
Efficient Proofs of Software Exploitability for Real-world
Processors

Matthew Green

mgreen@cs.jhu.edu

Johns Hopkins University

USA

Mathias Hall-Andersen

mathias@hall-andersen.dk

Aarhus University

Denmark

Eric Hennenfent

eric.hennenfent@trailofbits.com

Trail of Bits

USA

Gabriel Kaptchuk

kaptchuk@bu.edu

Boston University

USA

Benjamin Perez

benperez1227@gmail.com

Trail of Bits

USA

Gijs Van Laer

gijs.vanlaer@jhu.edu

Johns Hopkins University

USA

ABSTRACT
We consider the problem of proving in zero-knowledge the exis-

tence of vulnerabilities in executables compiled to run on real-world

processors. We demonstrate that it is practical to prove knowledge

of real exploits for real-world processor architectures without the

need for source code and without limiting our consideration to

narrow vulnerability classes. To achieve this, we devise a novel

circuit compiler and a toolchain that produces highly optimized,

non-interactive zero-knowledge proofs for programs executed on

the MSP430, an ISA commonly used in embedded hardware. Our

toolchain employs a highly optimized circuit compiler and a num-

ber of novel optimizations to construct efficient proofs for program

binaries. To demonstrate the capability of our system, we test our

toolchain by constructing proofs for challenges in the Microcorrup-

tion capture the flag exercises.

KEYWORDS
zero-knowledge proof, NIZK, Reverie, exploits, real-world proces-

sors, MSP430, KKW

1 INTRODUCTION
The proliferation of complex and critical software systems has

given rise to the bug bounty paradigm, in which independent vul-

nerability research teams uncover and disclose ways to exploit

deployed software in exchange for financial rewards. This process

has resulted in the disclosure of several high-profile exploits in

recent years [46], and hundreds of millions of dollars are awarded

in bounties annually.

While bug bounty programs are invaluable to improving the secu-

rity of software, they are plagued by issues of trust. Because vulnera-

bility researchers and bug bounty programmanagers are not part of

the same organization—and likely have no prior relationship—each

side must trust that the other will fulfill their obligations honestly.

Specifically, bug bounty program managers must trust that vul-

nerability research teams are not overselling their capabilities and

have discovered a serious exploit. On the other hand, vulnerability

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(1), 627–640
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0036

research teams worry that those managing bug bounty programs

will adaptively change the reward after disclosure of the exploit,

claiming that the exploit does not meet some criteria.

Currently, vulnerability researchers and bug bounty program

managers bridge this trust gap by having the vulnerability research

team “prove” its knowledge of an exploit using a video recording.

Concretely, the bug bounty programwill challenge the vulnerability

research team to perform an operation that should be impossible

(e.g., launching the calculator application) and visually record the

program execution. These proofs lack soundness, as video can easily

be manipulated and cannot prove that the runtime environment

matches the one specified by the bug bounty program. As such,

the state of the art still leaves significant trust gaps within the bug

bounty ecosystem.

In this work, we design a toolchain that bridges this trust gap

using cryptographically sound proofs of exploit. These proofs give

a computational guarantee that the vulnerability research team can

exploit the system within the specified runtime environment, and

they cannot be manipulated or forged. To ensure that these proofs

do not disclose anything else to the bug bounty program team, we

employ zero-knowledge (ZK) [23, 24] proofs, a class of proof sys-

tems that reveals nothing to the verifier beyond the veracity of the

statement. Access to ZK proofs of exploit would allow vulnerability

researchers and bug bounty programs to negotiate rewards without

requiring significant leaps of faith.

Designing efficient ZK proofs of exploit requires both overcom-

ing significant engineering challenges and non-trivial theoretical

contributions. While prior work [27, 28] has contemplated similar

applications, their systems are limited to proving the existence of

potential vulnerabilities or bugs in publicly available source code—

falling short of meeting the needs of the vulnerability research

market. In our work, we precisely model real processor architec-

tures and runtime environments within the ZK protocol, allowing

our proofs to reason directly about compiled binaries. Therefore,

the proofs that our toolchain produces guarantee that the exploits

will work on hardware. This level of fidelity is essential for allowing

vulnerability research teams to precisely articulate and demonstrate

their capabilities.

Envisioned Workflows. In order to illustrate the value of our

techniques, consider three concrete ways that cryptographically

sound proofs of exploit could be used:

627

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0036


Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

(1) A vulnerability research (VR) team responds to a public bug

bounty by submitting their ZK proof of exploit. Once the

sponsor has verified the proof, a reward amount is deter-

mined and put into escrow until the VR team submits the

exploit.

(2) A VR team discovers a bug in a piece of software for which

there is no bug bounty program. If the developers choose not

to award a bounty after initial discussions, the VR team could

post the ZK proof of exploit to a public website, informing

users that their existing systems are at risk. Critically, this

does not reveal the exploit to malicious actors who might

want to use the exploit to attack live systems. We note that

this would also put pressure on developers to issue a bounty

and patch their software, as responsible users will likely

transition away from their products.

(3) A VR team discovers a bug in a piece of legacy software

which is no longer maintained, or is running on devices that

cannot perform firmware updates. The VR team can post the

proof of vulnerability to a public website, creating a highly

trustworthy warning against using the legacy software. If

using the legacy software is unavoidable, we note that users

could crowdsource funds to hire the VR team to design and

issue a patch.

We note that these are only potential examples, and proofs of exploit

may be valuable in other workflows.

1.1 Contributions
In this work, we design the first end-to-end modular toolchain that

facilitates the creation of ZK proofs of program exploitability.
1
The

toolchain takes in two inputs: (1) a public compiled binary,
2
and

(2) the prover’s private input that exploits a vulnerability in that

program. Given these inputs, it then produces a non-interactive

zero-knowledge proof (NIZK) of correct execution. This is con-

ducted by evaluating the binary as a RAM program using a Boolean

processor circuit. While previous work has explored the evalua-

tion of RAM machines using custom-built processors, our system

employs real-world processor architectures; to make our system

efficient, we introduce several novel processor-agnostic techniques

that reduce the size of the resulting circuit. Specifically, we reduce

the size of the circuit fromO(t log(t)) toO(t), where t is the number

of processor cycles executed during program execution.

To evaluate the effectiveness of our toolchain, we produced ZK

proofs of exploit for MSP430 binaries. First, we design a custom

circuit implementation of the MSP430 processor that is optimized

for ZK; this requires modeling system calls (syscalls) and com-

plex addressing modes while minimizing the number of non-linear

gates. Second, we provide the first public, generic implementation

of the Katz, Kolesnikov, and Wang (KKW) “MPC-in-the-head” ZK

protocol [33] and incorporate several significant improvements.

Specifically, we show that the MPC-in-the-head with preprocessing

paradigm that they propose can be modified to allow for optimized

1
Although prior work has explored the possibility of proving the existence of bugs in
source code, our work addresses a fundamentally harder problem of demonstrating that

a bug can be exploited into a full exploit. We carefully contrast these two approaches

in Section 3.

2
Our toolchain can naturally also operate from program source, which is compiled

using a standard compiler.

ring switching between Boolean and arithmetic representations,

resulting in significantly more efficient proofs. Finally, we demon-

strate the effectiveness of our approach by producing proofs of

exploit for the Microcorruption CTF [26], a set of hacking chal-

lenges that run on an MSP430 processor and cover many common

exploitation techniques such as buffer overflow, command injec-

tion, and ROP gadgets. The Microcorruption challenges also require

bypassing mitigations such as address space layout randomization

(ASLR), data execution protection (DEP), and stack canaries. Our

toolchain can produce NIZK proofs about MSP430 programs at 216

instructions per second and 119 KB per instruction.
3

Limitations. Our approach allows proofs about exploits that can

be represented as a predicate over the processor states over a pro-

gram’s execution. This means that there are some classes of exploits

about which we cannot provide proofs, like exploits that rely on mi-

croarchitectural bugs such as Spectre and Meltdown. Similarly, Row

Hammer-style exploits cannot be expressed as such a predicate, as

they require modeling physical properties of RAM. Accurately mod-

eling these systems is challenging, independent of zero-knowledge

proving; as such, these exploits are beyond the scope of this work.

We note, however, that only the most sophisticated actors could

successfully launch such an attack, and there are no documented

cases of such exploits being used in the wild.

We note that our proofs do not attempt to conceal the running

time of the exploit; the number of processor ticks required is in-

cluded as a public part of the statement. This is a standard relaxation

in prior work [10, 11, 13, 27], and given the trade-off of less efficient

proofs, it is easy to “pad-out” the running time to conceal the trace

length. Additionally, we note that any low-entropy probabilistic pro-

tections (e.g. ASLR) will always be vulnerable to computationally

powerful adversaries, both for adversaries attacking live systems,

e.g. using brute force, and for a prover generating a proof of exploit,
e.g. grinding on random seed selection. This means that the mean-

ing of a proof of exploit that overcomes low-entropy probabilistic

defenses are nuanced: (1) when a proof is generated interactively

and the processor randomness is sampled by the verifier, the proof

implies that the prover has an exploit strategy that works on av-

erage, but may not always work; (2) when the proof is generated

non-interactively, i.e. a computationally powerful prover may (in-

visibly) expend significant resources generating an accepting proof,

the proof implies that there exists processor randomness such that

the prover possesses a working exploit strategy.

Finally, we note that while our solution demonstrates the proofs

of exploit are already practical, there remains more effort—both

research and engineering—for the solution to be simple and easy

to use. For example, vulnerability researchers must select the state-

ment that they wish to prove carefully. Choosing the wrong state-

ment could result in a proof that verifies but is semantically mean-

ingless.

Ethical Concerns. Software exploits can be used to cause harm

to people and organizations and there exist online markets where

exploits are sold for nefarious purposes. As such, the techniques

that we develop might also be used by individuals intent on causing

harm. We note, however, that our techniques do not meaningfully

3
For hardware specifications, see Section 8

628



Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

increase the capabilities of these communities; allowing hackers

prove—with cryptographic soundness error—that they know an

exploit only serves to make exploit markets more trustworthy and

more easily monitored. Critically, our techniques do not make it

easier for attackers to discover or exploit vulnerabilities or mean-

ingfully increase a hacker’s power to conduct blackmail.

