
Proceedings on Privacy Enhancing Technologies ; 2022 (4):229–249

Foteini Baldimtsi, Panagiotis Chatzigiannis, S. Dov Gordon, Phi Hung Le, and Daniel McVicker

gOTzilla: Efficient Disjunctive Zero-Knowledge
Proofs from MPC in the Head, with Application
to Proofs of Assets in Cryptocurrencies
Abstract:We present gOTzilla, a protocol for interactive
zero-knowledge proofs for very large disjunctive state-
ments of the following format: given publicly known
circuit C, and set of values Y = {y1, . . . , yn}, prove
knowledge of a witness x such that C(x) = y1 ∨ C(x) =
y2 ∨ · · · ∨ C(x) = yn. These type of statements are ex-
tremely important for the proof of assets (PoA) prob-
lem in cryptocurrencies where a prover wants to prove
the knowledge of a secret key sk that associates with
the hash of a public key H(pk) posted on the ledger.
We note that the size of n in popular cryptocurrencies,
such as Bitcoin, is estimated to 80 million.
For the construction of gOTzilla, we start by observing
that if we restructure the proof statement to an equiv-
alent of proving knowledge of (x, y) such that (C(x) =
y) ∧ (y = y1 ∨ · · · ∨ y = yn)), then we can reduce the
disjunction of equalities to 1-out-of-N oblivious transfer
(OT). Our overall protocol is based on the MPC in the
head (MPCitH) paradigm. We additionally provide a
concrete, efficient extension of our protocol for the case
where C combines algebraic and non-algebraic state-
ments (which is the case in the PoA application). We
achieve an asymptotic communication cost of O(logn)
plus the proof size of the underlying MPCitH protocol.
While related work has similar asymptotic complexity,
our approach results in concrete performance improve-
ments.
We implement our protocol and provide benchmarks.
Concretely, for a set of size 1 million entries, the to-
tal run-time of our protocol is 14.89 seconds using 48
threads, with 6.18 MB total communication, which is
about 4x faster compared to the state of the art when
considering a disjunctive statement with algebraic and
non-algebraic elements.

Keywords: oblivious transfer, zero knowledge, disjunc-
tive proofs, privacy, auditability, cryptocurrencies

DOI 10.56553/popets-2022-0107
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

Foteini Baldimtsi: George Mason University, E-mail:
foteini@gmu.edu

1 Introduction
A zero-knowledge (ZK) proof [30] allows a prover P to
convince a verifier V that a statement x is true without
revealing any further information. ZK proofs have nu-
merous applications: they are used as a building block
in various cryptographic constructions such as secure
multiparty computation [29], signatures [11] and anony-
mous credentials [16] just to name a few, and more
recently they have been used as a core component in
privacy-preserving cryptocurrencies [13].

ZK proofs can be constructed generically for any
NP language [29], however such generic constructions
are usually not efficient. In order to achieve practi-
cal constructions, customized ZK proofs have been de-
signed for specific languages (e.g. particular algebraic
statements), or with specific optimization goals (e.g.
proof size succinctness or non-interactivity). Many dif-
ferent approaches have been proposed, each with differ-
ent trade-offs on the types of supported languages, ef-
ficiency goals and underlying assumptions. In terms of
efficiency, the tradeoffs appear in the prover complexity,
the verifier complexity, and the communication costs.
Our focus. In our work, we focus on zero-knowledge
proofs that can efficiently support very large disjunc-
tive statements. We are inspired by the Proof of Assets
(PoA) problem in UTXO based cryptocurrencies where
a prover (usually some exchange or other organization)
wishes to convince a verifier that it knows the respective
private keys of at least a certain number of coins on the
blockchain, without revealing which those coins are. In
Bitcoin, and other cryptocurrencies with similar struc-

Panagiotis Chatzigiannis: George Mason University - Visa
Research, E-mail: pchatzig@gmu.edu
S. Dov Gordon: George Mason University, E-mail: gor-
don@gmu.edu
Phi Hung Le: George Mason University, E-mail:
ple13@gmu.edu
Daniel McVicker: George Mason University, E-mail: dm-
cvicke@gmu.edu

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 230

ture, PoA can be expressed as a disjunctive ZK proof
where the statement is a set of hashed public keys (often
called addresses), and the witness is one or more secret
keys that correspond to some of the public keys. The
challenge when computing a ZK proof for PoA is bifold:
(a) the size of the statement grows with the total size of
the Bitcoin UTXO set, which has hundreds of millions
of elements, and (b) the statement is a combination of
an algebraic circuit – the discrete log relation between
(sk, pk) – and a Boolean hash function, since the prover
needs to prove that it knows the secret key for one of
the hashed public keys. Concrete protocols for the PoA
application have been designed in the literature [5, 22],
but as explained in related work (Section 1.1), they fall
short in addressing the two main design challenges si-
multaneously.
Our Construction. We first focus on the challenge
of dealing with very large statements. Specifically, we
are interested in statements of the following form: for
a publicly known circuit C, and a publicly known set
of values Y = {y1, . . . , yn}, the prover wishes to prove
that it knows a witness x such that C(x) = y1 ∨C(x) =
y2∨· · ·∨C(x) = yn. A simple restructuring of this state-
ment allows us to remove the n copies of C, greatly
reducing the statement size. The prover witness is mod-
ified to be a pair of values, (x, y), such that (C(x) =
y) ∧ (y = y1 ∨ · · · ∨ y = yn)). As we discuss below,
this provides significant improvement even for existing
proof systems that support disjunctions, as the size of
an equality circuit is much smaller than |C|.∗ Once re-
written in this form, we are able to reduce the disjunc-
tion of equalities to 1-out-of-n Oblivious Transfer (OT).

We build a ZK proof using the MPC in the head
paradigm (MPCitH). Our main observation is that
when proving that y is equal to one of the elements
in the public set Y , it suffices to enforce constraints on
the Prover’s set of inputs to the MPC in the head. We
do that by having the Verifier prepare an encoding of
all n possible inputs yi for the MPCitH and having the
Prover select a single input encoding obliviously, using
1-out-of-n OT. The Verifier creates these encodings such
that the portions of the encoded input that are revealed
to the verifier in the opened MPCitH views are identi-
cal for all yi. This ensures that the view can be safely
opened for verification, without revealing the index i.

∗ Generically, a proof system that efficiently supports disjunc-
tions might not support the conjunction of C with the disjunc-
tion of n equalities. In practice, existing systems seem to handle
this change without significant complication.

We implement 1-out-of-n OT using Private Information
Retrieval (PIR). Note that PIR is a relaxation of 1-out-
of-n OT, in that it potentially allows the receiver to
learn more than one value. We strengthen PIR to OT
by performing a zero-knowledge proof on the Prover’s
PIR query to show that it is well-formed (i.e. a valid
ciphertext encrypting a query for only a single database
element). In our 1-out-of-n OT protocol (as well as in
the rest of the protocol) we enforce honest Verifier be-
havior by committing to, and later revealing, the Veri-
fier’s random tape, allowing the Prover to check that the
Verifier’s messages have all followed the protocol. We
can only do this because the Verifier’s inputs are ran-
dom challenges that do not require privacy beyond the
end of the protocol; for general purpose 1-out-of-n OT,
this approach cannot be used for ensuring the honest
behavior of the sender. By building 1-out-of-n OT from
PIR, we achieve communication complexity of O(logn),
which allows us to achieve an overall communication
cost of O(logn) + ΠProofsize where ΠProofsize denotes
the proof size of the MPCitH protocol. We present our
protocol in Section 4.
ZK Proofs on Mixed Statements. An efficient disjunc-
tive proof however, is not enough to efficiently prove
the concrete PoA statement, i.e. “I know sk such that:
(H(pk) = y)∧(y = y1∨· · ·∨y = yn))" where {y1, . . . , yn}
is a list of hashed public keys using function H and pk
is the public key that corresponds to sk. One could con-
vert our algebraic statement (on the relation between
(sk, pk)) to a Boolean circuit, but, as we discuss later in
Section 6, this would result in a circuit with millions of
gates. A number of works examined the problem of effi-
ciently combining algebraic to non-algebraic statements
in a ZK proof. Chase et al. [19] provided one of the
first techniques based on Garbled Circuits, MACs and
Oblivious Transfer which was further optimized in [5],
and later Backes et al. [8] presented a technique on an
MPCitH Σ-protocol inspired from ZKBoo [26], however
these works were not taking a disjunctive statement into
account. In Section 5 we present an extension of our dis-
junctive proof that supports mixed statements, and in
Figure 11 in the Appendix we further extend our mixed
statements protocol to also handle the value that cor-
responds to the secret key (i.e. witness) of the Prover
(a property needed towards designing a PoA protocol).
Finally, as a side contribution, in Appendix C we also
present an optimization to the Chase et al. [19] proto-
col for a single statement, which enables a much smaller
circuit size and is of independent interest.
Evaluation Results. We evaluate gOTzilla on top of
an existing PIR implementation, namely SealPIR [2],

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 231

by implementing our techniques to derive a 1-out-of-
n OT protocol, while treating the underlying MPCitH
protocol as a black box. Our results are presented in
detail in Section 6, where we show that we can prove
knowledge over a disjunctive statement of n = 220 el-
ements in 14.89 seconds, with 6.18 MB of communica-
tion and 10 seconds network latency at the worst case,
for statistical security parameter λ = 40. Our evalua-
tion shows a significant improvement in total protocol
run-time over Mac’n’Cheese [10] the state of the art in
disjunctive proofs, which has similar asymptotic costs
to us as discussed in the Related Work section below. .

1.1 Related Work

We provide a short, non exhaustive, overview of com-
mon ZK proof types for disjunctive proofs and mixed
statements, as well as an overview of solutions specific
to the PoA problem.
Standard ZK Techniques. Σ-protocols form a well
studied class of efficient protocols specifically for al-
gebraic statements, such as discrete logarithms and
roots [32, 41], while garbled-circuit approaches were
used to efficiently prove Boolean circuits [35]. We note
that if one attempted to use a Σ-protocol to prove a
statement about a function represented as a Boolean
(or arithmetic) circuit C, both proving and verification
costs would grow linearly with the size of the circuit (a
simple SHA256 evaluation would result in tens of thou-
sands of exponentiations) which makes them prohibitive
for a PoA like statement.

ZK-SNARKs (Succinct Non-Interactive Arguments
of Knowledge) [12, 31, 40] is another well studied type
of ZK proofs that received a lot of attention the last few
years due to their use in private cryptocurrencies [13].

Their goal is to offer constant, succinct proof sizes
and short verification times. In particular, ZK-SNARKs
can be verified in time that is linear in the length of
the input x, rather than the length of the circuit C.
However, they suffer from large prover overhead, since
they require the prover to perform a large number of
public-key operations that is proportional to the size
of the circuit representing the statement. ZK-SNARKs
are better suited for Boolean or arithmetic circuits and
while they could be used for algebraic statements, they
would require circuits with thousands or millions of
gates for a simple computation like an exponentiation
exploding the prover’s cost. Finally, many ZK-SNARKS
constructions, require an additional trust assumption.
Namely, to guarantee soundness, they need a common

reference string (CRS) that is generated ahead of time
by a trusted party (or a distributed protocol). Some
recent works [6, 12, 37, 42, 43] use techniques such as
interactive oracle proofs (IOP), vector oblivious linear
evaluation (VOLE) and the MPC in-the-head paradigm
and do not rely on a setup phase, yet, they still impose
high computational costs on the prover side thus are not
directly relevant to the considered PoA application.
Disjunctive ZK Proofs. A number of related works
have examined the general problem of building effi-
cient disjunctive ZK proofs. Following the seminal work
by Cramer et al. on constructing standard disjunctive
proofs [21], Stacked Garbling [33] proposed a garbled-
circuit approach for creating a disjunctive proof with
sublinear communication complexity, based on Jawurek
et al. [35]. Later, Stacking Sigmas [28] provided a generic
compiler for reducing communication complexity (i.e
“stacking") of disjunctive Sigma-protocols satisfying a
specific “stackable” property, and is compatible with re-
cent MPCitH style ZK protocols such as KKW [37] and
Ligero [6].

