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ABSTRACT
Federated learning (FL) has attracted growing interest for enabling

privacy-preserving machine learning on data stored at multiple

users while avoiding moving the data off-device. However, while

data never leaves users’ devices, privacy still cannot be guaranteed

since significant computations on users’ training data are shared in

the form of trained local models. These local models have recently

been shown to pose a substantial privacy threat through differ-

ent privacy attacks such as model inversion attacks. As a remedy,

Secure Aggregation (SA) has been developed as a framework to

preserve privacy in FL, by guaranteeing the server can only learn

the global aggregated model update but not the individual model

updates.While SA ensures no additional information is leaked about

the individual model update beyond the aggregated model update,

there are no formal guarantees on how much privacy FL with SA

can actually offer; as information about the individual dataset can

still potentially leak through the aggregated model computed at

the server. In this work, we perform a first analysis of the formal

privacy guarantees for FL with SA. Specifically, we useMutual Infor-

mation (MI) as a quantification metric and derive upper bounds on

how much information about each user’s dataset can leak through

the aggregated model update. When using the FedSGD aggregation

algorithm, our theoretical bounds show that the amount of privacy

leakage reduces linearly with the number of users participating

in FL with SA. To validate our theoretical bounds, we use an MI

Neural Estimator to empirically evaluate the privacy leakage under

different FL setups on both the MNIST and CIFAR10 datasets. Our

experiments verify our theoretical bounds for FedSGD, which show

a reduction in privacy leakage as the number of users and local

batch size grow, and an increase in privacy leakage as the number

of training rounds increases. We also observe similar dependencies

for the FedAvg and FedProx protocol.
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1 INTRODUCTION
Federated learning (FL) has recently gained significant interest as

it enables collaboratively training machine learning models over

locally private data across multiple users without requiring the

users to share their private local data with a central server [9, 24, 30].

The training procedure in FL is typically coordinated through a

central server who maintains a global model that is frequently

updated locally by the users over a number of iterations. In each

training iteration, the server firstly sends the current global model

to the users. Next, the users update the global model by training it

on their private datasets and then push their local model updates

back to the server. Finally, the server updates the global model by

aggregating the received local model updates from the users.

In the training process of FL, users can achieve the simplest

notion of privacy in which users keep their data in-device and

never share it with the server, but instead they only share their local

model updates. However, it has been shown recently in different

works (e.g., [18, 41, 44]) that this alone is not sufficient to ensure

privacy, as the shared model updates can still reveal substantial

information about the local datasets. Specifically, these works have

empirically demonstrated that the private training data of the users

can be reconstructed from the local model updates through what is

known as the model inversion attack.

To prevent such information leakage from the individual models

that are shared during the training process of FL, Secure Aggre-

gation (SA) protocols have emerged as a remedy to address these

privacy concerns by enabling the server to aggregate local model

updates from a number of users, without observing any of their

model updates in the clear. As shown in Fig. 1a, in each training

round, users encrypt their local model updates before sending it to

the server for aggregation. Thus, SA protocols formally guarantee

that: 1) both the server and other users have no information about

any user’s clear model update from the encrypted update in the in-

formation theoretic sense; 2) the server only learns the aggregated

model. In other words, secure aggregation ensures that only the

aggregated model update is revealed to the server. Note that these

SA guarantees allow for its use as a supporting protocol for other

privacy-preserving approaches such as differential privacy [14]. In
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Figure 1: Figure (a) illustrates the current formal privacy guarantee of FL with SA protocols and sheds light on the missing
privacy guarantee on the aggregated model information leakage which is studied in this paper. Figure (b) gives a preview of
the behavior of the privacy leakage through the global aggregated model for a CNN model as a function of the number of
users in FL. The privacy leakage follows a O(1/N ) decay as proved in our theoretical bounds.

particular, these approaches can benefit from SA by reducing the

amount of noise needed to achieve a target privacy level (hence

improving the model accuracy) as demonstrated in different works

(e.g., [23, 38]).

However, even with these SA guarantees on individual updates,

it is not yet fully understood how much privacy is guaranteed in FL

using SA, since the aggregated model update may still leak infor-

mation about an individual user’s local dataset. This observation

leads us to the central question that this work addresses:

How much information does the aggregated model leak about
the local dataset of an individual user?

In this paper, we tackle this question by studying how much

privacy can be guaranteed by using FL with SA protocols. We high-

light that this work does not propose any new approaches to tackle

privacy leakage but instead analyzes the privacy guarantees offered

by state-of-the-art SA protocols, where updates from other users

can be used to hide the contribution of any individual user. An un-

derstanding of this privacy guarantee may potentially assist other

approaches such as differential privacy, such that instead of intro-

ducing novel noise to protect a user’s model update, the randomized

algorithm can add noise only to supplement the noise from other

users’ updates to the target privacy level. We can summarize the

contributions of the work as follows.

Contributions. In this paper, we provide information-theoretic up-

per bounds on the amount of information that the aggregated model

update (using FedSGD [9]) leaks about any single user’s dataset un-

der an honest-but-curious threat model, where the server and all

users follow the protocol honestly, but can collude to learn infor-

mation about a user outside their collusion set. Our derived upper

bounds show that SA protocols exhibit a more favorable behavior

as we increase the number of honest users participating in the

protocol at each round. We also show that the information leakage

from the aggregated model decreases by increasing the batch size,

which has been empirically demonstrated in different recent works

on model inversion attacks (e.g., [18, 41, 44]), where increasing

the batch size limits the attack’s success rate. Another interesting

conclusion from our theoretical bounds is that increasing the model

size does not have a linear impact on increasing the privacy leakage,

but it depends linearly on the rank of the covariance matrix of the

gradient vector at each user.

In our empirical evaluation, we conduct extensive experiments

on the CIFAR10 [26] and MNIST [29] datasets in different FL set-

tings. In these experiments, we estimate the privacy leakage using

a mutual information neural estimator [6] and evaluate the depen-

dency of the leakage on different FL system parameters: number

of users, local batch size and model size. Our experiments show

that the privacy leakage empirically follows similar dependencies

to what is proven in our theoretical analysis. Notably, as the num-

ber of users in the FL system increase to 20, the privacy leakage

(normalized by the entropy of a data batch) drops below 5% when

training a CNN network on the CIFAR10 dataset (see Fig. 1b. We

also show empirically that the dependencies, observed theoretically

and empirically for FedSGD, also extend when using the FedAvg [9]
FL protocol to perform multiple local training epochs at the users.

2 PRELIMINARIES
We start by discussing the basic federated learning model, before

introducing the secure aggregation protocol and its state-of-the-art

guarantees.
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Figure 2: The training process in federated learning.

2.1 Basic Setting of Federated Learning
Federated learning is a distributed training framework [30] for

machine learning, in which a set of usersN = [N ] (|N | = N ), each

with its own local dataset Di (∀i ∈ [N ]), collaboratively train a

d-dimensional machine learning model parameterized by θ ∈ Rd ,
based on all their training data samples. For simplicity, we assume

that users have equal-sized datasets, i.e., Di = D for all i ∈ [N ].

The typical training goal in FL can be formally represented by the

following optimization problem:

θ∗ = arg min

θ ∈Rd

[
C(θ ) :=

1

N

N∑
i=1

Ci (θ )

]
, (1)

where θ is the optimization variable, C(θ ) is the global objective
function, Ci (θ ) is the local loss function of user i . The local loss
function of user i is given by

Ci (θ ) =
1

D

∑
(x ,y)∈Di

ℓi (θ , (x,y)), (2)

where ℓi (θ , (x,y)) ∈ R denotes the loss function at a given data

point (xi ,yi ) ∈ Di . The dataset Di at user i ∈ [N ] is sampled from

a distribution Pi .

To solve the optimization problem in (1), an iterative training

procedure is performed between the server and distributed users,

as illustrated in Fig. 2. Specifically, at iteration t , the server firstly

sends the current global model parameters, θ (t ), to the users. User

i ∈ [N ] then computes its model update x(t )i and sends it to the

server. After that, the model updates of the N users are aggregated

by the server to update the global model parameters into θ (t+1)
for

the next round according to

θ (t+1) = θ (t ) − η(t )
1

N

N∑
i=1

x(t )i . (3)

There are two common protocols for computing the model update

xi : FedSGD and FedAvg [30]. Specifically, in FedSGD, each user uses

a data batch B
(t )
i of size B sampled uniformly at random from it

local dataset Di to compute the model update as follows:

x(t )i =
1

B

∑
b ∈B(t )

i

дi (θ
(t ),b), (4)

where дi (θ (t )) is the stochastic estimate of the gradient ∇Ci (θ (t ))
of the local loss function Ci of user i computed based on a random

sample b (corresponding to (xb ,yb )) drawn uniformly from Di
without replacement. In FedAvg, each user will run E complete

local training rounds over its local dataset Di to get its model

update x(t )i . Specifically, during each training round, each user will

use all their mini-batches sampled from Di to perform multiple

stochastic gradient descent steps.

