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ABSTRACT
In membership inference attacks (MIAs), an adversary observes the
predictions of a model to determine whether a sample is part of the
model’s training data. Existing MIA defenses conceal the presence
of a target sample through strong regularization, knowledge distil-
lation, confidence masking, or differential privacy.
We propose MIAShield, a new MIA defense based on preemptive
exclusion of member samples instead of masking the presence of a
member. MIAShield departs from prior defenses in that it weakens
the strong membership signal that stems from the presence of a tar-
get sample by preemptively excluding it at prediction time without
compromising model utility. To that end, we design and evaluate a
suite of preemptive exclusion oracles leveraging model confidence,
exact/approximate sample signature, and learning-based exclusion
of member data points. To be practical, MIAShield splits a training
data into disjoint subsets and trains each subset to build an ensem-
ble of models. The disjointedness of subsets ensures that a target
sample belongs to only one subset, which isolates the sample to
facilitate the preemptive exclusion goal.
We evaluateMIAShield on three benchmark image classification
datasets and show that it reduces membership inference to nearly
random guess for a wide range of MIAs; achieves far better pri-
vacy/utility trade-off compared with state-of-the-art defenses; and
remains resilient in the face of adaptive attacks.
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1 INTRODUCTION
One of the main risks of training machine learning (ML) models on
privacy-sensitive data (e.g., medical/location data) is models can in-
advertently leak information about training data-points —resulting
in violation of individual’s privacy. One form of information leak-
age in ML is via membership inference attacks (MIAs) [36]. In a
MIA, given a data-point and a model, the adversary’s goal is to de-
termine whether the data-point was used to train the model. Such
an attack poses realistic threats to the privacy of individuals who
contribute data points to models trained on privacy-sensitive data.
For instance, suppose a cancer patient’s tumor image is used to
train a model that classifies images into benign or cancerous. If an
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adversary with access to the patient’s image can infer the presence
of the image in the training set of the model, it is a privacy breach.

As documented by prior work [3, 7, 17, 25, 32, 33, 36], the suc-
cess of MIAs has is largely attributed to a target model’s statisti-
cally distinguishable behaviors in its predictions on members and
non-members of its training data, which in turn is attributed to
overfitting of models on members. This difference is exploited by
an adversary as a strong signal to learn a member/non-member
decision function (attack model) or some threshold to flag members.
Based on the information they leverage, MIAs can be probability-
dependent attacks (use confidence scores predicted for each class)
or label-dependent attacks (use just the predicted label) [14].

A common thread in existing MIA defenses is the focus on con-
cealing the presence of a data-point through strong l2 regulariza-
tion, prediction confidence masking, model ensemble, knowledge
distillation, or differential privacy. Strong (l2) regularization meth-
ods [24, 27] reduce overfitting and differential privacy-based de-
fenses [1, 15, 16, 30] offer provable privacy guarantees, but they
both succeed at the expense of model utility. Distillation-based
methods such as [35] achieve better MIA resilience with tolera-
ble utility loss but typically depend on publicly accessible data.
Confidence masking methods [18, 42] are ideal to preserve utility
with reasonable MIA resilience but are inherently vulnerable to
label-dependent MIAs.

In this paper, we step back and ask the question:
If the presence of a target data-point offers a strong signal for MIA,
does excluding the data-point without compromising the utility of the
model weaken membership signal and hence mitigate the attack?

To systematically investigate this question, we introduce MI-
AShield—a new defense against MIAs. Instead of basing the defense
on masking a target data-point, MIAShield is based on preemptive
exclusion of a target data-point to weaken the membership signal that
stems from the presence of the data-point in the training data of a
model. To make MIAShield practical, we split the training data into
disjoint subsets and train each subset to build an ensemble of mod-
els. The disjointedness of subsets ensures that a target data-point
belongs to a unique subset —which serves as a precursor for the
preemptive exclusion goal. Once the ensemble is operational (e.g.,
as an MLaaS API), given a data-point,MIAShield first queries an
exclusion oracle to determine whether the data-point is a member
of the training set of one of the models in the ensemble. If so, it
excludes the matching model from participating in the ensemble to
avoid the overfitting of the model to the target data-point. Other-
wise,MIAShield uses the whole ensemble to compute prediction
on the data-point. By excluding a model that was trained on a tar-
get data-point,MIAShield essentially disarms the adversary of its
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attack vantage point, i.e., the strong membership signals the model
gives away to a MIA adversary on member data-points.

Since the success of MIAShield depends on the effectiveness of
the exclusion oracle, we design and evaluate a spectrum of mem-
ber exclusion strategies. Beginning with a model confidence-based
exclusion as a baseline (§5.1), we then explore exact and approxi-
mate (data-point) signature-based exclusion strategies (§5.2 – §5.3).
Next, we frame the preemptive exclusion goal as a classifier-based
exclusion strategy (§5.4). Finally, we study a chain of exclusion ora-
cles in which MIAShield begins with exact signature-based oracle,
then approximate signature-based oracle, and finally resorts to the
classifier-based exclusion oracle (§5.5).

In our evaluation, we focus on image classification for two rea-
sons. First, it is the domain where MIA has been extensively studied.
Second, it is the domain that has immediate applications to privacy-
sensitive data such as medical images and facial recognition data.
Against an adversary with black-box access to a deployed model,
we evaluate MIAShield on three benchmark image classification
datasets against state-of-the-art attacks and defenses. Our results
against 7 MIAs consistently suggest that MIAShield drops MIA
accuracy to ≈ 50% (random guessing) and incurs no more than 1%
drop in model utility compared to the non-private model (§6.5).
Compared with 5 prior defenses,MIAShield offers an overall better
privacy-utility trade-off with respect to DP-SGD [1], PATE [30],
Model-Stacking [33], MemGuard [18], and MMD-MixUp [24] (§6.6).
Moreover,MIAShield is resilient in the face of adaptive attacks that
exploit side-channel information and knowledge about MIAShield
details (§6.7). In summary, wemake the following key contributions:

• We proposeMIAShield, an exclusion oracle-guided approach
that fundamentally rethinks MIA defense by ensuring that a
target data-point does not contribute to the MIA signal via
the model’s predictions on member data-points.

• We show that MIAShield outperforms prior defenses and
offers consistently better privacy-utility trade-off.

• We show thatMIAShieldmitigates two complementary threat
models: probability-dependent attacks and label-dependent
attacks.

• We demonstrate thatMIAShield remains resilient to adaptive
attacks that exploit knowledge about our defense.

• We makeMIAShield code publicly available at:
https://github.com/um-dsp/MIAShield.

2 BACKGROUND
As background, we briefly overview the ML setting we consider
(§2.1) and introduce MIAs (§2.2).

2.1 Machine Learning Setting
We focus on supervised ML models. Given a set of labeled training
samples Dtrain = (Xi ,yi ) : i ≤ n such that Xi is a d-dimensional
training example and its corresponding labelyi ∈ Y (ak-dimensional
output space), the model parameterized by model parameter vector
θ is denoted as fθ . Training f aims to minimize the expected loss
J (θ ) = 1

n
∑n
1 L(fθ ,Xi ,yi ) over all (Xi ,yi ). The loss minimization

problem is typically solved using stochastic gradient descent (SGD)
vi an iterative update of θ as θi+1 = θi − η · ∆θ

∑n
i=1 L(θi ,Xi ,yi ),

with ∆θ as the gradient of J (θ ) and η as learning rate. A predic-
tion of an input x is ŷ = fθ (x) = arдmax(y ∈ Y ), where y is a
k-dimensional vector and each dimension represents the probabil-
ity of x belonging to the corresponding class. Hereafter, we use f
to refer to fθ .

2.2 Membership Inference Attacks
A MIA is a statistical attack where an adversary aims to infer
whether x ∈ Dtrain . Given a candidate sample x , a model f trained
on Dtrain , and adversary’s knowledge (about f and Dtrain ) de-
noted by K , the goal of MIA is to determine whether x is used
to train f . More formally, MIA is defined as an attack function A

as: A(x, f ,K) → {0, 1}, where 0 means x < Dtrain and 1 means
x ∈ Dtrain . In the first MIA [36] against ML models and subse-
quent attacks [33, 38, 43] the attack functionA is typically a binary
classifier which is trained based on the fidelity ofK with respect to
how much the adversary knows about f and Dtrain . The success
of MIAs is attributed to overfitting —models are more confident
in their predictions on members of their training data. Shokri et
al. [36] use multiple shadow models (models that imitate the target
model) to train an attack model. In a recent MIA, Salem et al. [33]
significantly reduce the dependency of [36] on shadow models
using as little as none and at most three shadow models.

3 THREAT MODEL
Attacker Capabilities. Via a black-box prediction API access to f ,
the adversary submits a sample x and obtains prediction in a form
of probability vector y and/or a label ŷ. We anticipate the adversary
to launch one of: a) single-step single query attack with access to
both y and ŷ; b) single-step single query attack with access to only
ŷ; c) multi-query attacks with access to only ŷ; and d) adaptive
attacks that leverage side-channel information and/or knowledge
of exclusion strategy with access to y and/or ŷ.

