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LLAMA: A Low Latency Math Library for
Secure Inference
Abstract: Secure machine learning (ML) inference can
provide meaningful privacy guarantees to both the client
(holding sensitive input) and the server (holding sensi-
tive weights of the ML model) while realizing inference-
as-a-service. Although many specialized protocols ex-
ist for this task, including those in the preprocessing
model (where a majority of the overheads are moved to
an input independent offline phase), they all still suffer
from large online complexity. Specifically, the protocol
phase that executes once the parties know their inputs,
has high communication, round complexity, and latency.
Function Secret Sharing (FSS) based techniques offer an
attractive solution to this in the trusted dealer model
(where a dealer provides input independent correlated
randomness to both parties), and 2PC protocols ob-
tained based on these techniques have a very lightweight
online phase.
Unfortunately, current FSS-based 2PC works (AriaNN,
PoPETS 2022; Boyle et al. Eurocrypt 2021; Boyle et
al. TCC 2019) fall short of providing a complete so-
lution to secure inference. First, they lack support for
math functions (e.g., sigmoid, and reciprocal square
root) and hence, are insufficient for a large class of in-
ference algorithms (e.g. recurrent neural networks). Sec-
ond, they restrict all values in the computation to be of
the same bitwidth and this prevents them from ben-
efitting from efficient float-to-fixed converters such as
Tensorflow Lite that crucially use low bitwidth repre-
sentations and mixed bitwidth arithmetic.
In this work, we present LLAMA – an end-to-end, FSS
based, secure inference library supporting precise low
bitwidth computations (required by converters) as well
as provably precise math functions; thus, overcoming
all the drawbacks listed above. We perform an exten-
sive evaluation of LLAMA and show that when com-
pared with non-FSS based libraries supporting mixed
bitwidth arithmetic and math functions (SIRNN, IEEE
S&P 2021), it has at least an order of magnitude lower
communication, rounds, and runtimes. We integrate
LLAMA with the EzPC framework (IEEE EuroS&P
2019) and demonstrate its robustness by evaluating it
on large benchmarks (such as ResNet-50 on the Ima-
geNet dataset) as well as on benchmarks considered in
AriaNN – here too LLAMA outperforms prior work.
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1 Introduction
One of the most important security problems in the area
of machine learning is that of secure inference, wherein,
a model owner S, holding a public model M and its as-
sociated private weights w, offers inference-as-a-service
to a client C, with private input data point x, with the
security guarantee that S learns nothing about x, while
C only learns M(w, x), i.e. the output of the model on
the input data, and nothing else. Being a special case of
the generic problem of secure multi-party computation
(MPC or 2PC in the 2-party case) [15, 41], this prob-
lem has received widespread attention – both within the
cryptography community [19, 20, 28, 29, 31] as well as in
several application domains such as healthcare [21, 36].

On the technical side, perhaps the biggest bottle-
neck towards the widespread adoption of cryptograph-
ically secure inference protocols, is their large commu-
nication and interaction cost. As an example, even if
one were to execute secure inference on a simple 7-
layer convolutional neural network (CNN) [27] on the
CIFAR-10 dataset using a state-of-the-art system [31],
one inference would cost approximately 340 MB of com-
munication, 345 rounds of interaction, and would take
about 10 seconds to execute on commodity hardware
with good bandwidth. In light of this, works such as
DELPHI [28] have crucially focused on reducing the on-
line cost of such secure protocols – that is, where a bulk
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of the overheads can be moved to an input indepen-
dent pre-processing phase. However, even here, the sit-
uation is far from satisfactory and the above benchmark
would still require 196 MB of online communication
and 2.7 seconds of online execution time. Further, in-
ference algorithms that contain mathematical functions
such as sigmoid and tanh are more expensive to com-
pute securely; e.g. running a recurrent neural network
(RNN) [26] on the standard Google-30 dataset [40] to
identify commands, directions, and digits from speech
costs 415 MB, ≈ 60,000 rounds, and ≈ 37 seconds [30].

1.1 Function Secret Sharing Based 2PC

A recently emerging trend to build secure computation
protocols with low online cost is through the technique
of function secret sharing (FSS) [5, 7]. In this paradigm,
a trusted dealer provides input independent correlated
randomness to the two parties executing the secure com-
putation protocol. Here, round and communication op-
timal 2PC protocols are known for many functions such
as addition, multiplication, comparison, and so on; thus,
leading to 2PC protocols with low online cost for vari-
ous algorithms [3, 7, 34]. This paradigm, which leads to
dramatic improvements in online cost, is practically well
motivated too [2, 4, 10, 21, 22] – typically the vendor
providing or building the 2PC solution for the client and
server in our above example is trusted to provide correct
2PC code and hence providing correlated randomness is
not an additional burden.

While FSS-based 2PC protocols for secure com-
putation [7], fixed-point arithmetic [3], and secure in-
ference [34] are known, these works suffer from the
following drawbacks.

Lack of Math Functions Support. First, they lack
support for math functions (e.g. sigmoid, tanh, recip-
rocal square root) and thus are incapable of handling
benchmarks such as the RNN described above1. Recent
work [30] provides a secure computation library for pre-
cisely computing various math functions by designing
approximate functionalities that simultaneously have
low error and are also efficient to compute securely
in 2PC. However, unfortunately, the protocols used to
compute these functionalities require high online com-

1 Recent work of [37], which focuses on application of FSS
to recommendation systems, considered only reciprocal square
root. We provide a comparison with this work in Section 1.3.

munication and rounds (due to the highly sequential
nature of the functionalities themselves) and hence, as
we note later, the online cost of computing them is still
prohibitive. Furthermore, given this, even the function-
alities themselves are not the optimal design choice to
be computed securely using FSS techniques.

Lack of Support for Mixed Bitwidth Arithmetic.
Second, most existing MPC frameworks support only
uniform bitwidth arithmetic – i.e., a single bitwidth and
scale are used uniformly for all fixed-point values and
all secure computation must execute within these lim-
its. On the other hand, state-of-the-art converters such
as Tensorflow Lite [16] and Shiftry [24], that quantize
floating point models to corresponding fixed point ones,
for efficiency, use low bitwidth representations (e.g. 8 or
16). To obtain precise outputs of operators such as sim-
ple matrix multiplication with low bitwidth inputs and
outputs, these libraries rely on using higher bitwidths
to compute intermediate results such as element-wise
multiplications and accummulations in a dot product
to avoid overflows. Later, these intermediate results
are quantized to the right output format. However,
without the support for such precise computation on
low bitwidths (which implicitly require mixed bitwidth
arithmetic), systems such as [9] were forced to per-
form secure computation over large bitwidths, resulting
in high performance overhead. The work of [30] was
the first to provide 2PC protocols for such precise low
bitwidth arithmetic, but these protocols have high on-
line interaction and communication.

Erroneous ReLU and Truncations. Finally, the
only prior FSS-based secure inference library Ari-
aNN [34], uses protocols for ReLU 2 and truncations of
fixed-point values (required to maintain scale) that are
only probabilistically correct. This has two drawbacks
– first, since this error probability is inversely propor-
tional to the bitwidth used, the protocols are forced to
use larger bitwidths to ensure that this error probabil-
ity does not affect the accuracy of the resulting infer-
ence algorithm; second, as the number of instances of
ReLU/truncation in the algorithm increases, the prob-
ability of the overall computation being incorrect in-
creases and hence, as noted in multiple works [9, 19, 25],
on large benchmarks, such probabilistic computations
would almost certainly provide incorrect outputs.

2 The ReLU activation is defined as ReLU(x) = max(x, 0).
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1.2 Our Contributions

In this work, we address the above drawbacks and
present LLAMA – an end-to-end semi-honest secure
2PC inference system (in the trusted dealer model)
that is based on FSS techniques. LLAMA has signifi-
cantly lower online complexity compared to previous
works on 2-party secure inference [28, 30, 31] and is
much more expressive than AriaNN [34], the only prior
secure inference system based on FSS. We discuss our
technical contributions and features of LLAMA below.

Precise Low Bitwidth Computation. First, LLAMA
supports precise secure computation over low bitwidth
values. As discussed, this requires computing intermedi-
ary results over higher bitwidths and then appropriately
reducing these results to lower bitwidths. Supporting
this requires providing FSS-based protocols for two cru-
cial functionalities – Zero/Signed-Extension (to increase
bitwidth) as well as Truncate-Reduce (to decrease both
bitwidth and scale). We design a single-round FSS pro-
tocol, also known as an FSS gate, for these operations
that act as building blocks in our other protocols (Sec-
tion 3). Next, we build on these and design protocols
for element-wise multiplications and matrix multiplica-
tions (and convolutions) that implement the arithmetic
logic used in fixed-point implementations of convert-
ers [16, 24] (Section 4).

Low Bitwidth Splines and Math Functions. Sec-
ond, we provide “FSS-friendly” low bitwidth approxi-
mations to math functions (such as sigmoid, tanh and
reciprocal square root) that are provably precise. We
use ULPs3 as the measure of preciseness of math imple-
mentations that is also used by standard math libraries
and ensure that our implementations have at most 4
ULPs error (similar to math libraries and 2PC work
SIRNN [30]). As already mentioned, approximate func-
tionalities provided in SIRNN are highly sequential and
would lead to large number of rounds in the online
phase even when implemented with FSS-based tech-
niques. Hence, we deviate significantly from SIRNN in
our design choice and instead use low bitwidth piecewise
polynomials or splines to approximate our math func-

3 Informally, ULP (unit of least precision) is the number of
representable values between our result and output over reals.
It is widely accepted as the standard for measuring accuracy in
numeric calculations [14]. See Section 5 for more details.

tions4. However, standard tools for finding splines result
in floating-point splines. We convert these to fixed-point
splines keeping FSS costs in mind. Next, once we have
such a spline, as discussed in Section 5, we need to eval-
uate it efficiently using FSS techniques. Here, we build
upon the work of [3] that provided an FSS protocol
for uniform bitwidth spline evaluation and extend it
to protocols for low bitwidth splines. Further, LLAMA
uses two novel optimizations over [3] that significantly
reduce keysize as well as PRG invocations during the
online phase of that protocol. As an example, for the
spline approximating sigmoid, our techniques reduce
keysize by 4× and PRG invocations by 40×.

ReLU, Truncation, Pooling. Third, unlike [34],
LLAMA uses correct protocols for comparison and
ReLU from [3]. We build on these to provide cor-
rect protocols for average pool, maxpool, and argmax
(Appendix C). Next, unlike [34], in LLAMA all types
of truncations (bitwidth preserving or bitwidth reduc-
ing) and comparisons are faithful, resulting in correct
computation. With this, our FSS implementations are
bitwise equivalent to the corresponding cleartext fixed-
point implementations. This enables us to execute large
benchmarks with no fear of incorrect outputs (even
when using very small bitwidths in some cases) .

E2E Inference System. Fourth, we integrate LLAMA
as a cryptographic backend to the EzPC framework [8].
Together, all of the above, enable us to execute various
benchmarks securely – large CNNs (such as ResNet-50
on ImageNet dataset) using the CrypTFlow toolchain
[25] as well as RNNs (e.g. [26] on the Google-30 dataset)
using the SIRNN toolchain [30]. For almost all our
benchmarks, we obtain at least an order of magni-
tude reduction in online communication, rounds and
runtimes (Section 6), thus obtaining, a low latency
framework for secure inference.

