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ABSTRACT
Since its introduction in 2006, differential privacy has emerged as

a predominant statistical tool for quantifying data privacy in aca-

demic works. Yet despite the plethora of research and open-source

utilities that have accompanied its rise, with limited exceptions,

differential privacy has failed to achieve widespread adoption in

the enterprise domain. Our study aims to shed light on the funda-

mental causes underlying this academic-industrial utilization gap

through detailed interviews of 24 privacy practitioners across 9

major companies. We analyze the results of our survey to provide

key findings and suggestions for companies striving to improve

privacy protection in their data workflows and highlight the nec-

essary and missing requirements of existing differential privacy

tools, with the goal of guiding researchers working towards the

broader adoption of differential privacy. Our findings indicate that

analysts suffer from lengthy bureaucratic processes for requesting

access to sensitive data, yet once granted, only scarcely-enforced

privacy policies stand between rogue practitioners and misuse of

private information. We thus argue that differential privacy can

significantly improve the processes of requesting and conducting

data exploration across silos, and conclude that with a few of the

improvements suggested herein, the practical use of differential

privacy across the enterprise is within striking distance.

KEYWORDS
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1 INTRODUCTION
Several factors have spurred the development of more advanced

privacy-enhancing technologies (PETs) in the past years. On the

one hand, from an adversarial perspective, (i) multiple white-hat

attacks have shown that “traditional” anonymization techniques

such as suppressing names are vulnerable to re-identification across

industries [8, 29, 33, 67, 79, 94]. Additionally, between 2020 and

2021, (ii) the total cost of data breaches have increased by 10%

on average [87]. Moreover, (iii) governments have promulgated

data protection laws in the past years, such as the European General

Data Protection Regulation (GDPR) [30] or the California Consumer

Privacy Act [80]. In particular, the GDPR has issued fines as high
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as $887M [54] and $120M [20]. Furthermore, (iv) beyond the ethical
and moral obligations of companies to protect people’s privacy,

providing the best privacy protection available could (v) differentiate
and appreciate their brands [72], (vi) provide fairer products and
services that avoid price discrimination [35], and (vii) increase data
collection as PETs help to surmount regulatory barriers fairly [61].

Aiming to materialize these benefits while mitigating the privacy

risks, researchers have turned to differential privacy (DP), which,

since its inception in 2006 by Dwork et al. [28], has become the

golden privacy standard in academia due to its unique privacy

guarantees.

However, despite numerous open-source utilities, only a few tech

companies [6, 7, 24] and the US Census Bureau [57] have adopted

DP. Accordingly, our work addresses the research gap in bringing

DP into organizations’ workflows and reaching broader adoption.

Dwork et al. [27] partly covered the gap by interviewing DP experts,

while our study closes the remaining gap by bringing non-experts

into the spotlight. Thus, we interviewed 24 practitioners (19 analysts

and 5 data stewards) across 9 major companies that have not yet

deployed DP. Overall, our main contributions are:

(i) Survey Results. We formulated 5 research questions and

derived 24 interview questions thereof. The results of the

interviews provide an overview of the current state of data

access models (§ 5.1), privacy practices (§ 5.2), motivation

behind privacy protection (§ 5.3), and analysis workflows

(§ 5.4) in the industry.

(ii) Key Findings. From the survey results, we extract 11 key

findings, suggest improvements, and answer the 5 research

questions about the practicality of DP in the industry (§ 6).

(iii) Functional Requirements. Based on the key findings, we

propose 10 key desiderata to guide organizations in building

privacy-enhancing analytics systems that tackle the privacy-

related pain points in their workflows (§ 7.1).

(iv) Missing Building Blocks. Given the identified key desider-

ata, we outline 7 gaps in state-of-the-art DP tooling (§ 7.2).

Privacy officers and legal practitioners will find (i) and (ii) help-

ful in understanding the landscape of privacy and analysis work-

flows in the industry. Software engineers and developers will also
appreciate (iii) and (iv) as these contributions focus on tooling,

and, additionally, will find our early-stage privacy-enhancing an-

alytics system design presented in Appendix H helpful. Overall,

notable findings reveal that cumbersome data request processes

block analysts for significant periods for every new project. Ad-

ditionally, we note that SQL was more important than machine

learning, and data stewards are more concerned with security than

privacy. We conclude that DP could shorten data access processes,
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enable data exploration across silos, and is applicable to specific

use cases. Moreover, DP tool designers can learn from one another

as no tool outperforms the rest in every aspect, and, most impor-

tantly, bridging the gap between theory and practice is primarily

an engineering problem within striking distance.

2 DIFFERENTIAL PRIVACY
Unlike traditional privacy techniques, which are vulnerable to aux-

iliary information attacks [8, 29, 33, 67, 79, 94], differential pri-

vacy [28] mathematically formalizes a privacy guarantee agnostic

to background information. A function guarantees differential pri-

vacy (e.g., an analytics query or a machine learning (ML) model) if

it bounds the information gain that an attacker can expect from its

outputs. Aligned with this adversarial perspective, for the context

of this study, we define privacy as the prevention of an individual’s

re-identification [108].

In practice, the outputs of a differentially private function are

similarly likely, regardless of an individual’s contribution to the

input data. This similarity is bounded by the parameter ε , which is

inversely proportional to the strength of the privacy protection. A

randomized functionM(·) satisfies differential privacy by adding

calibrated random noise, typically to a deterministic function’s

output. Formally, differential privacy is defined as [26]:

Definition 1. (ε-Differential Privacy). A randomized function
M(·) is ε-differentially private iff for any two datasets D and D ′

differing on at most one element, and any set of possible outputs
S ⊆ Ranдe(M):

Pr[M (D) ∈ S] ≤ eε × Pr[M (D ′) ∈ S].

We introduce other concepts useful in the context of this paper:

Sensitivity. Beyond ε , the other parameter that affects the scale

of the noise is the sensitivity of the deterministic function, which

determines the maximum difference of the function’s outputs over

all possible neighboring datasets D and D ′
.

