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ABSTRACT
We study the privacy implications of training recurrent neural net-
works (RNNs) with sensitive training datasets. Considering mem-
bership inference attacks (MIAs)—which aim to infer whether or
not specific data records have been used in training a given ma-
chine learning model—we provide empirical evidence that a neural
network’s architecture impacts its vulnerability to MIAs. In par-
ticular, we demonstrate that RNNs are subject to a higher attack
accuracy than feed-forward neural network (FFNN) counterparts.
Additionally, we study the effectiveness of two prominent mitiga-
tion methods for preempting MIAs, namely weight regularization
and differential privacy. For the former, we empirically demonstrate
that RNNs may only benefit from weight regularization marginally
as opposed to FFNNs. For the latter, we find that enforcing differen-
tial privacy through either of the following two methods leads to a
less favorable privacy-utility trade-off in RNNs: (i) adding Gauss-
ian noise to the gradients calculated during training as a part of
the so-called DP-SGD algorithm and (ii) adding Gaussian noise to
the trainable parameters as a part of a post-training mechanism
that we propose. As a result, RNNs can also be less amenable to
mitigation methods, bringing us to the conclusion that the privacy
risks pertaining to the recurrent architecture are higher than the
feed-forward counterparts.

KEYWORDS
Differential Privacy, Recurrent Neural Networks, Membership In-
ference Attacks

1 INTRODUCTION
In the emerging applications of artificial intelligence, machine learn-
ing models are frequently trained with personal, proprietary, oper-
ational, confidential, or otherwise sensitive datasets, which raises
privacy concerns. Even when these datasets are securely stored
and safeguarded from unauthorized access, sharing the outputs of
a machine learning model that has been trained with such sensitive
data can lead to unintended information leakage [39, 47]. Hence, it
is imperative to foresee and preempt the privacy risks of training
machine learning models with sensitive datasets.

We study the privacy risks of machine learning models that
are powered by recurrent neural networks (RNNs) and compare
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them to their counterparts powered by feed-forward neural net-
works (FFNNs). As opposed to FFNNs, in which the nodes in every
layer are only connected to subsequent-layer nodes, RNNs allow
for backward connections in their architecture. RNNs are widely
used in sequential machine learning tasks such as natural language
processing [64], speech and handwriting recognition [20, 29, 50],
deep reinforcement learning [28, 31], and semantic segmentation
of video sequences [44]. While the privacy risks of neural net-
works—irrespective of their architecture—have been subject to an
active line of research, an account of whether or not the architecture
of neural networks affects their privacy risks remains unknown.

We consider membership inference attacks (MIAs) as the underly-
ing privacy threat. In an MIA, an adversary is allowed to query the
output of a neural network with a collection of data records, and
must subsequently infer whether or not those data records belong
to the neural network’s training dataset [25]. Successful instances
of these attacks with minimal access to the neural network can
have significant privacy ramifications for the individuals who pop-
ulate the training datasets with their data. For example, consider
a machine learning model that has been trained with the data of
individuals with certain characteristics such as a particular ethnic
origin, religion, medical condition, gender, or sexuality. In this case,
a successful MIA that asserts—or refutes—the membership of an
individual’s data may reveal those sensitive characteristics.

The main contributions of this paper are twofold: the first con-
tribution concerns how RNNs and FFNNs compare in their vulner-
ability to MIAs, and the second contribution concerns defending
neural networks against MIAs.

In the first contribution, we design and conduct a series of ex-
periments to compare vulnerability to MIAs in three representa-
tive machine learning tasks, namely image classification, machine
translation, and deep reinforcement learning. In order to study the
impacts of network architecture on vulnerability to MIAs, we are
mindful to separate other main factors that are known to impact
vulnerability to MIAs such as overfitting [3, 51, 56, 66], number of
trainable parameters [40], diversity of the training data [32], and
number of prediction classes [58]. Taking all of these factors into
account, we observe that the MIAs consistently achieve a higher
attack accuracy against the RNN models.

In order to investigate the root causes of the observed higher
vulnerability in RNNs, we further study the behavior of the two
architectures when they are queried with members of their training
datasets and unseen data. We observe that when the uncertainty
of the two models’ predictions in terms of entropy is equal with
respect to the validation dataset, the entropy with respect to the
training data is lower in RNNs. Moreover, we demonstrate that
the decisions of the MIAs resemble establishing a threshold for
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prediction entropy to distinguish member data from non-members.
In such a threshold-based inference, a larger gap between the en-
tropy of the predictions in training and validation—as observed in
RNNs—increases attack accuracy. Moreover, we demonstrate that
subsequent gradient updates in FFNNs can mask the membership of
data used early in the history of training, whereas the MIAs remain
relatively accurate even for such outdated data in RNNs.

In the second contribution, we shift the focus from vulnerability
analysis to mitigation methods. A popular mitigation approach is to
prevent overfitting as a root cause of vulnerability to MIAs—most
prominently via weight regularization [51, 56]. While weight reg-
ularization has been shown to be oftentimes highly effective for
FFNNs to preempt MIAs, in the experiments, we demonstrate that
the RNN models benefit from regularization only marginally. As
a result, RNNs may be not only more vulnerable to MIAs but also
harder to be defended against them.

Methods that leverage the promise of differential privacy are
known to be themost effective in defending neural networks against
MIAs [25]. However, the protection afforded by these methods
typically comes at the expense of a reduction in utility in terms of
model performance [46]. These methods impose an error margin on
the inference power of MIAs and the error can be balanced against
utility loss by adjusting the level of differential privacy [66].

Existing methods that enforce differential privacy typically do
so by obfuscating either of the following with noise: the objective
function [67] or the gradients calculated during training [1, 37],
or the model’s parameters post-training [6, 33, 63]. As opposed
to post-training methods in which the privacy level can be easily
modified by modifying the level of noise that is added to the model’s
parameters, increasing the privacy level in the first two methods
requires reversing training steps, which is challenging. As a result,
post-training methods offer more flexibility in changing the privacy
level. On the flip side, these methods may be less advantageous
with respect to the privacy-utility trade-off that they face [1].

We compare RNNs and FFNNs in their utility loss due to differ-
ential privacy considering both approaches: the celebrated DP-SGD
algorithm [1] which adds Gaussian noise to the gradients during
training, and the Gaussian privacy module (GPM) which we intro-
duce to add Gaussian noise to the trained parameters of a neural
network post-training. For both methods, the experiment results
indicate that adding the same level of noise degrades more utility
in RNNs than FFNNs.

Although we develop the GPM solely to compare the utility
loss of RNNs and FFNNs due to differential privacy, it may be of
independent interest.We show that the GPM satisfies a relaxation of
differential privacy called random differential privacy [22]. In noise-
additive differential privacy mechanisms, the noise is typically
calibrated with the extent to which a single record of the training
dataset can change the model’s outcome, formally called sensitivity.
Computing sensitivity analytically can be very challenging and one
might have to resort to an upper bound for the sensitivity which
can be too loose and subsequently cause too much noise to be added
[6, 33, 63]. Alternatively, random differential privacy fixes a level of
sensitivity with some confidence level and guarantees differential
privacy for data records that give rise to that level of sensitivity.

We use the SensitivitySampler algorithm [48] to estimate the
sensitivity of the models. We show that by utilizing these estimates,

we are able to achieve an acceptable privacy-utility trade-off for
the models in the experiments: reducing the MIAs’ attack accuracy
to roughly 50%—equivalent to random guessing—while trading
off less than 10% utility. We further observe that the sensitivity
estimates for the RNN and FFNN models in the experiments take
similar values. As a result, adding the same level of noise to the two
models using theDP-SGD algorithm and the proposed post-training
mechanism, satisfies the same level of conventional and random
differential privacy, respectively, yet it leads to more utility loss in
RNNs than FFNNs. Since RNNs were consistently rendered more
vulnerable to MIAs and more difficult to be defended, this paper
provides strong empirical evidence that the privacy risks of RNNs
are more severe than FFNNs.