2 TECHNICAL OVERVIEW
2.1 Background: Zero-Knowledge and

Ben-Sasson et al.’s RAM Reduction
Zero-knowledge proofs of knowledge (ZK) [23, 24] allow a prover to

convince a verifier that they hold awitness demonstrating that some

public statement is a member of an NP language without revealing

anything beyond the membership itself. ZK techniques are now

concretely efficient [1, 5, 8, 12, 16–18, 22, 28, 32, 33, 52, 54, 55] and

power a number of practical applications [9, 37, 49, 56]. For formal

definitions of ZK proofs of knowledge, see [45].

Most research on ZK focuses on the case in which the state-

ment is provided in a format amenable to efficient proving systems

(e.g., a circuit or algebraic relation). Therefore, most proof tech-

niques now require that the relations have such a representation.

This requirement can be unnatural and cumbersome, forcing imple-

menters to translate a relation from its “natural” representation to

the representation supported by the prover. This process frequently

involves error-prone manual effort or the use of an immature circuit

compiler [6, 35, 39, 51].

RAM Reduction. Ben-Sasson et al. [10, 11, 13] proposed an effi-

cient circuit-based approach for proving the correct execution of

RAM programs which has also been used by more recent works [21,

27, 29]. They represent the execution of the RAM program with two

different traces. The first is the execution-ordered trace, wherein each
step represents a single iteration of a processor circuit, including

instruction bytes, a register file, and the alleged contents of memory

being accessed. The second is the memory-ordered trace, containing
the set of memory reads and writes sorted by address, with ties

broken by the operation that was executed first. Proving that these

traces represent an honest execution of the RAM program consists

of the following:

(1) Execution Trace Consistency. For each step in the execution

trace, the proof must demonstrate that the input and output

states represent a valid transition. This is done using a circuit

that represents the processor. The input to each evaluation

of this circuit is a fixed number of values drawn from RAM,

a register file, and other auxiliary data that may be useful in

verifying correct execution. This circuit will output 1 if the

circuit produces the same output as the real RAM program.

(2) Memory Trace Consistency. Each step in the trace involves

reading and writing some values from RAM. Naïvely ensuring

that these reads andwrites are consistent with the previously ex-

ecuted instructions would require verifying the entire contents

of RAM in each step. Instead, they maintain an address-ordered

list called the memory trace, consisting of tuples of the form

(step, operation, address, value), where step is a unique index in

the execution trace, operation can either be read or write, and

address is a location in memory [11]. The memory consistency

circuit ensures that each read operation contains the same value

as the most recent write operation to that address.

(3) Permutation Check. The two proofs above ensure that the

execution trace is consistent with the processor circuit and

that the operations in the memory trace are valid. However,

we must still demonstrate that these traces are consistent with

one another; that is, the values provided to the execution trace

consistency circuit correspond to the elements verified using

the memory trace consistency circuit. To ensure this consis-

tency, we employ a permutation check that proves a one-to-one

mapping between each read/write in the execution trace and

some entry in the memory trace.

2.2 Formalizing Exploits
In order to produce cryptographically sound proofs of exploitability,

we must have a formal NP language of which we can show a binary

is a member. In our work, we are able to prove any exploit that is an

arbitrary boolean predicate over the execution trace. Specifically,

we can show that repeatedly applying the processor circuit to the

processor state (for some public number of iterations) resulted in a

processor state (or series of process states) that should have been

impossible under honest execution. As such, we begin by designing

circuit representations of real-world processors that are ZK friendly.

MSP430. In this work, we demonstrate the concrete feasibility of

producing proofs of exploit for unaltered MSP430 binaries. MSP430

is a family of microprocessors commonly used in low-power envi-

ronments. The version of the MSP430 ISA on which we focus has

27 instructions, including 12 double operand instructions (e.g. MOV,
ADD, AND, SUB), 7 single operand instructions (e.g. PUSH, CALL), and
8 jump instructions (e.g. JEQ, JNE) [30, 36].

There are several significant obstacles to designing a circuit that

implements the MSP430 instruction set architecture (ISA). MSP430

goes beyond a classic load/store architecture by incorporating 13

addressing modes. We augment our processor circuit using a set

of memory hints in each step that provide the processor with the

required information to complete the cycle’s operation. The con-

tents of the memory hints are interpreted based on the current

instruction and are verified using the memory checker.

Given that the MSP430 is a small embedded processor it does

not have an equivalent to system calls (syscalls) that are common

in modern processors supported by full operating systems. Never-

theless, in some applications, including the Microcorruption CTFs,

a library can introduce the equivalent of certain system calls. We

take a similar approach as in the creators of the Microcorruption

CTFs to add syscalls to the MSP430 ISA. We will give more details

about this modeling in Section 4.2.

Processor Predicates. There are many predicates over the execu-

tion trace that are highly relevant to demonstrating exploitability.

For example, one simple predicate would be that the final program

counter (PC) in the trace is some particular challenge value; if an

attacker can set the PC arbitrarily, they likely can execute arbitrary

code. We also consider more complex predicates, like showing that

a syscall was executed during the trace that should have been im-

possible (e.g. turning on the device’s microphone). Predicates about

syscalls can also be used to show privilege escalation, by show-

ing that the GETEUID syscall returned the value 0. Selecting the

629



Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

One-Time Statement-Independent Preprocessing

Statement-Dependant Computation

Private Input

Software

(MSP430 Assembly)

Processor Model

(MSP430)

Processor

Emulator

(MSP430 Emulator)

Circuit Compiler

(Verilog and Yosys)

RAM Reduction Assembler

Single

Instruction

Processor

Permutation

Proof

Circuitry

Memory

Checker

Circuitry

Trace Length Zero-Knowledge

Prover

(Reverie)

Witness: Program Trace

Statement:

Processor Circuit

π

Figure 1: A high level overview of our toolchain for producing efficient zero-knowledge proofs for RAM programs on real processors. (1) The process starts with
a one-time preprocessing phase which compiles the processor model into building blocks which are later assembled into a complete circuit. The circuit compiler
(which we instantiate using Verilog and Yosys) generates the circuit for evaluating a single instruction, and the circuitry required to perform the permutation
proof and check memory correctness. (2) When the prover wishes to create a proof, they feed the software, represented as assembly in the appropriate ISA, and
any private program inputs into the processor emulator. The processor emulator runs the program to its conclusion and outputs the execution trace. (3) Based
on the length of the trace, the RAM Reduction Assembler takes the preprocessed circuit components and creates the completed circuit. (4) The program trace,
produced by the processor emulator, and the completed circuit, produced by the RAM reduction assembler, into any zero-knowledge prover to produce the final
proof. We include the instantiations we use for our proofs of vulnerability in parenthesis.

right predicate—or set of predicates—is an exploit-specific task that

can be done by either the vulnerability researcher (once they have

found an exploit) or the bug bounty program when setting their

bounties.

To support such predicates, we add syscall support to our proces-

sor circuit, making it the first ZK processor to include syscalls.When

the program encounters a syscall, the processor freezes the registers

and enables the finite state machine. The processor executes the

syscall for an arbitrary number of steps until some exit condition is

met (e.g., for the GETS syscall, until the processor reads a maximum

number of characters or encounters a null byte). The processor

then unfreezes and continues execution. This allows syscalls to be

unrolled on the fly without requiring significant, special-purpose

circuitry.

2.3 Producing Efficient ZK Proofs of Exploit
With a formalization of exploits in hand, we develop a toolchain

to produce proofs of exploit. An overview of our toolchain can

be found in Figure 1, including a processor emulator, the RAM

reduction assembler, and the ZK prover. The remaining task is to

develop the necessary cryptographic optimizations such that the

proofs of exploit that our toolchain produces are efficient.

Notation. We use [b] for a share of a bit b, similarly we will use

JxK for an arithmetic share of an element x in an arithmetic ring.

Reverie. Our second main technical contribution in this work is

Reverie, the first publicly available,
4
general use implementation of

the KKW MPC-in-the-head ZK protocol [33]. Reverie is written in

Rust and incorporates many optimizations to make it more efficient,

including bit slicing, memory efficient representations of the circuit,

and proof streaming. The prover can compute the root of a Merkle

4
https://github.com/trailofbits/reverie

tree with 256 leaves in just 8 seconds, significantly faster than prior

NIZK implementations (see Table 2 in Section 8).

Reverie also improves on KKW’s initial protocol by including

efficient ring switching based on edaBits [20]. To switch an element

between rings, the prover generates shares of random elements

in the two relevant rings during preprocessing. The prover then

masks the value, reconstructs it in the clear, ring switches the public

element, and removes the secret-shared mask.

For example, consider ring switching a value v ∈ F
2
32 into

an equivalent binary decomposition (v1,v2, . . . ,v32) ∈ F
32

2
. The

prover begins by generating random sharings of the values r ∈ F
2
32

and (r1, r2, . . . , r32) ∈ F
32

2
for the simulated players during the pre-

processing, subject to the constraint r =
∑
32

i=1 ri2
i
. During online

execution, the simulated parties publicly reconstruct the valuev +r
and then decompose the public value into its binary representa-

tion (v1 + r1), . . . , (v32 + r32). The simulated parties then subtract

their local shares of r1, . . . , r32, resulting in a valid secret sharing

of the values (v1,v2, . . . ,v32) ∈ F
32

2
. This ring switching protocol

is very efficient because generating verifiable, structured corre-

lated randomness during preprocessing is very communication and

computation efficient when using the KKW ZK protocol.

Efficient PermutationProof.The RAM reduction outlined in Sec-

tion 2.1 uses a routing network to implement the permutation proof

between the execution trace and the memory trace. The routing

network has asymptotic complexityO(t log(t)), where t is the trace
length, and large constants. A more efficient permutation proof,

first explored by [15, 41], shows that two secret lists {Ai }i ∈[ℓ]
and {Bi }i ∈[ℓ] are permutations by sampling a random challenge

x
$

←− Zq and testing if

ℓ∏
i=1
(Ai − x)

?