Central/Local Model. An application can add differentially pri-

vate noise in the central model after aggregating data points from

different clients or in the local model by adding noise to each data

point individually. While the local model requires less trust as-

sumptions with the aggregator, it is usually noisier than the central

model.

Sequential Composition. Differential privacy algorithms follow

sequential composition [26], i.e., if one executes a sequence of (possi-
bly different) DP mechanisms n times over D with εi , the consumed

privacy budget ε =
∑
εi .

Privacy Budget Tracker. Because the added noise is centered

around 0, an attacker could reverse engineer the n outputs by av-

eraging out the noise. Thus, systems should implement privacy

budget trackers to prevent this attack.

Floating-PointVulnerability. Proofs of differential privacymech-

anisms work on continuous distributions, which leads to privacy

bugs in practice as the implementations rely on floating-point arith-

metic [76]. There are a few solutions to this problem. In short,

Mironov’s Snapping mechanism [76] discards the least-significant

bit in a post-processing step, Naoise et. al [51] combine four random

samples, and Haney et. al [46] designed a variant of the Laplace

mechanism that avoids a precision-based attack.

3 RELATEDWORK
Some organizations have developed and deployed differential pri-

vacy tooling and have documented their purpose. Specifically, Ap-

ple [6, 7], Google [6], and Microsoft [24] employ algorithms based

on the local model of differential privacy to collect information

from users. The local model is not as predominant in the indus-

try as the global model (our focus), which has seen more deploy-

ments in the past years: Google’s Plume [4] enables simple statis-

tics (count, mean, sum, variancer, and quantile) over large-scale

datasets. Moreover, LinkedIn [63, 88, 89] proposed an API to anal-

yse user data, and the U.S. Census Bureau in 2020 [57] released

microdata; however, these two approaches only considered count

queries. Additionally, there exist open-source differential privacy

libraries, frameworks, and systems from Google [39–42, 107], Har-

vard [31, 47], IBM [52], Meta [74], OpenMined [83] (experimen-

tal product), Tumult Labs [99], and the University of Pennsylva-

nia [78] and Texas [90]. Note that OpenDP encapsulates Smart-

Noise core [82]. Additionally, researchers have also developed open-

source systems focused on user interfaces for differentially private

analytics: Bittner et. al [12], DPcomp [49], DPP [56], Overlook [97],

PSI (Ψ) [32], and ViP [77]. However, only a few libraries have been

discussed in a utility benchmark [36]. Moreover, Johnson et al.’s

work on differentially private SQL [60] at Uber [59] focused on a

quantitative evaluation of the queries without discussing its practi-

cality with practitioners. Unlike the previous literature above, we

aim to qualitatively understand the practicality and adaptability of

differential privacy in the central model to existing data analysis

pipelines within an organization beyond count queries.

Among top searches of surveys related to differential privacy in

digital libraries such as IEEE [53], ACM [3], ScienceDirect [92], or

ArXiv [19], one may notably find surveys of applications or analysis

models for differential privacy in the context of social networks [55],

cyber physical systems such as IoT [48], statistical learning [93],

location-based services [65], a user survey about privacy in data

sharing [15], and lessons learned from employing differential pri-

vacy in the US Census [34]. Notably, Kifer et al. [64] distills a set

of best practices and implementation details from their experience

designing differential privacy systems at Meta, which we consider

in our key system desiderata proposal (see section 7.1). However,

our work instead explores systems from companies unfamiliar with

differential privacy and focuses on answering whether differential

privacy could help data analysts in the broader industry. Lastly, the

closest work to ours is from Dwork et al. [27]. They interviewed

differential privacy experts regarding their implementation specifi-

cations. We differentiate from Dwork et al. [27] in that the hereby

interviewed practitioners and the organizations as a whole had no

significant technical expertise on differential privacy, which are the

vast majority in any industry, and, specifically, we sought to un-

derstand whether differential privacy could lift the privacy-related

roadblocks in their data analysis workflow.

4 RESEARCH METHOD
While a few organizations have successfully deployed differential

privacy for data analysis [6, 7, 24, 57, 63], the large majority have

not. To understand whether differential privacy in the central model

is practical in their analysis workflow, following a method inspired
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by Dwork et al. [27], we performed an empirical study of a set

of institutions that have not deployed differential privacy yet for

their internal analysis workflows in production. Since the focus is

learning whether institutions could benefit from differential privacy,

the unit of analysis is the institutions themselves.

Our study captures the answers of 24 practitioners from 9 orga-

nizations (19 data analysts/engineers and 5 data stewards). These

organizations belong to different industries and are of different

sizes (see details in Table 2 of Appendix A). The jurisdictions under

which the companies operate contextualize our key findings to the

EU (5 companies) and the USA (4 companies). In some organiza-

tions, we interviewed multiple practitioners to produce a holistic

picture of their data analysis ecosystem. Most interviewees held

the title of data analyst, while a few were data engineers or team

leaders. Irrespective of their title, all practitioners had at least two

years and at most 10 years of experience in the field (around 5 years

on average) and a comprehensive knowledge of their organization’s

tools and workflows for data analysis.

Interview Format and Research Questions. We interviewed

each of the 19 data analysts for approximately one hour through

a video conference, except for three via email correspondence, be-

tween November 2021 and August 2022. We produced the research

questions (RQs) and the questionnaire prior to the interviews and

based on the authors’ knowledge of differential privacy and feed-

back from practitioners other than the ones interviewed. The re-

search questions aimed to understand whether differential privacy

could enhance their corresponding institutions’ analysis workflow

by identifying missing opportunities, assessing the impact of differ-

ential privacy in their workflow, and identifying roadblocks.

We carefully formulated the questions broadly to enable intervie-

wees to express their views freely, recount their experiences fully,

and reduce response bias and priming. Because the organizations

have not deployed differential privacy, most interviewees were not

familiar with differential privacy; only two had some non-technical

familiarity. We tackled this challenge by explaining differential

privacy at a high level before starting the questionnaire. We pro-

duced the questionnaire for data analysts in Appendix C, whose

results are collected in section 5. Only 4 of the 24 questions con-

tained the word “differential privacy”, which the interviewees could

nonetheless answer without a deeper technical understanding (see

Appendix C).

