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Abstract: Digital contact-tracing (DCT) applications
have been installed on more than 188 M smartphones
worldwide as an effective mechanism for monitoring
contact with COVID-19 infected individuals. DCT is
promising not only for COVID-19, but also for prepar-
ing for a possible future large-scale pandemic. The DCT
framework is unique in that it combines Bluetooth Low
Energy (BLE) communications with cryptography tech-
niques to track exposure on a large scale while protect-
ing user privacy. The objective of this study is to as-
sess the risk of the linking attack to the DCT frame-
works; i.e., linking individuals to the identifiers con-
tained in BLE broadcast frames that are supposed to
be anonymized. Specifically, we target Google/Apple’s
Exposure Notification (GAEN), which is the representa-
tive implementation of DCT. Our extensive experiments
demonstrate that passively collected rolling proximity
identifiers (RPIs) contained in the BLE frames can be
linked to face photos which could lead to the exposure of
privacy information with high accuracy, including infec-
tion status. We also demonstrate that an attacker with
a few number of devices can correctly link RPIs and the
images of the target person with a success rate of 86% at
a rate of 5,000 users per hour. Based on these results, we
propose countermeasures to reduce the inherent privacy
risk of the GAEN framework.
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1 Introduction
As a promising technology aimed at understanding
and preventing the spread of infectious diseases such
as COVID-19, smartphone-based digital contact-tracing
(DCT) frameworks have been developed and are being
deployed worldwide. DCT frameworks take advantage
of the fact that most of the world’s population carry
smartphones with Bluetooth Low Energy (BLE) com-
munication capabilities to provide a means of quantita-
tive assessment of the spread of infectious diseases and
the individual risk of infection. Swaminathan et al. con-
jectured that the DCT approach will be used in future
pandemics of infectious diseases [1]. Several studies, in-
cluding a study by Chowdhury et al. [2], examined ways
to improve DCT technology with the goal of preparing
for future pandemics.

Although DCT frameworks offer the benefit of pro-
viding quick insight into the spread of infection, they
should not invade people’s privacy. In the worst-case
scenario, privacy leakage may lead to unlawful discrim-
ination or abuse. For instance, during the COVID-19
pandemic, discrimination and prejudice against infected
individuals and healthcare workers became a serious so-
cial problem [3–5]. Aduhammad et al. discussed the ac-
ceptability and ethical issues associated with the use
of DCT [6]. According to their study, DCT technology
raises concerns for people, including those related to pri-
vacy, voluntariness, and the beneficence of data usage.
Kaspar et al. found that users are negatively motivated
to use DCT because of their perception of the severity of
data misuse and their vulnerability to data misuse [7].

Given these observations, it is critical to imple-
ment built-in user-privacy protection mechanisms in
the DCT. The Google/Apple’s Exposure Notification
(GAEN) is representative implementation of DCT. It is
a distributed system in which contact tracings are per-
formed collectively from user smartphone apps; crypto-
graphic techniques are applied to protect personal pri-
vacy. In principle, it is impossible for GAEN developers
and operators to obtain data on an individual’s contact
and location history. As of 2022, GAEN is a standard
feature in the world’s leading mobile operating systems:
Android and iOS. Furthermore, it is expected to be ef-
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fectively utilized in the event of a new pandemic in the
future.

However, the GAEN framework has inherent pri-
vacy risks that can lead to the unauthorized disclosure
or theft of personal information. In this study, we fo-
cus on the risk of a face photo linking attack (hereafter
referred to as a linking attack), which links a person’s
face photo to his or her infection status.The principle of
the attack is described below. A smartphone installed
with GAEN advertises a unique identifier to neighbor-
ing smartphones using BLE. As described later, this
identifier can be derived from the temporary key that a
person who tests positive for COVID-19 registers on a
server operated by a health authority. Using commodity
hardware setup, consisting of BLE receivers and cam-
eras, an attacker collects the identifier sent from the
GAEN user’s smartphone and the person’s face photo
at the same time, and links them as a pair. The at-
tacker then derives the identifier from the temporary
key of the positive person disclosed by the server of the
health authority and matches it with the collected pair.
Consequently, the attacker can obtain a face photo of
the person with a positive COVID-19 status from the
collected pairs. Because many people use social media
today, there is a risk that a face photo search engine
can be used to identify the positive person’s personal
information and social media account from the positive
person’s face photo [8–10].

The threats of linking attacks targeting DCT frame-
works have been discussed in previous studies [11–14].
While these studies suggest that linking attacks are pos-
sible in principle, they do not provide any experimental
evaluation nor quantitative assessment of the feasibility
or scalability of the attacks. Thus, there is no funda-
mental data to conduct a proper risk assessment of the
threat posed by an attack. In [14], Boutet et al. qualita-
tively discussed the risks posed by a privacy breach due
to a linking attack in GAEN, noting that if the attack
is feasible, it could hinder GDPR compliance.

Based on this background, this study addresses the
following three research questions:
RQ1: Is a linking attack targeting the GAEN framework
feasible? (Section 4)
RQ2: Is the attack scalable? (Section 5)
RQ3: What are the effective approaches to mitigating
the attack? (Section 6)

To address these research questions, we conducted
extensive field experiments and large-scale simulations
targeting the GAEN framework.

The contributions of this work are as follows. First,
through extensive field experiments using smartphone

devices, we demonstrate that an attacker can establish
a linking attack with high accuracy by using a simple
attack device that includes a directional antenna. Ex-
periments using smartphones with various BLE trans-
mission power profiles demonstrate that linking attacks
are successful even for smartphones with relatively weak
transmission power. We also show that attack is success-
ful even when the distance between the target and the
attacking device is far (up to 7 m) and when the smart-
phone is placed in a pocket or a bag.

Second, we demonstrate the scalability of the link-
ing attack through realistic simulation experiments. Our
simulation model accurately incorporates the propaga-
tion characteristics of the radio waves emitted by di-
rectional antennas. The simulation model adopts a 3-
dimensional (3D) model of a walking person to evaluate
the impact of pedestrian flow, number of devices used
by the attacker, and behavior of the pedestrian on the
success rate of the linking attack. To model the move-
ment of people in the simulation, we leverage open data
that contain records of the trajectories of pedestrians
in a city. The experimental results verified that an at-
tacker can achieve a high linking attack success rate of
approximately 86% against a high pedestrian flow of
5,000 people per hour by deploying only a few attack
devices. Based on the findings of our experiments, we
discuss realistic attack scenarios for linking attacks in
Section 7.1.

Finally, we propose mechanisms that aim to miti-
gate the threats posed by the linking attacks. The effec-
tiveness of these countermeasure techniques is clarified
by simulation evaluation and field experiments.

2 GAEN Framework
The GAEN framework is a decentralized scheme in
which smartphone devices use BLE signals to ex-
change anonymous identifiers that are updated period-
ically [15]. GAEN was developed based on the decen-
tralized privacy-preserving proximity tracing (DP-3T)
framework [16]. As of February 2022, contact-tracing
applications using the GAEN framework were in oper-
ation in 38 countries worldwide [17–20].

A brief overview of the scheme for generating anony-
mous identifiers exchanged in the GAEN framework is
shown in Figure 1. First, each client device generates
a Temporary Exposure Key (TEK), which is randomly
generated every 24 h. The TEK is stored inside the de-
vice for 14 days and is not exposed to the public unless
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Fig. 1. Derivation of rolling proximity identifiers [21].

the owner of the device registers as a positive person
on the health authority’s key management server. From
the TEK and timestamp, the client derives an Rolling
Proximity Identifier (RPI) every 10–20 min.

Additionally, the client derives associated encrypted
metadata (AEM) based on TEK, RPI, and Bluetooth
metadata and advertises a BLE frame with the RPI and
AEM on the payload to its neighbors [21]. The client ad-
vertises BLE frames with a period of 200–270 ms [15].
While the client advertises its own RPI and AEM, it
also receives the BLE frames advertised by other neigh-
boring client devices. The client receives BLE frames at
a period of 4 s every 5 min and stores the payload inside
the device [22].

A user who tests positive for COVID-19 uploads a
diagnosis key to the health authority’s key management
server using the GAEN-powered app. The diagnosis
keys contain the TEKs for the past 14 days and times-
tamps corresponding to the times when the TEK was
valid. The health authority’s key management server
disseminates the collected diagnostic keys to GAEN-
enabled clients in the country. The client that receives
the diagnosis key of a positive person achieves expo-
sure notification by matching the diagnosis key with the
RPIs received in the past 14 days.

In this study, we examine the Contact-confirming
Application (COCOA), which was developed and op-
erated by the Ministry of Health, Labor, and Welfare
(MHLW) in Japan, as a DCT application implemented
using the GAEN framework [17]. COCOA incorporates
a function that adjusts the TEK to be uploaded based
on the date that the user reported infection-related
symptoms of COVID-19 [23]. Specifically, TEKs gen-
erated from 2-days prior to the date of a positive test
for COVID-19 to the date of positive registration on the
MHLW server using COCOA were uploaded as the di-
agnosis key, where the maximum backward period was
set to 14 days.