Let us revisit the two examples presented earlier
in the introduction. Running LLAMA on the RNN [26]
over the Google-30 dataset costs only roughly 8.6 MB of
online communication, 2600 online rounds, and 1.9 sec-
onds, resulting in roughly 48×, 22×, and 19× improve-
ment in communication, rounds and performance over
SIRNN [30]. Similarly, executing the CNN model [27]

4 We note that although prior works such as SecureML [29] also
used a spline to approximate sigmoid, the spline used had only
3 pieces and leads to very high ULP error and hence, a high
degradation in classification accuracy as shown in [30].
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on the CIFAR-10 dataset costs 8.25 MB of online com-
munication, and 0.5 seconds resulting in approximately
24× and 5× improvements in online communication and
times over DELPHI [28]. We now proceed to introduce
all background technical information in the next section.

1.3 Other Related Works

The work on FSS-based 2PC protocols for fixed-point
arithmetic by Boyle et al. [3] provides FSS gates for var-
ious building blocks such as ReLU, arithmetic/logical
right shift, and splines. However, [3] lacks support
for FSS-gates of signed-extension, truncate-reduce and
hence, does not support mixed-bitwidth operations and
precise math functions over small bitwidths.

A recent work by Vadapalli et al. [37] also use spline
to compute reciprocal square root and realize it using
DPF (Distributed Point Function) [6]. Our work and
[37] present a trade-off between online computation and
key size. The online compute in LLAMA grows propor-
tional to the number of intervals of the spline. On the
other hand, the online compute of [37] grows exponen-
tially with the input bitwidth. (For reciprocal square
root with 16-bit inputs, in the online phase, LLAMA
makes 1448 AES evaluations, and [37] makes 131072
AES evaluations.) However, the key size in LLAMA is
higher than that in [37]. (For reciprocal square root
with 16-bit inputs, key size in LLAMA is nearly 5KB,
compared to around 0.3KB in [37].) Since the primary
benefit of FSS based techniques is to reduce online com-
plexity, LLAMA would perform better than [37].

2 Preliminaries
Notation. Let λ denote the computational security pa-
rameter. We use uppercase L,M,N to denote the values
2`, 2m and 2n respectively. 1{b} denotes the indicator
function that is 1 when b is true and 0 otherwise. We
use the natural one to one map between {0, 1}` and ZL.

We consider computations over finite bit unsigned
and signed integers, denoted by UN and SN , respec-
tively, for a given bitwidth of n-bits. We note that
UN = {0, . . . , N − 1} is isomorphic to ZN . Signed in-
tegers SN range from −N/2 till N/2− 1 and can be en-
coded into ZN or UN using 2’s complement representa-
tion. In this encoding, the MSB of the bit-representation
of x ∈ SN is 0 if x > 0 and 1 otherwise. We use the
functions uintn : UN → Z and sintn : SN → Z to

represent the conversion of a number to its unsigned
and signed number in Z respectively. In 2’s comple-
ment notation, sintn(x) = uintn(x)−MSB(x) ∗N where
MSB(x) = 1{x > 2n−1}. We drop the subscript when-
ever the bitwidth can be inferred from the context. We
also use the symbol ∗` : Z × Z → ZL to denote the bi-
nary operation x ∗` y = x · y mod L where x, y ∈ Z. For
x ∈ SN , we use the notation of x[i] to represent the i-th
bit from the LSB in the 2’s complement representation
of x such that LSB is x[0] and MSB is x[n− 1]. We also
use x[i,j) ∈ Z2j−i (where j > i) to denote the number
formed by the bitstring x[j − 1], x[j − 2] . . . x[i].
Fixed-point representation. Real numbers are encoded
into ZN using fixed-point notation. The fixed-point
numbers are parameterized by two values, a bitwidth
n and a scale s. The first n − s bits and last s bits
correspond to the integer part and the fractional part
respectively. We have y = fixn,s(x) = bx · 2sc mod N .
To convert a fixed-point integer y to its real counter-
part x, we have x = urtn,s(y) = uint(y)/2s if y ∈ UN
and x = srtn,s(y) = sint(y)/2s if y ∈ SN .

2.1 Function Secret Sharing (FSS)

An FSS scheme [5, 6] is a pair of algorithms, namely
Gen and Eval. Gen splits a secret function f : Gin →
Gout into a pair of functions f0 and f1. For the party
identifier σ ∈ {0, 1}, Eval evaluates the function fσ on a
given input x ∈ Gin. While correctness of an FSS scheme
requires that f0(x) + f1(x) = f(x) for all x ∈ Gin, the
security requires that each fσ hides f .

Definition 1 (FSS: Syntax [5, 6]). A (2-party) func-
tion secret sharing scheme is a pair of algorithms
(Gen,Eval) such that:
– Gen(1λ, f̂) is a PPT key generation algorithm that

given 1λ and f̂ ∈ {0, 1}∗ (description of a function
f) outputs a pair of keys (k0, k1). We assume that f̂
explicitly contains descriptions of input and output
groups Gin,Gout.

– Eval(σ, kσ, x) is a polynomial-time evaluation algo-
rithm that given σ ∈ {0, 1} (party index), kσ (key
defining fσ : Gin → Gout) and x ∈ Gin (input for fσ)
outputs yσ ∈ Gout (the value of fσ(x)).

Definition 2 (FSS: Correctness and Security [5, 6]).
Let F = {f} be a function family and Leak be a func-
tion specifying the allowable leakage about f̂ . When Leak
is omitted, it is understood to output only Gin and Gout.
We say that (Gen,Eval) as in Definition 1 is an FSS
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scheme for F (with respect to leakage Leak) if it satisfies
the following requirements.
– Correctness: For all f̂ ∈ PF describing f : Gin →

Gout, and every x ∈ Gin, if (k0, k1) ← Gen(1λ, f̂)
then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Security: For each σ ∈ {0, 1} there is a PPT al-
gorithm Simσ (simulator), such that for every se-
quence (f̂λ)λ∈N of polynomial-size function descrip-
tions from F and polynomial-size input sequence xλ
for fλ, the outputs of the following experiments Real
and Ideal are computationally indistinguishable:
– Realλ: (k0, k1)← Gen(1λ, f̂λ); Output kσ.
– Idealλ: Output Simσ(1λ, Leak(f̂λ)).

2.2 2PC with Preprocessing via FSS

Threat Model.We consider 2PC with a trusted dealer
secure against a static PPT adversary that corrupts one
of the parties. That is, the adversary is computationally
bounded, corrupts one of the parties at the beginning of
the protocol, and follows the protocol specification. The
dealer gives out the input independent correlated ran-
domness to both the parties in the offline phase. Given
the correlated randomness, the parties engage in a 2PC
protocol in the online phase. We consider standard sim-
ulation paradigm for semi-honest security.

Boyle et al. [7] construct 2PC protocols (in a trusted
dealer model, where the dealer provides correlated ran-
domness to the 2 parties5) via FSS. The high level idea
is as follows: For each wire wi in the circuit to be com-
puted, the dealer picks a mask value ri uniformly at
random. Denote the cleartext value at wi by xi. The
protocol maintains the invariant that the 2 parties hold
masked values to input wire of a gate, and run FSS
evaluation protocol to learn masked value of the output
wire with one round of simultaneous message exchange.
In more detail, to compute a gate gij with input and out-
put wires wi and wj , parties start with xi+ri and end up
with xj + rj after one round of interaction. Moreoever,
the size of the message exchanged is the same as the
bitwidth of xj . To enable this, the dealer gives out FSS
keys for the offset function g[rin,rout]

ij (x) = gij(x−ri)+rj in
the pre-processing phase. In the online phase, the par-
ties compute their share of the function on the masked
input xi + ri to obtain the secret shares of the value

5 [3] discuss how the pre-processing FSS keys can be generated
using standard 2PC, but in this work we focus on 2PC with a
trusted dealer setting.

xj + rj , which they reconstruct to obtain the masked
output value. For the input wires, dealer simply sends
the masks of the wire to its respective owner, who on
receiving the mask, adds it to the input and sends it to
the other party. For the output wire, the dealer sends
the mask to both of the parties. For more details on the
construction of 2PC protocols using FSS, we refer the
reader to [7]. Now we formally define FSS gates:

Definition 3 (FSS Gates [3]). Let G = {g : Gin →
Gout} be a computation gate (parameterized by input and
output groups Gin,Gout). The family of offset functions
Ĝ of G is given by

Ĝ :=
{
g[rin,rout] : Gin → Gout

∣∣∣∣ g : Gin → Gout ∈ G,
rin ∈ Gin, rout ∈ Gout

}
where g[rin,rout](x) := g(x− rin) + rout,

and g[rin,rout] contains an explicit description of rin, rout.
Finally, we use the term FSS gate for G to denote an
FSS scheme for the corresponding offset family Ĝ.

2.3 Prior FSS Schemes and FSS Gates

In this section, we discuss the FSS schemes and FSS
gates constucted in prior works [3, 6] that serve as build-
ing blocks for us. A distributed comparison function is
an FSS scheme for special intervals as defined below.

Definition 4 (DCF [3, 6]). A special interval function
f<α,β, also referred to as a comparison function, out-
puts β if x < α and 0 otherwise. We refer to an FSS
schemes for comparison functions as distributed com-
parison function (DCF). Analogously, function f6α,β out-
puts β if x 6 α and 0 otherwise. In all of these cases,
we allow the default leakage Leak(f̂) = (Gin,Gout).

For α ∈ {0, 1}n and β ∈ G, we use Gen<n (1λ, α, β,G)
and Eval<n (b, kb, x) to denote the keygen and evaluation
algorithms for DCF.

Theorem 1 (Concrete cost of DCF [3]). Let λ be the
security parameter, G be an Abelian group, and ` =
dlog |G|e. Given a PRG G : {0, 1}λ → {0, 1}4λ+2, there
exists a DCF for f<α,β : {0, 1}n → G with key size
n(λ+`+2)+λ+` bits. For `′ = d `

4λ+2e, the key genera-
tion algorithm Gen<n invokes G at most 2n(1 + 2`′) + 2`′

times and the evaluation algorithm Eval<n invokes G at
most n(1+`′)+`′ times. In the special case that |G| = 2c

for c 6 λ the number of PRG invocations in Gen<n is 2n
and the number of PRG invocations in Eval<n is n.
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Dual Distributed Comparison Function (DDCF) is a
generalization of DCF also introduced in [3]. It is
defined as a class of comparison functions fDDCF

α,β1,β2
:

{0, 1}n → G which returns β1 if the input value is less
than α and β2 otherwise. DDCF can be described in
terms of DCF by fDDCF

α,β1,β2
(x) = β2 + f<α,β1−β2

(x). We
use GenDDCF

n (1λ, α, β1, β2,G) and EvalDDCF
n (b, kb, x) to

denote FSS algorithms for DDCF.

We abuse notation and use DCFn,G and DDCFn,G to
denote cost (either keysize or evaluation cost) of FSS
schemes for DCF and DDCF respectively.

FSS Gates. [3, 7] construct FSS gates for uniform
bitwidth matrix multiplication, interval containment,
signed comparison and splines. We summarize their
costs in Table 1.

3 Bitwidth-Changing Gates
Mixed-bitwidth arithmetic (multiplication, spline eval-
uations and so on) fundamentally relies on two building
blocks – Extension, that increases the bitwidth of an in-
put from m to n; and Truncate-Reduce, that truncates
and reduces the bitwidth of the input from n to n − s.
In this section, we present FSS gates for Extension (in
Section 3.1) and Truncate-Reduce (in Section 3.2).

3.1 Extension

Zero and Signed-Extension functions are used to ex-
tend the bitwidths of unsigned and signed numbers,
respectively. More precisely, for an m-bit number x ∈
UM (resp. x ∈ SM ), Zero-Extension (resp. Signed-
Extension) to n-bits (n > m) is defined by y =
ZExt(x,m, n) ∈ UN (resp. y = SExt(x,m, n) ∈ SN ),
such that uintn(y) = uintm(x) (resp. sintn(y) = sintm(x))
holds. In the discussion that follows, we only consider
the case of Signed-Extension and note that the protocol
for Zero-Extension can be derived similarly.