Furthermore, we performed a deep dive in one corporation by

interviewing 10 analysts. Additionally, to understand the process

and motivation behind this corporation’s privacy protection, we

interviewed five data stewards via video conference or email cor-

respondence with a second questionnaire (see Appendix B). Data

stewards control access to and minimize the risk of data interac-

tions, e.g., auditing analysts’ purposes before granting them access.

Altogether, we distill key findings and answer these 5 RQs:

RQ1:What is the context of privacy protection in the targeted orga-
nization? The data stewards provided a perspective of their data

protection practices, shedding light on their motivation, concerns,

and possible improvements of their methods in privacy protection.

RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization? The answer draws a

picture of the workflow and the improvements analysts would

welcome. This holistic picture helps us identify opportunities for

differential privacy in organizations’ analytics workflows.

RQ3: When does differential privacy impede an analysis? Differ-

ential privacy is not a silver bullet; thus, we aim to explore the

limitations of differential privacy in an organization. Moreover, as

the mechanisms to make SQL-like queries fulfill differential privacy

are well-understood [40, 59, 60], we investigate whether this type

of query is common in analysts’ workflows and bring significant

benefits in exchange for moderate effort.

RQ4: How would differential privacy affect the workflow of an an-
alyst? Analysts are not accustomed to the noisy outputs of differ-

entially private mechanisms. With this RQ, we aim to understand

the impact of noise in their analysis and explore their views on

different uses of differential privacy.

RQ5: Can differential privacy be applied to the frequent SQL-like
queries analysts execute? To exclude the impossibility of using dif-

ferential privacy, we must assess whether analysts can use it in

their queries.

5 RESULTS OF THE PRIVACY STUDY
To frame the research questions in the appropriate context, we

first depict how the interviewed organizations usually access data

and present the state-of-the-art anonymization techniques in the

industry. Subsequently, to provide a perspective on the motivation

behind privacy protection, we summarize the results of the inter-

views with the data stewards from the deep-dive organization (RQ1).

Finally, we delve into the data analysts’ answers to assess whether

deploying differential privacy is useful and possible (RQ2-6).

5.1 Data Access Models
This study focuses on practitioners performing data analysis inter-

nally, i.e., without publicly releasing the results. The interviewed

organizations used one of two models for accessing data internally:

segregated and federated [13]. Fig. 1 provides an informal diagram

for a quick intuition of the models. These models used distinct

roles: data owners in charge of collecting data, data engineers build-
ing pipelines, data stewards assigned to overseeing the data access

request processes, and data analysts fulfilling analytics use cases.

Analytics teams in the segregated model engaged directly with

data owners, whose data are stored in different data centers and

regions running different systems. The data owners would provide

the data and also act as stewards. Without an established system for

automated data exchange and preparation, the analytics teams had

data engineers to prepare data for every use case. An improvement

over the segregated model is its federation. After collection from

multiple sources and pre-processing and anonymization, in the fed-

erated model, data from all domains (e.g., demographics, financial,

health, etc.) are stored and easily accessible from a single applica-

tion interface. The data engineers build such data pipeline and are

not usually part of an analytics team. Data stewards guard multiple

data sources, interact with analysts, and are detached from the data

owner role, which is dedicated exclusively to data collection.

In both models, data protection officers from the legal department

could interact in the dataset request process, namely when analysts

requested data for the first time or data were highly sensitive.

While the initial monetary investment to build a federated sys-

tem could be larger than for the segregated model, the federated
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Figure 1: Informal diagram depicting a segregated (left) vs. a
federated (right) models for accessing data.

model holds some advantages: it (i) curtails overhead by eliminat-

ing the repetition of some tasks in the dataset access request pro-

cess (e.g., user identification or analysis’ purpose specification) and

(ii) reduces time-intensive and cumbersome dataset exploration

across different systems. Moreover, it (iii) streamlines building

data pipelines and defining access request processes by follow-

ing the same standards across domains and sources. A federated

model (iv) simplifies providing precise access control across sources

and enforcing policies. Furthermore, it allows to (v) assign non-

overlapping roles to practitioners, and (vi) establish re-usable chan-

nels between data and analysts. Finally, it could (vii) log the different

analyses that other analytics teams have already performed such

that others may use them (preventing work duplication). Nonethe-

less, while the federated model holds such advantages over the

segregated model, we observed a similar analyst workflow (see Q7)

and an adversarial position for the dataset request process.

5.2 Current Anonymization in the Industry
In this section, we discuss the status quo of the anonymization that

companies used to remain compliant without differential privacy,

providing a baseline in the context of this work.

Companies can use data collected with user consent exclusively

for the agreed primary purpose. If companies choose to use data for

purposes other than the one agreed (secondary purpose), data must

be anonymized. All companies had not deployed differential privacy

in production or other advanced privacy-enhancing technologies,

and employed traditional means of anonymization: suppressing di-

rect identifiers such as names, emails, or social security numbers,

truncation of, e.g., GPS locations and traces, generalization (e.g.,

transforming 28 into [20, 30]), and dropping unnecessary attributes

and outliers. We consider these techniques syntactic [21] because
an algorithm transforms the data’s syntax following a predeter-

mined model (e.g., GPS locations must only have three decimals).

Additionally, data were always encrypted at rest.

Beyond anonymization, to avoid merging multiple sources that

could re-identify individuals, some companies did not allow ana-

lysts to access multiple datasets at once. In one company, depending

on the purpose, stewards granted access solely to a subset of the

dataset or a mock dataset for experimenting purposes. Further-

more, for critically sensitive datasets (e.g., illnesses), one company

provided access only to an anointed small set of analysts, limited

access times, applied anonymization, and restricted analyses to

cloud environments. These environments produced logs for later

auditing (if needed) and blocked analysts from downloading data.

On the other hand, based on user consent for primary use, analysts

from one company could access detailed client profiles (names,

house prices, mortgages, income, among others). Despite having

user consent, we recommend decoupling direct identifiers from the

rest of the data (e.g., hashing the direct identifiers) to minimize

the consequences of malicious analysts’ actions, and encourage the

integration of an automated process (or another practitioner) that

can only access the analysis output and the direct identifiers to

serve the customer (e.g., linked by a hash table only known to the

additional process/practitioner).