3 Linking Attack
In this section, we present an overview of the linking
attack that targets the GAEN framework. We first de-
scribe our threat model. We then outline the detailed
attack procedure.

3.1 Threat Model

The goal of an attacker performing a linking attack is to
associate the anonymous identifiers (i.e., RPIs) adver-
tised by the smartphones running the GAEN framework
using BLE with the face photos of the corresponding
smartphone owners and to identify the RPIs of users
who have declared themselves positive for COVID-19
using the GAEN framework. In other words, an attacker
aims to automatically collect images of COVID-19 pos-
itive individuals. Given the face photos of COVID-19
positive people, the attacker can search for their face
photos using facial image search engines to identify
them through various publicly available web resources
such as social media [8, 9].

The primary equipment used by the attacker is an
off-the-shelf BLE receiver and a camera. The attacker
sets up these devices on a street full of pedestrians and
continuously collects data. As we see later, the attacker
can effectively increase coverage by using multiple de-
vices. An attacker uses a BLE receiver to monitor the
frames generated by the GAEN-activated smartphones
in their vicinity and extracts the RPIs from the frames.
Simultaneously, the attacker takes photos of the pedes-
trians using a camera. To extract the images of a person
from the captured images, an object recognition algo-
rithm is applied.

Supposing that an attacker collects a large number
of BLE signals containing RPIs emitted from the smart-
phones of target users and their images (photos), the
collected data would include a timestamp recorded when
the data were measured. The attacker downloads the
diagnosis keys of the COVID-19 positive person, which
can be collected from the health authority’s key man-
agement server, and derives the TEK, date information,
and the corresponding RPIs. By analyzing these data,
the attacker identifies the RPIs matching the diagnosis
keys of the COVID-19 positive person and successfully
extracts their images.

Note that this attack does not emit any radio sig-
nals, i.e., the attack is completely passive and cannot be
detected by a third party that monitors BLE signals.
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3.2 Attack Procedure

The procedure of the linking attack consists of the fol-
lowing two steps: Step 1: Linking the RPI with the tar-
get’s image and Step 2: Linking the COVID-19 positive
person with the corresponding RPI. By achieving these
two linking steps, the attacker can automatically collect
images that are eventually linked to COVID-19-positive
persons. The two linking steps are outlined below.
Step 1: Linking RPIs and Images of Person

Both the BLE signal and the camera image collected
by the attacker are continuous data, with one target
arriving after another. The technical challenge faced by
the attacker is detecting the exact time when both data
were acquired in order to link the RPI contained in the
received BLE signal to the image. In other words, by
knowing the timing at which the target approaches the
BLE receiver and camera, it is possible to accurately
extract the RPI contained in the signal and the image
of the target person.

The key idea to pinpointing the time when the tar-
get approaches the attacking device is to use the infor-
mation of radio-wave strength. Theoretically, the signal
strength decays inversely proportionally to the square
of the distance. Therefore, the timing at which the
strength of the radio wave carrying the BLE frame con-
taining the RPI reaches its maximum should coincide
with the moment when the owner of the smartphone
that emitted the RPI is closest to the attacking device.
As shown later, such a measurement can be realized
with high accuracy by using commercially available off-
the-shelf parabolic antennas with high directivity. The
time of maximum signal strength is identified by apply-
ing a peak detection algorithm to the time-series data
of the signal strength.

The timing at which the signal strength of the BLE
frame containing the RPI is maximized is determined as
follows. The attacker collects the BLE frames and con-
structs a time series of the signal strength data for each
RPI, i: Si = {Si(t1), Si(t2), . . .} , where t1, t2, . . . is the
time when the BLE signal is measured, and Si(tm) is the
signal strength of the BLE frame containing the RPI, i,
at time tm. According to the GAEN specification, the
RPI advertised by BLE frames is updated every 10–
20 min. We assume that the target passes in front of
the attack setup once during the period when the RPI
takes a certain value. For each RPI, i, the time at which
the signal strength reaches its maximum value can be
calculated as follows:

tmax(i) = arg max
t∈{t1,t2,...}

Si. (1)

The target image, corresponding to the RPI, i, is ex-
pected to be contained in the image taken at this time,
tmax(i). The validity of this assumption is examined in
Section 4.2.

Following the assumption made above, the attacker
extracts the image taken at the identified time, tmax(i),
and applies the object detection algorithm to crop-out
the image of the target person. To this end, the at-
tacker can employ an object detection algorithm such as
You Only Look Once (YOLO) [24], which is a general-
purpose open-source object detection algorithm. No-
tably, sometimes images of multiple people are acquired
at the same time, such as when two or more people walk
in tandem. We evaluate such cases in Section 5.
Step 2: Linking RPIs and Positive Person

In the GAEN framework, the diagnosis keys of
COVID-19 positive person are distributed by key-
management servers operated by the health authorities
in each country [25]. The GAEN-based exposure noti-
fication app and key management server are deployed
in different ways in each country. In some cases, the
diagnosis keys can be downloaded by accessing a spe-
cific universal resource locator (URL), whereas in other
cases (e.g., Northern Ireland and Scotland), a refresh-
Token/authToken is required to download the diagno-
sis keys; the token can be extracted from a running
app [26]. A survey conducted by the Testing Apps for
Contact Tracing (TACT) project [27] shows that as of
February 2022, TEKs were accessible on the Internet in
at least 21 countries, including Canada, England, Ger-
many, Italy, and Spain, and in four states in the United
States. The researchers published their script for collect-
ing TEKs on github [28]. As we mentioned in Section 2,
we adopted COCOA, which is implemented based on the
GAEN framework and is operated in Japan by MHLW.
In addition to the regions listed in [27], we confirmed
that the TEKs published by the MHLW are also avail-
able for download in other regions. These observations
imply that it is easy for an attacker to obtain diagnosis
keys corresponding to COVID-19 positive people.

The diagnosis key is encoded by Protocol Buffers
(Protobuf), and by decoding the diagnosis key using
a tool published by Google, metadata such as the
BASE64-encoded TEK and a timestamp corresponding
to the date and time the TEK was valid can be ob-
tained [29]. The following is the procedure for deriving
the RPI from the diagnosis keys.

Let Tk be a TEK extracted from a diagno-
sis key, and let Rk be the RPI key correspond-
ing to Tk. Using the Hashed Message Authenti-
cation Code (HMAC)-based extract-and-expand key
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derivation function (HKDF), Rk is computed as
Rk = HKDF(Tk, NULL, str, 16), where the arguments
are HKDF(Key,Salt,Info,OutputLength) as defined in
RFC5869 [30], and str is a string “EN-RPIK” encoded
by UTF-8. Next, we derive the RPIs. It, from Rk, where
t is the Unix epoch time at the moment a roll oc-
curs. By using Rk as a key and applying the 128-bit
Advanced Encryption Standard (AES) encryption algo-
rithm to the data Dt, we obtain the rolling proximity
identifier as It = AES(Rk,Dt), where Dt is the data ob-
tained by adding the rolling time epoch, t. The attacker
can identify the RPIs of the COVID-19 positive person
and the corresponding images by comparing the RPIs
derived according to the procedure shown above with
the collected RPI.

We collected the TEKs of positive persons from the
MHLW’s server, as described above, and confirmed that
it is possible to derive the RPI generated at a specific
time from the obtained TEKs. By matching the de-
rived RPI of a positive person with the RPI collected
in Step 1, the attacker can obtain the face photo of the
person linked to the RPI.

4 Feasibility of the Linking Attack
In this section, we addressRQ1: “Is a linking attack tar-
geting the GAEN framework feasible?.” Specifically, we
focus on step 1 of the attack described in Section 3.2:
linking RPIs with the images of target users. We clarify
the feasibility of the linking attack through field experi-
ments conducted under various conditions. We note that
as mentioned above, it is obvious that an attacker can
link the RPIs derived from the TEKs of the positives
and the RPIs recorded in Step 1; thus, we can safely
skip the verification of Step 2.

In the following, we clarify the feasibility of a link-
ing attack through extensive field experiments. First,
we demonstrate the feasibility of the attack through
field experiments (Sec 4.2). Next, we verify the robust-
ness of the attack by changing conditions such as the
distance between the attacker and target, the type of
smartphone, and the manner in which the smartphone
is held (Sec 4.3.)

4.1 Experimental Setup

We first describe the equipment used in the experiments.
The equipment used by the attacker is a personal com-

Table 1. Attacker’s setup.

Equipment Model
Computer Apple Macbook Pro 2021 (macOS 12.0)
BLE Receiver Ubertooth One (firmware: 2020-12-R1) [31]
Antenna ANT-GRID-24dBi [32]
USB Camera BUFFALO BSW505MBK

Table 2. Target’s smartphones. BLE transmission power (dBm)
and antenna gain (dBi) were obtained from Refs [33–37].