The Signed-Extension gate GSExt is the family of
functions gSExt,m,n : SM → SN parameterized by input
group Gin = SM and output group Gout = SN , and de-
fined as gSExt,m,n(z) := sintm(z) mod N . For this gate
(and further gates described in the coming sections), we
use the following equation for sintm from [30]:

sintm(z) = z′ − 2m−1, for z′ = z + 2m−1 mod M (1)

We denote the corresponding offset gate class by
ĜSExt and the offset functions by:

ĝ
[rin,rout]
SExt,m,n(x) = gSExt,m,n(x− rin) + rout

= sintm((x− rin) mod M) + rout

= (x′ − rin) mod M − 2m−1 + rout

where x′ = x + 2m−1 mod M . Observe that for
a, b ∈ UM , the following equations holds for arithmetic
in Z:

(a− b) mod M = a− b+M · 1{a < b} (2)

So, on using the above equation, we get:

ĝ
[rin,rout]
SExt,m,n(x) = x′ − rin +M · 1{x′ < rin} − 2m−1 + rout

(3)

We present our construction of the FSS gate for
Signed-Extension in Figure 1 and provide the summary
of cost along with proof of security in Theorem 2. The
proofs for subsequent FSS protocols in our paper can
be derived in a similar manner, and we omit them.

Signed-Extension Gate (GenSExt
m,n,EvalSExt

m,n)
GenSExt

m,n(1λ, rin, rout):
1: Sample random r0, r1 ← SN s.t.
r0 + r1 = sintn(rout)− sintm(rin)− 2m−1 mod N .

2: (k′0, k′1)← Gen<m(1λ, rin, 1,SN ).
3: For b ∈ {0, 1}, let kb = k′b||rb.
4: return (k0, k1).

EvalSExt
m,n(b, kb, x):

1: Parse kb as k′b||rb.
2: Set x′ ← x+ 2m−1 mod M

3: Set t←M · Eval<m(b, k′b, x′).
4: return ub = b · x′ + rb + t.

Fig. 1. FSS Gate for Signed-Extension GSExt, b refers to party id.

Theorem 2. There is an FSS gate (GenSExt
m,n,EvalSExt

m,n)
for GSExt with keysize of n bits plus the keysize of
DCFm,SN

and 1 invocation of DCFm,SN
in EvalSExt

m,n.

Proof. For b ∈ {0, 1}, the simulator Simb for signed-
extension gate is given x and ub (the input and output
of the ideal functionality). It first invokes Sim′b, the sim-
ulator for DCF over m bits, which outputs a DCF key
k′b. It then computes x′ and t in the same manner as
Steps 2 and 3 in EvalSExt

m,n in Figure 1. Finally, it com-
putes rb = ub − b · x′ − t and outputs k′b||rb. One can
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Functionality Function Notation Description FSS Gate Key size per
party

Online evaluation
cost

Signed
multiplication [7] g×,n(x, y); x, y ∈ SN x · y ∈ SN (Gen×n , Eval×n ) 3n bits no FSS Eval calls

Matrix
multiplication [7]

g×,n,d1,d2,d3 (X, Y ); ma-
trices X, Y of dimension
d1 × d2 and d2 × d3, with
entries in SN

X · Y ∈ Sd1×d3
N

(Gen×
n,d1,d2,d3

,

Eval×
n,d1,d2,d3

)
(d1d2 + d2d3 +

d1d3)n bits no FSS Eval calls

Interval
containment [3]

gIC,n,p,q(x); x, p, q ∈ SN ,
p 6 q

1{p 6 x 6 q} ∈
SN

(GenIC
n,p,q , EvalICn,p,q) n bits +

DCFn,SN

2 calls to
DCFn,SN

Signed
comparison [3] gsCMP,n(x, y); x, y ∈ SN 1{x 6 y} ∈ SN (GensCMP

n , EvalsCMP
n ) n bits +

DDCFn−1,SN

1 call to
DDCFn−1,SN

Arithmetic Right
Shift (ARS) [3] g�A,s,n; x ∈ SN , s ∈ Z

(x�As) =
x−(x mod 2s)

2s ∈
SN

(Gen�A
n,s , Eval�A

n,s )
n bits +

DCFs,SN
+

DDCFn−1,SN×SN

1 call to DCFs,SN

and 1 call to
DDCFn−1,SN×SN

ReLU [3] gReLU,n(x); x ∈ SN
x · 1{x > 0} ∈
SN

(GenReLU
n , EvalReLU

n )
5n bits +
DCFn,S2

N

2 calls to
DCFn,S2

N

Splines [3]

gspline,n,m,d,P,F (x); x ∈
SN , F = {fi}i is a set of
m univariate polynomials of
degree d with coefficients in
SN , P = {p0, p1 . . . pm} is
the list of m+1 knots in SN

with p0 = pm = N −1 and
pi < pi+1 for 0 < i < m.

fi(x) ∈ SN

when pi−1 +1 6
x 6 pi

(Genspline
n,m,d,P

,

Evalspline
n,m,d,P

)

(2mn(d + 1) +
n) bits +

DCF
n,Sm(d+1)

N

m calls to
DCF

n,Sm(d+1)
N

Table 1. Description and costs for FSS gates from [3, 7].

easily see that the output of Simb is computationally
indistinguishable from kb, the output of GenSExt

m,n.

3.2 Truncate-Reduce

The functionality of Truncate-Reduce (TR) for an n-bit
number x ∈ SN by s-bits is defined as dropping the last
s bits and returning the result as a (n − s)-bit number
y ∈ S2n−s .

The GTR gate is the family of functions gTR,n,s :
SN → S2n−s parameterized by input group Gin =
SN and output group Gout = S2n−s , and defined as
gTR,n,s(x) := x[s,n). One straightforward way to realize
the FSS gate for Truncate-Reduce is to use an FSS gate
for arithmetic right shift operation that produces the
result in n bits (see Table 1) followed by a local modulo
operation to get rid of higher order s bits. In particular,
gTR,n,s(x) = x �A s mod 2n−s, where �A represents
the Arithmetic Right Shift (ARS) of x by s bits. This
construction would have a total key size of n-bits plus
the key size of DCFs,SN

and DDCFn−1,SN×SN
. In the

following text, we provide a new construction that only
uses a single DCF key, DCFs,2n−s .

We denote the corresponding offset gate class by
ĜTR and the offset functions by:

ĝ
[rin,rout]
TR,n,s (x) = (x− rin)[s,n) + rout mod 2n−s

= (x+ y)[s,n) + rout mod 2n−s

where y = 2n − rin. Using the relation from [30], we
can re-write Truncate-Reduce as follows.

ĝ
[rin,rout]
TR,n,s (x) = x[s,n) + y[s,n) + 1{x[0,s) + y[0,s) > 2s − 1}

+ rout mod 2n−s

Based on this, we present our construction of the
FSS gate for Truncate-Reduce in Figure 2 and summa-
rize its cost below:

Theorem 3. There is an FSS gate (GenTR
n,s,EvalTR

n,s) for
GTR with key size of (n − s) bits plus the key size of
DCFs,S2n−s and 1 invocation of DCFs,S2n−s in EvalTR

n,s.

4 Linear Layers
Machine learning models that use low bitwidth fixed-
point numbers to represent the model parameters, i.e.,
weights, as well as activations, inherently rely on very
precise computation of intermediate operations [16, 17,
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Truncate-Reduce Gate (GenTR
n,s,EvalTR

n,s)
GenTR

n,s(1λ, rin, rout):
1: Let y = (2n − rin) ∈ SN and α(s) = y[0,s).
2: (k(s)

0 , k
(s)
1 )← Gen<s

(
1λ, α(s), 1,S2n−s

)
.

3: Sample random r0, r1 ← S2n−s s.t.
r0 + r1 = rout + y[s,n) mod 2n−s.

4: return (k0, k1), where kb = k
(s)
b ||rb for b ∈ {0, 1}.

EvalTR
n,s(b, kb, x):

1: Parse kb as k
(s)
b ||rb.

2: For x(s) = 2s − x[0,s) − 1, tb ← Eval<s (b, k(s)
b , x(s)).

3: return b · x[n,s) + rb + tb.

Fig. 2. FSS Gate for Truncate-Reduce GTR, b is party id.

24]. For linear layers, this corresponds to values being
multiplied and accumulated over high bitwidths, before
being truncated to required output bitwidth. Below, we
discuss our FSS protocols for such linear layers, start-
ing with the basic operation of element-wise multipli-
cation followed by matrix multiplications and convolu-
tions. Since all our benchmarks use signed arithmetic,
we focus on signed multiplications below. Unsigned op-
erations are analogous and disusssed in Appendix A.

4.1 Signed Multiplication

We define the signed multiplication gate Gsmult as the
family of functions gsmult,m,n : SM × SN → SL with L =
M ·N parameterized by input group Gin = SM×SN and
output group Gout = SL, and given by gsmult,m,n(a, b) :=
sintm(a) ∗` sintn(b). Intuitively, this says that finite-bit
signed values a and b are lifted to Z and multiplied (note
that taking a modulo with L for ` = m+n does not loose
any bits).

For a′ = a + 2m−1 mod M and b′ = b + 2n−1

mod N , using Equation (1) we get:

gsmult,m,n(a, b) = (a′ − 2m−1) · (b′ − 2n−1) mod L

= a′ · b′ − a′ · 2n−1 − b′ · 2m−1 + 2m+n−2 mod L

We denote the corresponding offset gate class by Ĝsmult
and the offset functions by:

ĝ
[rin1 ,rin2 ,rout]
smult,m,n(x, y) = gsmult,m,n(x− rin1 , y − rin2 ) + rout

= ((x′ − rin1 ) mod M − 2m−1) · ((y′ − rin2 ) mod N

− 2n−1) + rout mod L

where x′ = x+2m−1 mod M and y′ = y+2n−1 mod N .
We used Equation (1) in the above expression. Now,

using Equation (2) we have:

ĝ
[rin1 ,rin2 ,rout]
smult,m,n(x, y) =

(
x′ − rin1 − 2m−1 + 2m · 1{x′ < rin1 }

)
·
(
y′ − rin2 − 2n−1 + 2n · 1{y′ < rin2 }

)
+ rout mod L

We observe that the above relation requires two
comparisons, one for x′ with rin1 and second for y′ with
rin2 . However, if we implement above relation naively
with FSS it will require a 2-round protocol. The first
round will compute shares of comparison outputs and
the second round will do the multiplications (with
shares of rin2 and rin1 , resp.). Below, we provide a 1-round
protocol for this gate using the observation that the val-
ues that need to be multiplied with 1{x′ < rin1 } (resp.,
1{y′ < rin2 }) are either known to the servers or the dealer.
With this observation, we can increase the DCF pay-
loads to 2 group elements each and compute the whole
expression in a single round. First, we re-arrange the
above expression to separate out the terms known to
the servers and the dealer.

ĝ
[rin1 ,rin2 ,rout]
smult,m,n(x, y) = 2m · 1{x′ < rin1 } · (y′ − 2n−1)+

2m · 1{x′ < rin1 } · (−rin2 ) + 2n · 1{y′ < rin2 } · (x′ − 2m−1)
+ 2n · 1{y′ < rin2 } · (−rin1 ) + (−rin1 ) · (y′ − 2n−1)
+ (−rin2 ) · (x′ − 2m−1) + rin1 · rin2 + rout

+ (x′ − 2m−1) · (y′ − 2n−1) mod L

Based on above re-arrangement, we present our con-
struction of the FSS gate for Signed Multiplication in
Figure 3 and summarize its cost below:

Theorem 4. There is an FSS gate (Gensmult
m,n ,Evalsmult

m,n )
for Gsmult which has a total keysize 3(m + n) bits plus
the key size of DCFm,S2

N
and DCFn,S2

M
and requires 1

invocation each of DCFm,S2
N

and DCFn,S2
M

in Evalsmult
m,n .