Recently, Mac’n’Cheese [10] proposed a new, VOLE
based approach to build generic zero-knowledge proofs
for disjunctive statements of the form (x, i) : Ci(x) =
yi for i ∈ {1, . . . , n} with communication cost of
maxi{|Ci|} + logn. In the general case where each Ci
is a different circuit, both the prover and verifier have
to execute all branches to construct or verify the proof,
causing the total computation cost to be O(

∑n
i=1 |Ci|).

In the special case where all the circuits Ci are identical,
using our observation above that restructures the dis-
junctive portion, their construction can be slightly mod-
ified to improve the computational cost to O(n+ |C|).

In a work concurrent to ours, Goel et al. [27] pro-
vided a membership proof protocol towards building a
ring signature, which is equivalent to our observation
discussed above (i.e. restructuring a disjunctive proof
statement to a disjunction of equalities). Similar to our
construction, this work relies on an underlying MPCitH
protocol and has equivalent asymptotic costs, however
it follows a cut and choose approach which naturally im-
plies higher concrete computational costs, while having
reduced concrete communication costs. In addition, be-
ing public-coin, it can be converted to a non-interactive
protocol in the random oracle model using the Fiat-
Shamir transform. However, as we later discuss in Sec-
tion 5.1, interaction is naturally implied for our appli-
cation scenario, and we discuss the tradeoffs between
computation and communication costs in Section 6.

In Table 1 we provide a comparison of basic tech-
niques for disjunctive statements. We note that al-

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 232

Table 1. Asymptotic comparison of disjunctive ZK proof systems for n statements for a single circuit C. NI = Non-Interactive. Π de-
notes an MPCitH protocol, ΠRuntime and ΠProofsize denote Runtime and Proofsize of Π, respectively.

No setup NI Prover Runtime Proof size
Ligero [6] 4 4 O((n+ |C|) · log(n+ |C|)) O(

√
n+ |C|)

Π + Stacking Sigmas [28] 4 4/5 O(n) + ΠRuntime O(logn) + ΠProofsize
Mac’n’cheese [10] 4 5 O(n+ |C|) O(logn+ |C|)
Goel et al. [27] 4 4 O(n) + ΠRuntime O(logn) + ΠProofsize
gOTzilla 4 5 O(n) + ΠRuntime O(logn) + ΠProofsize

though asymptotically we might have similar perfor-
mance as Mac’n’Cheese [10] or Stacking Sigmas [28]
combined with a suitable MPCitH protocol Π, we have
significant concrete improvements. In Section 6.1 we
present a concrete comparison of our disjunctive pro-
tocol with Mac’n’Cheese [10] to showcase our improve-
ment by 4x in runtime for the case of “mixed" disjunc-
tive statements. There is no available implementation
of Stacking Sigmas [28] for a direct comparison, how-
ever Stacking sigmas is expected to be more expen-
sive than Mac’n’Cheese concretely due to its underly-
ing techniques (Stacking sigmas relies on commitments
with elliptic curve operations which are more expen-
sive than VOLE used in Mac’n’cheese). Also, there is
no available implementation for Goel et al. [27] there-
fore our comparison is based on their evaluation. We
note that a caveat of our approach is that we gener-
ally have larger memory requirements as opposed to
Mac’n’Cheese where the prover and verifier are not re-
quired to store the entire proof statement in memory.
However, as we discuss in Section 6.1, gOTzilla can op-
timize RAM usage by generating the required data on
the fly as needed to improve our storage costs.
1-out-of-n Oblivious Transfer and PIR The con-
nection between PIR and Oblivious Transfer was stud-
ied before in [24, 39] (where 1-out-of-n OT was also
referenced as “Symmetric PIR" or SPIR). These works
provided transformations of PIR to SPIR, which how-
ever have an overhead in computational and/or commu-
nication costs.

While most 1-out-of-n OT protocols require linear
communication, Zhang et al. [44] presented a protocol
with O(

√
n) communication costs, while also proposing

using PIR in conjuction with the appropriate ZK proofs.
The protocol is quite practical (for short messages) in
terms of computation time, however, the communica-
tion cost is high. For n = 106 and the message size of
192 bits, it took their protocol 30 seconds and 480 MB
on an Intel Core i5-2400 CPU running at 3.10 GHz in
LAN setting. Beside the high communication cost, an-
other drawback of their protocol is that the message

space is restricted by the size of the group used in their
protocol. When the message length is at least 10000 bits
(as in our use case), it is not clear how to modify [44]
to make it work while still being practical†.
Proof of Assets. Provisions [22] was the first at-
tempt to create an assets proof on behalf of a cryp-
tocurrency exchange, as a part of a general solvency
proof. The proof was constructed using standard Σ-
protocols, which however was only compatible with un-
hashed public keys (P2PK), thus severely limiting both
the anonymity set and its practical use. Agrawal et al.
[5] made proving assets with hashed public keys possible
as part of a zk-SNARK-based protocol combined with
Σ-protocols (in a CRS model based on Pinocchio [40]),
tailored for mixing arithmetic and boolean components.
However, in addition to the setup assumptions, this ap-
proach is not efficient for large disjunctive statements
(the size of the UTXO list in Bitcoin is in the order
of hundreds of millions) as both the computational and
space requirements scale linearly with its size, its has
expensive concrete costs for the prover because of the
underlying SNARKs and range proofs.

2 Preliminaries

2.1 Notation.

We denote an n-dimensional vector v = {v1, . . . , vn}.
By a||b we denote concatenation of elements a and b. A
probabilistic polynomial-time (PPT) algorithm B with
input a and output b is written as b← B(a). By

⊕
we

define a bit-wise XOR operation. We define the statis-
tical security parameter by λ.

† It will be too costly to use a group of size 10000 bits.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 233

2.2 Basic Cryptographic Building Blocks

Commitment Schemes. A commitment protocol be-
tween a committer and a receiver consists of two
phases: a committing phase where the committer on
input a message m and public parameters pp, sam-
ples randomness r and computes a commitment Cm ←
Com(pp,m, r), and a de-committing or opening phase
where the committer de-commits Cm to m. A com-
mitment scheme should be hiding, i.e. Cm should not
reveal any information about m and binding, i.e. it
should be hard for the committer to find m′ such that
Com(pp,m, r) = Com(pp,m′, r′) with m′ 6= m. In the
rest of the paper, we imply inputs pp and r and omit
them for simplicity.
MACs. A circuit-based one-time Message Authentica-
tion Code (MAC) on x is defined as t = ax+ b where a
and b are randomly sampled by the verifier, and can be
opened after the prover has committed to t [19].
Homomorphic Encryption. An (additive) homomor-
phic encryption scheme is public-key encryption scheme
equipped with an operation � over the ciphertext space
such that for any two plaintexts a, b, Dec(Enc(a) �
Enc(b)) = a+ b.

2.3 Zero-knowledge Proofs

A zero-knowledge (ZK) proof π enables a prover P who
holds some private witness w for a public instance x
and an NP-relation R, to convince a verifier V that
some property of w is true i.e. R(x,w) = 1, without V
learning anything more. To denote a ZK proof state-
ment we use the Camenisch-Stadler notation [17] as
π = {(w) : R(x,w) = 1}(x).

Definition 1. A zero-knowledge proof between P and
V for an NP relation R must satisfy the following prop-
erties:
– Completeness: If R(x,w) = 1 and both players are
honest V always accepts.

– Soundness: For every malicious and computationally
unbounded P ∗, there is a negligible function ε(·) s.t.
if x is a false statement (i.e. R(x,w) = 0 for all w),
after P ∗ interacts with V , Pr[V accepts] ≤ ε(|x|).

– Zero Knowledge: For every malicious PPT V ∗, there
exists a PPT simulator S and negligible function ε(·)
s.t. for every distinguisher D and (x,w) ∈ R we have
|Pr[D(ViewV ∗(x,w)) = 1]− Pr[D(S) = 1]| ≤ ε(|x|).

Composed statements. ZK proofs can be composed
as follows: (1) AND composition π1 ∧ π2 which can be
easily constructed by sequential or parallel proving of
underlying assertions, and (2) OR composition π1 ∨ π2
which can be constructed by proving knowledge for the
one and simulating knowledge for the other, without
revealing which of the two is actually proved and which
is simulated.
Mixed statements. Let f and g be non-algebraic and
algebraic relations with public instances y and z respec-
tively. A ZK proof on a mixed statement has the generic
form {(w) : f(y, w) = 1 ∧ g(z, w) = 1}(y, z).

2.4 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a fundamental
functionality in secure computation between a sender
S that holds two values v0, v1 and a receiver R. At the
end of the protocol, the receiver learns exactly one of the
sender values while the sender learns nothing. 1-out-of-
n OT is a generalized version of 1-out-of-2 OT where
the sender has n values, and the receiver learns one of
them. In Figure 1 we describe the ideal functionality for
1-out-of-n OT.

Functionality F1:n
OT

Functionality F1:n
OT communicates with sender S and

receiver R, and adversary A.

1. Upon receiving input (sid, v1, · · · , vn) from S

where vi ∈ {0, 1}κ, record (sid, v0, · · · , vn).
2. Upon receiving (sid, i) from R where i ∈
{1, · · · , n}, send vi to R. Otherwise, abort.

Fig. 1. The 1-out-of-n OT functionality.

2.5 MPC in the Head

We use the MPC-in-the-Head paradigm introduced by
Ishai et al. [34]. An MPC protocol ΠF is an interac-
tive protocol between m parties P1, . . . , Pm to securely
compute some function F on the joint input of all par-
ties. In MPCitH a single party simulates the execution
of all m parties locally and records transcripts of the
interaction between the simulated parties. These sim-
ulated views can later be selectively opened to prove
statements about the inputs of the simulated parties.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 234

Formally, we require the following properties for ΠF
to be an admissible protocol for MPCitH:

Definition 2. Let ΠF be an MPC protocol for a func-
tionality F(x1, . . . , xm).
– We say ΠF realizes F with correctness if for all pos-
sible inputs the probability that the output of any
party Pj running (semi-honest) ΠF is different from
F(x1, . . . , xm) is negligible in λ.

– We say ΠF realizes F with t-privacy if for all sets
of (semi-honest) corrupt parties I ⊂ {P1, . . . , Pm}
s.t. |I| ≤ t there exists a PPT simulator S s.t. for
all inputs the set of views {viewj}j∈I is statistically
indistinguishable from S(I, {xj}j∈I ,F(x1, . . . , xm)).

We model the local simulation of the MPCitH protocol
with the black-box functionality ΠMPCitH in Figure 2.