Vendor OS Model Power Gain
Apple iOS 14.6 iPhone 8 20 -0.44
Apple iOS 14.6 iPhone XR 16 -4.9
LG Android 10 G8X ThinQ 4.65 -5.03
Huawei Android 9 P20 Lite 5.36 n/a
Motorola Android 7.1.1 Nexus 6 6.57 -3.00

puter, a Bluetooth receiver, an antenna, and two univer-
sal serial-bus (USB) cameras (main and sub). Table 1
lists the equipment used in the experiment. Ubertooth
One is a USB dongle-type Bluetooth receiver that can
stably receive and record BLE frames. As an antenna
connected to Ubertooth One, we used a directional
parabolic antenna compatible with the 2.4-GHz band.
For reference, we show the evaluation results when us-
ing an omnidirectional antenna in Section 7.2. As a USB
camera, we used a device with a 120° viewing angle and
a resolution of 1, 920 × 1, 080 pixels. All equipment is
inexpensive and can be purchased from online shopping
sites, such as Amazon.

We used the five devices listed in Table 2 as the
smartphones used by the target users. All had COCOA
1.2.4, which is a DCT application based on the GAEN
framework operated in Japan [17]. As we will see, these
devices differ in the strength of the BLE signal transmis-
sion. There is also a slight difference in the implemen-
tation of the GAEN between the iPhone and Android.

The experimental setup is shown in Figure 2. The
left side of the figure shows a schematic diagram of
the setup, and the right side shows a photograph of
the actual setup. Here, we assume that the target per-
son crosses the area captured by the two cameras. A
parabolic antenna was pointed at that area to collect
the BLE frames emitted from the target’s smartphone.
The reason for using two cameras is as follows. A cam-
era was placed at the same position as the antenna and
was used as the main camera. The camera captures the
target in the middle of the captured image at the mo-
ment when the BLE signal strength is at its maximum.
The goal is to link the RPI and the image of a person
with high accuracy. However, because the main camera
can only capture the side view of a target person, it may
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Fig. 2. Overview of the attacker’s setup.

be difficult to identify the individual. Therefore, we also
collected images of the target taken from the front (see
Fig. 6 for example shots). The sub-camera was used to
achieve the shot. The images taken by the sub-camera
are likely to include more than one person in the im-
age because pedestrians walking in front of and behind
the target are also captured simultaneously. In such a
case, the frontal image of the person captured by the
sub-camera can be identified based on the information
of the person identified by the main camera.

In our experiments, the two cameras and parabolic
antenna were visible to pedestrians; however, in an ac-
tual attack, these devices will be hidden from view. Both
the camera and the parabolic antenna are connected
to a monitoring computer, which continuously records
the BLE signals and image data. The attacker leverages
these data to establish a linking attack.

4.2 Feasibility of the Attack

We empirically verify that the linking attack (step 1)
shown in Section 3 is feasible. The key to the success
of the linking attack is the simultaneous acquisition of
the RPI data contained in the BLE frames generated
by the target person’s device and the images taken by
the person. The objective of our approach is to identify
when the target is closest to the setup using a parabolic
antenna/camera, as shown in Figure 2. Doing so, we as-
sume that the target arrives in front of the camera at the
moment the signal strength of the BLE frame contain-
ing the RPI generated by the target’s device is highest
and that the target is captured in the image taken at
that moment. In this experiment, we used iPhone XR
as the target smartphone.

In reality, the time when the signal strength reaches
its maximum (tmax(i) defined in Eq 1) and the time
when the target arrives in front of the camera (let the
time be tA(i)) may differ, owing to factors such of radio-
wave reflection and movement of the handheld smart-
phone. Therefore, we conducted an experiment to mea-
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Fig. 4. Time series of BLE signal strengths for observed RPIs.
The star symbols correspond to tmax(i) at which the signal for
each RPI, i, is maximum.

sure the time difference between tmax(i) and tA(i). In
this experiment, the target placed the smartphone in
a pocket and passed in front of the attacking device.
The distance between the target and the antenna and
the camera was set to 2 m. The number of trials was
set to 45. There was one obvious outlier; therefore, we
excluded it. The empirical distribution of the time dif-
ference is shown in Figure 3. The mean value of the time
difference was 0.162 s, and the standard deviation was
0.130. The results demonstrate that the timing when
the signal strength of the target is at its maximum and
the time when the target passes in front of the camera
are very close, indicating that the timing-based linking
attack is feasible. We can also see that the distribution
can be approximated by a normal curve. The parame-
ters of the normal distribution in the figure were fitted
using the maximum likelihood estimation.

Figure 4 shows the signal strength of the BLE frame
containing all received RPIs and the time at which each
signal strength takes its maximum value with star sym-
bols. In the figure, we can observe 11 unique RPIs
and the corresponding times at which the BLE signal
strength for each RPI reaches its maximum value. For
privacy reasons, the RPIs were stored as hash values
during data collection.

Figure 5 plots the time series corresponding to
RPI 1 shown in Fig. 4. BLE frames containing RPI 1
were generated by a smartphone owned by one of the
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Fig. 5. Time series of BLE signal strength for the RPI corre-
sponding to a target person (Fig. 6). The distance between the
antenna and the target was set to 2 m.

Fig. 6. Captured images corresponding to tmax(i) = 63.56 s.
YOLO v3 was applied to detect a person in the images, as shown
by the rectangular frames colored in light green.

authors who conducted the experiment. We can see that
the BLE signal strength has a maximum value with a
sharp peak at tmax(i) = 63.56 s. In the figure, the light
purple area indicates the time from when the target en-
tered the camera’s field of view to when it exited the
frame, and the red dotted line indicates the time when
the target was directly in front of the camera. It is clear
that the target was fully included in the image taken at
time tmax(i), as indicated by the stars.

Figure 6 shows the images corresponding to the
BLE frame captured at tmax(i) = 63.56 s, which is shown
with the star symbol in Fig. 5. Although the two cam-
eras continuously captured shots, the timings deviated
slightly from tmax(i); hence, we adopted the images cap-
tured at the closest timings; the corresponding image
frames were captured at 63.56 s (main camera, left)
and 63.53 s (sub-camera, right), respectively. We can
see that the target was correctly captured in both cases
and that YOLOv3 successfully detected the image of the
person. Furthermore, we confirmed that it is possible to
extract facial parts from detected pedestrian images by
applying YOLOv5 [38] and a trained face recognition
model [39]. These experimental results clearly demon-
strate that a linking attack that links the targets’ RPIs
to their face photos is feasible.

4.3 Robustness of the Attack

To examine the robustness of the attack, we experimen-
tally clarified the effects of the distance between the
target and attack device, the type of smartphone (i.e.,
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Fig. 7. Time variation of BLE signal strength for various dis-
tances.

BLE TX power), and the manner in which the target
holds the smartphone for a successful attack.

4.3.1 Impact of the Distance

We examined the impact of the distance between the
target smartphone and the parabolic antenna that mea-
sures the BLE signal on the attack. The maximum dis-
tance was set to 7 m to match the typical sidewalk
width [40]. In the following experiment, the target walks
in front of the attack device while holding the smart-
phone in their hand on the antenna side. We adopted
iPhone XR as the target’s smartphone.

Figure 7 shows the time evolution of the radio sig-
nal strength of the BLE frames containing the RPI of
the target user when the distances are set to 1, 3, 5, and
7 m. As the distance increases, the time region indicated
by the light purple area (i.e., the time when the target
is included in the image) becomes longer. This observa-
tion corresponds to the fact that the range of the target
in the picture increases with the distance. On the other
hand, regardless of distance, the time indicated by the
red dotted line (i.e., the time when the target came di-
rectly in front of the camera) and the time indicated by
the star symbol (i.e., the time when the signal strength
reached its maximum) were extremely close. Thus, the
image taken at the time when the BLE signal strength
is at its maximum has the target in the middle of the
image, even if the image is a wide angle and contains
multiple people, the target contained in the image can
be identified with high accuracy. These results demon-
strate that linking attacks are feasible in the range of 1
to 7 m, which covers the width of a typical sidewalk.
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4.3.2 Impact of Smartphone Models

We examined the impact of different smartphone mod-
els in terms of the transmission power strength of the
BLE signal and the gain of the antenna on the success
of an attack. As shown in Table 2, different smartphone
models have different BLE transmission powers and an-
tenna gains. In fact, the GAEN framework calibrates
the values of the transmission power to account for the
differences between devices. The devices used in our ex-
periments cover a variety of transmission power and an-
tenna gain profiles.

In our experiments, a pedestrian passed in front of
the attacking device while holding a smartphone in a
hand. The distance at which the pedestrian passed in
front of the attacking device was fixed at 2 m. 1

The results are shown in Fig. 8. We can see that in
the case of all four devices, the attack was successful; the
time when the BLE signal strength was at its maximum
and the time when the target arrived directly in front
of the main camera nearly coincided. In the figure, we
can also see that only a part of the signal was observed
for G8X ThinQ and the Nexus 6. This result reflects the
fact that as the transmission strength of the two devices
was weak, and the gain of the transmitting antenna was
not high enough; hence, no signal was observed until
they were close to the target. The devices with weak
transmission strength show a clear signal peak when
they pass in front of the antenna. These results clearly
demonstrate that our attack is successful even for de-
vices with weak transmission power.

