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ABSTRACT
We design FrodoPIR— a highly configurable, stateful, single-server
Private Information Retrieval (PIR) scheme that involves an offline

phase that is completely client-independent. Coupled with small

online overheads, it leads to much smaller amortized financial costs

on the server-side than previous approaches. In terms of perfor-

mance for a database of 1 million 1KB elements, FrodoPIR requires

< 1 second for responding to a client query, has a server response

size blow-up factor of < 3.6×, and financial costs are ∼ $1 for an-

swering 100, 000 client queries. Our experimental analysis is built

upon a simple, non-optimized Rust implementation, illustrating

that FrodoPIR is particularly suitable for deployments that involve

large numbers of clients.

KEYWORDS
private information retrieval, cryptography, lattices

1 INTRODUCTION
APrivate Information Retrieval (PIR) scheme provides the ability for

clients to retrieve items from an online database, without revealing

anything about their queries to the untrusted host server(s). Appli-

cations of practical PIR schemes include: anonymous communica-

tion [7, 61], anonymous media streaming [47], privacy-preserving

ad-delivery [45, 63, 68], private location discovery [37], private con-

tact discovery [16], password-checking [3], and SafeBrowsing [54].

PIR schemes are split into those that are information-theoretically

secure, but require the database to be shared between multiple

non-colluding servers [5, 9–12, 26, 28, 31, 35, 36, 40, 58, 72, 75]; and

those that are computationally-secure against a single untrusted

server [1, 3, 6, 21, 24, 31, 38, 55, 56, 59, 62, 64, 65].

Multi-server PIR constructions are typically more efficient than

single-server schemes. However, finding non-colluding servers to

jointly fulfill the PIR functionality can be unrealistic and burden-

some. To avoid such problems, developing practical single-server

PIR schemes is a desirable goal. The most efficient single-server

PIR schemes are based on fully homomorphic encryption (FHE),

with security derived from the ring learning with errors (RLWE)

assumption [1, 3, 6, 59, 62, 64]. Unfortunately, these schemes incur

computational, bandwidth, and consequent financial overheads for

answering client queries on standard, cloud-based infrastructure

that would make them expensive to run at scale. Even the most
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efficient require several seconds to process a single query on a

database of 1 million 1KB elements.

To drive down online and financial costs, a recent line of work of

single-server PIR moves large proportions of the expensive online

computation and communication to an offline phase [30, 62, 65]

(a technique that also applies in the two-server model [31, 58]). In

this model, the client and server prepare an offline internal state

to be used for making online queries. Such schemes are referred to

as offline-online or stateful, as opposed to online-only or stateless.
Such works [30, 62, 65] have focused on developing PIR schemes

with efficient online phases. The recent work of Corrigan-Gibbs et

al. [30], for example, produces a stateful single-server PIR scheme

with sublinear efficiency costs.

A key difficulty that has gone unsolved is that either the compu-

tation or the communication costs induced during the offline phase

scale linearly in the number of clients that will make queries [30,

62, 65]. Moreover, previous schemes require each individual client

to make large numbers of queries (e.g.

√
m for m DB elements)

to ensure that the amortized costs remain sublinear. Ultimately,

this still results in significant financial costs for any server that

plans to run a PIR service in standard cloud-based infrastructure,

that will answer queries from large numbers of clients. As a con-

sequence, single-server PIR remains unusable in many real-world

applications.

Our Results. We build FrodoPIR: a stateful PIR scheme that is

built directly upon the learning with errors (LWE) problem only,

rather than using RLWE and FHE-based technologies. Similarly

to FrodoKEM with respect to lattice-based key exchange [17], we

show that — counter to accepted intuition — eschewing ring lattice

structures can lead to flexible and practically efficient PIR schemes.

Themain benefit of FrodoPIR is that the offline phase of the protocol

is performed by the server alone, completely independent of the

number of clients or queries that will be made. This results in low

amortized computation overheads, and an offline client download

size that is a tiny fraction of the entire server database.

Our results highlight that the current bottleneck for deploying

practical stateful PIR schemes is heavily related to the per-client

scalability of the offline preprocessing phase. Previous schemes

have optimized primarily for per-client asymptotics, which we

show do not necessarily translate into financially cheap real-world

systems. To this end, FrodoPIR represents an initial exploration in

developing stateful PIR schemes that are suitable for large, real-

world deployments, where lowering financial costs for server-side

operators is of paramount importance. On top of this, FrodoPIR
is significantly simpler than previous schemes, making no use of

FHE techniques and requiring only modular arithmetic that can be

implemented using standard 32-bit unsigned integer instructions.

Our formal contributions are as follows.
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(1) A stateful single-server PIR scheme, known as FrodoPIR,
with security derived from LWE.

(2) A simple, open-source Rust implementation — containing

only a few hundred lines of code.
1

(3) Experimental analysis illustrating that FrodoPIR is cheaper

to run in large multi-client deployments than all previous

single-server PIR schemes.

(4) Detailed analysis of various configuration trade-offs and

optimizations for FrodoPIR.

2 BACKGROUND
2.1 Overview of Prior Approaches
PIR was first introduced as a cryptographic primitive by Chor,

Gilboa, Kushilevitz, and Sudan [28]. Information-theoretic PIR (IT-

PIR) sees the client interact with multiple non-colluding servers,

that each have access to some form of the same database, and

the client combines the responses from each server locally [5, 9–

12, 26, 31, 35, 36, 40, 58, 72, 75]. Computationally-secure PIR (cPIR)

relies only on a single-server, and provides computational security

based on cryptographic assumptions [1, 3, 6, 21, 24, 31, 38, 55, 56, 62,

64, 65]. While ITPIR schemes are more efficient, real-world systems

that provide non-collusion guarantees prove very hard to devise in

practice. Thus, we focus on cPIR henceforth.

Stateless PIR. Initial constructions of PIR schemes followed the

framework of Kushilevitz and Ostrowsky [55], using additively

homomorphic encryption (from number-theoretic assumptions) for

hiding the client query [21, 24, 38, 56]. Such schemes are known as

online-only or stateless, since the client does not have to store any

information in order to launch queries. Stateless single-server PIR

schemes of this nature have the following underlying structure.

• To learn the ith DB elementDB[i], a client sends a vectorv of

m additively homomorphic ciphertexts, wherev[i] encrypts
1 and all others encrypt 0.

• The server responds with a vector w , where w[j] = v[j] ∗
DB[j] (j ∈ [m], ∗ denotes scalar multiplication).

• The client decryptsw[i] and learns DB[i].
Sion and Carbunar showed that such schemes actually perform

much worse than simply having the client download the entire

server database (DB), when the network bandwidth is just a few

hundred Kbps [69]. This is a result of performing O(m) expensive
arithmetic operations (modular exponentiations or multiplications)

for every client query.

The results of [69] stood as a reference point for nearly a decade,

until Aguilar-Melchor et al. [1] used lattice-based cryptography

(inherently faster than number-theoretic approaches) to construct

efficient single-server PIR. In their XPIR scheme the server compu-

tation time is approximately > 5 seconds for a DB withm = 2
20

elements, even with the aforementioned asymptotic overheads. Ac-

cordingly, bandwidth requirements for the client query are 18MB,

and 590KB for the server response. Various schemes since have used

RLWE-based FHE to propose similar schemes or optimizations of

these methods, such as [3, 6, 33, 59, 62, 64]. In particular, the works

of [3, 6, 59, 62, 64] exhibit various optimizations that transform the

client query and server database to reduce the size of the query and

1
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server response (to around 64KB and 128KB, respectively), whilst

maintaining similar or improving computational costs.

Stateful PIR. Unfortunately, stateless cPIR schemes still require

computational overheads that are difficult to justify in a large-

scale deployment. For example, to respond to a single client query

for a database of 1 million 256B entries, it takes > 1 second, and

requires downloading at least tens of kilobytes of data [6, 59]. Such

approaches are unlikely to scale for large numbers of clients, or in

situations that require timely responses. Recent work has observed

that online performance can be improved by moving expensive,

query-independent computation to an initial offline phase [30, 31,

62, 65]. This allows reducing the online costs, as well as amortizing

the costs of the offline phase across a number of client queries.

The scheme of Patel et al., known as PSIR [65], enjoys a very fast

online phase, though this approach requires the client to download

the entire server database in an offline phase — which violates fun-

damental PIR efficiency criterion: the total client communication re-

mains smaller than downloading the entire database (Definition 3.8).

The scheme of Mughees et al., known as Stateful OnionPIR (hence-

forth SOnionPIR) [62], provides a (financially) cheaper approach

than PSIR, but at the cost of large computational overheads during

the offline phase, which is executed as a protocol between each

client and the server. Thus, financial costs will scale linearly in

the global number of client queries that are launched. While the

single-server scheme of Corrigan-Gibbs and Kogan [31] has similar

issues as SOnionPIR, the very recent work of Corrigan-Gibbs et

al. [30] constructs a PIR scheme (henceforth CHKPIR) where all

(amortized) asymptotic complexities are sublinear in the number of

DB elementsm. Specifically, costs are O(
√
m), when clients make

√
m queries. Previous schemes require O(m) (symmetric) online

operations. This reduces further the online costs, but the costs of

the offline phase are very similar to the previous works of [62, 65].

In summary, the expensive offline phase in each scheme — that

only amortizes per a single client’s queries — quickly becomes the

main driver of the server-side costs.

The general idea behind each of [30, 62, 65] is that each client

and the server cooperatively run a private batch sum retrieval pro-
tocol that samples c random subsets S1, . . . , Sc of elements DB, and
computes the sum si of all of the elements in each Si and provides

it to the client. During the online phase, the client that wants to

query for the element ej = DB[j] picks the first t ∈ [c], where
ej < St . They then construct a partition P = (P1, . . . , Pk ) of the
indices of DB, where Pj = S , and send a succinct description of this

partition to the server. The server expands each partition into the

set of sums sP1 , . . . , sPk . The client uses an underlying single-server

PIR scheme to learn the sum sPj , and, finally, outputs sPj − st to
learn ej .

The PSIR scheme implements the private batch sum retrieval

protocol by streaming the entire database to the client, while the

SOnionPIR and CHKPIR schemes both involve the client specifying

their random subsets as FHE ciphertexts, and having the server

construct each of the sums using homomorphic properties. When

instantiating the underlying single-server PIR scheme during the

online phase using FHE-based schemes (such as SealPIR, or stateless
OnionPIR), it has been shown that stateful PIR result in much more
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efficient online phases and significantly smaller server costs, when

compared with stateless, online-only schemes [62, 65].