Remark. We use the above protocol for signed multipli-
cation to realize element-wise multiplications occurring
in Hadamard Product layers in our benchmarks.

4.2 Matrix Multiplication and Convolution

Consider signed matrix multiplication of A ∈ Sd1×d2
M

and B ∈ Sd2×d3
N . In the resulting matrix C = A ·B each

element is a result of d2 multiplications and d2−1 addi-
tions. Even if we store the result of multiplication in a
larger ring S2m+n , similar to signed multiplication, and
do d1 additions over these, the result can still overflow
due to additions. To avoid such an overflow, underlying



LLAMA: A Low Latency Math Library 282

Signed Multiplication Gate (Gensmult
m,n ,Evalsmult

m,n )
Gensmult

m,n (1λ, rin1 , rin2 , rout):
1: Sample random r10, r11 ← SL s.t.
r10 + r11 = sintm(−rin1 ) mod L.

2: Sample random r20, r21 ← SL s.t.
r20 + r21 = sintn(−rin2 ) mod L.

3: Sample random r0, r1 ← SL s.t. r0 + r1 =
sintm(rin1 ) · sintn(rin2 ) + rout mod L.

4: Let β1 = (1,−rin2 ) ∈ S2
N and β2 = (1,−rin1 ) ∈ S2

M .
5: (k10, k11)← Gen<m(1λ, rin1 , β1,S2

N ).
6: (k20, k21)← Gen<n (1λ, rin2 , β2,S2

M ).
7: For b ∈ {0, 1}, let kb = k1b||k2b||r1b||r2b||rb.
8: return (k0, k1).

Evalsmult
m,n (b, kb, x, y):

1: Parse kb = k1b||k2b||r1b||r2b||rb.
2: Set x′ = x+ 2m−1 mod M , y′ = y + 2n−1

mod N .
3: Set (t1, t2)← Eval<m(b, k1b, x

′).
4: Set (t3, t4)← Eval<n (b, k2b, y

′).
5: Set s1 = 2m · (t1 · (y′ − 2n−1) + t2)
6: Set s2 = 2n · (t3 · (x′ − 2m−1) + t4)
7: return
s1 + s2 + r1b · (y′ − 2n−1) + r2b · (x′ − 2m−1)
+ rb + b · (x′ − 2m−1) · (y′ − 2n−1) mod L.

Fig. 3. FSS Gate for Signed Multiplication Gsmult, b is party id.

libraries assume that computation is happening over a
sufficiently large domain. Note that ` = m+n+ dlog d2e
suffices to avoid any overflows during whole dot product
computation. Even though the compute looks similar to
what we discussed in last section, matrix multiplication
over mixed bitwidths cannot be computed in a single
round, due to the need for a ring larger than S2m+n . In
particular, the element-wise multiplications of x and y

performed during dot-product would also have a term
2m{x′ < rin1 } · 2n{y′ < rin2 } that does not become 0 when
taking a modulo over L > 2m+n. Hence, we need to
perform an explicit multiplication between 2 compari-
son outputs that are secret shared between the servers,
and this leads to an additional round of interaction.

Since we are going to take 2 rounds, we use the
approach of extend-then-multiply. For this, there are
two ways. The first one follows the approach of [30]
that extends the entries of one of the matrix by mini-
mal amount, i.e., dlog d2e then performs mixed bitwidth
multiplication as discussed in previous section. How-
ever, unlike [30] this approach is quite expensive for
FSS, as the payload of the DCF key for comparison

used for a value, say a in matrix A, grows with number
of elements in B it is multiplied with, i.e., d3. Simi-
larly, for elements in B, the payload of DCF key grows
with d1. So, say, we extend the entries of B from n to
n′ = n+dlog d2e bits and then carry out a protocol sim-
ilar to that of signed multiplication. Then, key would
have size, roughly, d2d3(n′ + DCFn,U2n′ ) for extensions
plus d1d2DCF

m,Ud3+1

2n′
for comparisons on entries in A

plus d2d3DCF
n′,Ud1+1

M

for comparisons on entries in sign-
extended B plus `(d1d2 + d2d3 + d3d1) per party.

Now we describe the second approach that is much
more efficient for FSS. In the first round, we sign extend
entries of both A and B to ` = m+n+dlog d2e-bits using
Signed-Extension gate from Section 3.1. In the second
round, we do uniform bitwidth matrix multiplication
as in [7] (see Table 1). While the round complexity of
this FSS protocol is still 2, the total keysize is only
d1d2(`+ DCFm,UL

) + d2d3(`+ DCFn,UL
) for sign exten-

sions plus `(d1d2+d2d3+d3d1) for matrix multiplication.

Convolutions. These can be directly reduced to ma-
trix multiplications, but a trivial translation expands
the input matrices and amounts to larger than neces-
sary key size. To reduce keysize, following the ideas from
[25], we sign extend and secret-share the input masks
(as we do in uniform bitwidth matrix multiplication)
for the input matrices instead of expanding and then
calling signed extension and mask sharing.

Fixed-Point Mixed-Bitwidth Matrix Multiplica-
tion. When operating over fixed-point arithmetic, the
input matrices apart from the specified bitwidths also
have respective scales, say, sm and sn. After following
the above procedure of extend-then-multiply, the result
is in bitwidth ` = m+n+dlog d2e and scale s = sm+sn.
The fixed-point model would also specify the required
bitwidth and scale for the output, say, nO and sO. Now
we adjust to this using appropriate truncation opera-
tions as follows: We can safely assume that sO 6 s and
nO 6 `. In the third round, we reduce the scale of out-
put by tr = s − sO and adjust the bitwidth to nO. We
have the following two cases:
– nO 6 (` − tr): In this case, parties first compute

a Truncate-Reduce gate to truncate and reduce by
tr bits to obtain the result in ` − tr bits and scale
sO. Next, parties locally compute a modulo 2nO to
obtain output with correct bitwidth and scale.

– nO > (` − tr): Here, parties compute an arithmetic
right shift by tr bits to obtain the result in ` bits
and scale sO. This is followed by a local modulo
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operation by 2nO to obtain the output with correct
bitwidth and scale.

Uniform Bitwidth Linear Layers. For our bench-
marks that have linear layers working over uniform
bitwidth and scale, say n and s, (signed) arithmetic,
we use the known matrix multiplication FSS gate from
[7] to obtain output in n-bits and scale 2s followed by
truncation by s using arithmetic right shift gate from
[3] to adjust the putput scale to s (see Table 1 to obtain
the costs).

5 Math Functions
In this section, we first discuss our novel FSS-based pro-
tocols for precise math functions for the same input and
output domains considered in [30]. To quantify how pre-
cise our math function implementations are, we use the
standard notion of ULP error (defined formally in [14])
that we discuss below. Then, we provide a high-level
overview for the design of our math functions, followed
by mixed-bitwidth splines that are crucial to obtain low-
bitwidth splines that are good approximations to math
functions. Finally, we provide details on FSS-friendly
math function design for popular activations – sigmoid
and tanh – used in neural networks.
ULP Error. It is impossible to represent an irrational
value exactly using finite number of bits. Therefore, it
is important to quantify the deviations between exact
real result and the output of a math library in finite-bit
representation. There are various notions of errors one
can use – absolute, relative and ULP error. Standard
math libraries use ULP error as a metric to determine
whether the real output of a math function is approx-
imately close to the finite-bit output that the library
produces [1, 38]. The lower the ULP value, the higher
is the precision and accuracy of the implementation of
that math function. At a high level, ULP error between
the exact real result r1 and library output r2 is equal to
the number of representable values between r1 and r2
[14]. We use the same notion to quantify the precision of
our math functions that use fixed-point as the finite-bit
representation.
Design of Math Functions. Although our techniques
are general, for a high level discussion, let us assume
that we want to approximate sigmoid within 4 ULPs of
error over fixed-point inputs and outputs with bitwidth
16 and scale 12. There are multiple design choices pos-
sible in coming up with such an implementation. For

instance, SIRNN [30] used the recipe of first obtaining
a good initial approximation followed by Goldsmidth’s
iterations where the number of iterations depend on
final output scale precision desired. However, this ap-
proach leads to large number of online rounds and
communication due to the iterative nature of the algo-
rithm. Our first design choice is to use piecewise poly-
nomials or splines to approximate math functions as
these allow for one-round low communication protocols
using FSS techniques [3, 7]. However, we notice that
for obvious reasons, uniform bitwidth splines cannot
be used to obtain low ULP errors. In particular, for
the above mentioned case, we cannot find a reasonable
spline that uses coefficients on 16-bits, does all arith-
metic over 16-bits, and provides at most 4 ULP error for
scales 12. Similar to [30], the polynomial computation
in splines needs to happen with intermediate results in
higher bitwidths and final result needs to be truncated
(to reduce bitwidth and adjust scale). Here, intuitvely,
while evaluating polynomials one keeps accumulating
bitwidth and only reduces the final result.

We discuss details of our mixed-bitwidth splines fol-
lowed by our protocols for precise math functions.

5.1 Mixed-Bitwidth Splines

We first discuss the cleartext functionality for the
mixed-bitwidth splines followed by their FSS implemen-
tation. For ease of exposition, we discuss the splines over
integers (no scale) and later show to handle fixed-point
arithmetic that has an associated scale with each value.

Suppose the spline under consideration is composed
of m polynomials f1, f2, . . . , fm (with degree d and coef-
ficients of bitwidth nc), and a set of m+ 1 knots P . Let
the input to the spline be x ∈ SNI , where the bitwidth
of x is nI and NI = 2nI . Let n be a sufficiently large
bitwidth that prevents overflow of values during poly-
nomial evaluation. Note that n = nc + d · nI suffices for
this purpose. The functionality gmixed

spline,(nI ,nc),m,d,P,{fi}i
:

SNI → SN for mixed-bitwidth splines is defined as fol-
lows. First, sign extend the input x from nI bits to n,
resulting in sint(x) mod N . Then, sign extend the co-
efficients of all polynomials from nc bits to n, and sign
extend all knots from nI bits to n. Finally output the
result of uniform bitwidth spline functionality on input
sint(x) using the new (sign extended) coefficients and
knots. Note that this evaluation procedure (mod N) is
the same as doing all computation over Z.

Now we describe a simple (yet non-optimized) 2-
round FSS-based protocol for this spline evaluation. For



LLAMA: A Low Latency Math Library 284

the first round, parties call the FSS gate for Signed-
Extension gSExt,nI ,n with input x ∈ SNI masked by rin,
and reconstruct x̄ = sint(x − rin) + rtemp mod N ∈ SN .
Here, rtemp ∈ SN is chosen randomly by the dealer dur-
ing key generation. For the second round, let f̄i be the
polynomial corresponding to fi with (publicly known)
coefficients sign extended to n-bits from nc bits. Also, let
P̄ be the sign extended (publicly known) knots to n-bits.
Next, parties call the FSS gate for uniform-bitwidth
splines gspline,n,m,d,P̄ ,{f̄i}i

from [3]. The input to this
gate is x̄ ∈ SN from the first round, masked by rtemp.
The output would be the spline evaluated on (x̄− rtemp)
masked by rout ∈ SN .