2 PRELIMINARIES
In this section, we first review some background about the differ-
ences between RNNs and FFNNs. Then, we introduce the machine
learning tasks that we consider in the experiments.

2.1 Recurrent vs. Feed-Forward Architecture
A neural network comprises a collection of nodes, each of which ac-
cepts an input and produces an output according to a fixed mapping
called an activation function. The architecture of a neural network
determines how the nodes of the networks are connected to one
another. In a feed-forward architecture, the nodes can be stacked
into an ordered sequence of layers from the network’s input to its
output such that the output of each node only affects the nodes
in the subsequent layers. Examples of FFNNs include multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs), and
more sophisticated designs such as transformers [59].

In a recurrent architecture, the connections between the nodes
may form a cycle. The backward connection between an RNN’s
nodes can be unfolded into an infinite sequence of layers, each
of which represents the node activations at different time steps.
Therefore, an RNN’s output depends on the entire history of its
inputs, which results in exhibiting a temporally dynamic behavior.
Such features make RNNs suitable for processing sequential data
such as sentences, videos, and audio [13].

FFNNs can also exhibit a temporally dynamic behavior through
cascading MLPs or CNNs, or, more intelligently in transformers;
however, the outputs in these methods only depend on a finite
window in the history of inputs. Therefore, RNNs appear to be
more expressive than FFNNs. On the other hand, it is easier to
parallelize the training of FFNNs [17]. For example, generative pre-
trained transformers [45] leverage parallelization to train natural-
language processing models on very large datasets. Furthermore,
making predictions based on the entire history of inputs may be
unnecessary as theoretically shown in [55]. As a result, there has
been an increasing interest—with many successful instances—in
replacing RNNs with FFNNs [10, 17, 38, 59].

2.2 RNN Applications Considered
In the experiments, we consider three representative machine learn-
ing tasks: image classification, machine translation, and deep rein-
forcement learning. In the sequel, we briefly introduce each of the
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tasks. Then, we state some of the possible privacy harms that MIAs
may cause specific to these tasks.

In the image classification task, the model must label a given
image using a fixed set of classes. The model’s output is a probabil-
ity vector that determines its confidence in assigning each of the
labels to the given image. CNNs are dominantly used in image clas-
sification [16, 19, 27]; however, RNNs may also be used to process
images as a sequence of pixels [60].

In image classification tasks, the models may be trained with
labeled image datasets that contain sensitive information. For ex-
ample, consider a healthcare provider who fine-tunes a medical
image classifier to predict the risk factors pertaining to a certain
disease for a certain minority population. In this case, an MIA with
access to an aggregated list of patient records can infer whether
or not some of the data subjects belong to the considered minority
group.

In the machine translation task, the model must map a sequence
of words, syllables, or otherwise tokens from a fixed input dictio-
nary to a target dictionary. Both RNN and FFNN solutions use an
encoder-decoder framework. The first half of the model—the en-
coder—computes an encoding of the input sequence through multi-
ple encoder layers. Subsequently, the second half of the model—the
decoder—uses the encoding and generates an output sequence
through multiple decoder layers. The output of the model is a
sequence of probability vectors over the target dictionary words.
The dictionaries are appended with start and end tokens to signal
the start and completion of sentences, respectively.

Recurrent architectures such as bi-LSTM [65] use a network
of long-short term memory (LSTM) units to construct both the
encoder and the decoder networks and can process arbitrary-length
sequences. Feed-forward architectures such as transformers [59] fix
a window of sequence lengths allowed and construct the encoder
and the decoder networks using FFNNs. Both of the above network
architectures are widely used in machine translation; however,
since the debut of transformers in 2017, they have outperformed
RNN-based models [62].

As for the privacy risks that MIAs can pose to machine trans-
lation models, assume that some business analytics tool trains a
model using internal meeting transcripts as training datasets. In
this case, an MIA can infer whether or not a given sentence has
been discussed in the meetings.

Finally, in the deep reinforcement learning task that we consider,
an agent must learn how to navigate through an unknown map and
reach a target state under partial state observations. At every state
observation, the agent must compute a probability vector over the
available actions, which is called a policy. Under partial state ob-
servations, the optimal policy may require memory [35] and RNNs
can be integrated with deep reinforcement learning algorithms to
capture long-term dependencies [7]. Both MLPs and LSTMs are
commonly used in deep reinforcement learning algorithms such as
soft actor critic [21], proximal policy optimization (PPO) [54], etc.

In deep reinforcement learning tasks, an MIA can infer whether
or not specific locations have been used to train the agent. For
example, a new owner of an autonomous vehiclemay be able to infer
whether or not the previous owner has visited certain locations,
thereby violating the previous owner’s location privacy.

Figure 1: Schematic of the execution of an MIA.

3 METHODS
In this section, we describe the threat model that we consider for
MIAs. Then, we lay out the methodology that we use to design
the MIAs in the experiments and compare the MIA layouts with
existing MIAs in the literature.

3.1 Threat Model and Assumptions
There exist two parties in the threat model that we consider: a
victim and an attacker. The victim aims to train a neural network
for a given machine learning task and a given training dataset. For
example, the victim may train an image classifier using a dataset of
labeled images. In order to train the neural network, the victimmust
choose a training algorithm alongside its hyperparameters, loss
function, and neural network specifications—including the number
of hidden layers, number of nodes per layer, architecture, activation
functions, etc. Once the victim’s neural network is fully trained, the
victim proceeds with generating predictions for outsider inquiries,
i.e., the victim receives a data record and subsequently responds by
publishing its predictions for the received data.

The attacker in the considered threat model conducts an MIA;
that is, it submits an inquiry to the victim using some data record
and must infer whether or not the data record belongs to the vic-
tim’s training dataset as depicted in Figure 1. MIAs are typically
categorized into two groups: black-box and white-box attacks [25].
The former group assumes that the attacker can only access the
input and the output of the victim’s neural network. White-box at-
tackers may have access to the value of the weights and the output
of the nodes anywhere in the victim’s neural network. Additionally,
white-box attacks may also probe the victim’s loss function and its
gradient for the queried data record.

In terms of the side-information that is available to the attacker,
the survey in [25] assumes that a black-box MIA’s side-information
is limited to the distribution of the training data—implying that
the attacker can obtain a training dataset that is similar to that of
the victim. The survey considers any additional assumption on the
available side-information as an indicator of white-box attacking.
However, such a distinction about side-information is not uniformly
followed in the literature; for example, the work in [56] assumes
that the attacker knows the training algorithm of the victim, and
the MIAs in [49] are provided with side-information about the
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victim’s training algorithm, hyperparameters, and the network
specifications, yet both works consider their MIAs as black-box
attacks. Access to the value of the loss function and its gradient
is the key enabler that enhances the attack accuracy in white-box
attacks as empirically demonstrated by [40]. We therefore draw the
line between black-box and white-box attacks based on the access
granted to the attacker and not the side-information.

We now state our assumptions on the attacker’s access limits
and side-information. In terms of access limitations, we assume that
the attacker has black-box access to the input and output layers
of the victim’s neural network. The attacker is able to access the
input layer via submitting an unlimited number of inquiries and
is able to observe the output layer via evaluating the confidence
scores with which the victim responds to an inquiry. In terms of the
side-information that is available to the attacker, we assume that
the attacker knows the victim’s task, training algorithm alongside
its hyperparameters, and the network specifications.

