
Not Your Average App: A Large-scale Privacy Analysis of
Android Browsers

Amogh Pradeep
Northeastern University

Boston, USA

Alvaro Feal
IMDEA Networks Institute /

Universidad Carlos III de Madrid
Madrid, Spain

Julien Gamba
IMDEA Networks Institute /

Universidad Carlos III de Madrid
Madrid, Spain

Ashwin Rao
University of Helsinki

Helsinki, Finland

Martina Lindorfer
TU Wien

Vienna, Austria

Narseo Vallina-Rodriguez
IMDEA Networks Institute /

AppCensus Inc.
Madrid, Spain

David Choffnes
Northeastern University

Boston, USA

ABSTRACT
The privacy-related behavior of mobile browsers has remained
widely unexplored by the research community. In fact, as opposed
to regular Android apps, mobile browsersmay present contradicting
privacy behaviors. On the one hand, they can have access to (and
can expose) a unique combination of sensitive user data, from users’
browsing history to permission-protected personally identifiable
information (PII) such as unique identifiers and geolocation. On the
other hand, they are in a unique position to protect users’ privacy
by limiting data sharing with other parties by implementing ad-
blocking features.

In this paper, we perform a comparative and empirical analysis
on how hundreds of Android web browsers protect or expose user
data during browsing sessions. To this end, we collect the largest
dataset of Android browsers to date, from the Google Play Store
and four Chinese app stores. Then, we develop a novel analysis
pipeline that combines static and dynamic analysis methods to find
a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-
harming behaviors (e.g., sending browsing histories to third parties,
not validating TLS certificates, and exposing PII—including non-
resettable identifiers—to third parties) across browsers. We find that
various popular apps on both Google Play and Chinese stores have
these privacy-harming behaviors, including apps that claim to be
privacy-enhancing in their descriptions. Overall, our study not only
provides new insights into important yet overlooked considerations
for browsers’ adoption and transparency, but also that automatic
app analysis systems (e.g., sandboxes) need context-specific analysis
to reveal such privacy behaviors.

KEYWORDS
android, privacy, mobile browsers

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(1), 29–46
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0003

1 INTRODUCTION
Mobile browsers (i.e., apps that allow users to visit websites) are
complex, powerful, and poorly understood software systems that ac-
count for 55% of global website visits [119]. Their critical role as one
of the primary gateways to the web, and the rich set of features that
they support, make mobile browsers a particularly interesting plat-
form to study from a privacy perspective. On the one hand, mobile
browsers can enhance user privacy in unique ways by implementing
features such as blocking web trackers and advertisers, enforcing se-
cure network protocols wherever possible, andminimizing personal
data exposure [75, 81, 96, 97, 130]. However, they can also inflict
privacy harms by harvesting and exposing permission-protected
information such as unique identifiers or user geolocation to third
parties (as is commonly found in non-browser apps), or indirectly
by making them available to website scripts via JavaScript APIs.
Further, they may expose browser-specific sensitive data such as
users’ browsing history or credentials to third-parties due to poor
design choices or a need to generate revenue, potentially at the
expense of user privacy [42, 108, 113, 130].

Despite their potential for harm, the research community has
largely overlooked the privacy threats inherent to mobile browsers.
Early studies focused on a small set of browsers [74, 128] and iden-
tified isolated cases of “privacy protecting” browsers deceiving
their userbase and abusing their access to personal and browsing
data for tracking purposes [71, 102]. In this paper, we augment the
state-of-the-art by conducting the first large-scale, systematic, and
multidimensional analysis of the privacy behavior of 424 Android
browsers available in public app markets (including the Google Play
Store and four Chinese markets) and others pre-loaded by certain
phone vendors. Specifically, we study and characterize: (1) how
mobile browsers help or harm users’ privacy during the course of
web browsing sessions; (2) what additional permission-protected
personal data mobile browsers collect and share with other parties,
and the implications of such data collection; and (3) how the com-
bination of these behaviors impacts the overall privacy disposition
of the mobile browsers in our dataset.

While there is a significant amount of work on mobile app pri-
vacy space in general, the study of mobile browsers poses unique

29

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0003

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

methodological challenges that we address in this work. First, nei-
ther the Android OS nor app markets provide a comprehensive
way to determine whether an app is a mobile browser. To address
this challenge, we combine code inspection and dynamic analysis
methods to identify those apps that match our definition of a mobile
browser. Second, both browsers and websites expose data to other
parties while in use, and simple analysis of network traffic traces
is insufficient to distinguish whether the data was exposed by a
browser or a website. To address this, we develop a novel browser
analysis pipeline that uses webpage replays and a baseline browser
to attribute data collection to either the website or the browser
itself. We further use a combination of static and dynamic analysis
techniques to identify which browser component (for instance, a
third-party library) is responsible for data collection and gather
actual evidence of these behaviors. Third, browsers can implement
privacy-enhancing features to protect users from harm (e.g., use
of TLS encryption, limited access to JavaScript APIs that retrieve
sensitive information, blocking websites from contacting third par-
ties), but there are limited standard benchmarks to test for them. To
overcome these challenges, we build a new test suite that addresses
this need, along with instrumentation and automation to capture
and study browsers’ behaviors automatically and at scale.

We use the above methods to analyze a dataset of 424 browsers
and observe the following:
• We find that 65% of browsers enhance privacy by blocking
tracking scripts by default. Similarly, 51% of browsers block
scripts that access protected JavaScript APIs.

• We see that most browsers do not default to HTTPS (only 2%
of browsers do so) and that 10% of browsers do not properly
validate TLS certificates, making them vulnerable to person-
in-the-middle attacks.

• We find that 63% of browsers contain at least one third-party
library related to advertisement and tracking, and that these
libraries are often responsible for browsers requesting “danger-
ous” permissions. Furthermore, our run-time behavior analysis
shows that 32% browsers share PII with other parties over the
Internet, and that 19% browsers do the same for browsing his-
tory. While 14% of these browsers share this information for
a specific feature (such as web search APIs), we find that 3%
send it alongside personal data (thus harming user privacy).
We also show that browsers often share both resettable and
non-resettable identifiers with third-party servers across the
Internet, including four instances of ID bridging, a practice
that completely defeats the use of resettable identifiers.

• We conduct a multidimensional analysis of individual browsers
to understand their overall privacy disposition. We find that
few browsers uniformly improve privacy (e.g., FOSS Browser),
while many exhibit multiple harms (e.g., Yandex, Baidu, Opera
etc.). We also find mixed behaviors: of the 276 (65%) browsers
that block tracking content, we see that 70% also allow tracking
requests, 23% expose PII, 14% share browsing history, and 7%
fail to validate certificates.

Our study has important implications for (1) end users who adopt
a non-default web browser on Android, and for (2) automatic app
analysis processes. For the former, our results can help guide their
decisions about which browser to install from a privacy standpoint.

In fact, understanding the privacy risks of the mobile browser
ecosystem is critical in the EU as Google Chrome is no longer
the default browser on Android and EU citizens can choose any
browser when configuring their device [43, 52]. For the latter, we
show that existing sandboxes may be ineffective for studying the
privacy risks of mobile browsers, and they can benefit from our
novel methodology to analyze browser apps and gain actual visibil-
ity into their behavior. We reported our findings to Google, which
is currently investigating potential corresponding breaches of their
policies. We also responsibly disclosed observed security vulnera-
bilities to developers. To support reproducibility and foster further
research in this area, we make our code and data publicly available
at https://github.com/NEU-SNS/mobile-browser.

2 THREAT & PROTECTION MODELS
This section describes our privacy threat and protection models.
Our models are motivated by the fact that mobile browsers occupy
a privileged position in terms of the type of data they can access:
(1) all Android devices are expected to have at least one mobile
browser [16, 51]; (2) like other apps, mobile browsers can access
permission-protected device sensors, system resources and unique
identifiers; and (3) being endpoints for web traffic, they have access
to all data fromweb browsing e.g., page content or browsing history.
Note that our study focuses on browser behavior in the default
mode, as opposed to “safe”, “private”, or “incognito” modes. Previous
work has shown that these modes have their own security and
privacy issues [13], and that they do not prevent browsers from
collecting user data [50, 116].

2.1 Privacy Threat Model
We assume that a benign browser should render webpages, follow
best practices for connection security, and adhere to data minimiza-
tion principles when it comes to exposing user data. We acknowl-
edge that there may not be such a browser, but we assume one for
the sake of comparing against our threat model. We consider that a
browser is “privacy harmful” if it deviates from this benign browser
model by exhibiting any of the following behaviors:
Data dissemination not required for page rendering.
Browsers may collect and share sensitive data (e.g., location,
unique identifiers), with first parties (the browser developer) or
third parties (e.g., data brokers, advertisers, analytics companies).
Such sharing might be required to implement site features (e.g.,
geofencing or localized search results); or used for secondary
purposes (e.g., for monetization through ads and tracking).
In this paper, sensitive data includes personally identifiable
information (PII) and users’ browsing history. Specifically, we
consider the following data types to be PII: IMEI, Advertising ID
(AdID), Android ID, MAC address, and geolocation. Note that the
IMEI, Android ID, and MAC addresses are non-resettable IDs,
while the AdID can be reset by users. We also consider the list of
installed apps to be sensitive, as it can be used to profile users [115].
For browsing history leaks, we consider cases where over half
of the websites visited are transmitted to another party over the
Internet. While browsers may share the visited websites as part of
their functionality (e.g., URL safety checks [67, 101]), this data can

30

https://github.com/NEU-SNS/mobile-browser

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

also be abused to build unique and stable identifiers for users, even
across devices [28].
Websitemanipulation. Browsers may modify (i.e., replace or add)
content in a way that can harm user privacy. Examples of this
behavior are replacing referral links [71] or injecting content and
web elements associated with advertising companies that might
collect user data (e.g., advertisements [21, 121]).
Poor connection security. A failure to validate TLS certificates
exposes users to person-in-the-middle attacks [107]. This can allow
any arbitrary actor in the network to intercept all traffic, thus
damaging the user’s privacy (as the data can be observed) and
security (data can be dropped or modified by the attacker).

2.2 Privacy Protection Model
We consider in our privacy protection model the following privacy-
enhancing behaviors that are not implemented in the idealized
benign browser behavior described above:
Blocking tracking domains. A browser that blocks connections
to advertising and tracking services and scripts can potentially
prevent third parties from collecting extensive data on users [11,
12, 42, 129]. We consider a browser to implement such privacy-
protecting behavior if we can find evidence of blocked connections
to such services.
Limiting access to WebAPIs. Websites may request access to
sensitive data and sensors via JavaScript APIs (e.g., the geolocation
API). A privacy-protecting browser would block such requests by
default. This includes cases where access is blocked until the user
gives explicit permission to allow access.
Upgrading connection security. Many websites support both
HTTP and HTTPS, with the latter being preferred for privacy and
security. Privacy-protecting browsers should always upgrade to
HTTPS when supported by the server.

3 MOBILE BROWSER DATASET
As most app stores do not consider a browser as a specific app
category, we need to develop a sound method to automatically
collect and identify mobile browsers at scale. However, this task is
not trivial. Many Android apps rely on WebViews to show online
content (e.g., ads [64]) or provide in-app browsing functionality
often part of social networks [78, 133]. Thus we need a way to
differentiate those from actual browsers. In this section, we present
our definition of a functional browser and describe ourmethodology
to obtain a representative dataset of browsers from different sources.

3.1 Definition and Installation Sources
What is a browser? We define a browser as an app capable of
accessing arbitrary websites using HTTP/S URLs. More specifically,
these apps must declare this capability to the Android OS via Intent
filters that handle URL schemes. The Android OS uses this same
Intent-based filtering to display available browser options when
users click a URL, supporting our definition. Our definition rules
out both web-based mobile apps that render app-specific web pages
and apps that render webpages through links within them (via
WebViews), as they do not allow users to enter arbitrary URLs.
Where are browsers installed from? Android allows users to
choose a default browser, which can either come pre-installed on

the device, or can be downloaded by the user from the Google
Play store. Android can also be configured to install apps from
sources outside of Google Play. We compiled a list of such alternate
stores and their corresponding popularity metrics (where available)
and found that Chinese app stores stood out due to their wide
adoption [18]. Thus, in this study, we include apps from these
different sources: the Google Play Store, four popular Chinese app
stores, and pre-installed browsers present in Android devices from
multiple vendors. We believe this combination of sources captures
apps used by most Android users worldwide.