Other Privacy-Preserving Data Access Primitives. Oblivious RAM
(ORAM) provides data access pattern privacy for client queries to a

server database [42, 43]. This problem is related to PIR, but provides

privacy also for the server database: the client learns the queried

DB element and nothing more. While recent ORAM schemes enjoy

sublinear computation and communication [25, 32, 67, 70], none are

inherently multi-client and this leads to very expensive real-world

overheads.

The work of Hamlin et al. presents Private Anonymous Data

Access (PANDA) [48], based on a symmetric-key formulation of

PIR known as doubly-efficient PIR [13, 19, 23]. Doubly-efficient PIR

schemes are similar to stateful schemes, where there is an initial

phase that preprocesses the server database, but the online phase

is totally stateless. Unfortunately, symmetric-key doubly-efficient

PIR is inherently not multi-client. Public-key instantiations use

multiple-servers [13], or are based on expensive cryptographic ob-

fuscation [19]. Batch PIR [8, 49, 52, 57] uses batch codes to achieve

sublinear amortized efficiency, by allowing clients to retrieve mul-

tiple items at once. Unfortunately, such savings do not apply in

settings where queries are made adaptively — i.e. based on the

results of previous queries — which is required in most standard

applications. As such, we focus on developing efficient PIR schemes

for handling adaptive client queries.

2.2 Limitations of Existing Stateful PIR
Schemes

Expensive Preprocessing. The key limitation of SOnionPIR and

CHKPIR is the computational cost of the private batch sum retrieval

protocol that takes place during the offline phase. This protocol

must be invoked per-client, and involves at least O(m) server-side
operations and O(

√
m) communication (m = |DB|). These costs are

amortized across the number of queries c launched but, even after

amortization, the computational costs remain large. For a DB of 2
20

1KB elements, the offline phase of SOnionPIR takes 25 seconds per
client query.2 For large multi-client systems, the potential for amor-

tization diminishes and these costs quickly become prohibitive.

In contrast, in PSIR clients simply download the entire server

database before only storingO(c) data; this results inmultiple issues.

First, as shown in [62], for large numbers of clients the download

cost becomes prohibitively large from a financial perspective, and

will continue growing for larger databases and items [62]. Second,

the PSIR approach is unable to satisfy the fundamental efficiency

criterion required of PIR schemes (Definition 3.8).

High Online Bandwidth Consumption. As a result of using FHE-
based single-server PIR during the online phase, both SOnionPIR

and PSIR have online server response sizes that are relatively very

large compared to the size of the queried DB element. For exam-

ple, for 1KB data elements, the response blow-up in SOnionPIR is

128×, while in PSIR it is 320×. The work of CHKPIR uses similar

underlying primitives and thus results in similar communication

overheads.

2
While CHKPIR has not been implemented, the offline phase is very similar and thus

will incur similarly large computational overheads.

A

PRG(µ)

DB

M

Each client
down-

loads (µ,M)

(1) Server Offline Pre-processing

sb= A + e

PRG(µ){0,±1} {0,±1}
$ $

sc= M

(2) Client Offline Pre-processing

b x i

0

0

+ b̃ Send to
server

(3) Client Online Query for Index i

b̃

DB

c̃

Return c̃
to client

(4) Server Online Response

c̃ c− DB[i]Round ≈

(5) Client Output

Figure 1: An overview of FrodoPIR. In (1), the server com-
presses their database DB (represented as a matrix) into M,
via multiplication with the global matrix A that is derived
randomly from a public seed µ. The client downloads (µ,M),
and in (2) they preprocess a query and store (b,c), note that
b is an LWE sample and is thus randomly distributed. In the
online phase, in (3), the client creates their query by adding
an indicator value x to the ith vector entry of b̃. In (4), the
server multiplies the client query vector with their DB ma-
trix and return the result, c̃. Finally, in (5), the client sub-
tracts c from c̃ — rounding the result to remove any error
terms — and learns the ith row of DB. The full scheme is
given in Section 4.

Practical Security Parameters. PSIR and SOnionPIR provide 115

and 111 bits of security, respectively [62, 65] using the primal-USVP

cost model for estimating the hardness of cryptographic lattices,

as shown in [2]. Achieving 128 bits of security can be important

in cases where cryptographic tools must satisfy regulatory compli-

ance checks. Increasing the concrete security parameters of either

scheme would require modifying the LWE parameters that are

used which, in turn, will significantly impact the efficiency of both

schemes.

Lack of Simple, Available Implementations. There are no public

implementations of stateful PIR schemes. Additionally, no previous

scheme implements their stateful PIR scheme as part of their ex-

perimental analysis. This means that the computational overheads

of running existing schemes are either extrapolated from stateless

PIR implementations, or remain unavailable. Having simple, small,

and available implementations is a significant advantage when it

comes to assessing the efficiency and security guarantees that are

provided, during security and scientific auditing processes.

2.3 Overview of FrodoPIR
Figure 1 gives a diagrammatic overview of the following steps.

(1) In the offline phase, the server interprets their own database

as a matrix, applies a compression function to said matrix

and makes the results available as global public parameters.

This compression function shrinks the size of the database

by a factor of approximatelym/λ, where λ is the security
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Table 1: Asymptotic comparison focusing on the dependency on the number of database elements,m, of practical approaches
for realizing single-server PIR with adaptive queries (i.e. not including batch PIR schemes, logarithmic factors are ignored).
All costs are amortized according toC clients that launch c =

√
m queries (m = |DB| is the total number of elements in the server

database). Communication costs relate to the amount of data that is sent to the party. The financial costs are given relative
to a database containing 2

20
1KB elements, are amortized per-query and per-client, and are calculated assuming a server that

operates the same AWS EC2 architecture specified in Section 6. †The costs of CHKPIR are assumed to be zero for the online
phase, and are thus completely dominated by the offline phase, which can be implemented using techniques from [30, 62, 65].

Approach

Security

assumptions

Client costs Server costs

Communication Computation

Storage

Communication Computation

Financial

Offline Online Offline Online Offline Online Offline Online

Stateless [3, 6, 62] RLWE — m — m — — 1 — m $5.2 × 10−3

PSIR [65] RLWE — 1 m
√
m

√
m |DB|/

√
m 1 — m $8.8 × 10−5

SOnionPIR [62] RLWE

√
m 1 k ·

√
m k

√
m

√
m 1

√
m m $6.4 × 10−4

CHKPIR [30] RLWE

√
m

√
m

√
m

√
m

√
m

√
m 1

√
m

√
m ∼ $8.8 × 10−5†

FrodoPIR LWE — m m 1 λ λ ·m−1/2 1

√
m/C m $(1.9/C × 10−2 + 1.3 × 10−5)

parameter andm is the number of database elements. Thus,

the size of the parameters is no longer linear in the size of

the database.

(2) The client downloads the public parameters, and can com-

pute c sets of preprocessed query parameters.

(3) In the online phase, the client uses a single set of prepro-

cessed query parameters to produce an “encrypted” query

vector, which is sent to the server.

(4) The server responds to the query by multiplying the vector

with their database matrix.

(5) The client returns the result by “decrypting” the response

using their preprocessed query parameters.

The security of the system relies on the decisional LWE prob-

lem:
3
each client query is a noisy vector that appears uniformly

random to the server. Security conservatively holds up to a global

number of client queries that the server witnesses. When this is

reached, the server simply reruns the compression function using

newly sampled randomness, and the clients download and process

the new parameters.
4

While the ideas behind FrodoPIR are fundamentally similar to

previous RLWE-based PIR schemes, the key differentiating factor

is that it uses a secure, client-independent preprocessing phase.

Moreover, the total client download is much smaller than schemes

that involve streaming the entire server database. This trade-off

results in a scheme that is significantly cheaper than all previous

approaches, including those that achieve sublinear computation

and communication complexities such as [30]. FrodoPIR is espe-

cially well-suited to operating on databases containing many small

elements. Moreover, FrodoPIR consistently achieves low runtimes

across various database shapes (see Section 6).

The main limitation of the FrodoPIR approach is that online

client queries are linear in the size of the database, which can be

much larger than previous schemes. Fortunately, we show that

FrodoPIR is highly configurable and that we are able to reduce

client query sizes (as well as server-side online computation) at the

cost of increasing the client download size (see Section 5.4 for more

3
We base security specifically on awell-known variant of LWE, known as the decisional

ternary LWE problem (Assumption 3.2).

4
Less conservative security analyses suggest that the number of queries may not have

such a strong impact on security, see Appendix C for wider discussion.

details). Another limitation is that the server database transforma-

tion can result in storing a larger amount than the database itself.

Roughly speaking, the server database matrix is 3× as large as the

original database. Such database transformations are common in

PIR: RLWE-based schemes usually store their database in a format

that allows using number-theoretic transform operations easily;

and store database elements as FHE ciphertexts which can lead to

a 2× increase in database storage.

We provide a functionality, efficiency, and coarse-level financial

comparison between FrodoPIR and previous stateless/stateful PIR

schemes in Table 1. We illustrate how amortization of offline com-

putation across all client leads to significant efficiency advantages

compared with previous stateful PIR schemes in Section 6.

3 PRELIMINARIES
3.1 Notation
We denote vectors and matrices in lower- and upper-case bold-face,

respectively. All vectorsv are assumed to be in column orientation,

and we writevT to denote the same vector in row orientation. For

a set of vectors x1, . . . ,xℓ , we write [x1 ∥ · · · ∥ xℓ] to denote the

matrix with the ith column set to equal xi for i ∈ [ℓ].
Let ⌊x⌉ ∈ Z denote rounding x ∈ R to the nearest integer,

rounding down in case of a tie. Likewise, we use ⌈x⌉ to indicate

explicitly rounding x ∈ R to the next highest integer. For x ∈ Zmq ,

we write ⌊x⌉p to denote the computation of ⌊p/q · x⌉, where the
rounding is applied to each entry of x individually. For some set X,

we write x ←$X to denote that x is sampled fromX uniformly, and

we write x ←$ (X)m to denote sampling anm-dimensional vector,

with each entry sampled uniformly from X. We write log(x) to
denote taking the base-2 logarithm of x . We use λ to denote the

security parameter throughout, and say that an algorithmA is PPT

if it runs in probabilistic polynomial-time with respect to λ.

3.2 Mathematical Preliminaries
We use the learning with errors (LWE) problem in its decisional

version, which is equivalent to its search version as proven by

Regev [66] for prime moduli, and was later shown to be equivalent

for all moduli [20, 60].