=

ℓ∏
i=1
(Bi − x).

630

https://github.com/trailofbits/reverie


Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

To ensure that this test has negligible soundness error, it must be

performed in a large field. However, our MSP430 processor operates

over F2. Thus, the ring switching technique introduced above is

vital to facilitating this permutation proof. Without access to an

efficient ring switching technique, the test would have to be carried

out in a small field with large soundness error, or the processor

would need to operate over a large field, which would introduce

high computational overhead. Concretely, the permutation proof

costs just 380 AND gates and 2 multiplications for each element in

the list.

Evaluation. We evaluate our toolchain by producing ZK proofs

of exploitability for the Microcorruption Capture The Flag (CTF)

exercises. Microcorruption CTF is a series of popular embedded

device (MSP430) exploitation exercises that are freely available on-

line. These exercises serve as a common entry point for individuals

wishing to learn binary exploitation. Each challenge is named after

a world city (see Table 1), and the exercises cover many common

exploit techniques, such as heap and buffer overflows. Additionally,

the processor implements important mitigation strategies, such as

stack canaries, DEP, and ASLR. Thus, producing proofs of exploits

for the Microcorruption CTF exercises demonstrates a wide variety

of exploitation techniques, demonstrating the practicality of our

approach.

The prover begins by initializing the processor emulator to a

fresh state and loads the public binary. The prover then emulates

the binary when run on the private input, which produces an ex-

ecution trace containing the processor state for each step and a

memory trace containing the memory operations for each step.

This emulation process stops once the desired processor state is

reached (e.g., the processor makes a restricted syscall). The prover

then assembles the unrolled circuit from the pre-compiled library

of components based on the length of the traces. The assembled

circuit is provided as the statement to the ZK prover, and the traces

are provided as a witness. Note that the only requirement we make

of the ZK prover is that it is capable of performing ring switching.

Concretely, in one second, our implementation can produce a

NIZK of correct processor execution of 216 MSP430 instructions

requiring 119 KB of communication per instruction.

3 RELATEDWORK

Modeling RAM Programs in ZK. TinyRAM [11] and Bubble-

RAM [27] are two custom ISAs developed to maximize performance

with existing ZK schemes. They both use a load/store architecture

with fewer than 30 instructions and ensure that decoding each in-

struction is inexpensive within a ZK prover. Among such works are

vRAM [57] which constructs verifiable computation with a univer-

sal trusted setup for the TinyRAM ISA. The aims of our work differs

from those in the verifiable computation literature in a number of

important ways: (1) the proof size is linear (in particular the veri-

fier complexity is linear). (2) we aim for concretely efficient prover

complexity by using only symmetric key operations as opposed,

e.g. to pairings in vRAM. (3) our techniques do not rely on a trusted

setup (universal or otherwise) (4) we target real-world architecture.

Despite proving a much more complicated architecture the proving

speed (emulated CPU cycles/second) in this work (for MSP430) is

≈ 5 times greater than vRAM (for TinyRAM). While Ben Sasson et

al. [13] later modified TinyRAM to have a von Neumann architec-

ture, BubbleRAM remains a Harvard architecture processor, which

prevents it from reasoning about exploits that inject malicious code

onto the stack or heap. As we discuss in the next subsection, the use

of these custom ISAs limits the capabilities of a prover. For example,

provers compile source code to the custom ISA, and source code is

not available for many pieces of security critical software.

Proofs of Exploitability. In discussing prior work, we emphasize

the difference between a vulnerability and an exploit. An exploit

is maliciously crafted program input that produces unintended

program behavior—or may even allow an attacker to affect the

state of the computer beyond the program itself. A vulnerability,

on the other hand, is a software weakness that could potentially be

used in designing an exploit, for example an out-of-bounds mem-

ory write or a use-after-free bug. Vulnerabilities do not depend

on architecture-specific constructs like the stack, heap, or mitiga-

tions such as ASLR, DEP, and pointer authentication codes (PAC).

An exploit, however, is intrinsically linked to processor semantics.

Therefore, it is not sufficient to reason only about source code when

demonstrating the existence of an exploit.

Prior work on using ZK proofs for vulnerability disclosure [27,

28] has focused on manually annotating C code with assertions that

a prover must demonstrate they can violate. This is accomplished

by compiling the annotated code either directly to a circuit or to a

custom ZK processor (e.g., TinyRAM [11] or BubbleRAM/Bubble-

Cache [27, 29]). While this approach is capable of proving many

interesting vulnerabilities with extremely high efficiency, it has

several drawbacks.

First, annotation of complex, real-world programs is time-con-

suming and error-prone. Source annotations cannot express many

of the most commonly exploited classes of bugs [38, 48], and even

the bugs theoretically detectable with annotations are difficult for

programmers to find. Even if all these limitations could be overcome,

this approach inherently requires access to source code, which is

often not available.

Second, bugs in source do not always translate to exploits on

a real processor. The example used by Heath and Kolesnikov [28]

focuses on proving the existence of an out-of-bounds memory

access—an operation many compilers will automatically prevent.

Finally, while bugs in source are common, successful exploits are

rare. Fuzzing campaigns often find a large number of software bugs,

but rarely convert these bugs into meaningful exploits. Research

teams are unlikely to disclose a simple out-of-bounds read in ZK, as

most such bugs do not lead to meaningful system compromise. Real

bug bounties and vulnerability research consists of demonstrating

how to leverage a vulnerability into an exploit (e.g., privilege es-
calation, arbitrary code execution, or reading protected memory).

Proving these capabilities cannot be done with source alone and

are intrinsically linked to the compiled binary and architecture.

For example, Heath et al. [29] claim that they can prove the exis-

tence of vulnerabilities in sed and gzip despite using a Harvard

architecture. While it is true that they can prove vulnerabilities on

such an architecture, they would not be able to demonstrate that

the vulnerability is exploitable if the exploit involved executing

malicious code off the stack, since the machine would not be able

to fetch instructions stored in RAM.

631



Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

4 MODELING REAL-WORLD PROCESSORS
In this section we discuss the technical details of modeling our

target real-world processor, MSP430. First we discuss the necessary

modeling to cover the basic MSP430 processor semantics and then

discuss additions to the processor semantics that are helpful when

modeling exploits.

4.1 Modeling MSP430 Processor Semantics
The MSP430 is a ubiquitous microcontroller [42], making it the

perfect target for proofs of exploit. The MPS430 architecture con-

tains 27 instructions, 13 addressing modes, and 16 registers with

16-bit words. We design a circuit which models the state transition

associated with each of these instructions. We note, however, that

MSP430 is not a load/store architecture—unlike the processor de-

signed for ZK proofs—which increases the complexity of modeling

memory.

Modeling Memory. Prior work on ZK processors use load/store

architectures to cleanly separate memory accesses and logical oper-

ations. This allows the RAM reduction to treat non-memory opera-

tions as no-ops when performing the memory consistency check

and permutation proof. However, many real-world processors, such

as the MSP430, use a variety of addressing modes that prevent such

a clean distinction from being made. For example, consider the in-

struction add add @r5, 2(r6), which adds the contents of memory

at the address r5 to the contents of memory at address r6+2 and
stores the result at address r6+2. Not only does this instruction

both access memory and use the processor’s ALU, but it actually

performs two reads and a write.

Our processor model handles such instructions by augmenting

each instruction in the program trace to include threememory hints,
which are used by the decoded instruction and verified with the

memory checker. The hints are separated into two read hints, src
and dst, and a single write hint. The hints each contain the relevant

information for the implicit load/store operations encoded into

some instructions (e.g. the address and value of memory to read-

/write). Specifically, the memory hints have the following structure:

• 1-bit On/Off indicator

• 16-bit Memory Address

• 19-bit Timestamp

• 1-bit Read/write indicator

• 1-bit Byte Mode indicator

• 1-bit Byte Mode Offset

• 16-bit Value

MSP430 supports byte operations on memory, so each memory

hint indicates if it is in byte mode and the index of the byte on

which the instruction is operating, if applicable.

Because MSP430 is a Von-Neumann architecture, fetching in-

structions constitutes a memory read. Each MSP430 instruction

consists of a one-word opcode and up to two immediates, each of

which requires its own read hint. Thus, the memory trace will con-

tain six entries for each entry in the program trace. Checking these

memory operations for consistency is straightforward, requiring

only 194 AND gates per entry, so the memory checker requires

1,164 AND gates/cycle.

4.2 Interacting with the Program
In order to facilitate proofs of exploit, we choose to extend the

base MSP430 ISA with cleanly modeled methods that allows the

prover to interact with the program. Specifically, we are concerned

with loading the program into the runtime, getting user inputs,

and providing the program with entropy. While there are many

potential ways to add these capabilities to the base ISA, we choose

to add system calls that support these capabilities. This choice is
inspired by the Microcorruption CTF challenges, which modeled

system calls similarly in their version of the MSP430 ISA; by mir-

roring the choices made by the designers of the Microcorruption

CTF challenges, we are able to “natively” support solutions for the

challenges by directly mapping their syscalls onto our syscalls.

Modeling System Calls. System calls are an integral component

of real-world software, providing the program access to key re-

sources, including randomness, memory management, and user

input. Many successful exploit strategies—and the techniques used

to prevent such exploits—depend on the low-level details of syscall

operations. For example, many processors implement memory pro-

tections such as ASLR by using system entropy to randomize the

address space layout. Prior work on ZK processors ignores syscalls

and does not provide the processor with randomness.

We provide a general approach to handling syscalls initiated

via software interrupts. Our approach does not rely on adding

new instructions or storing information in registers or memory,

as this would change the low-level processor behavior we aim to

preserve. Instead, we augment each trace entry with a 48-bit value

that encodes a finite state machine representing the current syscall

status. This finite state machine is fed to a co-processor which is

only triggered once a software interrupt is called. When a syscall

is triggered, the following sequence of events occurs:

(1) The processor freezes the register file, turns on the syscall flag,

and loads the arguments and opcode into the syscall register.

(2) Execution continues, but the processor operates on the syscall

register instead of the register file.