ΠMPCitH

Input: An m-party MPC protocol ΠF implementing
the functionality F which takes as input (Xj , Yj)
from each party Pj and outputs to all parties
F(⊕mj=1Xj ,⊕

m
j=1Yj) with completeness and (m − 1)-

privacy,
(Xj , Yj) for j = 1, . . . ,m

Protocol: Run a simulation of ΠF as follows:

– Set each party Pj ’s input as (Xj , Yj)
– Sample Pj ’s initial randomness rk
– Set viewj ← {Xj , Yj , rj}
– Execute the steps ΠF , adding each message re-

ceived by Pj to viewj
– Add the output to each viewj

Output: (view1, . . . , viewm)

Fig. 2. MPC-in-the-Head subroutine

3 Oblivious Transfer from Private
Information Retrieval

A Private Information Retrieval (PIR) protocol [38] be-
tween a receiver R and a server S which owns a database
D consisting of items y1, · · · yn, enables R to retrieve
some item yi from D without S learning any informa-
tion about i. Intuitively, PIR is similar to a 1-out-of-n
OT protocol, with the main difference being that it only
protects the privacy of R’s input and assumes semi-

honest behavior from both parties. In this section we
construct a protocol for 1-out-of-n OT built on top of
SealPIR [7]. Note that this construction cannot generi-
cally be applied to arbitrary PIR protocols, as it relies
on properties of SealPIR’s construction.

Privacy against semi-honest receiver. SealPIR is
constructed from the additive homomorphic encryption
scheme BFV [14, 25] based on Ring-LWE. As privacy
is not a concern in a PIR protocol, SealPIR packs
many yi to fully utilize the large plaintext supported by
Ring-LWE, and computes f(b, y) =

∑n/k
j=1 bj · Yj where

Yj = (y1+(j−1)k, . . . , yjk), k is the number of yi’s that
can be fitted into one plaintext, bj = 1 if the selected
item is in [1+(j−1)k; jk] and bj = 0 everywhere else. In
the protocol, bj ’s are encrypted and compressed by the
receiver, decompressed by the sender who sends back
the encrypted of f(b, y). Finally the receiver decrypts
the ciphertext and obtains f(b, y) = Yj .

We observe that without packing the yi, the pro-
tocol actually computes f(b, y) =

∑n
j=1 bj · yj and re-

alizes a semi-honest 1-out-of-n OT protocol (with less
efficiency if the plaintext has too much empty space).

Security against a malicious receiver. To achieve
security against malicious receivers, after sending its
query the receiver performs a zero-knowledge proof that
the query is “well-formed” (i.e. is an encryption of a
plaintext with exactly 1 nonzero index). We describe
this protocol in figure 3.

First, ΠWellFormed
ZK guarantees that the encrypted

query cv is a correctly-constructed ciphertext of a known
plaintext with bounded noise using techniques proposed
by Chen et al. [20]. The rest of the protocol proves that
the underlying plaintext is well-formed.

The server creates a challenge by sampling a ran-
dom element ri and random polynomial Qi and an
(n−1)-out-of-n shamir-sharing of Qi (denote the vector
of shares as qi). The server then homomorphically com-
putes ci := ri · cb +Enc(qi) and sends ci to the receiver.

If the query is well-formed, then the decryption of ci
will have enough unmodified shares to reconstruct Qi.
More specifically, the decrypted plaintext will contain
n−||b|| shares of Qi where ||b|| is the number of nonzero
elements in the plaintext query. Hence if the query con-
tains > 1 non-zero elements the receiver is unable to
reconstruct Qi. We repeat this process (in parallel) to
achieve the desired level of soundness.

Security against a malicious sender. To make
ΠWellFormed
ZK malicious-secure, we observe that the

server only needs to keep Qi and ri private until the
receiver has sent its response. Additionally, once the
receiver knows Qi, ri and the randomness used to en-

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 235

crypt qi it can deterministically recompute the honestly-
generated ci to verify honest behavior of the server.

Along with the challenges ci, the server now sends
a commitment to a PRG seed s from which all other
random values are sampled. The receiver commits to its
responses, then the server opens the seed to the receiver.
The receiver recomputes the challenges and verifies that
they match what the server originally sent. If so, the
receiver opens its responses to the server.

For the overall 1-out-of-n OT protocol we apply a
similar methodology. First the server commits to its
PRG seed and database input, and later opens this com-
mitment so that the receiver may check for honest be-
havior. In order to preserve the receiver’s input privacy,
this check must occur before any computations based
on the received value are revealed to the sender. To pre-
serve soundness, it must occur after all relevant prover
computations have been run and their outputs commit-
ted. Because of this, our implementation of Π1:n

OT only
attains security against semi-honest S and malicious R.
When using Π1:n

OT in a larger protocol, we augment it
with the PRG trick to reach malicious S security. As an
optimization, we use a single seed for all instances of 1-
out-of-n OT, allowing the server to reveal the databases
for all instances simultaneously.

Theorem 1. Protocol ΠWellFormed
ZK is a Zero Knowl-

edge proof that an encrypted PIR query Enc(b) satisfies
the condition: @(i 6= j) s.t. bi 6= 0 ∧ bj 6= 0.

Proof (Sketch). Soundness: If the prover cheats by us-
ing a ciphertext which is not validly constructed as in-
put, the soundness of the validity proof in step 1 guar-
antees the protocol will abort. If the prover cheats by
setting more than one entry of b to be non-zero, then
ci = qi in at most N − 2 points. For the N − 1 degree
polynomial Qi, it will not have enough information for
reconstruction. In order to pass the check, the prover
must guess Qi(0) = ai,0. As aij are sampled uniformly
at random, the prover has probability of 1/t to guess it
correctly. Amplified over σ repetitions, a cheating prover
has success probability t−σ < 2−λ.

Zero-knowledge: The semantic security of the en-
cryption scheme preserves the privacy of the selection
index. In the protocol, the prover only reveals Q′i(0) af-
ter seeing the seed used to generate the challenges by
the verifier. Thus, the verifier has no way to deviate
from the protocol without being caught. If the verifier
behaves honestly, then the decommitment to Q′i(0) is
already known by the verifier. If the verifier cheats, the
protocol will abort, and the hiding property of the com-

ΠWellFormed
ZK

Setup. Ring-LWE scheme with parameters (N, t, q)
where N is the degree of the cyclotomic polynomial, t
the plaintext modulus, and q the ciphertext modulus.
The prover has the key pair (sk, pk), while the verifier
has the public key pk. σ is the soundness amplifier such
that t−σ < 2−λ.

Prover’s input. b ∈ Rt[X]/(XN + 1) and k ∈ [0, N)
such that bk 6= 0 and bi = 0 ∀i 6= k.

Commom input. cb = Enc(pk; b) where b ∈
Rt[X]/(XN + 1).

Protocol.
1. The prover sends a proof on the validity of cipher-

text cb which includes that the Ring-LWE noise
is bounded.

2. The verifier samples a random seed s ∈
{0, 1}κ. For i ∈ {1, · · · , σ} the verifier samples
ri, Qi(X) ← PRG(s) where ri ∈ Zt, Qi(X) =
n−1∑
j=0

aijX
j , aij ← Zt, and computes qi =

(Qi(1), · · · , Qi(N)) ∈ ZNt . It uses the additive
homomorphic property of Ring-LWE to compute
ci ← Enc(pk, ri · b + qi). After that, the verifier
sends Com(s) and ci to the prover.

3. The prover decrypts ci, obtains ci = ri · b + qi,
interpolates Q′i from the points (j, cij), where j ∈
{1, · · · , N}, j 6= k. It then sends Com(Q′i(0)) to
the verifier.

4. The verifier decommits s to the prover.
5. The prover verifiers that ci is correctly generated.

If so, it decommits Q′i(0) to the verifier.
6. The verifier checks that Q′i(0) = ai,0.

Fig. 3. Zero-knowledge proof to prove that the encrypted cipher-
text cv is well formed and at most one of bi 6= 0.

Π1:n
OT

Receiver input. b = {b1, . . . , bn} where ∃i ∈
{1 . . . n} : bi 6= 0 ∧ bj = 0∀j 6= i

Sender input. y = {y1, . . . , yn}.

Setup. R generates a BFV keypair (sk, pk) and sends
pk to S.

Protocol.
1. R computes cb ← Enc(b) and sends cb to S.
2. R and S run ΠWellFormed

ZK on cb.
3. S homomorphically computes c′b ← f(cb, y) and

sends c′b to R
4. R computes b′ ← Dec(c′b) and outputs b′

Fig. 4. 1-out-of-n OT protocol

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 236

mitment scheme prevents the verifier from learning any-
thing.

Theorem 2. Let Com be a binding and hiding commit-
ment scheme, and let SealPIR be the protocol described
in [7], modified to not use any packing. Then the proto-
col described in Figure 4 implements F1:n

OT with security
against a malicious receiver and semi-honest sender in
the Com-hybrid model.

Proof. (Sketch) The security against semi-honest
senders follows directly from the semantic security of
the cryptosystem and the zero-knowledge property of
ΠWellFormed
ZK .

As for the security against malicious receivers, the
soundness of ΠWellFormed

ZK ensures that b is a valid
query. Given that b is a valid query (i.e. only one
i is nonzero) the sender’s response c′b = f(cb, y) =
Enc

(∑n
j=1 bj · yj

)
= Enc(bi · yi).

We construct a simulator S which interacts with
R and the ideal functionality (shown in figure 5). The
indistinguishability of R’s view when interacting with S
in the real world versus R’s view when interacting with
S in the ideal world follows directly from the soundness
of the ΠWellFormed

ZK ZKPoPK subprotocol [20].

S1:n
OT

1. R sends cb to S.
2. Perform ΠWellFormed

ZK with R. Using the
ZKPoPK extractor from the subprotocol in step
1 [20] of ΠWellFormed

ZK extract b and learn R’s se-
cret index i.

3. Send i to F1:n
OT ; receive yi in return.

4. Compute c′b ← Enc(bi · yi) and send c′b to R

Fig. 5. Malicious-receiver simulator for Π1:n
OT

4 Disjunctive Proofs from 1:N
OT

4.1 MPCitH Disjunctive Proof

Towards our goal of constructing an efficient disjunctive
proof, we first define a helper function ShareAt(m,x, J, r)
which pseudorandomly samples m-out-of-m additive se-
cret shares of x from the seed r, outputting a vector of
values {X1, . . .Xm} such that

⊕m
j=1 Xj = x (we omit

m as explicit input to ShareAt for the rest of the pa-
per). In addition, ShareAt has the property that for a
fixed index J ∈ {1, . . .m} and r, ShareAt(m,x, J, r) and
ShareAt(m,x′, J, r) will have identical outputs at every
index except the J-th index. This function is shown in
Figure 6.

ShareAt

Let G(·) be a PRG

Input: x ∈ {0, 1}∗, J ∈ {1, . . .m} and a seed r ∈
{0, 1}κ.

1. Sample random vector {X1, . . . ,Xm} by comput-
ing G(r), where |Xj | = |x| for all j ∈ {1, . . .m}.

2. Set XJ as XJ ← x
⊕

j∈{1,...m}\J Xj

Output: {X1, . . . ,Xm}

Fig. 6. Secret sharing with specific offset index

We define our main protocol ΠMPCitH−OR
f in Fig-

ure 7. The common input is a function f , and a set
of values y1, . . . , yn. The Prover wishes to prove, in
zero knowledge, that it knows input (x, y) such that
f(x, y) = 1 ∧ y ∈ {y1, . . . , yn}. We let ΠF denote an m-
party protocol for securely computing f(

⊕
j xj ,

⊕
j yj).