Altogether, companies applied the principles of factual anonymity
(i.e., the effort of re-identification is disproportionate to the upside

potential of an attacker learning about the individual), proportional-
ity (i.e., collection restricted to data necessary to fulfill the primary

purpose) [13], audit logging, data sharing on a need-to-know ba-
sis, data retention and purging [13], access controls, and traditional

anonymization. However, the companies could not measure the

privacy achieved by their systems and could only rely on their

experience of what is compliant with regulation [30, 80].

5.3 Motivating Privacy
RQ1:What is the context of privacy protection in the targeted orga-
nization?
(Q1) What is the institution’s motivation for privacy protection? The
five stewards agreed on two main motivations: (i) organizations

have a legal and moral duty to abide by data-protection laws, (ii)

privacy protection is an asset whose “quality has to be equal to the
premium product offered.”
(Q2)What are your privacy concerns when an analyst has full dataset
access? When proceeding with data protection risk assessments

of dataset requests, stewards are predominantly concerned with

misappropriation (i.e., unauthorized use of data) and data leakage.

While stewards do not expect analysts to be malicious, they are

apprehensive of a potential lack of privacy skills, privacy-oriented

mindset, and dataset understanding or pure negligence. Specifically,

stewards strive to prevent attacks such as unsolicited customer

profiling, disclosing data to, or colluding with third parties to take

advantage of the customer, combining datasets for re-identification,

or using the data for purposes other than the one consented.

(Q3) At what level of data granularity are you protecting and measur-
ing privacy? The granularity of privacy protection is at the attribute
level, and stewards measure privacy based on the fulfillment of data

protection regulation. For example, attackers could use the attribute

location to re-identify individuals; thus, according to GDPR [30],

the attribute must be obfuscated so that their home, work, and

other points of interest cannot be linked to the individual. Further-

more, the corporation must guarantee the “security, transparency,
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and legitimacy of the [data] processing.” Overall, the anonymization

approach strives to achieve the factual anonymity principle.

(Q4) What could be improved in the dataset request process? Data

stewards suggested to (i) perform an audit to verify that the exe-

cuted analysis aligns with the previous commitment, (ii) increase

the quality of the datasets’ metadata so that analysts can better

define a purpose, (iii) increase the privacy training of analysts, (iv)

produce privacy-enhanced dataset reports so that after the per-

mission expires analysts can still retain some information, and (v)

increment efforts in request process automation.

(Q5) What are your typical questions for the current interview-based
full dataset access authorization? To help other practitioners in the

development of their risk assessment process, we gathered the most

frequently asked questions from data stewards to data analysts dur-

ing the dataset request process (see Appendix E). Notably, without

a clearly defined data usage purpose, the data stewards would not

grant access to analysts.

(Q6) Instead of the interview process, would you be capable to run a
program provided by the analyst such that the analysis is carried out
without the analyst ever “seeing” the dataset? While most considered

this an efficient, plausible, and necessary step in the future, the five

data stewards did not yet have the required technical training, and

their system did not enable the functionality. “At the moment, it is
not possible, but it will be a necessary step in the future, if not already
today.” One steward remarked the importance of this functionality,

as in some cases, e.g., requesting data from a branch of the company

in another country, is extremely challenging.

5.4 The Practicality of Differential Privacy
RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization?

(Q7) What is your workflow to analyze data? Despite the use of

either a segregated or a federated model, the workflow was similar

across organizations and employed common practices and tools;

the main differences were in dataset exploration.
(1) Business Use Case Demand. A business unit asked an ana-

lytics unit to conduct a study for supporting a business need, or

analysts continuously studied data from a specific (customer’s) do-

main.

(2) Dataset Exploration. Only the companies using the federated

model for accessing data could explore datasets’ metadata through

a data portal without requesting access first (unless the dataset

was tagged as critically sensitive), making the identification of the

suitable dataset for the business need easier. Analysts would find

datasets using keywords in a search bar, and datasets provided

descriptions, depicted their schema, and had data owners’ con-

tact information (analysts sometimes interviewed them to further

understand the suitability of the dataset).

In the deep-dive organization, analysts could additionally per-

form any SQL aggregation query on the anonymized dataset prior to

access (e.g., counts, averages, etc.), which they used for data under-

standing and quality checking (e.g., number of nulls and duplicates

or measuring skewness). However, for privacy reasons, analysts

could only retrieve a few rows when executing SELECT * query

types and aggregations could time out (preventing excessive exe-

cution costs). Analysts used this preview functionality frequently

“[...] to get a feeling for the data” and found it useful for exploration

“The preview query is the best feature.” Companies without a feder-

ated model could not explore datasets, required data engineers for

each use case, and analysts relied either on leveraging their contact

network or on an experienced team lead to find promising datasets

within the company.

(3)Dataset Access Request. Once the analysts identified a promis-

ing dataset, they formally requested access, which involved filling

standard forms about the details and purpose of the analysis so that

data stewards could assess the privacy risks. Except for three small

companies, the request entailed interviewing with stewards, where

they asked questions such as the ones in Appendix E.

(4) Visual Inspection and Preparation. With full dataset access,

analysts would sometimes visually inspect the data values, types

and schema. Analysts deemed these checks necessary because of

the flaws sometimes found in the pipelines and dataset descriptions

of the federated data portal or the data provided by the data owners

in the segregated model. Moreover, as datasets consisted of many

tables, analysts often checked which joins were possible and which

attributes were most suitable for primary and foreign keys. With

this information, they performed retrieval SQL queries with GROUP

BY, WHERE, and JOIN clauses to build a sub-dataset fine-tuned

for their analysis. Many analysts also performed quality (double)

checks and data wrangling using the Python’s Pandas library [84]

instead of SQL.

(5) Data Analysis. Once analysts had checked the quality and

wrangled the data, they primarily performed their analysis or ML

model training in Python Jupyter Notebooks [5], and if the analyst

dealt with big data, they employed PySpark clusters [85].