3.2 Data Collection and Filtering
Browser collection. Collecting browsers from the sources listed
above is challenging because most app stores lack a “browser” cate-
gory. Thus, we use multiple strategies to collect potential browsers
and filter them post collection to remove non-browsers. We col-
lected apps from all sources in September 2021. First, we curate
a list of 266 well-known browsers from multiple online sources
including newspapers, blogs, and prior work [87]. We download
the latest versions of these browsers from Google Play (accessed
from the EU). For two Chinese stores, 360 [1] and Tencent [10], we
use the search term “browser” in Chinese and collect all apps found
with it. The other two Chinese stores, Anzhi [3] and AppChina [4]
provide a dedicated “browser” category, thus we collect all apps
listed here. Lastly, we include potential browsers for a dataset of
pre-installed apps gathered by Gamba et al. [51]. For this set, we
look for the string “browser” in the package name and app name
(in the Android Manifest) to identify potential browsers.
Filtering non-browsers. Our data collection strategy might yield
apps that are non-browsers, e.g., the file explorer “Moto File Man-
ager” passes our string-based filtering as its package name (com.
lenovo.FileBrowser2) contains the word browser. To filter such
cases, we need a test that reliably determines whether a potential
browser is consistent with our definition of a browser (§3.1). To
this end, we conduct a two-stage testing procedure on each app to
identify browsers. First, we determine whether the app successfully
installs on a test device running Android 11. If so, we then auto-
matically trigger an Intent through the Android Debugging Bridge
(adb) tool to drive it to open a test URL. It is possible for an app to
handle this Intent but fail to load webpages due to run-time errors,
or bad Intent-handling logic; we thus validate this approach using
dynamic analysis techniques in §4.2. After the above filtering, our
final dataset contains 424 browsers. To further contextualize our
results, we group these browsers into three categories based on
their origin: 266 browsers published on Google Play, 157 browsers
published in Chinese stores and 5 browsers that are pre-installed.
This last number is small because many pre-installed apps cannot
run on our test device due to native or vendor-specific dependen-
cies [29, 51]. If we fetch the same browser from two different origins
(e.g., Google Play and a Chinese store), we include it in both groups
for our analysis.

3.3 Identifying Unique Browsers
Uniqueness across origins. We want to avoid over-reporting
by including the same browser (collected from different sources)
several times in our analysis. Grouping two apps can have certain

31

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

Table 1: Most popular browsers on Google Play (100M+
downloads), Anzhi (1M+ downloads), and AppChina (Top 5).

Name # DL GPlay # DL Anzhi Top5 AppChina

Google Chrome 10B+ -

UC Browser 1B+ 200M+ •

Mozilla Firefox 100M+ 1M+

Opera Browser 100M+ 7M+

Yandex Browser 100M+ -

UC-Mini 100M+ -

Phoenix Browser 100M+ -

Baidu 5M+ 100M+ •

Baidu Browser - 80M+ •

Hao 123 - 10M+ •

Opera Extreme - 4M+

Baidu Express - 1M+

QQ Browser - - •

pitfalls due to the lack of robust methods for author attribution on
Android. While Google Play ensures that package names are unique
within the store, this is not the case for apps from a different origin.
Thus, a package name on Google Play might be used by a different
app on another store (e.g., a Chinese store). In fact, prior research
showed that apps sharing package names could be repackaged and
thus may have no relation to the original developer [73]. Further, in
the case of pre-installed browsers, anymanufacturer canmodify and
pre-install any open-source browser app with the default package
name, i.e., com.android.browser [51].

Our key observation is that every app must be signed with a
certificate to be installed on an Android device [56, 60]. Thus, we
rely on certificate information to distinguish two appswith the same
package name (assuming that the same app would not be signed by
two different certificates).We note that identifiers within self-signed
certificates (e.g., the Subject field), may be forged [83]. Therefore,
we do not associate a certificate with a particular developer, but
rather use information relating to the (unforgeable) private key to
identify unique developers. Specifically, we use the package name
and SHA-256 of the signing certificate combination as a unique
identifier for each browser app. This allows us to identify browser
apps with the same package name that are potentially implemented
by different entities, and thus might behave differently. We account
for different signatures for the same app by looking at app hashes
after stripping certificate information from them and deduplicating
matches. We argue that our technique is a reasonable heuristic
(without ground truth) to uniquely identify browsers across origins.
Uniqueness of browsers. In our dataset, the majority (94%) of
browsers with the same package name are signed by the same cer-
tificate. However, we also find browsers with the same package
name being signed with different certificates, up to 3 different ones
(e.g., com.baidu.browser.apps found in different Chinese stores).
Anecdotally, we also find versions of Firefox signed with differ-
ent certificates in Chinese stores and the Google Play Store. This
shows that some apps might be developed by different companies
depending on the store where they are available.

3.4 Characterization of Browsers
Dataset statistics. Our final dataset contains 424 browsers with
target API levels ranging from 5 (Android 2.0) to 30 (Android 11)
with a median of level 24 (Android 7.0). While some of these target
API levels might seem outdated, we note that for every unique
browser we fetch the latest available version. This suggests that
pre-loaded browsers and those distributed through app stores are
not kept up to date, and that they might not benefit from the latest
privacy-enhancing techniques and security standards.

The size of our dataset (424 browsers) indicates that there is a
diverse and vibrant market for mobile browsers, providing a wide
range of features. To better understand the advertised features
and compare them with actual browser behavior observed during
dynamic analysis, we extract and use as a proxy the most frequently
used words in their app market descriptions (63% of our dataset).
We find that 44% of the browsers advertise themselves as high
performance browsers—using words such as “Fast”, “Quick” in their
description, 42% use words related to privacy and security, 26%
advertise their low cost—with words such as “Free”, and 2% claim to
be child-friendly browsers. Regarding their market share, we find
that 56 browsers have over 1M downloads on Google Play, and
6 browsers have over 100M downloads. More broadly, we find 4
browsers with fewer than 10k downloads, 65 apps have between 10k
and 500k downloads, and 85 apps have over 500k downloads. While
we do not have a download figure for all of Chinese stores, both Anzi
and AppChina have a browsers category in which the available apps
are ordered by popularity. The differences between these stores and
Play is notable as the five most popular browsers on AppChina are
the QQ Browser, UC Browser and three products from Baidu: Baidu
Search, Baidu Browser and Hao 123. In the case of Anzhi, browsers
with over 1M downloads include: UC Browser, Baidu Search, Hao
123, Opera Browser, Opera Extreme, Baidu Express, and Mozilla
Firefox. We list the most popular browsers published on Google
Play, Anzhi and AppChina in Table 1. These significant differences
across stores, combined with the large numbers of estimated users
(e.g., QQ Browser and UC Browser accounting for more than a
half billion monthly active users [72]), highlight the importance of
including Chinese stores in our analysis.

3.5 Browser Engine Attribution
Web browsers are complex software that requires substantial en-
gineering effort to develop from scratch. While we cannot know
for certain why there are so many browsers in the Android ecosys-
tem (424 according to our count), one hypothesis is that many
of them are built atop existing open-source browser engines (e.g.,
Chromium, Gecko) or are built as a WebView wrapper.1 To in-
vestigate whether this hypothesis holds, we conduct a multi-facet
analysis to infer whether a browser uses an underlying browser
engine or is implemented using a WebView component provided
by the Android OS [26, 120].
Class implementations. We search for standard classes for im-
plementations of WebViews, Chrome, Firefox, and ChromeCus-
tomTabs. We note that, as any static analysis technique, this might

1WebView objects allow developers to display web content on an activity layout.
However, it lacks some of the features of fully-developed browsers like Chromium.

32

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

lead to false positives because of legacy and dead code. Web-
View-based browsers need to implement the android.webkit.
WebViewClient class to function, so we search for these imple-
mentations and find that 378 (89%) browsers use them. Simi-
larly, we find that 12 (3%) implement Chrome related classes
(org.chromium.chrome.browser.ChromeTabbedActivity) and
that 2 (<1%) implement Gecko/Firefox related classes (org.
mozilla.geckoview.GeckoSession). We also look for Chrome-
CustomTabs implementations (androidx.browser.customtabs.
CustomTabsIntent), which could in theory be used to implement
a browser [26, 120], but found no cases of it. We are unable to
attribute the remaining 110 (26%) to any of these engines.
X-Requested-With header.We complement the results from our
static analysis with looking at the headers sent during run-time
requests made to test websites. One of our key observations is that
WebViews set a X-Requested-With header to the package name of
the app while loading pages [34]. We see that 300 (71%) browsers
send this header for all test URL requests; i.e.,they useWebViews to
render webpages users request. All but 17 of the X-Requested-With
senders are also identified as WebView implementers, providing
a high level of cross-validation. Manual inspection revealed that
code obfuscation (preventing us from finding android.webkit.
WebViewClient) is the likely reason for inconsistencies.
User-Agent strings. We look at the User-Agent strings advertised
by browsers and match them to possible underlying engines. How-
ever, we can only attribute 84 toWebViews with this technique. Note
that this technique has its own limitations, as User-Agent strings
can easily be spoofed by the developers.
Code similarity. As observed by related work, browser engines
are likely written in native code and included as a shared library for
performance reasons [128]. Thus, as a last step, we tried to rely on
the code similarity between every pair of browsers in our dataset to
understand if they share the same browser implementation. Specifi-
cally, we compared the native libraries that are included in the apps
using BinDiff [37, 135], but did not find conclusive results.

4 METHODOLOGY
The goals of our analysis are: identifying privacy-harmful and
-enhancing behaviors in mobile browsers as outlined in §2, deter-
mining the root causes for the behaviors we observe, and determin-
ing the impact of such behaviors on users’ privacy. To meet these
goals, we rely on the complementary strengths of both static code
analysis and dynamic analysis techniques.

We note that static and dynamic analysis techniques have lim-
itations when used on their own. Static analysis can cover many
different execution paths without running apps, but it may produce
false positives resulting from legacy or dead code, and produce false
negatives due to apps leveraging code obfuscation or loading code
dynamically. Dynamic analysis reveals the impact of real code exe-
cution paths at run time, but has limited coverage, can be defeated
by anti-testing methods and provides a lower-bound of all browser
behavior due to its inability to trigger all code paths with existing
fuzzing methods [32]. The combination of both methods gives us
better visibility for understanding browser functionality than using
any one technique independently. In addition to these techniques,

when we identify potentially privacy-harming behavior with dy-
namic analysis, we manually analyze the code to better understand
and validate the logic triggering it.

4.1 Static Analysis
Static code analysis allows us to understand the browsers’ potential
for privacy-invasive behavior. Namely, this analysis reveals the
types of data that an app can access (i.e., requested permissions), the
types of third parties that are integrated in browsers (i.e., SDKs), and
whether these SDKs are piggybacking on the permissions requested
by the browser to access sensitive data for secondary purposes.
Permission analysis. The Android Open Source Project (AOSP)
implements a permission model to restrict access to some of its
features and sensitive resources (e.g., the user’s location, or SMS
messages), to protect user privacy and security [56]. However, these
permissions are shared among the host app embedded third-party
SDKs. These SDKs might access personal data for secondary pur-
poses. This might also lead to apps requesting more permissions
than strictly necessary [23, 49], as SDKs often need access to data
that is not necessary for the functioning of the app or to SDKs
leveraging the set of permissions of the host app to access sensitive
resources (potentially without user consent).

Thus, to assess the privacy risks of mobile browsers, we parse
each browser’s manifest to extract the requested permissions. This
approach provides an upper bound of permission protected data
that can be shared with other parties. Then, we map API calls (i.e.,
functions calledwithin the browser’s code) to the AOSP permissions
that protect them in order to gain a more fine-grained perspective.
Note that Google does not include such a mapping in their docu-
mentation. Therefore, we leverage three complementary sources:
(1) the mappings implemented in Android Studio (Android’s official
IDE), which contains scripts to warn developers if they use an API
without requesting the associated permission [54]; (2) mappings ex-
tracted by parsing the AOSP source code to extract the methods that
use the @RequiresPermission annotation, part of the AndroidX
and Android support libraries [58, 59]; and (3) the mappings gen-
erated by prior work (Axplorer [24]) for older Android versions
(Android 5 and below). We acknowledge that, while we update
the mappings released by prior work, our mappings might still be
incomplete (something that we cannot measure due to the lack of
ground truth).
Third-party libraries. Android apps often rely on third-party li-
braries (or SDKs) to integrate functionality offered by third-party
entities, e.g., for A/B testing, analytics, or advertisements [108].
We use LibRadar [90] to identify third-party libraries in browser
code but, as its library fingerprints and library-to-company (LTC)
mappings are outdated [47], we augment LibRadar’s LTC mappings
with data from Exodus [44] and other information gathered through
online resources and open-source intelligence. We further use do-
main knowledge to identify the purpose of the library as well as
the company behind the service, and use it to characterize the kind
of third-party SDKs that browsers are using.

To further discern whether permission-protected APIs are re-
quested by first-party or third-party code, we use Androguard [2].
Specifically, we use Androguard to extract all of the permission-
protected API calls in the code, extract the package of the class

33

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

Gateway

Browsers

Director

adb (USB)

1 2

34

WiFI

Test Websites HTML
</>

Figure 1: Overview of our dynamic analysis pipeline.

invoking it, and then use LibRadar to label whether this class be-
longs to the browsers’ code or to a third-party SDK. We note that
some of the SDK’s code might never be used, and thus we filter out
all third-parties for which we do not find a cross-reference in the
browser’s code to reduce over-reporting.

