
Proceedings on Privacy Enhancing Technologies ; 2022 (4):746–767

Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi, Ryo Kikuchi*, Takahiro Matsuda, Ibuki
Mishina, Hiraku Morita, and Jacob C. N. Schuldt

Adam in Private: Secure and Fast Training of
Deep Neural Networks with Adaptive Moment
Estimation
Abstract: Machine Learning (ML) algorithms, espe-
cially deep neural networks (DNN), have proven them-
selves to be extremely useful tools for data analysis, and
are increasingly being deployed in systems operating on
sensitive data, such as recommendation systems, bank-
ing fraud detection, and healthcare systems. This under-
scores the need for privacy-preserving ML (PPML) sys-
tems, and has inspired a line of research into how such
systems can be constructed efficiently. However, most
prior works on PPML achieve efficiency by requiring
advanced ML algorithms to be simplified or substituted
with approximated variants that are “MPC-friendly”
before multi-party computation (MPC) techniques are
applied to obtain a PPML systems. A drawback of this
approach is that it requires careful fine-tuning of the
combined ML and MPC algorithms, and might lead to
less efficient algorithms or inferior quality ML (such as
lower prediction accuracy). This is an issue for secure
training of DNNs in particular, as this involves several
arithmetic algorithms that are thought to be “MPC-
unfriendly”, namely, integer division, exponentiation,
inversion, and square root extraction. In this work, we
take a structurally different approach and propose a
framework that allows efficient and secure evaluation
of full-fledged state-of-the-art ML algorithms via se-
cure multi-party computation. Specifically, we propose
secure and efficient protocols for the above seemingly
MPC-unfriendly computations (but which are essential
to DNN). Our protocols are three-party protocols in the
honest-majority setting, and we propose both passively
secure and actively secure with abort variants. A no-
table feature of our protocols is that they simultaneously
provide high accuracy and efficiency. This framework
enables us to efficiently and securely compute modern
ML algorithms such as Adam (Adaptive moment esti-
mation) and the softmax function “as is”, without re-
sorting to approximations. As a result, we obtain secure
DNN training that outperforms state-of-the-art three-
party systems; our full training is up to 6.7 times faster
than just the online phase of FALCON (Wagh et al. at
PETS’21) and up to 4.2 times faster than Dalskov et
al. (USENIX’21) on the standard benchmark network

for secure training of DNNs. The potential advantage
of our approach is even greater when considering more
complex realistic networks. To demonstrate this, we per-
form measurements on real-world DNNs, AlexNet and
VGG16, which are large networks containing millions
of parameters. The performance of our framework for
these networks is up to a factor of 26 ∼ 33 faster for
AlexNet and 48 ∼ 51 faster for VGG16 to achieve an
accuracy of 60% and 70%, respectively, when compared
to FALCON. Even compared to CRYPTGPU (Tan et
al. IEEE S&P’21), which is optimized for and runs on
powerful GPUs, our framework achieves a factor of 2.1
and 4.1 faster performance, respectively, on these net-
works.

Keywords: MPC, fixed-point arithmetic, deep learning

DOI 10.56553/popets-2022-0131
Received 2022-02-28; revised 2022-06-15; accepted 2022-06-16.

1 Introduction
Secure multi-party computation (MPC) [13, 30, 67] en-
ables function evaluation, while keeping the input data
secret. An emerging application area of secure com-
putation is privacy-preserving machine learning (ML),
such as (secure) deep neural networks. Combining se-
cure computation and deep neural networks, it is possi-
ble to gather, store, train, and derive predictions based
on data, which is kept confidential. This provides data

*Corresponding Author: Ryo Kikuchi: NTT, E-mail:
kikuchi_ryo@fw.ipsj.or.jp
Nuttapong Attrapadung, Takahiro Matsuda, Jacob
C. N. Schuldt: AIST, E-mail: {n.ttrapadung, t-matsuda,
jacob.schuldt}@aist.go.jp
Koki Hamada, Dai Ikarashi, Ibuki Mishina:
NTT, E-mail: {koki.hamada.rb, dai.ikarashi.rd,
ibuki.mishina.br}@hco.ntt.co.jp
Hiraku Morita: University of St. Gallen, E-mail: hi-
raku.morita@unisg.ch

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 747

security and encourages data holders to share their con-
fidential data for machine learning. As a consequence,
it becomes possible to use a large amount of data for
model training and obtain accurate predictions.

We first briefly review a typical training (or learn-
ing) process of a deep neural network in the clear (i.e.,
without secure computation). A deep neural network
(DNN) consists of several types of interconnected lay-
ers, and is evaluated on the training data sequentially
in a layer-by-layer manner. Each layer might contain
a set of neurons, which are activated by an activation
functions such as ReLU in intermediate layers or the
softmax function in the final layer. The strength of the
connections of the neurons to the output of the pre-
vious layer are the parameters of the network. Then,
the tentative output from the network is compared to
the intended classification, and based on this, the pa-
rameters are updated via an optimization method. This
process is iterated several times over the training data.
A traditional optimization method is stochastic gradient
descent (SGD). As SGD tends to incur many repetitions
(and hence slow convergence), more efficient approaches
have been proposed; adaptive gradient methods such as
adaptive moment estimation (Adam) [37] are popular
optimization methods which improve upon SGD and
are adopted in many real-world tool-kits, e.g., [6].

A key challenge towards privacy-preserving ML, es-
pecially for DNN, is how to securely compute functions
that are not “MPC-friendly”. MPC-friendly functions
refer to functions that are easy to securely compute in
MPC, and for which very efficient protocols exist. How-
ever, unfortunately, functions required in DNN are often
MPC-unfriendly, especially those used in more mod-
ern approaches to training. In particular, Adam [37]
(and also the softmax function) consist of several MPC-
unfriendly functions, namely, integer division, exponen-
tiation, inversion, and square root computations.

To cope with this challenge, up to now, there have
been two lines of research. First, many works (to name
just a few, [14, 15, 18, 19, 28, 38, 39, 45, 53, 57, 58])
have focused mainly on secure protocols for the predic-
tion (or inference) process only, which is significantly
more lightweight compared to the training, as gradient
optimization methods are not required for prediction.
Second, and more recently, there have been a few works
in the literature that can handle secure training. These
are done mostly by replacing originally MPC-unfriendly
functions with different ones that are MPC-friendly and
approximate the original function on the domain of in-
terest. These approximation approaches either can be
done only for elementary optimization methods such

as SGD, as in [20, 50, 51, 63] or require specific “fine-
tuning” of the interaction between ML and MPC, as
in [8], such that the replaced functions will not degrade
the quality of ML architectures significantly (such as
lowering prediction accuracy). In practice, however, this
replacement is not easy. For example, Keller and Sun
[34] reported that ASM, which is widely used as a re-
placement for the softmax function, reduces accuracy in
training, sometimes significantly.

Due to the rapid advancements in ML, we believe
that a more robust approach to privacy-preserving ML
is to achieve efficient protocols for a set of functions that
are often used in ML but might typically be thought of
as MPC-unfriendly. In this way, the requirement for fine-
tuning between ML and MPC would be only minimal, if
any at all, and one would be able to plug-and-play new
ML advancements into an existing MPC framework to
obtain new privacy-preserving ML protocols, without
having to worry about the degradation on the ML side.

1.1 Our Contributions

We present a framework that allows seamless implemen-
tation of secure training for DNNs using modern ML
algorithms. Specifically, our contribution is twofold as
follows.
New Elementary Three-party Protocols. We pro-
pose new secure and efficient protocols for a set of ele-
mentary functions that are useful for DNN but are nor-
mally deemed to be MPC-unfriendly. These include se-
cure division, exponentiation, inversion, and square root
extraction. Our protocols are three-party protocols in
the honest-majority setting, and we propose both pas-
sively secure and actively secure with abort variants.
A notable feature of our protocols is that they simul-
taneously provide high accuracy and efficiency. A key
component to this is our new division protocol, which
enables secure fixed-point arithmetic. Previous direct
fixed-point arithmetic protocols [24, 50] has quadratic
communication cost (in bits) in the ring/field size, and
[50] and related protocols introduce errors with a certain
probability which must be mitigated, typically result-
ing in an increased overhead or reduced accuracy. In
contrast, our protocol has linear communication cost,
and requires no error mitigation step. Combined with
a range of optimizations suitable for each of the func-
tionalities we consider, we obtain a set of protocols that
are both efficient and accurate. In fact, our implementa-
tions of our protocols provide efficient 23-bit accuracy
fixed-point arithmetic, which is comparable to single-

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 748

precision real number operations in the clear. Reaching
this level of accuracy is an important aspect of our ap-
proach to PPML systems as the commonly used stan-
dard for DNN training in the clear is single-precision
computation (e.g., TensorFlow [6], PyTorch [5]), and
our aim is to implement these without degrading train-
ing accuracy. We further discuss about accuracy in Sec-
tion 1.3. We describe our construction techniques in the
next subsection.
New Applications to ML. We apply our new ele-
mentary MPC protocols to “seamlessly” instantiate se-
cure computations for softmax and Adam. That is, due
to our elementary MPC protocols, we can securely and
efficiently compute softmax and Adam “as is”, in partic-
ular, without approximation using (MPC-friendly) func-
tions or sacrificing training accuracy. Consequently, due
to the fast convergence of Adam, we obtain fast and
secure training (and prediction) protocols for DNN. Us-
ing the DNN architecture and MNIST dataset typically
used as a benchmark, our protocol achieved 95.64% ac-
curacy within 117 seconds, improving upon the state-of-
the-art such as ABY3 [50] (94% accuracy within 2700
seconds reported in [50]) and FALCON [64] (780 sec-
onds for the online phase only) in the passive security
setting1. In the active security setting, our protocol com-
pleted training within 570 seconds, improving upon the
three-party variant of Fantastic Four [25] (95.43% ac-
curacy within 1879 seconds). Furthermore, our protocol
achieves the same accuracy as training over plaintext
data, using TensorFlow [6]. We further perform mea-
surement on real-world DNNs from the ML literature,
AlexNet [41] and VGG16 [61], which contain millions
of parameters. Comparing the total training time (i.e.
time to reach a certain accuracy), the full running time
of our framework outperforms the online phase of FAL-
CON2 with a factor of about 12 ∼ 14 for AlexNet and
46 ∼ 48 for VGG16 in the LAN setting. Our framework
even outperforms CRYPTGPU [62], which draws upon
the computational power of GPUs to implement efficient
protocols, with a factor of 1.8 and 2.0, respectively, for
these networks. A detailed performance evaluation and
comparison considering different security and network

1 The measurements for our protocol and FALCON were done
in the environment described in Section 6, which is roughly com-
parable to the one in [50].
2 FALCON requires an offline phase to be executed before the
online phase, whereas our framework consists of standard MPC
protocols not requiring an offline phase. In the comparison, we
do not include the execution time of the FALCON offline phase,
which favors FALCON in the comparison.

settings, different datasets, and large DNNs, is given in
Section 6.

1.2 Our Techniques

New Techniques for Secure Truncation. We first
briefly describe the idea behind a common building
block for all our protocols: division (which also implies
truncation). Let p be the size of the underlying ring/-
field, x be the secret and d is the divisor (so the desired
output is x

d). Known efficient truncation protocols, e.g.,
[50, 51], reconstruct a masked secret x+ r for a random
r, divide this by d in the clear, and subtract r

d . How-
ever, in this approach, a large error, −pd , sneaks into
the output when x + r > p because the reconstructed
value becomes x + r − p. To avoid this, the message
space has to be much smaller than p, which leads to re-
duced accuracy for a given value of p. Dalskov et al. [24]
avoid this error by detecting if the reconstructed value
is x+ r − p or not efficiently. However, preparing r and
r
d still requires quadratic communication to the ring/-
field size. We employ a different approach. Let x1 and
x2 be additive shares of x such that x1 + x2 = x + qp

for q ∈ {0, 1}. Our approach is essentially to securely
compute q and eliminate qp (without exposing q to any
parties), which makes the (local) division of sub-shares
be the desired output. Through this approach, we do
not need to prepare r, rd that causes quadratic commu-
nication, and we can embed a large value into a single
share, which, in turn, enables accurate computation of
functions such as exponentiation. We note that our ap-
proach has the technically interesting property that the
ideal functionalities for truncation and division depend
not only on the input/output, but also on the random-
ness of shares held by the computing parties. While this
makes the corresponding theoretical analysis more in-
volved, we formally establish correctness and security,
and as a result obtain a truncation protocol which pro-
vides higher accuracy and better overall performance
compared to previous works.
New Techniques for Elementary Protocols. For
securely computing exponentiation, inversion, division
with private divisor, square root, and inversion of square
root, we utilize Taylor or Newton series expansions. A
key challenge here is to ensure fast convergence that,
in general, is only guaranteed for a narrow range of in-
put values. We resolve this by constructing protocols
that use a combination of private input pre-processing
and partial evaluation of the pre-processed input. We

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 749

Table 1. Categorization of PPML systems for neural networks

Secure Secure Supporting PPML systems
Prediction Training Advance ML† 2-party 3-party 4-party

 # # MiniONN [45], CryptFlow [42], FLASH [15]
Chameleon [57], ASTRA [19],

EzPC [18], Gazelle [33], QuantizedNN [24],
XONN [56], Delphi [49] BLAZE [53]

 # G# PrivEdge [60], - -
 # SecureML [51] ABY3 [50], Trident [55]

FHE-based SGD [52] SecureNN [63], FantasticFour [25]
Glyph [46] FALCON [64],

CRYPTGPU [62],
FantasticFour [25]

 G# - Lu et al. [47] -

 Quotient [8] This work -

† Supporting Advance ML refers to systems that can support beyond the SGD optimization. In particular,
our work supports Adam, while Quotient supports AMSGrad. G# means partial supports (PrivEdge and
BAYHENN use Adam but in the clear, while [47] provided essentially only an inverted square-root protocol).

devise private scaling techniques, which allow inputs to
be scaled to fit an optimal input range, and furthermore
allow the protocol to make the most out of the available
bit range in the internal computations. We also utilize
what we call hybrid table-lookup/series-expansion tech-
niques, which separate inputs into two parts and ap-
ply table-lookup and series-expansion to the respective
parts. The details of how these techniques are used in
our protocols differ depending on the functionality of
the protocols. We provide the details in Section 4.