5.1.1 Optimizations

We propose two optimizations to the protocol described
above that significantly reduce the FSS key size and
offline and online computational cost.
Optimization 1. Here, we reduce the FSS key size
for the spline gate used in the second round. In the
above construction, the DCF key used in the spline
operates over inputs from SN (obtained after sign ex-
tending the original input) and uses the sign extended
knots during the key generation by dealer and evalu-
ation by servers. Our observation is as follows: Even
though the parties need to learn the shares of coeffi-
cients of the correct polynomial to be evaluated in the
larger domain, i.e., SN , the DCF input (and hence, its
depth, etc) and knots themselves can come from the
original domain SNI where NI = 2nI . In particular, we
replace DCF

n,Sm(d+1)
N

in the above unoptimized scheme
by DCF

nI ,Sm(d+1)
N

and evaluate it on the original input
x instead of x̄. This reduces the key size and the num-
ber of PRG calls made in key generation and evaluation
of the uniform bitwidth spline gate (used in the second
round of our protocol) by a factor of n/nI . For instance,
for the case of sigmoid, this reduction factor is 4×.
Optimization 2. This optimization significantly re-
duces the number of PRG calls made by the servers
during the online phase. Recall that the FSS gate for
gspline,nI ,m,d,P,{f̄i}i

used in the second round uses a DCF
with a payload of m(d + 1)n bits. This DCF key gets
evaluated m times and the output of each invocation is
m(d+ 1)n bits. Let the output of the ith invocation be
s
(i)
1 , . . . , s

(i)
m (using the same notation as Figure 5 in [3]).

We observe that only s(i)
i−1, s

(i)
i , i.e., 2(d + 1)n bits, are

used during evaluation and other values are discarded.

The Gen<n algorithm of the DCF construction of [3]
generates a key kb for each party b ∈ {0, 1} such that
kb consists of a random seed sb and n + 1 correction
words CWi ∈ G for i ∈ {1 . . . n + 1} (where G denotes
the output group). The seed generates a binary tree
with 2n leaves and each node is assosiated with a tuple
(sb, tb, Vb) with an invariant that the sum of Vb along
the evaluation path for an input x, form secret shares
of f<α,β(x). Hence, in Eval<n , it suffices to perform this
addition along the respective path to get the desired
output. In the case of splines, where G is a vector of
group elements, these additions are performed element-
wise. Since we need only 2 out of the m elements in the
output of Eval<n , we can tweak Eval<n to only do the re-
quired additions and PRG calls. This change reduces the
number of PRG calls in the spline evaluation by roughly
a factor of m/2. For the above example of sigmoid, this
factor is roughly 10×.
Overall Performance Improvement. The two op-
timizations discussed above are compatible with each
other and together lead to roughly a factor n/nI reduc-
tion in FSS key size, n/nI reduction in PRG calls by
the dealer in key generation and n/nI ·m/2 reduction
in PRG calls by the servers in the online phase. For the
case of sigmoid, this amounts to 4× reduction in key
size, 4× fewer PRG calls by the dealer and 40× fewer
PRG calls by the servers.

We now discuss how we can easily extend our pro-
tocol to work over fixed-point arithmetic as required.

5.1.2 Fixed-Point Arithmetic

In the context of fixed-point arithmetic, let the scale of
the input x be sI , and that of the spline coefficients
be sc. In symbolic notation, let fi(x) =

∑d
j=0 ai,j · x

j .
The first round of our FSS protocol remains the same.
Note that during polynomial evaluation in the spline, we
require all the summands to have the same scale. This
requires a small change in the dealer as follows: The
dealer sign extends the coefficients from nc to n bits
and also left shifts ai,j by (d − j) · sI bits. So, during
evaluation the scale of each summand of the polynomial
is the same, viz. s = sc + d · sI . Now, after running
the above described protocol, we have the output with
bitwidth n and scale s.

Next, suppose the desired output is required to have
bitwidth nO and scale sO. We do this adjustment in
the final round as follows: We can safely assume that
sO 6 s as to obtain precise output with scale sO, scales
of the coefficients will have to be appropriately large as
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well. Now, in the third round, we reduce the scale of
output by tr = s − sO and adjust the bitwidth to nO
by using appropriate truncation operations as discussed
in “fixed-point mixed-bitwidth matrix multiplication”
paragraph in Section 4.2. The complete 3-round FSS
protocol is described in Appendix E.

Below, we summarize the key size and evaluation
cost of the FSS protocol for mixed-bitwidth splines
over fixed-point g(mixed,fixed)

spline,(nI ,sI ,nO,sO,nc,sc),m,d,P,{fi}i
. (Let

G(mixed,fixed)-spline denote the corresponding function fam-
ily, parameterized accordingly). After optimization 2,
our protocol for spline evaluation uses the underlying
DCF key in a non-black box manner, hence we report
the cost of this step in number of PRG calls made. Also,
we report the cost when the third round of the protocol
uses a Truncate-Reduce gate. The other case is similar.

Theorem 5. Let params = (nI , sI , nO, sO, nc, sc), n =
nc+d·nI , tr = sc+d·sI−sO. There is a 3-round FSS pro-
tocol (Gen(mixed,fixed)-spline

params,m,d,P ,Eval(mixed,fixed)-spline
params,m,d,P ) for mixed-

bitwidth splines over fixed-point that has a total key size
of 2mn(d+1)+n bits, plus the key size of DCF

nI ,Sm(d+1)
N

,
plus the key sizes of FSS gates for gSExt,nI ,n and gTR,n,tr.
Let ` = d 2n(d+1)

4λ+2 e, where λ is the security parameter.The
online phase makes single evaluations of Sign-Extension
and Truncate-Reduce gates and at most m(nI(1+`)+`)
calls to PRG G (used in DCF) during spline evaluation
(in the second round).

5.2 Math Functions

In this section, we discuss our approach for computing
math functions using FSS techniques – in particular,
sigmoid and tanh. We use mixed-bitwidth splines over
fixed-point as approximations to math functions that
can be realized directly using the 3-round protocol de-
scribed in the previous section. Below, we discuss how
we obtain the required splines for each of the math
functions. We use sigmoid to illustrate this.

Sigmoid. Over the reals, sigmoid(x) = 1/(1 + e−x) and
tends to 0 for small values of x and tends to 1 for large
values of x. Our task is as follows: Given the bitwidths
and scales for the inputs and outputs, find a spline that
approximates the real result with at most 4ULPs of er-
ror (see beginning of this section for the definition of
ULP error). The first step is to clip the input domain to
an interesting interval as follows: we find the largest xL
and the smallest xR such that if we set sigmoid(x) = 0
(with appropriate fixed-point representation of outputs)

for all x 6 xL and set sigmoid(x) = 1 for all x > xR, the
resulting ULP error 6 4. In the second step, we start
with a choice of degree of the polynomials, d, and num-
ber of knots, m, and run an off-the-shelf tool Octave
[12] to find a best fit spline for sigmoid for the reduced
domain. Note that this step, returns a floating-point
spline, i.e., both polynomial coefficients as well as knots
are floating-point values.

In the third step, we quantize this spline, i.e., repre-
sent it over fixed-point as follows: we quantize the knots
to have the same bitwidth and scale as our inputs. We
linearly search over bitwidths and scales for the coeffi-
cients. For a choice of nc, sc, we exhaustively run the
mixed-bitwidth spline cleartext algorithm for all inputs
and check for their ULP error w.r.t. the output of a
high-precision math library [13]. We crucially note that
since sigmoid (and also tanh) are well-behaved functions
with bounded outputs, and the output scale sO 6 14,
this exhaustive testing is feasible. If the maximum ULP
error 6 4 we stop. Otherwise, we increase the value of
either nc or sc until nc = 32. If we do not find a good ap-
proximation, we increase the number of knots, m, until
100; even if this is unsuccessful, we increment the degree
d and go back to the second step of spline finding.

Following the above procedure, we successfully find
splines with d = 2,m 6 52 for the sigmoid function for
input and output scales such that 0 6 sI , sO 6 14 and
this suffices for our benchmarks as well as benchmarks
considered in prior works. As is expected from a 2D
graph of sigmoid, we were unable to find linear splines
for sigmoid (and also tanh) with even 100 knots.

Tanh. Over the reals, tanh(x) = (ex − e−x)/(ex + e−x)
and tends to −1 for small values of x and 1 for large
values. Our procedure for tanh is identical to sigmoid
except for a straightword change to clipping in terms of
outputs on inputs with large magnitude.

Reciprocal Square Root. Over reals, rsqrt(x) =
1/
√
x, x > 0. To avoid division-by-zero error when x is

very small, we assume that all inputs to rsqrt satisfy
x > ε, where ε is a small public constant. As in the
case of SIRNN [30], we set ε = 0.1. The procedure to
find splines is similar to sigmoid and tanh with one
difference. We observe that since the precision of input
x is sI , it suffices to compute the output with preci-
sion sI/2. Hence, the ULP error of spline obtained is
computed over bitwidth nO and scale dsI/2e, instead
of sO. Later, we adjust the scale of spline output to sO
by left-shifting the output by (sO − dsI/2e) bits.
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Function nI = nO sI sO d m

Sigmoid
(nc = 32, sc = 20)

16 8 14 2 34
16 9 14 2 34
16 11 14 2 34
16 13 14 2 29
16 12 12 2 19
37 12 12 2 20

Tanh
(nc = 32, sc = 18)

16 8 8 2 10
16 9 9 2 12
16 11 11 2 20
16 12 12 2 26
16 13 13 2 12
37 12 12 2 26

Reciprocal square root
(nc = 32, sc = 13)

16 10 9 2 10
16 12 11 2 10

Table 2. Spline parameters (degree d, number of intervals m,
coefficient bitwidth nc, coefficient scale sc) with at most 4 ULPs
error, for varying input bitwidth nI , output bitwidth nO = nI ,

input scale sI , output scale sO.

Sample Choice of Parameters. Table 2 lists the
choice of our spline parameters that give at most 4 ULP
error for various configurations of math functions re-
quired by our benchmarks in Section 6.2. In Appendix
B, we provide fixed-point values of the coefficients and
intervals of a mixed-bitwidth spline for tanh.

6 Evaluation
In this section, we perform a empirical evalutation of
LLAMA and compare its performance with relevant
prior works. In Section 6.1, we provide microbench-
marks that compare our protocols for mixed-bitwidth
arithmetic and math functions with SIRNN [30] and
MP-SPDZ [23], which are the prior state-of-the-art sys-
tems for precise implementations of these functions.
SIRNN is a 2PC system in the semi-honest setting
and MP-SPDZ is run in the semi-honest 2PC set-
ting with trusted dealer. (SIRNN is optimized for end-
to-end latency, while MP-SPDZ, like LLAMA, consid-
ers an offline-online split.) For these microbenchmarks,
LLAMA reduces the online communication by two orders
of magnitude and latency by 1.9− 10×.

Next, in Section 6.2, we use LLAMA to run end-to-
end secure inference on various neural network bench-
marks and compare its performance with appropriate
prior works that considered same benchmarks. We eval-
uate on the benchmarks considered in SIRNN that use
math functions and/or mixed-bitwidth computations.
We observe that online latency and communication us-
ing LLAMA is up to 57× and 12000× lower than SIRNN.

To demonstrate scalability of LLAMA, we evaluate it on
large convolutional networks such as ResNet-50 for Ima-
geNet and contrast its performance with recent systems
such as CrypTFlow [25] for 3PC and CrypTFlow2 [31]
for 2PC. We also compare with DELPHI [28], a 2PC
work that explicitly considers the question of online la-
tency of 2-party secure inference. Finally, we compare
LLAMA with AriaNN [34], an FSS-based secure infer-
ence framework (with erroneous ReLU and truncations
and no support for math functions or mixed-bitwidth
operations), on a benchmark considered in that work.
Implementation Details. LLAMA is implemented as
a C++ library with ~6700 lines of code. The code is
publically available at https://github.com/mpc-msri/
EzPC/tree/master/FSS. In addition to the FSS proto-
cols for mixed-bitwidth and math functions, we also im-
plement the relevant FSS schemes and gates proposed
in [3], as their work does not have an implementation.
All APIs for key generation and evaluation are param-
eterized by input and output bitwidths and scales, to
easily support both uniform and mixed-bitwidth opera-
tions. As suggested in [39, Section 6], we use the Matyas-
Meyer-Oseas one-way compression function (which uses
AES in fixed-key mode) to generate pseudorandomness.
This is done to avoid multiple expensive AES initializa-
tion operations in the DCF computation, which is the
main cost of FSS protocols.