4.2 Dynamic Analysis
Dynamic analysis gathers evidence of browser behavior by exe-
cuting browsers on an instrumented device and observing their
behavior. Specifically, we monitor: sensitive data exposure, net-
work traffic security practices, and web content manipulations as
browsers fetch and load websites.

4.2.1 Pipeline. To perform dynamic analysis at scale, we de-
velop an automated black-box testing instrumentation and logging
testbed, which consists of several components as shown in Fig-
ure 1. Table 7 (in Appendix) summarizes the data collected by each
component.
Director. The Director (Fig. 1 ➊) drives and orchestrates the analy-
sis by installing the browsers from our dataset (Fig. 1 ➍) via adb
on a physical mobile device (Fig. 1 ➌), instructing the device to
open webpages using an ACTION_VIEW Intent [61], and uninstalling
browsers via adbwhen tests are complete. The Director also collects
device logs and screenshots during tests. The Director consists of
JavaScript (≈500 LOC) and bash (≈400 LOC).
Traffic interception and injectionwith the gateway. The Gate-
way (Fig. 1 ➋) serves as a Wi-Fi hotspot for mobile devices. We
route all mobile device traffic to an instance of mitmproxy [9] using
iptables rules, and log all traffic with tcpdump. Using mitmproxy,
the Gateway intercepts all mobile-device traffic. In combination
with interception, we inject into each webpage a tripwire.js (in-
spired by Reis et al. [111]), which is a piece of JavaScript code (≈100
LOC) that collects the Document Object Model (DOM) of content
delivered to the browser. We develop a Python mitmproxy add-on
to perform these actions and use tcpdump to collect traffic that
mitmproxy does not handle.
Test device. To enable the Gateway to modify traffic, we edit an
Android 11 factory image (Build RQ3A.211001.001) and include our
mitmproxy certificate as a root certificate on this image. In previous
versions of Android (7 to 9), we could modify the root store (on the
system partition) with root access; starting with Android 10 this is
no longer possible because the system partition cannot be modified
after installation. Thus, modifying the image before installation is
the most convenient way to include a new root certificate. We run
this modified factory image on a Pixel 3 device and use it as our
test device (Fig. 1 ➌).
Assessing pipeline compatibility. Before conducting a large-
scale analysis, we determine whether every browser in our dataset

can run automatically (i.e., without human intervention) in our
testing pipeline. To do so, we induce each browser to open a simple
webpage (using an Intent) hosted locally, and check whether the
browser issues a request for it. We find that 381 browsers success-
fully pass this test without any interaction. In addition to these, we
find that 19 browsers require minimal human interaction (dismiss-
ing onboarding screens) to be compatible with the pipeline. While
testing these 19 browsers, we manually dismiss the onboarding
screens so the automated tests can run. The remaining 24 browsers
fail to follow the Intent to load pages and are thus incompatible
with our test. These cases are indeed browsers, but fail to load a
simple webpage automatically due to unexpected crashes or requir-
ing users to login to use them. Nevertheless, we still include these
browsers in our experiments, and report any privacy-related behav-
ior we observe while they run (e.g., some browsers send personal
data to servers as soon as they are launched, even if they do not
load a webpage). The experiment analysis logic consists of ≈4,000
lines of Python code.

4.2.2 Test Inputs. To observe any privacy-related browser behav-
iors, one must use browsers as they are intended: i.e.,visiting a
series of real websites. Our testbed uses Intents to automatically
induce browsers to fetch web content from the Internet, as if it
were requested by a real user. We note that in our experiments, we
do not click links inside the webpage, rather waiting for the page
to fully load. For completeness, we rely on the following types of
webpages (Appendix A provides more details): (1) a honeypage that
contains several types of popular tracking services that browsers
might block, (2) a permissions page that tries to access different de-
vice sensor APIs, (3) a domain without a protocol specified to study
how browsers handles HTTP(S) by default, (4) a HTTPS webpage
to analyze TLS security, and (5) 13 popular webpages. Of the 400
browsers that adhere to Intents and open webpages, we find that
367 load all of the test pages.
Handling dynamic web content. To build our cache of site
content, we load all the selected webpages using a baseline
browser. 2 Even with cached content, some webpages include non-
deterministic and dynamic content (e.g., a timestamp in the HTML
source or ads resulting from real-time bidding processes [14, 131])
that leads to different requests over time and impedes comparing
the same websites across browsers at different times. To address
this challenge, we heuristically chose to rebuild the cache periodi-
cally (once every 50 browsers we test, which corresponds to about
once every 2-3 hours). For each (non-baseline) browser test, our
testbed prepares the mobile device by factory resetting it, installs
necessary components, and collects identifiers (AdID and Android
ID). Moreover, to ensure consistency in webpages delivered, the
Gateway caches copies of tested websites and replays captured
content using mitmproxy.
Detecting browser manipulations. Browsers can use their priv-
ileged position to actively modify web content in ways that protect
(e.g., ad-blocking) or harm users privacy (e.g., JavaScript injection
for tracking purposes). We design a novel methodology to detect
such changes by considering a combination of network requests

2We note that any trusted browser can serve as a baseline, but we use the default
Android WebView for our Android 11 test device.

34

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

seen across the browsers in our dataset, and instrumenting web-
pages to observe changes to each page’s DOM. However, a key
challenge is discerning whether such modifications are caused by
the browser or by dynamic content as previously discussed. There-
fore, our method for detecting content modification by browsers
focuses on the most common known case, which is changing con-
tent in the DOM. Any other modifications that do not manifest
in this way (e.g., at rendering time) are out of scope. For that, we
compare a baseline DOM of a webpage (assumed not to be mod-
ified) to the one rendered in the browser under test. Specifically,
we generate a baseline DOM and instrument future webpage tests
by injecting a JavaScript-based tripwire that detects and reports
DOM changes compared to this baseline. To compare the browser
DOM to our baseline DOM, we look at two particular HTML tags:
script and link to find both added and missing elements. For
each website in our test, we manually identify legitimate elements
that vary across crawls and automatically remove them from the
collected DOMs.

4.2.3 Network Traffic Analysis. We log all network traffic gener-
ated by browsers using tcpdump, and our testbed intercepts and
injects/replays all HTTP/HTTPS traffic with our Gateway to serve
consistent traffic and collect DOMs as described previously. How-
ever, we filter out flows that are not suitable for our webpage replay
system. We drop all UDP traffic that is not DNS (port 53), including
QUIC traffic. We found 8 browsers that use QUIC at least once and
have no visibility into this traffic. Our approach also has no visibil-
ity into HTTPS traffic that uses any form of certificate pinning that
mitmproxy cannot intercept. While pinning in browsers is a largely
obsolete technique [106], we still find the case of 6 browsers that
implement some for of pinning and that we cannot bypass. Given
these limitations, the information exposure we do find serves as a
lower bound.

5 BROWSER FUNCTIONALITY
We now analyze whether browsers protect or expose sensitive data
during browsing sessions, according to our privacy protection and
threat models in §2. Namely, we analyze whether browsers modify
the content of a website that is served to users. This can potentially
improve privacy by blocking requests to services known to track
and profile users (e.g., analytics services and ad networks) or to
harm privacy (e.g.,when a browser adds tracking code to a website).
We further analyze whether browsers block access to protected
JavaScript APIs that can be used to gather sensitive data about the
user and the device. Finally, we determine whether browsers help
or harm privacy with respect to connection security/privacy.

5.1 Content Modification
DOM-based blocking. We use our DOM-based tripwires to in-
vestigate which content is blocked by browsers and the potential
privacy impact of this behavior. We begin by identifying cases
that are highly likely to correspond to tracking services, i.e., the
content matches an entry in at least one of two popular Adblock
filters (EasyList [38] and EasyPrivacy [39]). We find that 276
browsers in our dataset (65%) block content flagged by these block-
lists, strongly indicating that they are enhancing privacy for users.

Interestingly, most of the blocked content that we observe (73%)
is not part of these lists. After manual analysis, we identify common
trends that we can directly link to privacy-related behavior. Of the
browsers blocking content not on these lists, we find that 60% block
analytics content, 88% block ad content, and 77% block widgets
(e.g., an embedded Twitter feed). We look at libraries included in
browsers to see if a common library results in this blocking, but
found no evidence of such code. While we do not know exactly why
these browsers block this content, we speculate that this could be
an attempt to mitigate pervasive tracking from webpages. This also
highlights the diversity in browsers’ blocking behavior, indicating
that different browsers use different anti-tracking and blocklist
implementations [48, 132].
Allowed requests. In contrast to the above examples, browsers
might impact privacy by changing and/or blocking network requests
during page loads (i.e., without changing the DOM). While it may
seem trivial at first to detect blocked requests by comparing with a
baseline browser, the key challenge for detecting this behavior is the
lack of ground truth as to why a request is not issued. For example, a
request could be absent due to a browser blocking a tracking service,
but it also could be due to dynamic webpage behavior not captured
in our baseline (e.g., non-deterministic advertisements resulting
from real-time bidding). Given this issue, we focus our analysis
instead on the privacy impact of network requests to destinations
matching the Adblock filters mentioned above. In this analysis, we
focus simply on whether browsers seem to be using these filters
to block all corresponding requests. If we see no requests at all
to destinations on the Adblock filters, we assume the browser is
using such filters to improve privacy. While we acknowledge that
not all browsers implement blocklist approaches, we rely on these
resources as ground truth to detect most browsers that are actively
protecting the privacy of users.

We attribute requests to webpage loads in our tests by first
restricting our analysis to only those with HTTP referer headers
in a chain rooted at the loaded webpages. Next, we search for these
requests in the Adblock filters. We find that 376 browsers (89%)
permit at least one request that should be blocked based on these
lists. One possible explanation for this behavior is that browsers use
different blocklists, unblock lists, or neither—again, consistent with
prior work observing variations in blocking behavior [48, 132]. Of
the remaining 48 browsers, we look at browsers that load a majority
of our test pages and make no requests on these lists and see that
17 browsers (4%) fit this criteria, including popular browsers like
Firefox and Adblock Browser.
Content injection. Our DOM-based tripwire detects four
browsers that inject extra scripts into loaded webpages. For two of
them, we cannot locate them and thus we cannot asses their impact
for privacy. Namely, Zdllq loads a script from the local file system
that we could not locate even when de-compiling the app. The
browser Yuyan injects a script downloaded from pr.shuk.cn which
we only observed when loading the office.com and patreon.com
websites, and for which we could not identify the purpose of the
script or the server it contacts. Orbitum injects an open-source
script called UseAllFive [45] that is related to UI functionality (and
does not appear to be malicious). Both this browser and Dingzai
also inject highly obfuscated scripts that prevent us from assessing
their privacy impact. We argue that injecting remote scripts into

35

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

a webpage is generally problematic and a potential risk for users,
particularly given the little transparency about their purpose.

5.2 Blocking Access to Protected APIs
We study how browsers enhance privacy by enforcing permissions
when webpages invoke privacy-sensitive JavaScript APIs to access
data. We do so by creating a test webpage that contains JavaScript
code to access user data through WebAPIs. We test an extensive
set of APIs including location, camera and microphone. We find
that our test succeeds for 216 browsers (51%); all of these browsers
reveal battery charging status, battery level and battery charging
time without user permission. We also observe that 4 browsers
support a permissions API that prompts users for access to various
sensors (magnetometer, accelerometer, etc.). The default behavior
for the remaining browsers is to deny access to any device sensors.

To understand why so many browsers block access to data from
WebAPIs, we test the hypothesis that they could all simply be using
default behavior built into a common implementation: Android
WebViews. This is important as, by default, theWebView prevents
exposure of the most sensitive data that has been shown to be useful
for user tracking, allowing access only to the device accelerometer,
magnetometer and battery [93]. Using the results from our browser
engine attribution presented in §3, we see that of the 216 browsers
that protect access to these APIs, 204 implement WebViews and
send X-Requested-With headers. The 4 that support the permissions
API are most likely to be Chrome-based, using this information
(matches Chrome-based browsers). Lastly, we manually check the
remaining 8 and see that they contain obfuscated code preventing
our engine attribution.