Definition 3.1. (Decisional LWE problem) Let χ be some distri-
bution, and let q,n,m > 0 depend on λ. The decision LWE problem

368



FrodoPIR: Simple, Scalable, Single-Server Private Information Retrieval Proceedings on Privacy Enhancing Technologies 2023(1)

(LWEq,n,m,χ ) is to distinguish between:

(A, sT ·A + eT ) ∈ Zn×mq × Zmq , (1)

(A,u) ∈ Zn×mq × Zmq , (2)

where A←$Zn×mq , sT ← (χ )n , eT ← (χ )m , and u ←$Zmq .

Evidence that LWEq,n,m,χ is hard to solve for appropriate choices

of χ — for example small Gaussian distributions — and for both clas-

sical and quantum adversaries follows via reduction from standard

worst-case lattice problems [66] (as hard as worst case problems

on n-dimmesional lattices).

Variants of LWE. The following assumption states that decisional

LWEq,n,m,χ remains hard when χ is the uniform distribution over

ternary values (i.e. {0,±1}).

Assumption 3.2. (Ternary LWE [20]) The LWEq,n,m,χ problem
is hard to solve when χ is the uniform distribution on {−1, 0, 1} (i.e.
the uniform ternary distribution).

It follows from the work of Brakerski et al. [20] that Decisional

LWE with ternary secrets is as hard as the problem investigated

by Regev [66]. Moreover, many examples of well-established cryp-

tographic schemes rely on the hardness of LWE using both se-

crets and errors sampled from a uniform ternary distribution, such

as [15, 34, 46, 51].

In Definition 3.3 we give a variant of LWEq,n,m,χ known as

the Matrix LWE problem (denoted by MatLWEq,n,m,χ ,ℓ ). Corol-

lary 3.4 shows that MatLWEq,n,m,χ ,ℓ is hard to solve, with only

polynomial security loss compared with LWEq,n,m,χ [17].

Definition 3.3. (Decisional Matrix LWE problem [17]) Let χ be
some distribution, and let q,n,m, ℓ > 0 depend on λ. The decisional
Matrix LWE problem (MatLWEq,n,m,χ ,ℓ ) is to distinguish between:

(A, S ·A + E) ∈ Zn×mq × Zℓ×mq , (3)

(A,U ) ∈ Zn×mq × Zℓ×mq , (4)

where A←$Zn×mq , S ← (χ )ℓ×n , E ← (χ )ℓ×m , andU ←$Zℓ×mq .

Corollary 3.4. (Hardness of MatLWEq,n,m,χ ,ℓ [17]) Let A be a
PPT adversary againstMatLWEq,n,m,χ ,ℓ with advantage ϵ , then we
can construct a PPT adversaryB against LWEq,n,m,χ with advantage
ϵ/ℓ.

We now state the following as a corollary of the central limit

theorem, to provide an upper bound on the size of sums of elements

sampled from uniform ternary distributions.

Corollary 3.5. (Bounds on uniform ternary sums) For sufficiently
largem = poly(λ ), the sum ofm samples taken from the uniform
distribution over ternary values (i.e. {−1, 0, 1}) is bounded by 4

√
m

with all but negligible probability.

3.3 Stateful Private Information Retrieval
As discussed, in this work, we will consider stateful PIR schemes,

where the PIR interactions are split into a query-independent offline

phase and a query-dependent online phase [65]. A stateful PIR

scheme consists of an offline and an online phase, which are defined

as follows.

Offline phase:

• ssetup(1λ): An algorithm run by the server that outputs

some initialization parameters ip.
• cinit(ip): A client initialization algorithm run on parameters

ip. Outputs a messagemsд to be sent to the server during

the offline phase.

• spreproc(ip,DB,msд): A server preprocessing algorithm run

on ip, the server database DB, and client messagemsд. Out-
puts a set of public parameters pp to be downloaded by the

client.

• cpreproc(ip, pp): A client preprocessing algorithm run on

the server-generated public parameters (ip, pp), that outputs
a state st.

Stateful PIR schemes that omit the cinit algorithm are said to have

client-independent preprocessing phases.

Online phase:
• query(st, i): A client algorithm that generates a PIR query

q for the item in the ith index of the server database, and

optionally returns an updated state st′.
• respond(DB, q): A server algorithm that outputs a response

r to be returned to the client.

• process(st, r): A client algorithm that takes the sever re-

sponse r, and outputs a database element x.

3.4 PIR requirements
Stateful PIR schemes must guarantee the following.

Correctness. The following correctness definition ensures that

clients receive the correct response with overwhelming probability

when interacting with an honest server.

Definition 3.6. (Correctness) Let DB be the server database, let i
be the index that the client seeks to query during the online phase,
and let DB[i] be the ith entry of DB. We say a PIR scheme is correct
if the following inequality is satisfied.

Pr


x = DB[i]

���������
ip←ssetup(1λ )
pp←spreproc(ip,DB,cinit(ip))
st←cpreproc(ip,pp)
q←query(st,i)
r←respond(DB,q)
x←process(st,r)


> 1 − negl(λ )

Security. We use the standard definition of security in enforcing

the indistinguishability of client queries. As is common throughout

PIR literature, this assumes a semi-honest server, that follows the

protocol correctly and attempts to learn more based on the client

messages that they receive.

Definition 3.7. (1-query indistinguishability) Let DB be the server
database. Generate the server public parameters by running ip ←
ssetup(1λ), pp ← spreproc(ip,DB, cinit(ip)). Generate the client
state by running st ← cpreproc(ip, pp). We say that a PIR scheme
is secure if, for any PPT adversary A specifying indices i0, i1 that
is given qb ← query(st, ib ) for b ←$ {0, 1}, then A has negligible
probability in correctly guessing b.

The above definition can be expanded to specify ℓ-query indistin-

guishability, in other words that two sets of size ℓ of client queries

are indistinguishable from each other [65].
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Efficiency. PIR schemes require communication that is smaller

than the overhead of having clients download the entire server

database. In the stateful PIR case, it should hold when amortizing

costs over the number of client queries.

Definition 3.8. (Efficiency) For a single client launching c queries,
a PIR scheme is efficient if the total client communication overhead
is smaller than |DB|/c .

Therefore, for stateful schemes, the total client communica-

tion cost is calculated using the equation: comms(offline) + c ·
comms(online).

4 OUR SCHEME
We now describe the FrodoPIR scheme, writing FPIR for short.

4.1 Cryptographic Setup
Recall that S is the server holding the database DB that each client

attempts to learn entries from. DB is an array ofm elements, each

made up of w bits. Each entry is associated with the index i that
corresponds to its position in the array. For now, we will assume

that the client knows which index it would like to query during the

online phase of the protocol.
5
We assume that there are C clients

that will each launch amaximum of c queries againstDB. Regarding
the LWE instantiation that is used: let n and q be the LWE dimen-

sion and modulus, respectively; let 0 < ρ < q; let χ be the uniform

distribution over {−1, 0, 1}; and let λ be the concrete security pa-

rameter. Finally, we use PRG(µ, x,y,q) to denote a pseudorandom

generator that expands a seed µ ←$ {0, 1}λ into a matrix in Z
x×y
q .

4.2 Preprocessing Phase
We first describe the offline phase which occurs before the client

makes any queries to the server. Note that cinit is not required in

FrodoPIR, and thus we do not define it.

Server Setup (FPIR.ssetup). The server constructs their database
containingm elements, and samples a seed µ ∈ {0, 1}λ .

Server Preprocessing (FPIR.spreproc). The server derives a ma-

trix A ← PRG(µ,n,m,q), where A ∈ Zn×mq . It then runs D ←

parse(DB, ρ), where parse encodes theDB into a matrixD ∈ Zm×ωρ ,

and where ω = ⌈w/log(ρ)⌉.6 The server stores D.
To generate public parameters, the server runs M ← A · D,

and then publishes the pair (µ,M) ∈ {0, 1}λ × Zn×ωq to a public

repository accessible by clients.

Client Preprocessing (FPIR.cpreproc). Each client downloads

(µ,M) from the public repository, and runs A ← PRG(µ,n,m,q).
The client then samples c vectors sj ← (χ )n andej ← (χ )m . Finally,

it computes bj ← sjT · A + ejT ∈ Zmq and c j ← sjT · M ∈ Zωq ,
for each j ∈ [c], and stores the pairs internally as the set X =
(bj ,c j )j ∈[c].

5
Section 7 discusses options for mapping string-based queries to indices.

6
Thus, the i th row consists of ω log(ρ)-bit chunks of DB[i] ∈ Zωρ .

4.3 Online Phase

Client Query Generation (FPIR.query). For the index i that the
client wishes to query, the client generates the vector:

fi = (0, . . . , 0,q/ρ, 0, . . . , 0),

i.e. the all-zero vector except where fi [i] = q/ρ. The client then
pops a pair (b,c) from the internal state st that it maintains, and

computes b̃ ← b + fi ∈ Zmq , and sends b̃ to the server.

Server Response (FPIR.respond). The server receives b̃ from the

client, and responds with c̃ ← b̃T · D ∈ Zωq .

Client Postprocessing (FPIR.process). The client receives c̃ , and
outputs x ← ⌊c̃ − c⌉ρ ∈ Zωρ .

4.4 Correctness
The output of the client postprocessing phase is x ← ⌊c̃ − c⌉ρ .
Expanding the right-hand side of the equation gives:

x = ⌊c̃ − c⌉ρ

= ⌊(sT ·A + eT + fi
T ) · D − (sT ·A · D)⌉ρ

= ⌊(e + fi )
T · D⌉ρ .

(5)

Noting that ⌊ fi
T · D⌉ρ = D[i] where the ith row D[i] ∈ Zωρ is

interpreted as a column vector, then proving that

⌊eT · D + fi
T · D⌉ρ = ⌊ fi

T · D⌉ρ (6)

results in the client learning the correct output. This gives rise to

the following theorem.

Theorem 4.1. (Correctness) If q ≥ 8ρ2
√
m, then FPIR is correct

with high probability.

Proof. See Appendix A.1. □

4.5 Security
To prove security of FrodoPIR, we show that any query b̃ ←
FPIR.query(i) is distributed uniformly in Zmq from the perspective

of S (Theorem 4.2). This general result proves that FPIR satisfies

1-query indistinguishability (Definition 3.7) and we further show

that this holds for ℓ = poly(λ ) client queries in Corollary 4.3. Since,

χ is the uniform ternary distribution, the proofs therefore follow

from the hardness of the decisional ternary LWE problem (Assump-

tion 3.2).