The verifier, V, begins by generating and committing to
a PRG seed s from which all further random values are
sampled. This seed will allow the prover to confirm the
verifier’s honest behavior using the technique described
in Section 3.

Next, the verifier V generates τ different sets of in-
put encodings – each containing m shares – for each of
the yi common input values. This results in a 3D table
of shares (n ×m × τ), denoted Y kij , as shown in Figure
8. This 3D table is divided into n 2D “slices” of dimen-
sion (m× τ), each corresponding to an input yi. These
slices are encodings of yi such that all slices are identical
in every position except for 1 per row (τ non-identical
positions total). The non-identical position for the k-th
row is denoted εk.

Then, prover P selects a “slice" of this 3D table
through the 1-out-of-n OT protocol; the choice of the
slice is its secret input, `.

For each row of the slice (i.e. a chunk which was
generated from the same value of k and adds up to y`)
P generates additive shares of x and computes MPCitH
views using the shares of y` from the slice and the newly-

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 237

generated shares of x as input. Once all views are gen-
erated, P commits these views to V.

Finally, V reveals the committed seed s to P, who
re-generates the whole 3D table, and verifies the hon-
est behavior of the verifier. P aborts if there is a mis-
match, otherwise P decommits the MPCitH views (ex-
cept Party εk) to V who verifies the honest execution of
the MPCitH protocol, and accepts the proof.

Note that since the slices are identical in each row
except for at εk (i.e. the unrevealed MPCitH input)
the privacy of the MPCitH protocol protects the prover
from revealing its choice of index `.

Theorem 3. Let m ≥ 3, let f(Y,X) be the function
defined in Figure 7, let Com be a binding and hiding
commitment scheme, let ΠF implement f with correct-
ness and (m− 1)-privacy, and let Π1:n

OT implement F1:n
OT

with security against a malicious receiver and a semi-
honest sender. Then the protocol described in Figure
7 is a zero-knowledge proof protocol for the language
{((y1, . . . , yn), x) : ∃` ∈ {1, . . . , n} such that f(x, y`) =
1} in the (Com,F1:n

OT)-hybrid model.

Proof. Zero Knowledge: First, we claim that our pro-
tocol is honest-verifier zero knowledge. We show this
through a series of hybrid steps:
H0: Execution of ΠMPCitH−OR

f in the real world.

H1: Same as H0, except we replace calls to the Π1:n
OT

subroutine with the ideal functionality F1:n
OT. Since Π1:n

OT
implements F1:n

OT with semi-honest sender security and
we are assuming the verifier behaves semi-honestly, this
substitution produces indistinguishable views.

H2: Same as H1, except the simulator uses the
ideal F1:n

OT to recover all the verifier input encodings
{Y(1)

i , . . .Y(τ)
i } for all i, which defines (ε1, . . . , ετ).

Then, the simulator replaces the call to ΠMPCitH with
the (n − 1)-privacy simulator from Definition 2, using
Pεi as the honest party in the i-th iteration. For Pεi ’s
view, the simulator commits to a random string.

The indistinguishability between the n− 1 revealed
views of H1 and H2 follows from Definition 2. The in-
distinguishability of the unrevealed view follows from
the hiding property of Com.

H3: Same as H2, except the simulator is not pro-
vided the witness and instead uses random values for
the input to the (n − 1)-privacy simulator. Since only
n− 1 views are revealed to the verifier, the two hybrids

produce indistinguishable transcripts.

Next, we claim zero-knowledge against verifiers
which deviate from the honest protocol.

Suppose V does not follow the protocol honestly.
In the honest protocol, V’s messages are generated de-
terministically based on s, the common input, and P’s
messages. Hence after V opens s in step 9, the prover
can compare each message that V sent against the ex-
pected message in the honest-verifier protocol. By our
assumption one of these messages is inconsistent, hence
P’s next action is to abort the protocol.

Consider the view of V right before the proto-
col aborts. The only messages V has received are
encrypted queries of P’s private input ` (step 1 of
Π1:n
OT), a transcript of a zero-knowledge proof (step 2

of Π1:n
OT), and commitments to MPCitH views (step 8 of

ΠMPCitH−OR
f).

We construct a simulator S for V’s view (shown in
figure 9) for the case where V deviates from the honest
protocol and argue that the view when interacting with
the simulator is indistinguishable from V’s view when
running ΠMPCitH−OR

f . The encrypted query’s indistin-
guishability follows from the semantic security of the
encryption scheme. The zero-knowledge transcript’s in-
distinguishability follows from the zero-knowledge prop-
erty of ΠWellFormed

ZK . The indistinguishability of the
committed views follows from the hiding property of
Com. Finally, as discussed above a verifier that deviates
from the honest protocol will always cause the protocol
to abort after step 9.

Soundness: Suppose the Prover does not know a
valid input xi for any yi. By the hiding property of
Com, the prover learns nothing about the verifier’s state
other than the queried row from Π1:n

OT before it sends the
commitments to its MPCitH views. And by the binding
property of Com the prover’s MPCitH views must be
fixed before the prover receives the rest of the verifier’s
state. Since the proof is accepted or rejected based on
these views, we can reduce the soundness of the protocol
to the security properties of the MPCitH protocol.

We consider 3 cases, depending on how many sim-
ulated MPCitH parties perform malicious behavior (as
measured by comparing inconsistencies in the parties’
views).

In the first case, all MPCitH parties act honestly.
By the completeness of ΠF , either all parties output 0
with all but negligible probability (in which case the
proof is rejected) or the input (xi, yi) is a valid witness
for f . By our previous assumption, if f(xi, yi) = 1, then
yi is not a member of the common input set, hence the

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 238

ΠMPCitH−OR
f

Setup. Let f(x, y) be some function, and let F be an m-party functionality that takes input (Xj ,Yj) from
each party Pj and outputs f(⊕mj=1Xj ,⊕mj=1Yj)

?= 1 to all parties. Let ΠF be an m-party protocol that securely
realizes F with correctness and (m− 1)-privacy.

Common inputs. τ total number of repetitions, n values {y1, . . . , yn} ∈ {0, 1}κ, and m, the number of parties
involved in the MPC protocol, run in the head of the Prover, and m−τ < 2−λ, λ is a security parameter.

Prover’s input. x ∈ {0, 1}∗ such that f(x, y`) = 1 for some ` ∈ {1, . . . n}. a

1. Verifier V generates random seed s and sends Cs ← Com(s) to the prover P. Throughout the rest of the
protocol, all randomness of the Verifier is generated by applying a PRG, G(s). (We will, imprecisely, refer
to these as “random” values.)

2. V uses the random seed s to sample the following values uniformly at random:
(a) εk

$← {1, . . .m} for k ∈ {1, . . . τ}.
(b) rk

$← {0, 1}κ for k ∈ {1, . . . τ}.
3. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V compute vector {Y(k)

i,1 , . . . ,Y
(k)
i,m} ← ShareAt(yi, εk, rk), which results in a

3D table, as in Figure 8. (Note that the same rk is used for every yi.)
4. For every i ∈ {1, . . . n}, V sends the 2D table {{Y(1)

i,1 , . . .Y
(1)
i,m}, . . . {Y

(τ)
i,1 , . . .Y

(τ)
i,m}} = {Y(1)

i , . . .Y(τ)
i }

to Π1:n
OT.

5. P sends ` to Π1:n
OT.

6. Π1:n
OT outputs {Y(1)

` , . . .Y(τ)
` } to P.

7. For every k ∈ {1, . . . τ}, P:
(a) Computes X(k) = {X(k)

1 , . . . ,X(k)
m } as a random additive share of x, i.e. (x =

⊕m
j=1 X(k)

j)
(b) Computes {view1,k, . . . , viewm,k} ← ΠMPCitH(ΠF , (X(k),Y(k)

`)).
8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends Cviewj,k ← Com(viewj,k) to V
9. V de-commits s, which P uses to derive {ε1, . . . , ετ} and to reconstruct the 3D table as in above steps 2 - 3

b.
10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, k ∈ {1, . . . , τ}, j ∈ {1, . . . ,m}\εk:

m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

If these properties do not hold, P aborts.
P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk

11. V checks that the decommitted views are consistent with honest executions of ΠF , include an output of 1,
and that viewj,k has a Y input equal to Y (k)

1,j .

a The input length |x| can be either fixed or arbitrary.
b All messages sent by the receiver during Π1:n

OT are computed deterministically from the seed s and the common input
{y1, . . . , yn}.

Fig. 7. OR proof using MPC-in-the-Head

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 239

... ...

... Y(τ)
nm

... ...

... Y(k)
nm

Y(1)
11

... Y(1)
n1

... Y(1)
ij

...

Y(1)
1m

... Y(1)
nm

τ

n

m

Fig. 8. Notation for protocol ΠMPCitH−OR
f

.

SMPCitH−OR
MaliciousVerifier

1. Emulating step 1 of Π1:n
OT , S samples a random

unit vector b and sends Enc(b) to V.
2. Emulating step 2 of Π1:n

OT , S runs the zero-
knowledge simulator for ΠWellFormed

ZK with V.
3. Emulating step 8 of ΠMPCitH−OR

f
, S samples

m × τ random strings of the same length as an
MPCitH view and sends a commitment to each
string to V.

4. Emulating step 9 of ΠMPCitH−OR
f

, S aborts the
protocol after receiving V’s decommitment.

Fig. 9. Malicious-verifier simulator for ΠMPCitH−OR
f

input encoding Yi,j must be different from the encod-
ings created by the verifier in at least one position. If
any opened view’s input encoding of yi does not match
the verifier’s encodings the proof will be rejected, thus
in order to create valid proof, P must modify only the
share of yi that is not opened by V. By the hiding prop-
erty of Com, P has no information about εj , hence the
prover has at best 1

m chance of guessing correctly for a
single iteration. Amplified over τ iterations the cheating
prover’s probability of success is ≤ 1

mτ

The second case we consider is where exactly one
simulated party performs malicious behavior. In this
case, the malicious party’s view must be inconsistent
with at least one other view. Since (n − 1) views are
opened, the verifier will see this inconsistency unless
the malicious view, or the receiver of the malicious mes-
sage, is the one left unopened. Therefore, the cheating
prover’s probability of correctly guessing εj for every
iteration is (2

m)τ .
The final case is that there are two or more mali-

cious parties. In this case it is guaranteed that there will
be an inconsistent pair of views in any (n − 1)-subset,
giving the cheating prover a success probability of 0 in
this case.

Note that since the verifier’s random challenge for
each iteration is independently generated, the probabil-
ity of success between iterations is similarly indepen-

dent. Thus in the event that a prover uses different
strategies in different iterations, the total success prob-
ability is a straightforward multiplication of the cho-
sen strategies’ success rates for each iteration, which is
bounded by ≤ (2

m)τ .

5 Disjunctive Proofs for Mixed
Statements

In the proof of assets problem, the Prover and Veri-
fier hold as common input a list of hashed public keys,
L = {y1, . . . yn}, where yi = H(xi), for some hash func-
tion H. The Prover wishes to prove that it knows secret
key z such that (x, z) is a legitimate output of some
cryptographic key generation algorithm, and, for some
yi ∈ L, H(x) = yi.

More generally, we consider mixed statements of the
form f(x, yi) = 1 ∧ g(x, z) = 1, where yi ∈ L, f is a
Boolean (or “non-algebraic”) function – in our applica-
tion, a hash function – and g(x, z) is an algebraic func-
tion – in our application, one verifying that z is the
secret key corresponding to x.