(6) Output Interpretation and Model Deployment. If the use
case required building a model for online prediction, the analysts

would sometimes load the model into a more performant language

like Scala before deployment. However, analysts frequently only

needed to report statistics and visualizations, from which the busi-

ness units drew actionable information.

Most of the platforms and workflows employed AWS analyt-

ics tools [9] namely S3 buckets (storage), Glue (data preparation),

Athena (SQL querying), Sage Maker (data analyses), and analysts

also used Python for visualization (one used R) and two of them

complemented their results with Tableau [95]. Additionally, two

analysts used Knime [66] for drag-and-drop analysis and visualiza-

tion, and another two employed SAP data management software

tailored to their department’s needs.

The small interviewed companies had a few major differences,

namely, they used a hybrid between the central (all datasets stored

in a single data warehouse) and the segregated model. Because of

their small customer pool (managed centrally), they collected data

from their customers or purchased user-data products from other

companies to analyse or train ML models with more data, which

required interaction with a segregated set of external data owners.

Furthermore, because of the small size of some companies, they had

no need for formal dataset request processes as most employees

were aware of the activities of the rest; their overhead was at the

time of signing the initial contract with customers, which included

data access policies and non-disclosure agreements. They also em-

ployed traditional anonymization techniques and only retrieved

with SQL data stored in, e.g., Google Cloud [38], if strictly needed
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(less data for building the model and testing, and more data for the

final training or analysis).

(Q8)Why do you need full dataset access? The main reasons given

for accessing all the records of a dataset instead of, e.g., through

solely a query interface, were:

(i) Obtaining a Holistic Understanding of Data. All analysts

worked uncomfortably if they could not make preliminary

statistics or visualizations that encompassed all records “I
need to see the entire dataset to understand the data,” “I am
not necessarily sure of what I need to look at until I look at
it. It is an improvisation, you start with a broad question and
then you delve into it.”

(ii) Less Effort. A few analysts could fulfill their analysis with

only SQL aggregation queries (e.g., counts and averages) and

produced visualizations afterward; however, some found

using other tools easier: “Having access to the entire dataset
allows me to use Pandas.”

(iii) Cleaning Data. Given that there could be flaws in previous

data preparation steps, analysts tended to (double) check all

data for quality.

(iv) Wrangling Data. In the federated model, data engineers often

built datasets without precisely knowing the purpose of a

data analyst; thus, analysts sometimes took an engineering

role, creating features for ML models or further tailor the

dataset for their analysis by grouping or executing queries

with JOIN clauses.
(v) Debugging ML Models. Analysts frequently needed to debug

their ML models when testing and training, as there might

be corrupted data points.

(vi) Visually Inspecting Values. Some use cases, such as root-cause

analysis, required analysts to check specific IDs and attribute

values, and at times analysts needed to check whether an

output table is feasible or map (truncated) GPS traces to

street names for the analysis to be interpreted.

Other analysts, however, did not always require access to all

records because their ML model already converged, did not overfit,

and provided enough accuracy: “Since I am normally only doing
exploratory work, I usually do not need access to the full dataset to
prove that the given problem can be solved.”

(Q9) How often do you request full dataset access? How long does it
usually take? Among the large companies, the request frequency

variedwidely between 4 times amonth to once every 6months, with

an average between once and twice a month. Likewise, regarding

waiting times, the minimum hovered around one to three days,

while the maximum was two months, with an average between one

to two weeks. If another country hosted the data, the first request

could take 9 months. Overall, analysts from the interviewed large

organizations were blocked for at least one week for every new

requested dataset, which they solicited on average once a month.

Specifically, in the deep-dive organization, analysts requested 5073

datasets altogether in 2021 (around 14 requests per day, which

increased to 18 as of 2022). Out of all the requests in 2021, stewards

rejected around 5.6%, amounting to fruitless weeks of revisions
1
.

1
The daily rejection rate went from 0.8 in 2021 to 0.9 in 2022, potentially indicating

updated stricter policies.

Moreover, the number of requests wasmore than double the number

of available datasets in the deep-dive organization in 2021 (a sign of

significant duplication of work, accruing more costs). On the other

hand, three of the small organizations did not have such a formal

request process, making them agile.

(Q10) What do you think about the process to request full dataset
access in your organization? While analysts at small and US-based

organizations were satisfied with the request process, there was

an overall consensus at the EU-based large organizations on the

following statement: “The process to get customer data is slow. It
might take from three days to weeks, to months” and for some, even

“Two to three days is too slow.” In the worst-case scenario, an analyst

could wait weeks for a rejection.

Some analysts thought the interviews with stewards were pri-

marily for building trust, and once built “I always receive access.
I do not see the point of waiting and interviewing every time.” Fur-
thermore, frequently there were too many practitioners involved,

leading to lengthy discussions about which dataset to use and often

suffered a dilemma because responsibility entailed accountability in

one organization “If there is more than one data steward responsible,
then it seems no one takes full responsibility for the acceptance or
rejection of the request.” On the other hand, there were bottlenecks

in the vacation season when only one steward was responsible.

Analysts agreed that accessing data has become better since they

moved from a segregated model to a federated model; however, the

process was still cumbersome, so much so that some teams incurred

into the malpractice of entrusting a single analyst to manage the

process. One analyst summarized the inefficiency of the segregated

model: “There is a lot of bureaucracy and everyone is extremely
reluctant to grant access to a full dataset. Even for internal problems
and non-sensitive data. It is cumbersome to request full dataset access
because there is no central point where the dataset access can be
requested and no central entity which manages access control and
usage control for all datasets. For every instance, the process is a
bit different depending on the responsible department, underlying
workflow and data pipeline.” In the segregated setting, the process

was lengthier, and an analyst could not explore what others had

analyzed or requested, sometimes leading to redundant work.

(Q11) What features do you think are missing in your organization’s
data analysis workflow? The most notable proposed improvements

were: (i) including rich information regarding dataset metadata

(preferably with visualizations) and their access request process,

(ii) improve real-time analytics performance, (iii) enabling full ana-

lytics in data portals such that an analyst does not need to transfer

data to other tools, (iv) limiting access times to improve security,

and, from a data engineering perspective, (v) automating sensitive

data detection and (vi) improving quality and automated checks to

minimize visual inspections.