Theorem 4.2. (1-query indistinguishability) FPIR is secure under
observation of 1 query, under the assumption that LWEq,n,m,χ is
difficult to solve.

Proof. See Appendix A.2. □

Corollary 4.3. (ℓ-query indistinguishability) FPIR is secure un-
der observation of ℓ = poly(λ ) queries, under the assumption that
MatLWEq,n,m,χ ,ℓ is difficult to solve.

Proof. See Appendix A.3. □
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Table 2: Communication overheads (bits) of FrodoPIR.

Offline Online

Client upload — m log(q)
Client download λ + nω log(q) ω log(q)

Table 3: Number of operations required in FrodoPIR.

spreproc cpreproc query respond process

mod q mults nmω n(m + ω) — mω —

mod q adds n(m − 1)ω (n − 1)(m + ω) 1 (m − 1)ω ω
PRG nm nm — — —

Table 4: Storage overheads of FrodoPIR in bits, according
to whether client performs any offline preprocessing of
queries (where c is the number of preprocessed queries), or
not. When no preprocessing is performed, the client storage
overhead is logarithmically dependent on the number of el-
ements in DB.

with preprocessing without

Server storage λ +mω log(ρ) λ +mω log(ρ)
Client storage λ + c(m + ω) log(q) λ + nω log(q)

4.6 Efficiency
We give the conditions under which FPIR satisfies the efficiency

goal of a PIR scheme, as laid out in Definition 3.8.

Theorem 4.4. (Efficiency) Let c be the upper bound of a single
client’s FPIR queries. Then FPIR is efficient when:

λ + nω log(q) + c(m + ω) log(q) < |DB |.

Proof. This follows from Definition 3.8, considering the com-

munication costs of FrodoPIR (see Table 2). □

5 PARAMETER SETTINGS AND
CONFIGURATIONS

We now describe parameter settings and potential optimizations

that demonstrate the versatility of FrodoPIR. The major parameters

of the scheme to be configured are: the concrete security parameter

λ; the LWE dimension n; the LWE modulus q; the uniform ternary

distribution, χ , used for sampling LWE secret and error vectors;

the number of bits, ρ, packed into each entry of the DB matrix, D;
the number of elements,m, in the server DB; and the bit-length,w ,

of each element in the server database.

The communication overheads of FrodoPIR are given in Ta-

ble 2, the number of required computational operations are given

in Table 3, and the storage overheads in Table 4.
7
Clearly, the afore-

mentioned parameters all have an impact on the protocol efficiency.

7
Recall that ω = w/log(ρ).

Table 5: Database, query, and security parameter settings.

q 2
32

2
32

2
32

2
32

2
32

n 1774 1774 1774 1774 1774

m 2
16

2
17

2
18

2
19

2
20

ρ 2
10

2
10

2
10

2
9

2
9

κ 13.028 26.056 52.112 93.802 187.603

λ 128 128 128 128 128

5.1 Required Invariants
Firstly, for efficiency, FrodoPIR must satisfy Theorem 4.4:

λ + nω log(q) + c(m + ω) log(q) < mw . (7)

Secondly, for correctness (Theorem 4.1), we must have that:

q ≥ 8ρ2
√
m, (8)

holds. Finally, for security,MatLWEq,n,m,χ ,ℓ must provide at least

128 bits of concrete classical security. We can estimate the concrete

security of LWE instances with the lattice security estimator [2],

see Appendix D.

5.2 Fixing LWE Parameters
Before configuring FrodoPIR for efficiency, we first fix a set of

parameters that provide the necessary concrete security guarantees.

We focus on those parameters for MatLWEq,n,m,χ ,ℓ , except form
which is the number of DB elements.

Firstly, χ is the uniform ternary distribution. Secondly, we set

q = 2
32
, which allows us to use standard 32-bit unsigned integer

operations for the implementation of the Zq operations. Thirdly,

we set n = 1774 as the LWE dimension. This choice conserva-

tively estimates the security of the MatLWEq,n,m,χ ,ℓ instance,

using the work of Albrecht et al. [2] to provide the security of

ν = LWEq,n,m,χ , and then calculate the concrete security param-

eter as λ = ν − log ℓ (Corollary 3.4) using the primal-USVP cost

model. As ℓ is the total number of queries that the server observes,

we set ℓ = 2
52

queries as a suitable upper bound before rotation

of A is required. When A is rotated, the security of the scheme is

reset. Therefore, λ = ν − 52. The code that we eventually run for

estimating the security of ν is given in Appendix D.

The conservative analysis above dictates that for larger num-

bers of queries, the concrete security of the instance will decrease

polynomially in the number of queries — until a new LWE matrix

A is resampled.
8
Note that no attacks currently exist that exploit

the security ofMatLWEq,n,m,χ ,ℓ in this way. As such, a less con-

servative analysis may be valuable in allowing smaller dimensions

n, by simply estimating the security for smaller values of ℓ, or by

estimating the security of ν = LWEq,n,m,χ only. We discuss the

performance impact of choosing smaller values of n in Appendix C.

5.3 Recommended Database Parameters
Let κ = (log(ρ) ·m)/(n · log(q)) denote the improvement factor rel-

ative to the offline client download when compared to the original

DB size. In Table 5, we give recommended parameter settings for

8
Since PIR is constructed in a semi-honest security model, we safely assume that the

server resamples A when it is required to do so.
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FrodoPIR. For each parameter set, the concrete security parame-

ter is 128 bits for 2
52

client queries. Security can be increased by

increasing the dimension n, though, this reduces κ. The lattice secu-
rity estimates that we derive are produced using the code detailed

in Appendix D.

In Section 6, we consider DB elements of sizew = 1KB, which

leads to ω ∈ {820, 911}, depending on the value of ρ. In Section 6.3,

we also highlight how performance changes when considering DB
elements of larger sizes.

5.4 Additional Optimizations
Processing Larger Databases via Sharding. Asm increases beyond

2
20
, we see a greater relative saving of download costs relative

to the fixed n that is used (as parameterized by κ). However, this
has undesirable impacts on the performance of the scheme. First,

all online server-side computation in the online phase is linearly

dependent onm, and so increasingm immediately results in higher

latency. The offline work scales similarly for client devices, which

are typically constrained and unlikely to cope with vast overheads.

Second, the client query size rapidly grows as it is also linearly

dependent onm.

Overall, we expect that the best approach for operating on larger

databases is to shard them into s parallel instances, each using a

database of sizem/s . Each instance can then independently pro-

cess the same single client query. This allows the client to learn

the ith index from each of the s shards from only a single query.

This allows parallelization of server computation, and careful man-

agement of available computing resources. On the client-side, the

size of the online query is linear inm/s , rather thanm, which can

lead to more efficient uploads. However, this comes at the cost of

increasing the client download by a factor of s . As a result, sharding
allows developing different trade-offs for client upload/download

for various situations. Previous work has already highlighted the

benefits of performing such sharding on the server database [33]

in terms of increasing amortization factors and allowing further

degrees of parallelization.

Note that each client must download the public parameters of

each of the individual shards. This increases the size of the client

download, but with the benefits of reducing the size of their own

query and reducing server-side latency. Additionally, noting the

independence of each server-side vector-column multiplication in

FrodoPIR, we could equally leverage sharding by splitting the server
database matrix into smaller subsets of columns for handling larger

data elements.

Database Updates. Sharding alone does not reduce the client

overhead in preprocessing queries, which remain linear in the total

database size. This can become expensive if the server database

is updated frequently: each time the client has to regenerate their

preprocessed query data.

However, coupling sharding with a database updating procedure

that touches only few of the shards can reduce database updates

to only re-running the ssetup, cpreproc, and spreproc procedures
on a small fraction of the database. Specifically, if database updates

are confined to a single shard of the database, then these proce-

dures need only be run on that particular shard after every update.

Updating a single shard of the database results in only requiring

the client to download and process an amount of data that is a

1/(κ · s) fraction of the entire database. Even for large databases,

this fraction is likely to be very small.

Achieving Logarithmic Client-Storage Overhead. Table 4 clearly
highlights that storage overheads for clients are dependent on c ,
the number of preprocessed queries. These costs can be reduced

significantly to being logarithmically dependent onm, by simply

not performing any preprocessing. The reason that the costs are

logarithmic is that the client storage is equal to (λ+nω log(q))where,
as mentioned in Section 5, q is chosen to be equal to 8ρ2

√
m. This

approach requires derivation of the matrixA and query parameters

for every online query. Since the derivation of A is fairly costly,

computation-constrained clients will benefit from preprocessing

client queries.

6 EXPERIMENTAL ANALYSIS
We provide an experimental analysis of the incurred computa-

tional runtimes, bandwidth usage, and financial costs when running

FrodoPIR. Further, we highlight how such costs amortize over the

one-time offline preprocessing phase. Finally, we compare these

costs with the previous stateful PIR schemes — PSIR [65], SOnion-

PIR [62], and CHKPIR [30].

Performance Benchmarks. We run all experiments as single thread

processes on an Amazon t2.2xlarge EC2 instance, with 8 CPU

cores and 32GB of RAM.
9
This is equivalent to the setup that is used

in [62] for comparing SOnionPIR and PSIR. All computational costs

correspond to CPU processing time. Bandwidth costs are calculated

using the overheads detailed in Table 2, where λ = 128. Regarding

financial cost calculations, transferring data from server to clients

costs $0.09 per GB, the cost of data transfer from clients to server

is free, and the cost of computation is $0.3712 per hour of usage (or

$0.0464 per CPU hour).
10

Parameter Choices. We provide non-amortized communication

and computation benchmarks for a single server database using

each of the parameter settings provided in Table 5. We choose

w = 2
13

bits (i.e. 1KB database elements); and set ρ = 2
10

for

m ≤ 2
18
, and ρ = 2

9
otherwise. Section 6.3 provides additional

benchmarks for different database shapes, such as in cases where

database elements are much larger.

The parameters we use conservatively provide 128-bit security

for around 2
52

client queries. In Appendix C, we discuss perfor-

mance improvements when the lattice dimension, n, is reduced to

account for less conservative security estimations.

Source Code. Our open-source11 implementation of FrodoPIR is

written in Rust, consists of 735 lines of code, including tests, and

requires no external dependencies relating to cryptographic oper-

ations. All modular arithmetic is implemented using instructions

associated with the 32-bit unsigned integer type included in the

Rust standard library.