4.3.3 Impact of How the Smartphone is Held

Finally, we examined the effect of the way the smart-
phone was held on the success of the attack. We focused
on cases wherein the target held the smartphone in a
hand, in a pocket, or in a bag. Then, we categorized the
cases according to whether the smartphone was on the
attacking device side or the other side. For six cases, as
in the previous experiments, we measured the temporal
variation of the signal strength of the BLE signal con-
taining the RPI data. Here, the distance when a pedes-
trian passed in front of the attacking device was fixed

1 We omit the experiments with other conditions because of
space limitations. The findings obtained from experiments con-
ducted under other conditions were similar.
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Fig. 8. Time variations of BLE signal strength for four smart-
phone devices, each having different BLE transmission power.
The distance was fixed at 2 m.
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Fig. 9. Time variation of BLE signal strength for six types of
smartphone carrying patterns (Top : Attacker side, Bottom :
Opposite side).

at 2 m, and the iPhone XR was used as the device held
by the target.

The results are shown in Fig. 9. As expected, the
signal strength was highest when the device was held
in the hand, followed by when it was in the pocket,
and lowest when it was in the bag. Additionally, the
signal strength was weaker when the smartphone was
on the opposite side of the attack device. Despite these
differences, we can see that the linking attack worked
in all cases. In particular, when the device was placed
in a bag, the variation in the signal strength decreased,
but the parabolic antenna accurately detected the time
when the signal strength was at its maximum.

5 Scalability of the Attack
In this section, we perform simulation experiments to
address RQ2: “Is the attack scalable?” The field ex-
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Fig. 10. Simulation model.
Fig. 11. A screenshot of
the 3D model.

periment presented in Section 4 employed a scenario in
which a single pedestrian passes in front of the attacking
device2. In reality, it is expected that a large number of
pedestrians will continuously pass in front of an attack
device. Implementing such a large-scale situation in a
field experiment is expensive in terms of preparing de-
vices, recruiting experiment participants, and obtaining
permits to use the streets. In addition, it is not easy to
change parameters such as the number of pedestrians
and street width. Therefore, we employed simulations
that realistically model radio propagation and pedes-
trian movement.

In our experiments, we first evaluated the attack
success rate when the number of pedestrians increases
(Sec 5.2) and then showed that the success rate can
be further improved by increasing the number of at-
tack devices (Sec 5.3). Then, we evaluated the success
rate of the attack, particularly on congested streets, us-
ing a simulation model and real-world pedestrian data
(Sec 5.4). Based on the results obtained in this section,
we discuss realistic attack scenarios in Section 7.1.

5.1 Simulation Model

This section provides a description of the simulation
model. First, we describe the overview of the entire sim-
ulation. We then describe a model that governs the dy-
namics of pedestrians to be simulated. We also describe
the propagation model of BLE radio waves generated
by the smartphones carried by pedestrians. Finally, we
present the criteria for determining a successful attack,
and define the attack success rate.
Overview of the Simulation Model: The compo-
nents of the simulation model are shown in Figure 10.
As shown in the figure, the width of the street was set

2 For reference, we demonstrate that the attack is also valid
when two consecutive pedestrians pass in front of the attacking
device within a short period of time in Appendix A.

to 3 m3 An attacker installs an attack device 1 m in
front of the edge of the street. Each target person is
assigned a sequential ID as a pseudo RPI. The target
person moves in a linear motion with a constant velocity
of v [m/s] for both directions, i.e., from the left/right to
the right/left in the figure. The velocity, v, is assumed
to follow a normal distribution, as shown later. For each
direction, we modeled the arrival process of the target
using the Poisson process. The trajectory of the target
is represented using 3D modeling, which is built with
Panda3D [41], which is an open-source engine for real-
time 3D games, visualizations, simulations, and experi-
ments. Figure 11 presents an example shot in which five
persons were captured in an image. Thus, employing 3D
modeling enabled us to reproduce the images captured
by the camera.

Let θ be the angle between the target and the
parabolic antenna, as shown in Fig. 10. For simplicity,
we used a two-dimensional projection onto the ground
to calculate the angle between the attacker and target.
This assumption is reasonable considering that the vari-
ation in the height at which each pedestrian is holding
the smartphone is sufficiently small compared with the
distance between the target and attacker. The directiv-
ity property of the parabolic antenna used in our exper-
iment [42] can be leveraged to derive the relationship
between the angle and the absolute gain of the receiv-
ing antenna, as shown in Fig. 12. The concrete method
of calculating the received signal strength is described
later. Based on the time variation of the radio signal
strength calculated for each target, we identified the
time when the strength reached its maximum value. We
then analyzed the image taken at the detected time,
tmax(i). We noted that the image can be captured by
3D modeling. We then linked the image of the person
having the smallest θ in the image with the RPI corre-
sponding to the received radio wave. The success rate
of the attack as calculated by comparing the results of
the link with the ground truth.

The common parameter settings throughout the
simulation are summarized in Table 3.
Modeling the Dynamics of Pedestrians: Pedes-
trians were assumed to arrive randomly according to
the Poisson process, where the inter-arrival time of the
pedestrians was exponentially distributed. In this study,
the parameter of the exponential distribution, λ, was set
as λ = N/3, 600, where N is the total number of per-

3 Increasing the width of the street did not significantly affect
the results (see Appendix C).
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Fig. 12. Gain map of the parabolic antenna (ANT-GRID-
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Table 3. Common parameters used in the simulation.

Description Value
Gt Absolute gain of the target’s BLE transmis-

sion antenna
-4.9 [dBi]

Gr Maximum absolute gain of the receiving a
parabolic antenna

23 [dBi]

Pt Target’s BLE transmission power 16 [dBm]
λ Radio wavelength of BLE (2.4 GHz) 0.125 [m]
τ Time period of BLE frame generation 0.270 [s]

xmin Minimum distance between target and at-
tack device

1 [m]

sons arriving in 1 h; the unit of the arrival rate, λ, is
the number of arrivals per second. N is a parameter that
will be explored later. The walking speed of individual
pedestrians was given by the normal distribution with a
mean of 1.30 m/s and standard deviation of 0.22, based
on the measurement results reported in Ref. [43].

We assumed that the position of pedestrians on the
street, the lateral position relative to the direction of
movement, follows a normal distribution centered in
the middle of the street. Let the width of the road be
w = 4σ, where σ is the standard deviation, i.e., 95% of
the pedestrians will be distributed within the width of
the street w. If the random variable representing the po-
sition exceeds 2σ, we assumed that they walk along the
street edge. In the simulation, we assumed that pedes-
trians walk in a straight line without swinging to the left
or right once their position on the street is determined.
Modeling the Strength of Received BLE Sig-
nals: The BLE radio-signal strength received by the at-
tacker’s parabolic antenna is computed using Friis trans-
mission equation [44]. Let the absolute gain of the BLE
transmit antenna be Gt [dBi], the absolute gain of the
parabolic antenna be Gr [dBi], the BLE transmit power
be Pt [dBm], the distance between the target and the
antenna be d [m], and the radio wavelength be λ [m].
Note that the numerical values set for Gt, Gr, Pt, and
λ are listed in Table 3. The received power, Pr [dBm],
at the parabolic antenna is a function of d and θ and is
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Fig. 13. Simulated BLE signal strengths.

calculated as follows:

Pr(d, θ) = 10 log10

(
λ

4πd

)2
+Gt +Gr + Pt, (2)

where Gr(θ) is given by the gain map of the parabolic
antenna as shown in Fig. 12. Note that the units of gain
and radio strength are expressed in decibels, not watts;
hence, in logarithmic calculations, product/quotient is
expressed as addition/subtraction.

Although the above equation provides the theoret-
ical received signal strength, in real spaces, there are
many disturbing factors, such as urban noise, pedes-
trian movement, and transmission losses. Therefore, this
study introduced additive white Gaussian noise, loss
corrections, and the attenuation factor to represent such
factors, incorporating them into the simulation using
the eq.: P ∗r (d, θ) = Pr(d, θ) + ε+ η+κ, where we empiri-
cally set the additive Gaussian noise as ε ∼ N (0, 32) and
the loss correction term as η = −12 (See Appendix B
for the details). Following the empirical results reported
in Ref. [45], we set the attenuation factor to be κ = −15
[dBm] when another pedestrian overlaps between the
antenna and the target smartphone.