2.2 Secure Aggregation Protocols for Federated
Learning

Recent works (e.g., [18, 41, 44]) have empirically shown that some of

the local training data of user i can be reconstructed from the local

model update xi , for i ∈ [N ]. To prevent such data leakage, different

SA protocols [3, 7, 13, 16, 22, 31, 35–38, 40, 43] have been proposed

to provide a privacy-preserving FL setting without sacrificing the

training performance. In the following, we discuss the threat model

used in these SA protocols.

2.2.1 Threat Model in Secure Aggregation for Federated Learning.
Most of SA protocols consider the honest-but-curious model [9]

with the goal of uncovering users’ data. In this threat model, the

server and users honestly follow the SA protocol as specified. In

particular, they will not modify their model architectures to better

suit their attack, nor send malicious model update that do not

represent the actually learned model. However, the server and the

participating users are assumed to be curious and try to extract any

useful information about the training data of any particular user.

The extraction of the information is done by storing and analyzing

the different data received during the execution of the protocol.

On the other hand, the threat model in theses SA protocols

assumes that the server can collude with any subset of users T ⊂

[N ] by jointly sharing any data that was used during the execution

of the protocol (including their clear model updates xi , for all i ∈ T )

that could help in breaching the data privacy of any target user

i ∈ [N ]/T . Similarly, this threat model also assumes that users can

collude with each other to get information about the training data

of other users.

2.2.2 Secure Aggregation Guarantees. In general, SA protocols that

rely on different encryption techniques; such as homomorphic en-

cryption [3, 13, 38, 40], and secure multi-party computing (MPC)

[7, 16, 22, 31, 35–37, 43], are all similar in the encryption procedure

in which each user encrypts its own model update y(t )i = Enc(x(t )i )

before sending it to the server. This encryption is done such that

these protocols achieve: 1) Correct decoding of the aggregated

model under users’ dropout; 2) Privacy for the local model update

of the users from the encrypted model. In the following, we for-

mally describe each of these guarantees.

Correct decoding. The encryption guarantees correct decoding

for the aggregated model of the surviving users even if a subset

U ⊂ [N ] of the users dropped out during the protocol execution.

In other words, the server should be able to decode

Dec

(∑
i ∈V

y(t )i

)
=

∑
i ∈V

x(t )i , (5)

where V is the set of surviving users (e.g., U ∪ V = [N ] and

U ∩V = ϕ).
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Privacy guarantee. Under the collusion between the server and

any strict subset of users T ⊂ [N ], we have the following

I

(
{y(t )i }i ∈[N ]; {x

(t )
i }i ∈[N ]

����� N∑
i=1

x(t )i , zT

)
= 0, (6)

where zT is the collection of information at the users in T . In

other words, (6) guarantees that under a given subset of colluding

users T with the server, the encrypted model updates {y(t )i }i ∈[N ]

leak no information about the model updates {x(t )i }i ∈[N ] beyond

the aggregated model

∑N
i=1

x(t )i . We note that the upper bound on

the size of the colluding set T such that (6) is always guaranteed

has been analyzed in the different SA protocols. Assuming that

|T | ≤ N
2
is widely used in most of the works (e.g., [36, 37]).

Remark 1. Recently, there have been also some works that en-

able doing secure model aggregation by using Trusted Execution

Environments (TEE) such as Intel SGX (e.g., [28, 42]). SGX is a

hardware-based security mechanism to protect applications run-

ning on a remote server. These TEE-based works are also designed

to give the same guarantee in (6).

In the following, we formally highlight the weakness of the

current privacy guarantee discussed in (6).

2.2.3 Our Contribution: Guarantees on Privacy Leakage from the
Aggregated Model . Different SA protocols guarantee that the server

doesn’t learn any information about the local model update x(t )i of

any user i from the received encrypted updates {y(t )i }i ∈N , beyond

the aggregated model as formally shown in (6). However, it is not

clear how much information the aggregated model update itself

leaks about a single user’s local dataset Di . In this work, we fill

this gap by theoretically analyzing the following term.

I
priv/data

= max

i ∈[N ]
I
©«Di ;

{
1

N

N∑
i=1

x(t )i

}
t ∈[T ]

ª®¬ . (7)

The term in (7) represents how much information the aggregated

model over T global training rounds could leak about the private

data Di of any user i ∈ [N ]. In the following section, we theoreti-

cally study this term and discuss how it is impacted by the different

FL system parameters such as model size, number of users , etc. In

Section 5, we support our theoretical findings by empirically evalu-

ating I
priv/data

in real-world datasets and different neural network

architectures.

3 THEORETICAL PRIVACY GUARANTEES OF
FL WITH SECURE AGGREGATION

In this section, we theoretically quantify the privacy leakage in FL

when using secure aggregation with the FedSGD protocol.

3.1 Main Results
For clarity, we first state our main results under the honest-but-

curious threat model discussed in Section 2.2.1 while assuming that

there is no collusion between the server and users. We also assume

that there is no user dropout. Later in Section 3.3, we discuss the

general result with user dropout and the collusion with the server.

Our central result in this section characterizes the privacy leak-

age in terms of mutual information for a single round of FedSGD,
which for round t is defined as

I
(t )
priv
= max

i ∈[N ]
I
©«x(t )i ;

N∑
i=1

x(t )i

������
{ N∑
i=1

x(k )i

}
k ∈[t−1]

ª®¬ (8)

and then extends the privacy leakage bound to multiple rounds.

Before stating our main result in Theorem 1 below, we first define

two key properties of random vectors that will be used in stating

our theorem and formally state our operational assumptions.

Definition 1 (Independent under whitening). We say that a ran-
dom vector v with mean µv and non-singular covariance matrix Kv
is independent under whitening, if the whitened vector v̂ is composed
of independent random variables, where v̂ = K−1/2

v (v − µv ).

Definition 2 (Uniformly σ -log concave). A random vector v with
covariance Kv is uniformly σ -log concave if it has a probability
density function e−ϕ(v) satisfying ∇2ϕ(v) ⪰ I and ∃ σ > 0, such that
Kv ⪰ σ I.

Assumption 1 (IID data distribution). Throughout this section, we
consider the case where the local dataset Zi are sampled IID from
a common distribution, i.e., the local dataset of user i consists of IID
data samples from a distribution Pi , where Pi = P for ∀i ∈ [N ]. This
implies that the distribution of the gradients дi (θ (t ),b), for i ∈ [N ],
conditioned on the last global model θ (t ) is also IID. For this common
conditional distribution, we will denote its mean with µ

(t )
G and the

covariance matrix K(t )
G in the t-th round.

With the above definitions and using Assumption 1, we can now

state our main result below, which is proved in Appendix A.

Theorem 1 (Single Round Leakage). Let d∗ ≤ d be the rank of
the gradient covariance matrix K(t )

G , and let Sд denote the set of
subvectors of dimension d∗ of д(θ (t−1),b) that have a non-singular
covariance matrices. Under Assumption 1, we can upper bound I (t )

priv

for FedSGD in the following two cases:
Case. 1 If ∃д̄ ∈ Sд , such that д̄ is independent under whitening (see
Def. 1), and E|д̄i |

4 < ∞,∀i ∈ [d∗], then ∃ C0,д̄ > 0, such that

I
(t )
priv

≤
C0,д̄ d

∗

(N − 1)B
+
d∗

2

log

(
N

N − 1

)
, (9)

Case. 2 If ∃д̄ ∈ Sд , such that д̄ is σ -log concave under whitening (see
Def. 2) then we have that

I
(t )
priv

≤
d∗C1,д̄ −C2,д̄

(N − 1)Bσ 4
+
d∗

2

log

(
N

N − 1

)
, (10)

where: the constantsC1,д̄ = 2 (1 + σ + log(2π ) − log(σ )) andC2,д̄ =

4

(
h(д̄) − 1

2
log(|Σд̄ |

)
, with Σд̄ being the covariance matrix of the

vector д̄.