The authors of [49] show that an optimal MIA—under mild as-
sumptions on the distribution of the neural network’s parame-
ters—utilizes the victim’s full confidence scores. Our goal in the
experiments is to investigate whether or not the architecture of a
neural network affects its vulnerability to MIAs. As a result, we
assume full confidence-score observability in the threat model in
an effort to maximize the accuracy of the MIAs and control the
variables that have the potential of affecting the accuracy of MIAs
besides architecture.

3.2 Designing MIAs
We follow the framework of shadow models [56] in designing the
MIAs in this paper. Intuitively, a shadow model must mimic the
victim’s behavior without having access to its training dataset.
Following the assumption that the attacker knows the victim’s
training data distribution, we assume that there exists a data source
from which the attacker can obtain a similar training dataset to
train a shadow model—see Figure 2. In order to increase accuracy,
MIAs often obtain multiple training datasets from the data source
and subsequently train multiple shadow models to better mimic
the victim’s behavior.

For the image classification and machine translation tasks, we
allocate two disjoint partitions of a large dataset to the victim and
the attacker, separately. Analogously for the deep reinforcement
learning task, we use two disjoint sets of environment maps for the
victim and the attacker to train their models.

In the next step, the attacker splits its training dataset into two
partitions. The first partitionwill be used to train the shadowmodels
following the side-information that the attacker has regarding the
victim’s training algorithm and network specifications. Once the
shadow models are trained, the attacker is provided with a proxy to
the victim’s neural network. The attacker knows which data records
it has used to train the shadow models and it knows that the second
partition has not been used to train any of the shadow models.
Therefore, the attacker can train a binary classifier to distinguish
between the outputs that correspond to member data and those
corresponding to non-member data. The attacker can then use the
binary classifier against the victim to execute the MIA as depicted
in Figure 1.

Figure 2: Top: a schematic of training shadow models. The
skull above the shadow model’s training dataset and learn-
ing algorithm indicates that the two components may differ
between the victim and the attacker’s side. Bottom: train-
ing the MIA using the output of the shadowmodel and side-
information.

Shadow-model-based MIAs typically use a 3-tuple format for
the entries of the binary classifier’s training dataset as shown in
the bottom box in Figure 2. Each entry corresponds to a query
that is made from a shadow model and the query may originate
from either partition of the attacker’s training dataset. The first
element contains the shadow model’s output, the second element
indicates what the shadow model’s optimal output must have been,
and the third element indicates whether the query was made using
a member data record or a non-member data record.

For the first element, we use the shadow model’s full confidence
score in vector format. If the shadow model’s output is a sequence
of predictions—as the case in machine translation and deep rein-
forcement learning—we concatenate the confidence scores into one
vector.

For the second element, we use the query’s corresponding label
in the training dataset as a one-hot vector or a concatenation of a
sequence of one-hot vectors—such labels are readily available in
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the image classification and machine translation tasks. In the deep
reinforcement learning task, such a labeled training dataset does
not exist; we, therefore, train a “labeling agent” to generate these
labels. The labeling agent simply learns a reward-maximizing policy
in the environment in which a shadow model’s policy is queried.
For each state observation at which the shadow model’s policy is
queried, the labeling agent provides its policy as a reference label.

Once the binary classifier’s training dataset is fully populated,
the attacker uses the first two elements as features and uses the
third element as binary labels—member or non-member—and con-
cludes the design of the MIA by training a binary classifier that
distinguishes between member and non-member queries. The at-
tacker then uses the trained binary classifier against the victim to
execute the MIA as shown in Figure 1.

3.3 Connection with the Existing MIAs
We now state how the MIAs implemented in this paper compare
with the existing MIAs in the literature. Regarding the image clas-
sification task, our MIA design is identical to the design in [56].
However, for the machine translation and deep reinforcement learn-
ing experiments, the existing MIAs have minor incompatibilities
with this paper’s threat model which we address by modifying
them.

The works in [24, 57] study developing MIAs specifically for
machine translation models. However, neither of the two existing
works assume full confidence-score observability because they both
aim to design practical MIAs with minimal side-information as-
sumptions. In particular, the authors of [57] develop an MIA that
is intended to be used by individuals who wish to audit a natural
language processing model—a process by which the individuals in-
vestigate whether or not their data has been used to train a natural
language processing model. In this scenario, full confidence-score
observability is not realistic and the authors feed a redacted list of
the output word rankings to the MIAs, instead. We use the same
MIA design as [57] except that we use full confidence scores instead
of word rankings.

The authors of [24] use a similar design, but they take a further
step towards developing practical MIAs and drop the assumption
that the MIA knows the underlying distribution of the training data.
However, the authors find that the resulting MIAs are not effective
as their accuracy does not exceed random guessing by much.

We now review the existingMIAs in deep reinforcement learning
tasks. The work in [41]—which we follow closely in our MIA design
for deep reinforcement learning—is the first to consider a privacy
attack against reinforcement learning agents that resembles MIAs.
However, instead of modeling the MIA as a binary classifier, the
privacy attack uses a multi-class classifier. As a result, the attacker
must train a labeling agent for every possible environment map
prior to the execution of the attack. By using a binary classifier, we
train labeling agents only for the environment map with which the
MIA is faced. In another work, the authors of [18] develop an MIA
that infers the membership of a batch-constrained deep Q-learning
agent’s roll-out trajectories stored in its replay buffer. We do not
follow the above work’s methodology because we do not restrict the
algorithm that is used to train the reinforcement learning agents.

4 VULNERABILITY TO PRIVACY THREATS
In this section, we report and analyze the results of a series of
experiments by which we compare the vulnerability of RNNs and
FFNNs to MIAs. In order to perform a meaningful comparison, we
must control factors that affect vulnerability to MIAs other than
network architecture. We review these vulnerability factors and
discuss how we take them into account in our experimental setup.
Finally, we report and analyze the numerical results.

4.1 Vulnerability Factors
Overfitting has been extensively studied as the main source of the
vulnerability of machine learning models to MIAs [25]. Overfit-
ting refers to the condition in which a machine learning model
performs poorly when queried with data records outside its train-
ing dataset. There exist mounting empirical evidence that MIAs
are more successful against models that overfit their training data
[51, 56]. However, there also exist successful instances of MIAs
used against models with relatively low overfitting [32]. In these
instances, the underlying distribution of the training data as well
the size of the training datasets may leave some data records more
vulnerable than others. By identifying such data records, MIAs may
still maintain a high attack accuracy for models with low overfitting
[25].

A theoretical account of the connection between overfitting
and MIA accuracy remained unknown until the work in [66]. The
said work characterizes overfitting by average generalization error

defined as

Rgen = E
S∼Dn

z∼D

[ℓS (z)] − E
S∼Dn

z∼S

[ℓS (z)], (1)

whereD is the underlying distribution of the training data; S is the
victim’s training dataset comprising n samples drawn from D; ℓ
is a fixed loss function; and ℓS (·) is the value of the model’s loss
function after being trained with S .

Under the assumption that the victim’s loss function is bounded
above and its value is accessible to the attacker, Yeom et al. estab-
lish that a higher average generalization error is a sufficient con-
dition—but not necessary—for a higher attack accuracy [66]. The
authors further provide empirical evidence that the sufficiency rela-
tionship holds when the assumptions are relaxed to black-boxMIAs.
Later, a theoretical account of the relationship between the gener-
alization gap—training accuracy minus validation accuracy—and
the accuracy of black-box MIAs was provided in [3].