5.3 Connection Security
We now describe howwe conduct tests and capture TLS handshakes
to understand whether browsers protect users’ privacy and ensure
connection security by correctly using TLS-based protocols. We
focus on certificate validation and default connection security.
Default protocol preference. To determine whether browsers
default to using the secure HTTPS protocol over HTTP, our testbed
induces a browser to visit a domain without specifying the protocol
to use (see §4.2 andAppendix A). For privacy and security, a browser
should always favor HTTPS [104]. However, we find that only 10
(2%) of the browsers pick HTTPS by default. Of these browsers,
just 1 is available on the Google Play Store (FOSS Browser), the
remaining 9 browsers are from Chinese stores. None of the most
popular browsers on Google Play, Anzhi, or AppChina (see Table 1)
implement HTTPS by default.
Certificate validation. Browsers that do not properly validate TLS
certificates compromise user security as they enable adversaries to
mount person-in-the-middle attacks as they would accept arbitrary
certificates. To detect whether such attacks are possible, we use the
methodology presented in §4.2, but skip installing the mitmproxy
root certificate on the mobile device. As a result, our self-signed cer-
tificates used during TLS interception is not trusted by the system
and the corresponding connections should be dropped. We then
visit an arbitrary HTTPS website with each browser on our test
device; a correct implementation of TLS validation should reject
the certificate. Nevertheless, we find that 44 (10%) browsers accept

the invalid certificate and are thus vulnerable to arbitrary TLS inter-
ception attacks. These browsers originate both from Chinese stores
(26) and Google Play (18, downloaded 11M+ times combined). Of
the 44 browsers, 3 (1 from Google Play) display a warning stating
that there is a possible security problem. Nevertheless, while the
warning is in place, the browsers finish loading the webpage in
the background. Ironically, of the 18 browsers that are available
on Google Play, 2 (InBrowser Incognito and InBrowser Beta both
developed by “Private Internet Access, Inc") advertised in their de-
scription that they provided users with “secure” and “incognito”
features, yet they fail to validate certificates. We reached out to the
14 developers for which we could find contact information and also
opened a bug with Google to report this issue.
Secure protocols. Finally, we look at how browsers affect users
by relying on secure protocols (namely, DoH, DoT and OCSP). Our
experiments revealed no use of DNS-over-HTTPS (DoH) or DNS-
over-TLS (DoT) by default, which would provide browsers with
private/secure DNS queries and responses. Thus, all browsers’ DNS
requests are sent in plaintext (allowing ISPs and other network
observers to see them). We also did not see any Online Certificate
Status Protocol (OCSP) traffic, a protocol that can be used to verify
the revocation status of a X.509 certificate. Our results are consistent
with prior work indicating that mobile browsers fare poorly when
it comes to correct certificate validation [85].

6 PRIVACY ANALYSIS
As with any ordinary Android app, mobile browsers have access to
PII, such as Android Advertisement IDs (AdID), persistent identi-
fiers, or device location, most of which are protected by Android
permissions. Further, some browsers might request permissions
that are used for secondary purposes, e.g., for embedded SDKs or
to support JavaScript APIs that can in turn be used by code on arbi-
trary websites. In addition, they have unique access to browsing
history and browsing patterns. In this section, we examine the per-
missions requested by mobile browsers regardless of the purpose.
Then we identify PII in network traffic observed during dynamic
tests and analyze their privacy implications for users. Finally, we
analyze cases where browsers potentially harm user privacy by
sharing browsing history.

6.1 Permission Analysis
To understand the type of access to user data that browsers have, we
analyze the permissions they request following the methodology
discussed in § 4.1. We extract a total of 1,181 unique permissions
requested by the apps in our dataset. This includes both permis-
sions defined in the Android Open Source Project (AOSP) [56] and
custom permissions [65]. Table 2 shows the number of requested
permissions per browser origin. We find that browsers that are
pre-loaded or distributed through Chinese stores tend to request
more permissions than those listed on Google Play: the median
number of permission requests (AOSP and custom included) is 20
for pre-loaded browsers and 21 for browsers from Chinese stores,
compared to 14 for browsers from Google Play. However, the maxi-
mum number of permissions requested by pre-installed browsers
is lower than browsers from other sources: only 40 permissions,
compared to 106 for browsers available on Google Play, and up to

36

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

Table 2: Number of requested permissions per dataset.

Origin AOSP perms. Custom perms. All perms.
Median Max Median Max Median Max

Chinese Stores 20 101 2 130 21 231
Google Play Store 11.5 39 2 79 14 106
Pre-installed 17 32 3 8 20 40
All origins 13 101 2 130 15 231

231 for browsers in Chinese stores. In total, we extract 522 custom
permissions requested by the apps in our dataset. However, such
permissions usually lack documentation [51], and their purpose
is difficult to automatically and reliably infer from the application
itself. We thus discard such permissions from the rest of our analy-
sis.

Figure 2 shows the number of apps requesting AOSP permis-
sions. We show only the permissions requested by at least 20% of
the apps in our global dataset to maintain readability. The height
of each bar indicates the percentage of apps, among the apps from
the same origin, that request a given permission. Permissions with
a black label (normal permissions) are classified as “low risk”
for users in Android’s AOSP documentation, they are granted at
installation time (e.g., INTERNET) [56]. Similarly, permissions with
an orange label (dangerous permissions) are those that must be
explicitly granted at runtime as they can put the user’s privacy at
risk (e.g., ACCESS_FINE_LOCATION gives access to the fine-grained
geolocation of the device). Finally, permissions with a red label
(signature permissions) are automatically granted (with no user
interactions) to an app if it is signed with the same certificate as
the app that declared the permission. Only system apps (i.e., apps
located on one of the system partitions of the device) can be granted
such permissions [17], as they allow an app to access very sensitive
information (e.g., the READ_LOGS permission allows an app to read
the system logs) or to perform low-level operations such as mount-
ing and unmounting filesystems. Some publicly available browsers
request such permissions nevertheless. One possible explanation is
that these browsers can also come pre-installed on some devices
(e.g., Google Chrome), and that developers do not remove these
permission requests before submitting their apps to app markets.

Unsurprisingly, we find that the most frequently requested per-
mission is INTERNET, which is required for Internet access, followed
by WRITE_EXTERNAL_STORAGE, for writing to the SD card, and
ACCESS_NETWORK_STATE, for checking the device’s connectivity.
These permissions are necessary for implementing basic features of
a web browser. Figure 2 also includes now-deprecated permissions
that we keep in our analysis, as they still give access to protected re-
sources to apps on devices running an old-enough Android version.
This includes WRITE_ and READ_ HISTORY_BOOKMARKS which, until
Android 6.0, would allow apps to “read (resp. modify) the history
of all URLs that the Browser has visited, and all of the Browser’s
bookmarks” [62, 63].

Our results show that a large number of browsers also request
access to sensitive features, such as the location or recording audio.
These permissions may have a legitimate use case, such as enabling
access to JavaScript APIs (e.g., a weather website requesting the
user’s location, or a videoconferencing site needing access to the
microphone and camera). In any case, the fact that the browser has

access to this information can pose a privacy risk if that data is
used and shared in unintended or unexpected ways (e.g., shared
with third-party SDKs for secondary purposes, as we study next).
Access to permissions for secondary purposes. Using the
pipeline described in §4.1, we find that the inclusion of third-party
libraries is common inmobile browsers: we find at least one advertis-
ing (e.g., Google Ads, Baidu Mobile Ads), analytics (e.g., Crashlytics,
AppsFlyer) or social network (e.g., Facebook, Umeng) library in 63%
of browsers. The most common SDK across all browsers is Google
Ads (30%), which means that developers can potentially add their
own advertisements on top of those that are present in websites
(however we did not find any instance of this behavior at run time).
We also find that apps from Chinese stores rely on libraries that
target Asian markets (i.e., Baidu, Umeng or Tencent).

As discussed in §4.1, Android’s permission model allows third-
party libraries included in Android apps to inherit the permis-
sions requested by the host app (i.e.,the browser). We now ana-
lyze whether permission-protected methods are requested by third-
party libraries embedded in each browser in order to infer potential
secondary purposes. We focus on libraries offering advertising, an-
alytics and social networking services, as they are more likely to
leverage the set of dangerous permissions granted to the host app
to collect unique identifiers and behavioral data.

Table 3 shows, for each permission labeled by Android as danger-
ous, the percentage of browsers in which at least one permission-
protected API that requires such permission is present only in
browser code, third-party code or in both. As we explained in §4,
we rely on a mapping from API calls to AOSP permissions to gen-
erate this data. In addition, when the API call is present only in
a third-party SDK or both in a third-party SDK and first-party
code, we specify in parentheses whether any of the third-party SDK
has Advertisement and Tracking (A&T) capabilities. Note that due
to our manual classification effort, we might have missed some
packages that have A&T capabilities. This distinction is important
as non-A&T SDKs might access permissions for features inherent
to the browser while SDKs with tracking capabilities might use
personal data from users for secondary purposes.

We find significant fractions of third-party SDKs with A&T
capabilities using dangerous permissions. The results show that
most permissions are requested by A&T companies for access-
ing unique identifiers (READ_PHONE_STATE by SDKs such as
Facebook Ads or Google Mobile Services), and location info
(ACCESS_FINE_LOCATION by SDKs such as Umeng, Amplitude or
AppsFlyer). Note that static analysis allows us to detect only poten-
tially privacy-harming behaviors, as it is prone to miss behaviors
due to code obfuscation, reflection or dynamic code loading. In
the next section, we investigate how the presence of these third-
party SDKs and their access to the permissions of the host browser
translates to data dissemination to third-party servers at run time.

6.2 Observed PII Exposure
We search the network traffic collected during dynamic testing to
identify whether it contains PII, and if so, where the PII is sent.
Similar to prior work [113], we look for sensitive data (as listed in
§2) both in clear text and using popular hashing algorithms (MD5,
SHA-1, SHA-224, SHA-256). For network traffic, we consider HTTP

37

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

Figure 2: Frequently requested permissions: dangerous are in orange and in red those not available to third-party developers.

Table 3: Percentage of browsers where a given permission
is accessed only in browser code, in third-party code or in
both.

Permission
Browser
only

SDK only
(A&T)

Browser
and SDK

of
browsers

ACCESS_COARSE_LOCATION 2% 83% (39%) 14% (125%) 113
ACCESS_FINE_LOCATION 2% 83% (37%) 13% (133%) 112
READ_PHONE_STATE 25% 41% (73%) 32% (144%) 55
GET_ACCOUNTS 56% 28% (14%) 16% (25%) 25
SEND_SMS 0% 100% (0%) 0% (0%) 1

message bodies, decoded with both the content-encoding header
(e.g., gzip) and content-type header charset. Of course, any PII not
using these encodings will be missed by our analysis. In the case of
files, we look at the content that is written to or read from them.
Last, we use data from our baseline browser to clean up these results.
Specifically, we consider the data shared by the baseline browser to
be due to the webpage itself and not the browser that visits them,
and so we ignore it. Thus, we are left with data that is generated
by the function of the browser and use this for our analysis.
PII exposure in network traffic.We first analyze network traffic
(both encrypted and plaintext) to identify whether browsers (or
embedded third-party SDKs) exfiltrate sensitive data, and determine
which destinations receive this data. We emphasize that a number
of these identifiers (e.g., AdID, Android ID, MAC Addr.) cannot be
accessed using Web APIs; thus, for an endpoint to be receiving
them, the browser must be accessing them directly from Android.

We find that PII exposure is extensive: 32% of browsers dissemi-
nate at least one type of PII. The most common type of PII shared
over the network is the AdID, “a unique, user-resettable ID for ad-
vertising, provided by Google Play services” [53]. Nevertheless, our
results also show apps still collect non-resettable identifiers con-
trary to Google’s best practices [55]. In fact, starting with Android
10 (released in September 2019), Google Play added more restric-
tive permission requirements to access non-resettable identifiers
for apps published in the Google Play Store [57]. Yet we find that
collecting and sharing non-resettable identifiers (e.g., the device
MAC address and Android ID) still persists.

We observe PII dissemination regardless of the origin of the
browser (Table 4). The types of PII exposed span all the categories

Table 4: Number of browsers across datasets sharing PII (by
type) via the network.
PII Type Google Play Pre-installed Alt. Markets All Origins

AD ID 83 2 13 98
Location Info. 16 0 25 41
MACD 2 0 6 8
Android ID 1 0 6 7
Installed Packages 2 0 1 3
MITM Cert. 0 0 1 1
Total 92 2 43 135

of PII tested, even for apps from the Google Play Store (where there
are stricter rules for compliance with data-collection policies [66]).
Perhaps in part due to such policies, a larger percentage (6%) of
browsers originating from Chinese stores collect non-resettable IDs
when compared to those from Google Play (2%). Similarly, a larger
percentage of Google Play browsers (31%) collect resettable IDs, as
compared to those from Chinese stores (8%).

Next, we investigate the destinations that receive this PII, a com-
plete list of these is in Appendix B. As expected, most of these
destinations align with our static-analysis findings(§6.1). Google
SDKs (which can be used for tracking and advertisement purposes)
such as Google Analytics and Firebase are commonly included in
mobile browsers and thus they frequently transmit PII. Similarly,
we observe that well-known social media companies, such as Face-
book and Twitter, also receive PII from browsers. Our SDK analysis
showed that apps from Chinese stores rely more often on providers
specialized in the Chinese market, a finding that is confirmed by
our runtime analysis (e.g., Tencent and Baidu).

The presence of SDKs in apps does not always result in PII being
shared with these parties (e.g., Umeng). On the contrary, dynamic
analysis allows us to find third parties that receive sensitive data
(e.g., Alibaba) but went unnoticed during our static analysis. This
shows the importance of complementing static analysis with a
run-time analysis of browser behavior. In terms of the type of
PII most commonly shared, we find that those related to targeted
advertisement and tracking of users are the most prevalent (namely
the AdID and the device geolocation). This is not surprising, as
third-party SDKs often track users, e.g., to build comprehensive
profiles of their behavior and preferences [25]. We also find 3 apps

38

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

Table 5: Number of browsers sharing visited domains via
search and suggestion queries (* First party).