Remark 2 (Simplified bound). Note that each д̄ ∈ S
(t )
д satis-

fying Case 1 or Case 2 gives an upper bound on I
(t )
priv

. Let S
(t )
д,c be

the set of д̄ ∈ S
(t )
д satisfying either Case 1 or Case 2. Then, we can
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combine these different bounds in Theorem 1 as follows

I
(t )
priv

≤
d∗

2

log

(
N

N−1

)
+

min

д̄∈S(t )
д,c

{
d∗Ĉ1,д̄ − Ĉ2,д̄

}
(N − 1)B

, (11)

where

(Ĉ1,д̄, Ĉ2,д̄) =

{(
C0,д̄, 0

)
, if д̄ satisfies Case 1,(

C1,д̄

σ 4
,
C2,д̄

σ 4

)
, if д̄ satisfies Case 2,

where C0,д̄,C1,д̄ and C2,д̄ are defined as in Theorem 1.

Remark 3. (Why the IID assumption?) Our main result in Theo-

rem 1 relies on recent results on the entropic central [8, 15] for the

sum of independent and identically random variables/vectors. Note

that the IID assumption in the entropic central limit theorem can

be relaxed to independent (but not necessarily identical) distribu-

tions, however, in this case, the upper bound will have a complex

dependency on the moments of the N distributions in the system.

In order to high-light how the privacy guarantee depends on the

different system parameters (discussed in the next subsection), we

opted to consider the IID setting in our theoretical analysis.

Remark 4. (Independence under whitening) One of our key

assumptions in Theorem 1 is the independence under whitening

assumption for stochastic gradient descent (SGD). This assumption

is satisfied if the SGD vector can be approximated by a distribu-

tion with independent components or by a multivariate Gaussian

vector. Our adoption of this assumption is motivated by recent the-

oretical results for analyzing the behaviour of SGD. These results

have demonstrated great success in approximating the practical

behaviour of SGD, in the context of image classification problems,

by modeling the SGD with (i) a non-isotropic Gaussian vector [45],

or, (ii) α-stable random vectors with independent components [34].

For both these noise models, the independence under whitening as-

sumption in Theorem 1 is valid. However, a key practical limitation

for the aforementioned SGD models (and thus of the independence

under whitening assumption) is assuming a smooth loss function

for learning. This excludes deep neural networks that make use

of non-smooth activation and pooling functions (e.g., ReLU and

max-pooling).

Now using the bounds in Theorem 1, in the following corollary,

we characterize the privacy leakage of the local training data Di of

user i afterT global training rounds of FedSGD, which is defined as

I
priv/data

= max

i ∈[N ]
I
©«Di ;


1

N

∑
i ∈[N ]

x(t )i

t ∈[T ]
ª®®¬ , (12)

Corollary 1. Assuming that users follow the FedSGD training proto-
col and the same assumptions in Theorem 1, we can derive the upper
bound of the privacy leakage I

priv/data
after T global training rounds

of FedSGD in the following two cases:
Case. 1: Following the assumptions used in Case 1 in Theorem 1, we
get

I
priv/data

≤ T

[
C0,д̄d

∗

(N − 1)B
+
d∗

2

log

(
N

N − 1

)]
, (13)

Case. 2: Following the assumptions used in Case 2 in Theorem 1, we
get

I
priv/data

≤ T

[
d∗C1,д̄ −C2,д̄

(N − 1)Bσ 4
+
d∗

2

log

(
N

N−1

)]
. (14)

We prove Corollary 1 in Appendix B. Note that, we can combine

the bounds in Corollary 1 similar to the simplification in (11) from

Theorem 1.

3.2 Impact of System Parameters
3.2.1 Impact of Number of Users (N). As shown in Theorem 1

and Corollary 1, the upper bounds on information leakage from

the aggregated model update decrease in the number of users N .

Specifically, the leakage dependency on N is at a rate of O(1/N ).

3.2.2 Impact of Batch Size (B). Theorem 1 and Corollary 1 show

that the information leakage from the aggregated model update

could decrease when increasing the batch size that is used in up-

dating the local model of each user.

3.2.3 Impact of Model Size (d). Given our definition of d∗ in Theo-

rem 1, where d∗ represents the rank of the covariance matrix KG (t )

and d∗ ≤ d (d is the model size), the leakage given in Theorem

1 and Corollary 1 only increases with increasing the rank of the

covariance matrix of the gradient. This increase happens at a rate of

O(d∗). In other words, increasing the model size d (especially when

the model is overparameterized) does not have a linear impact on

the leakage. The experimental observation in Section 4 supports

these theoretical findings.

3.2.4 Impact of Global Training Rounds (T). Corollary 1 demon-

strates that the information leakage from the aggregated model

update about the private training data of the users increases with

increasing the number of global training rounds. This result reflects

the fact as the training proceed, the model at the server start to

memorize the training data of the users, and the data of the users

is being exposed multiple times by the server as T increases, hence

the leakage increases. The increase of the leakage happens at a rate

of O(T ).

3.3 Impact of User Dropout, Collusion, and
User Sampling

In this section, we extend the results given in Theorem 1 and Corol-

lary 1 to cover the more practical FL scenario that consider, user

dropout, the collusion between the server and the users and user

sampling. We start by discussing the impact of user dropout and

collusion.

3.3.1 Impact of User Dropout and Collusion with the Server. Note
that, in the case of user dropouts, this is equivalent to a situation

where the non-surviving users send a deterministic update of zero.

As a result, their contribution can be removed from the aggregated

model, and we can, without loss of generality, consider an FL system

where only the surviving subset Ns ⊂ [N ] users participate in the

system.

Similarly, when a subset of users colludes with the server, then

the server can subtract away their contribution to the aggregated

model in order to unmask information about his target user i . As a
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result, we can again study this by considering only the subset of

non-colluding (and surviving, if we also consider dropout) users in

our analysis. This observation gives us the following derivative of

the result in Theorem 1 which can summarized by the following

corollary.

Corollary 2. In FedSGD, under the assumptions used in Theorem 1,
if there is only a subset N (t )

s ⊂ [N ] of non-colluding and surviving
users in the global training round t , then, we have the following bound
on I

(t )
priv

I
(t )
priv

≤
d∗

2

log

(
|Ns |

|Ns |−1

)
+

min

д̄∈S(t )
д,c

{
d∗Ĉ1,д̄ − Ĉ2,д̄

}
(|Ns | − 1)B

, (15)

where the maximization in I
(t )
priv

(given in (8)) is only over the set of
non-colluding surviving and non-colluding users; and the constants
Ĉ1,д̄ and Ĉ2,д̄ are given in Remark 2.

This implies that the per round leakage increases when we have

a smaller number of surviving and non-colluding users. Similarly,

we can modify the bound in Corollary 1 to take into account user

dropout and user collusion by replacing N with |Ns |.

3.3.2 Impact of User Sampling. In Theorem 1 and Corollary 1, we

assume that all N users in the FL system participate in each training

round. If instead K users are chosen each round, then all leakage

upper bound will be in terms of K , the number of users in each

round, instead of N . Furthermore, through Corollary 1, we can

develop upper bounds for each user i , depending on the number

of rounds Ti that the user participated in. For example, taking into

account selecting K users in each round denoted by K(t )
, then the

upper bound in (13) is modified to give the following information

leakage for user i

I
priv/data

(i) = I
©«Di ;


1

K

∑
i ∈K(t )

x(t )i

t ∈[T ]
ª®®¬

≤ Ti

[
C0,д̄d

∗

(K − 1)B
+
d∗

2

log

(
K

K − 1

)]
, (16)

whereTi = K/N if the set of K users are chosen independently and

uniformly at random in each round.

Thus user sampling would improve the linear dependence of the

leakage onT (Section 3.2.4), but increase the per round leakage due

to a smaller number of users in each round (Section 3.2.1).