In light of the established relationship between overfitting and
attack accuracy, we are mindful to consider RNNs and FFNNs with
similar training and validation performance levels. In order to con-
trol the effect of the size and the distribution of the victim’s training
dataset on vulnerability to MIAs, we use the same training dataset
for both of the RNN and FFNNmodels. As the vulnerability to MIAs
may not be evenly distributed across a collection of data records
[32], we evaluate the MIAs against the RNN and FFNN models us-
ing the same dataset. Finally, we consider RNNs and FFNNs whose
number of parameters are close because it has been empirically
demonstrated that a higher number of parameters increases vul-
nerability to MIAs [40].
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4.2 Experimental Setup
We consider three representative machine learning tasks for the
experiments of this section: image classification, machine trans-
lation, and deep reinforcement learning. In image classification,
consistent with the threat model, we assume that there exists a data
source that generates labeled image samples and use the CIFAR10
dataset [26] as 50, 000 samples drawn from the data source. We split
these samples evenly into two partitions: one used by the victim
and the other used by the attacker for the training of the shadow
models—we train 5 shadow models.

With the victim’s portion of the training samples, we separately
train an FFNN model and an RNN model. The FFNN model is an
instance of ResNet101 [23] implemented in the Keras library [9]
and specified as follows: 101 convolutional layers followed by one
max-pooling layer, one fully connected linear layer, and an output
layer with softmax activation. For the RNN model, we use ResNet
[60] implemented by PyTorch [43] under default parameters, which
has the following specifications: 4 bi-directional LSTMs, 2 fully
connected layers with ReLU activation, and an output layer with
softmax activation. The former model contains 42, 678, 666 trainable
parameters and the latter has 42, 569, 590 trainable parameters. Both
models use the categorical cross-entropy loss function as their
learning’s objective function and use the Adam optimizer. The
learning rates used are 0.001 and 0.01 for the former and the latter
model, respectively. The shadow model of the MIAs uses the same
specifications as the victims for their training.

For the machine translation experiments, we choose a translation
from French to English. Similar to image classification, we assume
there exists a data source fromwhich translated pairs of English and
French sentences can be sampled. We take the Multi30K dataset
[15] as 30, 000 samples from the data source and split the samples
evenly between the victim and the attacker.

For the RNN model, we use a bi-directional LSTM with a dot-
product attention mechanism developed in [34]. For the FFNN
model, we use the standard transformer network specified in [59].
The RNNmodel and the FFNNmodel have 3, 213, 191 and 3, 225, 714
trainable parameters, respectively. Both networks use the negative
log-likelihood function as their learning algorithm’s loss function
and use Adam optimizer with a learning rate of 0.001.

Finally, for the deep reinforcement learning task, we use the
MiniGrid-MultiRoom-N4-v0 environment from theMiniGrid toolkit
[8]. The victim’s goal is to train a deep reinforcement learning agent
that can navigate its way through four rooms with closed doors and
reach the green tile as shown in Figure 3. The victim is provided
with a limited number of floor-maps for training and must general-
ize to unseen floor-maps. The attacker’s goal, on the other hand,
is to infer the membership of floor-maps. In this experiment, the
MiniGrid toolkit serves as the data source and the attacker is able
to obtain an arbitrary number of floor-maps by feeding a randomly
generated seed number to the toolkit’s simulator.

For the FFNN agent, we use an MLP network with 5, 335 train-
able parameters and the following specifications: the actor network
has two hidden layers with dimension 74, and the critic network
has 2 hidden layers with dimension 64. Both networks use a soft-
max output layer and tanh as their activation function. The RNN
agent uses an MLP with some additional LSTM cells. The RNN

Figure 3: The MiniGrid-MultiRoom-N4-v0 environment.
The agent (red triangle) must find the goal state (green
square) while observing the highlighted box that surrounds
it. The environment consists of multiple floor maps, two of
which are shown above.

has 5, 216 trainable parameters and its specifications are as follows:
both the actor and the critic networks have 2 linear layers with
hidden dimension 32, 4 single-directional LSTM cells, and a soft-
max output layer. We use the PPO algorithm [54] implemented by
the RL-Starter-Files library [61] with default parameters to train
the victim agents and their respective shadow models and labeling
models.

4.3 Numerical Results
Following the experimental setup above, we train each of the de-
scribed RNN and FFNN models for a range of epoch numbers and
plot the training and validation performance of the models. For
the image classification experiment, we use the percentage of the
correct predictions—or prediction accuracy—as the performance
measure; for machine translation, we measure performance using
the bilingual evaluation understudy (BLEU) score [42], which cap-
tures how a model’s translation correlates to that of a human; and
for deep reinforcement learning, we use the total episodic reward
as the performance measure. The reward at time-step t is

r (t) =

{
1 − γ t

T , goal reached,
0, otherwise,

(2)

where T is the episode length—set to 200 in the experiments— and
γ is the discount factor—set to 0.9.

At every epoch number tested, we train a separate MIA whose
shadowmodels are trained for the same number of epochs as that of
the victim. We evaluate the performance of the MIAs by measuring
the percentage of correct inferences which we refer to as attack
accuracy. In all instances, the MIAs’ validation datasets have an
equal number of members and non-member records; hence, random
guessing in this case achieves 50% attack accuracy.

In Figure 4, it can be observed that the attack accuracy against
the RNN models is consistently higher than it is against FFNN
models. In particular, The RNNs are more vulnerable before and
after the performance level of the victims converges; however, the
gap between the attack accuracy of the two MIAs narrows as the
models train for higher epoch numbers.
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Figure 4: Comparing the vulnerability of RNNs and FFNNs to MIAs in three representative machine learning tasks: image
classification (left), machine translation (center), and deep reinforcement learning (right). The first row plots training and
validation performance vs. number of epochs; the second row plots the average prediction entropy vs. number of epochs; and
the third row plots attack accuracy vs. number of epochs.

In the image classification experiment, the validation perfor-
mance of the RNN and FFNN models are approximately equal. The
FFNN model has a higher generalization gap than the RNN model
upon convergence, and it has slightly more trainable parameters,
yet surprisingly, the attack accuracy against the FFNN model is
lower than the RNN model. In the machine translation experiment,
the two models have approximately equal performance levels both
in training and validation but the MIA against the RNN achieves a
higher attack accuracy. Finally, in the deep reinforcement learning
experiment, the two models appear to have a zero generalization
gap upon convergence, yet the MIA against the RNN model is more
accurate than it is against the FFNN model.

Prediction Entropy as a Vulnerability Factor: In order to
further investigate the reasons behind the excessive vulnerabil-
ity of RNNs to MIAs, we measure the uncertainty of the mod-
els’ outputs in terms of average prediction entropy, which we de-
fine as follows: letm be the number of prediction categories and

Y =
{(
y(i),p(i)

)}L
i=1

be a sequence of L pairs of prediction out-
comes and confidence scores, respectively. Then, the corresponding
average prediction entropy is

HAPE(Y ) = −
1
L

L∑
i=1

m∑
j=1

p
(i)
j log

(
p
(i)
j

)
. (3)

We report the average prediction entropy of the RNN and the
FFNN models in Figure 4. The results show that, while the predic-
tion entropy of the two models is approximately equal over the
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Figure 5: An illustration of the decision boundaries of MIAs with respect to cross-entropy loss and entropy of the confidence
scores. The top row shows the results for RNNs and the bottom row shows the results for FFNNs.

validation dataset, their prediction entropy with respect to their
training data differs noticeably—at least in the early stages of train-
ing. In the initial stages, the entropy gap between the validation and
the training dataset in RNNs is larger than FFNNs. As the training
prediction entropy of the FFNN model approaches that of the RNN
model, the gap between the attack accuracy of the two MIAs nar-
rows. As a result, the ability of RNNs to maintain a lower prediction
entropy than FFNNs vis-á-vis member data records may render
them more vulnerable to MIAs.

In the next experiment, we demonstrate that the MIAs are indeed
sensitive to the entropy of the victim’s predictions. To illustrate
this, for each inference made by the MIA, we measure the victim’s
cross-entropy loss—as a performance measure—and we measure
the prediction entropy of the victim. Then, we generate a scatter
plot in which the y-axis represents cross-entropy and the x-axis
measures prediction entropy. We use two colors to distinguish
between member and non-member inferences made by the MIA
and use a distinct marker to represent erroneous inferences. The
results in Figure 5 suggest that the MIAs divide the scatter area into
4 quadrants and label data records with cross-entropy loss below a
certain threshold and entropy below a certain threshold as member
data.