Figure 13 presents an example of the strengths of
the simulated BLE signals received by the parabolic an-
tenna.
Definition of Attack Success: The following is the
definition of attack success. As mentioned earlier, an at-
tacker measures the BLE signal strength for each RPI
and links the RPI with the face photo of the person most
centrally located in the image taken when the signal
strength reaches its maximum value. After the comple-
tion of the simulation, we define the attack as a perfect
success if there is a one-to-one correspondence between
the linked results and the ground truth. If, after the
simulation, multiple RPIs are linked to the target and
one of them matches the ground truth, the attack is also
considered successful but is evaluated separately from a
perfect success. If no correct RPI is associated with the
target, the attack is defined as a failure. Based on the
above definitions, we define the ( perfect ) attack suc-
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cess rate as the percentage of pedestrians who passed
in front of the attacking device and had a ( perfect )
successful attack.

5.2 Number of Pedestrians (Targets)

We first study the impact of the arrival rate of pedes-
trians on the success of the linking attack. As the ar-
rival rate increases, the distance between pedestrians de-
creases. For example, when N = 5, 000, the arrival rate
becomes λ = 5, 000/3, 600 [arrivals/s], and the distance
between pedestrians follows an exponential distribution
with a mean of 0.94 m. When the distance between
pedestrians is small, it becomes difficult to uniquely
identify the exact time when the signal strength is at its
maximum because of the overlap of BLE signals. Addi-
tionally, there will be multiple people in the captured
image Thus, the attack success rate will become low.

We performed a simulation experiment to evaluate
how the success rate of linking attacks changes when
the number of pedestrians per hour, N , is increased.
We varied N from 200 to 10,000. The results are shown
in Table 4, where the simulation was performed three
times under the same conditions with different random-
number seeds, and the average of the results is shown.
Let the variable m be the number of RPI candidates
linked to the target person. m = 1 indicates perfect at-
tack success, i.e., a target person’s face photo is linked
to a specific RPI. m = 2 indicates that the linking at-
tack has succeeded in narrowing down the number of
RPIs associated with a target person’s face photo to
two candidates. Note that the sum of each line does
not equal 100%, because cases with incorrect links are
not counted. From the table, we can see that when
N = 1, 000, the linking attack is perfectly successful
for 78% of the pedestrians. We can also see that when
N = 5, 000, the percentage of perfect attack success is
38% and the percentage of narrowing down the number
of candidate RPIs to two or less is 57%.

On the other hand, as mentioned, when N = 5, 000,
the average distance between pedestrians is roughly 1 m,
implying that the street is congested as if there were a
protest demonstration going on. It is noteworthy that
even in such cases, the linking attack can be successful
(1.9 K targets for the perfect attack success). As we see
in the next subsection, we can also increase the attack
success probability by increasing the number of attack
devices. We also note that the number of successful at-
tacks can be increased by extending the time required
to conduct the linking attack. In our simulation exper-

Table 4. N (# pedestrians/h) vs. attack success rate (%). The
values in parentheses are standard deviations.

N m = 1 m = 2 m = 3 m = 4 m ≥ 5
200 97.9 (2.9) 1.0 (1.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
400 92.6 (0.5) 3.6 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
800 83.3 (2.2) 7.0 (1.3) 0.3 (0.2) 0.0 (0.0) 0.0 (0.0)
1K 78.4 (2.5) 8.8 (1.4) 0.7 (0.5) 0.0 (0.0) 0.0 (0.0)
2K 66.7 (1.5) 13.3 (0.8) 0.8 (0.4) 0.0 (0.0) 0.0 (0.0)
3K 54.3 (1.2) 16.6 (0.6) 1.6 (0.2) 0.0 (0.0) 0.0 (0.0)
5K 38.2 (1.9) 18.5 (0.4) 2.8 (0.3) 0.4 (0.1) 0.0 (0.0)

10K 21.4 (0.5) 15.5 (0.1) 5.0 (0.2) 0.8 (0.3) 0.2 (0.0)

iments, the simulation time was set to T = 1, 200 s,
which could be further extended to an actual attack.

5.3 Number of Attack Devices

In Section 5.2, we evaluated the attack success rate
when an attacker uses a single device. The results in-
dicated that the attack success rate decreased as the
number of pedestrians increased. The reason for the de-
crease in the attack success rate is that, as the number
of pedestrians increases, more pedestrians walk closer to
each other, resulting in multiple pedestrians passing in
front of the attack device at almost the same time. We
expect that an attacker can increase the attack success
rate by installing an attack device at multiple locations.
In other words, by increasing the number of attacking
devices, the attacker increases the number of attack tri-
als, resulting in multiple linking results. The attack suc-
cess rate is expected to increase, based on the majority
vote of multiple linking results.

Given these observations, we evaluated the extent
to which the success of the linking attack increased
when we increased the number of attack devices. The
attack devices were placed at equal intervals of 100 m
along the straight line that the pedestrians followed. We
studied the attack success rate when the number of at-
tack devices, L, increased. The simulation time is set to
T = 1, 200 s. The results are shown in Table 5, where the
number of pedestrians per hour was set to N = 5, 000.

As the number of attack devices increased, the at-
tack success rate increased. When there was only one
attack device, the perfect attack success rate was 41%,
whereas by setting the number of attack devices to
L ≥ 4, the perfect attack success rate can be increased to
86%. Thus, by increasing the number of attack devices,
the number of successfully extracted RPI-image pairs
increases. If an attacker keeps collecting data on this
street for 12 h during a day, over a week, they can ob-
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Table 5. L (# attack devices) vs. attack success rate (%). The
values in parentheses are standard deviations.

L m = 1 m = 2 m = 3 m = 4 m ≥ 5
1 38.2 (1.9) 18.5 (0.4) 2.8 (0.3) 0.4 (0.1) 0.0 (0.0)
2 59.7 (0.8) 15.2 (0.3) 5.6 (0.6) 1.2 (0.1) 0.2 (0.0)
3 75.2 (2.2) 9.1 (0.4) 4.3 (0.5) 1.6 (0.0) 0.6 (0.2)
4 85.7 (0.3) 4.7 (0.5) 3.0 (0.4) 1.3 (0.1) 0.7 (0.1)
5 90.1 (0.8) 3.0 (0.3) 1.9 (0.4) 1.1 (0.2) 0.5 (0.2)
6 93.0 (0.8) 2.1 (0.5) 1.5 (0.2) 0.9 (0.2) 0.5 (0.3)

tain the RPI-image pairs for 360 K corresponding peo-
ple. Of course, the same person could be included in the
data because of the regular pattern of human activities.
Still, we can expect that a few sets of attack devices can
collect data in the order of 105. Based on these findings,
we discuss realistic attack scenarios in Section 7.1
Additional Results: For reference, the results of
changing the width of a street are shown in Appendix C.

5.4 Attack Evaluation on a Wide and
Congested Street

In this section, we evaluate the attack success rate, par-
ticularly on a wide, congested street. An attacker can
carry out a linking attack targeting a large number of
people in a short period by collecting data on a crowded
street where a large number of pedestrians are moving.
In addition to the theoretical pedestrian arrival model,
we evaluate the attack success rate based on realistic
pedestrian arrival data measured on a wide crowded
street. We extend the theoretical model by introducing
the batch arrival Markov process because some people
arrive in groups on a wide street.
Setup (Real Pedestrian Arrival Data): As real
pedestrian arrival data, we adopted the open data
published by Japan’s Ministry of Land, Infrastructure,
Transport and Tourism [46]. These data consist of the
coordinates of people measured every second on a 4.8
meter wide street located underneath Tokyo Station.
Each pedestrian is assigned a unique ID. Figure 14 il-
lustrates the number of pedestrians measured at 0:00–
23:59 on February 12, 2021. In this study, we adopted
pedestrian data measured at 12:00–13:00, which was the
most congested time, to simulate human traffic flow on
a congested street. In the simulation, the average walk-
ing speed was calculated from the recorded coordinates
of each person, and the person was assumed to move at
that speed. In addition, the pedestrian’s lateral position
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Table 6. Attack success rate (%) for the real-world pedestrian
simulation vs theoretical pedestrian simulation. The values in
parentheses are standard deviations.

Model Type m = 1 m = 2 m = 3 m = 4 m ≥ 5
Real data 66.8 (0.5) 11.6 (0.3) 1.3 (0.3) 0.2 (0.1) 0.1 (0.0)
Theoretical 53.9 (1.5) 14.7 (0.5) 3.0 (0.6) 0.8 (0.2) 0.2 (0.1)

relative to the direction of movement on the street was
maintained in its initial state.
Setup (Theoretical Model): We describe the group
arrival model adopted in the theoretical model. Gener-
ally, most pedestrians may walk alone, but on a wide
street, some may walk in groups of two, three, or
more. In this study, following the statistics reported in
Ref. [43], we assumed that 66% of the population walks
alone, 25% of the population walks in groups of two,
6% of the population walks in groups of three, and 3%
of the population walks in groups of four or more. The
simulation was performed assuming that each group ar-
rived randomly according to the Poisson process. In a
group, people are assumed to walk at equal intervals of
0.5 m in the depth direction.
Simulation Results: Using the setups shown above,
we performed simulation experiments. The simulation
based on the theoretical model was performed using
the number of pedestrians observed in the real data
(N = 1, 236) and the measurement time (T = 3, 600 s).
The results are shown in Table 6. We can see that the
probabilities of a completely successful attack are 67%
(real data) and 54% (theoretical model), and the prob-
abilities of successfully narrowing down to two candi-
dates are 78% (real data) and 69% (theoretical model).
These results show that the evaluation using the the-
oretical model provides more stringent conditions than
the evaluation using real data. The simulation results
using real data reveal that the probability of a com-
pletely successful attack is approximately 70%, which
supports the practicality of the attack on a crowded
street. A discussion of the results obtained from the sim-
ulations presented above is provided in Section 7.1.
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6 Countermeasures
In this section, we address RQ3: “What are the ef-
fective approaches to mitigating the attack?” We dis-
cuss potential countermeasures against linking attacks
to GAEN framework and derive several recommenda-
tions for stakeholders, such as developers of the GAEN
framework and operating-system vendors.