4 EXPERIMENTAL SETUP
4.1 MI Estimation
In order to estimate the mutual information in our experiments,

we use Mutual Information Neural Estimator (MINE) which is the

state-of-the-art method [6] to estimate the mutual information

between two random vectors (see Appendix D for more details). In

our experiments, at the t-th global training round, we use MINE

to estimate I (x(t )i ;

∑N
i=1

x(t )i |θ (t−1)), i.e., the mutual information

between model update of the i-th user x(t )i and the aggregated

model update from all users

∑N
i=1

x(t )i . Our sampling procedure

is described as follows: 1) at the beginning of the global training

round t , each user will first update its local model parameters as the

global model parameters θ (t−1)
. 2) Next, each user shuffles its local

dataset. 3) Then, each user will pick a single data batch from its

local dataset (if using FedSGD) or use all local data batches (if using
FedAvg) to update its local model. 4) Lastly, secure aggregation is

used to calculate the aggregated model update. We repeat the above

process forK times to getK samples {(x(t )i ,k ;

∑N
i=1

x(t )i ,k )}
k=K
k=1

, where

x(t )i ,k represents the model update from the i-th user in the k-th

sampling and

∑N
i=1

x(t )i ,k represents the aggregated model update

from the i-th user in the k-th sampling. Note that we use the K − th

(last) sample

∑N
i=1

x(t )i ,K to update the global model.

We repeat the end-to-end training and MI estimation multiple

times in order to get multiple MI estimates for each training round

t . We use the estimates for each round to report the average MI

estimate and derive the confidence interval (95%) for the MI esti-

mation
1
.

Lastly, when usingMINE to estimateMI, we use a fully-connected

neural network with two hidden layers each having 100 neurons

each as Tθ (see Appendix D for more details) and we perform gra-

dient ascent for 1000 iterations to train the MINE network.

4.2 Datasets and Models
Datasets.We use MNIST and CIFAR10 datasets in our experiments.

Specifically, the MNIST dataset contains 60,000 training images

and 10,000 testing images, with 10 classes of labels. The CIFAR10

dataset contains 50,000 training images and 10,000 testing images,

with 10 classes of labels. For each of the dataset, we randomly split

the training data into 50 local datasets with equal size to simulate

a total number of 50 users with identical data distribution. Note

that we describe how to generate users with non-identical data

distribution when we evaluate the impact of user heterogeneity in

Section 5.6.

Moreover, we use MINE to measure the entropy of an individual

image in each of these datasets, as an estimate of the maximal

potential MI privacy leakage per image. We report that the entropy

of an MNIST image is 567 (bits) and the entropy of a CIFAR10 image

is 1403 (bits). Note that we will use the entropy of training data to

normalize the measured MI privacy leakage in Section 5.

Models. Table 1 reports the models and their number of parame-

ters used in our evaluation. For MNIST dataset, we consider three

different models for federated learning. For each of these models,

it takes as input a 28×28 image and outputs the probability of 10

image classes. We start by using a simple linear model, with a di-

mension of 7850. Next, we consider a non-linear model with the

same amounts of parameters as the linear model. Specifically, we

use a single layer perceptron (SLP), which consists of a linear layer

and a ReLU activation function (which is non-linear). Finally, we

choose a multiple layer perceptron (MLP) with two hidden layers,

each of which contains 100 neurons. In total, it has 89610 parame-

ters. Since the MLP model we use can already achieve more than

1
During our experiments, we observe that the estimated MI does not change signif-

icantly across training rounds. Hence, we average the estimated MI across training

rounds when reporting our results.
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Models for MNIST

Name Linear SLP MLP

Size (d) 7850 7850 89610

Models for CIFAR10

Name Linear SLP CNN

Size (d) 30730 30730 82554

Table 1: Models used for MNIST and CIFAR10 datasets. Note
that SLP, MLP, and CNN represent Single Layer Perceptron,
Multiple Layer Perceptron, and Convolutional Neural Net-
work, respectively.

95% testing accuracy on MNIST dataset, we do not consider more

complicated model for MNIST.

For the CIFAR10 dataset, we also evaluate three different models

for FL. For each of these models, it will take as input an 32×32×3

image and outputs the probability of 10 image classes. Similar to

MNIST, the first two models we consider are a linear model and

a single layer perceptron (SLP), both of which contains 30720 pa-

rameters. The third model we consider is a Convolutional Neural

Network (CNN) modified from AlexNet [27], which contains a total

of 82554 parameters and is able to achieve a testing accuracy larger

than 60% on CIFAR. We do not consider larger CNN models due to

the limited computation resources.

5 EMPIRICAL EVALUATION
In this section, we empirically evaluate how different FL system

parameters affect the MI privacy leakage in SA. Our experiments

explore the effect of the system parameters on FedSGD, FedAvg
and FedProx [33]. Note that our evaluation results on FedSGD are
backed by our theoretical results in Section 3, while our evaluation

results on FedAvg and FedProx are purely empirical.

We start by evaluating the impact of the number of users N on

the MI privacy leakage for FedSGD, FedAvg and FedProx (see in

Section 5.1). Then, we evaluate the impact of batch size B on the

MI privacy leakage for both FedSGD, FedAvg and FedProx (see in
Section 5.3). Next, in Section 5.4, we measure the accumulative

MI privacy leakage across all global training rounds. We evaluate

how the local training rounds E for each user will affect the MI

privacy leakage for FedAvg and FedProx in Section 5.5. Finally, the

impact of user heterogeneity on the MI privacy leakage for FedAvg
is evaluated in Section 5.6.

We would like to preface by noting that FedProx differs from

FedAvg by adding a strongly-convex proximal term to the loss used

in FedAvg. Thus, we expect similar dependencies on the number of

users N , batch-size B and local epochs E, when using FedAvg and
FedProx.

5.1 Impact of Number of Users (N)
FedSGD. Fig. 3 shows the impact of varying N on MI privacy

leakage in FedSGD, where the number of users is chosen from

{2, 5, 10, 20, 50}, and we measure the MI privacy leakage of different

models on both MNIST and CIFAR10 datasets. We observe that in-

creasing the number of users participating in FL using FedSGD will

decrease the MI privacy leakage in each global training round (see

(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 3: Impact of the number of users (N ) when using
FedSGD. Note that we set and B = 32 for all users on both
MNIST and CIFAR10 datasets. We normalize the MI by en-
tropy of a single data batch (i.e. 32∗567 forMNIST and 32∗1403

for CIFAR10).

(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 4: Impact of the number of users (N ) when using
FedAvg. Note that we set E=1 and B = 32 for all users on both
MNIST and CIFAR10 datasets. We normalize the MI by en-
tropy of the whole local training dataset (i.e. 1200 ∗ 567 for
MNIST and 1000 ∗ 1403 for CIFAR10).

Fig. 3a and 3b), which is consistent with our theoretical analysis

in Section 3.2.1. Notably, as demonstrated in Fig. 3c and 3d, the

percentile of MI privacy leakage (i.e. normalized by the entropy of

a data batch) can drop below 2% for MNIST and 5% for CIFAR10

when there are more than 20 users.
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(a) Unnormalized MI, MNIST. (b) Unnormalized MI, CIFAR10.

(c) Normalized MI, MNIST. (d) Normalized MI, CIFAR10.

Figure 5: Impact of the number of users (N ) when using
FedProx. Note that we set E=1 and B = 32 for all users on
both MNIST and CIFAR10 datasets. We normalize the MI by
entropy of a single data batch (i.e. 1200 ∗ 567 for MNIST and
1000 ∗ 1403 for CIFAR10).

FedAvg. Fig. 4 shows the impact of varying N on MI privacy leak-

age in FedAvg. Similar to the results in FedSGD, as the number of

users participating in FedAvg increases, the MI privacy leakage in

each global training round will decrease (see Fig. 4a and 4b), and the

decreasing rate is approximately O(N ). Moreover, as shown in Fig.

4c and 4d, the percentile of MI privacy leakage drops below 0.1%

on both MNIST and CIFAR10 when there are more than 20 users

participating in FL. It is worth noting that we normalize the MI by

the entropy of the whole training dataset in FedAvg instead of the

entropy of a single batch, since users will iterate over all their data

batches to calculate their local model updates in FedAvg. Therefore,
although we observe that the unnormalized MI is comparable for

FedSGD and FedAvg, the percentile of MI privacy leakage in FedAvg
is significantly smaller than that in FedSGD.
FedProx. Similar to FedAvg, Fig. 5 shows how the MI privacy leak-

age with FedProx varies with the number of usersN . As the number

of users increase, the MI privacy leakage decreases in each training

round at an approximate rate of O(N ). With more than 20 partici-

pating users, the percentile of MI leakage drops below 0.12% under

both MNIST and CIFAR10. Same as FedAvg, we normalize the MI

privacy leakage by the entropy of the whole training dataset of a

single user.