1.3 Comparison to Related Works

Various ML algorithms have been considered in con-
nection with privacy preserving ML, include decision
trees, linear regression, logistic regression, support-
vector-machine classifications, and deep neural networks
(DNN). Among these, deep neural networks are the
most flexible and have yielded the most impressive re-
sults in the ML literature. However, at the same time,
secure protocols for DNN are the most difficult to ob-
tain, especially for the training process. We show a brief
comparison among PPML systems supporting DNN in
Table 1, and also provide a more comprehensive com-
parison table in Appendix A.
Secure DNN Training. Our work focuses on se-
cure training for deep neural networks (secure infer-
ence can be obtained as a special case). There have
been several works on secure DNN training such as Se-
cureML [51], SecureNN [63], ABY3 [50], Quotient [8],
FHE-based SGD [52], Glyph [46], Trident [20], FAL-
CON [64], Fantastic Four [25], and CRYPTGPU [62].
All of these achieve efficiency by simplifying the un-
derlying DNN training algorithms (e.g. replacing func-
tionalities with less-accurate easier-to-compute alterna-
tives), and optimizing the computation of these. As a
consequence of this approach, they are restricted to sim-
ple SGD optimization, with the exception of Fantas-

tic Four which implements Momentun (a SGD variant),
and Quotient which implements an approximation to
AMSGrad. These works furthermore implement train-
ing with reduced computation accuracy, and typically
argue (e.g., FALCON [64]) that this does not signifi-
cantly degrade training accuracy. We note that these
arguments are based on experiments on smaller net-
works and data sets, like 3DNN on MNIST, and do not
imply that a similar conclusion holds for larger more
complex networks such as AlexNet and VGG16 (which
we experiment on in this paper). Furthermore, specific
ML components might require more accuracy than oth-
ers3. We emphasize that we take a structurally differ-
ent approach by constructing protocols that allow un-
modified advanced training to be implemented “as is”,
without simplifications or sacrificing computation accu-
racy. To the best of our knowledge, the only the work
that suggests secure training with ADAM is by Lu et
al. [47]. They provided an inverse square root protocol
required by ADAM, but its accuracy is far from the
23-bit accuracy we guarantee in this paper. In addition,
how MPC-unfriendly functions, such as softmax, can be
implemented is not described, and in-depth experimen-
tal results with training accuracy is not provided. In the
following, we highlight properties of the above related
works.
Security. SecureML, Quotient, FHE-based SGD,
Glyph, and SecureNN considered semi-honest (passive)
security tolerating one corrupted party, while SecureNN
can be extended to achieve so-called privacy against ma-
licious adversaries (formalized by [12]). ABY3 improved
security upon these by consideringmalicious (active) se-
curity with abort tolerating one corrupted party, which
is also the security notion considered for Fantastic Four.
Trident improved security in term of fairness (again,
tolerating one corrupted party); this comes with the
cost of reducing the tolerated corruption fraction from
33% to 25%. It should be noted that, unlike the other
schemes, FALCON sacrifice full security to compute
batch-normalization more efficiently (see Section 5.2).
Efficiency. For secure training over a basic 3-layer
DNN on the MNIST dataset, ABY3 outperforms both
SecureML/SecureNN and was state-of-the-art before
Trident and FALCON. FHE-based SGD and Glyph
use fully homomorphic encryption, which makes non-

3 For example softmax, which is not implemented in FALCON.
In fact, in the existing mixed-precision libraries [4, 7], the soft-
max function requires 23-bit accuracy, while the other opera-
tions are done using half-precision.

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 750

interactive training possible. Glyph is the most efficient
of the two, but is still far less efficient than ABY3 in
terms of execution time. Trident improves the online
phase of ABY3 but with the cost of adding a fourth
party who only participates in offline phase. Most re-
cently, FALCON improves upon the online phase of
ABY3, and Fantastic Four improves upon FALCON in
the active security setting. Finally, CRYPTGPU lever-
age the power of GPUs to construct very efficeint pro-
tocols. As highlighted above, our framework improves
upon both FALCON and Fantastic Four, and can even
outperform CRYPTGPU for large networks.
Additional Related Works. When confining to
only secure inference/prediction (i.e., without secure
training) for DNN, there are works that uses Adam
in the training phase (but in the clear) such as
PrivEdge [60]4 and BAYHENN [66]5. Also for secure
inference, BLAZE [53] achieved a strong security called
fairness. For more related works, we refer to a very re-
cent comprehensive survey in [68].

2 Preliminaries and Settings

Notations for Division. For a, b ∈ Z, we denote by
a
b ∈ R real-valued division, and by a/b ∈ Z integer divi-
sion that discards the remainder. That is, a/b := bab c.
Data Representation. Our protocols operate on bi-
nary values Z2, `-bit unsigned and signed integers, de-
noted Z+

〈`〉 and Z〈`〉, as well as `-bit fixed-point unsigned
and signed rational numbers Q+

〈`,u〉 = {b ∈ Q | b =
a

2u , a ∈ Z+
〈`〉} and Q〈`,u〉 = {b ∈ Q | b = a

2u , a ∈ Z〈`〉},
respectively. We will represent integers and fixed-point
values as elements of Fp. In order to do so, the latter are
scaled to become integers. Specifically, we will use a set
of (unsigned) `-bit integers 0 ≤ a ≤ 2`−1, which we de-
note Q̂+

〈`,α〉, to represent the values { a2α |0 ≤ a ≤ 2`−1},
and will refer to α as the offset for these. For a fixed-
point value a, we will use the notation a〈α〉 to denote
the integer representation with offset α i.e. a〈α〉 = a ·2α.
The integers in Q̂+

〈`,`〉 are represented as elements of
Fp, and we denote the signed extension by Q̂〈`,`〉. Note
that the representation of fixed-point values requires

4 PrivEdge [60] has a different configuration from other works
mentioned here; it lets users independently train their own data
locally (hence, in particular, training is done in plaintext).
5 This work has a vulnerability found by [65]

the scaling factor to be taken into account for multi-
plication (and division). Specifically, for values a〈α〉 and
b〈α〉, the correct representation of the product of a and
b is a〈α〉 · b〈α〉/2α = (a · b)〈α〉. For simplicity, we use ×α
to denote this operation, i.e. (ordinary) multiplication
followed by division by 2α.
Multi-Party Computation Setting. We consider
secret-sharing (SS)-based three-party computation se-
cure against single corruption in the client/server model.
In this model, both the input and output of the parties
are in a secret-shared form, and our protocols are thus
share-input and share-output protocols. In the context
of PPML systems, any number of clients can contribute
to the data set used for training by sharing their data
to the parties. P1, P2, P3 denote the three parties and
treat the party index i as to refer to the i′-th party
where i′ ≡ i (mod 3) and i′ ∈ {1, 2, 3}. For example,
P0 = P3 and P4 = P1. Regarding the adversarial behav-
ior, we consider both passive and active adversaries with
abort. We consider the standard security definition for
these settings (e.g. see [35]) – due to space limitations,
these are deferred to the full version.
Secret Sharing Schemes and Their Protocols.
In this paper, we use three replicated secret sharing
schemes [23, 32]. We consider the 2-out-of-3 threshold
access structure for the first two schemes. For the third
scheme, the minimal access structure is simply {{1, 2}},
meaning only P1 and P2 can together reconstruct the
secret. We denote them as:

J·K-sharing : 2-out-of-3 replicated sharing in Zp,

[·]-sharing : 2-out-of-3 replicated sharing in Z2,

〈〈·〉〉-sharing : simple additive sharing in Zp.

Addition and scalar multiplication can be done using
only local operations for these schemes, whereas multi-
plication requires a dedicated protocol [22, 26, 27]. We
denote the multiplication functionality as Fmult.
Share Conversions. Our protocols will utilize conver-
sions among share types. We provide a summary of
conversion protocols in Table 2. Here, for a ∈ Zp we
let (a`, . . . , a1) be the bit representation of a; that is,
a =

∑`
i=1 2i−1ai. The given round complexity is for pas-

sively secure protocols. Lastly, note that unlike the orig-
inal bit-composition protocol in [10], we use a protocol
that can be applied to Zp. In Appendix F we highlight
how this modification is achieved.
Conditional Assignment. We define a functionality of
conditional assignment JzK ← FCondAssign(a, b, JcK) by
setting z := a if c = 0 and z := b if c = 1. A protocol for
this simply computes JzK := a · (1− JcK) + JcK · b.

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 751

Conversion Functionality name Protocol Round

JaK→ 〈〈a〉〉 ConvertToAdd local operations 0
〈〈a〉〉 → JaK ConvertToRep one J·K-sharing 1
JaK→ ([a1], . . . , [a`]) FBDC – Bit decomposition [36] (cf. §F) `+ 1
([a1], . . . , [a`])→ JaK FBC – Bit composition [10] (modified, cf. §F) `+ 3
[a]→ JaK Fmod – Modulus conversion [36] (cf. §F) 3

Table 2. Share Conversions

Quotient Transfer Protocol. Consider the reconstruc-
tion of shared secret, JaK or 〈〈a〉〉, over N as opposed to
Zp for which J·K and 〈〈·〉〉 sharings are defined. The re-
sulting value would be of the form a + qp, where q is
called the quotient. We define the functionality of quo-
tient transfer 〈〈q〉〉 ← FQT(〈〈a〉〉) (resp. JqK ← FQT(JaK))
that compute q in secret-shared form. These can be ef-
ficiently instantiated by using [36] when p is prime, es-
pecially a Mersenne prime, as described in Appendix E.

3 Secure Real Number Protocols
In this section, we present the division protocols that
will allow us to do fixed-point arithmetic efficiently and
securely. The key to achieve efficient fixed-point com-
putations is the ability to perform truncation (or equiv-
alently, integer division by 2k), as this allows multipli-
cation of scaled integer representations of fixed-point
values, as introduced in Section 2.

We note that the commonly used ABY3 and Dal-
skov et al.’s division (truncation) and protocol used
in most PPML systems requires a heavy offline phase,
whereas it provides an efficient online phase. In addi-
tion, as we will see later, ABY3 division has an inher-
ent possibility of introducing errors that is much larger
than rounding errors, which must be mitigated. In con-
trast, our new division protocol is efficient in terms of its
overall cost i.e. the total cost is comparable to just the
online cost of the division protocols, while eliminating
the possibility of introducing large errors.

3.1 Current Secure Division Protocols

In this section, we analyze the approach taken to di-
vision [50, 55, 63]. For simplicity, we consider unsigned
integers shared over Zp for a general p and a general
divisor d, but similar observations holds for the signed
integers and specific p, such as 264.

Let (a1, a2, a3) be the sub-shares of a in the repli-
cated secret sharing scheme, i.e., a = a1 + a2 + a3, and
a = αad + ra for 0 ≤ ra < d, and let (b1, b2, b3) be the

sub-shares of the output of a division protocol. Here,
the intention is that b1 + b2 + b3 is a value close to a

d ,
such as αa, or perhaps αa ± 1.

The current approach proceeds as follows. The
parties first prepare a shared correlated randomness
(Js′K, JsK), where s′ ← Zp and s := s′/d. (Note that d is
public and known a priori.) The parties then reconstruct
a masked secret (a+ s′), and set JbK = (a+ s′)/d− JsK.

While this approach appears to work well, the out-
put can in fact be far from the intended a

d . To see this,
let s′ = sd+rs′ and p = αpd+rp. Considering the recon-
structed value Ja+ s′K over N, we see that the parties
obtain a+s′−qp, where q ∈ {0, 1}. Hence, the computed
shared secret corresponds to

−s+ (a+ s′ − qp)/d = αa − qαp + (ra + rs′ − qrp)/d. (1)

We easily confirm that the second term, qαp, is large,
such as 252, if q = 1. Therefore, we must be made the
probability of q = 1 occurs negligible. The approach
taken in [50, 55, 63] to address this, is to adjust the in-
put space (i.e. the parameter `) to be sufficiently small
enough to ensure q = 0 with overwhelming probability.
This, however, leads to a larger reduction of the input
space, which can negatively impact the computation be-
ing done, due to lower supported accuracy.