RQ3:When does differential privacy impede an analysis?

(Q12) In which analytics use cases have you been involved? Most

analysts worked on descriptive use cases. Some of these use cases

focused on reporting conclusions from the past by performing

root cause (error), cost down, and warranty costs analysis. Other

analysts strove to increase the situational awareness of the com-

pany by analyzing location-based time series of users (identify
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points-of-interest or common traces), their behavior when using a

product or a service (frequently used features, A/B tests, purchases

or component performance), and demographics (user-base analysis

or advertisement). Additionally, some analysts focused on alerting

internal stakeholders of quality defects in real-time, and another

analyst performed correlation analysis to better understand the

interplay of different variables in products and services. Most of

these use cases required performing aggregate statistics (including

visualizations to report to management), namely for situational

awareness, while others demanded visually inspecting exact values

(namely for error detection or financial data), and one analyst used

classification ML models for quality checks.

The minority of interviewed analysts were involved in predictive
use cases: forecasting product lifetime, labelling spam and inappro-

priate images, user behavior, the company’s profit and loss, claim

costs, and predictive maintenance and creating automated under-

writingmodels.While these use cases relied on basic statistics, some

used vanilla ML such as linear regression (for underwriting models).

Nonetheless, the interviewed analysts agreed that using ML was

rare; thus, most analysts relied on aggregation and visualizations, as

the business units demanded quick and easily interpretable results.

(Q13) Is SQL-meaningful for your work? How many SQL-like queries
do you make weekly? Most of the interviewees employed SQL,

chiefly during exploration, and they deemed SQL an important

part of their workflow “SQL is amazing, everyone who tells you
SQL is going away is wrong,” because they could quickly look into

rows and performed preliminary statistics, and, with JOIN clauses,

prepare a dataset for their use case. The least adept analyst executed

5 weekly queries, while the most assiduous SQL user performed

250, being the average around 50 queries per week.

(Q14) How often do you need machine learning to fulfill your analysis
in contrast to using SQL? Two interviewees always needed ML to

fulfill their analysis, while another 4 used ML for some of their

use cases. The analysts who were allowed to explore datasets used

SQL for exploration, and three used SQL to generate statistics and

completely fulfill their analysis (complemented with visualizations),

while the rest preferred Python or other tools for analysis. Further-

more, analysts often visualized data to accompany their results

with other tools (see Q7) and employed retrieval SQL queries for

visual data inspections (e.g., for error analysis) or building tailored

datasets for their analysis.

(Q15) What are your most used machine learning models? The 6

analysts employing ML most often resourced to decision trees

and linear regression because they are easy to debug, interpret

and visualize the results. These analysts also mentioned the use

of random forests or XGboost (preferred), Bayesian approaches,

support-vector machines, and, for time series, they used outlier de-

tection techniques for error analysis and autoregressive integrated

moving average for forecasting. Analysts avoided neural networks

because they are hard to interpret; nonetheless, one practitioner

indicated they were working on deploying neural networks in the

future for underwriting models. In particular, one analyst employed

PyCaret [86] for automated ML workflows, as in the corresponding

department “It is more important to be quick and give a good-enough
overview than having well trained precise models,” “Complex machine

learning is often never required.” Other analysts voiced that such is

often the case.

(Q16) If you were to use differential privacy to fulfill your analysis,
when and how much accuracy would you be willing to forgo? The
willingness to forgo accuracy depended on the use case, with a spec-

trum ranging from the need for absolute accuracy for quality, error,

or financial analyses, to indifference for accuracy in exploratory

use cases (only enough accuracy to prove a solution works). For

the rest of the use cases, while the interviewees would need to

estimate the minimum accuracy formally, they informally reported

on average that an accuracy of around 98% would be sufficient, and

none reported below 95%. Some financial analyses could also allow

errors in the magnitude of cents of a monetary unit, and one ana-

lyst reported the need for at least 99% accuracy for finding suitable

primary keys for joins. Additionally, comments such as “I am scared
of introducing noise into the analysis. [...] From all the analyses I do
every year, there will be some that will be wrong. [...] How well you
are compensated depends on how well you do. [...] Because you are
paid to have an opinion, you are not allowed to be wrong,” suggest
that organizations’ incentive systems for data scientists, e.g., bonuses,
should change to account for errors due to differential privacy.

RQ4: How would differential privacy affect the workflow of an
analyst?

(Q17) Howmuch would the noise affect your analysis? Depending on
how much the noise could affect an analysis, we observed three cat-

egories for use cases: (i) suffer adverse effects, (ii) reach a tradeoff,

and (iii) robust to noise. The first one relates to analyses reporting

error, quality, or financial results, where noise could have cata-

strophic consequences, e.g., a defective component is installed in a

product, or yearly budgets are inflated. Moreover, analysts some-

times dealt with low data quality (notably from sensors) that noise

could worsen, e.g., GPS locations may already have a 10m error,

making a points-of-interest analysis noisy in itself. Adding noise

to the aggregation might produce unusable results.

The second type concerns aggregation and visualization reports,

where, given enough data, the noise would not affect the inter-

viewees’ analysis workflow (e.g., demographics or product usage

studies); however, analysts would prefer working with error bounds

to report confidently to management. The third type of noise relates

to analysts testing solutions “Since my work is exploratory and we
mostly try to prove that the problem can potentially be solved, noise
would not have any negative effects for my analysis.”

(Q18) Would you find it helpful to execute differentially private SQL
queries to explore and fully analyse datasets without the standard
permissions? We theorized that given the plausible deniability guar-

antees of a differentially private analysis, which can be argued to

comply with the identifiability notion in GDPR [30, 50], some uses

cases that heavily rely on aggregation might abate or not need the

standard dataset request processes. From this perspective, most

analysts found differentially private SQL queries helpful, in sum-

mary, because “If having differentially private SQL queries for data
exploration implies reduced bureaucracy and easier access, then this
would save a lot of time and discussions.”