Model Memorization as a Vulnerability Factor: In the last
experiment, we demonstrate that the RNN and FFNN models also
differ in the way they retain their performance with respect to
member data post-training. If a model responds to a post-training
query using member data with the same accuracy as it previously
held while being trained with that member data, we say that the

model has memorized its training data. If the model’s accuracy for
such a query decreases after training, we say that the model has
forgotten the training data.

Model memorization, if not associated with overfitting, is favor-
able from a performance-maximizing perspective. For example, in
the deep reinforcement learning experiment, both the RNN and the
FFNN agents reach the goal state within roughly 35 time steps when
validated in unseen floor maps. However, when the RNN agent is
queried in a member floor map, it reaches the goal in approximately
20 time steps, whereas the FFNN agent still reaches the goal in 35
time steps. As a result, the RNN agent appears to memorize the
floor maps whereas the FFNN agent seems to forget. We note that
the reward function used in the training of the agents is relatively
insensitive to the number of steps taken to reach the goal. Instead,
it is more sensitive to whether or not the agent reaches the goal at
all in an episode. In particular, a 75% increase in the number of steps
from 20 to 35 decreases the total reward only by 7.42% according to
(3). Hence, the RNN agent appears to memorize the floor maps even
though it was not specifically incentivized by the reward system to
do so.

From a privacy perspective, such discrepancies between amodel’s
performance with respect to seen and unseen data are harmful as
they can be exploited by an adversary viaMIAs. To illustrate this, we
partition the training datasets into a collection of disjoint batches
of data and assign an order to each batch arbitrarily at random. We
then use these batches sequentially to train the RNN and FFNN
models. Once the two models are trained, we report the accuracy
of the MIAs with respect to the percentage of correct inferences
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Figure 6: Comparing model memorization in RNNs and FFNNs. The top row plots the training and validation performance
of the models when trained sequentially with a collection of ordered batches of training data. The saw-tooth pattern in the
training performance is common in sequential training ofmachine learningmodels and is due to the catastrophic interference
phenomenon [36]. The validation lines are smoothed out bymeasuring performance at the end of every 10 epochs. The bottom
row plots the attack accuracy of the MIAs with respect to the individual epochs in the order in which they were introduced to
the victims during training.

vis-á-vis each batch. The results in Figure 6 indicate that the MIAs’
accuracy for older batches of data in FFNNs quickly diminishes
to 50%, whereas in RNNs, the MIAs maintain non-trivial accuracy
even for the early batches of data. As a result, we posit that model
memorization is another factor that renders RNNs more vulnerable
to MIAs than FFNNs.

5 PREEMPTING PRIVACY THREATS
In this section, we shift the focus from studying vulnerability to
studying defense methods against MIAs. We first briefly discuss
regularization methods, then, we study methods that leverage the
promise of differential privacy.

5.1 Defense via Regularization
We now investigate the effects of overtraining and regularization in
the considered machine learning tasks. Increasing the training time
of machine learning algorithms often results in overfitting. For ex-
ample, the validation performance of the FFNN model in the image
classification task decreases after training for 10 epochs in Figure
4, whereas its training performance keeps increasing. On the other
hand, training machine learning models for an extended number
of epochs may not always lead to overfitting. Such a phenomenon

in RNNs was first reported in [57] for natural language processing
models which is consistent with our results in Figures 4.

Regularization methods such as ℓ2-regularization are effective
in preventing overfitting and they have been shown to be effective
in reducing the vulnerability of FFNN image-classification mod-
els to MIAs [51, 56]. However, regularization may add bias to the
converging performance levels because they alter the objective
function. In particular, these methods compute the ℓ2-norm of the
node activations as a penalty term, which is subsequently multi-
plied with a regularization coefficient λ and added to the model’s
loss function. In Figure 7, we observe that regularization affects
the FFNN and RNN models in the image classification and machine
translation experiments differently. In particular, the MIA accuracy
in the FFNN models is highly sensitive to the regularization coeffi-
cient λ, whereas the MIA accuracy against RNN models is impacted
by regularization only marginally.

For the deep reinforcement learning agents, we test a different
method of regularization. It is common in deep reinforcement learn-
ing algorithms such as the PPO and trust-region policy optimization
(TRPO) [53] to regularize the Kullback-Leibler divergence between
the policy updates in order to increase model stability [30]. In the
PPO algorithm, which we use to train the RNN and FFNN agents in
the deep reinforcement learning experiment, a parameter called the
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Figure 7: Effects of regularization on attack accuracy. From the left to the right column: image classification, machine transla-
tion, and deep reinforcement learning. The MIAs are trained separately for each regularization value tested and the shadow
models use the same parameters as their victims.

clipping epsilon ϵclip controls the policy updates as follows: a small
value of ϵclip prevents the agent from taking large gradient steps
whereas a large epsilon does not restrict the agent as much. In this
case, the validation performance of both the RNN and FFNN agents
is sensitive to regularization. However, the RNN agent remains
more vulnerable to the MIA than the FFNN agent, and its respective
MIA accuracy is relatively less sensitive to regularization based on
the corresponding line slopes.

5.2 Defense via Differential Privacy
Differential privacy is a characteristic of an algorithm and provides
a quantitative definition of data privacy [14]. A differentially private
algorithm makes it hard for any observer to link the algorithm’s
outputs to the individual entries of the dataset that contributed to
generating that output. It is best justified to use differential privacy
when the purpose of the algorithm is to compute some aggregate
information about a dataset whose entries contain sensitive infor-
mation. For example, the US Census Bureau uses differential privacy
to protect the data subjects in its publications [2]. Differential pri-
vacy is formally defined as follows:

Definition 1. Let f : D 7→ R be a query function from an input

domainD to an output domainR. Define two datasetsD andD ′—both
in D—adjacent if the number of the entries in which the two datasets

hold different values is at most one. Let (Ω, F , µ) be a probability

space andM be a σ -algebra such that (R,M) is measurable. For a

given ϵ ≥ 0 and δ ∈ [01], a mechanism M : R × Ω 7→ R satisfies

(ϵ, δ )-differenetial privacy if, for all R ⊆ R and all adjacent D and

D ′,

P [M (f (D)) ∈ R] ≤ exp(ϵ) · P
[
M

(
f
(
D ′

) )
∈ R

]
+ δ . (4)

If a mechanism satisfies (4) with δ = 0, it satisfies pure ϵ-
differential privacy. Intuitively, the parameter ϵ captures the strength
of privacy protections and δ captures the probability that pure ϵ-
differential privacy fails. Privacy failure could happen due to two
reasons: either (4) holds for a larger ϵ or no finite ϵ ever satisfies
pure differential privacy. It is customary to choose single-digit val-
ues for ϵ and choose δ to be O

(
|D |−1) , where |D | is the size of the

dataset that we wish to protect [14]. However, in some applications,
even large values for ϵ may still provide a strong privacy shield [4].

Differential privacy is immune to post-processing, meaning that
post-hoc computations on the output of a differentially private
mechanism do not affect the level of differential privacy. Subse-
quent queries from the output of a differentially private mecha-
nism may weaken privacy, however. In general, the overall privacy
level of a sequence of k queries from an (ϵ, δ )-differentially private
mechanism results in (kϵ,kδ )-differential privacy according to the
Composition Theorem [14]. The overall privacy level is often re-
ferred to as the privacy budget. In applications wherein multiple
queries are made from some sensitive dataset, one must be mindful
of the total privacy budget expended.