Another approach to avoid this error has been pro-
posed by Catrina and de Hoogh [16] and Dalskov et
al. [24]. The former provides only the statistical secu-
rity, whereas the latter provides perfect security, as in
the previous example. Intuitively, in [24], they compute
the quotient q from the MSBs of s and (a+ s′), assum-
ing the MSB of a is 0. Although their protocol is an
elegant solution, the communication complexity is lin-
ear to the bit-length of d for preparing s and s′, and it
is non-trivial to extend their protocol to a general d.

3.2 Protocol for Division by Public Value

Intuition. We first give the intuition behind our pro-
tocols. In our protocol for input JaK, we locally convert
JaK into 〈〈a〉〉 before division. Hence, in the following, we
assume the input is 〈〈a〉〉 and a public divisor d.

First, let us analyze what happens when we simply
divide each share by d. Let 〈〈a〉〉1 + 〈〈a〉〉2 = qp+ a in N,
where q ∈ {0, 1}. Here, suppose that 〈〈a〉〉j = αjd + rj ,
a = αad+ ra, and p = αpd+ rp for j = 1, 2 If each party
divide its share 〈〈a〉〉j by d, the new share is αj = 〈〈a〉〉j/d.
Then, the reconstruction of (α1, α2) will be

α1 + α2 = αa + qαp +
ra + qrp − (r1 + r2)

d
, (2)

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 752

Protocol 1 Secure Division by Public Value in 〈〈·〉〉
Functionality: 〈〈c〉〉 ← Div(2,2)(〈〈a〉〉, d)
Input: Share of dividend 〈〈a〉〉 and (public) divisor d, where a

and d are even numbers.
Output: 〈〈c〉〉, where c ≈ a

d
.

1: Let αp and rp be p = αpd+ rp, where 0 ≤ rp < d.
2: 〈〈q〉〉 ← FQT(〈〈a〉〉)
3: P1 computes 〈〈b〉〉1 ← (〈〈a〉〉1 + d− 1− rp)/d. . “in N”

means no reduction mod p

4: P2 computes 〈〈b〉〉2 ← 〈〈a〉〉2/d in N
5: 〈〈c〉〉 := 〈〈b〉〉 − (αp + 1)〈〈q〉〉+ 1

which contains extra terms, qαp and (ra+qrp−(r1+r2))
d .

The insight behind our protocols is that the qαp
term can be eliminated, which we essentially achieve via
the quotient transfer protocol [36], that allow us to ob-
tain 〈〈q〉〉 efficiently. This protocol suits our setting since
it requires a prime p, and prefers a Mersenne prime. The
quotient transfer protocol furthermore requires a to be
a multiple of 2, but this is easily achieved by locally
multiplying a and d with 2, and performing the division
using a′ = 2a and d′ = 2d. Note that the output of the
division remains unchanged by this.

For the remaining error term e = ra+qrp−(r1+r2)
d ,

each value ra, rp and rj is less than d, and hence, −1 ≤
e ≤ 2. In our protocols, we reduce this error to 0 ≤
e ≤ 2 by adding a combination of 〈〈q〉〉 and appropriate
constants to the output.
Passively Secure Protocols. We propose passively
secure division protocols in Protocol 1 and 2. The first
protocol works for input 〈〈a〉〉, where a is a multiple of 2,
and the second for JaK by extending the first protocol.

Both Protocol 1 and 2 have probabilistic rounding
that outputs a/d, a/d+1, or a/d+2. In other words, our
protocols guarantees that there is only a small difference
between a

d and the output of our protocols, as known
probabilistic divisions.

Note, our protocols have the technically interesting
property that the distribution of the output depends
not only on the input value, but also the randomness of
the shares of the computing parties. Specifically, if p is
a Mersenne prime, the output of Protocol 1 is a/d if

((〈〈a〉〉1 ≤ a) ∧ (ra < r1)) ∨ ((a < 〈〈a〉〉1) ∧ (ra − 1 < r1) (3)

and a/d+ 1 otherwise. We define the functionality Fdiv
that computes the division as according to Eq. (3). The
following theorem establishes security of Protocol 1.

Theorem 1. Protocol 1 securely computes the division
functionality Fdiv in the FQT-hybrid model in the pres-
ence of a passive adversary.

Protocol 2 Secure Division by Public Value in J·K
Functionality: JcK← Div(2,3)(JaK, d)
Input: Share of dividend JaK and public divisor d, where 0 ≤

a ≤ 2|p|−1 − 1
Output: JcK, where c ≈ a

d
.

1: 〈〈a〉〉 ← ConvertToAdd(JaK)
2: 〈〈a′〉〉 := 〈〈2a〉〉, d′ := 2d
3: 〈〈c〉〉 ← Div(2,2)(〈〈a′〉〉, d′)
4: JcK← ConvertToRep(〈〈c〉〉)
5: Output JcK

Proof (sketch). Privacy of Protocol 1 is trivially ob-
tained since calling FQT is the only step that requires
communication, and we consider the FQT-hybrid model.

Regarding correctness, we sketch a proof when p is
a Mersenne prime. The output of Protocol 1 is

αa − q + 1 +
ra + q(d− 1)− r1 − r2

d
. (4)

We observe that ra + q(d − 1) − r1 − r2 must be a
multiple of d and 0 ≤ ra, r1, r2 < d. Therefore, in the
case of q = 0, the output is αa if ra < r1 and αa + 1
otherwise. In the case of q = 1, the output is αa if ra −
1 < r1 and αa + 1 otherwise. Furthermore, q = 0 can
be rewritten as 〈〈a〉〉1 ≤ a. Combining all the above, we
obtain the proof.

Regarding Protocol 2, step 3 and 4 require commu-
nication. We have already shown that step 3 is secure
and step 4, ConvertToRep, can likewise be seen to be
secure. Hence, we conclude that Protocol 2 is secure if
Protocol 1 is secure.
Actively Secure Protocols. We show how we con-
struct a division protocol satisfying active security with
abort. The difference between our actively and passively
secure division protocols is the use of an actively secure
quotient transfer protocol. Specifically, employing [36],
which takes input JaK, where a is required to be a mul-
tiple of 4, our actively secure division protocol works
directly on JaK and essentially executes the following
steps:
1. Ja′K := 4JaK and d′ := 4d
2. JqK← FQT(JaK)
3. Locally divide sub-shares of Ja′K by d′ and let them be JbK
4. JcK := JbK− αpJqK

In addition to the above steps, we add constants to make
the difference between a

d and the output small. The ac-
tual division protocol is shown in Appendix B.
Comparison. We compare Protocol 2 with the
ABY3 [50] (used in FALCON) and Dalskov et al.’s [24]
truncation protocols (see Appendix C for a detailed
analysis of the efficiency of our protocol). The results
are shown in Table 3 and 4 for passive and active secu-
rity, respectively. The ABY3 and Dalskov et al.’s proto-

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 753

Communication [bit] Rounds

offline 6(2|p| − |d| − 1) |p| − 1
ABY3 [50] (and FALCON [64]) online 3|p| 1

total 15|p| − 6|d| − 6 |p|

offline 8|p| 1
Dalskov et al.[24] online 2|p| 1

total 10|p| 2
Ours 5|p|+ 5 4

Table 3. Truncation protocols in the passive setting

Communication [bit] Rounds

offline 8|p|2 + 6(κ|p|+ 2|p|+ κ) 2
Dalskov et al. [24] online 6|p| 1

total 8|p|2 + 6(κ|p|+ 3|p|+ κ) 3
Ours 30 |p|+ 21κ+ 15 5

Table 4. Truncation protocols in the active setting

cols can be separated into online and offline phases, so
we show the cost of each phase as well as the total cost.

In the passive setting, our protocol performs much
better than the ABY3 protocol, and has about half the
communication cost compared to Dalskov et al.’s pro-
tocol in the passive setting albeit requiring 4 rounds as
opposed to 2. Dalskov et al.’s division is close in commu-
nication complexity to ours even though preprocessed
randomnesses is required, since this can be prepared by
a single party in the passive setting.

In the active setting, the gap in communication
complexity between ours and Dalskov et al.’s protocol
gets larger as shown in Table 4 since the above optimiza-
tion cannot be used. Note that Dalskov et al.’s division
requires communication proportional to |p|2, whereas
ours is |p|. In a low latency environment, such as a LAN,
this leads to an advantage for our protocol although 2
additional rounds are required.

Another aspect is that our protocol accepts any d

as a divisor while the others require d = 2k. This direct
division has an advantage in terms of accuracy com-
pared to using the reciprocal of the divisor followed by
multiplication. Direct division appears in many compu-
tations, such as batch normalization.

4 Elementary Functions for ML
In the following, we will present efficient and high-
accuracy protocols for arithmetic functions suitable for
advanced machine learning algorithms, such as inver-
sion, square root extraction, and exponential function
evaluation. We note that almost all of the related works
on PPML systems rely on simplifications that avoid

these functionalities, and hence do not implement cor-
responding protocols.

Our protocols rely on fixed-point arithmetic, and
will make use of the division protocols introduced above
to implement this. To ease notation in the protocols, we
use JaK · JbK to denote Fmult(JaK, JbK), and JaK ×` JbK to
denote Fdiv(JaK · JbK, 2`).

All protocols will explicitly have as parameters the
offset of both input and output values, often denoted α
and δ, and in particular will allow these to be different.
This can be exploited to obtain more accurate compu-
tations when reasonable bounds for the input and out-
put are publicly known. For example, consider the soft-
max function, often used in neural networks, defined as

eui∑k−1
j=0

euj
= 1∑k−1

j=0
euj−ui

for input (u0, . . . , uk−1). The

output is a value between 0 and 1, and to maintain high
accuracy, the offset should be large, e.g. 23 to maintain
23 bits of accuracy below the decimal point. However,
the computation of

∑k−1
j=0 e

uj−ui is often expected to be
a large value in comparison, and a much smaller offset
can be used to prevent overflow e.g. −4. Furthermore,
we highlight that internally, some of the protocols will
switch to using an offset different from α and δ to obtain
more accurate numerical computations. By fine-tuning
and tailoring the offsets to the computations being done,
the most accurate computation with the available ` bits
for shared values, can be obtained.

In the following, we show protocols for unsigned in-
puts. These can relatively easily be extended to signed
inputs by appropriate input conversion before running
the protocol. The details are defered to the full version.

4.1 Inversion

In the following, we introduce a protocol for comput-
ing the inverse of a shared fixed-point value. However,
before presenting the inversion protocol itself, we in-
troduce a specialized bit-level functionality of private
scaling that will compute a representation of the input
JaK which allows us to make full use of the available
bit range for shared values. Specifically, the representa-
tion of JaK is JbK = JaK · JcK, where 2`−1 ≤ b ≤ 2` − 1
and c is a power of 2 (recall that shared values are `
bit integers). This functionality corresponds to a left-
shift of the shared value JaK such that the most sig-
nificant non-zero bit becomes the most significant bit,
where c represents the required shift to obtain this. We
will denote this operation MSNZBFit (MSNZB denoting
Most Significant Non-Zero Bit) and the corresponding

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 754

functionality Fmsnzbfit. The protocol presented in Pro-
tocol 3 implements this functionality. Recall that FBC
and FBDC are the functionalities of bit-(de)composition.

Theorem 2. Protocol 3 securely implements Fmsnzbfit
in the (FBDC, FBC, Fmult)-hybrid model in the presence
of a passive adversaries.

Protocol 3 MSNZB Fitting
Functionality: (JbK, JcK)← MSNZBFit(JaK)
Input: JaK
Output: JbK, JcK, where JbK = JaK · JcK, 2`−1 ≤ b ≤ 2` − 1, and

c = 2e for some e ∈ N.
Parameter: `
1: ([a1], . . . , [a`])← FBDC(JaK)
2: [f`] := [a`]
3: for i = `− 1 to 1 do
4: [fi] := [fi+1] ∨ [ai] . fi = 1 for all i corresponding to

MSNZB of a or smaller
5: [x`] := [a`]
6: for i = `− 1 to 1 do
7: [xi] := [fi]⊕ [fi+1] . xi = 1 only for i corresponding to

MSNZB of a
8: JcK← FBC([x`], . . . , [x1]) . Bit-compose [xi] in the reverse

order to obtain c = 2`−1−blog2 ac

9: JbK = JaK · JcK
10: Output JbK and JcK

Using MSNZBFit as a building block, we now construct
our inversion protocol. The protocol is based on the
Taylor series for (1 − x0)−1 centered around 0, where
x ∈ [0; 1

2):
1

1− x1
=
∞∑
i=0

xi1 = 1 + x1 + x2
1 + · · · . (5)

Continuing this Taylor series until the n-degree, yields
the remainder term xn+1

1−x ≤
1

2n , which implies that the
approximation has n bits accuracy.

Firstly, we use MSNZBFit to left-shift input JaK to
obtain JbK = JaK · JcK. Interpreting the resulting value JbK
as being a fixed-point value with offset ` implies that
b ∈ [1

2 ; 1). This representation forms the basis of our
computation. (Note that since b ∈ [1

2 ; 1), we have that
1
b ≤ 2, ensuring that 1

b can be represented using ` + 1
bits.)

For the computation of 1
b , instead of using Eq. (5)

directly, which requires r multiplications for (r + 1)-th
degree terms, we use the following product requiring
only log r multiplications.