Attacker Knowledge. We assume no access to model parame-
ters, θ , and Dtrain except a small subset of Dtrain which the ad-
versary needs any way to launch meaningful MIA. Additionally, we
assume that the adversary knows the architecture of target model
since state-of-the-art model architectures (e.g., image classification
models) are often public knowledge. For probability-dependent
attacks, the attacker only follows step (a). For label-dependent
baseline attacks, the adversary follows step (b). For label-only aug-
mentation attacks, the adversary follows step (c) and (d), along
with the knowledge of target model architecture. For label-only
boundary distance attack, the adversary follows step (c) with no
knowledge of model architecture.

Defender. We assume the defender has access to a privacy-
sensitive training data Dtrain and their goal is to train and deploy
a model that not only offers high prediction accuracy but also is
resilient against MIAs that leverage its predictions to infer the
presence of a data-point in Dtrain . In addition, the defender may
employ accuracy enhancement/recovery operations (e.g., data aug-
mentation) to gain back potential accuracy loss due to splitting
Dtrain into n disjoint subsets.
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4 RELATEDWORK
We review related work focusing on attacks and defenses. We refer
the interested reader to [14] for a comprehensive survey.

4.1 Membership Inference Attacks
Based on the fidelity of predictions returned by a model, we catego-
rize MIAs into probability-dependent and label-dependent attacks.

Probability-Dependent MIAs rely on probability scores re-
turned by the target model for a given input sample. When ML
models are overfitted to their training data, they produce more
confident predictions on members. Attackers exploit this statistical
predictability of models on members to determine the presence
of a target sample in a model’s training data. The probability is
leveraged by training an attack model A to predict members/non-
members [28, 36] or by computing a threshold τ that winnows
members from non-members [43]. When an attack model is trained,
shadow models are typically trained over the predictions of every
class [36], a single shadow model is trained using top predictions
(e.g., top-3, top-1) [33], or a threshold (e.g., of prediction loss) is
used without training a shadow model [43].

In Label-DependentMIAs class labels are the only signal avail-
able to an adversary. The adversary leverages the sensitivity of
member data points to random or adversarially crafted noise.

Gap Attack by Yeom et al. [43] flags a sample as a member if
the predicted label is correct, otherwise a non-member. The naive
assumption in the Gap Attack is extended by Choquette-Choo et
al. [7] in their label-only MIA. Around the same time, a closely
similar label-only attack was introduced by Li and Zhang [25]. This
family of MIAs is realized via two strategies, namely augmentation
attack and boundary distance attack.

In Augmentation Attack, the adversary observes the sensitivity
of a sample to data augmentation techniques such as rotation and
translation. The key insight is that members are often more in-
sensitive to data augmentation than non-members. For example,
an image used to train a model will mostly be classified correctly
despite slight manipulations (e.g., rotation by 1◦). For the attack
to be practical, multiple manipulated variants of each sample (e.g.,
image) are generated and labeled by the target model. Using the
labeled augmented data, the adversary then trains a binary attack
model that flags samples as members or non-members.

In Boundary Distance Attack, the insight is to leverage perturba-
tion methods used in the adversarial examples literature [4, 5, 8, 11,
23, 26] towards distinguishing members from non-members. This
is possible because non-members (e.g., model’s test samples) are
relatively more sensitive to perturbations due to their proximity
to the decision boundary of the model most of the time. Based on
the magnitude of the perturbation that results in incorrect predic-
tion, the adversary sets a threshold to put apart members from
non-members. While adversarial perturbations are attractive in this
context, adding random noise has also been shown to be effective
especially when the perturbation space is narrow (e.g., in features
with limited values or value range) [7].

4.2 Membership Inference Defenses
We present defenses based on regularization, confidence masking,
ensemble techniques, and differential privacy.

Regularization techniques such as dropout [39], weight de-
cay [41], and l2 regularization aim to mitigate overfitting. Nasr et
al. [27] train a model with membership privacy via a regularization
parameter on an optimization method that achieves minimum util-
ity loss against powerful MIAs. In [24], the defense minimizes the
difference between probability vector distribution of the same class
for members and non-members by using a new set of regularization
methods, thus minimizing the generalization gap. This regulariza-
tion method is accompanied by a mix-up augmentation technique
to further deter an attack and is shown to outperform defenses like
MemGuard [18] and DP-SGD [1]. These methods often improve a
model’s resilience to MIAs at the expense of model utility.

Confidence Masking defenses [18, 42] add noise to predic-
tion confidence scores to conceal the true confidence of the model
and hence minimize MIA effectiveness. For instance, providing
confidence vectors of top-k classes instead of the complete set of
confidence scores. MemGuard [18] adds carefully crafted label-
preserving noise to the confidence scores by leveraging adversarial
example crafting methods. Confidence masking methods are ideal
to preserve utility with reasonable MIA resilience but are vulnerable
to label-dependent MIAs such as [25] and [7].

Ensemble Techniques [15, 30, 31, 33, 40] aim to reduce MIA
risk by aggregating multiple models’ decisions to provide final out-
put. Model stacking [33] uses a 2-layer setup where the first layer
contains a neural network and a Random Forest models trained on
disjoint subsets of the original training data. The combination of
the outputs from the first layer is passed to a Logistic Regression
model for a final prediction. PATE [30] and PATEG-G [31] split a
dataset into disjoint subsets to train an ensemble of teacher models
with sensitive data to provide a noisy majority vote transferred
to a student model. Related defenses such as PRICURE [15] also
rely on similar ensemble ideas as PATE for noisy ensemble aggre-
gation. We note that PATE [30], PATEG-G [31], and PRICURE [15]
are beyond ensemble as they are practically a hybrid of ensemble
and differential privacy. SELENA [40], a closely related work toMI-
AShield, combines ensemble of models trained on random subsets
of training samples with self-distillation to train a protected model
that behaves the same way on members and non-members.

Differential Privacy basedmethods such asDP-SGD [1] and [6]
introduce randomness to the ML training process, while others fo-
cus on de-noising [29] or input perturbation [9]. In DP-SGD [1], a
differentially private training mechanism is proposed where noise
is added to the clipped value of the gradient. When a model is
trained with DP using a small privacy budget ϵ , the model does
not remember specific user details. As a result, this technique at-
tenuates MIAs and offers strong privacy guarantees. Though such
approaches are effective in provably ensuring membership privacy,
they suffer from notable utility loss.

MIAShield vs. Existing Defenses. While existing defenses
aim at concealing the presence of a MIA target sample, MIAShield
takes a fundamentally different approach that is based on the exclu-
sion of the target sample to eliminate the strong membership signal
a target sample gives away to an adversary. In §6.6, we present
detailed comparison of MIAShield with DP-SGD [1], PATE [30],
MemGuard [18], Model-Stacking [33], and MMD-MixUp [24]. The
ensemble design of SELENA [40] resembles the training of disjoint
subsets inMIAShield. However, random subsets in SELENA may
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not be disjoint (hence a target data-point may belong in multiple
subsets). Moreover, models excluded from SELENA’s ensemble ag-
gregation are based on exact matching, while in MIAShield we
design and evaluate a spectrum of exclusion strategies that covers
model confidence, exact, approximate, and probabilistic matching.

5 MIASHIELD DEFENSE APPROACH
Defense Intuition. As widely acknowledged by prior work [7,
25, 33, 36], the success of MIA is largely attributed to exploiting
the difference in a model’s prediction behavior on members and
non-members. This difference in turn is attributed to overfitting:
ML models are often correct and more confident on members of
their training data than on non-members.MIAShield fundamentally
rethinks MIA defense through preemptive exclusion of members.
Unlike prior defenses [1, 18, 24, 30, 33, 35] that base the defense
on masking a target data-point, MIAShield instead is based on
preemptive exclusion of a target data-point to weaken the strong
membership signal due to the presence of a member data-point.

Figure 1 shows an overview of MIAShield. First, a sensitive
training data D is split to n disjoint subsets D1...Dn , from which
an ensemble of models f1, ..., fn is trained. By making the Di ’s
disjoint, MIAShield ensures that a target data-point belongs to one
subset only —which goes well with the preemptive exclusion goal.
Given a data-point x for prediction, an exclusion oracle eliminates
a model fi that contains x in its training data (Di ) and returns a
prediction y = Φ(f1(x), ...,��HHfi (x), ..., fn (x)) based on an ensemble of
n − 1 models. Φ is an ensemble aggregation function (e.g., majority
vote). Otherwise, allnmodels participate in the ensemble prediction,
and it returns y = Φ(f1(x), ..., fn (x)). By excluding fi trained on
x , MIAShield disarms the adversary of its attack advantage, i.e.,
the strong membership signal emitted by the presence of x in fi ’s
training set Di . A crucial utility preservation constraint is that
the correct label of x is maintained whether the model trained
on x is excluded or not. To fulfil this constraint, we leverage data
augmentation (i.e.,A(D1), ...,A(Dn ) in Figure 1) to regain accuracy
loss to splitting of D into n disjoint subsets (details in §6.3).