Chase et al. [19] consider this question without the
disjunction. That is, they assume |L| = 1, and focus
solely on the challenge of constructing an efficient proof
for mixed statements. They do this by leveraging the
specific proof system for f , built from Garbled Circuits,
in the following way. The prover begins by committing
to input x with Com(x). The Verifier then prepares a
garbled circuit for the Boolean circuit that outputs both
f(x), as well as a one-time MAC on the Prover’s in-
put: t = ax + b. The prover is allowed to decode t,
and commits to this as well. Finally, the prover pro-
vides a proof, using an algebraic proof system, that it
knows (x, t) such that f(x, y) = 1, x is consistent with
Com(x), t is consistent with Com(t), and t = ax + b. In
this way, the MAC on x that was derived while proving
f(x, y) = 1 ensures that the same input x is used when
proving that g(x, z) = 1.

Note that Chase et al. compute t = ax + b inside
a Boolean circuit, which requires O(|a||x|) AND gates.
We improve on their solution by using the oblivious
transfer to avoid performing integer multiplication and
addition in a Boolean circuit. As in the previous Sec-
tion, we use MPC-in-the-head, rather than garbled cir-
cuits. Specifically, let xi be the ith bit of x, and for
each u ∈ {1, . . . , |x|}, let 0u and 1u denote the input
encodings generated by the verifier for that input bit.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 240

The verifier chooses a at random, and samples b by
choosing random bu for each u ∈ {1, . . . , |x|} and set-
ting b =

∑
u bu. When obliviously sending the encod-

ing of the ith input bit, the verifier sends (0u, bu) and
(1u, 2u−1a + bu) to the OT functionality. By summing
the 2nd value received in each of the |x| received ordered
pairs, the Prover recovers ax+b, and no computation in
the circuit is required. We note that this leads to signif-
icant improvement over Chase et al. even when |L| = 1,
as we discuss in Appendix C. In Figure 10, we present
the full protocol, highlighting the changes in our dis-
junctive proof from Figure 7, in order to support mixed
statements.

Theorem 4. Let m ≥ 3, let f(Y,X) be the function
defined in Figure 10, let Com be a binding and hid-
ing commitment scheme, MAC(x) an unforgeable one-
time MAC and let ΠF implement f with correctness and
(m− 1)-privacy. Then, the protocol described in Figure
10 is a zero-knowledge proof protocol for the language
{((y1, . . . , yn), z, x) : ∃` ∈ {1, . . . , n} such that f(x, y`) =
1 ∧ g(x, z) = 1} in the (Com,F1:n

COT)-hybrid model.

Proof (Sketch). Zero Knowledge: The simulator runs in
the same fashion as in Theorem 3, and it inherits the
same procedure for the ZK proof π.

Soundness: Our protocol inherits the soundness
properties as in Theorem 3. Here the prover can also
cheat by using an inconsistent witness x for functions f
and g. However this is prevented from the unforegability
property of the one-time MAC, the binding property of
the commitment scheme and the soundness property of
the ZK proof π.

5.1 Proving the Value of Assets

When proving ownership of assets in a cryptocurrency
such as Bitcoin, the exchange (i.e. the prover) needs to
prove knowledge of a number of secret keys for the re-
spective hashed public keys among those in the UTXO
set. Additionally, they might wish to prove something
about the values assigned to such keys, e.g. that their
total value exceeds some minimum. For simplicity, we
treat the UTXO set as a list of tuples, where each tu-
ple (Hi||vi) represents a hashed‡ public key and value
pair, where Hi = H(pki). Therefore, given a common in-

‡ We also treat the double hashing RIPEMD160(SHA256()) of
public keys in Bitcoin as a single hash function H.

put of a tuple list L = {(H1||v1), (H2||v2), ...(Hn||vn)},
P must prove knowledge of secret keys {skk}tk=1 corre-
sponding to a set of public keys S = {pkk}tk=1 such that
∀k ∈ {1, . . . , t}, (skk, pkk) is a valid output of the appro-
priate key generation algorithm, (H(pkk), vk) ∈ L, and,
Σtk=1vi ≥ v.

The protocol as discussed above, is not sufficient for
the Proof of Assets application as it does connect the
provers’ keys to their corresponding “coin” value stored
on the blockchain. In Figure 11 of the Appendix, we
present an extension of our protocol that also supports
values. The main change is to provide an additional
MAC on the input values, in order to bind them with
their respective hashed keys. Also for simplicity, we do
not provide a k-out-of-n OR proof but rather a 1-out-
of-n OR proof (i.e. we only assume that the exchange
only controls one address in the UTXO set), however
the protocol can be naturally extended to accommodate
multiple keys.
Interaction. Note that while gOTzilla is interactive, in-
teraction is still acceptable for the Proof of Assets appli-
cation. Recall that PoA is not typically executed on its
own, but rather in parallel with a "Proof of Liabilities"
(PoL) protocol [18, 22, 36] in order to Prove Solvency.
PoA proves that an organization owns more than X as-
sets, and PoL proves that an organization’s total liabil-
ities towards its clients are less than some value Y . For
the organization to be solvent, its assets should exceed
its liabilities X > Y . While PoA is executed between an
organization and an auditor, PoL is executed between
an organization and its clients. In PoL, the organization
publishes a digest on its total liabilities, and each client
needs to check the inclusion of their value (which they
store with the organization) in that published digest.
This check can only happen interactively which in turn
makes the complete Proof of Solvency protocol interac-
tive as well (for the Organization side). Therefore, our
interactive protocol is still in-line with the requirements
of this application, while it is the first one to provide an
efficient way to prove assets even among many million
hashed public key - value tuples.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 241

ΠMPCitH−OR−Mix
f

Setup. Let f(x, y) be a Boolean function and g(x, z) an algebraic function. Let F be an m-party functionality that takes input
(Xj ,Yj) from each party Pj and outputs f(⊕mj=1Xj ,⊕mj=1Yj)

?= 1 to all parties. Let ΠF be an m-party protocol that securely
realizes F with correctness and (m− 1)-privacy.
Common inputs. τ total number of repetitions, n values {y1, . . . , yn} ∈ {0, 1}κ, and m, the number of parties in the MPC
protocol run in the head of the Prover. m and τ are set such that m−τ < 2−λ, where λ is a security parameter.
Prover’s input. x, z, ` such that: ` ∈ {1, . . . n}, f(x, y`) = 1 and g(x, z) = 1. We denote as (x1, . . . x|x|) the bit representation
of x (i.e. x =

∑|x|
u=1 2u−1xu).

Verifier’s input. Cx = Com(x), Cz = Com(z).

1. Verifier V generates its random tape s and sends Cs ← Com(s) to the prover P. Throughout the rest of the protocol, all
randomness of the Verifier is generated by applying a PRG, G(s). (We will, imprecisely, refer to these as “random” values.).

2. V uses the random seed s to sample the following values uniformly at random:
(a) εk

$← {1, . . .m} for k ∈ {1, . . . τ}.
(b) rk

$← {0, 1}κ for k ∈ {1, . . . τ}.
(c) wu,k

$← {0, 1}κ for u ∈ {1, . . . , |x|}, k ∈ {1, . . . τ}

(d) a
$← {0, 1}λ, bu

$← {0, 1}|x|+λ for u ∈ {1, . . . , |x|}. Define b :=
∑|x|

u=1 bu

3. For u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}, V computes {0(k)
u,1 . . .0

(k)
u,m} ← ShareAt(0, εk, wu,k) and {1(k)

u,1 . . .1
(k)
u,m} ←

ShareAt(1, εk, wu,k)
4. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V computes vector Y (k)

i := {Y(k)
i,1 , . . .Y

(k)
i,m} ← ShareAt(yi, εk, rk)

5. Exchange labels for inputs.
For i ∈ {1, . . . n} denote 2D table Yi := {Y(1)

i , . . .Y(τ)
i }, and for u ∈ {1, . . . , |x|} denote 2D tables 0u :=

{{0(1)
u,1, . . .0

(1)
u,m}, . . . {0

(τ)
u,1, . . .0

(τ)
u,m}}, 1u := {{1(1)

u,1, . . .1
(1)
u,m}, . . . {1

(τ)
u,1, . . .1

(τ)
u,m}}

(a) V sends {Y1, . . .Yn} to Π1:n
OT.

(b) P sends ` to Π1:n
OT.

(c) Π1:n
OT outputs Y` to P.

(d) For every u ∈ {1, . . . |x|}
i. V sends {(0u, bu), (1u, 2u−1a+ bu)} to Π1:2

OT.
ii. For every u ∈ {1, . . . |x|}, P sends xu to Π1:2

OT.
iii. If xu = 0 then Π1:2

OT outputs (0u, bu) to P, otherwise it outputs (1u, 2u−1a + bu). P denotes whichever output it
receives as {{X(1)

u,1, . . . X
(1)
u,m}, . . . {X

(τ)
u,1 , . . . X

(τ)
u,m},Mu}

(e) For k ∈ {1, . . . τ} denote the 2D table X(k) := {(X(k)
1,1 || . . . ||X

(k)
|x|,1), . . . , (X(k)

1,m|| . . . ||X
(k)
|x|,m)}

6. For every k ∈ {1, . . . τ}, P computes (view1,k, . . . , viewm,k)← ΠMPCitH(ΠF , (X(k),Y(k)
`

)).
7. P computes MAC(x) =

∑|x|
u=1(Mu) = a · x+ b and CMAC(x) ← Com(MAC(x)).

8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends CMAC(x) and Cviewj,k ← Com(viewj,k) to V.
9. V decommits s, which P uses to reconstruct {ε1, . . . , ετ}, {0u,1u}, {Y1, . . .Yn}

10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, u ∈ {1, . . . , |x|},k ∈ {1, . . . , τ}, j ∈ {1, . . . ,m}\εk:

m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

m⊕
j=1

0(k)
u,j= 0

m⊕
j=1

1(k)
u,j= 1 0(k)

u,j = 1(k)
u,j

11. P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk
12. V checks that the decommitted views are consistent with honest executions of ΠF , and, if so, outputs 1.
13. P and V execute the following ZK proof protocol: π = {(x,MAC(x), z) : Cx = Com(x) ∧ CMAC(x) = Com(MAC(x)) ∧

MAC(x) = ax+ b ∧ Cz = Com(z) ∧ g(x, z) = 1}(Com(x),Com(z),Com(MAC(x)), a, b)
14. If π verifies, V accepts, else V rejects.

Fig. 10. Disjunctive protocol via MPCitH for mixed statements. We denote by colored text the additional elements introduced com-
pared to Fig.7

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 242

Table 2. Evaluation for protocol in Fig 10. PIR preprocessing: NTT transform. Note: a) MPCitH encoding is needed by both the P
and V, therefore this column is counted twice in the total runtime b) PIR preprocessing is executed by both P and V in parallel.