(3) Once the exit condition has been met, the syscall flag is turned

off and normal execution resumes.

To better demonstrate this approach, we give the full details for our

implementation of the LOAD, GETS, and RAND syscalls.

Getting User Input. Before program execution begins, the prover

uses the LOAD syscall to pre-load their input into a special memory

bank that is read-only once program execution begins. Pre-loading

input is important for reasoning about exploits that circumvent

ASLR and stack canaries, since knowing or influencing the random

values used in such mitigations would make significant parts of the

exploit trivial.

When the processor starts execution, the PC is set to the first

instruction in the input binary, but the syscall co-processor is turned

on and set to LOAD. The first instruction of the trace declares how

many bytes of input will be loaded, and this value is placed in the

syscall register. The processor will then continue to execute LOAD
instructions, each time decrementing the syscall register until it

reaches zero. At this point the syscall flag is turned off and program

execution begins. At each step of the program, the processor checks

that the prover cannot call LOAD after execution begins.

632



Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

Once the input is pre-loaded, the processor accesses it via the

GETS syscall. GETS takes two arguments off the stack: the address

to which the input will be written, and the maximum allowed

length of the input in bytes. The syscall will exit once a null byte is

encountered or the maximum number of bytes is written.

When our MSP430 model encounters a call to GETS, the register
file is frozen by turning on the syscall flag, and the target address

and length are loaded into the syscall register. Subsequent clock

cycles will use the memory hints in the trace to load user input byte-

by-byte into memory, incrementing the address and decrementing

the length variable in the syscall register. At each step, the input

is checked for a null byte and the length variable is verified not to

be zero. If either is zero, the syscall flag is turned off and normal

processor execution resumes. Using this approach, the processor

can emulate syscall operations — including the unrolling of variable

length loops within the syscall logic — without altering the binary

or memory state.

Processor Entropy. Our target version of MSP430 uses the RAND
syscall to generate random values. In general, generation of high-

entropy random values can be done using Fiat-Shamir. However,

sometimes applications may use low-entropy random values, which

cannot be generated using Fiat-Shamir while providing strong

soundness guarantees, as the prover could grind to ensure that

the randomness has the desired value. For example, 16-bit random

values are used when calculating ASLR offsets and stack canaries.

This limitation is inherent in the architecture itself — defenses

that rely on low-entropy randomness will always be vulnerable to

computationally powerful adversaries.

To provide some meaningful soundness in the case where low

entropy defenses are used, we design our processor to naturally

extend to interactive proofs in which the verifier can supply ran-

domness directly. First, the prover commits to all inputs that will

be fed into the program by loading these values into a special mem-

ory bank prior to program execution, as specified in the previous

section. Then, the verifier supplies a random seed value seed from

which all randomness for the RAND syscall will be generated.
Specifically, the processor executes a special GETRANDSEED syscall

to load the verifier supplied randomness seed into an auxiliary

RAND register. The GETRANDSEED syscall can only be called once

and only after the initial LOAD syscall has finished executing. The

processor circuit will fail if the prover attempts to call GETRANDSEED
again.

Once the prover has completed the LOAD phase, they execute the

following steps in the clear:

(1) Show the verifier that the PC is set to the program entry

point, the syscall flag is turned on, and the syscall opcode is

set to GETRANDSEED
(2) Acquire the randomness seed from the verifier

(3) Load the randomness into a public auxiliary RAND register

(4) Turn the syscall flag off

Since the syscall flag is turned off once GETRANDSEED is finished,

program execution must proceed normally from the binary en-

try point. During each processor cycle, the prover will evaluate

PRF(seed, step), where PRF is a pseudorandom function, and step
is a counter indicating the number of processor cycles that have

been executed. The first 16 bits of the output are then fed into the

processor as the potential output of the RAND syscall. We empha-

size that returning only 16 bits of randomness is inherent to the

architecture. By making the prover commit to all their inputs to the

program before learning the seed, they must commit to an exploit

strategy that can work for any value of randomness generated.

We repeat that the meaning of a proof of exploit that circumvents

low-entropy protections is nuanced; we refer the reader back to

Section 1.1 for a discussion.

Users are provided with the option to disable processor random-

ness, since many applications do not need this feature. Additionally,

note that running these proofs interactively is only necessary when

there are low-entropy defense mechanisms that the prover must

overcome, like ASLR.

5 FORMALIZING EXPLOITS
Our aim is to provide vulnerability researchers with the necessary

tools to precisely demonstrate exploits in real software without

revealing underlying techniques. Therefore, we focus on creating a

system that allows the prover to show that it knows some inputs

such that running a public binary on those inputs on a real machine

would result in a concrete exploit. This proof requires two compo-

nents: demonstrating a given trace is valid, and demonstrating the

trace triggered an exploit. The first component is handled using the

previously discussed RAM reduction. We now discuss how exploits

are shown during execution.

Many exploits can be detected by determining whether the at-

tacker has arbitrary PC control. In this setting, the verifier chal-

lenges the prover to demonstrate they were able to produce a valid

program trace concluding with the PC set to the challenge address.

A similar protocol is used in the context of exploits that gain the

ability to arbitrarily read or write memory.

A variety of exploits conclude with the execution of a syscall that

should not have been accessible to the attacker. In an embedded sys-

tems context, this may manifest itself as turning on a microphone,

turning off a security camera, or unlocking a door. This particular

notion of exploit is relatively straightforward to formalize in a ZK

context. The prover simply needs to demonstrate that at some point

during a valid program execution, a known malicious syscall was

executed. This can be checked at the processor level by checking

at each step whether the syscall flag is on and then examining the

syscall opcode as specified in Section 4. All of these checks can be

fed to a large OR statement at the conclusion of the proof to demon-

strate whether a malicious syscall was executed. As we discuss

in Section 8, this is how we formalize the Microcorruption exploits,

all of which conclude in a call to the special UNLOCK interrupt.

Proving privilege escalation exploits — exploits which allow the

prover to execute commands with root privileges on the machine

— is more complicated. Generally, this would involve calling the

GETEUID syscall and demonstrating the output is 0, using a similar

approach as above. However, this would require modeling a runtime

environment complex enough to have a notion of user privileges.

We leave modeling a complex runtime environment as important

future work.

Generally speaking, our approach facilitates proofs about ex-

ploits that can be represented as a Boolean expression on each

processor state across the entire program execution. All of the

633



Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

above techniques are examples of this broader paradigm (e.g., there
exists a step of execution such that the instruction loaded by the

processor is a malicious syscall). While this approach is sufficiently

general to cover most common exploits, it has some fundamental

limitations. In particular, our proof of exploit toolchain is incapable

of reasoning about exploits that rely on microarchitectural bugs

such as Spectre and Meltdown. Similarly, a Row Hammer type

attack would also be out of scope since unintended physical proper-

ties of RAM cannot be simulated within a ZK context. Fortunately,

most real-world exploits do not rely on microarchitectural bugs, so

we do not view this as a major limitation.

Barriers to Easy Use. Although our toolchain allows provers to

produce proofs for any predicate over the processor states, the pro-

cess of selecting the right predicate may be non-trivial—especially

for vulnerability researchers without zero-knowledge expertise.

Indeed, in our envisioned workflow (Section 1), we imagine that a

sponsor might post a bug bounty to which vulnerability researchers

could respond. One approach would be to have the bug bounty itself

formalize the statement to prove in zero-knowledge; this approach

is implicitly used in the Microcorruption CTF exercises, as the

UNLOCK syscall is part of the challenge description. In more com-

plex systems, there may be a huge number of potential processor

states that would be considered problematic, such that enumerat-

ing all the processor states would be impractical. In such cases, the

burden of selecting the correct statement—and demonstrating the

statement’s importance—would fall to the vulnerability researcher.

Making these processes easier is important future work.

6 CIRCUIT COMPILER
The ZK proof system that we target accepts statements as either

Boolean or arithmetic circuits. There are several tools created specif-

ically for ZK statement generation such as Frigate [40], libsnark [34],

and Circom [4], but they mostly target arithmetic circuits, which

are not performant when handling real-world processor models.

Frigate synthesizes code written in a subset of C. However, we

found that it did not give us the granularity necessary to optimize

circuits for MSP430.

Instead, we chose to write our processor circuit in Verilog, a

widely used hardware description language (HDL) with mature

open-source tooling. In particular, we used Yosys [53] to synthesize

our core circuit components and Icarus Verilog for simulation and

testing. Using Verilog allowed us to divide our RAM reduction into

a collection of discrete Boolean modules, including the single-step

MSP430 processor circuit and the memory consistency checker.

We use Yosys to synthesize these components to a BLIF [19] file

that encodes the hierarchical arrangement of the components and

their logic gates. Finally, we assemble these components into a

flat, non-hierarchical encoding of the RAM reduction in the Bristol

Fashion [2] using a circuit flattening library.

We designed our in-house flattener to take advantage of the fact

that our circuit is highly structured, so we can aggressively cache

flattened versions of the components and avoid repeating work.

Using this approach of flattening components once and stapling

them together, our flattening library can assemble the full RAM

reduction for traces with 7k steps in 6 minutes using 20GB of RAM—

an improvement of 99% in running time and 88% in RAM usage

over using Yosys for flattening.

As described in Section 7.1, our permutation proof is prohibi-

tively complex to be evaluated via a Boolean circuit, so we elected

to specify it via an arithmetic circuit on Z
2
64 . Yosys and Verilog

are only designed to operate on Boolean circuits, which presents

a problem because using a HDL like Verilog is substantially eas-

ier than working at the level of individual gates when designing

complex circuits.

We, however, use blackbox modules—a feature of Yosys designed

to connect circuits to unknown hardware—to create models for the

arithmetic logic gates in Verilog, which we then used to specify our

permutation proof circuit. While we still had to ultimately specify

the circuit at the gate level, working in Verilog broke up the circuit

into hierarchical modules and assigned names to wires, greatly

reducing debugging time.