5.2.1 Enforcing Differential Privacy. The methods that we use in
this section to enforce differential privacy utilize the Gaussian
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mechanism for differential privacy. The mechanism adds a zero-
mean Gaussian noise to the output of a query function with a
sensitive input dataset. The mechanism calibrates the variance of
the noise based on the sensitivity of the query function, defined as
follows:

Definition 2. Let f : D 7→ R be a query function that maps

from a dataset domain D to a normed space R. The sensitivity of f ,
denoted S(f ), is

S(f ) := sup
D ,D′

f (D) − f
(
D ′

) , (5)

where ∥ · ∥ is the norm operator and D and D ′ are any two adjacent

datasets under the definition of adjacency established in Definition 1.

The following theorem from [12] – see Section 2.4 therein – es-
tablishes the (ϵ, δ )-differential privacy of the Gaussian mechanism.

Theorem 5.1. Let f be a query function with sensitivity S(f ). Fix
σ > 0 and define the Gaussianmechanism asMG(f (D);σ ) = f (D)+ξ
such that ξ ∼ N

(
0,σ 2I

)
. For all ϵ > 0, let

δ = Φ

(
−
ϵ

µ
+

µ

2

)
− exp(ϵ)Φ

(
−
ϵ

µ
−

µ

2

)
, (6)

where µ =
S(f )
σ and Φ is the cumulative distribution function of the

standard normal distribution. Then, the Gaussian mechanism satisfies

(ϵ, δ )-differential privacy.

Later in the experiments of this section, we deploy the Gaussian
mechanism in two algorithms: the DP-SGD algorithm [1] in which
the Gaussian mechanism is used to privatize the gradients during
the training of a neural network and a post-training privacy mech-
anism in which we deploy the Gaussian mechanism to privatize
the trained parameters of a neural network.

DP-SGD modifies the stochastic gradient descent (SGD) algo-
rithm such that the training algorithm itself satisfies differential
privacy. In particular, the mechanismM in Definition 1 is the train-
ing algorithm that maps a training dataset to a set of network
parameters. The mechanism M repeatedly performs the following
at every update step: clips the gradients computed over a batch
of training data; it computes the average of the clipped gradients;
invokes the Gaussian mechanism to privatize the gradients; and
finally, performs an SGD update with the privatized gradient. In
other words, DP-SGD repeatedly applies the following update rule:

DP-SGD: θi+1 = θi − η
1
|Xi |

MG
©«
∑
x ∈Xi

CL(дx (θi ),C);Cσ
ª®¬ , (7)

where i is the current iteration number and θi is the neural net-
work’s trainable parameters at iteration i; η is the learning rate; Xi
is a minibatch of training data; and with ℓ the loss function and C
a fixed scalar,

дx (θi ) :=
∂ℓ(θ, x)

∂θ

���
θ=θi

and CL(дx ,C) := дx ·min
(
1,

C

∥дx ∥

)
(8)

are the calculated gradient and the clipping function, respectively.
DP-SGD comprises a moments accountant subroutine that tracks

the total privacy budget expended during training. The predic-
tions that the resulting neural network subsequently generates
post training preserve differential privacy with the same privacy

Algorithm 1: Gaussian Privacy Module
Input: hyperparametersH and training algorithm AH ,

training dataset D, Gaussian mechanism variance σ ,
query set X

Output: Ỹ
θ ← AH(D) ; /* Train NNθ */

θ̃ ← MG(θ ;σ ) ; /* Invoke the Gaussian mechanism*/

for xi in X do
ỹi ← NNθ̃ (xi ) ; /* Respond to each query*/

end
Ỹ ← {yi , i = 1 . . . |X |}

budget because (i) differential privacy is immune to post-processing
and (ii) the privatized gradients fully characterize the trained neural
network given a fixed initialization θ0.

DP-SGD invokes the Gaussian mechanism at every gradient up-
date step; therefore, subsequent gradient updates can mitigate the
negative impacts of injecting noise on the model’s utility. However,
some queries may require higher privacy—thus less precision—than
others. In order to increase the level of privacy in DP-SGD, some
weight updates must be reversed, which is challenging. As a result,
the DP-SGD algorithm may only be suitable for applications in
which the underlying privacy interests necessitate limiting the flow
of information about the training data, as opposed to those necessi-
tating a discretionary control over the flow of such information.

A post-training privacymechanism thatmounts on a fully trained
model as an external module can offer the flexibility required for
controlling the flow of information. In this case, instead of having
to retrain the model, one can apply changes to the privacy module.
In Algorithm 1, we introduce the Gaussian privacy module (GPM)
which is our proposed post-training privacy mechanism. By using
the GPM, adjusting the level of privacy becomes as simple as a
one-time adjustment of the variance of the Gaussian mechanism.

We now reconcile Algorithm 1 and Theorem 5.1 to compute the
privacy budget that the GPM consumes. The first step of the algo-
rithm—where the weights are calculated by the training algorithm
AH—characterizes the query function f in Theorem 5.1. In order
to compute the privacy parameters according to (6), one must know
the sensitivity of the query function, S(f ), a priori. The training
algorithm maps a training dataset to a set of network parameters
and its sensitivity captures the extent to which adjacent training
datasets generate different parameters. Without any restricting
measures, the sensitivity can be arbitrarily large. The DP-SGD algo-
rithm faces the same issue of unbounded sensitivity and uses gradi-
ent clipping to limit sensitivity. Inspired by the gradient-clipping
trick to bound sensitivity in DP-SGD, by the following theorem,
we establish an upper bound on the sensitivity of Algorithm 1 for
training algorithms whose loss function are L-Lipschitz and use
SGD with gradient clipping and smoothing.

Theorem 5.2. WithH a fixed set of hyperparameters, including a

fixed initialization and a fixed seed for generating random numbers,

let AH be an SGD algorithm modified with gradient clipping and
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Algorithm 2: SensitivitySampler
Input: training algorithm AH with hyperparametersH ,

sample size n, data source DS, training dataset size
N ,

Output: S̄
for i = 1 to n do

for j = 1 to N + 1 do
dj ∼ DS ; /* Sample from the data source*/

end
D1 ← ∪Nj=1dj ;

D2 ←
(
∪N+1
j=1 dj

)
\ {dN };

θ ← AH(D1) ; /* Train Model 1*/

θ ′ ← AH(D2) ; /* Train Model 2*/

S̄(i) ← ∥θ − θ ′∥2;
end
S̄ ← maxi S̄(i);

loss-function smoothing; that is, at every iteration i ,

θi+1 = θi − η
1
|Xi |

∑
x ∈Xi

CL
(
EZ∼N(0,σ 2

s
I) [дx (θi + Z )] ,C

)
, (9)

where σ 2
s
is the smoothing variance. Let the loss function ℓ be L-

Lipschitz,m be the minibatch size, and β = L/σs. Then, after training
for T iterations, it holds that

S(AH) ≤ 2
(1 + ηβ)T − 1
(m − 1)β

C . (10)

Proof. See Appendix A.1. □

The established sensitivity bound established under the assump-
tions of Theorem 5.2 immediately implies the differential privacy
of the GPM due to Theorem 5.1. However, the upper bound in (10)
grows exponentially with the training horizon T . It is often the
case that upper bounds for sensitivity are too loose and empirical
measurements of the sensitivity take much smaller values. The Sen-
sitivitySampler algorithm [48] in combination with the notion
of random differential privacy [22] addresses such an issue. The
former is an algorithm that estimates sensitivity and the latter is a
relaxation of (ϵ, δ )-differential privacy.