9
Client-based functions are estimated using the same hardware.

10
https://aws.amazon.com/ec2/pricing/on-demand/, August 2022.

11
https://github.com/brave-experiments/frodo-pir
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Figure 2: Amortized (per-query) cost of server preprocessing
(left), according to howmany client queries they service, and
client offline download size (right).

Example Application. In Appendix B, we further illustrate how

FrodoPIR can be applied to real-world use-cases, taking, as an

example, the Google SafeBrowsing API [44].

6.1 Performance Results
Table 6 displays the non-amortized performance of FrodoPIR. This
involves calculating running times and bandwidth usage for run-

ning a single-threaded server instance in interaction with a single

client. Later, we analyze how the offline costs amortize on a per-

query basis. Amortization is calculated over a variable number of

clients C , and the number of per-client queries c (where we set

c = 500 for all experiments).

Offline Phase. The server generates their database matrix DB
and public parameters. This is a client-independent operation that

scales linearly inm. This process includes pseudorandom derivation

of the LWE matrix A ∈ Zn×mq from a single λ-bit seed, which is

also be computed by each client. After downloading the public

parameters, the client performs query-independent preprocessing

for each query that they will make. The results of preprocessing are

used during the online phase. These costs grow roughly linearly in

m.

In terms of communication, the server publishes the λ-bit seed,
µ, and the matrixM ∈ Zn×ωq , where ω = w/log(ρ). The size of the

client download is static for each choice of log(ρ). As a consequence,
the total cost only grows when increasingm dictates that ρ must

also decrease.

Online Phase. The client computation consists of performing a

single addition operation to modify a single portion of preprocessed

data. The client also performs a very small amount of postprocess-

ing of servers responses that is almost static across all experiments,

as it is linear inω. The dominant computation cost is the server-side

processing of the client query that is ≤ 0.83s for all database sizes.

The dominant communication cost relates to the client query,

which is equal tom log(q) bits and scales linearly in theDB size. The

server response is significantly smaller — ω log(q) bits — resulting

in a < 3.6× overhead in the server response size compared with

the original 1KB data element.

Amortization of Offline Phase. Many of the offline costs in Ta-

ble 6 can be amortized significantly over the number of queries

Figure 3: Total online and amortized (per-query) offline
computation costs for the server (left), according to how
many client queries they service, and for the client (right).

Figure 4: Left: Storage costs for clients demonstrating the
trade-off between amortization of offline preprocessing
and ensuring logarithmic storage overhead relative to m.
Right: Comparison of online query costs when preprocess-
ing, against performing all query-related computation in
the online phase.

that are launched. In Figure 2, we give an overview of the rate of

this amortization for DB preprocessing and parameter generation

steps (when servicing between 1K and 1M queries), as well as the

cost of the client downloads. The expensive cost of the one-time

preprocessing of DB amortizes over all queries globally, i.e. over all
clients. The client offline preprocessing and download amortizes

over the value of c .
The total amortized computation cost (per-query) for the server

and clients are given in Figure 3. We display server offline costs that

are amortized across all client queries globally for between 1K and

1M queries. The majority of server costs occur during the relatively

cheap online phase. Themajority of client work is performed during

the query-independent offline phase, part of which (the derivation

of A) can be amortized over c . Online costs for clients are very

small.

Storage Costs. Figure 4 illustrates the growth of the client storage
overhead associated with the database size, when preprocessing c
queries during the offline phase. This becomes fairly large when

|DB| = 2
20
, equalling roughly 2GB.
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Table 6: Non-amortized performance analysis of FrodoPIR. The “Client derive matrix” cost refers to the cost of deriving the
LWE matrix A from the seed µ, while “Client query preprocessing” refers to the cost of query-independent preprocessing
required for a single query. The server offline phase costs can be amortized globally across the number of queries (C) that are
performed, while the client download and parameter derivation costs amortizes across the number of queries (c) that they
individually make.

Number of DB items (log(m)) 16 17 18 19 20

Offline

Client download (KB) 5682.47 5682.47 5682.47 6313.07 6313.07

Database preprocessing (s) 104.57 206.26 429.07 936.36 1895.2

Client derive matrix (s) 0.5826 1.1698 2.2118 4.7284 9.25

Client query preprocessing (s) 0.1468 0.2898 0.5795 1.182 2.343

Online

Client query (KB) 256 512 1024 2048 4096

Server response (KB) 3.203 3.203 3.203 3.556 3.556

Client query (ms) 0.0213 0.0422 0.0811 0.1648 0.3429

Server response (ms) 45.013 94.505 188.36 417.92 825.37

Client output (ms) 0.359 0.398 0.363 0.42 0.434

Figure 5: Financial costs (cents) associated with running the
server in FrodoPIR. The initial setup cost can be amortized
globally across all client queries.

As mentioned in Section 5.3, it is possible to achieve log(m)
client-side storage overhead, which may be valuable for storage-

constrained clients. The downside is that client online query pro-

cessing grows noticeably, as seen in the right-side of Figure 4. This

is due to having to perform all query-related processing in the on-

line phase, including the derivation ofA from the public parameters

(which can take from between 0.5 to 9.25 seconds, depending on

the database size).
12

Financial Costs. The server-side financial costs given in Figure 5

take into account the expenses associated with both bandwidth

and single-threaded computation. The initial preprocessing of the

server database is a little higher than 1 cent for a database of 2
20
.

The online per-query cost is tiny in comparison, and approximately

0.001 of a cent even for the largest DB size. The total per-query

cost is calculated as the amortized offline costs, plus the online

per-query cost.

12
The matrix A must be rederived on usage to achieve log(m) storage.

6.2 Comparison with Prior Work
In Figure 6, we compare the performance of FrodoPIR with SO-

nionPIR [62] and PSIR [65]. Our comparison focuses on three per-

formance criteria: computational runtimes, bandwidth usage, and

financial cost. Each comparison includes the cost of answering

queries in FrodoPIR against the estimated
13

costs of running both

SOnionPIR and PSIR.
14

Note that the costs presented in [62] result

from estimating SOnionPIR and PSIR on the same EC2 hardware

(t2.2xlarge) that we used for implementing FrodoPIR. We also

provide details on how these costs amortize as the number of clients

grows.

Our comparison considers the following total database sizes of

|DB| ∈ {216, 218, 220}, and element sizes of 1KB. Note that SOnion-

PIR and PSIR allow packing of 30KB and 3KB of data into each

server response [62]. This effectively allows shrinking the server

DB by a factor of 30× and 3×, respectively, in kind. Since such costs

are linear in the size of DB, we reduce the previously estimated

runtime costs of both schemes accordingly. Offline costs for SO-

nionPIR are dependent on the number of queries, c , that are made

by each client. For each DB size we set c = 500, the same value as

used in [62]. For the financial costs, we provide costs per CPU hour

of server-side computation. The comparison does not cover storage

costs or client computation as neither measurement is explicitly

provided by the previous schemes.

Supporting Databases with More Elements. Note that [62] pro-
vides estimated costs of the SOnionPIR and PSIR schemes for a

DB of size 2
24
, but RAM overheads of FrodoPIR mean that the

t2.2xlarge EC2 instance is not powerful enough to process a data-

base of this size. This is also likely to be the case for the previous

schemes. Building an efficient implementation of FrodoPIR for a

database of 2
24

is possible by sharding, using 16 DB instances with

2
20

elements. In the interest of maintaining a fair comparison with-

out using parallelization, we do not modify the hardware used or

13
Neither previous stateful scheme has been fully implemented.

14
Where PSIR uses SealPIR as the underlying PIR scheme.
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Figure 6: Comparison of per-client computational, communication, and financial costs for the server when running FrodoPIR,
SOnionPIR, and PSIR, assuming that each client makes c = 500 queries. We include amortized costs according to various num-
bers of clients C, to indicate the global amortization potential of FrodoPIR. Individual charts: (1) Server offline computation
(secs) including amortization potential overC for FrodoPIR; (2): Server online computation (ms), amortized according to num-
ber of DB entries returned; (3): Client offline download (KB); (4): Client online download (KB); (5): Client online query (KB);
(6): Server offline financial cost (US cents), compared for different values of C; (7): Server online financial cost (US cents).

make use of sharding. Thus, we limit the comparison to database

sizes ≤ 2
20
.

Security Levels. We do not modify the security parameters of

either SOnionPIR or PSIR: they both offer ≤ 115 bits of security

according to [2]. In contrast, FrodoPIR offers 128-bit security for

up to 1 billion client queries and higher security levels for lower

numbers. SOnionPIR and PSIR could achieve higher security levels

by doubling n,15 but while computation times would go unchanged,

the server online response size would increase dramatically.

Computation. In the offline phase (Figure 6 (1)), the server-side

computation for PSIR is zero, since the client simply downloads

the entire server DB. The overall cost of computation in FrodoPIR
grows linearly in the database size. While SOnionPIR appears to

outperform FrodoPIR for a single client, this cost increases linearly

in the number of queries that a client wishes to make. As a conse-

quence, if the number of queries per-client (c) increases, then the

cost of SOnionPIR will quickly become greater. More importantly,

as the number of clients (C) in the system grows, this cost will

continue to increase. In contrast, all preprocessing in FrodoPIR is

client-independent, and thus it is fixed regardless of both c and

C . Therefore, in a large multi-client deployment, it is clear that

FrodoPIR is much cheaper than SOnionPIR.

15
Smaller n would suffice, but n has to be a power-of-two to ensure the efficiency of

NTT-related optimizations.

In the online phase (Figure 6 (2)), PSIR provides the fastest com-

putation times. Both FrodoPIR and SOnionPIR still provide com-

petitive runtimes. FrodoPIR requires ≤ 0.825s for responding to a

client query on a DB with 2
20

elements.

Communication. The offline client download cost (Figure 6 (3)) in

SOnionPIR is heavily dependent on the number of queries that will

be launched. The cost of PSIR is essentially the cost of downloading

the entire server DB. Note that the client download in FrodoPIR
grows logarithmically in the size of DB. Overall, since the costs of
FrodoPIR amortize across the number of queries launched by the

clients, with a much smaller initial cost than PSIR, it is clear that

FrodoPIR outperforms the alternatives.