In conclusion, while our theoretical analysis on the impact of N
in Section 3.2.1 is based on the assumption that the FedSGD protocol
is used, our empirical study shows that it holds not only in FedSGD
but also in FedAvg and FedProx.

5.2 Impact of Model Size (d)
FedSGD. From Fig. 3, we observe that increasing model size d will

increase theMI leakage during each global training round. However,

the increase rate of MI leakage is smaller than the increase rate of

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 6: Impact of batch size (B) when using FedSGD. The
MI is normalized by the entropy of a data batch, which is
proportional to the batch size B (i.e. B ∗ 567 for MNIST and
B ∗ 1403 for CIFAR10).

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 7: Impact of batch size (B) when using FedAvg. TheMI
is normalized by the entropy of a user’s local dataset, which
is a constant (i.e. 1200 ∗ 567 for MNIST and 1000 ∗ 1403 for
CIFAR10).

d . This is expected since the upper bound of MI privacy leakage is

proportional tod∗ (i.e. the rank of the covariance ofmatrix as proved

in Theorem 1), which will not increase linearly with d especially

for overparameterized neural networks (see Section 3.2.3). Finally,

we observe that the MI privacy leakage on CIFAR10 is generally

higher than that on MNIST. Since the input images on CIFAR10

have higher dimension than the images on MNIST, larger model

size are required during training. Therefore, we expect that the MI

privacy leakage on CIFAR10 is higher than that on MNIST.

FedAvg and FedProx. As shown in Fig. 4 and Fig. 5, increasing

the model size will also have a sub-linear impact on the increase of

the MI privacy leakage in FedAvg and FedProx, which is consistent

with our results in FedSGD.

5.3 Impact of Batch Size (B)
FedSGD. Fig. 6 shows the impact of varying B on the normalized

MI privacy leakage in FedSGD, where the batch size is chosen from

{16, 32, 64, 128, 256} and we use MLP model on MNIST and CNN

model on CIFAR10 during experiments. Note that we normalize

the MI by the entropy of a single data batch used in each training

round, which is proportional to the batch size B. On both MNIST

and CIFAR10 datasets, we consistently observe that increasing B
will decrease the MI privacy leakage in FedSGD, and the decay rate

of MI is inversely proportional to batch size B. As demonstrated

in Fig. 6, when there are more than 20 users, the percentile of MI

privacy leakage for a single training round can be around 4% on
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(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 8: Impact of batch size (B) when using FedProx. The
MI is normalized by the entropy of a user’s local dataset,
which is a constant (i.e. 1200 ∗ 567 for MNIST and 1000 ∗ 1403

for CIFAR10).

MNIST and 12% on CIFAR10 with batch size 16. However, such

leakage can drop to less 1% on both MNIST and CIFAR10 with

batch size 256, which is significantly reduced.

FedAvg and FedProx. Fig. 7 and Fig. 8 show the impact of varying

the batch size B on MI privacy leakage in FedAvg and FedProx,
respectively, following the same experimental setup as in Fig. 6.

Since in both FedAvg and FedProx, each user will transverse their

whole local dataset in each local training round, we normalize the

MI by the entropy of the target user’s local training dataset. As

shown in Fig. 7 and Fig. 8, the impact of B in FedAvg and FedProx
is relatively smaller than that in FedSGD. However, we can still

observe that increasing B can decrease the MI privacy leakage in

both FedAvg and FedProx. For example, with 20 users participating

in FedAvg, the percentile of MI privacy leakage at each training

round can drop from 0.8% to 0.3% when the batch size increases

from 16 to 256, achieving a reduction in privacy leakage by a factor

of more than 2×. Similarly, in FedProx, this causes a decrease in
the MI privacy leakage from 0.09% to 0.04% when the batch size

increases from 16 to 256.

In conclusion, we observe that increasing the batch size B can

decrease the MI privacy leakage from the aggregated model up-

date in FedSGD, FedAvg and FedProx which verifies our theoretical

analysis in Section 3.2.3.

5.4 Accumulative MI leakage
To evaluate how the accumulative MI privacy leakage will accumu-

late with the number of training round T , we measure the MI be-

tween training data and the aggregated model updates across train-

ing round. Specifically, given a local training dataset sampleDi , we

will concatenate the aggregatedmodel updates { 1

N
∑
i ∈N x(t )i }t ∈[T ]

across T training rounds in a single vector with dimension d ∗T .
By randomly generating Di for the target user for K times, we can

get K concatenated aggregated model update vectors. Then, we use

MINE to estimate I (Di ; {
1

N
∑
i ∈N x(t )i }t ∈[T ]) with these K dataset

and concatenated model update samples.

As illustrated in Fig. 9, the MI privacy leakage will accumulate

linearly as we increase the global training round T on both MNIST

and CIFAR dataset, which is consistent with our theoretical results

in Section 3.2.4. That also says, by reducing the times of local model

aggregation, the MI privacy leakage of secure aggregation will

be reduced. In practice, we can consider using client sampling

(a) Normalized accumulative MI,
MNIST.

(b) Normalized accumulative MI,
CIFAR10.

Figure 9: Accumulative MI privacy leakage on MNIST and
CIFAR10 datasets. Note that we normalize the MI by the en-
tropy of each user’s local dataset, whichwill not changewith
T . We use the linear model for both MNIST and CIFAR10
datasets.

(a) MNIST (b) CIFAR

Figure 10: Accumulative MI privacy leakage vs model accu-
racy of different FL algorithms. Note that we use a linear
model for case study and normalize the MI by the entropy
of each user’s local dataset.

to reduce the participation times of each client in FL, such that

the accumulative MI leakage of individual users can be reduced.

Moreover, we can also consider increasing the number of local

averaging as much as possible to reduce the aggregation times for

local model updates.

Although, the three aggregation algorithms exhibit a similar

trend with T , these algorithms can result in different convergence

speeds to a target accuracy. To highlight the effect of convergence

rate on the accumulative MI privacy leakage, we show, in Fig. 10,

how the accuracy changes with the amount of MI leakage incurred

for the three algorithms during the training process up to a maxi-

mum of 30 training rounds for FedSGD. We observe that although

FedSGD achieves lower MI leakage for a fixed number of rounds

(see Fig. 9), its slow convergence rate will make it suffer from more

leakage before reaching a target accuracy rate. For example, given

a target accuracy of 85% on the MNIST dataset, both FedAvg and

FedProx achieve the target accuracy with 0.058% and 0.057% leak-

age while FedSGD will reach 85% accuracy in later rounds resulting

in an accumulative MI leakage of 0.11% (even with smaller leakage

per round).
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(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 11: Impact of the local training round (E) when using
FedAvg. We normalize the MI by the entropy of each user’s
local dataset, and we consider N ∈ {10, 20}.

(a) Normalized MI, MNIST. (b) Normalized MI, CIFAR10.

Figure 12: Impact of the local training round (E) when using
FedProx. We normalize the MI by the entropy of each user’s
local dataset, and we consider N ∈ {10, 20}.

5.5 Impact of Local Training Epochs (E)
Fig. 11 shows the impact of varying the number of local training

epochs E on MI privacy leakage in FedAvg on both MNIST and CI-

FAR10 datasets. We select E from {1, 2, 5, 10} and N from {10, 20},

and we consider MLP model for MNIST and CNN model for CI-

FAR10. We observe that increasing the local training round E will

increase the MI privacy leakage in FedAvg. An intuitive explanation
is that with more local epochs, the local model updates become

more biased towards the user’s local dataset, hence it will poten-

tially leak more private information about users’ and make it easier

for the server to infer the individual model update from the aggre-

gated update. However, as shown in Fig. 11, increasing the local

epochs E will not have a linear impact on the increase of MI privacy

leakage. As E increases, the increase rate of MI privacy leakage

becomes smaller.

Similar to FedAvg, we observe from Fig. 12 that the local training

epochs E has a sub-linear impact on the MI privacy leakage when

using FedProx. As aforementioned, this can be attributed to the fact

that FedProx represents an application of FedAvg with the original

loss function in addition to a convex regularization term.

5.6 Impact of Data Heterogeneity
As discussed in Remark 3 of Section 3, in our theoretical analy-

sis, we considered IID data distribution across users in Theorem

1 in order to make use of entropic central limit theorem results

in developing our upper bounds on privacy leakage. However in

practice, the data distribution at the users can be heterogeneous.

(a) Normalized MI when E = 1. (b) Normalized MI when E = 5.