Destination Service # of Browsers

Google Suggest 34
Google Search 16
Yahoo Suggest 2
Yandex Favicon* 2
Ninesky Favicon* 1
Opera Sitecheck* 1
Yahoo Search 1
Yandex Favicon 1
Baidu Suggest 1
Opera Sitecheck 1

Total 60

bridging IDs, that is, sending both resettable and non-resettable
identifiers to the same host (a domain that belongs to UC). This
goes against Google’s policy [55, 68] as it allows companies to track
users longitudinally even if they do reset their AdID. Two of these
apps come from Chinese stores and one (UC Browser Turbo) is
available on the Google Play Store.

6.3 Browsing History Exposure
To understand the exposure of browsing history, we search for
network requests that contain the names of the automatically vis-
ited websites. As with our analysis of other types of PII in §6.2, we
account for a wide range of content and character encodings (e.g.,
gzip, JSON, hashed values). We find that 81 browsers expose the
identity of a majority of visited websites to an unrelated destina-
tion (i.e., one not contacted when loading the tested websites in
a baseline browser). We manually confirm that these domains are
not included in any of the websites’ source code. To understand
why browsing history is being shared, we manually analyze the
payload of the requests and group behavior into two categories:
those where the browsing history is exposed in support of pri-
mary browser functionality and those where we could not find any
legitimate justification for such behavior.

First, we find 60 browsers where we identified a feature that re-
quires this data, i.e., search and suggestion APIs, site checks, compat-
ibility checks, URL safety checks and favicon services. None of these
requests included any other type of PII (such as unique identifiers).
We manually inspected the code of one of the browsers in which we
identify such behaviors and confirm that indeed, whenever the user
inputs a domain, this generates a requests to a search suggestion
API (in this particular case either Google or DuckDuckGo). This is
in line with behavior reported by previous work [80]. Table 5 shows
the different services that we identified in our analysis. Querying
a search API might be expected in some use cases, e.g., when the
user inputs a term that is not a valid URL. Nevertheless, when a
user enters a complete URL, they may not expect or want the URL
to be exposed to another party.

Table 6 shows the destinations that receive browsing history
along with PII for the cases in which could not identify a feature.
Destinations found in only one browser are shown in Appendix C.
Of the 37 browsers where we cannot identify a feature that requires
sharing browsing history, we find that 13 browsers send this data

Table 6: Number of unique browsers sharing browsing his-
tory and PII with other parties (* First party), allowing to
link the history to a unique user.

Destination # of Brow. Loc. AdID IMEI MACD

AppsFlyer 8 1 8
Casale Media 7
Rubicon Project 6
Yandex* 3 1
Moat 3
Verizon 2 1
360 2 1
Adnxs 2
Total 37 4 10

to endpoints along with unique user identifiers (the AdID in 9
browsers, location data in 3 browsers and both of these in one
browser). Browsers that send both visited websites and other PII
to destinations can be harmful to user privacy because they have
the ability to link the browsing history to an individual. We find
browsing history exposed to third-party organizations known for
offering tracking and advertising solutions, such as AppsFlyer [5],
Firebase [7] or Verizon (owner of SDKs such as Flurry [8]).

To further understand the privacy risks posed by these third-
party SDKs, we manually analyze some of their code. For instance,
the MiOTA browser implements its own version of Android’s Web-
View. After every request has finished, the browser runs JavaScript
code that sends the visited URL along with identifiers (e.g., the
Android ID) to a first-party domain. Another example is Stealth
Browser which sends the visited URL to a destination that belongs
to Fillr [6]. The browser’s description on Google Play [69] confirms
that this browser embeds the Fillr third-party SDK, explaining why
we see these requests in our test. Ironically, both browsers claim to
offer privacy as one of their features in their descriptions. Some of
the observed browser-history sharing might serve to improve the
browsing experience. For instance, we find destinations related to
the browsers’ own companies (for browsers like UCWeb, Opera, or
Kiddoware), and argue that this data collection could be used for
telemetry, safe browsing or parental control. Users might decide
that the benefits of such collection may offset the privacy risks.

7 MULTIDIMENSIONAL ANALYSIS
In this section, we combine the findings of previous sections that
showed instances of privacy enhancing and harming behavior by
browsers to gain a global picture of the privacy disposition of
browsers through a multidimensional lens. This allows us to iden-
tify instances where browsers are relatively helpful or harmful
when it comes to exposing users to data collection, and identify
other interesting cases of unexpected behavior.
Methodology. To quantify the privacy disposition of each browser,
we translate each observed behavior into a quantified, normalized
score. Specifically, we focus on four main categories of privacy-
impacting behavior for which we assign each browser a score be-
tween 0 and 1. (i) Blocking tracking content or allowing requests to
tracking services, for which we use simple binary values. (ii) Con-
nection security with binary values as well. (iii) PII exposure, for
which we assign three levels of values, highest for Non-resettable

39

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

Figure 3: Quantification of browser’s privacy-enhancing and -harming behaviors. Browsers icons can be found in Table 1.

IDs, medium for Resettable IDs, and lowest for other identifiers. We
sum these factors across browsers and normalize them to a max-
imum value of 1. (iv) Sharing browsing history, for we use binary
values: if a browser shares the vast majority of websites visited
with another party, the value is 1; otherwise it is zero.
Results. Figure 3 represents for each browser (x-axis), the observed
behaviors that improve user privacy in the positive y-axis and the
ones that may harm them on the negative y-axis. Thus, we combine
information from all our tests to help understand how each browser
protects or harms privacy. The graph is ordered by decreasing
privacy protection from left to right, meaning the browsers that
mostly protect user privacy are on the left and those with significant
potential harms to user privacy are on the right.

Figure 3 shows wide variations across browsers in terms of be-
haviors that impact user privacy, and emphasizes the importance
of a multidimensional analysis when considering the privacy dispo-
sition of a browser. Of the 5 worst browsers (towards the right end
in Figure 3), 4 are available on Google Play (Savannah, Star, Yandex,
and Yandex Beta). The Yandex browser is extremely popular (> 100
million downloads, but harms user privacy by collecting Advertise-
ment IDs (red in Figure 3) along with browsing history (orange in
Figure 3). Meanwhile, a browser found on a Chinese store TxWe-
bLibrary collects user history while disregarding TLS certificates
(dark green in Figure 3). On the left end, browser that protect user
privacy tend to implement HTTPS by default and block content
like trackers and ads (FOSS Browser). Among the most popular
browsers, Chrome and Firefox are ranked best for privacy, Phoenix
is middle-of-the-pack, and Opera, UC-mini, and Yandex fare poorly.
We also find interesting cases with mixed impact on privacy be-
tween these extremes. For example, out of the 276 browsers that
block tracking content, we see that 195 also allow tracking requests,
63 expose PII, 38 share the browsing history, and 20 fail to validate
certificates. Finally, KKBrowser (with two different signatures in
our dataset) uses HTTPS by default and blocks tracking content,
but also fails to correctly validate TLS certificates and exposes PII.

8 RELATEDWORK
Previous work leveraged static [22] and dynamic [41, 79, 109] analy-
sis to identify security and privacy threats in mobile apps, reporting
on: malicious and insecure behaviors [30, 77, 83, 100, 110, 114, 127],

presence of third-party code [90, 103, 108, 112, 117] and lack of trans-
parencywhen it comes to privacy [99, 134]. Researchers have shown
that privacy issues can occur in all types of Android apps, regardless
of their origin [51, 126], or target audience [113, 123]. Previous work
has also shown the pitfalls of static techniques [35, 46, 91, 105] and
dynamic techniques [32, 51, 70, 118]; finally showing that combin-
ing both analysis techniques can be useful for better understanding
security and privacy issues, such as the use of covert and side chan-
nels [110] or the privacy risks of analytics libraries [84]. Our work
combines static and dynamic analysis to provide a comprehensive
view of privacy issues in mobile browsers.

In the mobile browser ecosystem, Niu et al. highlighted the se-
curity problems of browsers on mobile devices in comparison to
those on desktops [98]. Leith studied privacy issues of five major
mobile browsers [80], showing that indeed some browsers are more
privacy-protecting than others. Luo et al. studied the evolution of
UI vulnerabilities in mobile browsers [87], as well as provided a
longitudinal analysis of security mechanisms supported by mobile
browsers [86]. Vila et al. demonstrated the possibility to perform
side-channel attacks on Chrome’s event loops to identify websites
and user behavior [125]. Lin et al. explored the privacy and secu-
rity threats of Chromium-based browsers’ autofill functionality,
allowing attackers to extract user data and studying the potential
for such an attack in the wild [82]. Wu et al. [128] highlighted
vulnerabilities in mobile browsers that could give attackers access
to users’ cookies and browsing history through local file access.
Kondracki et al. identified potential security issues introduced by
data saving browsers [76]. Furthermore, several related papers iden-
tified possible attacks on Android’s WebView [26, 31, 88, 89, 94, 95],
which is used by some browsers and many other types of mobile
apps to display web content. Most recently, Krause [78] used an
instrumented website to reveal that that in-app browsers, such as
the one in TikTok, collect extensive data about user interactions
with websites via JavaScript. However, in-app browsing interfaces
are out of scope for our work, as they do not allow users to visit
arbitrary URLs as freely as with a dedicated browser. In contrast,
we aim to analyze the whole ecosystem of Android browsers, from
those that are more well-known and available in the Google Play
Store to those less-known and from Chinese stores.

In terms of server-side privacy attacks, Eckersley looked at the
possibility to fingerprint browsers based on their uniqueness [40].

40

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

Vastel et al. further showed that browser fingerprints are a viable
option to perform long-term tracking of users, even when those
fingerprints change over time [124]. Das et al. showed how mobile
specific sensors are used for tracking [36] and Marcantoni et al.
have extended this work, studying the prevalence ofWebAPI sensor
accesses on the web [92]. To the best of our knowledge, our work
is the first to investigate privacy implications of Android browsers
from different sources, relying on a novel methodology to study
whether browsers promote user privacy by blocking data collection
by other parties, or whether they harm it by collecting and/or
sharing user data. We develop novel analysis techniques and apply
them to a large collection of mobile browsers.

9 DISCUSSION
Limitations. We limit our analysis to the Android ecosystem of
mobile browsers, due to the open nature of Android, which permits
browsers from very different origins and business models. In con-
trast, Apple’s iOS restricts all browsers to useWebKit [19], and users
were not allowed to change their default browser until the recent
iOS 14 [20]. At themethodology level, it is important to note that our
static analysis results (§ 4.1) could be impacted by apps making use
of code obfuscation and dynamic code loading. This is a well known
limitation of static analysis, and it can impact our ability to find
third-party SDKs and identify calls to permission-protected meth-
ods. Our dynamic analysis pipeline (§ 4.2) also presents limitations,
preventing us from testing 24 browsers dynamically. Moreover,
our behavioral analysis represents a lower bound on potentially
problematic browser behaviors, as we do not exhaustively cover all
code paths due to limitations of current fuzzing methods. We also
refrain from looking at the purposes of data collection, due to the
difficulty and scalablity issues caused by trying to automatically
extract this information from privacy policies at scale. The number
of pre-installed browsers that we successfully tested is small due to
their native dependencies which cannot be reproduced on our test
device [51]. Finally, we report on all run-time data collection from
mobile browsers by approving all permission requests, which may
differ from how any individual user gives consent.
Mitigation. Given the lack of transparency into how browsers
impact privacy and security, we argue that app stores could play a
vital role in mitigating harms for users. Specifically, app stores can
use our technique (building on our open-source code) to measure
the privacy and security of browsers and decide on whether to
publish a browser based on the results. We believe this would incur
low additional cost since app stores already review apps and run
automated tools to analyze them, and doing so could protect large
numbers of users. In addition, stores (or other sites) can make a
transparency report available to users at install time, similar to the
data Apple and the Google Play store report to users regarding an
app’s access and use of personal or sensitive data.
Lessons learned. At first glance, a privacy analysis of mobile
browsers seems straightforward. However, we learned a number
of lessons in addressing key challenges that demonstrated it was
far from trivial. One such challenge was dealing with web page
dynamics, which make it difficult to reliably infer browser behavior.
Our web page replay approach, while not entirely novel, required
substantial effort to properly handle page dynamics—including

those that occur even when the page source stays the same. An-
other challenge was determining how a browser modifies page
content without instrumenting or analyzing the code of hundreds
of browsers. We found that injecting our own Javascript into web-
pages provided a surprisingly straightforward way to capture this
information across all browsers without needing manual instru-
mentation or analysis. Last, we stress that simply looking at PII
exposure is not enough when considering the purpose of apps like
browsers. In our case, we found browsers to share potentially highly
sensitive metadata (browsing history) with other parties. For future
work, it is important to consider such non-standard types of sensi-
tive data that can be exposed by special-purpose apps that handle
sensitive data beyond those protected by OS permissions.
Future work. Investigating regulatory compliance of consent, opt-
out, and the accuracy of privacy policy text is an interesting area for
future work, but it complicated by the complexity and scalability
issues of automatically inspecting privacy policies. Interestingly,
only 13 of the browsers had some kind of initial on-boarding screen
that the user has to interact with before using the browser, while 19
implicitly or explicitly present users with a privacy policy. There-
fore, for the majority of browsers, we arguably never give explicit
consent to data collection (other than by simply installing and run-
ning the browser). We note that we also looked for file modification
by browsers in an attempt to find apps writing sensitive informa-
tion to the external storage as previous work has shown the risks
of exposing of PII to external storage, and how this can be used as
a covert channel [27, 110]. However, we did not find any instance
of this behavior during our tests.