In the online phase, the client download (Figure 6 (4)) in FrodoPIR
is smallest for all captured DB sizes. The server response growth

rate, even for |DB| = 2
20
, is < 3.6×, which is significantly smaller

than that of SOnionPIR (128×) and PSIR (320×). Themajor downside

of the FrodoPIR approach is that the client query in the online

phase (Figure 6 (5)) grows linearly in the size of DB, and is much

larger than both SOnionPIR and PSIR — reaching 4MB for client

queries when |DB| = 2
20
. As noted in Section 5.4, this cost can

be reduced using database sharding with the additional benefit of

reducing server computation times, but at the cost of increasing

client download sizes during the offline phase.

Financial Costs. In the offline phase (Figure 6 (6)), PSIR provides

by far the most expensive option, due to the high network band-

width usage. The costs of SOnionPIR scale with the number of
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Figure 7: Comparison of total server financial costs in
FrodoPIR with an online-free PIR scheme that implements
the offline phase using SOnionPIR. The costs are compared
for: C = 1 (solid line), C = 1000 (dashed line), and C = 1 mil-
lion (dotted line) clients; where each client makes c = 500

queries.

client queries. The costs of FrodoPIR include a client-independent

preprocessing phase, and much lower bandwidth usage than PSIR.

Therefore, for large multi-client deployments, the costs of FrodoPIR
will clearly be much cheaper than both prior schemes.

The online financial costs (Figure 6 (7)) for all protocols are

much smaller than in the offline phase. By far, PSIR is the most

expensive protocol to run in the online phase (again, due to the

high communication overhead). The costs of FrodoPIR outperform

SOnionPIR, demonstrating that the trade-off between computation

and communication in FrodoPIR is concretely cheaper to realize

on the server-side.

Comparison with Online-Free PIR. CHKPIR [30] constructs a PIR

scheme with entirely sublinear (amortized) running times and com-

munication costs. However, this depends on each client launching

a fairly large number of queries themselves (e.g.

√
m). As is noted

in [30], the offline phase can be implemented using the methods

of PSIR or SOnionPIR, and, regardless, it is still non-amortizable

across multiple clients.

To illustrate the bottleneck that the offline phase introduces from

a financial perspective, we consider a PIR scheme that has zero on-
line costs (which is clearly a significant underestimate for CHKPIR),

and has the offline costs of SOnionPIR (sublinear inm and generally

lower than PSIR). As shown in Figure 7, FrodoPIR is cheaper to run

for databases of size ≤ 2
18
, for c ·C queries. The costs are almost

identical when |DB| = 2
20
. We can conclude that these results,

coupled with the benefits of a simple and available implementation,

make FrodoPIR a very attractive option for implementing fast and

scalable PIR for large multi-client systems.

6.3 Stateless PIR and Larger Database Elements
As mentioned in Section 2, stateless schemes tend to be less effi-

cient than stateful schemes. However, the very recent and notably

efficient Spiral PIR scheme of Menon and Wu [59] has been shown

to produce low running costs across databases of various sizes and

shapes. Spiral demonstrates highly promising performance for both

standard PIR use-cases, and those that involve streaming large files.

Table 7: Comparison of single-threaded server-side perfor-
mance between FrodoPIR and Spiral across a variety of data-
base sizes on a c5n.2xlarge AWS EC2 instance. †For the
database containing 2

18 × 30KB elements, we extrapolate
FrodoPIR compute performance for a database containing
2
16 elements instead, since the EC2 instance does not have
sufficient memory for storing the preprocessed database of
size 218.

Database Metric Spiral FrodoPIR

2
20 × 256B

One-time preprocessing — 327s

Per-client download 14MB 1.54MB

Query size 14KB 4MB

Resp. size 20KB 912B

Computation 1.37s 0.16s

Rate 0.0125 0.28

Throughput 196MB/s 1.56GB/s

2
18 × 30KB†

One-time preprocessing — 7703s

Per-client download 18MB 166MB

Query size 14KB 1MB

Resp. size 86KB 96KB

Computation 17.69s 4.27s

Rate 0.3488 0.3125

Throughput 434MB/s 1.76GB/s

2
14 × 100KB

One-time preprocessing — 1605s

Per-client download 47MB 554MB

Query size 14KB 64KB

Resp. size 188KB 320KB

Computation 4.58s 0.89s

Rate 0.5307 0.3125

Throughput 358MB/s 1.76GB/s

To illustrate the performance of FrodoPIR on different database

shapes, Table 7 compares the online computational and bandwidth

costs of both FrodoPIR and Spiral for each of the database types

considered in [59], using the same AWS c5n.2xlarge EC2 instance
that is used in the original work.

16
In the table, the rate of both

schemes is the ratio of the response size to the retrieved database

element, and the throughput is the ratio of the database size to

the server’s computation time. In both cases, higher values are

preferable.

Table 7 illustrates that FrodoPIR is very efficient for narrow
databases, where each data element is relatively small, outper-

forming Spiral in almost all criteria. Spiral generally outperforms

FrodoPIR in cases where database elements are larger: demonstrat-

ing smaller bandwidth usage and higher rate. However, FrodoPIR
demonstrates faster computation across all database sizes than Spi-

ral, and this leads to significantly higher throughput in all cases.

The offline preprocessing phase of FrodoPIR can be expensive, but

recall that this amortized across all clients (and queries) in the global

system, and so these costs amortize away fairly quickly.

Overall, in cases where database elements are relatively small,

or where fast computation is required, then FrodoPIR excels com-

pared to the recent state-of-the-art in PIR design. In cases, where

database elements are large, and bandwidth and/or client storage

are constrained, then Spiral excels.

16
Note that we specifically compare with the single query variant of Spiral (with

packing optimizations [59]), rather than the SpiralStream variant that is optimized for

streaming use-cases.
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7 DISCUSSION
Supporting Keyword Queries. In the interest of supporting more

realistic database queries, Chor et al. constructed a PIR-by-keyword

framework, where the server DB is a key-value store and client

queries are keywords that recover the associated values [27]. Their

framework runs multiple instances of index-based PIR as a black-

box; FrodoPIR is compatible with this approach. The work of Boyle

et al. [18], based upon multi-server distributed point functions,

includes direct support for keyword queries directly, but it does not

appear to generalize to other PIR schemes.

As well as generic frameworks, FrodoPIR is compatible with

external mechanisms for deciding keyword-to-index association.

Such mechanisms include the approach detailed by Kogan and

Corrigan-Gibbs [54], that furnishes the client with O(m) hash pre-

fixes of each keyword, and associates each with a server DB index.

This allows the client to learn the index that they need to query,

without running multiple instances of the PIR scheme. It requires

sending O(m) data to the client but which, in practice, is a very

small fraction of the real database. We discuss practical costs in

Appendix B.

Optimizations for Server Computation. We avoided discussing

computational optimizations in this work, in favor of maintaining

simplicity and configurability of FrodoPIR. However, asymptotic

overheads for computing matrix multiplications have seen a variety

of improvements over the last half a century [4, 29, 71, 74]. Such

findings have been used in previous PIR schemes to reduce compu-

tational workloads [41, 57]. The server offline phase in FrodoPIR in-

volves a largematrixmultiplicationwith dimensionsn×m andm×ω,
which would clearly benefit from sub-cubic multiplication meth-

ods. The client offline phase, involves preprocessing c queries, each
involving a vector-matrix multiplication, which could be batched to-

gether into a single matrix multiplication. Furthermore, the server

online phase involves a vector-matrix multiplication, for every

client query. This optimization can be used by batching a number

of queries together. As is observed by Lueks and Goldberg [57],

this enables the server’s work to scale sublinearly in the number of

client queries.

7.1 Applications of PIR
In Appendix B, we illustrate how efficient FrodoPIR can be when

applied to the real-world of the SafeBrowsing API [44]. We list vari-

ous other applications below that could also benefit. Valuable future

work would identify whether FrodoPIR is a practical candidate for

solving such applications.

Certificate Auditing. Certificate Transparency (CT) is a system

created to increase visibility of issued certificates. This system al-

lows detection of misissued certificates or other forms of Certificate

Authorities (CA) misbehavior, via interaction with one or more pub-

lic logs. Clients should check that certificates are indeed included in

these logs, but this leads to a potential privacy violation as it means

that, over time, the client presents the browsing history of the user.

One can apply FrodoPIR to check whether the promise of inclusion

is fulfilled. Similar applications of PIR have been highlighted in

concurrent work [50].

Certificate Revocation Checks. Certificate revocation checks typi-

cally use the Online Certificate Status Protocol (OCSP). This mech-

anism allows CAs to inform clients if a certificate is revoked by

having them query an endpoint. This mechanism, however, can

violate privacy as the certificates are revealed to the CA. An alter-

native is to have clients download certificate revocation lists (CRLs)

from endpoints maintained by CAs. This, though, comes with a

huge storage overhead and the need for regular updates. FrodoPIR
could be used to perform OCSP queries in a privacy-preserving

manner.

PIR for Streaming. PIR schemes such as Popcorn [47] and Spi-

ral [59] identify PIR as a potential solution for private streaming

use-cases, where clients gradually consume chunks of a large data

element (such as a video). The capability of FrodoPIR for sharding

the server database (Section 5.4) could make it a viable candidate

in this setting.

8 CONCLUSION
In this work, we built FrodoPIR. Via a simple proof-of-concept

Rust implementation,
17

we illustrated that FrodoPIR is concretely

cheaper than the previous state-of-the-art in building stateful PIR

schemes, especially in large multi-client deployments. Overall, we

believe that FrodoPIR is the first single-server PIR scheme that is

both flexible and efficient enough to be deployed at scale, for a

variety of applications.
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A PROOFS FROM SECTION 4
A.1 Proof of Theorem 4.1
Let b̃ ← b + fi , where i is the requested index of DB by the client.

As laid out in Section 4.4, we must show that Equation (6) holds,

with all but negligible probability. Firstly, note that since e ← (χ )m ,

then by Corollary 3.5, we have that ∥e · D∥∞ ≤ 4ρ
√
m with high

probability. This follows because the number of samplesm is very

large and by assuming that each entry in D is equal to ρ = ∥D∥∞.
Consequently:

⌊(e + fi )
T · D⌉ρ = ⌊ρ/q · (e

T · D + fi
T · D)⌉

= ⌊ρ/q · (eT · D) + D[i]⌉

= ⌊y + D[i]⌉,

(9)

where y = ρ/q · (eT · D) and D[i] ∈ Zωq is the ith row of D (inter-

preted as a column vector). Therefore, ∥y∥∞ < 4ρ2
√
m/q = 1/2 by

the statement of the theorem and, as a consequence:

⌊(e + fi )
T · D⌉ρ = D[i], (10)

which is the correct output of the protocol. □

A.2 Proof of Theorem 4.2
Let ip ← FPIR.ssetup(1λ), pp ← FPIR.spreproc(DB) and st ←
FPIR.cpreproc(pp); let i0, i1 ← A(ip, pp), let b ←$ {0, 1}, and let

b̃b ← FPIR.query(st, ib ). In particular, we have that b̃b = sT ·

A + eT + fib
T ∈ Zmq , for A ∈ st, s ← (χ )n , e ← (χ )m , A ←

PRG(µ,n,m,q), and fib them-dimensional vector of all zeroes ex-

cept where fib [ib ] = q/ρ. Clearly, we can show that FPIR is secure

if we can show that the output of FPIR.query is distributed uni-

formly.