Notably, one interviewee saw the potential of differentially pri-

vate queries for data exploration: companies could expose data
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externally through an API, allowing others to understand their

data products by conducting preliminary analyses. Another analyst

favored integrating differential privacy into, e.g., AWS Athena [9].

On the other hand, few analysts did not see the value of differential

privacy because their use cases required, e.g., visual inspections

for error detection, or their organizations were already agile in

accessing data. Lastly, two analysts voiced a general concern “[Dif-
ferential privacy] is a double edge sword. You could get quick [data]
access, but then [results are] noisy,” “I think I would find it annoy-
ing, since it adds an additional step and obfuscates the results,” and it

could lead to confusion as analysts usually work with accurate data.

(Q19) Only based on the information extracted from a dataset ex-
ploration with differential privacy, could you write a script to fulfill
your analysis goal? A couple of interviewees shared their inability

to program their script as they needed to see the data (e.g., error

analysis), and the others shared their skepticism by highlighting the

problem of low data quality. Even if an analyst developed an intu-

ition for the data through differentially private aggregation queries,

programming other statistics, visualizations, or ML models would

likely require debugging, which may lead to visual inspections.

(Q20)What are the minimum properties for you as an analyst such
that you are confident to write an analysis script without full dataset
access? Assuming enough data quality and a use case that does not

require visually inspecting data, the interviewees indicated that

for tentatively writing code without dataset access, they needed:

good metadata from the dataset, such as attribute descriptions,

knowledge about the events that trigger data collection, primary

keys, data types (IDs, dates, timestamps, floats, strings), dataset size

(number of rows and columns), and attribute distributions to learn

about sparsity in the form of histograms or box plots.

(Q21) Would you find it helpful to use a dynamic dashboard that
visualizes dataset information with differential privacy? Since data
platforms may not expose sensitive data on a dashboard for explo-

ration, we conceptualized enabling this functionality with differen-

tial privacy. All but one interviewee considered such a dashboard

helpful for finding a suitable dataset faster and with a better user

experience than their available utilities (static and scant summaries

or using SQL). Specifically, an interviewee commented that, in gen-

eral, one should be able to visualize the data and get basic statistics

before requesting access, and another analyst would have liked to

preview similar information as the “describe” method of a Pandas

dataframe [84] (count, mean, standard deviation, minimum, quar-

tiles, maximum). Nonetheless, one analyst noted that a dashboard is

a nice-to-have because it is only more convenient than SQL. Lastly,

another interviewee underlined a problem that may arise when

an analyst does not trust the data provided by the visualization,

e.g., when the plot seems implausible. The interviewee suggested

that a dashboard should enable the analyst to drill down or provide

contact information from a data owner to verify correctness.

RQ5: Can differential privacy enhance the privacy of the frequent
SQL-like queries analysts execute?

(Q22)What are your top SQL-like queries before you have full dataset
access? If analysts could explore datasets, most would usually con-

duct a metadata analysis with SQL to assess data quality: finding the

number of duplicates, outliers, nulls, and not-a-number values and

measuring the skewness. Analysts would also explore the dataset

for data understanding using COUNT, DISTINCT, MAX, MIN, AVG, and
VARIANCE functions with WHERE and GROUP BY clauses. Analysts

were typically interested in frequent values within a column (see

details in Appendix D). Furthermore, the deep-dive organization

allowed to use SELECT * LIMIT(X) for a few X rows so that ana-

lysts could have a “feeling” for the data. On the other hand, fewer

analysts performed retrieval queries (limited in output rows) to

verify whether an ID was present or two tables could be joined.

(Q23) What are your top SQL-like queries after you have full dataset
access? Analysts who could not explore the dataset prior to having

dataset access would execute queries such as those in Q22 first (see

Appendix D for details). Afterward, if they did not already retrieve

the necessary information from the exploration, they resorted to

Python and other visualization tools to fulfill the use case. Some

analysts performed additional retrieval SQL queries with JOIN and

SELECT * clauses with different filters to visually inspect data

points (e.g., IDs or potential errors), identify cut-offs (e.g., where an

attribute data type changes), or fetch the specific data they needed.

(Q24) What is the ratio between aggregation queries and queries
to retrieve items? While the interviewees would need to calculate

the percentage formally, they reported informally, on average, that

around 30% of their queries were for aggregation, being the low-

est 0% and the highest 90%. Another three analysts used SQL for

retrieval and Python for aggregation or vice versa.

6 DISCUSSION
In this section, we present selected key findings (KF) distilled from

the data stewards’ and analysts’ answers to the 24 interview ques-

tions of section 5, most accompanied by succinct recommendations.

Lastly, we answer the research questions proposed in section 4.

6.1 Key Findings
(KF1) Data stewards seem to be more concerned about security than
privacy.2 Data misappropriation and leakage retain the most at-

tention (Q2), which is reflected in the established cumbersome

dataset request processes that dictate access controls and account-

ability in the name of building trust with analysts. However, we

highlight that privacy lacks such attention, even when some com-

panies still allow their analysts to “see” or download sensitive data.

Attacks on privacy (Q2) could enable malicious analysts to mis-

use data for spying on or leaking secret information of celebri-

ties, acquaintances, “friends”, or relatives [100], blackmailing, or

discriminating individuals in social or commercial transactions

online [35]. Despite the risks, companies predominantly use tradi-

tional and potentially vulnerable anonymization techniques (e.g.,

pseudo-anonymization or k-anonymity), as demonstrated by the

research community [8, 29, 33, 67, 79, 94]. Thus, we suggest compa-

nies increase efforts to research and deploy more advanced PETs.

(KF2) Running analysts’ scripts without “seeing” the data is a dis-
tant reality for the interviewed companies. We explored multiple

ways for analysts to run scripts without direct dataset access. In

2
In the context of this work, we refer to security as the measures for blocking unautho-
rized data access, while privacy focuses on limiting harm by authorized analysts [13].
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Q6, stewards declared their technical inability to execute scripts

that analysts could share and, thus, avoid granting them access

(saving time). With the proper tooling, a non-technical steward

could potentially run the script; however, current systems do not

offer such abstracted functionality and this option would relay the

responsibility to the stewards instead. An alternative to transfer-

ring the trust to stewards consists on executing analytics in trusted

execution environments
3
. Additionally, analysts altogether gave

six reasons why they needed full dataset access (Q8) and reported

skepticism when asked about writing a script (beyond aggregation)

based on a differentially private exploration (Q19 and Q20).