Figure 13: Impact of user heterogeneity when using FedAvg
on non-IID CIFAR10. Note that α = ∞ means that the user
data distributions are identical (IID users), and theMI is nor-
malized by the entropy of a user’s local dataset.

Figure 14: Impact of user heterogeneity when using FedAvg
on FEMNIST. Note that the MI is normalized by the entropy
of target user’s local dataset, which is 678 ∗ 176 .

Hence, in this subsection, we analyze the impact of the non-IID

(heterogeneous) data distribution across the users’ on the privacy

leakage. To measure how user heterogeneity can potentially impact

the MI privacy leakage in FedAvg, we consider two different data

settings. In the first setting, we create synthetic users with non-

IID data distributions following the methodology in [21]. For the

second setting, we consider FEMNIST [10], a benchmark non-IID

FL dataset extended from MNIST, which consists of 62 different

classes of 28×28 images (10 digits, 26 lowercase letters, 26 uppercase

letters) written by 3500 users.

In the first, synthetic non-IID data setting, we use Dirichlet

distribution parameterized by α to split the dataset into multiple

non-IID distributed local datasets. Smaller α (i.e., α → 0) represents

that the users’ datasets are more non-identical with each other,

while larger α (i.e., α → ∞) means that the user datasets are more

identical with each other. We choose CIFAR10 as the dataset, CNN

as the model, and use FedAvg for a case study while using a batch

size of B = 32. Note that we do not consider FedSGD since it will

not be affected by user heterogeneity. During the experiments, we

choose the α value from {1, 10, 100,∞} to create different levels

of non-IID user datasets, and we consider N ∈ {2, 5, 10, 20} and

E ∈ {1, 5}.

Fig. 13 shows how the MI privacy leakage varies with the num-

ber of users under different α , where the MI privacy leakage is
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normalized by the entropy of each user’s local dataset. We notice

that the MI privacy leakage will decrease with the number of users

consistently under different α , which empirically shows that our

theoretical results in Section 3 also holds in the case where users

are heterogeneous.

For the second, FEMNIST data setting, we split the dataset by

users into 3500 non-overlapping subsets, each of which contains

character images written by a specific user. Considering that the

size of each subset is small, in order to have enough training data,

we choose to sample N users at each training round instead of

using a fixed set of N users, which simulates the user sampling

scenario in FL. Specifically, at the beginning of each FL training

round with N participating users, we use the same target user and

randomly pick the other N − 1 out of 3500 users. Note that we

consider N ∈ {2, 5, 10, 20, 50} and E ∈ {1, 5}, and use the same

model (CNN), batch size (B = 32), and FedAvg algorithm in our

evaluation..

Fig. 14 shows how theMI privacy leakage varies with the number

of users. Similar to the synthetic non-IID data setting in Fig. 13, the

privacy leakage decreases with increasing the number of user N .

5.7 Practical Privacy Implications
Success of Privacy attacks. To provide insights on howMI trans-

lates to practical privacy implications, we conduct experiments

using one of the state-of-the-art data reconstruction attack, i.e., the

Deep Leakage from Gradients (DLG) attack from [44], to show how

the MI metric reflects the reconstructed image quality of the attack

as we vary system parameters. Specifically, we choose MNIST as

the dataset, the same SLP used in Section 4.2 as the model, and

FedSGD with batch size of 32 as training algorithm. For the data

distribution across the users, we consider the IID setting. At the

end of each training round, each user uses a batch of images with

size 32 to calculate their local gradients, which will be securely

aggregated by the server. The DLG attack will reconstruct a batch

of images with size 32 from the aggregated gradient, making them

as similar as possible to the batch of images used by the target user.

After that, we apply the same PSNR (Peak Signal-to-noise Ratio)

metric used in [44] to measure the quality of reconstructed images

compared with the images used by the target user during training.

Note that without loss of generality, we report the PSNR value of

reconstructed images by DLG attack for the first training round.

Fig. 15 shows the impact of number of users N on the privacy

leakage metric (MI) and the reconstructed image quality of DLG

attack (PSNR). We pick the image of digit 3 out of the target 32

images as an example of reconstructed images. We can observe

that increasing the number of users N decreases the MI metric as

well as the PSNR at almost the same rate. This demonstrates that

the MI metric used in this paper can translate to practical privacy

implications well.

MIPrivacy leakage under the joint use of DP and SA. To high-
light the joint effect of differential privacy with secure aggregation,

we conduct experiments on the MNIST dataset with a linear model

to measure the MI privacy leakage in the presence of centralized

DP noise added at the server after SA. Specifically, following [1], we

first clip the aggregated model updates to make its norm bounded

Figure 15: Impact of varying the number of users N , on the
reconstructed image quality (PSNR) of the DLG attack and
on the MI privacy leakage.

by C , and then add Gaussian noise with variance σ 2
to achieve

(ϵ, δ )-DP. We set C = 1, δ = 1/1200, and σ =
√

2 log( 1.25

δ )/ϵ .

Fig. 16a shows the MI privacy leakage for different (ϵ, δ )-DP
levels with SA (δ is fixed at 1/1200). As the number of users increase,

SA improves the privacy level (measured in terms of MI leakage) for

different levels of DP noise, with the effect being most pronounced

for weak DP noise level (ϵ = 5000 in Fig. 16a). Our experiments

also show that as the number of users increase, the gain from using

higher DP noise levels is diminished. In particular, with N = 1000

users, the MI leakage level for ϵ =5, 10 and 5000 are almost the

same; MI leakage is only reduced from 0.046% to 0.034% when using

ϵ = 5 instead of ϵ = 5000. In contrast, we get a reduction from

0.234% to 0.056% when there are N = 2 users.

Importantly, the reduction observed in privacy leakage due to

applying additional DP noise results in a severe degradation in

accuracy as seen in Fig. 16b, whereas privacy improvement gained

by having more users has a negligible effect on the performance

of the trained model. For example, consider the case of 1000 users.

One may achieve the same level of privacy in terms of MI leakage

(lower than 0.05% MI) with either (i) (ϵ, δ )-DP with ϵ = 10, which,

however, results in unusable model accuracy (less than 50%), or, (ii)

by aggregating the 1000 users and using a tiny amount of DP noise

(equivalent to ϵ = 5000), which achieves a model accuracy higher

than 90%.

6 RELATEDWORK
Secure Aggregation in FL. As mentioned secure aggregation has

been developed for FL [9] to provide protection against model

inversion attacks and robustness to user dropouts (due to poor

connections or unavailability). There has been a series of works that

aim at improving the efficiency of the aggregation protocol [7, 16, 22,

35–37, 43]. This general family of works using secure aggregation

disallow the learning information about each client’s individual

model update beyond the global aggregation of updates, however

there has not been a characterization of how much information the

global aggregation can leak about the individual client’s model and

dataset. To the best of our knowledge, in this work, we provide the

first characterization of the privacy leakage due to the aggregated

model through mutual information for FL using secure aggregation.
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(a) Normalized MI, MNIST. (b) Model accuracy, MNIST.

Figure 16: Effects of using DP noise together with SA on MI
privacy leakage and model accuracy. Note that we add DP
noise in aggregated model updates after SA.

Differential Privacy.Oneway to protect a client’s contributions is
to use differential privacy (DP). DP provides a rigorous, worst-case

mathematical guarantee that the contribution a single client does

not impact the result of the query. Central application of differential

privacy was studied in [1, 5, 11]. This form of central application

of DP in FL requires trusting the server with individual model

updates before applying the differentially private mechanism. An

alternative approach studied in FL for an untrusted server entity

is the local differential privacy (LDP) model [2, 4, 25] were clients

apply a differentially private mechanism (e.g. using the Gaussian

mechanism) locally on their update before sending to the central

server. LDP constraints imply central DP constraints, however due

to local privacy constraints LDP mechanisms significantly perturb

the input and reduces globally utility due to the compounded effect

of adding noise at different clients.

In this work, we use a mutual information metric to study the

privacy guarantees for the client’s dataset provided through the se-

cure aggregation protocol without adding differential privacy noise

at the clients. In this case, secure aggregation uses contributions

from other clients to mask the contribution of a single client. We

will discuss in Section 7 situations where relying only on SA can

clearly fail to provide differential privacy guarantees and comment

on the prevalence of such situations in practical training scenarios.