Definition 3. The mechanismM in Definition 1 satisfies (ϵ, δ )-
random differential privacy with confidence γ ∈ (0, 1) if, for all
adjacent datasets D and D ′ drawn from a fixed data source DS,

P
D∼DS
D′∼DS

[
∀R ⊂ R, P

y∼M (f (D))
[y ∈ R] ≤

exp(ϵ) · P
y′∼M (f (D′))

[
y′ ∈ R

]
+ δ

]
≥ 1 − γ . (11)

Compared to (ϵ, δ )-differential privacy wherein δ captures the
probability of privacy failure due to unlikely outputs, random differ-
ential privacy considers γ as the probability that (ϵ, δ )-differential
privacy fails due to unlikely input datasets [48].

We use the SensitivitySampler algorithm in the context of
training a neural network for machine learning as described in Al-
gorithm 2. The algorithm repeatedly samples two adjacent training
datasets from a fixed data source, invokes the training algorithm for
both of the sampled training datasets, and estimates the sensitivity
of the training algorithm based on the maximum 2-norm difference
between the observed network parameters. The following theorem,
which is an immediate result of Corollary 20 of [48], establishes the
random differential privacy of the GPM.

Theorem 5.3. Fix a set of hyperparametersH and training algo-

rithm AH . Let S̄ be the output of Algorithm 2 run with n samples.

Further, let

ρ = exp
(

1
2
W−1

(
−

1
4n

))
and γ = ρ +

√
log(1/ρ)

2n
, (12)

whereW−1 is the Lambert W function defined as the inverse relation

of the function f (z) = z exp(z). With σ the variance of the Gaussian

mechanism in Algorithm 1, for all ϵ > 0 and

δ = Φ

(
−
ϵ

µ
+

µ

2

)
− exp(ϵ)Φ

(
−
ϵ

µ
−

µ

2

)
, (13)

where µ = S̄/σ , Algorithm 1 satisfies (ϵ, δ )-random differential pri-

vacy with confidence γ .

With the theoretical preliminaries set in this subsection, we now
move on to the experiments.

5.2.2 Experiments. Similar to Section 4 in which we compared
vulnerability to MIAs, we consider RNN and FFNN models in three
representative machine learning tasks, namely image classifica-
tion, machine translation, and deep reinforcement learning. How-
ever, for the machine translation task, we fine-tune a pre-trained
model, BERT [11], with a subset of training samples from the WMT14
English-French training dataset [5] instead of training a model from
scratch using the Multi30K dataset. WMT14 contains substantially
more samples than Multi30K and is therefore more suitable for the
SensitivitySampler algorithm.

In the first experiment, we use the DP-SGD algorithm to enforce
differential privacy using a range of values for noise variance. Then,
we measure the cost of privacy in terms of utility loss, which we
formally define as follows:

Definition 4. LetM be an evaluation metric that takes as input

a set of predictions Y alongside their ground-truth labels YGT, and
returns a numerical value that indicates the quality of the predictions.

Then, the utility loss is

Lutil = 1 − M(Ỹ ,YGT)
M(Y ,YGT)

.

We now report the results. The top row of Figure 8 indicates
that the RNN models consistently trade-off more utility than the
FFNNmodels at every noise variance tested. The same level of noise
translates to the same level of (ϵ, δ )-differential privacy in DP-SGD;
as a result, enforcing the same level of (ϵ, δ )-differential privacy is
more costly in RNNs than FFNNs with respect to utility loss.

A similar observation can be made when the GPM enforces
random differential privacy for the RNN and FFNN models. In
this experiment, we fine-tune the hyperparameters of the training
algorithms such that: (i) the two models achieve similar validation

79



Proceedings on Privacy Enhancing Technologies 2023(1) Yunhao Yang*, Parham Gohari*, and Ufuk Topcu

0.6 0.8 1 1.2 1.4

0.1

0.15

0.2

Variance (σ )

U
til
ity

Lo
ss

Image Classification

FFNN: DP-SGD RNN: DP-SGD FFNN: GPM RNN: GPM

0.6 0.8 1.0 1.2 1.4

0.1

0.2

0.3

Variance (σ )

Machine Translation

0.4 0.6 0.8 1.0

0.2

0.4

Variance (σ )

Reinforcement Learning

1 2 3 4 5

·10−2

0

0.1

0.2

0.3

Variance (σ )

U
til
ity

Lo
ss

0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

Variance (σ )
0.1 0.2 0.3 0.4

0

0.2

0.4

0.6

Variance (σ )

Figure 8: The privacy-utility trade-off of DP-SGD and GPM. The top row corresponds to the utility loss caused by DP-SGD and
the second row corresponds to the utility loss caused by the GPM. The RNNs consistently trade off more utility than FFNNs
for both DP-SGD and GPM.

performance levels before the GPM is deployed and (ii) Algorithm 2
estimates the same level of sensitivity for the twomodels as reported
in Table 1. We refer to these estimates as empirical sensitivity. The
empirical sensitivities in Table 1 correspond to n = 500 samples
which translates to confidence γ < 0.08 established by (12) in
Theorem 5.3.

Table 1: Empirical sensitivity estimated by Algorithm 2.

Task S̄RNN S̄FFNN
Image Classification 0.013209 0.013518
Machine Translation 0.11678 0.11845

Reinforcement Learning 0.093682 0.093429

In Figure 8, where we plot utility loss vs. noise variance, it can
be observed that deploying the GPM consistently trades off more
utility in RNNs than FFNNs. The results in Figure 8 also illustrate
that the RNNs trade-off more utility for the same level of random
differential privacy because the sensitivities of the two models are
approximately equal.

6 CONCLUSION
In this work, we provided empirical evidence that MIAs can achieve
higher accuracy when they attack RNNs compared with their FFNN
counterparts. We showed that RNNs maintain a larger entropy gap
between the predictions corresponding to member data and those
corresponding to unseen data as a key vulnerability factor that
is more elevated in RNNs than FFNNs. We also found that RNNs

memorize their training data in a way that an MIA can maintain a
non-trivial attack accuracy over the entire history of their training,
whereas the corresponding attack accuracy for the FFNNs quickly
drops to 50% as we move back in the training history.

In the second part of the study, we considered two prominent
mitigation methods: weight regularization and differential privacy.
Then, we showed that regularization was less effective in protecting
RNNs compared to FFNNs. Moreover, we showed that enforcing
differential privacy in RNNs can be more costly than FFNNs in
terms of the privacy-utility trade-off.

We conclude this paper with the observation that the privacy
risks of deploying RNNs in machine learning are higher than FFNNs
with the same level of performance. Alongside the existing compu-
tational drawbacks of training RNNs, our results provide further
incentives to replace RNNs with FFNNs.
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A APPENDIX
A.1 Proof of Theorem 5.2

Theorem A.1. WithH a fixed set of hyperparameters, including

a fixed initialization and a fixed seed for generating random numbers,

let AH be an SGD algorithm modified with gradient clipping and

loss-function smoothing; that is, at every iteration i ,

θi+1 = θi − η
1
|Xi |

∑
x ∈Xi

CL
(
EZ∼N(0,σ 2

s
I) [дx (θi + Z )] ,C

)
, (14)

where σ 2
s
is the smoothing variance. Let the loss function ℓ be L-

Lipschitz,m be the minibatch size, and β = L/σs. Then, after training
for T iterations, it holds that

S(AH) ≤ 2
(1 + ηβ)T − 1
(m − 1)β

C . (15)

Proof. Let ℓ̄(θi , x) = EZ∼N(0,σ 2
s I) [ℓ(θi + Z , x)]. Such an oper-

ation is known as randomized smoothing which transforms the
L-Lipschitz loss function ℓ into L/σs-smooth ℓ̄ [52]; that is, ∂ℓ̄(θ , x)∂θ

���
θ=a
−
∂ℓ̄(θ, x)

∂θ

���
θ=b

 ≤ L

σs
∥a − b∥. (16)

We also have that

∂ℓ̄(θ, x)

∂θ

���
θ=θi

= EZ∼N(0,σ 2
s I) [дx (θi + Z )] . (17)