∞∏
j=0

(1 + x2j
1) = (1 + x1)(1 + x2

1)(1 + x4
1) · · · . (6)

Letting b = 1 − x1 (which ensures x1 ∈ [0; 1
2)),

our inversion protocol shown in Protocol 4 iteratively

computes Eq. (6) by first setting x1 = 1 − b and
y1 = 1+x1 = 2−b (Step 2-3), and in each iteration com-
puting (1 + xi1) and multiplying this with yi (Step 4-6).
The number of iterations is specified via the parame-
ter I. Finally, to obtain (an approximation to) J 1

a K, we
essentially only need to scale the computed JyIK = J1

b K
with JcK (as 1

b · c = 1
ac · c = 1

a). Note, however, that the
output has to be scaled taking into account the input
and output offsets, as well as the offset used in the inter-
nal computation. To see that the correct scaling factor
is 2α+δ−2`, note that for input a = a′〈α〉 and output
b = a · c = b′〈`〉 of MSNZBFit, we have

yI =
2`

b′
=

2`

a′ · 2α · c · 2−`
=

1
a′ · c

· 22`−α

and that the output should be scaled with 2δ.
We define the corresponding functionality FInv in

which on input of shares computes the above Taylor
series expansion and output shares of that output.

Protocol 4 Inversion
Functionality: JdK← Inv(JaK)
Input: JaK, where a ∈ Q̂〈`,α〉
Output: JdK, where d ≈

(
1
a

)
〈δ〉

Parameter: (`, I, α, δ), where I is the number of iterations (say,
I = dlog `e) used in the computation

1: (JbK, JcK)← MSNZBFit(JaK) . b = b′ · 2` where b′ ∈ [1
2 , 1)

2: Jx1K := 1〈`〉 − JbK
3: Jy1K := 2〈`〉 − JbK
4: for i = 2 to I do
5: JxiK := Jxi−1K×` Jxi−1K
6: JyiK := Jyi−1K×` (1〈`〉 + Jxi−1K)

7: Output JyIK · JcK · 2α+δ−2`

Theorem 3. The protocol Inv securely computes inver-
sion functionality FInv in the (Fmsnzbfit,Fdiv,Fmult)-
hybrid model in the presence of a passive adversary.

Division with private division is a relatively simple ex-
tension of the inversion protocol. Due to space limita-
tions, we defer the details to the full version.

4.2 Square Root and Inverse Square Root

Computing the inverse of the square root of an input
value, is a useful operation for many computations, e.g.,
normalization of a vector, and is likewise used in Adam.
Hence, having an efficient protocol for directly comput-
ing this, is beneficial.

Our protocol for computing the inverse of a square
root is shown in Protocol 6, and is based on Newton’s
method for the function f(y) = 1

y2 − x for input value

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 755

x (note that f(y′) = 0 implies y′ = 1√
x
). This involves

iteratively computing approximations

yn+1 = yn −
f(yn)
f ′(yn)

=
yn(3− x · y2)

2
for an appropriate initial guess y1 (Step 5-6 performs
this iteration). To ensure fast convergence for a large
range of input values, we represent the input x = b · 2e

for b ∈ [1
2 ; 1), which implies

1
√
x

=

(

1√
b

)
· 2−e/2 if e is even(√

2√
b

)
· 2−(e+1)/2 if e is odd

.

Hence, we only need to compute 1√
b
for b ∈ [1

2 ; 1), in
which case using 1 as the initial guess provides fast con-
vergence. However, the parties should not learn which
of the above two cases the input falls into. We in-
troduce a sub-protocol, MSNZBFitExt shown in Proto-
col 5, that computes values r and c′, where (r, c′) =
(0, 2e/2) if x falls into the first case, and (r, c′) =
(1, 2(e+1)/2) otherwise. Note that like MSNZBFit, the
extended MSNZBFitExt right-shifts the input a to ob-
tain an `-bit value b = a · c, that when interpreted
as an element of Q̂〈`,`〉, represents b ∈ [1

2 ; 1), and that
c′ =

√
c. Having r and c′ allows us to compute 1√

x
as

1√
b
· (1 + r · (

√
2 − 1)) · c′. Finally, note that the out-

put has to be scaled, taking into account the input and
output offsets, as well as the offset used for the inter-
nal computation. To see that the correct scaling factor
is 2δ− 3

2 `+
α
2 , note that for input a = a′〈α〉 and output

b = a · (c′)2 = b′ ∗ 2` of MSNZBFitExt, we have

yI ≈
2`
√
b′

=
2`√

a′ · 2α · (c′)2 · 2−`
=

1
√
a′
·

1
c′
· 2`/2−α/2

and that the output should be scaled with 2δ. We define
the functionality FInvSqrt that computes 1√

x
as done in

the above using the Newton’s method.

Theorem 4. The protocol InvSqrt securely computes
the inverse of the square root functionality FInvSqrt
in the (Fmsnzbfit,Fmod,Fdiv,Fmult)-hybrid model in the
presence of a passive adversary.

Given InvSqrt for computing 1√
x
, and noting that

√
x =

x√
x
, we can easily construct a protocol for computing

√
x, simply by running InvSqrt and multiplying the re-

sult with x. The resulting protocol, Sqrt, is shown in
Protocol 7. Let Fsqrt be the functionality that on input
JaK outputs J

√
aK in which J 1√

a
K is obtained by FInvSqrt.

Theorem 5. The protocol Sqrt securely com-
putes the square root functionality Fsqrt in the

Protocol 5 MSNZBFitExt Sub-protocol for InvSqrt
Functionality: (JbK, Jc′K, JrK)← MSNZBFitExt(JaK)
Input: JaK
Output: (JbK, Jc′K, JrK), where b = b′〈`〉 ∈ Q̂〈`,`〉 and b′ ∈ [1

2 ; 1),
x = b′ · 2e, and r = 0 if e is even, and r = 1 otherwise.

Parameter: `
1: Parties jointly execute steps 1-9 of protocol MSNZBFit.
2: `′ :=

⌊
`
2

⌋
3: [x′i] := [x`+1−i] for 1 ≤ i ≤ `
4: for i = 1 to `′ − 1 do
5: [yi] := [x′2i]⊕ [x′2i+1]

6: if ` is an even number then
7: [y`′] := [x′2`′]⊕ [x′2`′+1]
8: else
9: [y`′] := [x′2`′]

10: [r] := [x′2]⊕ [x′4]⊕ · · · ⊕ [x′
2
⌊
`′
2

⌋]

11: JrK← Fmod([r])
12: Jc′K← FBC([y1], . . . , [y`′])
13: Output (JbK, Jc′K, JrK)

Protocol 6 Inversion of Square Root
Functionality: JzK← InvSqrt(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉

Output: JzK, where z ≈
(

1√
a′

)
〈δ〉

Parameter: (`, I, α, δ), where I is the number of iteration (say,
I = dlog `e) in the computation.

1: (JbK, Jc′K, JrK)← MSNZBFitExt(JaK)
2: Jx1K := 3〈`〉 − JbK
3: Jy1K := Jx1K/2
4: for i = 2 to I do
5: JxiK := 3〈`〉 − (Jyi−1K×` Jyi−1K)×` JbK
6: JyiK := Jxi−1K×`+1 Jyi−1K . Implicit scaling by 1

2

7: Output JyIK · (1 + JrK · (
√

2− 1)) · Jc′K · 2δ−
3
2 `+

α
2

(FInvSqrt,Fdiv,Fmult)-hybrid model in the presence of a
passive adversary.

4.3 Exponential Function

To obtain a fast and highly accurate protocol for the ex-
ponential function, we adopt what we call hybrid table-
lookup/series-expansion technique. It utilizes the table
lookup approach for the large-value part of the input,
in combination with the Taylor series evaluation for its
small-value counterpart. We first recall that the Taylor
series of the exponential function:

expx =
∞∑
i=0

xi

i!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · .

which converges fast for small values of x. To minimize
the value for which we use the above Taylor series, we
separate the input a into three parts:

1. µ: a lower bound for the input

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 756

Protocol 7 Square Root
Functionality: JzK← Sqrt(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉
Output: JzK, where z ≈ (

√
a′)〈δ〉

Parameter: (`, I, α, δ) where I is the number of iterations used
in the computation.

1: Jz′K← InvSqrt(`,I,α,δ)(JaK) . z′ =
(

1√
a′

)
〈δ〉

2: Output JaK · JzK · 2−α

2. b`, . . . , b`−t: bit representation of the t most signifi-
cant bits of b := a− µ

3. bσ: integer representation of (a−µ)−
∑
`−t≤i≤` 2i−αbi

which means that we can compute exp(a) as

exp a =

(∏̀
i=`−t

exp(bi · 2i−α)

)
· exp(bσ) · exp(µ). (7)

Here, α is the input offset and t is a parameter of our
protocol that determines which part of the input we will
evaluate using table lookups, and which part we will
evaluate using a Taylor series. In this product, we eval-
uate exp(µ) locally (as µ is public),

∏`
i=`−t exp(bi · 2i)

using table lookups, and exp(bσ) using the Taylor series.
The taylor series rapidly converge since bσ is made small
due to the subtraction of µ and the value of the t most
significant bits of a.

More specifically, for the table lookup computation,
note that the binary value bi determines whether the
factor exp 2i will included. Hence, by combining bit de-
composition, that allows parties to compute [bi] from
JbK, with the CondAssign protocol using [bi] as the con-
dition, and the values 1 and exp 2i, which are public and
can be precomputed, we obtain an efficient mechanism
for computing

∏`
i=`−t exp(bi · 2i). However, to maintain

high accuracy, the parties will not use exp 2i directly,
but precompute a mantissa fi and exponent 2εi such
that fi · 2εi = exp 2i−α. This allows the parties to com-
pute the product of fi values separately from the prod-
uct of 2εi values, and only combine these in the final step
constructing the output, thereby avoiding many of the
rounding errors that potentially occur in large products
of increasingly larger values.

Lastly, the result is computed as
∏
i fi ·

∏
i 2εi ·

exp aσ. Here, the input and output offsets have to be
taken into account, and the output is adjusted appro-
priately. We define the functionality Fexp such that on
input JaK, ea is computed as done in the above and out-
put JeaK.

Theorem 6. The protocol Exponent securely com-
putes the exponential function functionality Fexp in the

Protocol 8 Exponential Function
Functionality: JzK← Exponent(JaK)
Input: JaK, where a = a′〈α〉 ∈ Q̂〈`,α〉
Output: JzK, where z ≈ (exp a′)〈δ〉
Parameter: (`, I, α, β, δ, µ, t) where I is the number of itera-

tions used in the computation, β is the offset of the lookup
table values, t indicates the lookup table vs Taylor series
threshold, and µ is a lower bound for the input.

1: JbK := JaK− µ〈α〉
2: [b`], . . . , [b`−t]← FBDC(JbK) . We use only t+ 1 MSBs

while FBDC outputs ` bits.
3: JbiK← Fmod([bi]) for i = `, . . . `− t.
4: JbσK := JbK−

∑
`−t≤i≤`

2iJbiK . Value of t LSBs of JbK

5: Parties define fi, εi such that exp 2i−α = fi · 2εi .

Precomputed lookup table values
6: Using Jf ′iK← FCondAssign(1〈β〉, (fi)〈β〉, JbiK), the parties ob-

tain Jf ′iK =
{

(fi)〈β〉 if bi = 1
1〈β〉 otherwise

for i = `, . . . , `− t

7: Using Jε′iK ← FCondAssign(1, 2εi , JbiK), the parties obtain

Jε′iK =
{

2εi if bi = 1
1 otherwise

for i = `, . . . , `− t

8: Jf ′K := Jf ′`K×β . . .×β Jf ′`−tK
9: Jε′K := Jε′`K · . . . · Jε

′
`−tK

10: bσ,0 := 1
11: for i = 1 to I − 1 do
12: Jbσ,iK← Jbσ,i−1K×α JbσK

13: Jb′σK :=
∑

0≤i<I

Jbσ,iK
i!

. Division using Div

14: Output Jf ′K · Jε′K · Jb′σK · expµ · 2δ−β−α

(FCondAssign,Fmod,FBDC,Fdiv,Fmult)-hybrid model in
the presence of a passive adversary.

Satisfying Active Security with Abort. There are
known compilers that convert a passively secure proto-
col to an actively secure one (with abort). The com-
piler [21] and its extension [35] can be applied to Bina-
ry/arithmetic circuit computation, and each step of our
proposed protocols except FBDC, Fmod, and Fdiv is cir-
cuit computation over modulus 2 and p. Therefore, we
can obtain actively secure versions of our protocols com-
puting elementary functions by applying that compiler
on modulus 2 and p in parallel.

4.4 Comparison to Related Works

We compare our invesion/division, Inverse Square-root,
and Exponentiation protocols with the division from
Catrina-Saxena [17], the inverse square root protocol of
Lu et al. [47], and the exponentiation from Aly-Smart[9],
respectively, in Appendix H. In addition, we list the de-

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 757

tailed round complexity and communication cost of all
our protocols in Table 14 in Appendix D.

5 Secure Deep Neural Networks

5.1 Neural Networks

In this paper, we deal with feedforward and convolu-
tional neural networks. A network with two or more hid-
den layers is called a deep neural network, and learning
in such a network is called deep learning.