Firstly, note that A is sampled as the output of a pseudorandom

generator, therefore, it is indistinguishable fromA←$Zn×mq . There-

fore, let A be an adversary in the LWEq,n,m,χ decisional security

game (Definition 3.1), receiving (A,u) as the challenge, and let S

be an adversary in the PIR 1-query indistinguishability game (Defi-

nition 3.7). When A receives the sample in Equation (1), b and b̃
are distributed identically, and when it receives the sample in Equa-

tion (2), then b ←$Zmq . Therefore, the adversary A can simulate

the client query to S by simply sending b̃ = u + fib for b ←$ {0, 1}.

When S returns their guess b ′ ∈ {0, 1} to A, A checks if b ′
?

= b.
Clearly, whatever advantage ϵ that S has in guessing the correct

value of b, immediately translates to A having advantage ϵ in

the decisional LWEq,n,m,χ security game. Since we assume that

LWEq,n,m,χ is difficult to solve, we therefore conclude that ϵ ≤
negl(λ ).

To conclude, in the case that b is sampled uniformly, then the

adversary has no advantage in distinguishing since b̃ is distributed

uniformly. □
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A.3 Proof of Corollary 4.3
We can construct a matrix B̃ from each query b̃j (j ∈ [ℓ]) that S
observes with the following structure:

B̃ =
[
b̃1

 · · ·  b̃ℓ ]
=

[
(s1

T ·A + e1
T )

T
+ fi1

 · · ·  (sℓT ·A + eℓT )T + fiℓ

]
= ([s1 ∥ · · · ∥ sℓ]

T ·A + [e1 ∥ · · · ∥ eℓ]
T )

T
+
[
fi1

 · · ·  fiℓ ]
= S ·A + E + F ∈ Zℓ×mq .

(11)

Using the same proof strategy as in Theorem 4.2, we can useA as an

adversary attempting to decide in the decisionalMatLWEq,n,m,χ ,ℓ
security game (Definition 3.3). This illustrates that A has advan-

tage equal to that which S has in deciding the uniformity of B̃.
Furthermore, by Corollary 3.4, we know that ϵ = ℓ · ν , where ν is

the max advantage of winning in LWEq,n,m,χ . Since ℓ = poly(λ ),
then ϵ = poly(λ ) · negl(λ ) = negl(λ ). □

B SAFEBROWSING EXAMPLE
Major browsers such as Google Chrome, Firefox, and Brave inte-

grate a security service run by Google and known as the SafeBrows-

ing API [44]. SafeBrowsing allows browsers to verify if online re-

sources and webpages that the user requests are “safe”. If a resource

has been flagged as “unsafe”, the user is warned by the browser

and asked to explicitly consent visiting the website that contains

the unsafe resource. The SafeBrowsing service relies on a list of

blocked resources maintained by Google, and it exposes an API

that informs the browser if a resource is part of the blocked list.

The downside of serving queries to the SafeBrowsing API remotely

is that clients would effectively reveal their browsing patterns to

Google. It is clear that it will be important to build mechanisms

that preserve client privacy from third parties (like Google, in this

case), while still being able to inform users if they are about to load

malicious content.

B.1 Current SafeBrowsing Implementation
Local Storage. In order to avoid calling the remote API for ev-

ery resource, the entire SafeBrowsing blocklist could be shipped

with each browser, but storing the full blocklist (> 90MB) may be

beyond some clients. Consequently, every browser instead stores

a compressed and probabilistic data structure that contains an ap-

proximate view of the SafeBrowsing blocklist. This local data struc-

ture allows performing probabilistic checks of inclusion, with non-

negligible chances of false-positives occurring and no chance of

false-negatives. Due to the rate of potential false positives, if an in-

clusion check returns positive (i.e. an unsafe resource), the browser

remains uncertain. To remove the uncertainty, the browser confirms

if the resource is unsafe by calling the remote SafeBrowsing API.

Thus, the browser only relies on the remote API call to SafeBrows-

ing services when the set inclusion against the local data structure

returns a potential false positive. This mechanism reduces consid-

erably the number of remote API calls at the expense of storing a

compressed, space optimized data structure locally in the browser.

The local blocklist is a set of 32-bit hashes of the resource URI,

and the full SafeBrowsing blocklist consists of a key-value database

mapping a 32-bit hash to a SHA256 hash of a blocked resource

URI. The local blocklist results in storage and bandwidth that is

8× smaller then the full SafeBrowsing blocklist. We summarize the

two distinct phases of SafeBrowsing checks in the following.

(1) (Phase 1: Local check) First, the browser computes the 32-

bit hash of the resource URI that has been requested, and

checks if the 32-bit hash is part of the local storage. If the

set inclusion operation returns ‘false’ (i.e. the hash of the

resource does not exists in the local data structure), then

the browser considers the resource safe and proceeds. If the

set inclusion operation returns ‘true’ (i.e. the 32-bit resource

hash is part of the local block list), the client proceeds to the

next phase.

(2) (Phase 2: Remote check) When Phase 1 identifies a possi-
bly unsafe resource, the browser needs to confirm whether

the resource is a false positive or not. To do so, it requests

the full SHA256 hash of the resource’s URI by querying the

remote SafeBrowsing API for the 32-bit hash of the resource

URI computed in Phase 1. If the full SHA256 hash returned by

the remote SafeBrowsing API matches with the SHA256 of

the resource URI, then the resource is part of the SafeBrows-

ing blocklist, and the browser considers the resource unsafe.

Privacy Considerations. The remote SafeBrowsing resource check

(Phase 2) requires the browser to explicitly include the 32-bit hash

identifying the resource that is being checked for inclusion on the

SafeBrowsing blocklist. As noted by [14, 39], this request leaks in-

formation about the browsing history of the user, as the SafeBrows-

ing API service is able to learn which content a particular user

is interested in. Over time, this information can be used by the

SafeBrowsing service provider to construct a behavior profiling of

web users without their consent.

B.2 SafeBrowsing via FrodoPIR
FrodoPIR can be used to implement the remote SafeBrowsing API

service, such that no leakage occurs during the remote SafeBrows-

ing API check. The intuition is that, once the index that must be

queried is known to the client, the remote check can be performed

via a PIR query to a remote FrodoPIR database, that stores all the

SHA256 hashes of the unsafe URIs. Given the privacy guarantees

of FrodoPIR, the client does not leak which resource ID is being

queried.

Requirements. Based on the estimates provided by [54], the cur-

rent SafeBrowsing blocklist contains about 3 million entries. The

blocklist grows at a rate of 30, 000 new entries per week. Each of

the values in the database consists of a SHA256 hash of the content

URI.

Mapping URL Hashes to Query Indices. As in [54], we will assume

that local blocklist is augmented to include the index that must

be queried in the online database. That is, when the client finds a

match in their local blocklist, they use the corresponding index i
that is included to make a query for element i in the remote server

database.

Database Configuration. As shown in Section 5, FrodoPIR pro-

vides a high degree of flexibility, allowing developers to choose
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Table 8: Performance analysis of the FrodoPIR schemewhen
communicating with a single database shard, using the pa-
rameters defined in Section B.2.

Offline

Client download (KB) 180

Database preprocessing (s) 28.555

Client derive params (s) 2.2281

Client query preprocessing (s) 0.573

Online

Client query (KB) 1024

Server response (KB) 0.1

Client query (ms) 0.097

Server response (ms) 5.223

Client output (ms) 0.012

which trade-offs to make when deploying an instance of the PIR

database. We now suggest the following database configuration to

implement FrodoPIR for SafeBrowsing:

• We choose q = 2
32

and n = 1774, which should be satis-

factory for even the large number of clients using major

Internet browsers that integrate with the SafeBrowsing API.

According to [2], this provides 128-bit security for 2
52

client

queries. In other words, this allows 4 billion clients to each

make 1 million queries, which should be more than enough.

• We require w = 256 bits for storing each URI hash in the

server database.

• Let m̃ be the total number of elements in the SafeBrowsing

database. We require that m̃ ≥ 2
21

to accommodate all the 3

million entries and subsequent updates [54]. However, we

leverage sharding to break down the databases into smaller

sub-databases, as explained in Section 5.4. Assuming that

FrodoPIR is running on a machine with 16 cores, we can split

the blocklist into s = 16 sub-databases, resulting in setting

m = 2
18

per shard. This provides a database with total size

2
22
, which is enough to store the entire blocklist.

• Given w , m and q, we set ρ = 2
10

so that the correctness

guarantee from Theorem 4.1 holds true.

• We calculate ω =m/log(ρ) = 26 as described in Section 5.

• The local blocklist that each client must download contains

32 · (m + 1) bits to include each 32-bit hash prefix plus the

corresponding 32-bit index.

We leverage sharding in two different ways. On one hand, to

decrease the size of the database by splitting it into sub-databases,

allowing us to reduce the sizem of each sub-database, and to op-

timize both user and server performance and bandwidth. In ad-

dition, sharding is used to implement a low-cost database update

mechanism. Updates to the blocklist happen by adding elements

to one sub-database only, in turn requiring clients to derive new

parameters only for a single shard at every update, as explained in

Section 5.4. This is possible in SafeBrowsing because DB updates

are typically only additions, and thus deletion of old content in

previous shards is rarely required [54].

B.3 Implementation and Raw Costs
We set up the experimental environment, and report results in

Table 8, corresponding to the raw costs of using the FrodoPIR
scheme on the aforementioned parameters. We run all experiments

as single-threaded processes on the same Amazon t2.2xlarge
EC2 instance, with 8 CPU cores and 32GB of RAM, as was used in

Section 6.