10 CONCLUSION AND KEY FINDINGS
This paper conducted the first large-scale privacy analysis of An-
droid browsers. To that end, we analyzed a set of 424 browsers
collected from different sources, including the Google Play Store,
popular Chinese stores, and pre-installed apps. We developed a cus-
tom, novel methodology that combines static and dynamic analysis
to identify and quantify privacy-protecting and -harming behav-
iors. We show that some browsers have the ability to protect user
privacy, as 65% of these browsers block tracking scripts, and 65%
block access to protected JavaScript APIs (§ 5.1 and § 5.2). However,
we also find security issues in 10% browsers that fail to validate TLS
certificates, and discover that only 2% of browsers default to HTTPS
(§ 5.3). We also find four browsers that modify webpages and in-
ject scripts into loaded webpages. Our analysis of mobile browser
code shows that these apps request a wide range of permissions
and that the personal data protected by them can be accessed by
third-party libraries that may use the data for secondary purposes
(§ 6.1). To identify a lower bound of how much personal data is
exposed by these browsers at runtime, we analyzed network traffic
while browsers visit a controlled set of websites. We find evidence
of 32% of browsers disseminating at least one type of PII, including
resettable and non-resettable identifiers (§ 6.2). Given the increased
flexibility for users to select their own default browser and wide
range of privacy-impacting behaviors observed, we argue there
needs to be greater transparency and auditing of mobile browsers,
which our techniques can readily inform.

41

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable feedback on improving
our paper. We also thank Jakob Bleier for his assistance with the
browser engine attribution.

This research was partially funded by the NSF under SaTC-
1955227. This research also received funding from the Vienna Sci-
ence and Technology Fund (WWTF) through project ICT19-056, as
well as SBA Research (SBA-K1), a COMET Centre within the frame-
work of COMET - Competence Centers for Excellent Technologies
Programme and funded by BMK, BMDW, and the federal state of
Vienna. The COMET Programme is managed by FFG.

IMDEA Networks’ researchers are funded by EU’s H2020 Pro-
gram (TRUST aWARE Project, Grant Agreement No. 101021377) and
the Spanish Ministry of Science (ODIO Project, PID2019-111429RB-
C22). Dr. Narseo Vallina-Rodriguez is funded by a Ramon y Cajal
Fellowship from the Spanish Ministry of Science and Innovation.

REFERENCES
[1] 2022. 360. http://zhushou.360.cn/.
[2] 2022. Androguard. https://github.com/androguard/androguard.
[3] 2022. Anzhi. http://www.anzhi.com/.
[4] 2022. AppChina. http://m.appchina.com/.
[5] 2022. AppsFlyer. https://www.appsflyer.com/.
[6] 2022. Fillr. https://www.fillr.com/.
[7] 2022. Firebase. https://firebase.google.com/.
[8] 2022. Flurry. https://www.flurry.com/.
[9] 2022. mitmproxy. https://mitmproxy.org/.
[10] 2022. Tencent. https://android.myapp.com/.
[11] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The Web Never Forgets: Persistent Track-
ing Mechanisms in the Wild. In Proc. of the ACM Conference on Computer and
Communication Security (CCS).

[12] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. 2013. FPDetective: Dusting the Web for Fingerprint-
ers. In Proc. of the ACM Conference on Computer and Communication Security
(CCS).

[13] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. 2010. An
Analysis of Private Browsing Modes in Modern Browsers. In Proc. of the USENIX
Security Symposium.

[14] Syed Suleman Ahmad, Muhammad Daniyal Dar, Muhammad Fareed Zaffar,
Narseo Vallina-Rodriguez, and Rishab Nithyanand. 2020. Apophanies or Epipha-
nies? How Crawlers Impact Our Understanding of the Web. In Proc. of the Web
Conference (WWW).

[15] Alexa. 2020. The Top 500 Sites on the Web (By Category). https://www.alexa.
com/topsites/category/. (accessed 2020-08-28).

[16] Android Open Source Project. 2021. Android 11 Compatibility Definition
Document: Software. https://source.android.com/compatibility/11/android-11-
cdd#2_2_3_software. (accessed 2021-06-08).

[17] Android Open Source Project. 2021. Privileged Permission Allowlisting. https:
//source.android.com/devices/tech/config/perms-whitelist. (accessed 2021-06-
08).

[18] AppInChina. 2022. App Store Index. https://www.appinchina.co/market/app-
stores/. (accessed 2022-03-15).

[19] Apple. 2020. App Store Review Guidelines. https://developer.apple.com/app-
store/review/guidelines/.

[20] Apple. 2020. New features coming with iOS 14. https://www.apple.com/ios/ios-
14-preview/features/.

[21] Sajjad Arshad, Amin Kharraz, and William Robertson. 2016. Identifying
Extension-based Ad Injection via Fine-grained Web Content Provenance. In
Proc. of the International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID).

[22] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proc. of the SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[23] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proc. of the ACM Conference
on Computer and Communication Security (CCS).

[24] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau,
and Sebastian Weisgerber. 2016. On Demystifying the Android Application

Framework: Re-Visiting Android Permission Specification Analysis. In Proc. of
the USENIX Security Symposium.

[25] Muhammad Ahmad Bashir and ChristoWilson. 2018. Diffusion of User Tracking
Data in the Online Advertising Ecosystem. Proc. of the Privacy Enhancing
Technologies Symposium (PETS) (2018).

[26] Philipp Beer, Lorenzo Veronese, Marco Squarcina, and Martina Lindorfer. 2022.
The Bridge between Web Applications and Mobile Platforms is Still Broken. In
Workshop of Designing Security for the Web (SecWeb).

[27] Antonio Bianchi, Eric Gustafson, Yanick Fratantonio, Christopher Kruegel, and
Giovanni Vigna. 2017. Exploitation and Mitigation of Authentication Schemes
Based on Device-Public Information. In Proc. of the Annual Computer Security
Applications Conference (ACSAC).

[28] Sarah Bird, Ilana Segall, and Martin Lopatka. 2020. Replication: Why We Still
Can’t Browse in Peace: On the Uniqueness and Reidentifiability ofWeb Browsing
Histories. In Proc. of the Symposium on Usable Privacy and Security (SOUPS).

[29] Eduardo Blázquez, Sergio Pastrana, Álvaro Feal, Julien Gamba, Platon Kotzias,
Narseo Vallina-Rodriguez, and Juan Tapiador. 2021. Trouble Over-The-Air:
An Analysis of FOTA Apps in the Android Ecosystem. In Proc. of the IEEE
Symposium on Security and Privacy (S&P).

[30] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds:
Mass Vetting for New Threats at the Google-Play Scale. In Proc. of the USENIX
Security Symposium.

[31] Erika Chin and David Wagner. 2013. Bifocals: Analyzing WebView Vulner-
abilities in Android Applications. In Proc. of the International Workshop on
Information Security Applications (WISA).

[32] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proc. of the
IEEE/ACM International Conference on Automated Software Engineering (ASE).

[33] Chromium. 2022. permissions.site. https://github.com/chromium/permission.
site.

[34] Chromium. 2022. Sending X-Requested-With header to every website is a device
fingerprinting risk. https://bugs.chromium.org/p/chromium/issues/detail?id=
960720.

[35] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps Through Differential Analysis. In Proc.
of the Network and Distributed System Security Symposium (NDSS).

[36] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proc. of the
ACM Conference on Computer and Communication Security (CCS).

[37] Thomas Dullien and Rolf Rolles. 2005. Graph-based Comparison of Executable
Objects. Symposium sur la sécurité des technologies de l’information et des com-
munications 5, 1 (2005), 3.

[38] EasyList. 2021. Version 202105250854. https://easylist.to/easylist/easylist.txt.
(accessed 2021-06-07).

[39] EasyPrivacy. 2021. Version 202105250854. https://easylist.to/easylist/
easyprivacy.txt. (accessed 2021-06-07).

[40] Peter Eckersley. 2010. How Unique Is Your Web Browser?. In Proc. of the Privacy
Enhancing Technologies Symposium (PETS).

[41] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In Proc. of
the USENIX Conference on Operating Systems Design and Implementation (OSDI).

[42] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-
site Measurement and Analysis. In Proc. of the ACM Conference on Computer
and Communication Security (CCS).

[43] European Commission. 2018. Antitrust: Commission fines Google e4.34 billion
for illegal practices regarding Android mobile devices to strengthen dominance
of Google’s search engine. https://ec.europa.eu/commission/presscorner/detail/
en/IP_18_4581.

[44] Exodus. 2020. Trackers. https://reports.exodus-privacy.eu.org/en/trackers/.
(accessed 2020-09-02).

[45] Jason Farrell. 2021. UseAllFive. https://github.com/UseAllFive/true-visibility.
[46] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Manoj Singh Gaur, Mauro Conti,

and Muttukrishnan Rajarajan. 2014. Evaluation of Android Anti-malware Tech-
niques against Dalvik Bytecode Obfuscation. In Proc. of the International Con-
ference on Trust, Security and Privacy in Computing and Communications (Trust-
Com).

[47] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wijesekera, Joel Reardon,
Serge Egelman, and Narseo Vallina-Rodriguez. 2021. Don’t Accept Candy from
Strangers: An Analysis of Third-Party Mobile SDKs. Data Protection and Privacy:
Data Protection and Artificial Intelligence (2021).

[48] Álvaro Feal, Pelayo Vallina, Julien Gamba, Sergio Pastrana, Antonio Nappa,
Oliver Hohlfeld, Narseo Vallina-Rodriguez, and Juan Tapiador. 2021. Blocklist
Babel: On the Transparency and Dynamics of Open Source Blocklisting. IEEE
Transactions on Network and Service Management (2021).

42

http://zhushou.360.cn/
https://github.com/androguard/androguard
http://www.anzhi.com/
http://m.appchina.com/
https://www.appsflyer.com/
https://www.fillr.com/
https://firebase.google.com/
https://www.flurry.com/
https://android.myapp.com/
https://www.alexa.com/topsites/category/
https://www.alexa.com/topsites/category/
https://source.android.com/compatibility/11/android-11-cdd#2_2_3_software
https://source.android.com/compatibility/11/android-11-cdd#2_2_3_software
https://source.android.com/devices/tech/config/perms-whitelist
https://source.android.com/devices/tech/config/perms-whitelist
https://www.appinchina.co/market/app-stores/
https://www.appinchina.co/market/app-stores/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://www.apple.com/ios/ios-14-preview/features/
https://www.apple.com/ios/ios-14-preview/features/
https://github.com/chromium/permission.site
https://github.com/chromium/permission.site
https://bugs.chromium.org/p/chromium/issues/detail?id=960720
https://bugs.chromium.org/p/chromium/issues/detail?id=960720
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/easyprivacy.txt
https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4581
https://ec.europa.eu/commission/presscorner/detail/en/IP_18_4581
https://reports.exodus-privacy.eu.org/en/trackers/
https://github.com/UseAllFive/true-visibility

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

[49] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proc. of the ACM Conference on
Computer and Communication Security (CCS).

[50] Gabi Cirlig. 2021. The 4th largest mobile browser exfiltrates users’ data even
in Incognito mode. https://hookgab.medium.com/ucbrowser-privacy-study-
ecff96fbcee4. (accessed 2021-06-07).

[51] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. 2020. An Analysis of Pre-installed Android Software.
Proc. of the IEEE Symposium on Security and Privacy (S&P) (2020).

[52] Google. 2019. Presenting search app and browser options to Android users in
Europe. https://www.blog.google/around-the-globe/google-europe/presenting-
search-app-and-browser-options-android-users-europe/.

[53] Google. 2020. Advertising ID. https://support.google.com/googleplay/android-
developer/answer/6048248. (accessed 2020-09-03).

[54] Google. 2020. Android Studio Code Annotations.
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/
mirror-goog-studio-master-dev/android/annotations/android/. (accessed
2020-03-23).

[55] Google. 2020. Best practices for unique identifiers. https://developer.android.
com/training/articles/user-data-ids. (accessed 2020-07-29).

[56] Google. 2020. Permissions overview. https://developer.android.com/guide/
topics/permissions/overview. (accessed 2020-03-02).