6.1 Interacted-RPI

We present a new procedure to match the diagnosis key
with the RPIs, which uses multiple consecutive RPIs. In
the proposed procedure, the attacker must observe the
target’s RPIs continuously for at least longer than the
RPI-update period, which consequently makes the link-
ing attack more difficult. This countermeasure makes
it impossible for an attacker to narrow down the Top-
K positive candidates without observing two distinct I-
RPIs in consecutive time windows. In the current GAEN
implementation, RPI is uniquely calculated from TEK
and a current timestamp and is advertised on a BLE
frame. On the other hand, our proposed procedure uses
the interacted-RPIs (I-RPIs) as a new identifier calcu-
lated by multiple consecutive RPIs. The current I-RPI
is calculated using the exclusive-OR (XOR) of the cur-
rent RPI and the previous I-RPI. To implement this
procedure, the key management server does not require
any changes. It can be implemented by simply updating
the GAEN framework.

In the current GAEN specification, the value of the
RPI varies every 10–20 min. Under this update fre-
quency, for an attacker to observe two consecutive I-
RPIs, the attacker needs to keep observing the I-RPIs
sent by the target for at least 15/2=7.5 min on aver-
age, and at most 20 min. Therefore, the attacker must
place the devices at an average distance of approxi-
mately 586 m and a maximum distance of 1562 m on
the walking path of the possible target, as the average
walking speed of pedestrians is 78.09 m/min [43].

Generally, pedestrians have a wide variety of walk-
ing paths, which makes this attack more difficult.

When I-RPI is introduced, the changes in the proce-
dure on the receiver and sender sides are as follows: The
sender device sends I-RPIs instead of RPIs and stores
the previous I-RPI, which is required to calculate the
current I-RPI. The receiver calculates the XOR values
of all combinations from the RPIs (calculated from the
diagnosis key) and I-RPIs (received from senders’ de-

vices) and compares whether the XOR-ed values match
with I-RPIs when identifying close contacts once a day.
Performance Evaluation: In the following section, we
evaluate the impact of introducing the I-RPI mechanism
on the data processing time through empirical experi-
ments. We implemented the matching process adopted
by the current GAEN and the matching process after
the introduction of I-RPI on two Android smartphones
and compared the processing times. We used LG G8X
ThinQ as an example of a high-end device and Huawei
P20 Lite as an example of a low-end device. For the
implementation, we used the source code of GAEN [47].

Based on the statistics, the number of TEKs to be
matched was set to N = 1, 192, 452, and the number of
identifiers to be received in one time window (15 min)
was set to c = 118. Details of the parameter deriva-
tion are provided in Appendix D. In each condition, the
time required for the matching process was measured
ten times, and the average value was calculated. As a
result of the experiments using high-end/low-end smart-
phones, the average matching time in the current GAEN
was 14.9/50.2 s, and the average matching time after
the introduction of I-RPI was 16.8/59.5 s, respectively.
With the introduction of I-RPI, the increase in the com-
putation time required for the matching process was ap-
proximately 10–20%, indicating that the overhead was
within an acceptable range.

6.2 Intermittent Signal Transmissions

We propose a method that thwarts an attack by increas-
ing the signal transmission interval. In GAEN, RPIs
are advertised by transmitting BLE frames at short in-
tervals of 200–270 ms [15], which enables an attacker
to obtain a signal strength graph with a high resolu-
tion to accurately detect the peak. By increasing the
signal transmission interval, the resolution of the sig-
nal strength graph can be reduced, making peak de-
tection infeasible. However, if we increase the interval
between beacon transmissions, there is a risk that the
RPI will not be received because of frame errors. To
solve this problem, we adopted the approach of inter-
mittent burst transmission; i.e., for every time period
(T [s]), we transmit m consecutive frames with an in-
terval of τ s. For example, the parameters are defined
as T = 30 s, τ = 100 ms, and m = 30.

We ran a simulation to verify the effectiveness of the
proposed countermeasure – increasing the signal trans-
mission interval. For this simulation, we set N = 800
pedestrians/h. An attacker uses one attack device. Fig-
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Fig. 15. Signal transmission interval–attack success rate

ure 15 presents the simulation results. We can see that
by increasing the transmission interval, the attack suc-
cess rate decreases. For example, if we set the BLE frame
transmission interval to 30 s, the attack success rate re-
duces from 83% to 9%. However, caution must be exer-
cised because an excessively long transmission interval
will result in a no contact confirmation.

To implement this countermeasure, we need to tune
the setting of the BLE receiver. In the GAEN frame-
work, a client scans the BLE frames for four seconds
every five minutes. When the intermittent transmission
scheme is adopted, the client may miss BLE frames if
the scanning window is only four seconds in the five min-
utes interval. To overcome this problem, the client must
scan the frames at least T seconds every five minutes
to ensure that the advertised BLE frames are received.
In this way, the most fundamental functionality of the
GAEN framework is maintained.

We note that currently, the setting of signal trans-
mission intervals of BLE is defined by the smartphone
operating system and it cannot be changed arbitrarily
by users; iOS does not provide a way to change the
setting, and Android provides a way to change it, but
only with limited values (e.g., 100, 250, and 1,000 ms).
With the above constraints, we implemented a method
to adjust the signal transmission period and confirmed
the effectiveness of the countermeasures. The details are
provided in Appendix E.

7 Discussion
In this section, we discuss realistic attack scenarios and
ethical considerations.

7.1 Realistic Attack Scenarios

In the following, we discuss realistic scenarios for linking
attacks targeting GAEN users based on the findings ob-
tained through the experiments presented in Section 5.

Scenario 1 (Random mass attack): As shown in
Section 5.3, an attacker can obtain 360,000 pairs of iden-
tifiers and face photos by running a few attack devices
for seven days. Based on an estimate of the popula-
tion of Tokyo and the number of people with COVID-
19 as of January and February 2022 [48, 49], this result
means that an attacker can collect face photos of ap-
proximately 8,600 people with COVID-19. Thus, it is
possible for an attacker to conduct a linking attack on a
large number of random targets. The motivation for an
attacker to conduct a linking attack against random tar-
gets is to satisfy their own curiosity or harass someone
else. For example, an attacker might use the informa-
tion obtained from a linking attack to commit so-called
“doxing” [50], the act of publishing a private informa-
tion of a victim on the Internet. In this scenario, we
expect that an attacker can increase the attack success
rate by performing an attack in the vicinity of a PCR
testing facility or hospital.
Scenario 2 (Phishing attack): An attacker can lever-
age information obtained from a linking attack to con-
duct a phishing attack. For example, suppose an at-
tacker targets a specific company and obtains informa-
tion on employees who tested positive for COVID-19.
As mentioned earlier, an attacker can use a face photo
search engine to identify the personal information and
social account of an employee with a positive COVID-
19 test result using photos of their faces [8, 9]. Because
employees who test positive are likely to be absent, an
attacker can conduct social engineering or phishing at-
tacks by impersonating those employees. If a specific
individual is found to have tested positive, a phishing
attack can be conducted by sending an email or social
networking message to that individual, impersonating a
health authority. Today, people are forced to make sig-
nificant changes in their behavior based on the results
of COVID-19 tests. Attackers can stealthily collect in-
formation regarding people’s health statuses through a
linking attack.

7.2 Impact of Antenna Design

Linking performance can be improved via careful selec-
tion and orientation of the antenna. In this section, we
first show that linking performance decreases when an
omnidirectional antenna is selected. Next, we show that
the performance is retained even when the directional
antenna is placed at an angle to the pedestrians.
Impact of Antenna Characteristics: In this study,
we adopted a directional antenna to increase the at-
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Fig. 16. Time–Signal strength
graph.