Since MIAShield’s effectiveness depends on the accuracy of the
exclusion oracle, the main challenge here is to ensure that the ex-
clusion oracle does not exclude the wrong model (false positive) or
fail to exclude the right model (false negative). Towards addressing
this challenge, we propose and evaluate a spectrum of member
exclusion methods beginning with a baseline exclusion strategy:

• Model Confidence-Based. Among f1, ..., fn , exclude the
most confident model on the most-voted prediction. This
serves as a naive baseline for it goes well with the root cause
of MIAs, i.e., models tend to overfit on member data-points.

• Exact Signature Matching-based. Among f1, ..., fn , iden-
tify fi trained onDi s.t.x ∈ Di using deterministic signature
matching methods (e.g., cryptographic hash comparison).

• Approximate Signature Matching-Based. Whenever ∃
x ′ ∈ Di s.t. x ≈ x ′, exclude the model trained on x ′ us-
ing inexact matching (e.g., based on signatures obtained via
perceptual hashing of images [13]). This method is effec-
tive especially when the exact matching method yields no
match for cases in which the target data-point is not exactly

matched but close-enough to other data-points (e.g., genome
data, images that differ in one pixel).

• Classifier-Based. Treat the exclusion as a classification
problem and from a subset of each Di learn a function feo
that predicts whether x is a member of one of the Di ’s. This
method provides a probabilistic way to determine the model
to exclude.

• Chain of Oracles. When exact signature matching yields
no match, use the approximate signature matching. Resort
to classifier-based method as the last line of exclusion only
when approximate signature matching yields no match.

Before we elaborate on the aforementioned exclusion strategies,
we note that: for probability-dependent attacks, the ensemble ag-
gregation function Φ(...) returns the average of probability scores
of the most voted label and the label itself; for label-dependent
attacks, it returns the most voted label.

5.1 Model-Confidence-Based Exclusion (MCE)
An overfitted model is more confident on members and it is well-
documented that MIAs are mainly attributed to overfitting [33, 36].
Hence, as a baseline exclusion strategy, we exclude the most confi-
dent model on themost-voted prediction. InMCE, given a data-point x
and models f1, ..., fn with corresponding confidence scores f1(x) =
c1, ..., fn (x) = cn on themost-voted prediction, ifarдmax(c1, ..., cn ) =
i , then model fi is excluded from the ensemble.

A natural question then is whether the most confident model
on the most-voted prediction is always the model that was trained
on the target data-point. This may not always be the case because
models would predict a label with high confidence, but the label
may turn out to be the wrong one. This is especially true when,
during training, a model picks up spurious correlations instead of
truly distinguishing features of a training sample. Even so, estab-
lishing MCE as baseline enables us to motivate the need for more
accurate alternative exclusion strategies. In §6.5, we compare the
effectiveness MCE with the exclusion oracles presented next.

5.2 Exact-Signature-Based Exclusion (ESE)
In ESE, we first compute signature of each sample in D1, ...,Dn
using a cryptographic hash function H . This is a one-time offline
computation and does not lead to performance bottleneck. Given
a target data-point x , we first compute H (x) and search for its
match in the hash values of samples in D1, ...,Dn . If a match is
found (say in Di ) then the corresponding model fi is excluded
from participating in the ensemble prediction. Otherwise, all fi ’s
participate in computing x ’s label. This mechanism is deterministic
in that if x ∈ Di , it is always possible to match its hash value
(assuming zero collision).

Three factors contribute to the efficiency of ESE: (1) the hash-
ing algorithm employed (2) the search algorithm and (3) whether
the search is parallelized. On (1), H serves the purpose of quickly
computing a unique signature for a sample. To that end, it suffices
to use faster hash functions (e.g., MD5, SHA − 1) since our goal
in employing a hash function here is not conditioned to getting
more secure cryptographic hash function. On (2), the choice of the
search algorithm and the data structure used to represent the hash
values determines how fast one can lookup for a sample. Linear
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Figure 1: Overview of theMIAShield pipeline.

search takes O(n) (where n is the size of the search space) while
binary search will cost by O(logn)). Even better, if a hash-table
is used lookup will take O(1). On (3), parallelization of the search
significantly speeds up the matching. In our experiments, to speed
up the matching, we convert hash values to integers and sort them
to ease binary search.

Despite the exactness of ESE and its potential to be high accuracy
exclusion, it has two limitations. First, it does not detect members
if an adversary slightly modifies inputs (e.g., changes one pixel
in an image). Second, it is vulnerable to timing attacks whereby
an adversary carefully observes response-time difference of the
prediction API on members and non-members.

For member data-points, the response time depends on where
in a model’s training data the matching data-point is located, and
hence unpredictable. For non-members, on the other hand, the
search takes longer (since it must be exhaustive) and about the
same for all data-points (because the search space is static).

An adversary may use this predictability to put apart members
and non-members by keeping inventory on response time of each
query. To disrupt the adversary’s pursuit of estimating a response-
time threshold that separates members from non-members, we
equip MIAShield with two countermeasures: (a) before lookup, we
reshuffle the hash values of data-points in each subset Di and (b)
on member queries, we introduce random delay upper-bounded
by the average delay on non-members. In §6.7, we show empirical
evidence that demonstrates effectiveness of combining (a) and (b)
to make MIAShield resilient in the face of timing attacks.

When an adversary makes minimal modification on a target
sample x , ESE oracle misses x which may be almost the same
as a member sample x ′. For instance, x ′ differs from x by just a
pixel. Attack model-based MIAs (e.g., [28, 36]) that leverage higher
confidence of themodel onmembers may succeed in such a scenario
because ESE fails to exclude x ′ ≈ x . To avoid such a pitfall, next we
consider approximate signature matching but still based on hash
values such that our exclusion oracle considers an adversary who
minimally manipulates a data-point to bypass ESE.

5.3 Approximate-Signature-Based Exclusion
(ASE)

ESE is naturally fit for cases where the adversary is unlikely to
manipulate a target data-point. When the adversary performs slight
manipulations (e.g., single-pixel change, adjusting brightness of

an image), ESE results in a false negative (misses a member data-
point that very slightly differs from a target data-point). To make
MIAShield resilient to such slight label-preserving manipulations,
we turn to perceptual hashing methods which have been widely
used to search for similar images in domains like digital forensics,
cybercrime analysis, and image search engines [13].

Perceptual hashing algorithms generate a fingerprint for each
image so that similar-looking images are mapped to the same or
similar hash code. Unlike conventional cryptographic hashing algo-
rithms such as MD5 and SHA1 that generate distinct hash values
for slightly modified inputs, perceptual hashing is designed to tol-
erate small perturbations so that a slightly manipulated image still
produces similar hash values.

Given an image x , a perceptual hashing function Hp produces a
binary string as the hash code:h = Hp (x),h ∈ {0/1}l , where {0/1}l
represents a binary string of length l . For a given data-point x , our
exclusion oracle uses Hp (e.g., pHash) to compute x ′ = Hp (x) and
matches it against similar hash values of images in D1...Dn . The
key advantage over the ESE oracle is that ASE is now able to match
x (which may have been modified by an adversary via operations
such as rotation, pixel change, or brightness change) with visually
similar data-points in D1...Dn .

When doing perceptual hashing-basedmatching, a certain thresh-
old is set based on a distance metric between two hash values. A
widely used distance metric is the normalized Hamming distance
—whichmeasures the number of different bits between the two hash
strings divided by the length of the hash string. The normalized
Hamming distance value falls within [0,1].

While ASE addresses the limitation of ESE pertinent to slightly
manipulated samples, an adversary with knowledge of the usage
of perceptual hashing can still attempt to bypass it. For instance,
one potential threat is to incrementally manipulate (e.g., rotate,
perturb) a sample and watch for noticeable chanдe in predictions
(e.g., probability score changes). When it happens, such observable
change can lead to the disclosure of the hamming distance threshold.
We will revisit this threat in §6.7.

5.4 Classifier-Based Exclusion (CBE)
Complementary to ESE and ASE, in CBE we frame member data-
point exclusion as a statistical learning objective, where the un-
derlying data distribution in D1, ...,Dn is leveraged as a basis to
predict which model to exclude. To this end, in CBE we treat the
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exclusion of a data-point as probabilistic prediction task for which
we train an exclusion oracle model that, given a data-point, predicts
the to-be-excluded model. We first identify features to characterize
each data-point of D. A feature vector is composed of a subset of
features (XPCA) of data-points in D, a confidence vector (C) and a
label (y) returned by a model trained on D. In the following, we
expand on what comprises of the feature vector [XPCA,C,y].