After synthesizing the permutation circuit to a BLIF file, we

pass it to our circuit compositor—a modified version of the circuit

flattener that can accept a flattened Boolean circuit and a flattened

arithmetic circuit and generate a specification for connecting the

outputs of the Boolean circuit to the inputs of the arithmetic circuit

using specialized BooleanToArithmetic gates. The 3-tuple of circuits

consisting of the Boolean circuit, the connection circuit, and the

arithmetic circuit is then passed to Reverie, which evaluates it as

the complete ZK statement.

7 CRYPTOGRAPHIC OPTIMIZATIONS

Choice of Proof System. To instantiate our toolchain and opti-

mize our proof system, we must first select a proof system. A num-

ber of considerations are relevant when selecting a suitable proof

system for our particular application, most notably: (1) Prover/Veri-

fier Complexity: Many widely deployed ZK proof systems are based

on succinct non-interactive arguments of knowledge (SNARKs)

(e.g. [25, 44]), which produce compact proof size at the expense of

high prover runtime, complicated knowledge assumptions, and a

trusted setup phase.While these tradeoffs are practical for space-lim-

ited applications, e.g. decentralized ledgers, the overhead of this

approach would limit the complexity of RAM programs and exploits

about which we could reason. Therefore we prioritize reducing con-

crete prover time rather than bandwidth. In order to somewhat

offset the larger proof size we ensure that proofs can be verified in a

streaming manner, meaning the verifier can process the proof as he

is downloading it (without storing it). (2) Interactive vs Non-inter-

active: While interactive (private-coin) proofs systems can enable

more efficient/flexible proofs, we opt for non-interactive proofs to

enable a wider variety of use cases, as discussed in the introduc-

tion. This includes posting the proof for public verification and

inclusion in long-term bug tracking logs. Non-interactivity can also

be valuable when the prover may no longer be online or moving

proofs across air-gaps (security researchers might be wary about

allowing arbitrary people to open connections to the server holding

the sensitive zero-day exploit).

These considerations lead us to believe that the KKW proof

system [33] is well-suited for our application. We give a summary

of MPC-in-the-head and the KKW proof system in Appendix A.

634



Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

Input. Secret lists A = {Ai }i ∈[ℓ] and B = {Bi }i ∈[ℓ].
Public Input. A random challenge x ∈ Zq .
Circuit. Compute and compare

ℓ∏
i=1
(Ai − x)

?

=

ℓ∏
i=1
(Bi − x)

Output. 1 if the above check is valid, 0 otherwise.

Figure 2: Unknown Permutation Proof Circuit (Cshuffle). The circuit checks if
two secret lists are permutations of each other.

Throughout this section we denote the party that executes the

preprocessing in KKW as P0 and use n to denote the number of

parties in the MPC.We note that several improvements to the initial

KKW system have been proposed recently, e.g. [5, 18], that could
be integrated into our approach in future work.

7.1 Memory Permutation Proof (over Zq)
Anunknown permutation proof is a zero-knowledge proof of knowl-

edge that shows that the prover has two lists that are a permutation

of each other, i.e. list A = {Ai }i ∈[ℓ] and B = {Bi }i ∈[ℓ] such that

π (A) = B for some permutation π . As the verifier does not know
the lists nor the permutation, the proof is done with respect to

a commitment to each list. We require an unknown permutation

proof that will be efficient within MPC-in-the-head.

We implement the unknown permutation proof using the circuit

defined in Figure 2 over a large ring, based on techniques first

introduced by Bootle et al. [15], and first explored by Neff [41]. This

stand-alone circuit receives two secret shared lists and a public

randomly selected challenge x . Within the circuit, we viewA and B
as the set of roots of two polynomials, evaluate them at x and check

equality, i.e. asserting
∏

i (Ai − x) =
∏

i (Bi − x). Intuitively, perfect
completeness follows on the commutativity of multiplication, while

statistical soundness relies on the Swartz-Zippel lemma stating that

two polynomials with distinct roots share an evaluation at a random

point only with small probability
5
.

For soundness, the random challenge x must be selected after

the prover has committed to the secret shared lists, however the

subsequent computation depends on the challenge. We accommo-

date this by introducing an additional round (5 rounds total)
6
in

which the verifier samples x , after the prover has committed to the

inputs/witness, but before committing to the views of every party.

Theorem 1 (Unknown Permutation Proof). Given two lists A
and B with ℓ elements in Zq and an instance of the KKW protocol with
n participants andm preprocessing repetitions. Using the above circuit
and the challenge input inside a KKW protocol is an honest-verifier
ZKPoK to prove knowledge of two lists A and B such that there exists
a permutation π such that π (A) = B with soundness/knowledge error

max

{
1

m ,
1

n +
ℓ

q−1 −
ℓ

q−1
1

n

}
.

The proof of this theorem can be found in Appendix B.1.

5
When the size of the field dominates the degree of the polynomials. Note we do not

need the soundness error to be negligible, but only to be dominated by n−1/n from

KKW.

6
We reason that this additional round does not affect the knowledge error of the Fiat-

Shamir transform, compared to the original 3 rounds. Note that, in general, soundness

of the Fiat-Shamir transform decreases exponentially in the number of rounds.

When amplifying the soundness by parallel repetitions, the

soundness error of the permutation proof is dominated by the

soundness error of KKW. As such, it is straightforward to observe

that using this permutation proof does not introduce the need for

any additional repetitions of the proof. We show this formally in Ap-

pendix C, along with discussing the technical detail of performing

these operations in a ring, rather than a field

7.2 Ring Switching
One drawback of the permutation proof described in the previous

section is that it relies on a large field/ring for soundness which

leads to inefficient proofs of Boolean circuits. Unfortunately, real-

world processors are most efficiently realized as Boolean circuits

that pay a high cost for multiplication gates. The permutation proof

can be implemented in a Boolean circuit by simulating a larger

ring, however the log
2(q) overhead introduced by simulating the

ring multiplication negates the improvements over the routing

network used in the work of Ben-Sasson et al. To avoid simulating

arithmetic in a large ring, while still enabling application logic

(CPU specification) to be proved using a Boolean circuit we rely on

ring-switching techniques: enabling us to switch/pack a collection

of Booleans into an element in a ring of sufficiently large order.

This technique introduces an overhead of 3 AND-gates for every

bit that needs translating. In our case, where we will switch to Z
2
64 ,

this means 192 AND-gates for every element in both lists. We base

our ring-switching technique on the use of edaBits as introduced by
Escudero et al. [20], which in turn was based on daBits by Rotaru

and Wood [47]. We will apply the preprocessing optimization of

KKW to achieve these results.

Preprocessing. Let ξ be the number of bits required to repre-

sent values of the larger field. During the preprocessing phase,

we generate secret shares for the MPC players of the correlated

random values r and r0, . . . , rξ−1, where r is a value in the larger

ring and r0, . . . , rξ−1 are Boolean values, subject to the constraint

r =
∑ξ−1
i=0 ri2

i , in the larger field. Thus, the players receive Boolean

sharings [r0], . . . , [rξ−1] and an arithmetic sharing JrK. Note that
none of the participants have any of the values r , r0, . . . , rξ−1 in
the clear, they only possess a share of these values. Generation of

this correlated randomness can be done using the same techniques

used for Beaver triple generation in KKW: the dealer (P0) generates
and “sends” the shares to the respective players.

Online. The translation of ([x0], . . . , [xξ ]) into JxK with

x =

ξ∑
i=0

xi2
i

is done in the following way:

(1) In the Boolean circuit compute the Zq addition of r +x using

a full adder, i.e. compute:

[(x + r )0], . . . , [(x + r )ξ−1] =

([x0], . . . , [xξ−1]) +Zq ([r0], . . . , [rξ ]))

635



Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

Table 1: Benchmarks for proofs of exploits (at 128 bits of security) for a representative subset of the Microcorruption exercises. The selected exercises cover the
most important exploit categories, including buffer overflow, code injection, and bypassing memory protection. These exercises are ordered by the difficulty of
the exercise, as estimated by the Microcorruption creators.

Exercise Name Processor Cycles Prover (sec) Verifier (sec) Size (mb) Exploit Type

New Orleans 2392 22 7 295 Password embedded in binary

Hanoi 6199 25 18 322 Buffer overflow

Cusco 5178 21 15 269 Buffer overflow

Montevideo 6676 28 20 358 Code injection via strcpy bug

Johannesburg 6311 26 19 332 Stack cookie bypass

Santa Cruz 12835 754 39 680 Code injection via strcpy bug

Addis Ababa 5360 23 17 296 Format string vulnerability

Novosibirsk 19833 89 63 1100 Format string vulnerability

Vladivostok 50823 454 152 6048 ASLR bypass

(2) Reconstruct the masked bits (x + r )0, . . . (x + r )ξ−1 ∈ Z2,
lift the bits to the ring Zq and and convert the decompo-

sition into x + r ∈ Zq by publically computing the linear

combination: x ′ = x + r =
∑ξ−1
i=0 2

i (x + r )i ∈ Zq
(3) In the arithmetic circuit subtract the randomness r from x ′

the input coming from the Boolean circuit, i.e. x = x ′ − r .

Note that only (1) has non-linear (over Z2) operations.

Theorem 2 (Ring Switching). Given a Boolean circuit Cbool
and an arithmetic circuit Carith that need to be run consecutively,
a definition of which output wires from Cbool are going into Carith,
and an instance of the KKW protocol with n participants and m
preprocessing repetitions. The above protocol is an honest-verifier
ZKPoK with soundness/knowledge error max

{
1

m ,
1

n
}
.

The proof of this theorem can be found in Appendix B.2. Note

that the soundness error is exactly the same as for the original KKW

protocol, therefore, no extra iterations of the protocol are needed

because of the addition of the ring switching.

8 IMPLEMENTATION AND EVALUATION

Reverie. Our prover ‘Reverie’ [43] is an optimized implementation

of the KKW [33] proof system in the Rust programming language.

Reverie is generic and can be instantiated over any commutative

ring. Reverie optimizes KKW for our particular application as fol-

lows:

• Streaming. Rather than compute the correlated randomness

for the entire circuit before evaluation, Reverie interleaves the

preprocessing with the online execution: in effect player P0 is im-

plemented as a coroutine. This avoids storing all the preprocessed

material in memory.