Fig. 17. Captured images
corresponding to tmax(i) =
91.70 s

tack success rate. In the following section, we evaluate
how the characteristics of the antenna affect the results.
In other words, we study cases in which the attack is
conducted using a dipole antenna, which is an omni-
directional antenna. In this experiment, a pedestrian
walked with an iPhone 8 in his/her hand. The other
conditions were the same as those in the experiments
in Section 4.2. Figure 16 presents the measured time–
signal strength graph. The BLE signal strength reached
its maximum value at tmax(i) = 91.70 s. Compared with
that of the directional antenna (Fig. 5), the time–signal
strength graph of the dipole antenna did not exhibit
a sharp peak. The photo image captured at the time
of maximum signal intensity is shown in Figure 17. A
person can be seen in the image but is far off center.
This result implies that, if there are multiple pedestri-
ans in the image, it may not be possible to link them
correctly. The pedestrian took 90.51 s to reach the cam-
era, and the difference between the time of maximum
signal strength and the time when the target passed in
front of the camera was 1.18 s. These results suggest
that a directional antenna is preferable to the receiving
antenna used by the attacker.
Impact of Antenna Direction: To verify that the
linking is achieved when the antenna direction is
changed, we performed field and simulation experi-
ments. First, a field experiment was conducted. The di-
rectional antennas were installed at an angle of 45° from
the walking direction of the pedestrians. The other ex-
perimental conditions were the same as those described
in Section 4.2. Figure 18 shows the time evolution of the
radio signal strength of BLE frames containing the RPI
of the target. The signal strength had a maximum value
at tmax(i) = 33.05 s. Figure 19 shows images correspond-
ing to the BLE frame captured at tmax(i) = 33.05 s. We
can see that the target is correctly captured, and the
linking is successful. Appendix F evaluates the impact
of antenna direction through simulation. Simulation re-
sults show that the attack success rate remains at a
high value even when the antenna is at an angle of 45°.
These experimental results show that the attack is feasi-
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Fig. 18. Time–Signal strength
graph.

Fig. 19. Captured images
corresponding to tmax(i) =
33.05 s

ble even when a directional antenna is placed diagonally
to the walking direction of the pedestrians.

We note that Appendix G evaluate the attack suc-
cess rate in the condition where there are devices with
different BLE transmission powers, by means of a sim-
ulation study. The results show that this condition did
not cause a decrease in attack success rate. In theory, as
the attack leverages the changes in the signal strength
transmitted by a target device, differences in the ab-
solute magnitude of the signal strength transmitted by
devices should not affect the attack success rate. Our
experimental results are validated to be consistent with
the theory.

7.3 Ethical Considerations

We carefully designed our experiments to protect user
privacy. Authors and colleagues with their consent par-
ticipated in our experiments and performed the ex-
periments based on the prepared behavior scenarios.
The experiment to capture the target’s photo was con-
ducted only for the authors. The BLE data collected
did not include directly personally identifiable informa-
tion, but we kept the data strictly confidential because it
could include the BLE data of third-party users. Please
note that, according to the institutional review board’s
(IRB’s) preliminary review procedure, our study was
exempt from further IRB review because it did not use
personally identifiable information of third-party users.

Through our experiment, we demonstrated that pri-
vacy threats can become apparent under certain condi-
tions. We reported our findings and actionable coun-
termeasures to Google. We received a response from
Google that “From the perspective of the exposure no-
tifications program, we do not consider this attack in
scope. This was considered during the design phase.”
As Google mentioned, the attack was not caused by a
specific application’s vulnerability, but by the design of
the DCT framework based on BLE. We believe that
publishing this paper will provide insights and benefit



On the Feasibility of Linking Attack to Google/Apple Exposure Notification Framework 155

broad stakeholders. Our findings and practices can be
used to review the existing designs of frameworks and
protocols, which should contribute to reducing potential
privacy risks.

8 Related Work
Health Information Privacy: The Health Insurance
Portability and Accountability Act (HIPAA) [51] is a
federal law in the United States that requires protec-
tion of sensitive patient health information from being
disclosed without the patient’s consent or knowledge.
In HIPAA, protected health information (PHI) is indi-
vidually identifiable information relating to the health
status of an individual, which includes information our
experiments successfully extracted, such as medical test
results (i.e., COVID-19 positive) and face photographic
images. HIPPA provides a privacy rule, called the Safe
Harbor method, for de-identification to limit the possi-
ble uses and disclosures of PHI. However, Benitez and
Malin illustrated such protection rules leave different or-
ganizations vulnerable to re-identification [52]. To guar-
antee confidentiality, scalability, and flexibility of health
information management at a third party (e.g., cloud
services), privacy-preserving and patient-centric models
based on cryptography for the storage and exchange of
health information have been studied [53, 54].
Re-identification Attacks: Re-identification or de-
anonymization is a class of privacy attacks that iden-
tify users from anonymized user data. Health informa-
tion datasets have often been targeted by many studies
in this research area, as well as those mentioned [52].
Other types of user data have been targeted. Narayanan
and Shmatikov demonstrated that an attacker can iden-
tify the Netflix records of known users by using the
Internet Movie Database as the source of background
knowledge [55]. Wondracek et al. proposed a new de-
anonymization attack that exploits group membership
information on social networking services [56]. The at-
tack can be accomplished by stealing a browser his-
tory of a victim for certain URLs that reveal group
memberships on a social network and combining this
information with previously collected group member-
ship data. Su et al. proposed a de-anonymization at-
tack that links web browsing histories to pages on so-
cial networking services [57]. Our attack focuses on a
new area of de-anonymization that bridges the gap be-
tween digital data and physical data, that is, combining

pseudonymized identifiers of COVID-19 positives with
their photographic images.
Privacy Attacks on GAEN Framework and DCT
Apps: The ways to track specific users (i.e., COVID-
19 positives) and expose their behavioral history on the
GAEN framework have been extensively studied since
the framework was released [12, 58–60]. The basic idea
of these studies is to deploy multiple BLE receivers
to collect the identity of pedestrians and match them
against COVID-19 positives, so that the behavioral his-
tory (e.g., location and movement) of COVID-19 posi-
tive can be tracked. However, these studies neither dis-
cussed nor examined how to identify specific COVID-19
positives, for example, taking photographic information.
Most relevant to our study, the linking attack to com-
bine COVID-19 positives with their images has been
discussed as a proof of concept [11, 13, 61]. Our study is
the first to establish a scientific and reproducible meth-
ods for evaluating linking attacks and their countermea-
sures.

9 Conclusion
The primary objective of this study was to evaluate the
feasibility and scalability of linking attacks that target
GAEN, which is the most representative DCT frame-
work. To this end, we conducted a field experiment us-
ing real equipment and a realistic simulation experiment
that incorporates radio characteristics and a 3D model
of a human being. The results demonstrated that the
linking attack is highly feasible and that an attacker
can succeed with a probability of 86% against a high
pedestrian traffic flow of 5,000 people per hour by in-
stalling a few attack devices; i.e., the attack is scalable.
In addition, as a mechanism to suppress the linking at-
tack, we proposed a new contact tracing mechanism us-
ing multiple RPIs and a method to appropriately adjust
the advertisement period of BLE frames in GAEN, and
clarified their effectiveness by simulation.

The DCT framework represented by GAEN is ex-
pected to be a promising solution for preventing new
infectious diseases in the future. Also, the widespread
use of DCT frameworks should not compromise user
privacy. We hope that the findings of this study will
contribute to the design of a DCT framework with im-
proved privacy protection.
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Fig. 20. Time–signal strength graph.

Fig. 21. Captured images
corresponding to tmax(i) =
49.14 s (RPI1)

Fig. 22. Captured images
corresponding to tmax(i) =
50.21 s (RPI2)

first pedestrian walked with an iPhone 8 and the sec-
ond pedestrian walked with a Huawei P20 Lite. The
other conditions were the same as those in the exper-
iments described in Section 7.1. The measured time–
signal strength graph is shown in Figure 20. In the fig-
ure, the areas shown in purple and orange indicate the
time from when the target transmits RPI1/RPI2 frames
to the camera’s angle of view to when it frames out. The
red dotted line indicates the time at which the target ar-
rived at the front of the camera. For RPI1 and RPI2, the
BLE signal strength had a maximum value with a clear
peak at tmax(i) = 49.14 s and tmax(i) = 50.21 s, respec-
tively. The images taken at the time of maximum signal
intensity for each RPI are shown in Figures 21 and 22.
The difference between the time when each pedestrian
reached the front of the camera and the maximum sig-
nal strength time was 0.08 s and 0.14 s, respectively.
These results demonstrate that the RPI can be linked
to each pedestrian even when the pedestrians are walk-
ing a short distance.

B Simulating the BLE RX Power
In section 5, to simulate the realistic BLE RX power, we
introduced additive white Gaussian noise and loss cor-
rections to represent the field environments; we set the
additive Gaussian noise as ε ∼ N (0, 32) and the loss cor-
rection term as η = −12. The procedure by which these
values were determined is as follows. First, field and
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Fig. 23. Empirical Distributions for the received BLE signal
strength: real-world experiment vs. simulation.

simulation experiments were conducted under identical
conditions. In the field experiment, the target walked
2 m from the attack device with the iPhone XR in his
hand on the side of the attack device. In the simulation
experiment, the same conditions were set and the signal
strength was calculated using Equation 2. In both the
experiments, the strength of the received BLE signal
was recorded.

