, ..., K} do
7 Put aside fold Dk as testk

8 Assign the remaining folds to traink

9 Sample tunek ⊆ traink

10 for attack A ∈ {A1, A2} do
11 APbest ← 0
12 for i ∈ {1, ..., CA} do
13 Sample config ci from SA using the chosen

optimization strategy
14 Split tunek into tunetrain, tuneval

15 Train A with config ci on tunetrain

16 Compute AP on tuneval

17 if AP > APbest then
18 ck = ci, APbest = AP

19 repeat n times
20 Change random seed
21 Train A with config ck on traink

22 Compute AP on testk

23 APA ← APA ∪AP

24 Compute t-test and p-value on (APA1 , APA2 )
25 return argmax(AP A1 , AP A2 ); |AP A1 −AP A2 |;

p-value.

ity experiments, for models created with random seeds
1 and 10 and trained on all 5 folds. These experiment
provides preliminary ideas on the presence of potential
timing bias that may be simplifying traffic correlation
in the single-proxy setup. Figure 10 depicts differences
in mean activations between truly-associated and non-
associated traces. Since the visual analysis is challeng-
ing, Table 8 contains total (summed up) differences be-
tween these activations maps for both uplink and down-
link timings. We observe that uplink timings mostly
have much larger impact on single-proxy models than
on multi-proxy models, except the two scenarios. This
preliminary result could be an indication of subtle tim-
ing bias being present in uplink timings of traffic traces
collected over the single-proxy setup. To obtain conclu-
sive results, we propose extending this investigation in
future research beyond analysis of activation maps.
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Table 8. Comparison of the impact of uplink timings vs. downlink timings on the traffic correlation attack by single- and multi-proxy
models created with given seeds and folds. For both models, we first show the total difference in mean activations for uplink timings
(AT u ), as well as for downlink timings (AT d ), followed by their subtraction (AT u − AT d ). Positive results of subtraction show that
uplink values are always larger. Then, the delta column shows how much larger the relative impact of uplink timings is on single-proxy
models than it is on multi-proxy models. For reference, the right side of the table lists the corresponding attack performance metrics.

T DCSD T DCMD T DCSD T DCMD

Test fold AT u AT d AT u -AT d AT u AT d AT u -AT d Delta APval(%) APtest(%) APval(%) APtest(%)

Se
ed

=
10

����� 226720.5 101278.8 125441.7 247898.9 179573.3 68325.5 46% 84.69 29.09 81.85 14.41
����� 226106.2 112463.7 113642.6 148192.4 76552.0 71640.4 37% 82.57 24.46 75.43 15.83
����� 183858.9 85385.1 98473.8 167102.9 113232.8 53870.1 45% 85.99 27.99 78.44 21.45
����� 207299.5 80356.2 126943.3 200730.1 124901.6 75828.4 40% 83.44 34.17 65.13 7.7
����� 207509.1 90500.0 117009.1 188045.7 146269.1 41776.6 64% 84.65 29.3 78.75 16.59

Se
ed

=
1

����� 180377.9 98670.1 81707.8 246522.6 154175.9 92346.7 −13% 77.67 26.08 61.27 6.73
����� 193831.3 92423.1 101408.2 213124.6 100228.8 112895.8 −11% 77.34 17.98 60.2 6.21
����� 177800.0 86152.4 91647.7 155957.5 102699.1 53258.3 42% 86.13 27.24 62.2 9.05
����� 191768.9 79840.0 111928.9 190277.7 117061.6 73216.1 35% 64.87 11.79 84.75 24.23
����� 170874.1 76537.1 94337.0 176942.0 151082.6 25859.5 73% 81.3 33.27 75.38 19.37

Fig. 10. Differences between mean activation maps computed over 1590 truly-associated (pos) and non-associated (neg) traces. Indi-
vidual heatmaps display on the horizontal axis single-proxy (left) vs. multi-proxy (right), and on the vertical axis differences between
mean activations generated from uplink timings (T u) vs. downlink (T d). Darker color indicates higher intensity. All maps in the left
column were produced with seed 1 vs. seed 10 for those in the right column. Folds 1 to 5 are arranged from top to bottom.
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