Subset of Features (XPCA): Instead of using the whole feature
set of data-points in D, the defender takes advantage of the white-
box access to D. Hence, we perform principal component analysis
(PCA) on D to determine a subset of the features (which we call
XPCA) such that XPCA contains m features (m < d , where d is
feature dimension of a sample in D). The reason behind taking a
subset of the features is twofold. First, we aim for a lightweight
model that does not take long to train. Second, we aim to minimize
what the exclusion oracle inherits from D —if there is overfitting
inherent to D, focusing on the more ‘robust’ features obtained
via PCA limits the likelihood of propagating the overfitting to the
training set of the exclusion oracle.

Confidence Score Vector (C): For each x inDi , a model trained
on D returns a confidence score vector of the same dimension as
the number of classes k , which is a probability distribution over k
classes. We include C = [c1, ..., ck ] in our feature vector such that
Σki=1ci = 1. We note that C resembles the confidence vector used
in training an attack model in MIAs (e.g., [28, 36]). However, in our
case C is just a part of our feature vector, while in typical shadow
models-based MIAs it is the decisive part of the feature vector in
the training of the attack model.

Predicted Label (y): To further enrich our feature vector, we
also add the predicted label y ∈ {1, ...,k}. The rationale for using y
is that in prior work [36] it has been shown that there is positive
correlation between MIA and the output label.

Model Index (l): This is the target label for our exclusion oracle
model. The label is an integer in the range [1,n + 1], where 1 = f1,
..., n = fn , and n + 1 means none of the fi ’s among f1, ..., fn is
excluded (i.e., all models participate in the ensemble).

Our reader may wonder “how CBE differs from an attack model
of typical MIA?”. On the surface, CBE appears to be yet another
binary member/non-member attack model similar to the likes of
Shokri et al. [36]. Compared with the MIA adversary, we argue
that the defender is in a more advantageous position. Specifically,
the defender has full access to the training data D, the disjoint
subsetsD1, ...,Dn , and additional information such as eachmodel’s
overfitting score. All these details are typically unavailable to a
black-box MIA adversary that we consider in our threat model.

An intuitive approach to build CBE is to train it on a combination
of features from each Di (i.e., members) and an (n + 1)th class (i.e.,
non-members). In our case, this approach turned out to be less
effective in correctly labeling non-members that come from outside
the test set. To overcome this, we use a threshold-based mechanism
that leverages probability scores on member data-points.

The CBE oracle is built in two steps. In step-1, we train a model
feo on feature vectors of only members of the form [XPCA,C,y]
based on a subset of each Di in D1, ...,Dn . Model feo predicts one
of 1...n. For instance, feo (x) = 3 means x ∈ D3.

In step-2, we establish an exclusion threshold τeo through em-
pirical observation of the confidence scores produced by feo on
members (coming from Di ’s) and non-members (coming from
test/validation set). The key intuition behind the estimation of
τeo is that for non-members, confidence scores returned by feo
will be lower compared to the member counterparts because feo
tends to be more confident on its training samples. Now, for a given
data-point x , we computeyl = feo (x), whereyl is an n-dimensional
probability score vector (n = number of models in the ensemble).
To compute the final label (model-index l ) for exclusion oracle, we
follow the following condition: Ifmax(yl ) ≥ τeo , the model index
is computed as l = arдmax(yl ) where l ∈ (1, ...,n), otherwise the
label l is n + 1. Over a sample of possible threshold values in the
range [0, 1], we compute the final exclusion oracle accuracy Acceo
over the aforementioned condition and fix the τeo value for which
Acceo is maximum and use it for future exclusions.

5.5 Chain of Exclusion Oracles (COE)
Inherent limitations of hash value-based exclusion oracles (ESE and
ASE) may result in missing a member data-point. This may, in effect,
misguide MIAShield to be tricked by a MIA adversary with knowl-
edge about either the hashing algorithms and/or Hamming distance
threshold (for the perceptual hashing case). To mitigate this threat,
in COE we chain the oracles in the order ESE−→ASE−→CBE such
that CBE is the last resort if ESE−→ASE yields no match. Our reader
may wonder as to the benefit of chaining the exclusion oracles in
such a sequence. The benefit is that a (very small) percentage of
member data-points is likely to be missed by ESE and ASE and
may be correctly flagged by the CBE. Why? Because, unlike ESE
and ASE which rely on exact and approximate signature of data-
points, respectively, CBE learns membership signals based on the
underlying features of members’ data distribution. Note that COE
may inherit the timing attack risk from ESE and ASE. The two
countermeasures we introduced in §5.2 (reshuffling and bounded
delay on member queries) remain as effective countermeasures to
hinder the success of timing attack.

6 EVALUATION
We evaluate MIAShield on 3 image classification datasets against 7
attacks and compare it with 5 related defenses. We also evaluate its
resilience in the face of adaptive attacks. Our evaluation is guided
by the following research questions:

• RQ1: How do the exclusion oracles compare among each
other and between probability-dependent and label-dependent
attacks?

• RQ2: How does MIAShield compare with state-of-the-art
MIA defenses on utility-privacy trade-off?

• RQ3: How resilient is MIAShield in the face of adaptive
attacks that strive to bypass it by leveraging side-channels
and knowledge about the exclusion oracles?

6.1 Datasets and Partitioning
We use three benchmark datasets: CIFAR-10 [20], CIFAR-100 [21],
and CH-MNIST [19], which we briefly describe next.
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Dataset Dtrain Dtest n Dtrain
EO Dtest

MIAShield

CIFAR-10 [20] 50K 10K 5 2.5K×n (members) + 5K (non-members) 5K (members) + 5K (non-members)
CIFAR-100 [21] 50K 10K 4 2.5K×n (members) + 5K (non-members) 5K (members) + 5K (non-members)
CH-MNIST [19] 4K 1K 4 500×n (members) + 500 (non-members) 500 (members) + 500 (non-members)

Table 1: Dataset partitioning in the evaluation of MIAShield.

CIFAR-10 [20] consists of 60K color images of 10 classes. Each
image is 32 × 32 × 3 pixels. The target classes include 10 object
images (e.g., airplane, truck, automobile, dog, bird, frog).

CIFAR-100 [21] has 100 classes, 600 images each. Per class,
there are 500 training images and 100 test images. The classes
include different object names, for example, fishes (e.g., aquarium
fish, flatfish), flowers (e.g., orchids, poppies) etc.

CH-MNIST [19] contains samples of histology tiles from pa-
tients with colorectal cancer and has eight target classes. It contains
5K images in total. The size of each image is 64 × 64 pixels.

Partitioning of Datasets:As shown in Table 1, for each dataset,
given a train set Dtrain (members) and Dtest (non-members), we
split Dtrain into n disjoint subsets (Dtrain

1 , ..., Dtrain
n ) such that

each Dtrain
i has |Dtrain |

n samples. To train the CBE oracle, we use
≈ 25% of the samples in each Dtrain

i to collectively represent n
models from the ensemble. To represent the (n + 1)th model (i.e.,
non-member), we use ≈ 50% of samples from Dtest . Combining
the two, we get the Dtrain

EO column in Table 1. Inline with prior
work [24, 25, 33, 36], we use a balanced number of membersDtest

mem
⊂ Dtrain and non-members Dtest

non−mem ⊂ Dtest (the Dtest
MIAShield

column in Table 1). Balancing members and non-members is crucial
to establish 50% (random guess) MIA accuracy as a baseline. To
avoid potential bias, we ensure thatDtest

mem andDtrain
EO are disjoint.

6.2 Models
Non-PrivateModel. For all datasets, we use the AlexNet [22] CNN
architecture shown in Appendix A (Table 4). The model is trained
on Dtrain using Adam optimizer and categorical cross-entropy
as loss function. Number of epochs for CIFAR-10, CIFAR-100, and
CH-MNIST is 60, 130, and 200, respectively. Batch size = 128 and
learning rate = 0.01 for all datasets.

MIAShield Ensemble Models. Based on the dataset split in
Table 1, we train MIAShield models from the disjoint subsets using
the same AlexNet architecture in Appendix A (Table 4).

Exclusion Oracle Model. In step-1, we train a Random For-
est (RF) classifier on Dmem

EO where Dmem
EO = [Xmem

PCA ,C,y, l] as
described in §5.4. It is noteworthy that Dmem

EO contains 2.5K×n
samples for CIFAR-10 and CIFAR-100 and 0.5K×n samples for CH-
MNIST, where n is the number of models. In step-2, we query
the trained RF model with both Dmem

EO and Dnon−mem
EO and then

calculate AccEO over 20 threshold samples t ∈ (0, 1), where the
threshold value starts with 0 and is incremented by (1−0)

20 up to 1.
The threshold value that led to the maximum exclusion oracle ac-
curacy is chosen as the final threshold for evaluation. Accordingly,
for CIFAR-10, CIFAR-100 and CH-MNIST, the threshold values are
0.38, 0.52, and 0.47, respectively.

Model Name Acc. (Aug.) Acc (No-Aug.)

f1 65.72% 56.51%
f2 64.52% 57.52%
f3 63.1% 57.48%
f4 65.42% 59.08%
f5 66.46% 55.74%

Table 2: CIFAR-10: accuracy pre- and post-augmentation.