Second, by comparing the difference in the received
signals obtained from the two experiments, the param-
eters of the normal distribution assumed as noise and
the size of the correction term were determined.

In the following, we show that the corrections de-
termined above are reasonable. The time series data of
the signal strength for 10 s before and after the time
when the received signal strength reached the maximum
value was extracted. The empirical distribution func-
tion of the extracted data is shown in Figure 23. We
can see that the two distributions are very close. This
result shows that the correction of the received intensity
in the simulation reproduces the characteristics of the
field experiment very well.

C Impact of Street Width
We set the street width as w = 3 m in the experiments
presented in Sections 5.2 and 5.3. In this section, we
evaluate the attack success rate when the street widths
were set to w = 3, 6, and 9 m. The number of installed
attack devices was set to one. The other conditions were
the same as those described in Section 5.2. The results
are shown in Figure 24. Although increasing the street
width leads to a decrease in the attack success rate,
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Fig. 24. N (# pedestrians/h) vs. attack success rate (%) for the
street width w = 3, 6, 9 m.

overall, the street width does not have a significant im-
pact on the attack success rate, implying that a linking
attack is feasible for streets of various widths.

D Parameters for Assessing the
I-RPI Overhead

In Section 6.1, the overhead introduced by the I-RPI
mechanism was evaluated. To calculate the overhead, we
used the number of collected TEKs and received RPIs
per time window (15 min). The rationale for deriving
these numbers is described below. First, the maximum
number of TEKs was equal to the cumulative number of
people with positive COVID-19 test results over the 14
days. As an example of the number of TEKs, we adopted
1,192,452, which is the cumulative number of infected
individuals observed from February 6 to February 19
in Japan. Next, we measured the number of RPIs re-
ceived in one time window at three locations at Shibuya
station, one of the most congested areas in Japan: the
connecting corridor, the sidewalk near the intersection,
and the underpass. The number of measured RPIs at
each location was 71, 16, and 118. Based on these re-
sults, the maximum number of received RPIs in a time
window was determined to be 118.

E Empirical Evaluation of the
Intermittent Signal
Transmission

We developed a PoC implementation of the intermittent
transmission scheme and demonstrated its effectiveness
in mitigating attacks through field experiments. Because
the current iOS and Android smartphone devices can-
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Fig. 25. Time-signal strength graph.

Fig. 26. Captured image at
the maximum signal strength
(smartphone).

Fig. 27. Captured image at
the maximum signal strength
(PoC).

not configure the BLE signal transmission frequency to
T = 30 s, as proposed in this study, we implemented
the scheme on a PC with a BLE dongle. For compari-
son, we used an iPhone with GAEN installed. Table 7
summarizes the experimental setup.

In the experiment, a pedestrian passed in front of
the attack device while holding the two devices. Fig-
ure 25 shows a graph of time–signal strength. For each
signal strength, a star was plotted at the maximum
value. From the figure, we can see that the resolutions of
the signal strength graphs generated by the smartphone
and the PoC implementation were high and low, respec-
tively, as expected. Figure 26 and Figure 27 are images
taken at the time when the respective signal strength
was at its maximum. It is clearly shown that the at-
tack was successful for the smartphone and unsuccess-
ful for the PoC implementation. The difference between
the time when the target reaches the front of the cam-
era and the maximum time of the BLE signal strength
transmitted by the PoC implementation is 21.1 s, which
indicates that the attacker fails to link the target. These
results demonstrate that the proposed method is an ef-
fective approach for attack mitigation.

Table 7. Sender device’s setup.

Equipment Model
Smartphone iPhone 13 Pro (iOS 15.1, COCOA 1.4.1)
PoC Implementation Panasonic CF-AX2 (Ubuntu 20.04 LTS)
BLE Dongle BSBT4D100BK
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Table 8. N (# pedestrians/h) vs. attack success rate (%) (An-
tenna angle : 45°). The values in parentheses are standard devia-
tions.

200 96.4 (3.3) 1.8 (1.6) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
400 88.6 (2.2) 4.9 (0.9) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
800 82.8 (1.3) 7.1 (0.6) 0.1 (0.2) 0.0 (0.0) 0.0 (0.0)
1K 77.9 (0.8) 8.2 (0.8) 0.4 (0.3) 0.0 (0.0) 0.0 (0.0)
2K 60.9 (2.3) 14.4 (0.6) 1.0 (0.3) 0.1 (0.1) 0.0 (0.0)
3K 51.1 (0.9) 15.4 (0.8) 1.9 (0.3) 0.1 (0.1) 0.0 (0.0)
5K 36.3 (0.9) 17.3 (0.4) 3.1 (0.2) 0.4 (0.1) 0.0 (0.0)

10K 18.3 (0.8) 14.4 (0.7) 4.4 (0.1) 0.8 (0.1) 0.1 (0.0)

F Simulation Study of the
Directions of Antenna

We present the simulations that also aim to study the
attack success rate when the directional antennas are
installed at an angle of 45° from the walking direction
of the pedestrians. The other experimental conditions
were the same as those described in Section 5.2. The
number of pedestrians per hour N ranges from 200 to
10,000. Table 8 lists the results. The attack success rate
for N = 1, 000 was 78% and that for N = 5, 000 was
36%. The attack success rate is reduced by up to six
points compared to the actual experimental results in
Section 5.2. However, the results show that the attack
success rate remains high.

G Impact of Various BLE Signal
Strengths

We evaluated the attack success rate in the condition
where there are devices with different BLE transmission
powers, by means of a simulation study. In the simula-
tion study, we assumed that the target people could be
divided into two groups, Group A and B, where each
person in Group A owned an iPhone XR and each per-
son in Group B owned a Nexus 6. The values in Table 9
were used as the parameters for the smartphones carried
by the targets. The other experimental conditions were
the same as those described in Section 5.2. The number
of pedestrians per hour N ranges from 200 to 10,000.
Table 10 lists the experimental results. The attack suc-
cess rate for N = 1, 000 was 79% and that for N = 5, 000
was 40%. The attack success rate is comparable to the
results in Section 5.2. The experiment shows that the
attack is feasible even when devices with different BLE
transmit strengths are combined.

Table 9. Parameters used in the simulation (Mix Conditon) .

Description Value
Gta Absolute gain of the Group A target’s BLE

transmission antenna
-4.9 [dBi]

Gtb Absolute gain of the Group B target’s BLE
transmission antenna

-3.0 [dBi]

Pta Group A Target’s BLE transmission power 16 [dBm]
Ptb Group B Target’s BLE transmission power 6.57 [dBm]

Table 10. N (# pedestrians/h) vs. attack success rate (%) (Mix
Conditon). The values in parentheses are standard deviations.

N m = 1 m = 2 m = 3 m = 4 m ≥ 5
200 94.7 (1.8) 2.4 (0.7) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
400 91.4 (3.1) 4.1 (1.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
800 86.0 (2.0) 6.0 (0.5) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0)
1K 78.9 (1.7) 8.8 (0.6) 0.3 (0.2) 0.0 (0.0) 0.0 (0.0)
2K 66.1 (2.6) 12.5 (0.6) 1.1 (0.2) 0.1 (0.1) 0.0 (0.0)
3K 55.8 (2.6) 15.9 (0.7) 1.4 (0.0) 0.1 (0.1) 0.0 (0.0)
5K 39.9 (1.7) 18.0 (1.0) 2.8 (0.2) 0.2 (0.2) 0.0 (0.1)

10K 19.9 (0.7) 16.1 (0.4) 4.4 (0.1) 0.9 (0.1) 0.1 (0.0)

H Further Discussion

H.1 Other Potential Targets of the
BLE-based Linking Attack

We note that the target of our BLE-based linking attack
is not limited to DCTs such as the GAEN framework.
This attack can also be a threat to other BLE-based
apps, such as fitness trackers or Bluetooth earphones.
Becker et al. [63] found that MAC address randomiza-
tion does not work on Fitbit, a popular wireless-enabled
wearable fitness tracker product. In addition, Das et
al. [64] found that all six fitness trackers examined use
fixed MAC addresses. They further performed a mea-
surement study in the wild and reported that 89% of fit-
ness trackers they observed used fixed MAC addresses.
Using these facts, an attacker can link the fixed BLE
MAC addresses advertised by fitness trackers with the
face photos of the owners. A promising scheme for mit-
igating such threats is MAC address randomization; we
expect such schemes to be widely implemented by ap-
plicable manufacturers.

H.2 Positioning of Linking Attack

GAEN framework implements a mechanism by which
the identifier transmitted by the smartphone changes
every 10–20 min to prevent an attacker from tracking
the user over a long period of time. The goal of a linking
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attack is not to track users over time but to identify the
target’s infection status. We also note that the threat
of linking attacks has been pointed out from the de-
sign stage in DCT frameworks such as the DP3-T and
GAEN frameworks [16, 65]. During the design phase, it
was believed that the attack required multiple contacts
with the target and that it was therefore not feasible.
Our extensive experiments revealed that it is feasible to
perform a linking attack.
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