A layer contains neurons and the strength of the
coupling between neurons and the output of the pre-
vious layer are described by parameters wi. Learning
is a process that iteratively updates the parameters to
obtain the appropriate output.
Layers. There are several types of layers. A fully con-
nected layer is computing the inner product of the in-
put with the parameters. A convolutional layer divides
the input into certain units and processes these in an
overlapping manner. A max-pooling layer computes the
maximum value of (parts of) the input, and discards the
remaining values. A batch normalization layer performs
normalization and an affine transformation of the input.
To normalize an input −→x = (x1, . . . , xn), we compute

xi ←
xi − µ√
σ2 + ε

, (8)

where µ and σ are mean and variance of −→x , and ε is a
small constant.
Activation Function. In a neural network, the ac-
tivation functions of the hidden layer and the output
layer are selected according to purpose.
ReLU Function. A popular activation function for hid-
den layers is the ReLU function defined as ReLU(u) =
max(0, u). Note that this function is not differentiable
(which is typically required for training), and the func-
tion ReLU′(u), outputting 0 if u ≤ 0 and 1 otherwise,
is often used as a substitute for the differentiated ReLU
function.
Softmax Function Classifications for image identifica-
tion commonly use the softmax function softmax(ui)
at the output layer. The softmax function for classifica-
tion into k classes is as follows:

softmax(ui) =
eui∑k−1
j=0 e

uj
=

1∑k−1
j=0 e

uj−ui
. (9)

Optimization. A basic method of parameter update
is stochastic gradient descent (SGD). This method is
relatively easy to implement but has drawbacks such as

slow convergence. and the potential for becoming stuck
at local maxima. To address these drawbacks, optimized
algorithm have been introduced. [59] analyzed eight rep-
resentative algorithms, and Adam [37] was found to be
providing particularly good performance. In fact, Adam
is now used in several machine learning framework [3, 6].

The process of Adam includes computing the itera-
tive value

Wt+1 = Wt −
η√

V̂t+1 + ε
◦ M̂t+1, (10)

where t indicates the iteration number of training,W, V̂ ,
and M̂ are matrices, ◦ denotes the element-wise multi-
plication, and η and ε are parameters.

5.2 Secure Protocols for DNNs

The softmax function, Adam, and batch-normalization
are quite common and popular algorithms for deep neu-
ral network due to their superior performance compared
to alternatives. However, efficient secure protocols have
been elusive due to intractability of computing the ele-
mentary functions they depend on. The softmax func-
tion requires exponentiation and inversion, as shown
in Eq. (9), and Adam and batch-normalization require
the inverse of square roots, as shown in Eq. (10) and
(8). Thus, the softmax function has often been approxi-
mated by a different function [51], which always reduces
accuracy, sometimes significantly [34], and only SGD, an
elemental optimization method is used. Although FAL-
CON realized secure batch-normalization [64], it is not
fully secure because it leaks the magnitude of b = σ2 + ε,
i.e., α such that 2α ≤ b < 2α+1, to compute 1√

b
.

In contrast to related works, our efficient protocols
presented in Section 4 allow us to implement secure
deep neural network using softmax, Adam, and batch-
normalization, as opposed to resorting to approxima-
tions and less efficient learning algorithms. Note that to
ensure stability of softmax, we implement clipping (see
Appendix J).

Besides softmax, Adam, and batch-normalization,
we also require more building blocks to fully implement
training. For matrix multiplication, we apply [21] to
compute the inner products with the same communica-
tion cost of a single multiplication. The ReLU′ function
extracts the sign of the input, and the ReLU function
is obtained by simply multiplying the input with the
output of ReLU′. We repeatedly apply the comparison
protocol [36] to implement secure max-pooling, which
computes the maximum value and argmax (which is re-

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 758

quired in backpropagation). We defer the details to the
full version. See the communication costs in Table 14.

6 Experimental Evaluation

Environment. We implemented our protocols using
p = 261−1, and instantiated FBC, Fmod, and FQT with
the bit-composition, modulus-conversion, and quotient
transfer protocols from [36], respectively. We set the sta-
tistical security parameter for active-with-abort security
to κ = 8.6 The parameters used for the elementary func-
tions as well as Adam are listed in Appendix G. All of
the following experiments were run on a machines with
dual Intel Xeon CPUs (3.50GHz 8 core/ 16 thread) and
756 GB of memory, connected via a Intel X710/X557-
AT 10G Ring network. We artificially limited the net-
work speed to 320Mbps and latency to 40ms when sim-
ulating a WAN setting.
Accuracy. We measured the accuracy of our division
protocol and elementary functions. Note that accuracy
might differ significantly from the used bit precision
(i.e., the bit-length of the input, intermediate, and out-
put values) and in lieu of an implementation specific
theoretical analysis, must be measured.

Firstly, we measured the L1-norm error of our di-
vision protocol using inputs ranging from 1 to 10,000,
obtaining an average-case L1-norm error of 0.335

2t for in-
put with offset t. This shows the obtained output is close
to real-valued division. Secondly, we measured the log-
arithm of L1-norm error for our elementary functions,
which corresponds to the number of most significant bits
equal to the real-valued output. All our protocols except
exponentiation achieved 26 ∼ 29-bit accuracy, while ex-
ponentiation achieved 23 ∼ 25-bit accuracy. Hence, our
implementations achieve at least 23-bit accuracy. The
full details of this is deferred to the full version.

This result highlights that our implementations
achieve accuracy corresponding to single-precision real
number operations, which is the commonly used stan-
dard for ML algorithms in the clear e.g., TensorFlow
[6] and PyTorch [5] are all based on single-precision real
number computations, and especially recommended for

6 While this parameter is relatively small compared to a some-
what more standard parameter like κ = 40 [11], an active adver-
sary will have only a single chance to cheat for the implemented
techniques [21, 35] and an honest party can detect this with
probability over 99%.

Security Setting Time [s] Accuracy [%]

TensorFlow - - 1.19 95.54
Ours Passive LAN 117 95.64
Ours Active LAN 570 95.37
Ours Passive WAN 4, 537 95.58
Ours Active WAN 11, 516 95.61

Table 5. Measured running time for training 3DNN on MNIST :
TensorFlow (which is in plaintext) vs. Our secure training.

softmax in the output layer to avoid numeric issues [4].
That is, our protocols allows ML algorithms to be se-
curely implemented without degrading training accu-
racy compared to plaintext performance.

6.1 Secure Training of DNNs

Network Architectures. We consider three net-
works in our experiments: (1) 3DNN, a simple 3-layer
fully-connected network introduced in SecureML [51]
and used as a benchmark for privacy preserving ML,
(2) AlexNet, the famous winner of the 2012 ImageNet
ILSVRC-2012 competition [41] and a network with more
than 60 million parameters, and (3) VGG16, the runner-
up of the ILSVRC-2014 competition [61] and a network
with more than 138 million parameters. While the first
network is typically used as a performance benchmark
for privacy preserving ML, measurements with the lat-
ter two networks provide insight into the performance
when using larger more realistic networks.
Datasets. We use two datasets: (1) MNIST [44], a
collection of 28 x 28 pixel images of hand-written digits
typically used for benchmarks, and (2) CIFAR-10 [40], a
collection of colored 32 x 32 pixel images picturing dogs,
cats, etc. We used MNIST in combination with 3DNN
for benchmarking, and CIFAR-10 in combination with
the larger networks AlexNet and VGG16.
Comparison to Plaintext. As a baseline, we mea-
sured the performance of TensorFlow when training
3DNN on MNIST using ADAM in the clear, and com-
pared the running time and training accuracy with our
framework. The result is shown in Table 5.

As shown in Table 5, the obtained training accuracy
is essentially identical, which is expected as our frame-
work allows training to be implemented “as is” without
any simplifications (the minor difference in training ac-
curacy is due to different initial randomness). For com-
pleteness, we additionally compare convergence of Ten-
sorFlow and our training in Appendix I. The running
time of training with our framework is still two orders
of magnitude slower in the LAN setting and four orders

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 759

AlexNet VGG16
#epochs 1 2 3 4 5 1 2 3 4 5

TensorFlow 56.49 62.46 64.70 66.43 66.09 34.40 50.82 59.00 66.99 71.67
Ours 55.51 61.25 64.83 67.23 65.71 26.60 50.68 59.59 64.77 72.29

Table 6. Measured accuracy of AlexNet and VGG16 on CIFAR-
10: TensorFlow (plaintext) vs. Our secure training.

of magnitude slower in the WAN setting, compared to
training in the clear.

Additionally, to verify the performance of our frame-
work on larger networks, we measured the obtained ac-
curacy when training AlexNet and VGG16 on CIFAR-
10 after 1 to 5 epochs, and compared this to training
in the clear with TensorFlow. The result is shown in
Table 6. As can be seen from the table, our frame-
work achieves performance consistent with training in
the clear. We highlight that when considering only one
epoch, the accuracy of large networks such as VGG16,
which has more than 100 million parameters, becomes
highly dependent on the initial randomized state. The
difference between TensorFlow and our framework in
the corresponding table entry is consistent with this,
and we note that after just 2 epochs, the accuracy con-
verges towards similar values. For a visual representa-
tion of the variance of accuracy for training in the clear
for AlexNet and VGG16, see Figure 1a and Figure 1b.
Comparison of ADAM and SGD. The main con-
tribution of our framework is to enable advanced ML
algorithms, such as ADAM, to be implemented securely
and efficiently as part of a PPML system, without re-
sorting to simplifications of the underlying ML algo-
rithms or compromising on training accuracy. To illus-
trate the advantage of this approach, we measure the
running time required to achieve roughly 95% accuracy
of the 3DNN network on the MNIST dataset, when us-
ing our framework to implement both ADAM and SGD,
respectively. Note that in comparison to ADAM, SGD
is a much simpler optimization algorithm not requiring
most of the functionalities implemented by our proto-
cols in Section 4 (exponentiation being an exception,
assuming a proper softmax function is implemented).
For this reason, almost all of the related works in the
PPML literature is based on SGD, as developing effi-
cient MPC algorithms for the required functionalities
is a much simpler task, and some works (e.g., [50, 64])
even further simplifies SGD (e.g., replaces softmax with
a ReLu-based alternative in a bid to further increase effi-
ciency. Note that our measurements are for the standard
SGD with full 23-bit accuracy. The measured running
times and obtained accuracy is shown in Table 7.

The results show an advantage of a factor of ap-
proximately 7 ∼ 10 in terms of running time when us-

Security Setting Epochs Time [s] Accuracy [%]

SGD Passive LAN 15 855 94.04
ADAM Passive LAN 1 117 95.64
SGD Active LAN 15 4, 725 92.28
ADAM Active LAN 1 570 95.37
SGD Passive WAN 15 39, 310 93.82
ADAM Passive WAN 1 4, 537 95.58
SGD Active WAN 15 86, 953 92.09
ADAM Active WAN 1 11, 516 95.61

Table 7. Measured running time for training 3DNN on MNIST
(ADAM vs SGD) using our protocols.

ing ADAM, while ADAM still obtains a higher training
accuracy. This clearly illustrates that the combination
of our framework that allows efficient evaluation of the
more complex functionalities required by ADAM, and
the superior training obtained by using ADAM, has the
potential to significantly outperform the approach of ob-
taining an efficient PPML system by simplifying the
ML component and using less complex but very effi-
cient MPC protocols. For more complex networks than
3DNN, performance measurements are available below.
Comparison to Related Works. For experimen-
tal comparison with related work, we will focus on
the state-of-the-art three-party protocols: FALCON [64]
and the three-party Fantastic Four (3FF) [25]. We addi-
tionally include the MP-SPDZ implementation (SPDZ)
from [25] of the SGD variant Momentum. Lastly, we
will discuss our results in relation to CRYPTGPU [62],
which is implemented on and optimized for GPUs.

Concretely, in our experiments, we ran the FAL-
CON, 3FF and SPDZ code in the same environment and
measured the execution time. While FALCON is imple-
mented for 3DNN and the larger networks AlexNet and
VGG16, [25] does not consider the latter two, and we
hence only compare against 3FF and SPDZ on 3DNN.
Note that 3FF provides active security, whereas SPDZ is
only passively secure, and we hence only compare with
these in the relevant settings. We note that the FAL-
CON code implements the online phase only, and hence,
the measurements do not include the corresponding of-
fline phase, which would make a significant contribution
to the total running time. Lastly, the FALCON code
does not update the parameters of the model, which
makes the accuracy of the obtained model unclear. In
contrast, the measurements for 3FF, SPDZ and our pro-
tocols are for the total running time and a fully trained
model.
Results for 3DNN. We measured the running time
and accuracy for training 3DNN on the MNIST dataset
for passive and active security, in the LAN and WAN
settings. The results for our protocols, FALCON, SPDZ,

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 760

Security/NW Methods Epochs Time [s] Accuracy [%]

FALCON [64]
Passive/LAN

SGD 15 780 -
SPDZ [25] Mnt 2 177 95.17
Ours Adam 1 117 95.64
FALCON [64]

Active/LAN
SGD 15 2, 355 -

3FF [25] Mnt 2 1, 879 95.43
Ours Adam 1 570 95.37
FALCON [64]

Passive/WAN
SGD 15 16, 110 -

SPDZ [25] Mnt 2 8, 479 95.17
Ours Adam 1 4, 537 95.58
FALCON [64]

Active/WAN
SGD 15 37, 185 -

3FF [25] Mnt 2 48, 328 94.76
Ours Adam 1 11, 516 95.61

Table 8. Comparison of training time of 3DNN over the MNIST
dataset for FALCON, 3FF, SPDZ and Ours.