Considering SGD’s update rule with clipped gradients and random-
ized smoothing, we have that, for two adjacent datasets D and D ′
and their respective minibatches at stage 0, X0 and X ′0,

θ1 = θ0 − η
1
|X0 |

∑
x ∈X0

CL
(
∂ℓ̄(θ , x)

∂θ

���
θ0
,C

)
(18)

and

θ ′1 = θ0 − η
1
|X ′0 |

∑
x ′∈X ′0

CL
(
∂ℓ̄(θ, x ′)

∂θ

���
θ0
,C

)
. (19)

The two minibatches can only differ in one data record and fixing
the random seeds ensures that the same data indices will be chosen
for both X0 and X ′0. As a result,

∥θ1 − θ
′
1∥ =

η

 ∑
x ∈X0\X ′0

CL
(
∂ℓ̄(θ, x)

∂θ

���
θ0
,C

)
−

∑
x ′∈X ′0\X0

CL
(
∂ℓ̄(θ , x ′)

∂θ

���
θ0
,C

)
≤ 2η

C

m
. (20)

For the next SGD update, we write

θ2 = θ1 − η
1
|X1 |

∑
x ∈X1

CL
(
∂ℓ̄(θ , x)

∂θ

���
θ1
,C

)
(21)

and

θ ′2 = θ
′
1 − η

1
|X ′1 |

∑
x ′∈X ′1

CL
(
∂ℓ̄(θ, x ′)

∂θ

���
θ ′1
,C

)
. (22)
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Due to the smoothness of ℓ̄, we have thatCL
(
∂ℓ̄(θ , x)

∂θ

���
θ=a
,C

)
− CL

(
∂ℓ̄(θ, x)

∂θ

���
θ=b
,C

) ≤
min

(
2C,

L

σs
∥a − b∥

)
. (23)

With β = L
σs , we can write

∥θ2 − θ ′2∥ ≤ ∥θ1 − θ ′1∥ + η

(
1 −

1
m

)
∥θ1 − θ ′1∥β + 2η

C

m
. (24)

The reason that (24) holds is that X1 and X ′1 are obtained from
two adjacent datasets and because of the fixed-seed assumption,
they hold equal entries except for one; for the equal entries, the
second term on the right-hand side of (24) can be used and for the
non-equal entry, the third term can be used as an upper bound.
Analogously, for every stage i ≥ 2, we have

∥θi − θ
′
i ∥ ≤ 2η

C

m
+

[
1 + η

(
1 −

1
m

)
β

]
∥θi−1 − θ

′
i−1∥, (25)

or

∥θi − θ
′
i ∥ ≤ 2

(1 + ηβ)i − 1
(m − 1)β

C, (26)

which concludes the proof. □

A.2 Reproducibility Information
In this section, we state the hyperparameters that we used in the
experiments.

MIA on the reinforcement learning agent: We use the PPO algo-
rithm to train the agents, for which we use the default parameters
set by the RL-Starter-Files toolbox unless stated below. The feed-
forward agent uses an MLP with two hidden layers, each of which
consists of 74 neurons. The RNN agent uses the MLP architecture
that consists of two 32-neurons layers with 4 additional LSTM units.
The first layer is activated by tanh functions and the last layer is
activated by a softmax function. We train the agents for a total
of 204,800 iterations on seeds 1 to 16 for both agents. We use the
default clipping epsilon 0.2 while training.

For the implementation of the MIA, we use an MLP with 5 ReLU-
activated hidden layers and 1 LSTMunit.We use 6400 in trajectories
and 6400 out trajectories to generate the binary classifier’s training
dataset. We train the binary classifier using the Adam optimizer
and the cross-entropy loss function for 15 epochs, each of which
consists of 100 gradient updates. We use the Keras library [9] to
train the binary classifier with a learning rate of 0.001 and default
parameters unless stated above.

MIA on the machine translation model: We use an LSTM encoder-
decoder network with dot product attention mechanism [34] to
construct the sequence-to-sequence model. We use the Multi30K
dataset [15] which consists of 30,000 sentence pairs for training
and 1,000 pairs for testing. We use 5,000 sentence pairs to train the
shadow model and a negative likelihood loss to update gradients.
The shadowmodel is trained for 20 epochs, with a word-embedding
dimension of 150, a hidden dimension of 200, a learning rate of
0.001, and a dropout rate of 0.2. We use PyTorch [43] to implement
and train the victim model with default parameters unless spec-
ified above. Once the shadow model is fine-tuned, we use 2,000

output sequences to populate the training dataset of the MIA’s bi-
nary classifier. In the training procedure, we set the max norm of
the gradients to 10 and clip the gradients with norms above the
threshold.

We use a transformer as the FFNN structure. The transformer
architecture is identical to the model from ’attention is all your
need’, trained with default parameters.

The binary classifier consists of 1 LSTM unit, two linear layers, a
ReLU-activated layer, and a softmax layer. We implement the MIA
classifier using PyTorch and train it using the cross-entropy loss
function for 20 epochs with the default parameters.

MIA on the image classification model: We use ResNet101 [23]
implemented in the Keras library [9] as the FFNN model for image
classification. ResNet101 consists of 101 convolutional layers fol-
lowed by one max-pooling layer, one fully connected linear layer,
and an output layer with softmax activation.

We use ReNet [60] implemented by PyTorch [43] under default
parameters as the RNN model for image classification. ReNet con-
sists of 4 bi-directional LSTMs, 2 fully connected layers with ReLU
activation, and an output layer with softmax activation. We train
both models using the categorical cross-entropy loss function as
their learning objective function and use the Adam optimizer. The
learning rates used are 0.001 and 0.01 for ResNet101 and ReNet,
respectively.

We use the image classification dataset Cifar10 which consists
of 50,000 training records and 10,000 testing records. We train the
target model and shadow model using 10,000 training records and
a categorical cross-entropy loss is used to update the gradient. We
clip the gradients whose norm is greater than 10.

For the implementation of the MIA, we use an MLP with 5 ReLU-
activated hidden layers. We train the classifier using 20,000 prob-
ability pairs with half labeled ‘in’. We use the Keras library [9] to
train the binary classifier with a learning rate of 0.001 and default
parameters unless stated above.

A.3 Privacy Level vs. Noise Variance
Figure 9 shows the private budget ϵ at each noise level σ . Together
with Figure 8, we observe that the proposed GPM can achieve a
high privacy level (ϵ < 5) with a utility loss less than 10%. DP-SGD
can also achieve a reasonable privacy level (ϵ < 10) with a utility
loss lower than 15%.

To obtain the results, we run the DP experiments following the
specifications stated in Table 2.
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Table 2: Experiment Specifications.

Task train size |D | S̄RNN S̄F FNN δ clip norm batch epoch
IC 10000 0.013209 0.013518 1e-4 10 128 50
RL 6400(32) 0.093682 0.093429 1e-4 10 128 100

NMT 5000 0.11678 0.11845 1e-4 10 128 50

0.6 0.8 1 1.2 1.4

5

10

15

Variance(σ )

Ep
si
lo
n

Image Classification

DP-SGD GPM

0.6 0.8 1.0 1.2 1.4

5

10

15

20

25

Variance(σ )

Machine Translation

0.4 0.6 0.8 1.0

5

10

15

20

Variance(σ )

Reinforcement Learning

1 2 3 4 5

·10−2

5

10

15

Variance(σ )

Ep
si
lo
n

0.02 0.04 0.06 0.08 0.1

2

4

6

8

Variance(σ )
0.1 0.2 0.3 0.4

5

10

15

Variance(σ )

Figure 9: privacy budget ϵ at each Gaussian noise level. The first row shows the privacy level of DP-SGD and the second row
shows the privacy level of proposed GPM.
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