Number
of ele-
ments

MPCitH
encoding
(both P
and V)

PIR Pre-
processing
(P and V)

PIR
Query
(P)

PIR
Reply
(V)

PIR
De-
code
(P)

ΠWellFormed
ZK

(polynomial
interpola-
tion) (P)

ΠWellFormed
ZK

(bounded
noise) (P)

Total
Runtime

Run-
time of
[10]

213 7ms 74ms <1ms 199ms 1ms 1ms 163ms 453ms 30.23s
216 31ms 392ms <1ms 880ms 2ms 1ms 151ms 1.64s 31.87s
218 86ms 1.3s 2ms 2.2s 3ms 1ms 152ms 3.83s 37.5s
220 358ms 6.47s 2ms 7.07s 5ms 1ms 163ms 14.89s 60s
222 1.61s 9.7s 3ms 9.6s 10ms 2ms 165ms 22.7s 150s
224 7.4s 38.59s 4ms 32.6s 10ms 3ms 167ms 86.09s 510s

6 Implementation
gOTzilla implementation is based on SealPIR [2] and
MP-SPDZ [1]§ libraries. As discussed in Section 3, we
use SealPIR for our needed OT functionality, and we
provide more implementation details below.

6.1 Evaluation

Our first set of benchmarks for protocol ΠMPCitH−OR
f

is performed locally, with the prover and verifier run-
ning on the same host. We run our benchmarks on a
z1d.metal AWS instance using 48 threads (24 physical
cores) and 384 GB of RAM. We performed our evalua-
tions for a range of disjunctive elements between 216 and
224. As we require mτ ' 2−40 soundness, we pick m = 3
MPCitH (minimum required) parties and τ = 25 repeti-
tions as this choice of parameters minimizes (m− 1) · τ .
Concretely, if we consider Limbo [23] as an efficient un-
derlying MPCitH protocol, this implies about 50ms ad-
ditional runtime cost on top of the rest of our protocol’s
runtime, which does not depend on n, and is dwarfed by
the overall runtime costs of our protocol (therefore we
do not take it into account). Assuming |f(x)| = 256 bits,
the size of each slice of the 3D table is 256 ·m · (τ − 1)
(we only need to send τ − 1 shares as the remaining

§ MP-SPDZ provides the ZK proof of plaintext knowledge
needed for ΠWellFormed

ZK . The proof implemented in this library
is for the BGV cryptosystem [15], whereas to be compatible with
SealPIR we need a proof in the BFV cryptosystem [25]. However,
a BFV-compatible version of this proof has been designed [20],
and claims theoretically cheaper cost than the BGV version [9],
but currently has no publicly available implementation. For this
reason we believe the existing BGV implementation provides a
good estimate of the cost.

one can be inferred) which implies a 1600 byte size per
element. As shown in Table 3, for n = 220 the total
communication between the prover and verifier is 6.18
MB, plus 3.45 MB for communicating the PIR Galois
keys beforehand. However, both the prover and verifier
need to generate a version of the 3D table in their local
memory (or storage) based on the seed s (steps 9 and 3
of the protocol ΠMPCitH−OR

f respectively). In our cur-
rent implementation, we store the entire table in RAM
(requiring about 18GB memory for 220 such elements),
however this table can be offloaded to disk and retrieved
as needed at the cost of additional I/O operations, or
alternatively, each slice of the cube can be generated on
demand as needed.

Table 2 shows our local benchmarks in detail, where
we provide a break down of the protocol’s total runtime
as follows:

1. Verifier’s secret share phase (step 3 for ShareAt() of
Fig. 7).

2. The 1-out-of-n OT phase (steps 4 - 6 of Fig. 7) which
include:
– Preprocessing, Query, Reply and Decode costs

of SealPIR.
– Polynomial interpolation (step. 3 of Fig. 3).
– Proof of bounded noise (step. 1 of Fig. 3).

Note for brevity, we don’t include the costs of PRG
generation, commitment and de-commitment costs, one-
time MAC and ZK proof protocol as these are negligible
compared to the overall runtime costs (which as shown
in Table 2, are dominated by MPCitH encoding and
PIR preprocessing and reply).

We also performed a second set of benchmarks over
a network for n = 220, as shown on Table 4, where we
take the additional network latency into account as well.
In particular, the PIR Query - Reply would replace the

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 243

5th and 6th column together on Table 2, and similarly
the rest of our network measurements. This shows that
although our protocol has many rounds of interaction
(most of them during ΠWellFormed

ZK), the overall impact
to its total run-time is very small.

Comparison.We now make a concrete comparison
of our protocol’s runtime and communication costs with
Mac’n’cheese [10], which also aims for disjunctive Zero-
knowledge proofs and has similar asymptotic costs as
shown in Fig. 1. We observe that Mac’n’cheese is not
explicitly tailored for disjunctive proofs comprised of
circuits with the same structure, however as discussed
in Section 1, in such a case its disjunctive statement
C(x) = y1∨C(x) = y2∨· · ·∨C(x) = yn can be modified
as (C(x) = y) ∧ (y = y1 ∨ · · · ∨ y = yn) to avoid many
circuit evaluations, resulting in a conjunctive statement
which one part consists of a disjunctive statement of
equality checks.

In addition, as discussed in Section 5, our proto-
col can be naturally extended to accommodate mixed
statements, with only an overhead of |x| 1-out-of-2 OTs,
which only cost roughly 25ms in total for |x| = 256 [4], a
negligible cost compared to the main protocol’s bench-
marks presented above.

Given those observations, we first compare with
Mac’n’cheese’s needed runtime for n equality checks
plus proving (C(x) = y) where C is a 250 million gate
Boolean circuit, which is equivalent to converting from
an arithmetic circuit representing the algebraic state-
ment. Specifically when n = 220, the estimated reported
cost of C for Mac’n’Cheese is 30 seconds, and the cost
for 220 equality checks (256 million gates), is another 30
seconds, running on a system with equivalent specifica-
tions¶, adding to a total runtime of 60 seconds, with a
total communication cost of 63 MB. Given our measure-
ments, we observe significant improvements even when
comparing with the disjucntive equality checks part of
Mac’n’cheese. In addition, Mac’n’cheese can handle only
Boolean or arithmetic circuits, therefore as an example,
a mixed statement in the form of SHA256(gx) = y would
need around 250 million gates (as shown in Appendix
B), while gOTzilla is compatible with techniques com-
bining algebraic and non-algebraic statements similar to
the work by Chase et al. [19] as discussed in Section 5,
and therefore we don’t need to covert between circuit
types. Finally, in comparison to the concurrent work of
[27], and based on their reported numbers our protocol

¶ These estimates were provided by Mac’n’cheese [10] authors
assuming cost per gate is 120ns.

Table 3. Communication costs for Fig. 7 protocol (including Fig.
3 subroutine) for n = 220

PIR Query (Step 5) 64.14 KB
PIR Response (Step 4) 320.71 KB
ΠWellFormed
ZK poly interp. 192.04 KB

ΠWellFormed
ZK bounded noise 5.62 MB

Committed views (Step 8) 2.45 KB
Total 6.18 MB

Table 4. Latency costs for Fig. 7 protocol (including Fig. 3 sub-
routine) for n = 220

PIR
Query +
Reply

ΠWellFormed
ZK

polynomial
interpol.

ΠWellFormed
ZK

bounded
noise

MPCitH
views

Total

US East
- East

7.405s 7ms 298ms 370ms 8.08s

US East
- West

7.563s 126ms 892ms 381ms 8.962s

US East
- Japan

7.738s 292ms 1.59s 421ms 10.04s

is roughly 6x more efficient in computational costs (as-
suming the reported runtime t in Table 2 of [27] only
takes the prover’s or the verifier’s costs into account, but
not both simultaneously as we do), namely for 213 ele-
ments our total runtime for 256 bits of statistical secu-
rity (which implies a parameter τ = 80) is 644ms while
the total runtime for [27] in an equivalent system would
be 3960ms. However, our protocol has higher communi-
cation costs, primarily because of the required proof of
bounded Ring-LWE noise.

7 Conclusion
We presented gOTzilla, a novel protocol for disjunc-
tive Zero-Knowledge proofs, tailored for large disjunc-
tions. While our protocol has equivalent asymptotic
communication costs with recent works, we show that
gOTzilla offers a concrete improvement over the state-
of-the-art, especially when the disjunctions include
mixed (i.e. algebraic and non-algebraic) statements,
since our protocol is more “mixed statement-friendly".
Finally, as the Bitcoin’s UTXO count is roughly 80 mil-
lion at the time of writing [3], gOTzilla can serve as
a basis for a Proof of Assets over Bitcoin’s blockchain,
where an exchange can interactively prove its assets to
an auditor in a few minutes.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 244

Acknowledgements
Foteini Baldimtsi and Panagiotis Chatzigiannis were
partially supported by NSF #1717067 and Google and
Facebook research awards.

References
[1] Multi-protocol spdz.
[2] Sealpir: A computational pir library that achieves low com-

munication costs and high performance.
[3] Blockchain.com unspent transaction outputs, 2022.
[4] Efficient multi-party computation toolkit, 2022.
[5] Shashank Agrawal, Chaya Ganesh, and Payman Mohassel.

Non-interactive zero-knowledge proofs for composite state-
ments. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages
643–673. Springer, Heidelberg, August 2018.

[6] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakr-
ishnan Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In Bhavani M. Thu-
raisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 2087–2104. ACM Press,
October / November 2017.

[7] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V.
Setty. PIR with compressed queries and amortized query
processing. In 2018 IEEE Symposium on Security and Pri-
vacy, pages 962–979. IEEE Computer Society Press, May
2018.

[8] Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket
Kate, and Ivan Pryvalov. Efficient non-interactive zero-
knowledge proofs in cross-domains without trusted setup.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I,
volume 11442 of LNCS, pages 286–313. Springer, Heidel-
berg, April 2019.

[9] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using
TopGear in overdrive: A more efficient ZKPoK for SPDZ.
In Kenneth G. Paterson and Douglas Stebila, editors, SAC
2019, volume 11959 of LNCS, pages 274–302. Springer,
Heidelberg, August 2019.

[10] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Pe-
ter Scholl. Mac’n’cheese: Zero-knowledge proofs for boolean
and arithmetic circuits with nested disjunctions. In Tal
Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part IV, volume 12828 of Lecture Notes
in Computer Science, pages 92–122. Springer, 2021.

[11] Mihir Bellare and Shafi Goldwasser. New paradigms for
digital signatures and message authentication based on
non-interactive zero knowledge proofs. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 194–211.
Springer, Heidelberg, August 1990.

[12] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael
Riabzev. Scalable zero knowledge with no trusted setup.
In Alexandra Boldyreva and Daniele Micciancio, editors,

CRYPTO 2019, Part III, volume 11694 of LNCS, pages
701–732. Springer, Heidelberg, August 2019.

[13] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin.
In 2014 IEEE Symposium on Security and Privacy, pages
459–474. IEEE Computer Society Press, May 2014.

[14] Zvika Brakerski. Fully homomorphic encryption without
modulus switching from classical GapSVP. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 868–886. Springer, Heidelberg,
August 2012.

[15] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(Leveled) fully homomorphic encryption without bootstrap-
ping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–
325. ACM, January 2012.

[16] Jan Camenisch and Anna Lysyanskaya. An identity es-
crow scheme with appointed verifiers. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 388–407.
Springer, Heidelberg, August 2001.

[17] Jan Camenisch and Markus Stadler. Efficient group sig-
nature schemes for large groups (extended abstract). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of
LNCS, pages 410–424. Springer, Heidelberg, August 1997.

[18] Konstantinos Chalkias, Kevin Lewi, Payman Mohassel, and
Valeria Nikolaenko. Distributed auditing proofs of liabilities.
Cryptology ePrint Archive, Report 2020/468, 2020. https:
//eprint.iacr.org/2020/468.

[19] Melissa Chase, Chaya Ganesh, and Payman Mohassel. Ef-
ficient zero-knowledge proof of algebraic and non-algebraic
statements with applications to privacy preserving creden-
tials. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 499–
530. Springer, Heidelberg, August 2016.