We have integrated LLAMA as a cryptographic
backend to EzPC [8]. This allows us to compile fixed-
point inference code written in EzPC, into FSS-friendly
C++ code. Various frontends such as CrypTFlow [25]
and SeeDot [17] can be easily used to obtain fixed-point
EzPC code (with carefully chosen bitwidths and scales
that preserve accuracy) for arbitrary machine learning
network architectures.
Experimental Setup. We run our benchmarks on 3
virtual machines (one dealer and 2 servers), each with
a 4-core 3.7 GHz Xeon processor and 16 GBs of RAM.
In the LAN setting, all VMs are connected in a net-
work with average bandwidth of 340 MBps and RTT of
0.96 ms, while in the WAN setting the corresponding
numbers are 120 MBps and 72.3 ms respectively. The
mean and standard deviation of both offline and online
execution times are calculated over 100 runs.

6.1 Microbenchmarks

In this section we microbenchmark LLAMA on individ-
ual functions used in mixed-bitwidth arithmetic as well
as math functions. For precise math functions, we com-

https://github.com/mpc-msri/EzPC/tree/master/FSS
https://github.com/mpc-msri/EzPC/tree/master/FSS
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Layer Batch Size Technique
Communication

(in KB) Online
Rounds

LAN (in milliseconds)

Offline Online Offline Online

Signed-Extension
(m = 8, n = 21)

100 LLAMA 35 0.8 1 0.38 ± 0.14 0.37 ± 0.26
SIRNN - 30 7 - 4.5 ± 0.6

1000 LLAMA 352 7.8 1 0.96 ± 0.68 0.81 ± 0.22
SIRNN - 114 7 - 5.73 ± 1.54

Truncate-Reduce
(n = 21, s = 13)

100 LLAMA 47 0.2 1 0.47 ± 0.49 0.48 ± 0.43
SIRNN - 41 13 - 9.34 ± 6.34

1000 LLAMA 466 2 1 1.72 ± 1.91 0.89 ± 0.44
SIRNN - 211 13 - 13.65 ± 2.17

Sigmoid (nI =
nO = 16, sI =

9, sO = 14)

100
LLAMA 3297 3.5 3 12.47 ± 5.5 4.09 ± 1.47
SIRNN - 768 139 - 91.96 ± 8.50

MP-SPDZ 3696 134 145 ** 32.32 ± 8.12

1000
LLAMA 33044 35 3 128.45 ± 46.91 27.05 ± 4.37
SIRNN - 5007 139 - 102.46 ± 8.06

MP-SPDZ 5246 1308 145 ** 52.10 ± 8.90

Tanh (nI = nO =
16, sI = sO = 9)

100
LLAMA 1320 3.5 3 5.35 ± 3.88 2.81 ± 0.84
SIRNN - 604 131 - 83.7 ± 8.26

MP-SPDZ 3696 137 155 ** 35.74 ± 12.46

1000
LLAMA 13219 35 3 51.06 ± 19.99 10.16 ± 3.44
SIRNN - 3614 131 - 88.07 ± 8.96

MP-SPDZ 5246 1341 155 ** 57.60 ± 8.80

Reciprocal square
root (nI = nO =
16, sI = 12, sO =

11)

100
LLAMA 1138 3.5 3 4.80 ± 4.35 2.84 ± 1.10
SIRNN - 881 185 - 124.05 ± 10.95

MP-SPDZ 2457 44.4 87 ** 22.11 ± 5.00

1000
LLAMA 11375 35 3 41.20 ± 15.60 8.99 ± 1.79
SIRNN - 5488 185 - 126.03 ± 11.41

MP-SPDZ 2467 413 87 ** 28.92 ± 5.78
Table 3. Performance comparison for bitwidth changing and math functions. For Signed-Extension, m,n are input, output bitwidths.
For Truncate-Reduce, n is input bitwidth and s is shift amount. For Sigmoid, Tanh and Reciprocal square root, nI , nO, sI , sO denote

input/output bitwidths and scales. ** denotes that the value was not reported by the code.

pare with SIRNN [30] and MP-SPDZ [23]. Although
SIRNN is a standard 2PC system and LLAMA is a 2PC
system in the dealer model, SIRNN is the only work that
considers secure computation of mixed-bitwidth opera-
tions, and hence we compare with it for these blocks.
Microbenchmarks for bitwidth changing functions, i.e.,
signed-extension and truncate-reduce, and math func-
tions, i.e., sigmoid, tanh and reciprocal square root are
provided in Table 3, while those for mixed-bitwidth ma-
trix multiplication are presented in Table 4. For Ta-
ble 3, the choice of parameters for bitwidths and scales
are made using examples from our benchmarks such as
Google-30 [26] and Heads [30] (described in Section 6.2)
and we evaluate for batch sizes of 100 and 1000. For the
math functions, for these choice of bitwidths and scales,
Table 2 provides details on the spline chosen by LLAMA,
i.e., degree and number of knots, as well as coefficient
bitwidths and scales. From Table 3, LLAMA is up to 40×

better than MP-SPDZ in online communication, up to
51× better in terms of online rounds, and up to 12× bet-
ter in online runtime. As seen in Table 3, LLAMA com-
municates between 105− 251× less than SIRNN in the
online phase and has between 13− 61× fewer rounds of
online communication. In terms of performance, LLAMA
is between 3.7−43× faster than SIRNN in the LAN set-
ting. Finally, as expected, while the total communica-
tion of LLAMA (i.e. communication including the offline
key size as well) can be comparable to SIRNN in a few
cases (e.g. Truncate-Reduce), LLAMA does have a larger
total communication (by up to 4.4×) in other cases.

Table 4 summarizes our microbenchmarks for
mixed-bitwidth matrix multiplication (multiplying a
d1×d2 matrix with a d2×d3 matrix). The input/output
bitwidths for all experiments are 8, while the scale is 6;
however, due to d2 being different in each case, the in-
termediate bitwidth (16+ dlog d2e) in each computation
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d1 d2 d3 Technique
Communication

(in MB) Online
Rounds

LAN (in
milliseconds)

Offline Online Offline Online

10 200 1000 LLAMA 72.44 1.63 3 316.81 ± 82.11 106.08 ± 4.71
SIRNN - 97.51 31 - 239.96 ± 15.02

10 2000 100 LLAMA 76.60 1.68 3 333.78 ± 86.22 110.91 ± 5.25
SIRNN - 108.36 39 - 266.19 ± 15.37

200 200 200 LLAMA 37.08 0.99 3 158.94 ± 46.24 56.63 ± 3.97
SIRNN - 206.87 41 - 415.63 ± 25.86

Table 4. Comparison for mixed-bitwidth matrix multiplication for dimensions d1 × d2 and d2 × d3, using bitwidths of 8 and scale 6.

is different. As can be seen from the table, LLAMA com-
municates between 59 − 208× less than SIRNN in the
online phase and has 10 − 13× fewer rounds. LLAMA
also performs between 2.2−7.3× better in the LAN set-
ting. Further, in these microbenchmarks, LLAMA also
has 1.3− 5.4× lower total communication.

6.2 Benchmarks

In this section, we evaluate and compare the perfor-
mance of LLAMA on several machine learning inference
algorithms. We provide details on the benchmarks con-
sidered in Appendix D and summarize the findings in
Table 5. We split the discussion below into two kinds of
benchmarks. Our main focus is the networks with math
functions or networks that use low bitwidths for activa-
tions and weights for efficiency. We also consider simple
convolutional neural networks (CNNs) from prior works
to demonstrate our generality and scalability.

Neural Networks with Math Functions/Mixed-
Bitwidth Arithmetic. First, to illustrate the perfor-
mance of LLAMA on algorithms that use mixed-bitwidth
arithmetic and/or math functions (tanh, sigmoid, or
reciprocal square root), we run it on the following end-
to-end inference benchmarks: DeepSecure B4 [32], that
enables embedded sensors to classify various physical
activities, as well as on an RNN algorithm [26] that en-
ables keyword spotting on the Google-30 dataset [40].
We compare the performance of LLAMA with SIRNN
and observe that LLAMA has up to 4 orders of mag-
nitude lower online communication, up to 22× fewer
online rounds, and up to 57× faster runtime. We also
evaluate LLAMA on the sigmoid/tanh layers of the
MiniONN LSTM [27] (a language model for word pre-
dictions) and the Industrial-72 benchmarks [24, 30] (a
model that provides feedback for quality of shots in
a sports game), as well as the reciprocal square root
layers from the Heads model [35] (a model for counting

the number of people in an image). Here, we show that,
in comparison with SIRNN, the online communication
of LLAMA is at least 200× less, the number of rounds
is at least 43× better and the performance is at least
15× and 43× better in the LAN and WAN settings.

Other Neural Networks. While not the primary
focus of this work, for the sake of completeness, we
also compare LLAMA with prior systems on neural
networks not requiring mixed-bitwidth arithmetic or
math functions. We compare with DELPHI [28] – a
2PC system designed speifically with online cost in
mind – and show ≈ 24× better communication and
≈ 3 − 5× better runtime for online phase. To illustrate
that LLAMA can scale to large benchmarks, we run it on
the ResNet-50 CNN on the ImageNet dataset [18], and
compare with both CrypTFlow (a 3PC system) as well
as CrypTFlow2 (a 2PC system)6. Finally, we consider
AriaNN [34], which like LLAMA is an FSS based se-
cure inference system (in the trusted dealer model), but
does not support mixed-bitwidth arithmetic or math
functions. Here alone, since AriaNN code [33] does not
support execution on different VMs, we ran all parties
in both AriaNN and LLAMA on the same VM and ap-
propriately set the latency and bandwidth on the VM
using the tc command7. On the ResNet-18 benchmark
on Hymenoptera dataset, we show that LLAMA outper-
forms AriaNN by about 3× in online communication
and 1.7× in online runtime (despite AriaNN using prob-

6 In very recent work, Cheetah [19] show an improvement of ≈
12× in communication and 4-5× in runtime over CrypTFlow2.
We do not directly compare with this work, as it is orthogonal
to the focus of this work; however, even in comparison to Chee-
tah, we note that LLAMA has much lower communication and
is expected to outperform it.
7 The end-to-end code execution time in AriaNN took around
40 minutes. In Table 5, we report the offline and online times
(around 350 seconds and 13 seconds respectively) that is output
by their code. Due to longer execution times, the mean and
standard deviation of runtimes are calculated over 25 iterations.
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Network Technique
Communication

(in MB) Online
Rounds

LAN Time (in seconds) WAN Time (in seconds)

Offline Online Offline Online Offline Online

DeepSecure B4
LLAMA 183 0.15 21 0.78 ± 0.20 0.11 ± 0.01 3.15 ± 0.16 0.83 ± 0.05

SIRNN - 1844 379 - 6.45 ± 0.31 - 47.63 ± 1.67

Google-30
LLAMA 882 8.6 2687 5.31 ± 0.94 1.89 ± 0.12 8.02 ± 0.32 87.71 ± 3.65

SIRNN - 415 59899 - 37.18 ± 1.95 - 1997.8 ± 93.5
MiniONN LSTM
(only Sigmoid,

Tanh)

LLAMA 49.7 0.04 6 0.21 ± 0.07 0.02 ± 0.003 0.49 ± 0.23 0.23 ± 0.01

SIRNN - 9.7 403 - 0.34 ± 0.02 - 14.47 ± 0.90

Industrial-72 (only
Sigmoid, Tanh)