Security MNIST
Per epoch Epochs Total

[GB] [GB]

FALCON [64] Passive 3.28 15 49.15
SPDZ [25] Passive 26.59 2 53.18
Ours Passive 92.17 1 92.18
FALCON [64] Active 18.02 15 270.34
3FF [25] Active 422.20 2 844.40
Ours Active 387.69 1 387.69

Table 9. Communication cost for training of 3DNN on MNIST.
(Note that, for [64], this is only the online cost.)

and 3FF can be seen in Table 8. The corresponding
communication cost is shown in Table 9 (the cost for
FALCON is obtained from [64], whereas the cost for
SPDZ, 3FF and ours is measured in our environment).
The number of epochs for FALCON, 3FF and SPDZ
were chosen to obtain similar accuracy of the trained
network7. Compared to FALCON, ours is between 3.2
to 6.7 times faster, depending on the setting. We again
highlight that these results are achieved despite the ad-
vantages provided to FALCON in this comparison (e.g.
measuring online time only, etc.). Compared to 3FF and
SPDZ, which both are based on the more advanced SGD
variant Momentum, ours is 1.5 to 4.2 times faster to
reach the same accuracy of the trained network. We
note that FALCON has the lowest total communication
overhead; the lower overall running time of our protocols
is due to more efficient computation and interaction.
Results for AlexNet and VGG16. In FALCON [64],
the total running time for training on AlexNet and
VGG16 was estimated through extrapolation since these
networks require a significant amount of computation
for training, even in the clear. We follow this method

7 FALCON does not return a fully trained model, but 15 epochs
is suggested in the paper [64], and plaintext training confirms
that this yields an accuracy of 92% ∼ 94%. The accuracy for one
epoch of 3FF and SPDZ was measured to 93.68% and 93.46%,
respectively.

Security Setting AlexNet [s] VGG16 [s]

FALCON [64] Passive LAN 10, 892 523, 127
Ours Passive LAN 3, 139 43, 150
FALCON [64] Active LAN 41, 537 2, 051, 751
Ours Active LAN 15, 021 161, 481
FALCON [64] Passive WAN 23, 489 575, 699
Ours Passive WAN 49, 833 347, 928
FALCON [64] Active WAN 75, 838 2, 240, 515
Ours Active WAN 159, 781 1, 293, 226

Table 10. Measured running time per epoch for training AlexNet
and VGG16 on CIFAR-10.

to estimate the running time of ours and FALCON (re-
evaluated in our environment) in the same way.

In Table 10, we show the measured running time
to complete a single epoch for AlexNet and VGG16 us-
ing the CIFAR-10 dataset, both for passive and active
security, as well as in the LAN and WAN settings. Ta-
ble 12 includes the corresponding communication over-
head, where the overhead of our protocol is measured,
but the overhead for FALCON is based on the figures
from [64]. Note, however, that the time to complete a
single epoch is not indicative of the overall performance
difference between FALCON and our framework, as the
underlying optimization methods are different, and re-
quire a different number of epochs to train a network
achieving a certain prediction accuracy.

To determine the number of epochs needed for
Adam (implemented in our framework) and SGD (im-
plemented in FALCON), we ran Adam and SGD for
AlexNet and VGG16 on CIFAR-10 in the clear, and
measured the achieved accuracy. The results are shown
in Fig. 1. For AlexNet, we see that the accuracy con-
verges towards 60% ∼ 73%, with Adam achieving a max-
imum of 72.10% and SGD a maximum of 61.22% in our
test. For both AlexNet and VGG16, we see that Adam
significantly outperforms SGD, and after relatively few
epochs, achieves an accuracy not obtained by SGD, even
after 60 epochs. We note that achieving an accuracy ex-
ceeding 60% on AlexNet requires 2 and 19 epochs for
Adam and SGD, respectively, whereas exceeding an ac-
curacy of 70% on VGG16 requires 5 and 20 epochs, re-
spectively.

Based on the observations above, we estimate the
running time of achieving an accuracy of 60% for
AlexNet and 70% for VGG16, for active/passive secu-
rity in the LAN/WAN setting. The result is shown in
Table 11. We see that in the LAN setting, the total
running time of our framework outperforms the online
phase of FALCON with a factor of 26 ∼ 33 for AlexNet
and 48 ∼ 51 for VGG16, depending on the security set-
ting, whereas in the WAN setting, the factors are about

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 761

Security Setting AlexNet [h] VGG16 [h]

FALCON [64] Passive LAN 57 2, 906
Ours Passive LAN 2 60
FALCON [64] Active LAN 219 11, 398
Ours Active LAN 8 224
FALCON [64] Passive WAN 124 3, 198
Ours Passive WAN 28 483
FALCON [64] Active WAN 400 12, 447
Ours Active WAN 88 1, 796

Table 11. Estimated running time for training of AlexNet (60%
accuracy) and VGG16 (70% accuracy) on CIFAR-10.

Security AlexNet VGG16
Per epoch Epochs Total Per epoch Epochs Total

[GB] [GB] [GB] [GB]

FALCON Passive 247 19 4, 693 5, 640 20 112, 800
Ours Passive 2, 787 2 5, 574 26, 382 5 131, 910
FALCON Active 1, 481 19 28, 139 22, 769 20 455, 380
Ours Active 12, 092 2 24, 184 112, 220 5 561, 100

Table 12. Estimated total communication cost for training of
AlexNet (60% accuracy), VGG16 (70% accuracy) on CIFAR-10

4 and 7, respectively. In Table 12, the total communi-
cation cost to train both networks is shown, estimated
based on the per epoch cost.

The above comparison illustrates the advantage of
the approach taken in our framework; by constructing
efficient (and highly accurate) protocols that allow ad-
vanced ML algorithms such as Adam to be evaluated,
despite these containing “MPC-unfriendly functions”,
we gain a significant advantage in terms of overall per-
formance compared to previous works like FALCON,
that attempt to achieve efficiency by simplifying the
underlying ML algorithms, and optimizing the evalua-
tion of these. As shown, the advantage when considering
larger more realistic networks can in some cases be sig-
nificantly more pronounced than suggested by the eval-
uation results on benchmark networks such as 3DNN,
which is illustrated by the obtained 48 times faster eval-
uation of VGG16 in the LAN setting. We again highlight
that this is obtained despite the advantages offered to
FALCON in the comparison.
Comparison to CRYPTGPU. The CRYPTGPU
[62] framework is optimized for and runs entirely on
GPUs, whereas our framework is implemented on stan-
dard CPUs. Due to this difference in underlying archi-
tecture, a direct one-to-one comparison on the same
hardware is not possible. However, [62] reports on
the running time for a single iteration of training for
AlexNet and VGG16 on CIFAR-10 using NVIDIA V100
Tensor Core GPUs [1], which we can use as a basis for a
comparison of absolute running times. Specifically, from
[62] we can derive that the running time of CRYPT-
GPU per epoch for AlexNet and VGG16 is 1364s and
22763s, respectively, whereas the running time of our im-

(a) AlexNet

(b) VGG16

Fig. 1. Accuracy of AlexNet and VGG16 trained with Adam and
SGD on CIFAR-10.

plementation is 3139s and 43150s (see Table 10). While
this corresponds to a factor of 1.8 ∼ 2.3 slower running
time per epoch for our framework, we implement ADAM
whereas CRYPTGPU implements the simpler SGD op-
timization. Hence, estimating the total running time to
train AlexNet and VGG16 to 60% and 70% accuracy,
respectively, as done above in the comparison to FAL-
CON, we obtain that CRYPTGPU requires 7 and 126
hours, whereas our framework requires 2 and 60 hours,
respectively, corresponding to a factor of 2.1 ∼ 4.1 faster
running time. This is a somewhat surprising result, as
GPUs are capable of providing significantly better per-
formance for highly paralellizable task such as CNN
training, and will in plaintext significantly outperform
CPUs. The NVIDIA V100 GPU in particular is a pow-
erful chip optimized to accelerate AI and high perfor-
mance computing, providing performance equivalent to
9 ∼ 93 dual Xeon CPUs depending on the chosen bench-
mark [2]. It remains an interesting open question what
performance our framework can achieve if ported to and
optimized for GPUs.

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 762

Acknowledgements
We would like to thank the reviewers of PETS 2022
for their thoughtful comments and efforts to improve
our manuscript. We also thank Daichi Takenouchi for
his insightful comments and experimental support. This
work was partially supported by JST CREST Grant
Number JPMJCR19F6, JST AIP Acceleration Research
JPMJCR22U5, and JSPS KAKENHI Grant Number
19H01109.

References
[1] NVIDIA V100 Tensor Core GPU.

https://www.nvidia.com/en-us/data-center/v100/.
[2] NVIDIA V100 GPU Benchmarks.

https://developer.nvidia.com/hpc-application-performance.
[3] keras. https://keras.io/.
[4] Mixed precision. https://www.tensorflow.org/guide/mixed_-

precision.
[5] Pytorch. https://pytorch.org/.
[6] Tensorflow. https://www.tensorflow.org/.
[7] Training with mixed precision.

https://docs.nvidia.com/deeplearning/performance/mixed-
precision-training/index.html.

[8] N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and
A. Gascón. QUOTIENT: Two-party secure neural network
training and prediction. In ACM CCS 2019, pp. 1231–1247.

[9] A. Aly and N. P. Smart. Benchmarking privacy preserving
scientific operations. In ACNS 19, pp. 509–529.

[10] T. Araki, A. Barak, J. Furukawa, M. Keller, Y. Lindell,
K. Ohara, and H. Tsuchida. Generalizing the SPDZ com-
piler for other protocols. In ACM CCS 2018, pp. 880–895.

[11] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Op-
timized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In 2017 IEEE
Symposium on Security and Privacy, pp. 843–862, 2017.

[12] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara.
High-throughput semi-honest secure three-party computa-
tion with an honest majority. In ACM CCS 2016, pp. 805–
817, 2016.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In 20th ACM STOC, pp.
1–10. ACM Press, May 1988.

[14] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. Fast
homomorphic evaluation of deep discretized neural networks.
In CRYPTO 2018, Part III, pp. 483–512, 2018.

[15] M. Byali, H. Chaudhari, A. Patra, and A. Suresh. Flash:
Fast and robust framework for privacy-preserving machine
learning. In PoPETs 2020, pp. 459 – 480.

[16] O. Catrina and S. de Hoogh, Improved primitives for secure
multiparty integer computation. SCN, 2010, pp. 182–199.

[17] O. Catrina and A. Saxena. Secure computation with fixed-
point numbers. In FC 2010, pp. 35–50.

[18] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tri-
pathi. EzPC: Programmable, efficient, and scalable secure
two-party computation for machine learning. EuroS&P 2019:
496-511

[19] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. AS-
TRA: high throughput 3pc over rings with application to
secure prediction. In CCSW@CCS 2019, pp. 81–92.

[20] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Efficient
4pc framework for privacy preserving machine learning. In
NDSS 2020.

[21] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi,
Y. Lindell, and A. Nof. Fast large-scale honest-majority
MPC for malicious adversaries. In CRYPTO 2018, pp. 34–
64.

[22] K. Chida, K. Hamada, D. Ikarashi, R. Kikuchi, and
B. Pinkas. High-throughput secure AES computation. In
WAHC@CCS 2018, pp. 13–24, 2018.

[23] R. Cramer, I. Damgård, and Y. Ishai. Share conversion,
pseudorandom secret-sharing and applications to secure
computation. In TCC 2005, pp. 342–362, 2005.

[24] A. Dalskov, D. Escudero, and M. Keller. Secure Evaluation
of Quantized Neural Networks. Proc. Priv. Enhancing Tech-
nol.,pp. 355–375, 2020.

[25] A. Dalskov, D. Escudero, and M. Keller. Fantastic four:
Honest-majority four-party secure computation with mali-
cious security. In USENIX Security 2021, pp. 2183–2200.

[26] I. Damgård and J. B. Nielsen. Scalable and unconditionally
secure multiparty computation. In CRYPTO 2007, pp. 572–
590, 2007.

[27] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS
and fact-track multiparty computations with applications to
threshold cryptography. In PODC, pp. 101–111, 1998.

[28] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets: Applying neu-
ral networks to encrypted data with high throughput and
accuracy. In ICML 2016, pp. 201–210.

[29] O. Goldreich. The Foundations of Cryptography - Volume 1,
Basic Techniques. Cambridge University Press, 2001.

[30] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game or A completeness theorem for protocols with
honest majority. In 19th ACM STOC, pp. 218–229, 1987.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR 2016, pp. 770–778.

[32] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme re-
alizing general access structure. In Proceedings IEEE Globe-
com ’87, pp. 99–102. IEEE, 1987.

[33] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
GAZELLE: A low latency framework for secure neural net-
work inference. In USENIX Security 2018, pp. 1651–1669.

[34] M. Keller and K. Sun. Effectiveness of mpc-friendly softmax
replacement, 2020.