Model Name Acc. (Aug) Acc. (No-Aug)

f1 37.02% 27.22%
f2 34.86% 25.1%
f3 37.52% 26.86%
f4 36.68% 27.2%

Table 3: CIFAR-100: accuracy pre- and post-augmentation.

Attack Models. For probability-dependent attacks, we use [38]
and use the Threshold attack, the Logistic Regression (LR) attack,
and the Multi-Layer Perceptron (MLP) attack based on [33].
For label-dependent attacks, we use the Gap Attack [43] as the
baseline. For label-only augmentation attacks, we follow the origi-
nal work [7] and use a shallow neural network to train the attack
model with 2 hidden layers (10 neurons each). We set batch size as
32 and epochs to 60 to train the attack model.

6.3 Experimental Setup and Evaluation Metrics
Dataset Partitioning. As shown in Table 1, we split CIFAR-10,
CIFAR-100, and CH-MNIST into n = 5, n = 4, and n = 4 disjoint
subsets. In effect, models trained on individual subsets tend to be
less accurate compared to one trained on the original dataset. To
address this side-effect and gain back accuracy lost to dataset split-
ting, we leverage data augmentation [37]. Specifically, we apply
horizontal flip, width shift and height shift (by 0.1), 10◦ rotation,
and zoom by 0.2%. We note that for CH-MNIST we did not apply
augmentation as we experimentally observed that it results in accu-
racy degradation instead of accuracy gain. Tables 2 and 3 show that,
for CIFAR-10 and CIFAR-100, our models gain an average accuracy
of 7.78% and 9.96%, respectively, with data augmentation.

Exclusion Oracles. For MCE, we use the probability vector of
each prediction to identify the most confident model. For ESE, we
use SHA-1 hashing from the hashlib module of Python. For ASE,
we use phash perceptual hashing from Python’s imagehash library
with Hamming distance threshold = 14. For CBE, we train a Random
Forest classifier based on the dataset split in Table 1. We empirically
fix the PCA value of 4. As a result, instead of 3072 features on
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CIFAR-10 and CIFAR-100, we use PCA{(32, 32 × 3), component =
3} = 3×32×3 = 288 and for CH-MNIST PCA{(64, 64), component =
3} = 3 × 64 = 192, principal features per image.

Probability-Dependent Attacks.We use Threshold (Th), Lo-
gistic Regression (LR), and Multi-Layer Perceptron (MLP) attacks
by Salem et al. [33] as implemented in Tensorflow-Privacy [2].

Label-Dependent Attacks. We use the attack by Choquette-
Choo et al. [7] which shares similarities with the attack by Li and
Zhang [25]. Specifically, we use Gap attack (their baseline in [7]),
Data Augmentation attack, and Decision Boundary Distance attack.
For Gap attack, as in the original work [43], we label 0 (non-member)
if the target model predicts the wrong class, otherwise we use 1
(member) for correct predictions.
For data augmentation attack, given a data-point, the target model
(serving as shadow model) is queried multiple times using aug-
mented images to create a labeled training data for the attack model.
We use rotation and translation techniques to issue multiple queries.
For rotation of CIFAR-10 samples, we use r = 4◦ inline with prior
work for which r ∈ [1◦, 15◦] is established as ‘safe’ range, and for
our settings we found r = 4 results in the highest attack model accu-
racy. As in the original work, we issue 3 queries (with r = 0◦, r = 4◦,
and r = −4◦). For CIFAR-100 and CH-MNIST, the best performing
r values are 5◦ and 6◦ respectively. For translation attack, a pixel
bound d is such that, |i|+|j|=d, where we translate the image ±(i)
pixels horizontally and ±j pixels vertically. For this attack, again
following prior work [7], we select translation bound d = 1 that
yields highest attack model accuracy.
For decision boundary attack, we use the random noise attack and
follow a similar setup as the original work [7]: a sample x is pre-
dicted as member if the distance d(x,y) > dτ (x,y) where d(x,y)
is the data-point’s l2 distance from the target model’s boundary.
To calculate this distance, dτ (x,y), we evaluate accuracy of the
shadow model (i.e., target model) h on N number of queries where
x iadv = x + N(0,σ 2.I) using isotropic Gaussian noise [10]. We
choose optimal number of queries, N = 250 based on the highest
attack accuracy we obtained after empirically exploring candidate
query budget values in (100, 250, 350, 500).

6.4 Evaluation Metrics
We use the following metrics to quantitatively assess the effective-
ness of MIAShield:

• Exclusion Oracle Accuracy (AccEO ): percentage of cor-
rectly excluded samples out of samples submitted to an ex-
clusion oracle.

• Model Test Accuracy: percentage of test samples correctly
predicted by a model.

• Generalization Gap: difference between model accuracy
over training samples and test samples.

• Attack AUC: Area Under the Curve of attack ROC. The
higher the AUC, the more successful the attack.

• AttackAdvantage: maximum difference betweenTPR (cor-
rectly flagged members) and FPR (non-members flagged as
members). It quantifies privacy leakage induced by the attack.
The larger its value, the higher the privacy leakage.

6.5 MIAShield Overall Effectiveness
Model Test Accuracy vs. Attack AUC. The ideal utility/privacy
trade-off forMIAShield is when Model Test Accuracy remains al-
most the same as undefended model’s accuracy and Attack AUC
is close to 50% (near random guess). Compared to the undefended
model, across the three datasets and for the three probability-
dependent attacks (Figure 2) and four label-dependent attacks (Fig-
ure 3),MIAShield reduced MIA AUC to ≈ 50% (random guess). This
happened with insignificant accuracy loss, as evident from the very
narrow horizontal margin between the blue circles (undefended
model) andMIAShield exclusion oracles in Figures 2 and 3. Note,
however, that MCE (our baseline exclusion oracle) is an exception
here. Since the most confident model may not always be the model
trained on the target data-point, it is not surprising that MCE results
in a comparatively higher utility loss and Attack AUC.

Model Test Accuracy vs. Attack Advantage. On probability-
dependent attacks (Appendix C: Figure 12) and label-dependent
attacks (Appendix C: Figure 13), compared to the undefendedmodel,
for all three datasets MIAShield oracles consistently achieve the
best combination of utility (very close to undefended model’s accu-
racy) and attack advantage (very close to zero). These results are
consistent with the ones in Figures 2 and 3 and confirm that MI-
AShield oracles not only result in lowest aggregate attack AUC, but
also lowest privacy leakage when measured via attack advantage.
Also notice that except the baseline exclusion oracle (MCE), the
remaining four exclusion oracles (ESE, ASE, CBE, and COE) are not
only significantly better performing but also comparable among
each other despite their complementary exclusion intuitions.

Results across Figures 2, 3, 12, and 13 point us to two high-level
insights. First, using the preemptive exclusion strategy, eliminating
the membership signal that is attributed to a target data-point and
its neighborhood significantly reduces the effectiveness of MIAs
with insignificant utility loss. Second, the membership signal does
not always stem from the most confident model in the ensemble.

With respect to RQ1, overall MIAShield achieves significantly better
privacy-utility trade-offs compared to the undefended model. Among
the exclusion oracles, ESE, ASE, CBE, and COE offer consistently better
privacy-utility trade-offs than the MCE baseline oracle while ASE is the
overall winner with CBE and COE oracles ranking close second.

6.6 Comparison with Prior Defenses
To answer RQ2, we compare MIAShield’s best version (oracle:
ASE) with 5 defenses in 4 categories, published in the 2016–2021
timeframe. Among differential privacy-based defenses, we use DP-
SGD [1] and PATE [30]. Among ensemble learning-based methods,
we use Model-Stacking [33]. From confidence masking-based de-
fenses, we use MemGuard [18]. Among strong regularization-based
defenses, we use MMD+Mixup [24]. Details of each defense’s setup
including ϵ choice for DP-SGD and PATE appear in Appendix B.

Overall Comparison. Plots of model utility against attack AUC
(Figures 4 and 5) and utility against attack advantage (Appendix
C: Figures 14 and 15) consistently suggest thatMIAShield (green
square) offers better privacy-utility trade-off compared with prior
defenses that cover four families of techniques. Next, we provide a
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Figure 2: Model Test Accuracy vs. Attack AUC for allMIAShield exclusion oracles against probability-dependent attacks.

Figure 3: Model Test Accuracy vs. Attack AUC for allMIAShield exclusion oracles against label-dependent attacks.

highlight of pairwise comparison of MIAShield with each defense
(much detailed pairwise comparison appears in Appendix D).

MIAShield vs. MemGuard. Overall, MemGuard preserves util-
ity whileMIAShield results in negligible utility loss. On probability-
dependent attacks, MIAShield offers much lower attack AUC (Fig-
ure 4) and attack advantage (Appendix C: Figure 14). On label-
dependent attacks, while MemGuard offers nearly zero MIA miti-
gation,MIAShield drops attack AUC (Figure 5) to almost random
guess with much lower attack advantage (Appendix C: Figure 15).