Privacy Attacks. There have been some works trying to empiri-

cally show that it is possible to recovery some training data from the

gradient information. [3, 32, 39, 41]. Recently, the authors in [18]

show that it is possible to recover a batch of images that were used

in the training of non-smooth deep neural network. In particular,

their proposed reconstruction attack was successful in reconstruc-

tion of different images from the average gradient computed over

a mini-batch of data. Their empirical results have shown that the

success rate of the inversion attack decreases with increasing the

batch size. Similar observations have been demonstrated in the

subsequent works [41]. In contrast to this work, we are the first to

the best of our knowledge to theoretically quantify the amount of

information that the aggregated gradient could leak about the pri-

vate training data of the users, and to understand how the training

parameters (e.g., number of users) affect the leakage. Additionally,

our empirical results are different from the ones in [3, 32, 39, 41, 41]

in the way of quantifying the leakage. In particular, we use the

Figure 17: Heatmap of the absolute values of sampled up-
dates from clients 1, 2 and 3 in the counter example. x4 and x′

4

can be distinguished even adding the aggregated noise from∑
3

i=1
xi .

MINE tool to abstractly quantify the amount of information leak-

age in bits instead of the number of the reconstructed images. We

have also empirically studied the effect of the system parameters

extensively using different real world data sets and different neural

network architectures.

7 FURTHER DISCUSSION AND
CONCLUSIONS

In this paper, we derived the first formal privacy guarantees for FL

with SA using MI as a metric to measure how much information

the aggregated model update can leak about the local dataset of

each user. We proved theoretical bounds on the MI privacy leakage

in theory and showed through an empirical study that this holds

in practice after FL settings. Our concluding observations is that

by using FL with SA, we get that: 1) the MI privacy leakage will

decrease at a rate of O( 1

N ) (N is the number of users participating

in FL with SA); 2) increasing model size will not have a linear impact

on the increase of MI privacy leakage, and the MI privacy leakage

only linearly increases with the rank of the covariance matrix of the

individual model update; 3) larger batch size during local training

can help to reduce theMI privacy leakage.We hope that our findings

can shed lights on how to select FL system parameters with SA in

practice to reduce privacy leakage and provide an understanding

for the baseline protection provided by SA in settings where it

is combined with other privacy-preserving approaches such as

differential privacy.

Can we provide differential privacy guarantees using SA?
Note that when using FL with SA, then from the point of view

of an adversary that is interested in the data of the i-th user, the

aggregated model in i− = [N ]\{i} can be viewed as noise that is

independent of the gradient xi given the last global model, which

is very similar to an LDP mechanism for the update x(t )i of user i

that adds noise to x(t )i . This leads to an intriguing question: Can we
get LDP-like guarantees from the securely aggregated updates?

Since DP is interested in a worst-case guarantee, it turns out

that their exist model update distributions where it is impossible

to achieve an ϵ < ∞ DP guarantee by using other model updates

as noise as illustrated in Fig. 17. In this case, the alignment of the
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sparsity pattern in x1, x2 and x3 allows an adversary to design a

perfect detector to distinguish between x4 and x ′
4
.

Why our MI privacy guarantee can avoid this? Although, the
previous example illustrates that DP flavored guarantees are not

always possible, in practical scenarios, the worst-case distribution

for x1, x2 and x3 that enables the distinguishing between x4 and x′
4

in Fig. 17 are an unlikely occurrence during training. For instance, in

our theoretical analysis, since users have IID datasets, then having

the distribution of x1, x2 and x3 be restricted to a subspace Sxi− ,

implies also that points generated from x4 would also belong to

Sxi− almost surely. This is a key reason why we can get mutual

information guarantee in Theorem 1: for an aggregated gradient

direction

∑N
i=1

xi , where each component is restricted to a common

subspaceSx protects the contribution of each individual component

xi as N increases.

In the worst case, where one component is not restricted to the

subspace Sx spanned by the remaining components, then we get

the privacy leakage discussed in the example above. We highlight

that through our experiments and other studies in the literature [17],

we observe that such sparsity alignment happens with very low

probability. This presents motivation for studying a probabilistic

notion of DP that satisfies (ϵ, δ )-DP with a probability at least γ ,
instead of the worst-case treatment in current DP notions, but this

is beyond the scope of the study in this current work.

Another interesting future direction is to use the results from this

work for a providing “privacy metrics” to users to estimate/quantify

their potential leakage for participating in a federated learning co-

hort. Suchmetrics can be embedded in platforms, such as FedML [20],

to guide users to make informed decisions about their participa-

tion in federated learning. Finally, it would also be important to

extend the results to model aggregation protocols that are beyond

weighted averaging (e.g., in federated knowledge transfer [19]).
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A PROOF OF THEOREM 1
Without loss of generality, using permutation of clients indices, we

will prove the upper bound for the following term

I
©«x(t )N ;

1

N

N∑
i=1

x(t )i

������
{

1

N

N∑
i=1

x(k )i

}
k ∈[t−1]

ª®¬ , (17)

where xN is the mini-batch gradient of node i which is given by

x(t )i =
1

B

∑
b ∈B(t )

i

дi (θ
(t ),b), (18)

We will use the following property of vectors with singular covari-

ance matrices in the proof of this theorem.

Property 1. Given a random vector q with a singular covariance
matrix Kq of rank d∗, there exists a sub-vector q̄ of q with a non-
singular covariance matrix Kq̄ such that q = Aq̄ where A ∈ Rd×d

∗

is a deterministic linear transformation matrix.

Let us define S
(t )
N =

1

N
∑N
i=1

x(t )i . We also use the definition of

д̄i (θ (t ),b) ∈ Rd
∗

, for d∗ ≤ d where d is the model size, which is the

largest sub-vector of the stochastic gradient дi (θ (t ),b) such that

д̄i (θ (t ),b) has a non-singular covariance matrix KḠ (t ) for all i ∈ N .

According to the definition of д̄i (θ (t ),b), we can rewrite (17) and

the term S
(t )
N as follows:

x̄(t )i =
1

B

∑
b ∈B(t )

i

д̄i (θ
(t ),b)

S̄
(t )
N =

1

N

∑
i ∈N

x̄(t )i (19)

Let also define F
(t )
N =

√
NS̄

(t )
N . We can decompose the expression

in (17) as follows:
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where: (a) follows from the fact that the mutual information is

invariant under deterministic multiplication; (b) from Property 1

(c) follows from the property of the entropy of linear transforma-

tion of random vectors [12] and the fact that x̄(t )N and F
(t )
N−1

are

conditionally independent given

{
S
(k)
N

}
k ∈[t−1]

(e.g., the last global
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model at time t ) ; (d) follows from the Schur compliment of the

matrix.

We will now turn our attention to characterizing the entropy

term h

(
F
(t )
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where: (i) makes use of the fact that the covariance matrix is the

same across clients and using the whitening definition (Definition

1) on the vector д̄i (b,θ (t )); (ii) again uses the property of entropy

of linear transformation of random vectors.

Note that the term of h

(
F
(t )
M

����{S(k )N

}
k ∈[t−1]

)
only depends onM

in the second term HM . As a result by substituting (21) in (20), we

get that
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log
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)
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Our final step is to find suitable upper and lower bounds for HM to

use in (22). Recall for the following arguments that due to whitening,

the vector д̂
(t )
b = д̂(b,θ

(t )) has zero mean and identity covariance.

A.1 Upper bound on HM

The upper bound is the simplest due to basic entropy properties. In

particular, the sum
1√
MB

∑M
i=1

∑
b ∈B(t )

i
д̂
(t )
b has zero mean and Id∗

covariance. Thus,

HM = h
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1

2

d∗ log (2πe) , (23)

where (a) follows from the fact that for a fixed first and second

moment, Gaussian distribution maximizes the entropy.

The distinction between the proof of the bound in Case 1 and

Case 2 in Theorem 1 is in the lower bound on the term HM . We

start by providing the lower bound that is used for proving Case 1.