[35] R. Kikuchi, N. Attrapadung, K. Hamada, D. Ikarashi,
A. Ishida, T. Matsuda, Y. Sakai, and J. C. N. Schuldt. Field
extension in secret-shared form and its applications to effi-
cient secure computation. In ACISP 19, pp. 343–361, 2019.

[36] R. Kikuchi, D. Ikarashi, T. Matsuda, K. Hamada, and
K. Chida. Efficient bit-decomposition and modulus-
conversion protocols with an honest majority. In ACISP 18,

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 763

volume 10946 of LNCS, pp. 64–82, 2018.
[37] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In 3rd International Conference on Learning
Representations, ICLR 2015.

[38] H. Kitai, J. P. Cruz, N. Yanai, N. Nishida, T. Oba, Y. Un-
agami, T. Teruya, N. Attrapadung, T. Matsuda, and
G. Hanaoka. MOBIUS: model-oblivious binarized neural
networks. IEEE Access, 7:139021–139034, 2019.

[39] N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT:
super-fast and robust privacy-preserving machine learning.
USENIX Security Symposium 2021: 2651-2668

[40] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset,
2014.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. Com-
mun. ACM, 60(6):84–90, 2017.

[42] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma. CrypTFlow: Secure TensorFlow inference.
In 2020 IEEE Symposium on Security and Privacy, pp. 336–
353. IEEE Computer Society Press, May 2020.

[43] S. Laur, J. Willemson, and B. Zhang. Round-efficient oblivi-
ous database manipulation. In ISC, pp. 262–277, 2011.

[44] Y. LeCun, C. Cortes, and C. Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010.

[45] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural
network predictions via MiniONN transformations. In ACM
CCS 2017, pp. 619–631, 2017.

[46] Q. Lou, B. Feng, G. C. Fox, and L. Jiang. Glyph: Fast and
accurately training deep neural networks on encrypted data.
In NeurIPS 2020.

[47] W. Lu, Y. Fang, Z. Huang, C. Honge, C. Chen, H. Qu,
Y. Zhou, and K. Ren. Faster Secure Multiparty Computa-
tion of Adaptive Gradient Descent. In PPMLP 2020.

[48] L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient
methods with dynamic bound of learning rate. In ICLR
2019.

[49] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A.
Popa. Delphi: A cryptographic inference service for neural
networks. In USENIX Security 2020, pp. 2505–2522, 2020.

[50] P. Mohassel and P. Rindal. ABY3: A mixed protocol frame-
work for machine learning. In CCS 2018, pp. 35–52, 2018.

[51] P. Mohassel and Y. Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Sympo-
sium on Security and Privacy, pp. 19–38, 2017.

[52] K. Nandakumar, N. K. Ratha, S. Pankanti, and S. Halevi.
Towards deep neural network training on encrypted data. In
CVPR Workshops 2019, pp. 40–48.

[53] A. Patra and A. Suresh. BLAZE: blazing fast privacy-
preserving machine learning. In NDSS 2020.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[55] R. Rachuri and A. Suresh. Trident: Efficient 4pc framework
for privacy preserving machine learning. In NDSS 2020.

[56] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter,
and F. Koushanfar. XONN: XNOR-based oblivious deep

neural network inference. In USENIX Security 2019, pp.
1501–1518.

[57] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar. Chameleon: A hybrid se-
cure computation framework for machine learning applica-
tions. In ASIACCS 18, pp. 707–721, 2018.

[58] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure:
scalable provably-secure deep learning. In Annual Design
Automation Conference, DAC 2018, pp. 2:1–2:6, 2018.

[59] S. Ruder. An overview of gradient descent optimization al-
gorithms. CoRR, abs/1609.04747, 2016.

[60] A. S. Shamsabadi, A. Gascón, H. Haddadi, and A. Caval-
laro. Privedge: From local to distributed private training and
prediction. IEEE Transactions on Information Forensics and
Security, 15:3819–3831, 2020.

[61] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR 2015.

[62] S. Tan, B. Knott, Y. Tian, and D. J. Wu. Cryptgpu: Fast
privacy-preserving machine learning on the gpu. 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1021–1038.

[63] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-party
secure computation for neural network training. PoPETs,
2019(3):26–49, July 2019.

[64] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mit-
tal, and T. Rabin. FALCON: Honest-majority maliciously
secure framework for private deep learning. Proceedings on
Privacy Enhancing Technologies, 2021(1):188 – 208, 2021.

[65] H. W. H. Wong, J. P. K. Ma, D. P. H. Wong, L. K. L. Ng,
S. S. M. Chow. Learning Model with Error — Exposing the
Hidden Model of BAYHENN. In IJCAI 2020, pp. 3529–3535.

[66] P. Xie, B. Wu, and G. Sun. Bayhenn: Combining bayesian
deep learning and homomorphic encryption for secure dnn
inference. Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, Aug 2019.

[67] A. C.-C. Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pp. 160–164, 1982.

[68] Q. Zhang, C. Xin, and H. Wu. Privacy-preserving deep
learning based on multiparty secure computation: A sur-
vey. IEEE Internet of Things Journal, 8(13):10412–10429,
2021.

A Comparison Table
We provide a comprehensive comparison among 3-party
PPML systems supporting DNN in Table 13. Note that
this list is by no means exhaustive; we refer to more
related works in a survey paper of [68].

B Active Security for Division
Protocol 9 shows our actively secure division protocol.

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 764

Table 13. Comparison among various 3-party privacy-preserving ML systems.

Pr
ed
ic
tio

n

Tr
ai
ni
ng

B
as
ic

B
at
ch
-N

or
m

Ad
va
nc
e

Se
m
i-h

on
es
t

M
al
ic
io
us

H
E

G
C

SS LA
N

W
A
N

Sm
al
l

La
rg
e

Si
m
pl
e

Co
m
pl
ex

System Secure Supported Threat Based LAN/ Evaluation Network

Capability Algorithms Model Techniques WAN Dataset Architectures

Theoretical metric Evaluation metric

3PC

ABY3 [50] # # # G# # #
SecureNN [63] G# # G# # # # #
CryptFlow [42] # # # # # # G#
QuantizedNN [24] # G# # # # # G#
ASTRA [19] # # # # # #
BLAZE [53] G# # # # # #
FALCON [64] # # #
CRYPTGPU [62] # # # # #
FantasticFour [25] G# # # # # # G#
Lu et al. [47] G# # G# # # # # #
This work # #

This table is inspired by Table 1 in [64]. “Basic” for Supported ML Algorithms refers to more basic ones such as linear operations, convolution, ReLU, Maxpool,
and/or SGD optimizer. “Advance” refers to advance optimizers, namely, ADAM (considered in this work) and AMSGrad (in Quotient). HE, GC, SS refer
to homomorphic encryption, garbled circuit, and secret sharing, respectively. “Small” for Evaluation Dataset refers to MNIST, except for BLAZE, which uses
Parkinson disease dataset (its dimension is similar to MNIST) “Large” refers to larger datasets such as the well-known CIFAR-10 in particular (in all the systems
that tick except QuantizedNN), or TinyImageNet (in CryptFlow and QuantizedNN, and partially in Falcon). “Simple” for Network Architectures refers to simple
neural networks such as the basic 3-layer DNN (3DNN) from SecureML in particular, or other slightly different small networks from [45, 63]. “Complex” refers
to more complex networks such as the well-known AlexNet and VGG-16 in particular (both are considered in Falcon and this work). indicates that such a
system support a feature, # indicates that such a system does not so support so, G# refers to fair comparison being difficult due to various reasons; e.g., , [47]
provided essentially only an invert square root protocol (but no details on other ML algorithms). We refer to the full version for explanations on other G#’s.

Protocol 9 Actively Secure Division by Public Value
Functionality: JcK← DivMal

(2,3)(JaK, d)
Input: JaK and d, where a and d are multiples of 4
Output: JcK, where c ≈ a

d

1: Let αp and rp be p = αpd+ rp, where 0 ≤ rp < d.
2: JqK← FQT(JaK)
3: z := 1 if rp ≥ d/2 or z := 0 otherwise.
4: Let ai be a sub-share of JaK, i.e., a1 + a2 + a3 = a mod p

5: for 1 ≤ j ≤ 3 do
6: Pj and Pj+1 compute

bj :=
{
aj + (d− rp) + (d− rp)/2 in N if j = 0
aj otherwise

7: Pj and Pj+1 set b′j :=
{
bj/d+ 1 if bj

d
− bj/d ≥ d

2
bj/d otherwise

8: Jb′Ki := (b′i, b
′
i+1) for i = 1, 2, 3

9: Output Jb′K− (αp + z)JqK− 1

C Efficiency of Division Protocol
We obtain the concrete efficiency of our protocols by
considering efficient instantiations of the required build-
ing blocks. The quotient transfer protocol in [36] re-
quires 2 bits communication and 1 round, besides a sin-
gle call of Fmod. The modulus conversion protocol in
[36] and ConvertToRep require 3|p|+ 3 bits and 2|p| bits
of communication, respectively, and both 1 communi-
cation round. Furthermore, we can reduce a round re-
quired in Protocol 2 by parallel execution of FQT and

ConvertToRep. Consequently, instantiating FQT (and
Fmod used in QT internally) by the protocols in [36],
Protocol 1 and 2 require 3|p| + 5 and 5|p| + 5 bits of
communication and 2 communications rounds in total.

D Communication Complexities
We list the communication and round complexities of
building blocks and proposed protocols in Table 14.

E Quotient Transfer Protocol
We describe the quotient transfer protocols for J·K and
〈〈·〉〉 proposed in [36]. The key observation is that if we
use an odd prime and the secret’s LSB is zero, the ad-
dition of the truncated shares’ LSBs corresponds to q.

In the presence of passive adversaries, we use 〈〈a〉〉
as an input of the quotient transfer protocol. Because
〈〈a〉〉 consists of two sub-shares, the quotient q is 0 or 1
and the (single) LSB must be 0.

In the presence of active adversaries, we use JaK as
an input of the quotient transfer protocol. Because JaK
consists of three sub-shares, the quotient q is 0, 1, or 2,
and the second LSBs must be 0s to contain 2. The step

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 765

Table 14. Communication costs and round complexities of our protocols (and previous building blocks we use).

Passive Active
Communication cost (bits) #Round Communication cost (bits) #Round

Previous building blocks
Mult in J·K [22] 3 |p| 1 6 |p| 1
Mult in [·] [22] 3 1 3(κ+ 1) 1
Modulus conversion [36] (cf. §F) 3 |p|+ 3 3 15 |p|+ 6 4
Bit decomposition [36] (cf. §F) 5`+ 2 `+ 1 9`κ+ 6`+ 9κ+ 3 `+ 2
Bit composition [10] (cf. §F) 6 |p|+ 6`+ 9 `+ 3 30 |p|+ 15`κ+ 6`− 15κ+ 9 2`+ 2
Quotient transfer [36] (cf. §E) 3 |p|+ 5 4 30 |p|+ 21κ+ 15 5

Our protocols
Division (public div) 5 |p|+ 5 4 30 |p|+ 21κ+ 15 5
Real-number mult. 8 |p|+ 5 5 36 |p|+ 21κ+ 15 6
MSNZBFit 9 |p|+ 14`+ 8 3`+ 4 36 |p|+ 27`κ+ 15`− 9κ+ 9 4`+ 4
MSNZBFitExt 18 |p|+ 14`+ 6

⌊
`
2

⌋
+ 20 3`+ 4 81 |p|+ 27`κ+ 15`− 24κ 4`+ 4

+3(5κ+ 2)
⌊
`
2

⌋
+ 24

Inversion 17 |p|+ 14`+ 13 3`+ 5I + 4 72 |p|+ 27`κ+ 15`+ 12κ+ 24 4`+ 6I + 4
+2(I − 1)(8 |p|+ 5) (=: Cinv) +6(I − 1)(12 |p|+ 7κ+ 5) (=: C′inv)

Inv square root 34 |p|+ 14`+ 6
⌊
`
2

⌋
+ 30 3`+ 10I − 1 153 |p|+ 27`κ+ 15`+ 18κ+ 3(5κ+ 2)

⌊
`
2

⌋
4`+ 12I − 2

+3(I − 1)(8 |p|+ 5) (=: Cinvsqrt) +3(I − 1)(36 |p|+ 21κ+ 15) + 54 (=: C′invsqrt)
Exponentiation 19 |p|+ 5`+ t(14 |p|+ 8) `+ 5 dlog (t+ 1)e) + 14 87 |p|+ 9`κ+ 6`+ 51κ+ t(51 |p|+ 21κ+ 21) `+ 18

+(I − 1)(8 |p|+ 5) + 13 (=: Cexp) +(I − 1)(36 |p|+ 21κ+ 15) + 36 (=: C′exp) +6 dlog (t+ 1)e
ReLU 5`+ 6 |p|+ 5 `+ 5 9`κ+ 6`+ 9κ+ 21 |p|+ 9 `+ 7
Derivative of ReLU 5`+ 3 |p|+ 5 `+ 4 9`κ+ 6`+ 9κ+ 15 |p|+ 9 `+ 6
Max pooling (n− 1)(9 |p|+ 5`+ 10) (`+ 7) logn (n− 1)(27 |p|+ 9`κ+ 18κ+ 6`+ 15) (`+ 9) logn
Softmax KCexp + Cinv 4`+ 5I + 5 dlog (t+ 1)e+ 18 KC′exp + C′inv 5`+ 6I + 6 dlog (t+ 1)e+ 22
Batch-normalizaiton m(8 |p|+ 5) + 5 |p|+ 5 + Cinvsqrt 3`+ 10I + 8 m(36 |p|+ 21κ+ 15) + 30 |p|+ 21κ+ 15 + C′invsqrt 4`+ 12I + 9

` is the input bit length, p is a prime for share domain Zp, I is # of iterations, κ is a statistical security parameter for active security
(assume |p| > κ), K is the number of classes, m is a batch size, t is the lookup table vs Taylor series threshold, and n is the vector size.