[57] Google. 2020. Privacy changes in Android 10: Restriction on non-resettable
device identifiers. https://developer.android.com/about/versions/10/privacy/
changes#non-resettable-device-ids. (accessed 2020-07-29).

[58] Google. 2020. RequiresPermission: Android Support Library.
https://developer.android.com/reference/android/annotation/
RequiresPermission. (accessed 2020-03-23).

[59] Google. 2020. RequiresPermission: AndroidX.
https://developer.android.com/reference/androidx/annotation/
RequiresPermission. (accessed 2020-03-23).

[60] Google. 2020. Sign your app. https://developer.android.com/studio/publish/app-
signing. (accessed 2020-07-28).

[61] Google. 2020. Use cases for package visibility in Android 11: Open
URLs. https://developer.android.google.cn/preview/privacy/package-visibility-
use-cases#open-urls. (accessed 2020-09-02).

[62] Google. 2021. Bookmarks permissions. https://android.googlesource.
com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/
AndroidManifest.xml#625. (accessed 2021-06-06).

[63] Google. 2021. Bookmarks permissions descriptions. https://android.
googlesource.com/platform/frameworks/base/+/refs/tags/android-
5.1.1_r38/core/res/res/values/strings.xml#3191. (accessed 2021-06-06).

[64] Google. 2021. Integrate the WebView API for Ads. https://developers.google.
com/ad-manager/mobile-ads-sdk/android/webview.

[65] Google. 2022. Define a custom App Permission. https://developer.android.com/
guide/topics/permissions/defining. (accessed 2022-09-15)).

[66] Google. 2022. Play Protect: The most widely deployed mobile threat protection
service in the world. https://www.android.com/play-protect/.

[67] Google. 2022. Safe Browsing. https://transparencyreport.google.com/safe-
browsing/overview.

[68] Google Play. 2021. Developer Content Policy. https://play.google.com/about/
developer-content-policy/.

[69] Google Play Store. 2021. Stealth Browser - Fast Private. https://play.google.
com/store/apps/details?id=com.stealthmobile.browser. (accessed 2021-06-07).

[70] Yuyu He, Lei Zhang, Zhemin Yang, Yinzhi Cao, Keke Lian, Shuai Li, Wei Yang,
Zhibo Zhang, Min Yang, Yuan Zhang, and Haixin Duan. 2020. TextExerciser:
Feedback-Driven Text Input Exercising for Android Applications. Proc. of the
IEEE Symposium on Security and Privacy (S&P) (2020).

[71] Scott Ikeda. 2020. Brave Privacy Browser Caught Automatically Adding
Affiliate Links to Cryptocurrency URLs. https://www.cpomagazine.com/data-
privacy/brave-privacy-browser-caught-automatically-adding-affiliate-links-
to-cryptocurrency-urls/.

[72] iNews. 2022. The number of users of the QQ browser APP has
shown a downward trend in the past year. https://inf.news/en/tech/
ecaf2df1401fe9818e947dc11e3591d2.html. (accessed 2022-09-15).

[73] Kobra Khanmohammadi, Neda Ebrahimi, Abdelwahab Hamou-Lhadj, and
Raphaël Khoury. 2019. Empirical Study of Android Repackaged Applications.
Empirical Software Engineering 24, 6 (2019).

[74] Jeffrey Knockel, Adam Senft, and Ronald Deibert. 2016. Privacy and Security
Issues in BAT Web Browsers. In Proc. of the USENIX Workshop on Free and Open
Communications on the Internet (FOCI).

[75] Caroline Knorr. 2020. Parents’ Ultimate Guide to Parental Controls. https://www.
commonsensemedia.org/blog/parents-ultimate-guide-to-parental-controls.

[76] Brian Kondracki, Assel Aliyeva, Manuel Egele, Jason Polakis, and Nick Niki-
forakis. 2020. Meddling Middlemen: Empirical Analysis of the Risks of Data-
Saving Mobile Browsers. In Proc. of the IEEE Symposium on Security and Privacy
(S&P).

[77] Platon Kotzias, Juan Caballero, and Leyla Bilge. 2021. How Did That Get In My
Phone? Unwanted App Distribution on Android Devices. In Proc. of the IEEE
Symposium on Security and Privacy (S&P).

[78] Felix Krause. 2022. iOS Privacy: Announcing InAppBrowser.com - see
what JavaScript commands get injected through an in-app browser.
https://krausefx.com/blog/announcing-inappbrowsercom-see-what-
javascript-commands-get-injected-through-an-in-app-browser.

[79] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka,
and Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from
Mobile Devices. In Proc. of the ACM SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data.

[80] Douglas J Leith. 2021. Web Browser Privacy: What Do Browsers Say When
They Phone Home? IEEE Access 9 (2021), 41615–41627.

[81] Zhuowei Li, XiaoFeng Wang, and Jong Youl Choi. 2007. SpyShield: Preserving
Privacy from Spy Add-Ons. In Proc. of the International Workshop on Recent
Advances in Intrusion Detection (RAID).

[82] Xu Lin, Panagiotis Ilia, and Jason Polakis. 2020. Fill in the Blanks: Empirical
Analysis of the Privacy Threats of Browser Form Autofill. In Proc. of the ACM
Conference on Computer and Communication Security (CCS). 507–519.

[83] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor van der Veen, and Christian Platzer. 2014. Andrubis -
1,000,000 Apps Later: A View on Current Android Malware Behaviors. In Proc.
of the International Workshop on Building Analysis Datasets and Gathering Expe-
rience Returns for Security (BADGERS).

[84] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. 2019.
Privacy Risk Analysis and Mitigation of Analytics Libraries in the Android
Ecosystem. IEEE Transactions on Mobile Computing 19, 5 (2019).

[85] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-End
Measurement of Certificate Revocation in the Web’s PKI. In Proc. of the ACM
Internet Measurement Conference (IMC).

[86] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis. 2019. Time
Does Not Heal All Wounds: A Longitudinal Analysis of Security-Mechanism
Support in Mobile Browsers. In Proc. of the Network and Distributed System
Security Symposium (NDSS).

[87] Meng Luo, Oleksii Starov, Nima Honarmand, and Nick Nikiforakis. 2017. Hind-
sight: Understanding the Evolution of UI Vulnerabilities in Mobile Browsers. In
Proc. of the ACM Conference on Computer and Communication Security (CCS).

[88] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android System. In Proc. of the Annual Computer Security
Applications Conference (ACSAC).

[89] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2012. Touch-
jacking Attacks on Web in Android, iOS, and Windows Phone. In Proc. of the
International Symposium on Foundations and Practice of Security (FPS).

[90] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: Fast
and Accurate Detection of Third-Party Libraries in Android Apps. In Proc. of
the IEEE/ACM International Conference on Software Engineering Companion
(ICSE-C).

[91] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth Attacks: An Extended Insight into the Obfuscation Effects on
Android Malware. Computers & Security (2015).

[92] FrancescoMarcantoni, Michalis Diamantaris, Sotiris Ioannidis, and Jason Polakis.
2019. A Large-scale Study on the Risks of the HTML5WebAPI for Mobile Sensor-
based Attacks. In Proc. of the Web Conference (WWW).

[93] Mozilla. 2021. Web APIs. https://developer.mozilla.org/en-US/docs/Web/API.
(accessed 2021-06-06).

[94] Patrick Mutchler, Adam Doupé, John Mitchell, Christopher Kruegel, and Gio-
vanni Vigna. 2015. A Large-Scale Study of Mobile Web App Security. In Proc. of
the Mobile Security Technologies Workshop (MoST).

[95] Matthias Neugschwandtner, Martina Lindorfer, and Christian Platzer. 2013. A
View To A Kill: WebView Exploitation. In Proc. of the USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET).

[96] Dabid Nield. 2019. It’s Time to Switch to a Privacy Browser. https://www.wired.
com/story/privacy-browsers-duckduckgo-ghostery-brave/.

[97] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-
Rodriguez, Marjan Falahrastegar, Julia E Powles, Emiliano De Cristofaro, Hamed
Haddadi, and Steven J Murdoch. 2016. Adblocking and Counter-Blocking: A
Slice of the Arms Race. In Proc. of the USENIX Workshop on Free and Open
Communications on the Internet (FOCI).

[98] Yuan Niu, Francis Hsu, and Hao Chen. 2008. iPhish: Phishing Vulnerabilities on
Consumer Electronics. In Proc. of the Conference on Usability, Psychology, and
Security (UPSEC).

[99] Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit Elazari Bar On,
Narseo Vallina-Rodriguez, Irwin Reyes, Álvaro Feal, and Serge Egelman. 2019.
On The Ridiculousness of Notice and Consent: Contradictions in App Privacy
Policies. In Proc. of the Workshop on Technology and Consumer Protection (Con-
Pro).

43

https://hookgab.medium.com/ucbrowser-privacy-study-ecff96fbcee4
https://hookgab.medium.com/ucbrowser-privacy-study-ecff96fbcee4
https://www.blog.google/around-the-globe/google-europe/presenting-search-app-and-browser-options-android-users-europe/
https://www.blog.google/around-the-globe/google-europe/presenting-search-app-and-browser-options-android-users-europe/
https://support.google.com/googleplay/android-developer/answer/6048248
https://support.google.com/googleplay/android-developer/answer/6048248
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://android.googlesource.com/platform/tools/adt/idea/+/refs/heads/mirror-goog-studio-master-dev/android/annotations/android/
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/about/versions/10/privacy/changes#non-resettable-device-ids
https://developer.android.com/about/versions/10/privacy/changes#non-resettable-device-ids
https://developer.android.com/reference/android/annotation/RequiresPermission
https://developer.android.com/reference/android/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/reference/androidx/annotation/RequiresPermission
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.google.cn/preview/privacy/package-visibility-use-cases#open-urls
https://developer.android.google.cn/preview/privacy/package-visibility-use-cases#open-urls
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/AndroidManifest.xml#625
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/AndroidManifest.xml#625
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/AndroidManifest.xml#625
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/res/values/strings.xml#3191
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/res/values/strings.xml#3191
https://android.googlesource.com/platform/frameworks/base/+/refs/tags/android-5.1.1_r38/core/res/res/values/strings.xml#3191
https://developers.google.com/ad-manager/mobile-ads-sdk/android/webview
https://developers.google.com/ad-manager/mobile-ads-sdk/android/webview
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://www.android.com/play-protect/
https://transparencyreport.google.com/safe-browsing/overview
https://transparencyreport.google.com/safe-browsing/overview
https://play.google.com/about/developer-content-policy/
https://play.google.com/about/developer-content-policy/
https://play.google.com/store/apps/details?id=com.stealthmobile.browser
https://play.google.com/store/apps/details?id=com.stealthmobile.browser
https://www.cpomagazine.com/data-privacy/brave-privacy-browser-caught-automatically-adding-affiliate-links-to-cryptocurrency-urls/
https://www.cpomagazine.com/data-privacy/brave-privacy-browser-caught-automatically-adding-affiliate-links-to-cryptocurrency-urls/
https://www.cpomagazine.com/data-privacy/brave-privacy-browser-caught-automatically-adding-affiliate-links-to-cryptocurrency-urls/
https://inf.news/en/tech/ecaf2df1401fe9818e947dc11e3591d2.html
https://inf.news/en/tech/ecaf2df1401fe9818e947dc11e3591d2.html
https://www.commonsensemedia.org/blog/parents-ultimate-guide-to-parental-controls
https://www.commonsensemedia.org/blog/parents-ultimate-guide-to-parental-controls
https://krausefx.com/blog/announcing-inappbrowsercom-see-what-javascript-commands-get-injected-through-an-in-app-browser
https://krausefx.com/blog/announcing-inappbrowsercom-see-what-javascript-commands-get-injected-through-an-in-app-browser
https://developer.mozilla.org/en-US/docs/Web/API
https://www.wired.com/story/privacy-browsers-duckduckgo-ghostery-brave/
https://www.wired.com/story/privacy-browsers-duckduckgo-ghostery-brave/

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

[100] L. Onwuzurike, M. Almeida, E. Mariconti, J. Blackburn, G. Stringhini, and E. De
Cristofaro. 2018. A Family of Droids – Android Malware Detection via Behav-
ioral Modeling: Static vs Dynamic Analysis. In Proc. of the Annual Conference
on Privacy, Security and Trust (PST).

[101] Opera. 2021. Making browsing safe from phishing. https://blogs.opera.com/
security/2021/01/making-browsing-safe-from-phishing/.

[102] Charlie Osbourne. 2020. DuckDuckGo CEO clarifies favicon script use, seeks
to dispel privacy worries. https://portswigger.net/daily-swig/duckduckgo-ceo-
clarifies-favicon-script-use-seeks-to-dispel-privacy-worries.

[103] Elleen Pan, Jingjing Ren, Martina Lindorfer, ChristoWilson, and David Choffnes.
2018. Panoptispy: Characterizing Audio and Video Exfiltration from Android
Applications. Proc. of the Privacy Enhancing Technologies Symposium (PETS)
(2018).