LLAMA 19.4 0.03 42 0.09 ± 0.03 0.04 ± 0.006 0.30 ± 0.04 1.41 ± 0.07

SIRNN - 7.9 1847 - 1.23 ± 0.08 - 61.36 ± 3.85

Heads (only
Reciprocal square

root)

LLAMA 30 0.09 9 0.11 ± 0.03 0.026 ±
0.003 0.50 ± 0.02 0.23 ± 0.01

SIRNN - 18 545 - 0.39 ± 0.02 - 19.17 ± 0.77

MiniONN CNN
LLAMA 1084 8.2 25 4.61 ± 1.12 0.52 ± 0.02 10.05 ± 2.77 1.77 ± 0.10

DELPHI 3258 196 ** 36.73 ± 0.70 2.73 ± 0.07 55.63 ± 2.33 5.29 ± 0.25

CrypTFlow2 - 340 345 - 10.24 ± 0.17 - 32.50 ± 2.50

ResNet-50
(ImageNet)

LLAMA 78848 745 280 427.94 ± 45.32 36.99 ± 0.46 631.91 ± 31.60 108.68 ± 7.17

CrypTFlow2 - 31502 4053 - 476.6 ± 2.51 - 1026.9 ± 70.2

CrypTFlow - 6549 >7400 - 58.55 ± 3.46 - 364.7 ± 10.77

ResNet-18
(Hymenoptera)

LLAMA 8459 57 66 36.28 ± 10.29 7.29 ± 0.36 84.51 ± 3.23 12.79 ± 0.28
LLAMA
(local

truncation)
5243 45 48 22.55 ± 6.00 6.81 ± 0.78 51.09 ± 1.29 9.28 ± 0.3

AriaNN 6702 148 ** 339.02 ± 18.51 12.27 ± 1.02 455.12 ± 18.76 55.62 ± 2.79
Table 5. Secure inference benchmarks using LLAMA and prior works. ** denotes that the value was not reported by the code.

abilistically correct, cheaper, local truncation compared
to the correct truncation in LLAMA). This improvement
can be attributed to ReLU being a 2-round protocol
in AriaNN compared to an FSS gate in LLAMA. For
fairness, we also provide numbers for LLAMA with the
same probabilistically correct local truncation.

7 Conclusion
This paper proposes LLAMA, an FSS-based 2PC secure
inference system in the semi-honest, trusted dealer set-
ting. The main design goal of LLAMA is to minimize
online complexity. LLAMA proposes novel FSS-based
constructions for signed-extension and truncate-reduce,
which facilitate mixed-bitwidth operations and precise
math functions based on low bitwidth splines. Due to
the emphasis on lower online complexity, the offline
phase in LLAMA can incur significant memory and band-

width requirement (primarily due to large DCF key-
size). It would be interesting to optimize memory usage
in the offline phase in LLAMA.
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A Unsigned Multiplication
Unsigned Multiplication of two values x ∈ UM , y ∈ UN
refers to the multiplication of the two values uintm(x)
and uintn(y) carried out in the group UL, where L =
M ·N , which is equivalent to uintm(x) ∗` uintn(y).

The unsigned multiplication gate Gumult is the family
of functions gumult,m,n : UM × UN → UL parameterized
by input group Gin = UM×UN and output group Gout =
UL, and given by gumult,m,n(x, y) := uintm(x)∗` uintn(y).

We denote the corresponding offset gate class by
Ĝumult and the offset functions by

ĝ
[rin1 ,rin2 ,rout]
umult,m,n(x, y) = gumult,m,n(x− rin1 , y − rin2 ) + rout

= ((x− rin1 ) mod M) · ((y − rin2 ) mod N)
+ rout mod L

Now, using Equation (2) we have:

ĝ
[rin1 ,rin2 ,rout]
umult,m,n(x, y) = (x− rin1 + 2m · 1{x < rin1 }) · (y − rin2

+ 2n · 1{y < rin2 }) + rout mod L

On further expanding we get:

ĝ
[rin1 ,rin2 ,rout]
umult,m,n(x, y) = 2n · 1{y < rin2 } · x

+ 2m · 1{x < rin1 } · y
+ 2n · 1{y < rin2 } · (−rin1 )
+ 2m · 1{x < rin1 } · (−rin2 )
+ (−rin1 ) · y + (−rin2 ) · x
+ rin1 · rin2 + rout + x · y mod L

We omit the last term (i.e. 2m{x < rin1 }·2n{y < rin2 })
as it gets cancelled out by the modulus. Based on above
rearragment, we present our construction of the FSS
gate for unsigned multiplication in Figure 4.

B Example of a Spline
In Table 6, we describe the mixed-bitwidth spline for
tanh for the following parameters: nI = nO = 16, sI =
sO = 8, nc = 32, sc = 18, d = 2,m = 10 (see Table 2,
Section 5.2). The coefficients a2, a1, a0 (corresponding
to decreasing powers of x) for each spline polynomial
are fixed-point numbers with bitwidth 32 and scale 18.
The endpoints of spline intervals are 16-bit fixed point
numbers with scale 8.

Unsigned Multiplication Gate
(Genumult

m,n ,Evalumult
m,n )

Genumult
m,n (1λ, rin1 , rin2 , rout):

1: Sample random r10, r11 ← UL s.t. r10 + r11 =
uintm(−rin1 ) mod L.

2: Sample random r20, r21 ← UL s.t. r20 + r21 =
uintn(−rin2 ) mod L.

3: Sample random r0, r1 ← UL s.t. r0 + r1 =
uintm(rin1 ) · uintn(rin2 ) + rout.

4: Let β1 = (1,−rin2 ) ∈ U2
N and β2 = (1,−rin1 ) ∈ U2

M .
5: (k10, k11)← Gen<m(1λ, rin1 , β1,U2

N ).
6: (k20, k21)← Gen<n (1λ, rin2 , β2,U2

M ).
7: For b ∈ {0, 1}, let kb = k1b||k2b||r1b||r2b||rb.
8: return (k0, k1).

Evalumult
m,n (b, kb, x, y):

1: Parse kb = k1b||k2b||r1b||r2b||rb.
2: Set (t1, t2)← Eval<m(b, k1b, x).
3: Set (t3, t4)← Eval<n (b, k2b, y).
4: return x · t3 · 2n + y · t1 · 2m + t4 · 2n + t2 · 2m

+ r1b · y + r2b · x+ rb + b · x · y mod L.

Fig. 4. FSS Gate for Unsigned Multiplication, b refers to party id.

C Simple Activations

C.1 Average Pool

The average pool functionality requires signed division
of a ring element by a public positive integer. Hence, we
start by defining the division functionality, show how
to realize it using FSS techniques, and then present our
protocol for average pool.

We follow the notation and definitions from [31]. Let
idiv : Z× Z → Z denote signed integer division, that is,

Spline Endpoints Spline coefficients (a2x2 + a1x + a0)
Left Right a2 a1 a0

0 198 -87883 286070 -1
199 398 -74280 148925 169708
399 598 -15013 33009 240687
599 798 -6420 9582 257304
799 32766 0 0 262144

32767 -800 0 0 -262144
-799 -601 6419 -435 -260874
-600 -401 15012 9582 -257305
-400 -201 74279 33009 -240688
-200 -1 87882 148925 -169709

Table 6. Spline intervals and coefficients for tanh with
nI = nO = 16, sI = sO = 8, nc = 32, sc = 18, d = 2, m = 10.
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idiv(a, d) = b where a = b · d + r, r ∈ Z, 0 6 r < d. Let
rdiv : SN × Z → SN denote (signed) division of a ring
element by a positive integer, defined as

rdiv(a, d) := idiv(sint(a), d) mod N

where 0 < d < N . Let 〈a〉0, 〈a〉1 ∈ SN denote additive
secret shares of a over SN , i.e., 〈a〉0 and 〈a〉1 are ran-
dom elements of SN subject only to the constraint that
(〈a〉0 + 〈a〉1) mod N = a. The following theorem [31]
allows expressing rdiv(a, d) in terms of 〈a〉0 and 〈a〉1.

Theorem 6 (Division of ring element [31]). Let shares
of a ∈ SN be 〈a〉0, 〈a〉1 ∈ SN , for some N = N1 ·d+N0 ∈
Z, where N1, N0, d ∈ Z and 0 6 N0 < d < N .

Let the unsigned representation of a, 〈a〉0, 〈a〉1 in SN
lifted to integers be au, a0, a1 ∈ {0, 1, . . . , N − 1}, respec-
tively, such that a0 = a1

0 ·d+a0
0 and a1 = a1

1 ·d+a0
1, where

a1
0, a

0
0, a

1
1, a

0
1 ∈ Z and 0 6 a0

0, a
0
1 < d. Let N ′ = dN/2e.

Let corr, A,B,C ∈ Z be defined as

corr =


−1 (au > N ′) ∧ (a0 < N ′) ∧ (a1 < N ′)
1 (au < N ′) ∧ (a0 > N ′) ∧ (a1 > N ′)
0 otherwise

A = a0
0 + a0

1 − (1{a0 > N ′}+ 1{a1 > N ′} − corr) ·N0,

B = idiv(a0
0 − 1{a0 > N ′} ·N0, d)

+ idiv(a0
1 − 1{a1 > N ′} ·N0, d),

C = 1{A < d}+ 1{A < 0}+ 1{A < −d}.
Then, rdiv(a, d) = rdiv(〈a〉0, d) + rdiv(〈a1〉, d)

+ (corr ·N1 + 1− C −B) mod N

In the FSS setting, the dealer holds rin, rout ∈ SN , while
the two parties P0 and P1 hold x ∈ SN , with the goal
of computing rdiv(x− rin, d) + rout. We will set 〈a〉0 = x

and 〈a〉1 = −rin in Theorem 6 (i.e. a = x− rin mod N).
We will first compute A in the above theorem. Let

w = 1{a0 + a1 > N}, then, as per [31], corr = 1{a0 >
N ′}+1{a1 > N ′}−w−1{a > N ′}. Now, using DCFn,SN

,
the parties can compute shares of w = 1{a0+a1 > N} =
1{N − 1− a0 < a1}. Similarly, shares of 1{a > N ′} can
be computed using the FSS gate for gIC,N ′,N−1. These
two computations can be done in parallel in the first
round, and from this, the parties can compute shares of
Ā = A+ rtemp ∈ SN , where rtemp ∈ SN is a random mask
chosen by the dealer.

In the second round, parties first locally compute
shares of B. Now, they reconstruct Ā, and then, along
with an FSS gate for GsCMP from [3], compute C. Shares
of rdiv(x−rin, d)+rout can then be computed locally from
shares of B,C and corr. The full FSS protocol for signed
division is given in Figure 5.

Theorem 7. There is a 2-round FSS protocol
(Gendiv

n,d,Evaldiv
n,d) for Gdiv which has a total key size

of 6n bits, plus the key size of DCFn,SN
, plus the key

sizes of FSS gates for gIC,n,dN/2e,N−1 and gsCMP,n. This
protocol requires 1 invocation of DCFn,SN

, 1 invocation
of EvalICn,dN/2e,N−1 and 3 invocations of EvalsCMP

n .

Remark. In the special case when d is a power of 2, we
have rdiv(a, d) = (a�A log2 d), and it is more efficient to
use the (single round) arithmetic right-shift (ARS) gate
from [3] to perform signed division.

Average Pool. The family of functions Gavgpool
to compute the average of d elements is de-
fined as gavgpool,n,d(x1, x2, . . . , xd) = (

∑d
i=1 xi)/d =

rdiv(
∑d
i=1 xi, d) ∈ SN , where x1, x2, . . . , xd ∈ SN . It is

straightforward to derive a 2-round FSS protocol for
Gavgpool from the protocol for signed division.