• Bit Slicing. Every online player in KKW executes the same sim-

ple operation during the evaluation of addition andmultiplication

gates, hence bit-slicing ‘across the players’ allows executing ev-

ery player in parallel, e.g. for the ring R = F2 and n = 64 the

values of two wires can be added using a single XOR of 64-bit

integers.

• Shadowing. Themodel of execution in ‘Reverie’ is a straight-line

RAM program: there is an array of cells and a program consists

of a list of Input/Add/Mul/Output instructions reading/writing
to cells. A circuit is a straight-line program in single assignment

Table 2: Comparative Measurements for NIZKs computing 511 iterations of
SHA256 (Merkle treewith 256 leaves).Measurements for priorwork from [54]
on an Amazon EC2 c5.9xlarge with 70GB of RAM and Intel Xeon platinum
8124m CPU with 18 3GHz virtual cores. Because these proof systems and im-
plementations were unable to exploit parallelism, all benchmarks were run
on a single thread. Reverie was benchmarked on a Digital Ocean virtual ma-
chine with 32 virtual cores and 256GB of memory. We note that our choice
of protocol and our implementation is able to take advantage of the paral-
lelism offer by the multiple cores, which is part of the reason Reverie is able
to dramatically out-perform prior work.

Proof System

Gen

(sec)

Prove

(sec)

Ver

(sec)

Size

(KB)

Aurora [12] - 3,199 15.2 174.3

Bulletproofs [16] - 2,555 98 2

libSTARK [7] - 2,022 0.044 s 395

Hyrax [50] - 1,041 9.9 185

Ligero [1] - 400 4 1,500

libSNARK [13] 1027 360 0.002 .013

Libra [54] 210 201 0.71 51

Reverie (This Work) - 8 7.67 113,848

form (i.e. every cell is only written to once). Since the execution

of a CPU is very local, this allows us to reclaim memory by

overwriting cells, in practice reclaiming > 95% over naïvely

loading the circuit.

• Parallel. KKW requires many repetitions for soundness, these

are executed in parallel.

All of these optimizations contribute to Reverie’s exceptionally fast

performance. Reverie is able to prove 511 iterations of SHA256 in

8 seconds. We compare this to the benchmarks reported in prior

work from [54] in Table 2. We note that these are not strictly

apples-to-apples comparisons as we were unable to control for

the benchmarking environment for prior work. However, we note

that Reverie does strikingly well. Libsnark requires 1,387 seconds,

Bulletproofs requires 2,555 seconds, and Ligero requires 400 sec-

onds (see Table 2). The proofs generated by Reverie are larger than

the other three, but since it supports streaming all that is required

is a network connection between prover and verifier with modest

bandwidth.

636



Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

Table 3: Breakdown of processor circuit components

Component Non-linear Gates Per Instruction

Memory checker 1,164

Permutation proof 2,280

Processor 7,247

Decoder 568

ALU 549

Hint verifier 237

Operand fetching 2,176

Register file 2,880

Proofs of Exploitability: Microcorruption.We chose to use the

Microcorruption CTF as a benchmark set for our ZK proof of vul-

nerability system. The CTF challenges involve hacking a smart lock

controlled by an MSP430 using common exploitation techniques

such as buffer overflows, code injection, and bypassing memory

protections. While the challenges contain a wide variety of bugs,

ultimately they all conclude with a call to the UNLOCK system call.

For example, the Addis Ababa challenge can be solved by using

a format string vulnerability to overwrite a segment of memory

that contains information about whether the correct password was

entered or not, leading to a successful call to the UNLOCK system

call.
7
.

Therefore our ZK proofs of vulnerability check both that the

witness trace is valid, and that at least one step of execution was a

call to the UNLOCK system call. An advantage of this approach is that

all ZK performance metrics are linear in the trace size, regardless

of exploit technique.

Performance.We present benchmarks for a representative set of

the Microcorruption exercises in Table 1. This set of benchmarks

covers many of the most important exploit types, including buffer

overflow, code injection, and bypassing memory protection. Each

of these benchmarks was computed on a Digital Ocean virtual ma-

chine with 32 virtual cores and 256GB of memory. We found that

our implementation produces a proof for 216 MSP430 instructions

every second. Overall, each instruction requires 10,691 AND gates

to execute. In Table 3, we give a breakdown of the gate count for

each component of the RAM reduction, along with the major com-

ponents of the processor. Although the resulting proofs produced

are large and may take a non-trivial time to create, we note that

these resources and time are insignificant compared to the effort

it takes to develop the exploit and the time that the parties would

spend negotiating disclosure.

9 CONCLUSION
We have presented a toolchain that can practically prove knowledge

of real exploits for real-world processor architectures without the

need for source code. Our approach offers a concrete solution to a

real-world problem: how should vulnerability researchers demon-

strate their capabilities to the managers of bug bounty programs?

Using our proof system, the managers of bug bounty programs need

7
For more details about the Microcorruption challenges, we point the reader to https:

//microcorruption.com or the reference manual [36]

not be concerned that vulnerability researchers are overstating their

findings and vulnerability researchers are protected against preemp-

tive disclosure. Moreover, our techniques can be used to enhance

the current bug bounty ecosystem by allowing robust, trustworthy

public disclosure of vulnerabilities without handing attackers live

exploits. Given the importance of bug bounty programs to security

critical software, we believe that our work represents a significant

step forward.

ACKNOWLEDGMENTS
This work is supported by DARPA under agreement No. HR0011-

20C0084. Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do

not necessarily reflect the views of the United States Government

or DARPA. The first author is also supported in part by NSF un-

der awards CNS-1653110, and CNS-1801479, the Office of Naval

Research under contract N00014-19-1-2292, as well as a Security

and Privacy research award from Google. The second author is

also funded by Concordium Blockchain Research Center, Aarhus

University, Denmark. The forth author is also supported by the

National Science Foundation under Grant #2030859 to the Com-

puting Research Association for the CIFellows Project and is also

supported by DARPA under Agreement No. HR00112020021.

REFERENCES
[1] Scott Ames, Carmit Hazay, Yuval Ishai, andMuthuramakrishnan Venkitasubrama-

niam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted Setup.

In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, Dallas, TX, USA, 2087–2104. https://doi.org/10.1145/3133956.3134104

[2] David Archer, Victor Arribas Abril, Steve Lu, Pieter Maene, Nele Mertens, Danilo

Sijacic, and Nigel Smart. 2022. ’Bristol Fashion’ MPC Circuits. https://homes.

esat.kuleuven.be/~nsmart/MPC/.

[3] V. Arvind, P. Mukhopadhyay, and S. Srinivasan. 2008. New Results on Non-

commutative and Commutative Polynomial Identity Testing. , 268-279 pages.

https://doi.org/10.1109/CCC.2008.22

[4] 0Kims Association. 2018. Circom: a circuit compiler for zkSNARKs. https:

//github.com/iden3/circom.

[5] Carsten Baum and Ariel Nof. 2020. Concretely-Efficient Zero-Knowledge Argu-

ments for Arithmetic Circuits and Their Application to Lattice-Based Cryptogra-

phy. In PKC 2020: 23rd International Conference on Theory and Practice of Public
Key Cryptography, Part I (Lecture Notes in Computer Science, Vol. 12110), Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.). Springer,

Heidelberg, Germany, Edinburgh, UK, 495–526. https://doi.org/10.1007/978-3-

030-45374-9_17

[6] Assaf Ben-David, Noam Nisan, and Benny Pinkas. 2008. FairplayMP: a system for

secure multi-party computation. In ACM CCS 2008: 15th Conference on Computer
and Communications Security, Peng Ning, Paul F. Syverson, and Somesh Jha (Eds.).

ACM Press, Alexandria, Virginia, USA, 257–266. https://doi.org/10.1145/1455770.

1455804

[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology ePrint

Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2019. Scal-

able Zero Knowledge with No Trusted Setup. In Advances in Cryptology –
CRYPTO 2019, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 701–732. https://doi.org/10.1007/978-3-030-26954-8_23

[9] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, Berkeley, CA, USA, 459–474. https://doi.org/10.1109/

SP.2014.36

[10] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. 2013. Fast

reductions from RAMs to delegatable succinct constraint satisfaction problems:

extended abstract. In ITCS 2013: 4th Innovations in Theoretical Computer Science,
Robert D. Kleinberg (Ed.). Association for Computing Machinery, Berkeley, CA,

USA, 401–414. https://doi.org/10.1145/2422436.2422481

637

https://microcorruption.com
https://microcorruption.com
https://doi.org/10.1145/3133956.3134104
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://doi.org/10.1109/CCC.2008.22
https://github.com/iden3/circom
https://github.com/iden3/circom
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1007/978-3-030-45374-9_17
https://doi.org/10.1145/1455770.1455804
https://doi.org/10.1145/1455770.1455804
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1145/2422436.2422481


Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge. In Advances in Cryptology – CRYPTO 2013, Part II (Lecture Notes
in Computer Science, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 90–108. https://doi.org/10.1007/

978-3-642-40084-1_6

[12] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments

for R1CS. In Advances in Cryptology – EUROCRYPT 2019, Part I (Lecture Notes in
Computer Science, Vol. 11476), Yuval Ishai and Vincent Rijmen (Eds.). Springer,

Heidelberg, Germany, Darmstadt, Germany, 103–128. https://doi.org/10.1007/

978-3-030-17653-2_4

[13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct

Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014: 23rd USENIX Security Symposium, Kevin Fu and Jaeyeon Jung (Eds.).

USENIX Association, San Diego, CA, USA, 781–796.

[14] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venki-

tasubramaniam, Tiancheng Xie, and Yupeng Zhang. 2020. Ligero++: A New

Optimized Sublinear IOP. In ACM CCS 2020: 27th Conference on Computer
and Communications Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and

Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 2025–2038. https:

//doi.org/10.1145/3372297.3417893

[15] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary Maller.

2018. Arya: Nearly Linear-Time Zero-Knowledge Proofs for Correct Program

Execution. In Advances in Cryptology – ASIACRYPT 2018, Part I (Lecture Notes
in Computer Science, Vol. 11272), Thomas Peyrin and Steven Galbraith (Eds.).