A.2 Lower bound on HM for Case 1 in Theorem
1

For the lower bound, we will rely heavily on the assumption that

the elements of д̂
(t )
b are independent and the interesting result

that gives Berry-Esseen style bounds for the entropic central limit

theorem [8]. In particular, in its simplest form, the result states

that for IID zero mean random variables Xi , the entropy of the

normalized sum Tm =
1√
M

∑M
i=1

Xi approaches the entropy of a

Gaussian random variable Φσ 2 with the same variance σ 2
as Xi ,

such that the following is always satisfied

h(Φσ 2 ) − h(TM ) ≤ C̃
E|Xi |

4

M
, (24)

Using (24), we can find a lower bound for HM as follows:
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In other words, we have the following bound on HM

d∗

2

log (2πe) −
d∗C0,д̄

MB
≤ HM ≤

d∗

2

log (2πe) . (26)

By substituting (26) in (22) (lower bound for M = N − 1 and

upper bound forM = N ), we get that

I

(
x(t )N ; S

(t )
N

����{S(k)N

}
k ∈[t−1]

)
= HN − HN−1 + d

∗
log

(
N

N − 1

)
≤

d∗

2

log

(
N

N − 1

)
+

d∗C0,д̄

(N − 1)B
. (27)

This concludes the proof of Case 1.

A.3 Lower bound on HM for Case 2 in Theorem
1

The proof of this lower bound relies on the entropic central limit

theorem for the vector case [15] and Lemma 1 below. We start by

giving the entropic central limit theorem for the case of IID random

vectos [15].

Theorem 2 (Entropic central limit theorem [15]). Let q be a σ -
uniformly log concave d-dimensional random vector with E[q] = 0

and non-singular covariance matrix Σ. Additionally, let z ∼ N(0, Σ)
be a Gaussian vector with the same covariance as q, and let γ ∼

N(0, Id ) to be a standard Gaussian. The entropy of the normalized
sum TM =

1√
M

∑M
i=1

qi , where qi ’s are random samples, approaches
the entropy of a Gaussian random vector Z , such that the following is
always satisfied

Ent(TM | |z) ≤
2(d + 2(Ent(

√
σq| |γ )

Mσ 4
, (28)
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where Ent(TM | |z) is the relative entropy.

Lemma 1. Given a random vector q ∈ Rd with a distribution fq(y)
and Cov(q) = Σ, and defining z ∼ N(0, Σ) to be a Gaussian vector
with the same covariance as q, for σ > 0 , we get

Ent(
√
σq| |z) = −h(q) −

d

2

log(σ ) +
d

2

log(2π )

+
1

2

log(|Σ|) + σ
d

2

, (29)

and

Ent(q| |z) = h(z) − h(q). (30)

Given the assumption that д̂
(t )
b has a σ -log concave distribution

while both the term
1√
MB

∑M
i=1

∑
b ∈B(t )

i
д̂
(t )
b and д̂

(t )
b have an iden-

tity covariance matrix Σ = Id∗ given

{
S
(k )
N

}
k ∈[t−1]

, we can use (28)

with z ∼ N(0, Id∗ ). Furthermore, by using Lemma 1, we get

h(z) − HM ≤
d∗C1,д̄ −C2,д̄

MB
, (31)

where, C1,д̄ =
2(1+σ+log(2π )−log(σ ))

σ 4
and C2,д̄ =

4h
(
д̂(b ,θ (t ))

)
σ 4

, and

h(д̂(b,θ (t ))) is the entropy of the random vector д̄i (b,θ (t )) after
whitening.

Finally, using the fact that the entropy of the Gaussian random

vector z with covariance Id∗ is given by h(z) = d∗

2
log(2πe), we get

the following bound on HM

d∗

2

log (2πe) −
d∗C1,д̄ −C2,д̄

(N − 1)B
≤ HM ≤

d∗

2

log (2πe) . (32)

By substituting (32) in (22) (lower bound for M = N − 1 and

upper bound for M = N ), we can now upper bound the mutual

information term as follows

I

(
x(t )N ; S

(t )
N

����{S(k )N

}
k ∈[t−1]

)
= HN − HN−1 +

d∗

2

log

(
N

N − 1

)
≤

d∗

2

log

(
N

N − 1

)
+
d∗C1,д̄ −C2,д̄

(N − 1)B
. (33)

This concludes the proof of Theorem 1.

B PROOF OF COROLLARY 1
In the following, we define S

(t )
N =

1

N
∑N
i=1

x(t )i . Using this notation,

we can upper bound I
priv/data

as follows

I
priv/data

= I

(
Di ;

{
S
(k )
N

}
k ∈[T ]

)
(a)
=

T∑
t=1

I

(
Di ; S

(t )
N

����{S(k )N

}
k ∈[t−1]

)
(b)
≤

T∑
t=1

I

(
B
(t )
i ; S

(t )
N

����{S(k )N

}
k ∈[t−1]

)
(c)
≤

T∑
t=1

I

(
x(t )i

(
B
(t )
i ;

{
S
(k )
N

}
k ∈[t−1]

)
; S

(t )
N

����{S(k )N

}
k ∈[t−1]

)
︸                                                     ︷︷                                                     ︸

This is bounded by the result in Theorem 1

. (34)

where: (a) comes from the chain-rule; (b) from data processing

inequality Di → B
(t )
i → x(t )i , where B

(t )
i is the sampled mini-batch

from the data set of node i; (c) from data processing inequality

B
(t )
i → x(t )i → 1

N
∑
i ∈N x(t )i ;. Combining the results given in the

two cases of Theorem 1 with (34) concludes the proof of Corollary

1.

C PROOF OF LEMMA 1

Ent(
√
σq| |Z) = Ent(q′ | |Z) =

∫
fq′(y) log

fq′(y)

fZ(y)
dy

=

∫
fq′(y) log fq′dy −

∫
fq′(y) log fZ(y)dy

(a)
= −h(q′) +

d

2

log(2π )

+
1

2

log(|Σ|) +
1

2

∫
fq′(y)y

T Σ−1ydy

(b)
= −h(q) −

d

2

log(σ ) +
d

2

log(2π )

+
1

2

log(|Σ|) +
1

2

∫
fq′(y) Tr(Σ

−1yTy)dy

(c)
= −h(q) −

d

2

log(σ ) +
d

2

log(2π )

+
1

2

log(|Σ|) +
1

2

Tr

(
Σ−1

∫
fq′(y)y

Tydy

)
= −h(q) −

d

2

log(σ ) +
d

2

log(2π )

+
1

2

log(|Σ|) +
1

2

Tr

(
Σ−1Eq′[q′T q′]

)
(d )
= −h(q) +

d

2

log(
2π

σ
) +

1

2

log(|Σ|) +
1

2

σ Tr

(
Σ−1Σ

)
= −h(q) +

d

2

log(
2π

σ
) +

1

2

log(|Σ|) + σ
d

2

, (35)

where: Tr represents the trace function; (a) follows from using the

multivariate distribution of the Gaussian vector z; (b) using the

scaling property of the entropy with q′ =
√
σq; (c) from follows

from using the linearity of the trace function; finally (d) from using

the linear transformation of the random vector q′ =
√
σq and the

fact that q has the same covariance matrix Σ as z.
The proof of (30) follows directly by substituting σ = 1 in the

equation (35) and using entropy of a Gaussian vector with covari-

ance Σ.

D OVERVIEW OF MINE
In our empirical evaluation in Section 5, we use the Mutual In-

formation Neural Estimator (MINE) [6] to estimate the mutual

information, which is the state-of-the-art method for mutual in-

formation estimation [6]. Specifically, given random vectors X
and Z , and a function family parameterized by a neural network

F = {Tθ : X × Z → R}θ ∈Θ, the following bound holds:

I (X ;Z ) ≥ IΘ(X ;Z ), (36)

where IΘ(X ;Z ) is the neural mutual information measure defined

as:

IΘ(X ;Z ) = sup

θ ∈Θ
EPXZ [Tθ ] − log(EPX ⊗PZ [e

Tθ ]), (37)
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PX and PZ are the marginal distribution of X and Z respectively,

PXZ is the joint distribution ofX and Z , and PX ⊗PZ is the product

of marginals PX and PZ . As an empirical estimation of IΘ(X ;Z ),
MINE is implemented as�I (X ;Z )K = sup

θ ∈Θ
E
P
(K )

XZ
[Tθ ] − log(E

P
(K )

X ⊗P
(K )

Z
[eTθ ]), (38)

where P
(K )

(·)
is the empirical distribution of P(·) with K IID samples.

Finally, solving Eq. 38 (i.e. get the MI estimation) can be achieved

by solving the following optimization problem via gradient ascent:

�I (X ;Z )K = max

θ ∈Θ

{
1

K

K∑
k=1

Tθ (xk , zk ) − log

(
1

K

K∑
k=1

eTθ (xk ,z̄k )

)}
,

where (xk , zk ) is the k-th sample from PXZ and z̄k is the k-th
sample from PZ .
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