B.4 Performance Analysis
From Table 8, we estimate the performance of instantiating the

SafeBrowsing API for a single database shard using FrodoPIR, using
the parameter set defined in Section B.2. Our extrapolations are

based on the following set of usage model assumptions that are

taken from the previous work of Kogan and Corrigan-Gibbs [54] on

exploring usage of PIR for satisfying the demands of SafeBrowsing.

• On average, clients launch a query every 44minutes. Assum-

ing 12 hours of daily usage, this leads to approximately 16

queries per day.

• On average, the server database is updated every 94minutes.

This leads to around 16 DB updates per day, with a weekly

addition of around 30, 000 records.

• The server is a collection of Z replicas that are distributed

globally, that each independently possess and process queries

on the same database. Any client query can be fulfilled by a

single server.

• Client storage must be, at least, a constant factor smaller

than the entire SafeBrowsing database size.

Database Initialization and Updates. The main server initializes

the sub-database, public parameters, and local blocklist for each

individual shard. Each of these remain static for a monthly period

and are downloaded by each server replica. When the main server

initializes, or rotates the matrix A, it posts the public parameters

pp = (µ,M = {Mi = A · Di }i ∈[16]) and local blocklists to a public

location that clients can access and download from. Note thatMi ∈

Zm×ωq corresponds to the public parameters made available for

each sub-database.

Based on our usage model, we will assume that there are 16

database updates made by the server, each containing 268 records.

We assume that clients each download and process 8 updates per

day. Each database update touches a single shard DBi , and results

in uploading a new value ofMi .

Client Processing. Client preprocessing amounts to preprocess-

ing 16 queries per day, using the server provided parameters pp.
After every update, the client needs to regenerate the remaining

preprocessed state that is associated with the sub-database that was

updated. Recall that the client stores:

X = (bj = s
T ·A + eT ,Cj = {ci = sj

T ·Mi }i ∈[16])j ∈[16]

for each of the j ∈ [16] queries that the client will launch, and for

each of the i ∈ [16] database shards. The client must also store each

sj that it samples, for responding to server updates as well as the

local blocklist.

At the start of each day, the client rederivesA← PRG(µ,n,m,q),
and computes the set X . Every time that the client makes a remote

query it removes a pair (bj ,Cj ) from storage, and sends b̃j = b + fι
to the server, for query index ι computed during the local blocklist

check. Whenever the server issues a database update for shard i , the
client redownloadsMi and the local blocklist, and uses sj to update

ci = sjT ·Mi ∈ Cj , for each remaining j (i.e. unused preprocessed

381



Proceedings on Privacy Enhancing Technologies 2023(1) Alex Davidson, Gonçalo Pestana, and Sofía Celi

query data). According to Table 8, we have the following (per-day)

client computational costs.

• A single derivation of A.
• preprocessing of 16 queries for each of the 16 shards.

• Updating of 2

∑
7

a=1 a = 56 queries per day.

• 16 individual online queries.

We ignore the cost of running queries on the 32-bit hashes in the

local blocklist, since these are negligible by comparison. Further-

more, the per shard cost of updating preprocessed query data is

almost zero. Therefore, we calculate the total CPU costs of each

client to amount to 32.96 + 16 · 0.47 + 16 ∗ 0.00025 = 40.48 seconds

per day.

Client Download. The initial client download of public param-

eters is equal to 128 + 16 · (nω log(q)) = 23, 615, 616 bits, which

corresponds to around 2.82MB. The total size of the local block-

list is approximately 32 · 3million bits, which is equal to 11.44MB.

The running download cost per-day is calculated as 16ω log(q) +
8nω log(q)) + 32 ∗ 268 = 11, 829, 632 bits, which is roughly 1.41MB.

Client Query. The client query is linear in the size of a single

shard, which has a maximum of 2
18

elements. Therefore, each query

is around 1MB in size, based on the costs from Table 6. As a conse-

quence, this results in roughly 16MB of additional communication

per-day.

Client Storage. The client needs ∼ 1MB to store each prepro-

cessed query, and each secret vector sj , for j ∈ [16]. In total, this

represents about 16MB of required storage. Secondly, the client

must store the local prefix table for the SafeBrowsing API which

amounts to storing a further 11.44MB of data. Thirdly, the client

stores the public parameters made available by the server, which

totals 2.82MB. Overall, the maximum client storage overhead is

∼ 30.69MB, which is a 91.55/30.26 = 3.0× saving compared with

storing the original database. As the client makes queries, it deletes

used preprocessed data, and so this storage overhead will decrease

as the day progresses.

Server Processing. The non-private SafeBrowsing API has an av-

erage latency of around 90ms per client query [54]. This is achieved

using Z = 143 servers answering client queries. Note that a single

FrodoPIR server can answer a single client query in ∼ 5ms (Table 8).

We assume that 1 billion queries are received uniformly in 90ms

windows over a 44 minute period.
18

Therefore, in each 90ms win-

dow around 29334 client queries are received. Further, we assume

that each server can answer 3 client queries in 90ms (including

time taken to receive and respond to the client HTTP request). To

achieve this, we would need at least 9778 individual servers each

answering queries on the same FrodoPIR database for servicing 1

billion clients. Clearly, this is much more expensive than running

the non-private version of SafeBrowsing, but such a number of

servers is still within the realms of practicality, whilst preserving

client privacy.

Comparison with [54]. The work of Kogan and Corrigan-Gibbs

presents two PIR-based constructions for running the SafeBrowsing

API, one based on PIR from distributed point functions (dpfPIR),

18
In other words, simulating 1 query from every client every 44 minutes.

Table 9: Comparison of instantiating the SafeBrowsing API
using either FrodoPIR, or via the two-server PIR schemes
of [54]. Estimated costs are marked with asterisks.

Performance indicators Non-private dpfPIR ooPIR FrodoPIR

Servers per 1B users 143 9047 1348 9778
∗

Latency (ms) 90 122 91 90
∗

Client init (sec) 3.1 2.6 13.3 32.96∗

Client running (sec/month) 0.5 0.8 8.0 1272.0∗

Initial communication (MB) 5.0 5.0 10.3 2.82

Online communication (MB/month) 3.0 3.6 9.0 539.7

Max storage (MB) 4.5 4.5 26.1 30.69∗

and the other based on offline-online PIR (ooPIR). Both schemes

require two non-colluding servers. We compare the performance of

running the SafeBrowsing API using FrodoPIR against both dpfPIR

and ooPIR in Table 9.

Clearly, FrodoPIR involves heavier usage costs compared to all

known solutions, either non-private or using multi-server PIR. As

previously highlighted, a limitation of the FrodoPIR scheme is

the client request size, which makes up a large proportion of the

total communication (496MB per month, as opposed to 43.7MB

of download). The client computation is also much heavier than

in multi-server PIR, due to the requirement for computing high-

dimensional cryptographic operations when preprocessing queries.

Otherwise, our estimates suggest that FrodoPIR can provide ad-

equate performance for operators where non-colluding PIR servers

are impossible to set up. However, it is worth noting that the exper-

imental analysis of [54] provides significantly more detail than we

do here. Our goal is to give a broad understanding of the increased

overheads of using FrodoPIR.

C ALTERNATIVE LWE PARAMETERS
Our security analysis assumes that the λ-bit security of the Matrix

LWE problem (MatLWEq,n,m,χ ,ℓ ) is calculated as the ν -bit security
of the underlying LWE problem, minus the logarithm of the number

of queries that are launched (ℓ). This analysis is conservative for

two reasons: (1) the number of queries that we protect against with

our parameter choice (2
52
) is very large; and (2) it’s not clear that

lattice cryptanalysis can exploit the Matrix LWE problem any easier

than LWE. Therefore, choosing lattice parameters that are smaller

may preserve adequate security, while improving efficiency.

Here, we discuss the impact on efficiency of reducing the LWE

dimension, n. In particular, Section 5, we chose n = 1774. If we

choosen = 1572, then this provides 128-bit security against 1 billion

queries, using the same cost model for estimating the hardness of

Matrix LWE. However, if we simply focus on achieving 128-bit

security for the underlying Ternary LWE instance, then we can

choose n = 1228 instead.
19

In Table 10, we highlight how costs change as the lattice dimen-

sion reduces (for databases of size 2
16

and 2
20
), when compared

with the original performance for n = 1774 from Section 6. The

online phase is largely unaffected by the lattice dimension, so we

omit measurements for such functions.

Overall, we see that bandwidth reduces significantly — by over

11% for n = 1572, and 27% for n = 1288 — which will translate

19
See Appendix D for the lattice estimation outputs that we use for calculating these

dimensions.
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Table 10: Comparison of FrodoPIR overheads when choosing less conservative security parameterizations.

Number of DB items (log(m)) 16 20

Lattice dimension (n) 1288 1572 1774 1288 1572 1774

Client download (KB) 4125.6 5035.3 5682.5 4583.5 5594.1 6313.1

Database preprocessing (s) 82.705 96.74 104.57 1439.2 1697.5 1895.2

Client derive params (s) 0.47 0.5506 0.5826 7.22 8.79 9.25

Client query preprocessing (s) 0.135 0.147 0.147 1.933 2.149 2.343

into notable financial savings when servicing queries from large

numbers of clients. Furthermore, client storage requirements can

be reduced by the same amount. Computational workloads are

also reduced but less significantly, particularly because the server

preprocessing is amortized across all clients anyway. However,

client derivation of A sees an approximate 20% reduction, which

may be notable when considering low-powered clients.

D LATTICE ESTIMATION
For calculating the security estimates of LWE parameters, we used

the lattice estimator of [2]. Specifically, we used the code avail-

able at https://github.com/malb/lattice-estimator, from commit:

f9dc7c625d93b9c645c56bf9dfd3d4ec202f17d1. The security es-

timations were obtained using the following code and correspond-

ing output.
20

1 from estimator import *;

2

3 # n is the lattice dimension that is used

4 for n in [1288, 1572, 1774]:

5 LWE.primal_usvp(

6 LWE.Parameters(

7 n=n,

8 q=2**32 ,

9 Xs=ND.Uniform (-1,1),

10 Xe=ND.Uniform (-1,1),

11 m=infinity

12 )

13 )

1 rop: 2^128.2 , red: 2^128.2 , delta: 1.004425 , beta:

343,

2 d: 2447, tag: usvp

3 rop: 2^158.1 , red: 2^158.1 , delta: 1.003668 , beta:

450,

4 d: 2972, tag: usvp

5 rop: 2^180.0 , red: 2^180.0 , delta: 1.003274 , beta:

528,

6 d: 3376, tag: usvp

20
The output is modified slightly to omit non-utf8 characters.
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