MIAShield vs. Model-Stacking. Overall, MIAShield outper-
forms Model-Stacking on CIFAR-10 and CIFAR-100 while they are
comparable on CH-MNIST. On utility vs. attack advantage, how-
ever,MIAShield significantly outperforms Model-Stacking on all
datasets and both attack types (Appendix C: Figures 14 and 15).

MIAShield vs. DP-SGD. Across all three datasets and all seven
attacks, MIAShield and DP-SGD are equally able to drop attack
AUC to ≈ random guess. However, in all cases MIAShield offers
orders of magnitude better model utility than DP-SGD. This is evi-
dent from the horizontal model utility gaps between green squares
(MIAShield) and red crosses (DP-SGD) in Figures 4 and 5, which
makes MIAShield an overall winner on utility-privacy trade-off.

Since the choice of the privacy budget ϵ determines privacy/utility
trade-off for DP-SGD, for fair comparison, we experimented with ϵ
values 101 − 5 × 103 to fix the privacy/utility trade-off. In Figures
6a (CIFAR-10) and 6b (CIFAR-100) we show privacy/utility com-
parison between DP-SGD with different ϵ choices andMIAShield
with the ASE oracle. Our comparison above is based on DP-SGD
with ϵ = 103 (for both CIFAR-10 and CIFAR-100) because as can be

seen from Figure 6a DP-SGD offers comparable attack AUC with
MIAShield but offers a much lower utility thanMIAShield. We note
that the other seemingly obvious choice is DP-SGDwith ϵ = 5×103,
which offers much better utility. However, it does so at a significant
cost of privacy (notice increase in Attack AUC for both Figure 6a
and 6b). Therefore, in the interest of fair comparison, we chose
DP-SGD (ϵ = 103) instead because attack AUC is much close to
random guess (which in turn is close toMIAShield).

MIAShield vs. PATE.Overall,MIAShield outperforms PATE on
both utility against attack AUC and utility against attack advantage.
With respect to DP-SGD, however, Figures 4 and 5 consistently sug-
gest that PATE is overall better, but still underperforms MIAShield
across the board.

MIAShield vs. MMD-MixUp. For CIFAR-10, MMD-MixUp and
MIAShield offer close-enough privacy-utility trade-offs. On CIFAR-
100 and CH-MNIST, however,MIAShield outperformsMMD-MixUp
with lower attack AUC and attack advantage, again suggesting MI-
AShield offers overall better utility-privacy trade-off.

With regards to RQ2, our results consistently suggest that MIAShield
offers much better privacy-utility trade-off than prior defenses across all
datasets on both probability-dependent and label-dependent attacks.

6.7 Robustness Against Adaptive Attacks
Our evaluation so far considered an adversary who either has no
knowledge of the internal workings of MIAShield or manipulates
inputs within MIAShield detection threshold. To answer RQ3, we
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Figure 4:MIAShield vs. related work on Model Test Accuracy vs. Attack AUC against probability-dependent attacks.

Figure 5:MIAShield vs. related work on Model Test Accuracy vs. Attack AUC against label-dependent attacks.

(a) CIFAR-10 (b) CIFAR-100

Figure 6: Privacy/Utility trade-off comparison betweenMIAShield and DP-SGD (over a range of ϵ choices) against probability-
dependent attacks for CIFAR-10 and CIFAR-100.

now consider case (d) of attacker capabilities from our threat model
described in §3. Adaptive attacks leverage side-channel information
and/or knowledge of the exclusion oracles to bypassMIAShield. We
consider three types of adaptive attacks. First, a timing attack that
leverages the fact that MIAShield uses a certain exclusion strategy,
but the adversary may be unaware of the type of exclusion oracle

used. Second, a sudden probability change attack that observes visi-
ble change(s) to probability scores of predictions of a progressively
manipulated data-point as potential indicators of exclusion. Third,
a manipulative attack that leverages knowledge about exclusion
oracles and parameters (e.g., hamming distance threshold for ASE)
and performs batch augmentation or batch perturbation of samples
to reduceMIAShield’s resilience.
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(a) CIFAR-10 (Oracle: ESE) (b) CIFAR-10 (Oracle: ASE) (c) CIFAR-100 (Oracle: ESE) (d) CIFAR-100 (Oracle: ASE)

Figure 7: Timing attack risk comparison between members and non-members.

(a) CIFAR-10 (b) CIFAR-100

Figure 8: Sudden probability change monitoring against incremental pixel distortion for CIFAR-10 and CIFAR-100.

Timing Attack. For this attack, ESE, ASE, and COE are the
target oracles. Assuming that one of these oracles is behind the
prediction API, the adversary keeps track of prediction response
times over a batch of members and non-members and then uses
the observations to empirically distinguish members from non-
members. The attacker’s motivation here is that: with no remedy
against timing attacks and assuming no fluctuation in response
latency, on average, MIAShield takes longer to respond to non-
member samples.

To evaluate the effectiveness of mitigations we introduced in §5.2
(reshuffling and bounded delay on members), Figure 7 compares
histogram plots of response time between 5K members and 5K non-
members for ESE and ASE oracles on CIFAR-10 and CIFAR-100.
Our results suggest that the adversary is overall unable to distinguish
between members (red bars) and non-members (blue bars).

Sudden Probability Change Attack. The goal of this attack
is to incrementally manipulate a data-point and observe output
probability vectors in pursuit of sudden change (spike/decrease) in
the probability values. The intuition is that such sudden changes
in probability would typically happen for members as a potential
indication of an exclusion of the model that was trained on the
data-point, which would imply inference of a member. To explore
the feasibility of such an attack, for a randomly picked member/non-
member, we apply Gaussian noise-based incremental pixel distor-
tion. The pixel distortion attack works as follows: for each test

sample, we apply incremental manipulation by adding random
Gaussian noise to different numbers of pixels of images. For exam-
ple, p = 1 implies we add noise to only one randomly selected pixel,
while p = 100 means we add noise to 100 randomly chosen pixels.

For each incremental iteration of pixel distortion, we compute the
difference between probability score vector of current and previous
manipulation iteration. The goal is to determine whether a “sudden
change” in probability scores is observed and hence gives a signal
of exclusion of the model that contains the data-point. The results
of this experiment are shown in Figures 8a (for CIFAR-10) and
8b (for CIFAR-100). On the x-axis is the pixel distortion value p
(the number of randomly selected pixels to which Gaussian noise
is added). On the y-axis is the probability score vector distance
between iteration i − 1 and i of pixel distortion. The distance is
computed as | |Vi−Vi−1 | |2 forVi andVi−1 as the predicted probability
vectors of distortion iteration i and i−1, respectively. The dimension
ofV is the same as the number of class labels of the dataset at hand.
For CIFAR-10, for both members and non-members we pick one
sample at random from each of the 10 classes. Similarly, for CIFAR-
100, we randomly pick one sample each from 10 randomly picked
distinct classes of the 100 classes.

From Figures 8a and 8b, looking at the y-axis values for both
CIFAR-10 and CIFAR-100, for an adversary that is after a “sudden
change” in probability scores, the members and non-members line
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(a) Translation (b) Rotation

Figure 9: Augmentation-based probability-dependent attacks against ASE and CBE oracles on CIFAR-10.

(a) Translation (b) Rotation

Figure 10: Augmentation-based probability-dependent attacks against ASE and CBE oracles on CIFAR-100.

plots do not particularly point to a triggering signal to call for in-
ference. For some members/non-members, probability difference
increases as distortion intensity increases, but this does not neces-
sarily imply exclusion. Examining first sudden changes of members
vs. non-members (i.e., left-most non-zero value for distortion pa-
rameter p), it is again not apparent that there is a pattern that is
uniquely attributable to members to result in high confidence in-
ference. The conclusion is that sudden probability change may not
necessarily be attributed to members.

Manipulative Attack. Beyond incremental manipulation of a
single sample, we also examine incremental manipulation on a
batch of member/non-member data-points to measure the aggre-
gate impact of incremental manipulation on attack AUC. For this
purpose, we use translation and rotation per the setup in §6.3, pixel
distortion as in the sudden probability change attack, and perturba-
tion as used in label-only boundary-distance attack (§6.3).

Rotation and Translation-based batch manipulation: To push MI-
AShield beyond the augmentation values set in our experimental
setup (§6.3), we use r spanning 1 − 15 for rotation and d spanning
1− 5 for translation. Figure 9 (CIFAR-10) and Figure 10 (CIFAR-100)
show attack AUC comparison for the three probability-dependent
attacks (Th, LR, and MLP) between the undefended model and MI-
AShield with ASE and CBE oracles. Looking at the undefended
model (top 3 lines for both Figures), attack AUC drops as manipula-
tions increase for both rotation and translation. ForMIAShield (ASE
or CBE oracle), attack AUC remains consistently lower than the
undefended model and close to the random guess baseline despite
the increased manipulations. Given the augmented training of MI-
AShield’s ensemble, such resilience to augmentation perturbations
may seem expected. However, in this experiment we pushed the
manipulations far enough and our results suggest that attack AUC
does not necessarily improve with more manipulation.
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(a) CIFAR-10 (b) CIFAR-100

Figure 11: Pixel distortion-based probability-dependent attacks against ASE and CBE oracles on CIFAR-10 and CIFAR-100.