[104] Muhammad Talha Paracha, Balakrishnan Chandrasekara, David Choffnes, and
Dave Levin. 2020. A Deeper Look at Web Content Availability and Consis-
tency over HTTP/S. In Proc. of the Network Traffic Measurement and Analysis
Conference (TMA).

[105] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious
Dynamic Code Loading in Android Applications. In Proc. of the Network and
Distributed System Security Symposium (NDSS).

[106] Amogh Pradeep, Talha Muhammad Paracha, Protick Bhomwick, Ali Dava-
nian, Abbas Razaghpanah, Taejoong Chung, Martina Lindorfer, Narseo Vallina-
Rodriguez, Dave Levin, and David Choffnes. 2022. A Comparative Analysis of
Certificate Pinning in Android & iOS. In Proc. of the ACM Internet Measurement
Conference (IMC).

[107] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS Usage in
Android Apps. In Proc. of the International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT).

[108] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. 2018. Apps,
Trackers, Privacy, and Regulators: A Global Study of theMobile Tracking Ecosys-
tem. In Proc. of the Network and Distributed System Security Symposium (NDSS).

[109] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. 2015. Haystack: In Situ
Mobile Traffic Analysis in User Space. arXiv preprint arXiv:1510.01419 (2015).

[110] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo
Vallina-Rodriguez, and Serge Egelman. 2019. 50 Ways to Leak Your Data: An
Exploration of Apps’ Circumvention of the Android Permissions System. In
Proc. of the USENIX Security Symposium.

[111] Charles Reis, Steven D Gribble, Tadayoshi Kohno, and Nicholas C Weaver. 2008.
Detecting In-Flight Page Changes with Web Tripwires. In Proc. of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

[112] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David
Choffnes. 2016. Recon: Revealing and Controlling PII Leaks in Mobile Net-
work Traffic. In Proc. of the ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys).

[113] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t
Somebody Think of the Children?” Examining COPPA Compliance at Scale. In
Proc. of the Privacy Enhancing Technologies Symposium (PETS).

[114] Gian Luca Scoccia, Ibrahim Kanj, Ivano Malavolta, and Kaveh Razavi. 2020.
Leave my Apps Alone! A Study on how Android Developers Access Installed
Apps on User’s Device. In Proc. of the IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft).

[115] Suranga Seneviratne, Aruna Seneviratne, Prasant Mohapatra, and Anirban
Mahanti. 2014. Predicting User Traits From a Snapshot of Apps Installed on a
Smartphone. ACM SIGMOBILE Mobile Computing and Communications Review
18, 2 (2014).

[116] Kevin Shalvey. 2021. A lawsuit that accused Google of collecting the data
of people who were using incognito mode can continue, said a federal
judge. https://www.businessinsider.com/google-lawsuit-incognito-mode-user-
data-privacy-can-continue-judge. (accessed 2021-06-07).

[117] Anastasia Shuba, Athina Markopoulou, and Zubair Shafiq. 2018. NoMoAds:
Effective and Efficient Cross-App Mobile Ad-Blocking. Proc. of the Privacy
Enhancing Technologies Symposium (PETS) (2018).

[118] Shiwangi Singh, Rucha Gadgil, and Ayushi Chudgor. 2014. Automated Test-
ing of Mobile Applications using Scripting Technique: A Study on Appium.
International Journal of Current Engineering and Technology (IJCET) (2014).

[119] Statista. 2021. Percentage of mobile device website traffic worldwide from 1st
quarter 2015 to 1st quarter 2021. https://www.statista.com/statistics/277125/
share-of-website-traffic-coming-from-mobile-devices/. (accessed 2021-06-08).

[120] Thomas Steiner. 2018. What is in a Web View? An Analysis of Progressive Web
App Features When the Means of Web Access is not a Web Browser. In Proc. of
the Web Conference (WWW).

[121] Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros
Kapravelos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, et al.
2015. Ad Injection at Scale: Assessing Deceptive Advertisement Modifications.
In Proc. of the IEEE Symposium on Security and Privacy (S&P).

[122] Giorgos Tsirantonakis, Panagiotis Ilia, Sotiris Ioannidis, Elias Athanasopoulos,
and Michalis Polychronakis. 2018. A Large-scale Analysis of Content Modifi-
cation by Open HTTP Proxies. In Proc. of the Network and Distributed System
Security Symposium (NDSS).

[123] Junia Valente and Alvaro A Cardenas. 2017. Security & Privacy in Smart Toys.
In Proc. of the Workshop on Internet of Things Security and Privacy (IoT S&P).

[124] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking Browser Fingerprint Evolutions. In Proc. of the IEEE
Symposium on Security and Privacy (S&P).

[125] Pepe Vila and Boris Köpf. 2017. Loophole: Timing Attacks on Shared Event
Loops in Chrome. In Proc. of the USENIX Security Symposium.

[126] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li
Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A
Large-Scale Comparative Study of Chinese Android App Markets. In Proc. of
the ACM Internet Measurement Conference (IMC).

[127] HaoyuWang, XupuWang, and Yao Guo. 2019. Characterizing the Global Mobile
App Developers: A Large-Scale Empirical Study. In Proc. of the IEEE/ACM Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft).

[128] Daoyuan Wu and Rocky KC Chang. 2014. Analyzing Android Browser Apps
for file:// Vulnerabilities. In Proc. of the International Conference on Information
Security (ISC).

[129] Zhiju Yang and Chuan Yue. 2020. A Comparative Measurement Study of Web
Tracking on Mobile and Desktop Environments. Proc. of the Privacy Enhancing
Technologies Symposium (PETS) (2020).

[130] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M Pujol. 2016. Tracking
the Trackers. In Proc. of the Web Conference (WWW).

[131] Shuai Yuan, Jun Wang, and Xiaoxue Zhao. 2013. Real-time Bidding for Online
Advertising: Measurement and Analysis. In Proc. of the International Workshop
on Data Mining for Online Advertising (ADKDD).

[132] Ahsan Zafar, Aafaq Sabir, Dilawer Ahmed, and Anupam Das. 2021. Understand-
ing the Privacy Implications of Adblock Plus’s Acceptable Ads. In Proc. of the
ACM Asia Computer and Communications Security (ASIA CCS).

[133] Zicheng Zhang, Daoyuan Wu, Lixiang Li, and Debin Gao. 2021. On the Usabil-
ity (In)Security of In-App Browsing Interfaces in Mobile Apps. In Proc. of the
International Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[134] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
2017. Automated Analysis of Privacy Requirements for Mobile Apps. In Proc. of
the Network and Distributed System Security Symposium (NDSS).

[135] Zynamics. 2021. BinDiff. https://www.zynamics.com/bindiff.html.

Table 7: Data collected during dynamic analysis.
Analysis Component (Technique) Collected Data

Director (adb logcat) Logcat dump
Director (adb screencap) Mobile device screenshots
Director (adb-sync) Files on external storage
Director (adb) + Mobile Device (fsmon) Filesystem changes on external storage
Mobile Device (tripwire) Browser DOM
Gateway (mitmproxy) TLS traffic
Gateway (tcpdump) All network traffic

A WEBSITE SELECTION
• Honeypage. To understand how browsers handle referral links
(whether they modify them to generate revenue by users’ pur-
chases), social media plugins, and ads (whether they block them
to enhance users’ privacy), we use a honeypage. This honey-
page is inspired by Tsirantonakis et al. [122] and contains fake
advertisements, an Amazon referral link, and social media plu-
gins. The source code for this page can be found on Pastebin
(https://pastebin.com/qd25cNmC) and in our artifact repository.

• Permissions page. We extend a permissions test page [33] to
add tests for an exhaustive list of JavaScript WebAPIs. We also
modify this site to send result data to our testbed and use it to
test access to device sensors.

44

https://blogs.opera.com/security/2021/01/making-browsing-safe-from-phishing/
https://blogs.opera.com/security/2021/01/making-browsing-safe-from-phishing/
https://portswigger.net/daily-swig/duckduckgo-ceo-clarifies-favicon-script-use-seeks-to-dispel-privacy-worries
https://portswigger.net/daily-swig/duckduckgo-ceo-clarifies-favicon-script-use-seeks-to-dispel-privacy-worries
https://www.businessinsider.com/google-lawsuit-incognito-mode-user-data-privacy-can-continue-judge
https://www.businessinsider.com/google-lawsuit-incognito-mode-user-data-privacy-can-continue-judge
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www.statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://www.zynamics.com/bindiff.html
https://pastebin.com/qd25cNmC

Not Your Average App: A Large-scale Privacy Analysis of Android Browsers Proceedings on Privacy Enhancing Technologies 2023(1)

• Domain without protocol. To see if browsers pick http:// or
https:// by default when a user visits a domain without specifying
a protocol, we use a webpage that supports both these protocols
and omit mentioning the protocol. The webpage is under our
control and performs no redirection but serves content over the
requested protocol.

• HTTPS webpage. To understand the nature of TLS connections
a browser uses, including TLS versions, ciphers supported etc., we
use a HTML webpage hosted on a server that supports HTTPS.

• Popularwebpages.To understand how browsers handle regular
websites, we test the 16 websites listed in Table 8, one from each
category of Alexa’s category rankings [15]. (Note that this feature
was retired in September 2020.)

Table 8: Popular websites from Alexa’s category rankings.

Category Website

Adult https://www.xvideos.com/
Business https://www.office.com/
Regional https://www.yahoo.com/
Games https://m.twitch.tv/
Health https://www.nih.gov/
Society https://www.patreon.com/
Home https://finance.yahoo.com/
Science https://www.researchgate.net/
News https://www.reddit.com/
Recreation https://www.booking.com/
Reference https://stackoverflow.com/
Shopping https://www.amazon.com/
Sports https://www.espn.com/

B BROWSERS SHARING PII
Table 9 lists all the observed destinations (manually grouped by the
organization that owns them), as well as the type of data that they
receive.

C BROWSING HISTORY EXPOSURE
The remaining rows of Table 6, listing destinations that receive
browsing history along with PII (if any).

Table 9: Entities receiving PII from browsers (* First party).

Destination AdID Loc MACD Total

Firebase 33 33
Facebook 24 2 24
Alibaba 1 14 2 18
AppsFlyer 13 1 13
Verizon 9 9
Baidu 7 7
Adjust 7 7
Twitter 6 6
umsns 1 1 6
Appnext 6 6
OneSignal 5 5
StartAppService 4 1 4
Google Analytics 3 1 4
AppsGeyser 3 3
StartApp 3 3
ctobsnssdk 1 3 3
toutiao 2 3
Mobvista 1 1 2
Microsoft 2 2
360 2 2
Taboola 2 2
smardroid 1 1
Google devicecheck 1 1
Yahoo Search 1 1
Cloudflare Certcheck 1
Tencent 1 1
Mindworks 1 1
Urora 1
impression 1 1
Brave 1 1
Opera* 1 1
Amap 1 1
Kuaishou 1 1
yladm 1 1
1look 1 1
AdColony 1 1
UCWeb* 1 1
uodoo 1 1
UCWeb 1 1 1
yohoads 1 1
Flymobi 1 1
suibyuming 1 1 1
oakmastering 1 1
cloudmobi 1 1
MiOTA* 1 1
Amazon 1 1
Yandex* 1 1
Mail.ru* 1 1
Amplitude 1 1
Baidu* 1 1
tclclouds 1 1
Xiaomi 1 1
Opera 1 1
Vserv 1 1
Vmax 1 1
duapps 1 1
Total 98 41 8 135

45

Proceedings on Privacy Enhancing Technologies 2023(1) Pradeep et al.

Table 10: Number of unique browsers sharing browsing his-
tory and PII together, allowing other parties to link the his-
tory to a unique user (* First party).

Destination # of Browsers Location AdID

Oupeng 1
Baidu 1 1
ilovegame 1
baoruan 1
FDVR* 1
Google Datamixer 1
Kiddoware* 1
Maxthon* 1
Orbitum* 1
Fillr 1
Tencent* 1
fddm 1
MiOTA* 1 1
Bing 1
Mail.ru* 1 1
Aonbrowser 1
Google Analytics 1
Orbitum 1
Total 37 4 10

46

	Abstract
	1 Introduction
	2 Threat & Protection Models
	2.1 Privacy Threat Model
	2.2 Privacy Protection Model

	3 Mobile Browser Dataset
	3.1 Definition and Installation Sources
	3.2 Data Collection and Filtering
	3.3 Identifying Unique Browsers
	3.4 Characterization of Browsers
	3.5 Browser Engine Attribution

	4 Methodology
	4.1 Static Analysis
	4.2 Dynamic Analysis

	5 Browser Functionality
	5.1 Content Modification
	5.2 Blocking Access to Protected APIs
	5.3 Connection Security

	6 Privacy Analysis
	6.1 Permission Analysis
	6.2 Observed PII Exposure
	6.3 Browsing History Exposure

	7 Multidimensional Analysis
	8 Related Work
	9 Discussion
	10 Conclusion and key findings
	Acknowledgments
	References
	A Website Selection
	B Browsers sharing PII
	C Browsing History Exposure