Springer, Heidelberg, Germany, Brisbane, Queensland, Australia, 595–626. https:

//doi.org/10.1007/978-3-030-03326-2_20

[16] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, San Francisco, CA, USA, 315–334. https://doi.org/10.1109/SP.2018.00020

[17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. In

ACM CCS 2017: 24th Conference on Computer and Communications Security, Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM

Press, Dallas, TX, USA, 1825–1842. https://doi.org/10.1145/3133956.3133997

[18] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. 2021. Limbo:

Efficient Zero-knowledge MPCitH-based Arguments. In ACM CCS 2021: 28th
Conference on Computer and Communications Security, Giovanni Vigna and Elaine
Shi (Eds.). ACM Press, Virtual Event, Republic of Korea, 3022–3036. https:

//doi.org/10.1145/3460120.3484595

[19] Nikos Drakos and Ross Moore. 1992. Berkeley Logic Interchange Format (BLIF).

[20] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.

2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits.

In Advances in Cryptology – CRYPTO 2020, Part II (Lecture Notes in Computer
Science, Vol. 12171), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 823–852. https://doi.org/10.1007/

978-3-030-56880-1_29

[21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and

Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.

Cryptology ePrint Archive, Report 2021/979. https://eprint.iacr.org/2021/979.

[22] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster Zero-

Knowledge for Boolean Circuits. In USENIX Security 2016: 25th USENIX Security
Symposium, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, Austin,

TX, USA, 1069–1083.

[23] Oded Goldreich, SilvioMicali, and AviWigderson. 1986. Proofs that Yield Nothing

But their Validity and aMethodology of Cryptographic Protocol Design (Extended

Abstract). In 27th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, Toronto, Ontario, Canada, 174–187. https://doi.org/10.

1109/SFCS.1986.47

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Prove all NP-

Statements in Zero-Knowledge, and a Methodology of Cryptographic Protocol

Design. In Advances in Cryptology – CRYPTO’86 (Lecture Notes in Computer
Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer, Heidelberg, Germany,

Santa Barbara, CA, USA, 171–185. https://doi.org/10.1007/3-540-47721-7_11

[25] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

Advances in Cryptology – EUROCRYPT 2016, Part II (Lecture Notes in Computer
Science, Vol. 9666), Marc Fischlin and Jean-Sébastien Coron (Eds.). Springer, Hei-

delberg, Germany, Vienna, Austria, 305–326. https://doi.org/10.1007/978-3-662-

49896-5_11

[26] NCC Group. 2013. Microcorruption: Embedded Security CTF. https:

//microcorruption.com.

[27] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz Zero-Knowledge

Processor with BubbleRAM. In ACM CCS 2020: 27th Conference on Computer
and Communications Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and

Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 2055–2074. https:

//doi.org/10.1145/3372297.3417283

[28] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive

Zero-Knowledge Proofs. In Advances in Cryptology – EUROCRYPT 2020, Part III
(Lecture Notes in Computer Science, Vol. 12107), Anne Canteaut and Yuval Ishai

(Eds.). Springer, Heidelberg, Germany, Zagreb, Croatia, 569–598. https://doi.org/

10.1007/978-3-030-45727-3_19

[29] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero

Knowledge for Everything and Everyone: Fast ZK Processor with Cached ORAM

for ANSI C Programs. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 1538–1556. https://doi.org/10.

1109/SP40001.2021.00089

[30] Texas Instruments. 2006. MSP430x1xx Family User Guide. https://www.ti.com/

lit/ug/slau049f/slau049f.pdf.

[31] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In 39th Annual ACM Symposium
on Theory of Computing, David S. Johnson and Uriel Feige (Eds.). ACM Press, San

Diego, CA, USA, 21–30. https://doi.org/10.1145/1250790.1250794

[32] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge

using garbled circuits: how to prove non-algebraic statements efficiently. In ACM
CCS 2013: 20th Conference on Computer and Communications Security, Ahmad-

Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, Berlin, Germany,

955–966. https://doi.org/10.1145/2508859.2516662

[33] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. 2018. Improved Non-

Interactive Zero Knowledge with Applications to Post-Quantum Signatures. In

ACM CCS 2018: 25th Conference on Computer and Communications Security, David
Lie, MohammadMannan, Michael Backes, and XiaoFengWang (Eds.). ACM Press,

Toronto, ON, Canada, 525–537. https://doi.org/10.1145/3243734.3243805

[34] SCIPR Lab. 2012-2020. libsnark: a C++ library for zkSNARK proofs. https:

//github.com/scipr-lab/libsnark.

[35] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay -

Secure Two-Party Computation System. In USENIX Security 2004: 13th USENIX
Security Symposium, Matt Blaze (Ed.). USENIX Association, San Diego, CA, USA,

287–302.

[36] Microcorruption. 2013. Lockitall LockIT Pro User Guide. https://microcorruption.

com/public/manual.pdf.

[37] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. 2013. Zerocoin:

Anonymous Distributed E-Cash from Bitcoin. In 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 397–411. https:

//doi.org/10.1109/SP.2013.34

[38] Matt Miller. 2019. Trends, challenges, and strategic shifts in the software

vulnerability mitigation landscape. https://github.com/Microsoft/MSRC-

Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-

%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%

20software%20vulnerability%20mitigation.pdf.

[39] BenjaminMood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.

2016. Frigate: A validated, extensible, and efficient compiler and interpreter for

secure computation. , 112–127 pages.

[40] B. Mood, D. Gupta, H. Carter, K. Butler, and P. Traynor. 2016. Frigate: A Validated,

Extensible, and Efficient Compiler and Interpreter for Secure Computation. ,

112-127 pages. https://doi.org/10.1109/EuroSP.2016.20

[41] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.

In ACM CCS 2001: 8th Conference on Computer and Communications Security,
Michael K. Reiter and Pierangela Samarati (Eds.). ACM Press, Philadelphia, PA,

USA, 116–125. https://doi.org/10.1145/501983.502000

[42] Emmanuel Odunlade. 2020. Top 10 popularmicrocontrollers amongmakers. https:

//www.electronics-lab.com/top-10-popular-microcontrollers-among-makers/.

[43] Trail of Bits. 2022. Reverie: An efficient and generalized implementation of the

IKOS-style KKW proof system. https://github.com/trailofbits/reverie.

[44] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 238–252. https:

//doi.org/10.1109/SP.2013.47

[45] Rafael Pass and abhi shelat. 2010. A Course In Cryptography. https://www.cs.

cornell.edu/courses/cs4830/2010fa/lecnotes.pdf.

[46] Ryan Pickren. 2021. Hacking the Apple Webcam (again). https://www.

ryanpickren.com/safari-uxss.

[47] Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic

and Boolean Circuits with Active Security. In Progress in Cryptology - IN-
DOCRYPT 2019: 20th International Conference in Cryptology in India (Lecture
Notes in Computer Science, Vol. 11898), Feng Hao, Sushmita Ruj, and Sourav

Sen Gupta (Eds.). Springer, Heidelberg, Germany, Hyderabad, India, 227–249.

https://doi.org/10.1007/978-3-030-35423-7_12

[48] Yannis Smaragdakis. 2019. Sound Analysis: Can We Tell the Truth About

Programs? https://blog.sigplan.org/2019/09/18/sound-analysis-can-we-tell-the-

truth-about-programs/.

[49] swisspost evoting. 2019. E-Voting System 2019. https://gitlab.com/swisspost-

evoting/e-voting-system-2019.

638

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://eprint.iacr.org/2021/979
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://microcorruption.com
https://microcorruption.com
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1109/SP40001.2021.00089
https://doi.org/10.1109/SP40001.2021.00089
https://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://www.ti.com/lit/ug/slau049f/slau049f.pdf
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/2508859.2516662
https://doi.org/10.1145/3243734.3243805
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://microcorruption.com/public/manual.pdf
https://microcorruption.com/public/manual.pdf
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1109/SP.2013.34
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://doi.org/10.1109/EuroSP.2016.20
https://doi.org/10.1145/501983.502000
https://www.electronics-lab.com/top-10-popular-microcontrollers-among-makers/
https://www.electronics-lab.com/top-10-popular-microcontrollers-among-makers/
https://github.com/trailofbits/reverie
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://www.ryanpickren.com/safari-uxss
https://www.ryanpickren.com/safari-uxss
https://doi.org/10.1007/978-3-030-35423-7_12
https://blog.sigplan.org/2019/09/18/sound-analysis-can-we-tell-the-truth-about-programs/
https://blog.sigplan.org/2019/09/18/sound-analysis-can-we-tell-the-truth-about-programs/
https://gitlab.com/swisspost-evoting/e-voting-system-2019
https://gitlab.com/swisspost-evoting/e-voting-system-2019


Efficient Proofs of Software Exploitability for Real-world Processors Proceedings on Privacy Enhancing Technologies 2023(1)

[50] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, San Francisco, CA,

USA, 926–943. https://doi.org/10.1109/SP.2018.00060

[51] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. Available At https://github.com/emp-toolkit.

[52] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. 2020. Wolverine:

Fast, Scalable, and Communication-Efficient Zero-Knowledge Proofs for Boolean

and Arithmetic Circuits. Cryptology ePrint Archive, Report 2020/925. https:

//eprint.iacr.org/2020/925.

[53] Claire Xenia Wolf. 2012-2022. Yosys Open SYnthesis Suite. https://yosyshq.net/

yosys/.

[54] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology – CRYPTO 2019, Part III (Lecture Notes
in Computer Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio

(Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 733–764. https:

//doi.org/10.1007/978-3-030-26954-8_24

[55] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. In ACM CCS 2021: 28th Conference on Computer and Communica-
tions Security, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event,

Republic of Korea, 2986–3001. https://doi.org/10.1145/3460120.3484556

[56] Greg Zaverucha. 2020. The Picnic Signature Algorithm. https://github.com/

microsoft/Picnic/raw/master/spec/spec-v3.0.pdf.