It is worth noting that, on the one hand, as the manipulations
increase, the exclusion oracle accuracy kept decreasing. On the
other hand, the attack model accuracy kept decreasing because the
probability signal returned from the ensemble turned out to be too
noisy for the adversary—resulting in low attackAUC. Besides, recall
that by splitting the original dataset into disjoint subsets and then
leveraging data augmentation when we train MIAShield ensemble,
we are already creating a first line of (empirical) defense. When
the augmented ensemble labels the highly manipulated samples
of the adversary, the probability scores returned are noisy enough
to lead to a poorly performing attack model (hence low attack
AUC). A key takeaway here is that more manipulation may not
necessarily translate to more accurate attack. In fact, it instead
results in increase in the percentage of incorrect predictions which
seems to misguide the attack model.

Pixel distortion-based batch manipulation: Figure 11 suggests that
as pixel distortion increases, attack AUC shows a slight increase, but
not too potent to bypassMIAShield. Although the models tend to
leak more members on CIFAR-100 for a higher pixel distortion size
(p = 225), the leakage is still low compared to the undefended model
and other related works. As pixel distortion increases, while the
exclusion oracles tend to misclassify members as non-members, the
attack model, on the other hand, is fed with weak signals that stem
from wrong predictions —resulting in attack AUC degradation.

Perturbation-based batchmanipulation: Based on label-dependent
attacks (via boundary distance attack as described in §6.3), multiple
queries (i.e., 250 in our case) are required to initiate the attack. With
each query, a small random noise within the limit of N (0,σ 2) is
added to the image for manipulation. From Appendix E: Table 5,
we observe that, for all the three datasets, both the attack AUC
and advantage is near the baseline. This suggests that perturbation-
based attacks, while they can degrade model utility, are not overall
successful againstMIAShield. The model utility degradation is in-
herited by the attack model via incorrect predictions.

With regards to RQ3, our results overall suggest that MIAShield is re-
silient in the face of (i) timing attacks, sudden probability change attacks,
and both augmentation-based and perturbation-based manipulative at-
tacks. We also note that increased manipulation does not necessarily
translate to increased attack AUC.

7 CONCLUSION AND FUTUREWORK
MIAShield defends ML models against MIAs through a preemp-
tive exclusion of member data-points. By excluding a model that
was trained on a member data-point, MIAShield eliminates the
strong membership signal the data-point gives away to a MIA ad-
versary. Our extensive evaluations on three image classification
datasets, three probability-dependent attacks, four label-dependent
attacks, and comparison with five prior defenses consistently sug-
gest thatMIAShield significantly reduces MIA accuracy to nearly
random guess with insignificant utility loss. We also demonstrate
thatMIAShield is resilient to a range of adaptive attacks that exploit
side-channels and knowledge about the defense to bypass it.

MIAShield faces a limitation that leaves room for further re-
search. Although overall attack AUC remains low for manipulation-
based adaptive attacks, it comes at a cost of utility loss because
the manipulations force the MIAShield ensemble to return wrong
predictions. While wrong predictions result in a less accurate attack
model and hinders the membership inference goal, we also recog-
nize the fact that legitimate users may also manipulate inputs and
submit toMIAShield prediction API (e.g., to cloak images against fa-
cial recognition in the wild [34]). In this context, preserving model
utility is crucial for the model to remain useful.

Moreover, MIAShield could be further improved through future
work that either hardens the exclusion oracles against deceptive
manipulations or exploresmore rigorous evaluation of the exclusion
oracles’ sensitivity to larger and arbitrary manipulations.
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Layer Type Layer Parameters

Input d1 × d2 × d3
Convolution 48 × 3 × 3 strides=(2, 2),

padding = same, activation = ReLU
Max-Pooling Poolsize= 2 × 2 strides=(2, 2)

Batch-Normalization
Convolution 96 × 3 × 3 strides = (2, 2),

padding = same, activation = ReLU
Max-Pooling Poolsize = 2 × 2 strides = (2, 2)

Batch-Normalization
Convolution 192 × 3 × 3

padding = same, activation = ReLU
Convolution 192 × 3 × 3

padding = same, activation = ReLU
Convolution 256 × 3 × 3

padding = same, activation = ReLU
Max-Pooling Poolsize= 2 × 2 strides = (2, 2)

Batch-Normalization
Flatten

Fully connected, Dropout 512, 0.5
Fully connected, Dropout 256, 0.5

Fully connected num-classes
Activation softmax

Table 4: AlexNetmodel architecture used for all datasets. For
CIFAR-10 and CIFAR-100, d1 × d2 × d3 = 32 × 32 × 3 and for
CH-MNIST it is 64 × 64 × 1. Values for num-classes is 10 for
CIFAR-10, 100 for CIFAR-100, and 8 for CH-MNIST.

APPENDIX
A. Model Architecture
Table 4 shows details of model architecture used for all datasets.

B. Related Defenses Setup
DP-SGD: We use TensorFlow Privacy [2] based on DP-SGD [1]
on the same model architecture (Table 4) for the non-private and
MIAShield models. The model parameters, i.e, batch size, number
of epochs, and learning rate are similar as well. For CIFAR-10,
clipping parameter = 1.5, noise multiplier = 0.223, and ϵ = 103. For
CIFAR-100, noise multiplier = 0.248 and privacy budget ϵ = 103.
For CH-MNIST, use noise multiplier = 0.52 and ϵ = 102.

PATE: Based on the original implementation of PATE [30], we
use 40 and 25 teacher models for CIFAR-10 and CIFAR-100 and
ϵ values are in the range [0.01, 102]. For CH-MNIST, we use 10
teacher models while the ϵ range is similar. For a fair compari-
son with MIAShield, we pick the ϵ and number of teacher models
value that offers the best privacy/accuracy trade-off. For probability-
dependent attacks, we note that our implementation of PATE re-
turns the top-1 noisy aggregated confidence score that receives
the majority vote (confidence score of the final label only). On the
contrary, for the label-dependent attacks, a class label is returned
that receives a majority vote by the teacher ensemble after noisy
aggregation. The model architecture and training parameters are
similar to the non-private model for these settings as well.

Model-Stacking: We follow the original implementation by
Salem et al. [33]. In particular, for the first layer of the stack, we
use two models (the same architecture as Table 4 and a random

forest classifier).We train eachmodel with |Dtrain |
2 samples. Finally,

we train a third logistic regression classifier as a meta-model that
uses the outputs of the first two models as a training dataset to
produce the final inference. We train two baseline models with
disjoint datasets as in the original work, i.e., for the CIFAR-10 and
the CIFAR-100, each model is trained with 2.5K samples. For CH-
MNIST, each model is trained on 2K samples.

MemGuard: We reuse the implementation by Choquette-Choo
et al. [7]. Thus, we use the best performing ϵ value while masking
the confidence vectors. For CIFAR-10, CIFAR-100, and CH-MNIST,
we use noise parameters as 10−3, 10−2, and 10−4, respectively.

MMD-Mixup: We follow the setup of the original paper [24].
This technique first uses the mix-up data augmentation technique,
in which an image is constructed from two training images to mask
individual training samples from exposure to inference. Secondly,
for training, they use MMD-Regularization [12] to reduce the differ-
ence between confidence score distributions between members and
non-members, hence MMD regularization is added as a training
loss function to achieve this target. MMD score specifically calcu-
lates the distance between softmax output of training (member) /
validation (non-member) examples in the same class, where this
defense aims to minimize the loss.

C. Model Test Accuracy vs. Attack Advantage
Figures 12 and 13 show the utility vs. attack advantage plots of
MIAShield exclusion oracles while Figures 14 and 15 show utility
vs. attack advantage trade-off comparison between MIAShield and
five prior defenses.

D. Detailed Comparison with Related Defenses
MIAShield vs. MemGuard [18]
Probability-Dependent Attacks: From Figure 4, for CIFAR-10 and
CIFAR-100, MemGuard is in the upper right direction compared to
MIAShield. Even though MemGuard offers a slightly higher utility
compared toMIAShield, it still suffers from high attack AUC. From
Figure 14, for CIFAR-10 and CIFAR-100, MemGuard lies in the upper
right region while MIAShield stays in the lower-left region near
baseline attack AUC, which indicates thatMIAShield provides more
privacy-utility tradeoffs compared to MemGuard.

Label-Dependent Attacks: From Figure 5, MemGuard is very close
to the undefended model, suggesting comparable utility as the un-
defended model. On attack AUC, however, MemGuard overlaps
with the undefended model’s attack AUC —indicating that Mem-
Guard offers zero privacy against label-only attacks (note that this
is even true for Gap attack, which does not involve manipulation).
On the contrary, MIAShield mitigates MIA near random guess. On
the x-axis, the distance between MIAShield and MemGuard is very
low, which shows that MIAShield offers almost similar utility as
MemGuard. From Figure 15, we observe that MemGuard suffers
from high privacy leakage compared toMIAShield.