[20] Hao Chen, Miran Kim, Ilya Razenshteyn, Dragos Rotaru,
Yongsoo Song, and Sameer Wagh. Maliciously secure matrix
multiplication with applications to private deep learning.
Cryptology ePrint Archive, Report 2020/451, 2020. https:
//ia.cr/2020/451.

[21] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness
hiding protocols. In Yvo Desmedt, editor, CRYPTO’94,
volume 839 of LNCS, pages 174–187. Springer, Heidelberg,
August 1994.

[22] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy
Clark, and Dan Boneh. Provisions: Privacy-preserving proofs
of solvency for bitcoin exchanges. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
720–731. ACM Press, October 2015.

[23] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge mpcith-
based arguments. In Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security,
Virtual Event, Republic of Korea, November 15 - 19, 2021,
pages 3022–3036. ACM, 2021.

[24] Giovanni Di Crescenzo, Tal Malkin, and Rafail Ostrovsky.
Single database private information retrieval implies oblivi-
ous transfer. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 122–138. Springer, Heidelberg,

https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://ia.cr/2020/451
https://ia.cr/2020/451

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 245

May 2000.
[25] Junfeng Fan and Frederik Vercauteren. Somewhat practical

fully homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

[26] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZK-
Boo: Faster zero-knowledge for Boolean circuits. In Thorsten
Holz and Stefan Savage, editors, USENIX Security 2016,
pages 1069–1083. USENIX Association, August 2016.

[27] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Efficient set membership proofs us-
ing mpc-in-the-head. Cryptology ePrint Archive, Report
2021/1656, 2021. https://ia.cr/2021/1656.

[28] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and
Gabriel Kaptchuk. Stacking sigmas: A framework to com-
pose σ-protocols for disjunctions. Cryptology ePrint Archive,
Report 2021/422, 2021. https://ia.cr/2021/422.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
prove all NP-statements in zero-knowledge, and a method-
ology of cryptographic protocol design. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
171–185. Springer, Heidelberg, August 1987.

[30] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The
knowledge complexity of interactive proof-systems (extended
abstract). In 17th ACM STOC, pages 291–304. ACM Press,
May 1985.

[31] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 305–326. Springer, Heidelberg, May 2016.

[32] Louis C. Guillou and Jean-Jacques Quisquater. A practical
zero-knowledge protocol fitted to security microprocessor
minimizing both trasmission and memory. In C. G. Günther,
editor, EUROCRYPT’88, volume 330 of LNCS, pages 123–
128. Springer, Heidelberg, May 1988.

[33] David Heath and Vladimir Kolesnikov. Stacked garbling for
disjunctive zero-knowledge proofs. In Anne Canteaut and
Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume
12107 of LNCS, pages 569–598. Springer, Heidelberg, May
2020.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit
Sahai. Zero-knowledge from secure multiparty computation.
In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 21–30. ACM Press, June 2007.

[35] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 955–966. ACM Press, November 2013.

[36] Yan Ji and Konstantinos Chalkias. Generalized proof of
liabilities. Cryptology ePrint Archive, Report 2021/1350,
2021. https://ia.cr/2021/1350.

[37] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Im-
proved non-interactive zero knowledge with applications to
post-quantum signatures. In David Lie, Mohammad Man-
nan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 525–537. ACM Press, October 2018.

[38] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT
needed: SINGLE database, computationally-private informa-
tion retrieval. In 38th FOCS, pages 364–373. IEEE Com-
puter Society Press, October 1997.

[39] Moni Naor and Benny Pinkas. Oblivious transfer and poly-
nomial evaluation. In 31st ACM STOC, pages 245–254.
ACM Press, May 1999.

[40] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable computa-
tion. In 2013 IEEE Symposium on Security and Privacy,
pages 238–252. IEEE Computer Society Press, May 2013.

[41] Claus-Peter Schnorr. Efficient identification and signatures
for smart cards. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, Heidelberg,
August 1990.

[42] Srinath Setty. Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, vol-
ume 12172 of LNCS, pages 704–737. Springer, Heidelberg,
August 2020.

[43] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang.
Wolverine: Fast, scalable, and communication-efficient zero-
knowledge proofs for boolean and arithmetic circuits. In
42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021, pages 1074–
1091. IEEE, 2021.

[44] Bingsheng Zhang, Helger Lipmaa, Cong Wang, and Kui
Ren. Practical fully simulatable oblivious transfer with sub-
linear communication. In Ahmad-Reza Sadeghi, editor, FC
2013, volume 7859 of LNCS, pages 78–95. Springer, Heidel-
berg, April 2013.

A Optimization for Preprocessing
Let m be the number of parties used for MPCitH, and
τ be the number of repetitions. For each input value yi,
the verifier generates the randomized shares of yi as

(ShareAt(yi, r1), . . . , ShareAt(yi, rτ))

Let εj be the position that will not be opened
in the jth run, then we have ShareAt(yi, rj) =
(rj,1, . . . , rj,εj−1, rj,εj +yi, rj,εj+1, . . . , rj,m) where rj,1 +
· · ·+ rj,m = 0. This can be rewritten as

ShareAt(yi, rj) = (rj,1, . . . , rj,m) + yi · sj

where sj is a vector of length m such that sj,k = 0 for
k 6= εj and sj,εj = 1. Abuse the notation a bit, we can
write ShareAt(yi, rj) = rj + yi · sj .

Now, (ShareAt(yi, r1), . . . , ShareAt(yi, rτ)) =
(r1, . . . , rτ) + yi · (s1, . . . , sτ) = r+ yi · s where (r+ yi · s)
is the ith row of the database.

To compute the OT, the parties need to compute∑N
i=1 Ci · (r+ yi+jN · s) = r · (

∑N
i=1 Ci) +

∑N
i=1 Ci ·

(yi+jN · s) = r · (
∑N
i=1 Ci) + s · (

∑N
i=1 Ci · yi+jN) for

j ∈ [1;n/N], which is the dominant computation cost of

https://eprint.iacr.org/2012/144
https://ia.cr/2021/1656
https://ia.cr/2021/422
https://ia.cr/2021/1350

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 246

the protocol and accounts for more than 95% the total
run-time.

To compute this, we will first compute
∑N
i=1 Ci

and
∑N
i=1 Ci · yi+jN , followed by r · (

∑N
i=1 Ci) and

s · (
∑N
i=1 Ci · yi+jN).

Optimize the preprocessing. The preprocessing
involves the computation of the number theoretic trans-
form (NTT) of Ci and yi. Note that due to the selected
parameters, the plaintext modulus used in our Ring-
LWE instance is only 12 bits. As yi has 256 bits and
does not fit into one coefficient, yi is represented as
a low degree polynomial (in Rt). Specifically, we rep-
resent yi as coefficients of a polynomial of degree 21,
of which coefficients have 12 bits. Without any opti-
mizations, we need to execute n NTT operations to
compute NTT (yi). However, we can precompute the
NTT for uj ∈ Rt such that uj [j] = 1 and uj [k] = 0
for j 6= k and 0 ≤ j < 22. Let yi = (yi,0, . . . , yi,22),
then NTT (yi) =

∑21
j=0 yi,jNTT (uj). We can further

speed up the precomputation by using a lookup table
that store NTT (k · uj) for k ∈ [0; 212). The table will
have at most 22 × 4096 = 90112 entries. After the pre-
computation step, each NTT (yi) can be computed by
21 · N additions instead of O(N logN) multiplications.
If n = 220, the preprocessing will cost 90112 ·N multipli-
cations and 21 · 220 ·N additions with the lookup table.
The naive approach will cost O(220 ·N logN) multipli-
cations (logN ≥ 11). If we use only 8 bits for each chunk
of yi, the lookup table can be precomputed with only
32 × 256 × N = 8192 · N multiplications. However, we
need to perform 31·N additions for each NTT operation
instead of 21 ·N .

Reducing the cost of 1-out-of-n committed
OT. With a naive approach, the prover cannot verify
the 1-out-of-n committed OT until the verifier decom-
mits the random seed used in the computation. How-
ever, with our optimization, both the prover and verifier
can execute the heavy part of the 1-out-of-n committed
OT at the same time. The dominant cost of the 1-out-
of-n committed OT is the cost to compute NTT (yi) and∑N
i=1 Ci · yi+jN for j ∈ [1;n/N]. It is clear that these

terms do not depend on the random seed that is used to
generate r and s. These computations takes more than
95% of the total runtime of 1-out-of-n committed OT.
Thus we save almost 2× in terms of computation cost
for the 1-out-of-n committed OT step.

B Elliptic Curve Point
Multiplication Circuit

We estimate the size of the Boolean circuit that com-
pute x ·G where x is a scalar and G is a publicly known
elliptic curve point. Let q be the bit length of the elliptic
curve and x =

∑q−1
i=0 xi ·2

i, then x ·G =
∑k
i=0 xi ·(2

i ·G).
Assume that the computation of Gi is cheap, the size
of the circuit is dominated by the cost to add all these
q − 1 points together, each costs 14q multiplications,
or 14q2(q − 1) AND gates. Finally, we need to convert
the projective coordinates to the regular coordinates by
computing one field inverse and 2 multiplications which
cost around q3 AND gates. In total, the size of the cir-
cuit is 15q3 − 14q2 AND gates. For q = 256, the circuit
will have around 250 million AND gates.

C Disjunctive Proofs using
Garbled Circuits

A Garbled Circuit (GC) scheme is defined by the fol-
lowing algorithms [19]:

– e, d,GC ← Gb(pp, λ, f, r) which on input of a
boolean circuit f outputs a garbled circuit GC and
encoding and decoding information e and d.

– X ← Enc(e, x) which on input of encoding informa-
tion e and an input x corresponding to f , outputs
a garbled input X.

– Y ← Eval(GC,X) on input of garbled circuit GC
and garbled input X outputs encoded output Y .

– y ← Dec(Y, d) which on input of an encoded output
Y and decoding information d outputs y.

– {d, ∅} ← Ver(GC, e, f) which on input of garbled cir-
cuit GC, encoding information e and boolean func-
tion f outputs either decoding information d or ∅.

Definition 3. A GC scheme (Gb,Enc,Eval,Dec,Ver)
must satisfy the following properties:
– Correctness: ∀f, x,GC, e, d: (a) For Y ←

Eval(GC,X), f(x) ← Dec(Y, d) and (b) for d ←
Ver(GC, e, f) with d 6= ∅ and Y ← Eval(GC,X),
Dec(Y, d) = f(x).

– Authenticity: ∀f, x and PPT algorithm A, there is
a negligible function ε(·) s.t. Pr[∃y 6= f(x), y =
Dec(d, d′) : (e, d,GC) ← Gb(pp, λ, f, r), d′ ←
A(GC,Enc(e, x))]| ≤ ε(λ).

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 247

ΠMPCitH−OR−BTC
f

Setup. f(x, y) is a Boolean function and g(x, z) is an algebraic function. ΠF is a semi-honest m-party protocol implementing
the functionality F which takes as input (Xj ,Yj) from each party Pj and outputs to all parties f(⊕mj=1Xj ,⊕mj=1Yj)

?= 1 with
correctness and (m− 1)-privacy..
Common inputs. τ total number of repetitions, n public key and value pairs (y1, v1), . . . , (yn, vn) and a minimum asset value
v0. yi ∈ {0, 1}κ and m−τ < 2−λ, λ is a security parameter.
Prover’s input. x, z, ` such that: f(x, y`) = 1, v` ≥ v0, and g(x, z) = 1. We denote as (x1, . . . x|x|) the bit representation of x
(i.e. x =

∑|x|
u=1 2u−1xu).