[57] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, San Francisco, CA, USA, 908–925. https://doi.org/

10.1109/SP.2018.00013

A KKW18 MPC-IN-THE-HEAD
Ishai et al. [31] demonstrated that it is possible to construct ZKPs

from secure multiparty computation (MPC). Their technique, com-

monly called MPC-in-the-head or IKOS, has since inspired sev-

eral concretely efficient concrete protocols, including ZKBoo [22],

ZKB++ [17], KKW18 [33], and Ligero [1, 14].

In IKOS, the prover first secret shares the witness amongn virtual
parties, and then emulates the MPC execution for the computation

of the NP predicate on the (secret shared) witness among the virtual

parties. The prover then commits to each emulated party’s view,

and the verifier then selects n′ ⊂ n views to check for consistency,

where n′ is smaller than the MPC’s privacy threshold. When the

MPC is semi-honest the knowledge error is n′/n, and parallel repe-

tition can be used to amplify soundness. IKOS is both flexible and

can be made non-interactive using the Fiat-Shamir heuristic.

The KKW [33] proof system is an instantiation of the IKOS frame-

work, using a semi-honest, dishonest-majority (n′ = n − 1) MPC

protocol in the broadcast setting using additive sharings over any

commutative ring. In thisMPC protocol, the (emulated) players com-

pute an arithmetic circuit in a gate-by-gate manner: for each wire α ,

the players P1, . . . , Pn maintain additive shares [mα ]
(1), ..., [mα ]

(n)

of a ‘mask’mα =
∑
i [mα ]

(i)
. The value zα assigned to the α wire

is masked as ẑα = zα −mα and the ‘correction’ zα is known to

all players. Linear operations are executed locally by the players,

while multiplication of wire values is handled using standard Beaver

multiplication.

Because the prover’s evaluation of the circuit is privacy-free,

the MPC protocol generates the Beaver triples in a privacy-free

way using a central coordinator. We denote this special player that

generates the preprocessing as P0. This coordinator only distributes
preprocessing to the other players and does not participate in the

online evaluation.

To ensure honest behavior by the coordinator KKW relies on

cut-and-choose: the prover runs the MPC protocol many times, and

in a subset of the executions the verifier opens and checks the view

of P0 (i.e. checks that the preprocessing has been done honestly),

in the remaining executions the verifier opens an n − 1 size subset
of the players P1, . . . , Pn and checks these views for consistency.

B PROOFS
B.1 Proof of Theorem 1
Perfect completeness follows from the completeness of the KKW

protocol as well as from the correctness of the circuit, which can be

easily verified by inspection. Therefore, we will focus on proving

honest-verifier zero-knowledge and soundness.

To prove that this protocol achieves perfect zero-knowledge,

we can take the simulator SKKW that was used in KKW. The only

change we have to make is that the simulator also chooses the

challenge x ∈ Zq uniformly at random. The same hybrid argument

can be used as in the original proof. Given that the original simulator

was indistinguishable from a real execution, we can conclude that

this simulator is also indistinguishable from a real execution.

Similarly, to prove witness extraction, we can use the witness

extractor from KKW. Note that after a full run of the protocol we

have all messages as if we ran a normal KKWprotocol for the circuit

Cshuffle, with a public input x , i.e.we don’t have to extract x because

it is part of the transcript. Hence, we can use the witness extractor

as described in KKW to extract A and B, such that π (A) = B, for
some permutation π (·).

The soundness error induced by the shuffle proof is
ℓ

q−1 , which

follow directly from the Schwartz-Zippel lemma. To see this, note

that the x is selected at random and the number of points that are

shared by the two polynomials is bounded by their degree ℓ. The

soundness of the MPC-in-the-head protocol is max

{
1

m ,
1

n
}
, as we

are only considering the non-amplified version of KKW. To violate

soundness, the prover must either succeed in the cheating during

the preprocessing or the online phase. During the preprocessing,

the probability is
1

m . During the online phase, either the prover

must cheat or produce an invalid shuffle proof. The probability of

this happening is
1

n +
ℓ

q−1 −
ℓ

q−1
1

n . Therefore, the overall soundness

error is max

{
1

m ,
1

n +
ℓ

q−1 −
ℓ

q−1
1

n

}
.

B.2 Proof of Theorem 2
Completeness follows immediately from the completeness of the

KKW protocol as well as the basic arithmetic used for transforming

output from the boolean circuit to input to the arithmetic circuit.

To show perfect zero-knowledge we build the following simula-

tor:

• Use the simulator SKKW on Cbool,
• Actually do the transformation as it is done in the real pro-

tocol.

• Use the simulator SKKW on Carith,

BecauseSKKW generates a proof transcript that is indistinguishable

form a real proof, and the second step is done exactly like it is done

in the real protocol, we can conclude that this new simulator also

produces a proof transcript that is indistinguishable from a real

execution.

639

https://doi.org/10.1109/SP.2018.00060
https://github.com/emp-toolkit
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925
https://yosyshq.net/yosys/
https://yosyshq.net/yosys/
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1145/3460120.3484556
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://github.com/microsoft/Picnic/raw/master/spec/spec-v3.0.pdf
https://doi.org/10.1109/SP.2018.00013
https://doi.org/10.1109/SP.2018.00013


Proceedings on Privacy Enhancing Technologies 2023(1) Green et al.

Witness extraction can be shown by first extracting the witness

of the second circuit, and then using that witness for extracting

the witness of the first circuit, which is also the witness for the

complete circuit.

Soundness error is the maximum between both circuits of the

soundness error as computed in KKW. To achieve better soundness,

we can choose the number of executions according to the circuit

with the worst soundness error.

C KNOWLEDGE ERROR OF PERMUTATION
PROOF

When amplifying the soundness by parallel repetitions, the sound-

ness error of the permutation proof is dominated by the soundness

error of KKW. We computed the soundness error for several differ-

ent parameters, i.e. changing the size of the arithmetic group, the

number of players, and the number of repetitions, these results are

shown in Table 4 and Figure 3. Hence, we can optimize for speed

and proof size while targeting an error of ϵ ≤ 2
−128

. Similar to

computing the number of repetitions required for the KKW proto-

col, we can compute the number of parallel repetitions required to

amplify the soundness of the permutation proof. The probability of

a cheating prover passing the preprocessing phase is:

max

m−τ ≤k≤m

{(
k

m − τ

)
·

(
m

m − τ

)−1}
Which is exactly as shown in KKW [33]. Conditioned on the cheat-

ing prover passing the preprocessing phase, the probability of pass-

ing the online phase is:

max

m−τ ≤k≤m

{(
1

n
+
ℓ

q − 1
−
ℓ

q − 1

1

n

)m−τ−k}
With ℓ the number of elements in the lists, and q the order of

the field in which the elements are contained. The term
1

n is the

soundness error for the KKW online phase, we add the soundness

error of the permutation proof as the term
ℓ

q−1 , lastly, we subtract

the term
ℓ

q−1
1

n , which is the probability of both soundness errors

occurring. Thus, we minimize the number of online repetitions τ
such that

ϵ(m,n, τ )
def

= max

m−τ ≤k≤m


( k
m−τ

)( m
m−τ

)
·

(
(q−1)n

q−1+nℓ−ℓ

)m−τ−k


is ≤ 2
−128

for different values of n. For a list size ℓ = 2
16

and

a field size q = 2
64
, the soundness error that we have added by

introducing the permutation proof gets fully reduced in the same

number of rounds that are needed to amplify the soundness error

introduced by KKW. Hence, no extra repetitions are needed for

adding the unknown permutation proof inside a KKW protocol.

Sample satisfying values can be found in Table 4.

Using a Ring Instead of a Field. It is much easier to efficiently

implement our scheme over a ring of size q = 2
t
, for some t ∈ N.

However, the original Schwartz-Zippel lemma only works for poly-

nomials over a field. As a general optimization, we work over the

ring Z2n , where we choose n to be 64. Fortunately, a more general

ρ = 128

n 4 8 16 32 64 128

m 218 293 352 606 842 1291

τ 65 43 33 26 22 19

Table 4: Sample values for the number of preprocessing repetitionsm, players
n, and online repetitions τ , similar to the values in KKW [33].

Figure 3: Soundness error with permutation proof for 64 players, list of size
ℓ = 2

16, number of preprocessing runsm = 842, and online runs τ = 22.

form of the Schwartz-Zippel lemma, introduced by Arvind et al. [3],

can be applied in this setting. They show that the Schwartz-Zippel

lemma still holds when the random assignment to the polynomial

is chosen within a finite subset of an integral domain contained

within the ring. Within Z2n all odd numbers form such integral

domain.

To make sure that our permutation proof still holds, the verifier

needs to pick the challenge to be an odd number. The impact on

the soundness is that instead of using the size of the overall ring,

we have to use the size of the integral domain. This hardly impacts

the soundness as long as the ring size is still large enough, which

is the case for Z
2
64 .

In Figure 3 we show the impact of the arithmetic ring size on

the soundness error, given a list size of ℓ = 2
16

and number of

players n = 64. We choose the number of preprocessing repetitions

m = 842 and online repetitions τ = 22. Based on this figure we

can conclude that the most optimal ring size is 2
36
, but for ease of

implementation we’ve implemented a ring of size 2
64
.

640


	Abstract
	1 Introduction
	1.1 Contributions

	2 Technical Overview
	2.1 Background: Zero-Knowledge and Ben-Sasson et al.'s RAM Reduction
	2.2 Formalizing Exploits
	2.3 Producing Efficient ZK Proofs of Exploit

	3 Related Work
	4 Modeling Real-World Processors
	4.1 Modeling MSP430 Processor Semantics
	4.2 Interacting with the Program

	5 Formalizing Exploits
	6 Circuit Compiler
	7 Cryptographic Optimizations
	7.1 Memory Permutation Proof (over )
	7.2 Ring Switching

	8 Implementation and Evaluation
	9 Conclusion
	Acknowledgments
	References
	A KKW18 MPC-in-the-head
	B Proofs
	B.1 Proof of Theorem 1
	B.2 Proof of Theorem 2

	C Knowledge Error of Permutation Proof