Theorem 8. There is a 2-round FSS protocol
(Genavgpool

n,d ,Evalavgpool
n,d ) for Gavgpool which has the same

key size and evaluation cost as (Gendiv
n,d,Evaldiv

n,d).

C.2 ReLU, Maxpool and Argmax

We use the FSS gate for gReLU,n from the work of [3] for
ReLU. With this gate, one can construct an FSS gate
to compute the maximum of two elements by defining
the function in terms of ReLU – i.e., gmax,n(x1, x2) =
ReLU(x1−x2)+x2. We then build upon this to construct
an FSS protocol for Maxpool (i.e. the function that com-
putes the maximum out of d elements) by computing the
maximum of 2 elements at a time in a tree-like man-
ner, resulting in (d − 1) comparisons done over dlog de
rounds. Finally, Argmax (that computes the index with
the maximum value out of d elements) is computed in
a similar manner to Maxpool, in 2dlog de rounds.

Theorem 9. There is a dlog de-round FSS protocol
(Genmaxpool

n,d ,Evalmaxpool
n,d ) for maxpool on d elements,

which has a total key size of n(d − 1) bits plus (d − 1)
times the key size of FSS gate for gReLU,n, and requires
(d− 1) invocations of EvalReLU

n .

Theorem 10. There is a 2dlog de-round FSS protocol
(Genargmax

n,d ,Evalargmax
n,d ) for Gargmax which has a total key

size of n(d − 1) bits, plus the key size of FSS protocol
for gmaxpool,n,d, plus (d − 1) times the key sizes of FSS
protocols for gsCMP,n and g×,n. The protocol requires (d−
1) invocations of EvalReLU

n , EvalsCMP
n and Eval×n each.
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Signed Division (Gendiv
n,d,Evaldiv

n,d)
Gendiv

n,d(1λ, rin, rout):
1: Set 〈a〉1 = (−rin) ∈ SN .
2: Compute N,N ′, N0, N1, a1, a

1
1, a

0
1 as described in

Theorem 6.
3: (k10, k11)← Gen<n (1λ, a1, 1,SN ).
4: (k20, k21)← GenIC

n,N ′,N−1(1λ,−a1, 0).
5: Sample random r10, r11 ∈ SN s.t. r10 + r11 = a0

1.
6: Sample random r20, r21 ∈ SN s.t.
r20 + r21 = 1{a1 > N ′}.

7: Sample random r30, r31 ∈ SN s.t.
r30 + r31 = idiv(a0

1 − 1{a1 > N ′} ·N0, d).
8: Sample random r40, r41 ∈ SN s.t.
r40 + r41 = rdiv(〈a〉1, d).

9: Sample random rtemp ← SN and random
r50, r51 ∈ SN s.t. r50 + r51 = rtemp.

10: (k30, k31)← GensCMP
n (1λ, rtemp, 0, 0)

11: Sample random r0, r1 ∈ SN s.t. r0 + r1 = rout.
12: For b ∈ {0, 1}, let

kb = k1b||k2b||k3b||r1b||r2b||r3b||r4b||r5b||rb.
13: return (k0, k1).

Evaldiv
n,d(b, kb, x):

1: Parse kb = k1b||k2b||k3b||r1b||r2b||r3b||r4b||r5b||rb.
2: Set 〈a〉0 = x ∈ SN .
3: Compute N,N ′, N0, N1, a0, a

1
0, a

0
0 as described in

Theorem 6.
4: Set wb ← Eval<n (b, k1b, N − 1− a0).
5: Set pb ← EvalICn,N ′,N−1(b, k2b, a0).
6: Set corrb = b · 1{a0 > N ′}+ r2b − wb − pb.
7: Set Ab = b · a0

0 + r1b − (b · 1{a0 > N ′}+ r2b −
corrb) ·N0 + r5b.

8: Reconstruct Ā = A0 +A1 ∈ SN .
9: Set Bb = b · idiv(a0

0 − 1{a0 > N ′} ·N0, d) + r3b.
10: Set C1b ← b− EvalsCMP

n (b, k3b, Ā, d).
11: Set C2b ← b− EvalsCMP

n (b, k3b, Ā, 0).
12: Set C3b ← b− EvalsCMP

n (b, k3b, Ā,−d).
13: Set Cb = C1b + C2b + C3b.
14: return b · rdiv(〈a〉0, d) + r4b + cb ·N1 + b− Cb −

Bb + rb ∈ SN .

Fig. 5. 2-round FSS Protocol for signed division of ring element
by a public positive integer.

D Description of Benchmarks
DeepSecure B4. This benchmark from [32] contains 3
fully connected layers, 2 tanh layers with 2000 and 500
instances each and argmax. The uniform bitwidth is set
to 16. The input/output scales for tanh are set to 12.

Google-30. This benchmark is an RNN taken from [26]
with 99 sigmoid and 99 tanh layers with 100 instances
over the Google-30 [40] dataset. The input and output
scales for sigmoid are 9 and 14 respectively. The input
and output scales for tanh are 9. These two layers op-
erate on bitwidth 16. The network also contains other
layers like hadamard product and agrmax.
MiniONN LSTM. This benchmark contains the sig-
moid and tanh layers of LSTM from [27] (see Figure
14). It contains a sigmoid layer with 600 instances and
a tanh layer with 400 instances. The bitwidth used is 37
and input/output scales are 12 for both layers.
Industrial-72. Since the benchmark is not public, we
evaluate the math functions alone for this benchmark
as described in [30]. As stated, it contains 7 layers of
sigmoid and tanh each with 64 instances in each layer.
The bitwidth is used 16 and input/output scales for sig-
moid are 8 and 14 respectively. The input/output scales
for tanh is set to 8.
Heads. Similar to above, description for this bench-
mark is not available publicly. This is the only bench-
mark which contains L2 normalization layers that use
reciprocal square root compuation. We use this bench-
mark to evaluate our protocol for this function. The
benchmark contains 3 layers of reciprocal square root
each with 1200, 1200 and 300 instances. The first and
third layers have input/output scales of 12 and 11. The
second layer has input/output scales of 10 and 9. The
input/output bitwidths are 16 for all layers.
MiniONN CNN. This is a 7 layer CNN benchmark
from [27] (see Figure 13) over CIFAR-10 dataset. This
CNN was used as one of the benchmarks in [28]. It
contains convolutions, ReLU, and Maxpool layers. The
fixed bitwidth and scale of 41 and 15 is used.
ResNet-50. This is a 50 layer CNN from [18] over Ima-
geNet [11] dataset. The code is generated from the pub-
licly available ONNX files. Bitwidth of 37 is used, as
done in [31] with a scale of 12.
ResNet-18. This is a 18 layer CNN from [18] over the
Hymenoptera dataset. The code is generated from pub-
licly available ONNX files. Bitwidth of 32 is used, as
done in [34] with a scale of 10.

E Mixed-Bitwidth Splines
Figure 6 describes the 3-round FSS protocol for fixed-
point mixed-bitwidth spline from Section 5.1 with the
text in magenta denoting modifications over the FSS
gate for uniform bitwidth splines [3, Figure 6].
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Fixed-point mixed-bitwidth spline protocol
(Gen(mixed,fixed)-spline

(nI ,sI ,nO,sO,nc,sc),m,d,{pi}i
,Eval(mixed,fixed)-spline

(nI ,sI ,nO,sO,nc,sc),m,d,{pi}i
)

Gen(mixed,fixed)-spline
(nI ,sI ,nO,sO,nc,sc),m,d,{pi}i

(1λ, {fi}i, rin, rout):
1: Set NI = 2nI , NO = 2nO , n = nc + d · nI , tr = sc + d · sI − sO.
2: Sample random rtemp ← SN .
3: (k10, k11)← GenSExt

nI ,n(1λ, rin, rtemp).
4: For i ∈ {1, . . . ,m}, let f̄i be the polynomial corresponding to fi with coefficients sign extended to n-bits

from nc bits.
5: For i ∈ {1, . . . ,m}, let βi = (f ′i,d, . . . , f ′i,0) ∈ S(d+1)

N , be the coefficient vector of f ′i s.t. f ′i(x) = f̄i(x− rtemp).
6: Set β = (β1, . . . , βm) ∈ Sm(d+1)

N and γ = (NI − 1) + rin ∈ SNI .
7: (k(N−1)

0 , k
(N−1)
1 )← Gen<nI (1λ, γ, β,Sm(d+1)

N ).
8: for i = {1, . . . ,m} do
9: Set α(L)

i = pi−1 + 1 + rin∈ SNI , α
(R)
i = pi + rin∈ SNI and α(R′)

i = pi + 1 + rin∈ SNI .
10: Set cr,i = 1{α(L)

i > α
(R)
i } − 1{α(L)

i > (pi−1 + 1 mod NI)}+ 1{α(R′)
i > (pi + 1 mod NI)}

+ 1{α(R)
i = NI − 1} ∈ SN .

11: Sample random ei,0, ei,1 ← U(d+1)
N s.t. ei,0 + ei,1 = cr,i · βi.

12: Sample random βi,0, βi,1 ← U(d+1)
N s.t. βi,0 + βi,1 = βi.

13: end for
14: Sample random rtemp2 ∈ SN , and random r10, r11 ← SN s.t. r10 + r11 = rtemp2.
15: if nO 6 n− tr then
16: (k20, k21) = GenTR

n,tr(1λ, rtemp2, rout).
17: else if nO > n− tr then
18: (k20, k21) = Gen�A

n,tr (1λ, rtemp2, rout).
19: end if
20: Sample random r0, r1 ← SNO s.t. r0 + r1 = rout.
21: For b ∈ {0, 1}, let kb = k

(N−1)
b ||{ei,b}i||{βi,b}i||rb||k1b||k2b||r1b.

22: return (k0, k1).

Eval(mixed,fixed)-spline
(nI ,sI ,nO,sO,nc,sc),m,d,{pi}i

(b, kb, x):
1: Set NI = 2nI , NO = 2nO , n = nc + d · nI , tr = sc + d · sI − sO.
2: Parse kb = k

(N−1)
b ||{ei,b}i||{βi,b}i||rb||k1b||k2b||r1b and set x̄b = EvalSExt

nI ,n(b, k1b, x).
3: Reconstruct x̄ = x̄0 + x̄1.
4: for i = {1, . . . ,m} do
5: Set xi = x+ (NI − 1− (pi−1 + 1)) ∈ SNI .
6: Set (s(i)

i−1,b, s
(i)
i,b)← Eval<nI (b, k(N−1)

b , xi).
7: end for
8: for i = {1, . . . ,m} do
9: Set cx,i = (1{x > (pi−1 + 1modNI)} − 1{x > (pi + 1modNI)}) ∈ SN .

10: w
(i)
b = (w(i)

d,b, . . . , w
(i)
0,b) = cx,i · βi,b − s

(i)
i,b + s

(i+1 mod m)
i,b + ei,b.

11: end for
12: Set tb = (td,b, . . . , t0,b) =

∑m
i=1 w

(i)
b ∈ S(d+1)

N . Set yb = r1b +
∑d
i=0(ti,b · x̄i) ∈ SN .

13: Reconstruct y = y0 + y1 ∈ SN .
14: if nO 6 n− tr then
15: zb = EvalTR

n,tr(b, k2b, y).
16: else if nO > n− tr then
17: zb = Gen�A

n,tr (b, k2b, y).
18: end if
19: return zb mod NO.

Fig. 6. FSS protocol for fixed-point mixed-bitwidth spline g
(mixed,fixed)
spline,(nI ,sI ,nO,sO,nc,sc),m,d,{pi}i,{fi}i

, b refers to party id.
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