Protocol 10 Quotient Transfer for 〈〈·〉〉
Functionality: 〈〈q〉〉 ← QT(〈〈a〉〉)
Input: 〈〈a〉〉 where a is a multiple of 2.
Output: 〈〈q〉〉 where 〈〈a〉〉1 + 〈〈a〉〉2 = a+ qp

1: P0 and P1 secret-share LSBs of 〈〈a〉〉1 and 〈〈a〉〉2 in modulo
2, respectively. Let them be [〈〈a〉〉(1)

1] and [〈〈a〉〉(1)
2].

2: [q] := [〈〈a〉〉(1)
1]⊕ [〈〈a〉〉(1)

2].
3: JqK← Fmod([q])
4: 〈〈q〉〉 ← ConvertToAdd(JqK)
5: Output 〈〈q〉〉

3 and the last term of step 4 come from the fact that the
carry of a1, a2, a3 is (a1⊕a3)(a2⊕a3)⊕a3. This protocol
is secure against an active adversary using a general
compiler, such as [21], to compute multiplication. Note,
in the step 1, the “share of sub-shares” can be generated
locally. For details, see Section 4.4 in [36].

F Conversion Protocols
In the following, we describe the used bit-composition,
bit-decomposition, and modulus conversion protocols.

The bit-composition protocol is obtained by mod-
ifying the protocol [10] designed to work for values in
Z2` to be applicable to values in Zp. Here, the main
difference lie in how the `-th bit carry is handled. The
resulting protocol is shown in Protocol 12. In the proto-
col, Carry denotes an algorithm that on input [x] outputs
[y], where y is the carry obtained by addition of the sub-

Protocol 11 Quotient Transfer for J·K
Functionality: JqK← QT(JaK)
Input: JaK where a is a multiple of 4.
Output: JqK where a1 + a2 + a3 = a+ qp

1: The parties locally generate shares of the second LSBs of
a1, a2, and a3 in modulo 2, respectively. Let them be [a(1)

1],
[a(2)

1], [a(1)
2], [a(2)

2], [a(1)
3], and [a(2)

3].
2: [q1] := [a(1)

1]⊕ [a(1)
2]⊕ [a(1)

3].
3: [c]← ([a(1)

1]⊕ [a(1)
3]) · ([a(1)

2]⊕ [a(1)
3])⊕ [a(1)

3].
4: [q2] := [a(2)

1]⊕ [a(2)
2]⊕ [a(2)

3]⊕ [c].
5: Jq1K← Fmod([q1])
6: Jq2K← Fmod([q2])
7: Output JqK := Jq1K + 2Jq2K

shares of [x]: x1, x2, and x3. This is the same as the step
1-3 of Protocol 11.

The bit-decomposition and modulus conversion pro-
tocols are obtained by simplifying the corresponding
protocols from [36] by assuming the use of a Mersenne
prime. The resulting protocols are shown in Protocol 13
and Protocol 14. Frand denotes the functionality of gen-
erating a share of a random number, which can be im-
plemented via local computation [23]

Note that in Protocol 14, the required communica-
tion complexity for computing Jr1 ⊕ r2 ⊕ r3K in Step 3
and 4 is only 3 |p| although two multiplications are used.
We use the IKHC multiplication protocol [22] in which
Pi on input JaKi = (ai, ai+1) and JbKi = (bi, bi+1) sends
di := aibi+1 + ai+1bi − si+2,i to Pi+1, where si+2,i is a
random value shared between Pi and Pi+2. At the start

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 766

Protocol 12 Bit-composition
Functionality: JaK← BC([a1], . . . , [a`])
Input: [a1], . . . , [a`]
Output: JaK, where a =

∑`

i=1 2i−1ai
Parameter: The bit-length of secret, `
1: [a′0] := 1⊕ [a0]
2: [q0]← Carry([a′0])
3: [c0] := [a0]
4: for 2 ≤ i ≤ ` do
5: [a′i] := [ai]⊕ [ci−1]⊕ (1⊕ [qi−1])
6: [qi]← Carry([a′i])
7: [ci] := ([ai]⊕ [ci−1])((1⊕ [qi−1])⊕ [ci−1])⊕ [ci−1]
8: Jc`K← Fmod([c`])
9: Jq`K← Fmod([q`])
10: JbK←

∑`

i=1 2i−1[a′i] mod p

11: Output JbK + 2`+1(Jc`K + (1⊕ Jq`K)) +
∑|p|

i=` 2i

Protocol 13 Bit-decomposition
Functionality: ([a(1)], [a(2)], . . . , [a(`)])← BDC(JaK)
Input: JaK where a is an `-bit value and p > 2a.
Output: ([a(1)], [a(2)], . . . , [a(`)]) where

∑`

i=1 2i−1a(i) = a

1: 〈〈a〉〉 ← ConvertToAdd(JaK)
2: 〈〈a′〉〉 := 2〈〈a〉〉, and 〈〈a〉〉(j)

i be the j-th bit of 〈〈a〉〉i.
3: P1 and P2 secret-share the least ` + 1 bits of their shares

bit-by-bit in Z2, respectively. (The parties obtain [〈〈a′〉〉(j)
i]

for i = 1, 2 and 1 ≤ j ≤ `+ 1)
4: The parties obtain ([b(1)], . . . , [b(`+1)]) by computing an

adder circuit: an input of j-th bit is [〈〈a′〉〉(j)
1], [〈〈a′〉〉(j)

2],
and the carry from the previous bit, except the 1st bit is
[〈〈a′〉〉(1)

1], [〈〈a′〉〉(1)
2], and [〈〈a′〉〉(1)

1] + [〈〈a′〉〉(1)
2].

5: [a(j)] = [b(j+1)] for 1 ≤ j ≤ ` . Discard LSB
6: Output ([a(1)], [a(2)], . . . , [a(`)])

of Step 3, P1 has Jr1K1 = (r1, 0) and Jr2K1 = (0, r2);
similarly, P2 has (0, 0) and (r2, 0), and P3 has (0, r1)
and (0, 0). Multiplying Jr1K with Jr2K, di = −si+2,i for
i = 2, 3, means that d2 and d3 are publicly known to all
the parties. Therefore, these values can be constants,
e.g., 0, and do not need to be sent. Similarly, when mul-
tiplying Jr1 ⊕ r2K with Jr3K, P1 has Jr3K1 = (0, 0) and
d1 = −s3,1. By using the same technique, P1 sends noth-
ing. The elimination of these communications results in
a total communication of 3 |p|, since the communication
costs of the first and second XORs are |p| and 2 |p|.

G Parameters
The parameters used for the elementary functions are
listed in Table 15. The parameters for Adam are as fol-
lows: β1 = 0.9, β2 = 0.999, η = 0.001, and ε = 0. Note
that ε in the original paper [37] is a value added to pre-
vent division by 0, but as our InvSqrt protocol has the
property that the output is 0 when the input is 0, we

Protocol 14 Modulus-conversion ([·] to J·K)
Functionality: JaK← ModConv([a])
Input: [a]
Output: JaK
1: [r]← Frand
2: The parties locally generate shares of sub-shares of [r] in

modulus p. . obtain Jr1K, Jr2K, and Jr3K, where
r1 + r2 + r3 = r mod 2.

3: Jr1 ⊕ r2K = Jr1K + Jr2K− 2Jr1KJr2K
4: JrK = Jr1 ⊕ r2 ⊕ r3K = Jr1 ⊕ r2K + Jr3K− 2Jr1 ⊕ r2KJr3K
5: Reconstruct a+ r from [a+ r] = [a] + [r].
6: Output JrK if a+ r = 0, 1− JrK otherwise.

Parameter α δ ` I t µ β

Exponent 20 14 25 4 4 −15 27
Inv 14 14 29 4 - - -
InvSqrt 26 10 28 6 - - -

Table 15. Parameters used for elementary functions.

can simply set ε = 0 in our implementation. This yields
the same result as in plaintext evaluation as V̂t+1 = 0
implies M̂t+1 = 0, and hence Wt+1 = Wt in Adam.

H Comparison to Related Work
for Elementary Functions

Comparing Inversion/Division to [17]. The divi-
sion from Catrina-Saxena [17] is based on a similar ap-
proximation approach to our Taylor-series-based inver-
sion which trivially extends to division ([17] uses Gold-
schmith’s method). The performance of this approxi-
mation is highly dependent on how truncation is done
for the iterative fixed-point multiplication and how the
initial value is obtained. While [17] uses an accurate effi-
cient truncation and scaling approach, these both have a
communication overhead ofO(|p|2), whereas our trunca-
tion and MSNZBFit protocols has overhead O(|p|), lead-
ing to an overall more communication efficient inversion
achieving the same accuracy and round complexity.
Comparing Inverse Square-root to [47]. The in-
verse square root protocol of Lu et al. [47] is based on
polynomial approximation, whereas our protocol make
use of Newton’s method that allows fine-tuning of out-
put precision. We can infer from [47][Table 1] that the
output accuracy is 8 ∼ 12 bits, which is much lower
than our achieved 26 ∼ 29 bits accuracy, despite [47]
using a 128-bit ring that is about twice the size of the
field used in our protocol (see Table 16). Assuming bit-

Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation 767

Table 16. Output Accuracy for Elementary Protocols

Protocol Field Size Accuracy Accuracy / Field Size
[bits] [bits] [%]

Inverse Sqrt Lu et al. [47] 128 8 ∼ 12 6.2 ∼ 9.3%
Ours 61 26 ∼ 29 42.6 ∼ 47.5%

Exponentiation Aly et al. [9] 245 40 16%
Ours 61 23 ∼ 25 37.7 ∼ 40.9%

composition is implemented in O(`) rounds (e.g., [10]),
the round complexity of both protocols is O(`).8

Comparing Exponentiation to [9]. The exponen-
tiation from Aly-Smart[9] is based on splitting the in-
put into an integral part and fractional remainder, and
then computing the exponentiation of these separately.
The later is obtained via a Padé polynomial approx-
imation with coefficients requiring more than 80 bits
of precision. To ensure the computation is numerically
stable, the authors recommend a large internal precision
for this computation, leading to a 245-bit field size for
their concrete implementation. In contrast, our proto-
col is fine-tune to our setting and ensures 23 ∼ 25-bit
output accuracy with a field size of only 61 bits (see Ta-
ble 16). Using bit-decomposition of O(`) rounds (e.g.,
[36]), the round complexity of both [9] and ours is O(`).

I Convergence: 3DNN
For completeness, we compare convergence of our secure
training with that obtained using TensorFlow. Table 17
shows the obtained accuracy for the trained 3DNN net-
work for 1 to 10 epochs in the passive security setting.
As shown, training converges after ∼ 5 rounds, obtain-
ing an accuracy of ∼ 97.7.

J SoftMax Clipping
As typically done in plaintext evaluation, we stabilize
the softmax function via input clipping. Specifically, be-
fore evaluating softmax, we limit any input value a to
the range −15 ≤ a ≤ 15, by setting any input outside
this range to −15 or 15 (for a < −15 and a > 15, re-

8 The round complexity stated in [47] suggests bit-composition
is implemented in O(log(`)) rounds, but it is not explained how
this is achieved. Improved bit-composition would benefit both
[47] and our protocol, but we note that to achieve our stated
accuracy, we require 19 rounds of iterations in Newton’s method.

#epochs 1 2 3 4 5 6 7 8 9 10

TensorFlow 95.50 96.66 97.43 97.28 97.48 97.68 97.79 97.84 97.51 97.75
Ours 95.60 96.85 97.23 97.67 97.68 97.50 97.58 97.75 98.06 97.75

Table 17. Measured accuracy of 3DNN: TensorFlow (plaintext)
vs. Our secure training.

spectively), via simple comparison and conditional as-
signment.

	Adam in Private: Secure and Fast Training of Deep Neural Networks with Adaptive Moment Estimation
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Comparison to Related Works

	2 Preliminaries and Settings
	3 Secure Real Number Protocols
	3.1 Current Secure Division Protocols
	3.2 Protocol for Division by Public Value

	4 Elementary Functions for ML
	4.1 Inversion
	4.2 Square Root and Inverse Square Root
	4.3 Exponential Function
	4.4 Comparison to Related Works

	5 Secure Deep Neural Networks
	5.1 Neural Networks
	5.2 Secure Protocols for DNNs

	6 Experimental Evaluation
	6.1 Secure Training of DNNs

	A Comparison Table
	B Active Security for Division
	C Efficiency of Division Protocol
	D Communication Complexities
	E Quotient Transfer Protocol
	F Conversion Protocols
	G Parameters
	H Comparison to Related Work for Elementary Functions
	I Convergence: 3DNN
	J SoftMax Clipping