MIAShield vs. Model-Stacking [33]
Probability-Dependent Attacks: From Figure 4,Model-Stacking points
lie slightly higher and left compared to MIAShield, which indicate
relatively lower privacy-utility trade-off compared toMIAShield.
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Figure 12: Model Test Accuracy vs. Attack Advantage forMIAShield exclusion oracles against probability-dependent attacks.

Figure 13: Model Test Accuracy vs. Attack Advantage for allMIAShield exclusion oracles against label-dependent attacks.

Figure 14:MIAShield vs. related work on Model Test Accuracy vs. Attack Advantage against probability-dependent attacks.

Figure 15: MIAShield vs. related work on Model Test Accuracy vs. Attack Advantage against label-dependent attacks.
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Model-Stacking also under-performs on attack advantage vs.
attack AUC (Figure 14) compared to MIAShield. Given that Model-
Stacking aims to conceal membership signals via training two mod-
els on subsets of the training set and then a meta-model is trained
based on the output of two models. If the original dataset is over-
fitted, the approach is by design vulnerable to MIA. In addition,
splitting the dataset into subsets also results in accuracy loss, unless
measures such as data augmentation are taken.

Label-Dependent Attacks: From Figure 5, for CIFAR-10 and CIFAR-
100, Model-Stacking points lie upper left compared toMIAShield.
For both datasets, MIAShield offers better privacy-utility trade-offs
than Model-Stacking. For CH-MNIST, the points overlap —showing
comparable privacy-utility trade-off for bothMIAShield and Model-
Stacking. Similarly, Figure 15 shows that Model-Stacking results
in higher attack advantage and higher attack AUC as opposed to
MIAShield which shows way lower on both.

MIAShield vs. DP-SGD [1]
Probability-Dependent Attacks: From Figure 4, for CIFAR-10, CIFAR-
100, CH-MNIST,MIAShield and DP-SGD reduce attack AUC from
≈ 71% (CIFAR-10) and 89% (CIFAR-100) to ≈ 50% (random guess).
On test accuracy, however, DP-SGD results in accuracy loss of
≈ 20%, ≈ 25%, and ≈ 14%, whileMIAShield incurs orders of mag-
nitude lower accuracy loss of ≈ 1%, ≈ −1.5% and ≈ 2%, on CIFAR-
10, CIFAR-100, CH-MNIST, respectively. For nearly the same at-
tack AUC performance as DP-SGD,MIAShield introduces ≈ 19%,
≈ 26.5%, and ≈ 14% less utility loss on CIFAR-10, CIFAR-100,
and CH-MNIST, respectively. DP-SGD [1] provides strong privacy-
utility tradeoffs against MIAs but at the expense of model utility.
The remarkably low utility loss in MIAShield stems from the en-
semble of disjoint subsets and the use of data augmentation to gain
back accuracy loss when splitting the original dataset into disjoint
subsets. From Figure 14, MIAShield and DP-SGD provide strong
privacy as they both achieve the lowest AUC and attack advantage.
For CH-MNIST, attack advantage is comparatively higher for both
methods (≈ 0.05). Label-Dependent Attacks: From Figures 5 and
15, we see that MIAShield and DP-SGD compare the same as in
probability-dependent attacks.

MIAShield vs. PATE [30]
Probability-Dependent Attacks: PATE suffers from larger attack ad-
vantage compared to DP-SGD and MIAShield over all datasets
(attack advantage is in the range 0.06− 0.1 for datasets and attacks).
Though it provides less accuracy loss compared to DP-SGD (within
≈ 10% to ≈ 15%),MIAShield still outperforms PATE both in terms
of privacy and utility loss. In Figure 4, although PATE’s attack AUC
is near baseline, it is way below MIAShield on test accuracy. In
Figure 14, PATE is slightly on the upper right side compared to
MIAShield, which implies more privacy leakage for PATE.

Label-Dependent Attacks: In Figure 5, PATE shows higher at-
tack AUC and attack advantage compared toMIAShield. Though
PATE provides noisy vote counts as the final label, it still reveals
membership signals as it does not exclude any vulnerable model as
MIAShield does. Hence, unlike MIAShield, the teacher model that
overfits training samples still participates in the noisy vote. Besides,
CH-MNIST suffers from a slightly higher privacy leakage compared
to the other two datasets due to the limited dataset size which re-
sults in a smaller number of teacher models. In Figure 15, we find
that PATE offers lower MIA resilience compared toMIAShield.

MIAShield vs. MMD-MixUp [24]
Probability-Dependent Attacks: From Figure 4, for CIFAR-10, MMD-
Mixup is close to MIAShield, which suggests that both defenses
offer nearly the same privacy-utility trade-offs. On the contrary,
for CIFAR-100 and CH-MNIST, MMD-MixUp offers close-enough
utility asMIAShield but offers less MIA mitigation due to its higher
attack AUC. Figure 14 also suggests MMD-MixUp allows relatively
larger attack advantage and attack AUC, especially on CIFAR-100
and CH-MNIST.

Label-Dependent Attacks: As can be seen from Figure 5, for
CIFAR-10, MMD-Mixup is once again close-enough toMIAShield
suggesting thatMIAShield and MMD-MixUp both offer comparable
privacy-utility trade-off (thoughMMD-MixUp shows a bit higher at-
tack AUC). However, for CIFAR-100 and CH-MNIST, MMD-MixUp
offers a comparable utility akin toMIAShield, although its attack
AUC is higher than MIAShield (especially for rotation, transla-
tion, and boundary distance attacks). The attack AUC vs. attack
advantage plot (Figure 15) points to the same conclusion as the
probability-dependent attacks.

EO Type Dataset Mnp. EO Acc. Test Acc Train Acc. Attack Type Attack AUC Attack Adv.

Undefended CIFAR-10 0, 4, 1, .961 None 69.66 98.87 GAP,RA,TA,BA .640, .760, .770, .680 .280, .510, .530, .290
MCE CIFAR-10 0, 4, 1, .546 36.24 66.44 69.30 GAP,RA,TA,BA .510, .510, .520, .510 .021, .018, .028, .026
ESE CIFAR-10 0, 4, 1, .961 99.99 68.59 67.90 GAP,RA,TA,BA .504, .503, .501, .503 .008, .027, .021, .021
ASE CIFAR-10 0, 4, 1, .961 100 68.59 67.90 GAP,RA,TA,BA .504, .500, .501, .500 .008, .014, .012, .020
CBE CIFAR-10 0, 4, 1, .961 99.23 68.28 67.52 GAP,RA,TA,BA .500, .505, .510, .520 .002, .021, .019, .030
COE CIFAR-10 0, 4, 1, .961 99.93 68.38 67.52 GAP,RA,TA,BA .495, .502, .505, .510 .007, .018, .020, .037

Undefended CIFAR-100 0, 5, 1, .996 None 39.46 97.98 GAP,RA,TA,BA .816, .852, .860, .837 .632, .700, .720, .670
MCE CIFAR-100 0, 5, 1, .996 40.26 37.34 50.20 GAP,RA,TA,BA .550, .560, .551, .547 .110, .113, .120, .109
ESE CIFAR-100 0, 5, 1, .996 100 41.12 39.93 GAP,RA,TA,BA .490, .520, 510, .510 .040, .045, .032, .063
ASE CIFAR-100 0, 5, 1, .996 99.99 41.12 39.93 GAP,RA,TA,BA .490, .501, .500, .500 .040, .020, .020, .039
CBE CIFAR-100 0, 5, 1, .996 99.02 39.52 37.90 GAP,RA,TA,BA .521, .520, .522, .510 .033, .045, .054, .060
COE CIFAR-100 0, 5, 1, .996 98.95 39.82 39.93 GAP,RA,TA,BA .510, .517, .520, .500 .030, .024, .041, .053

Undefended CH-MNIST 0, 6, 1, .984 None 83.80 99.60 GAP, RA, TA,BA .591, .710, .680, .693 .190, .400, .320, .380
MCE CH-MNIST 0, 6, 1, .984 40 80.50 85.80 GAP, RA, TA,BA .530, .520, .540, .560 .059, .032, .072, .120
ESE CH-MNIST 0, 6, 1, .984 100 81.60 81.05 GAP, RA, TA,BA .501, .500, .505, .534 .003, .003, .017, .079
ASE CH-MNIST 0, 6, 1, .984 100 81.60 81.05 GAP, RA, TA,BA .501, .497, .500, .521 .003, .003, .012, .057
CBE CH-MNIST 0, 6, 1, .984 99.65 81.20 81.00 GAP, RA, TA,BA .500, .510, .490, .530 .005, .015, .020, .056
COE CH-MNIST 0, 6, 1, .984 99.89 81.70 81.00 GAP, RA, TA,BA .500, .510, .500, .510 .004, .013, .020, .052

Table 5: MIAShield against label-dependent attacks.
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