Verifier’s input. Cx = Com(x), Cz = Com(z), Cv = Com(v`).

1. Verifier V generates its random tape s and sends Cs ← Com(s) to the prover P. Throughout the rest of the protocol, all
randomness of the Verifier is generated by applying a PRG,G(s). (We will, imprecisely, refer to these as “random” values.).

2. V uses the random seed s to sample the following values uniformly at random:
(a) εk

$← {1, . . .m} for k ∈ {1, . . . τ}.
(b) rk

$← {0, 1}κ for k ∈ {1, . . . τ}.
(c) wu,k

$← {0, 1}κ for u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}

(d) a
$← {0, 1}λ, bu

$← {0, 1}|x|+λ for u ∈ {1, . . . , |x|}. Define b :=
∑|x|

u=1 bu

(e) c
$← {0, 1}λ, d $← {0, 1}|v|+λ

3. For u ∈ {1, . . . |x|}, k ∈ {1, . . . τ}, V computes {0(k)
u,1 . . .0

(k)
u,m} ← ShareAt(0, εk, wu,k) and {1(k)

u,1 . . .1
(k)
u,m} ←

ShareAt(1, εk, wu,k)
4. For i ∈ {1, . . . n}, k ∈ {1, . . . τ}, V computes vector {Y(k)

i,1 , . . .Y
(k)
i,m} ← ShareAt(yi, εk, rk)

5. Exchange labels for inputs.
For i ∈ {1, . . . n} denote 2D table Yi := {Y(1)

i , . . .Y(τ)
i , cvi + d}, and for u ∈ {1, . . . , |x|} denote 2D tables 0u :=

{{0(1)
u,1, . . .0

(1)
u,m}, . . . {0

(τ)
u,1, . . .0

(τ)
u,m}}, 1u := {{1(1)

u,1, . . .1
(1)
u,m}, . . . {1

(τ)
u,1, . . .1

(τ)
u,m}}

(a) V sends {(Y1, c · v1 + d), . . . , (Yn, c · vn + d)} to Π1:n
OT.

(b) P sends ` to Π1:n
OT.

(c) Π1:n
OT outputs (Y`, c · v` + d) to P.

(d) For every u ∈ {1, . . . , |x|}
i. V sends {(0u, bu), (1u, 2u−1a+ bu)} to Π1:2

OT.
ii. P sends xu to Π1:2

OT.
iii. If xu = 0 then Π1:2

OT outputs (0u, bu) to P, otherwise it outputs (1u, 2u−1a + bu). P denotes whichever output it
receives as {{X(1)

u,1, . . . X
(1)
u,m}, . . . {X

(τ)
u,1 , . . . X

(τ)
u,m},Mu}

(e) For k ∈ {1, . . . τ} denote the 2D table X(k) := {(X(k)
1,1 || . . . ||X

(k)
|x|,1), . . . , (X(k)

1,m|| . . . ||X
(k)
|x|,m)}

6. For every k ∈ {1, . . . τ}, P computes (viewk,1, . . . , viewk,m)← ΠMPCitH(ΠF , (X(k),Y(k)
`

)).
7. P computes MAC(x) =

∑|x|
u=1 Mu and CMAC(x) ← Com(MAC(x)). Similarly compute MAC(v`) = cv` + d and

CMAC(v`) ← Com(MAC(v`)).
8. For all j ∈ {1, . . .m}, k ∈ {1, . . . τ}, P sends CMAC(x), CMAC(v`), and Cviewj,k ← Com(viewj,k) to V.
9. V decommits s, which P uses to reconstruct {ε1, . . . , ετ}, {0u,1u}, and {Y1, . . .Yn}

10. P verifies the following properties hold for all i, i′ ∈ {1, . . . , n}, u ∈ {1, . . . , |x|},k ∈ {1, . . . , τ}, j ∈ {1, . . . ,m}\εk:
m⊕
j=1

Y
(k)
i,j = yi. Y

(k)
i,j = Y

(k)
i′,j

m⊕
j=1

0(k)
u,j = 0

m⊕
j=1

1(k)
u,j = 1 0(k)

u,j = 1(k)
u,j

11. P decommits each {viewj,k}k∈{1,...τ},j∈{1,...m}\εk
12. V checks that the decommitted views are consistent with honest executions of ΠF output 1.
13. P and V execute the following ZK proof protocols:

(a) π1 = {(x,MAC(x), z) : Cx = Com(x) ∧ CMAC(x) = Com(MAC(x)) ∧MAC(x) = ax + b ∧ Cx = Com(x) ∧ Cz =
Com(z) ∧ g(x, z) = 1}(Com(x),Com(z),Com(MAC(x)), a, b)

(b) π2 = {(v`,MAC(v`)) : Cv = Com(v`) ∧ CMAC(v`) = Com(MAC(v`)) ∧ MAC(v`) = cv` + d ∧ v` ≥
v0}(Cv , CMAC(v`), c, d, v0)

14. If any of π1,π2 do not verify, V rejects, else accepts.

Fig. 11. Disjunctive Composite protocol via MPCitH for Proving Assets in Bitcoin. We denote by colored text the additional elements
introduced compared to Fig.10

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 248

– Privacy: There exists a PPT simulator S s.t. the
distributions (Gb,Enc,Eval,Dec,Ver), X ← Enc(e, x)
and S(f, f(x)) are indistinguishable.

As discussed in Section 5, Chase et al. [19] aims to
provide ZK proof protocols for mixed statements in the
form of f(x, y) = 1 ∧ g(x, z) = 1. Towards this goal, it
constructs protocols in two different ways. The first (and
more efficient) assumes the existence of a bit-wise com-
mitment as part of a larger protocol, while the second
requires a separate sub-circuit to compute a one-time
MAC t = a ·x+ b which has O(|x||a|) AND gates, where
|x| and |a| is the bit length of x and a respectively. For
instance, if |x| = |a| = 512, then |x||a| = 262144, which
is about 10 times the size of a SHA256 circuit.

We observe that this one-time MAC value can be
computed during a COT step using a similar process
to how we encode the input (shown in ΠMAC,f GC),
where FCOT is equivalent to FOT plus an opening phase
to the receiver (refer to [19] for the ideal functional-
ity). In this protocol, the prover and verifier compute
MAC(x) = a · x + b as follows. The prover computes
the bit decomposition of x: x1, . . . , x|x|. The verifier
creates additive shares of b: b1, . . . , b|x|. For each bit
xu in x the two parties perform a 1-out-of-2 OT. If
xu = 0 the prover receives Mu ← bu, otherwise the
prover receives Mu ← (2u−1a+ bu). From M1, . . . ,M|x|

the prover is able to compute MAC(x) as
∑|x|
u=1 Mu =∑|x|

u=1 2u−1a · xu + bu = a · x+ b = MAC(x).
However, even with the above optimization, the

costs for a disjunctive proof remain linear in the size
of the circuit. In Figure 12 we show an optimized OR
Proof using Garbled Circuits with MAC.

gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head 249

ΠGC−OR−Mix
f

Setup. Group G where DDH assumption holds. Com(·) is a commitment scheme. Let G = (Gb,En,De,Eval,Ve) be a garbling
scheme.

Commom input. y1, · · · , yn where yi ∈ {0, 1}κ.

Prover’s input. x ∈ G, where x is the witness to statement y`.

Verifier’s input. Cx = Com(x).

Protocol.

1. The verifier constructs a garbled circuit for F .

(GC, e, d)← Gb(1κ, F (x, y) = y ⊕ f(x)

2. The prover sends (i, xi) for all i ∈ [n] to FCOT.
3. The verifier sends (i, (K0

i , bi), (K
1
i , 2

ia + bi)) for all i ∈ [n] to FCOT where a and bi has length of λ and |x| + λ bits
respectively.

4. FCOT outputs (Kxi
i , 2iaxi + bi) for all i ∈ [n] to the prover.

5. The prover sends ` to F1:n
COT.

6. The verifier sends (y1, · · · , yn) to F1:n
COT.

7. F1:n
COT outputs y` to the prover.

8. The verifier sends the garbled circuit GC to the prover.
9. The prover evaluates the garbled circuit

Z ← Eval(GC, {Kxi
i }i∈[n], y`)

10. The prover computes t =
n−1∑
i=0

(2iaxi + bi) = ax+ b.

11. The prover commits to the garbled output Z and t by sending Com(Z),Com(t) to the verifier and proves knowledge of
opening.

12. The verifier sends open to FCOT and F1:n
COT.

13. FCOT sends (K0
i ,K

1
i) and F1:n

COT sends (y1, · · · , yn) to the prover for all i ∈ [n].
14. The prover verifies that the circuit was garbled correctly by running Ve(GC, {K0

i ,K
1
i }i∈[n], F) and the garbled inputs for

x, y1, · · · , yn are correct. If the check fails, the prover terminates. Else, it opens Z to the verifier.
15. The verifier checks that De(d, Z) = 0. Otherwise, it rejects and terminates.
16. The prover and the verifier execute a ZK proof to prove the following. π = {(x, t) : Cx = Com(x) ∧ Ct = Com(t) ∧ t =

ax+ b}(Cx,Ct)
17. If π does not verify, the verifier terminates.

Fig. 12. OR Proof using Garbled Circuits with MAC. We denote by colored text the additional elements introduced compared to the
protocol of Chase et al.

Table 5. Comparison of ZK proof systems for Proof of Assets for a single proof. |x| is length of input, |F | circuit size, λ security pa-
rameter. (for BTC UTXO |x| = 512 (BTC public key 256bits + 256 bits of padding for MD), probably λ < x, we can consider 128 or
256 sec bits. Circuit F ′ might be 10 times larger than F)

No setup NI Prover Verifier Proof size Notes
Chase et al. [19]
(w/o MAC)

4 5 O(|x| pub +
|F | sym)

O(|x| pub +
(|F | sym)

O((|F |+ |x|)λ) Σ-protocol + GC

Chase et al. [19] (w/
MAC)

4 5 O(λ pub + (|F ′| +
|x|λ) sym)

O(λ pub + (|F ′| +
|x|λ) sym)

O((|F ′|+ |x|λ)λ) Σ-protocol + GC

Backes et al. [8] 4 4 O(|x| + λ pub +
|F |λ sym)

O(|x| + λ pub +
|F |λ sym)

O((|F |λ+ |x|)λ) Ped. Comm. + ZK-
Boo

Figure 12 with value 4 5 O(λ pub +
(|F | sym)

O(λ pub +
(|F |) sym)

O((|F |+ |x|)λ) Σ-protocol + GC

	gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation.
	2.2 Basic Cryptographic Building Blocks
	2.3 Zero-knowledge Proofs
	2.4 Oblivious Transfer
	2.5 MPC in the Head

	3 Oblivious Transfer from Private Information Retrieval
	4 Disjunctive Proofs from 1:N OT
	4.1 MPCitH Disjunctive Proof

	5 Disjunctive Proofs for Mixed Statements
	5.1 Proving the Value of Assets

	6 Implementation
	6.1 Evaluation

	7 Conclusion
	A Optimization for Preprocessing
	B Elliptic Curve Point Multiplication Circuit
	C Disjunctive Proofs using Garbled Circuits