The main impediment reported was data quality, which often

led to visual inspections of dataset values. As encouraged by point

Q11-(v), we suggest companies prioritize increasing data quality as

it will indirectly improve privacy and increase the technical training

of data stewards and owners, enabling more data security options.

(KF3) Given the analysis workflow, differential privacy could have
a significant impact on dataset exploration (see Q7). As long as ex-

ploration does not require visually inspecting a particular ID or

an exact attribute value, differential privacy can provide noisy sta-

tistics for the analyst to familiarize with the data (e.g., number of

rows, averages, quantiles, etc.), which is often enough to assess the

dataset’s suitability. Furthermore, while analysts were not allowed

to explore critically sensitive datasets with SQL, employing differ-

ential privacy could arguably enable their exploration by adding

an extra layer of protection. Additionally, platforms could provide

privacy-enhanced dataset previews (e.g., only revealing a few rows

or producing dummy or synthetic data with or without differential

privacy). Overall, differential privacy could facilitate exploration

that otherwise might not be possible or timely.

(KF4) Analysts could employ differentially private mechanisms to
fulfill certain use cases (see Q7). If the analysis requires summary

statistics and visualizations, a differentially private analysis could

fulfill the privacy-utility tradeoff given enough data. Consequently,

analysts could fulfill use cases without exact outputs, avoiding po-

tential privacy leaks. Regarding ML, while its differentially private

implementations are at an early stage, researchers and practitioners

could explore systems to assess whether a model shows signs of

converging with enough accuracy after training on a sample of the

target dataset. Such a system could help analysts to determine the

validity of the model or the dataset. Lastly, we suggest exploring

whether differential privacy can enable more accurate analyses

than the current organizations’ anonymization processes.

(KF5) After fulfilling the use cases, the interviewed companies do not
have a human-supported privacy auditing step. The last reported
step of the workflow in Q7 was “output interpretation and model
deployment”. Aligned with a steward in Q4: “perform an audit to
verify [alignment with analysis commitment],” we suggest privacy
officers in companies add a randomly-sampled auditing step with

a human in the loop after the conclusion of the use case. We also

suggest audit logs, which one of the interviewed companies pro-

duced for every execution on sensitive data in secured machines,

where analysts could not download data or install new software.

3
Hardware and software designed to run applications securely against unsolicited

retrieval of sensitive information or key material [81].

(KF6)Given the six reasons analysts shared for fully accessing datasets,
differentially private mechanisms could help in (i) “obtaining a holis-
tic understanding of data” by providing dataset summary statistics
(see Q8). Additionally, we suggest substituting tedious SQL analy-

ses with dashboards for visualization, so that tasks require (ii) “less
effort”. We also suggest engineers develop and integrate tools that

enable analysts to (iii) “clean” and (iv) “wrangle data” without visu-
ally inspecting the values (i.e., no complete data access required).

With such tools, filtering values, imputing, removing duplicates

and outliers, fixing wrong formattings, handling missing data, or

creating new attributes would also help with (v) “debugging ML.”
Moreover, aligning data engineers with analysts could improve

data quality, e.g., by involving engineers in the conversations be-

tween stewards and analysts. Lastly, researchers could investigate

how differentially private set union mechanisms [22, 45] could help

analysts to (vi) “visually inspect values.” Meanwhile, we suggest

increased security measures for such cases.

(KF7) Analysts are frequently blocked for significant periods every
time they request access to datasets (see Q9). There are a few conse-

quences of such delays. Data stewards and privacy officers must

also invest their time in reviewing the requests. From our conversa-

tions with the interviewees, we also learned that long waiting times

could hamper analysts’ bursts of creativity and productivity, which

indirectly negatively affect the quality of work. Additionally, an

interviewee recounted the malpractice of deferring all the dataset

request process responsibility to a single analyst in the team (see

Q10). Such practice overburdens an individual with the responsibili-

ties of the entire team for, e.g., a data leakage, creating an unhealthy

imbalance in accountability. This practice further increases the com-

pany’s privacy risk by potentially having the other analysts handle

data without privacy training. We suspect this malpractice is a sign

of over-complicated dataset request processes and long waiting

times; thus, we suggest privacy officers streamline their processes

and prompt teams to refrain from overburdening a single analyst.

Differential privacy’s stronger guarantee could reduce the com-

plexity of the interactions between practitioners by offloading their

data protection demands and, thus, reduce the costs accrued by

these human-intensive processes. Lastly, given that there were

multiple requests for the same datasets from different teams, we en-

courage companies to build interfaces depicting privacy-enhanced

summaries of past fulfilled use cases per dataset. An example is the

repository designed by Johnson et al. [58] in the health industry.

(KF8) Differential privacy could arguably reduce the time to access
data.As differential privacy brings a higher and formal guarantee of

privacy, it could relax the inquisitiveness of data stewards, eliminate

(steps of) the request process, and enable exploration that was

otherwise not possible. By enabling exploration, analysts reduce

the likelihood of investing time in request processes that could even

result in accessing a non-suitable dataset. With exploration and

higher privacy guarantees, differential privacy could also speed

up requesting data from other countries, which seemed the most

significant bottleneck (see Q9). Additionally, differential privacy

could potentially prolong access times (if these are limited) and

shorten development cycles with an earlier data access by testing

algorithms and applications with noisy data or outputs. Regarding
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applications specifically, once finished, the customers can confirm

whether the product works appropriately with real data.

We have also observed that, once analysts have access, much of

the data protection and accountability lies on their shoulders, which

differential privacy could lift to a degree by protecting beyond trust

and policy. However, the analyst somewhat familiar with differen-

tial privacy pointed out that, unless data quality is improved (as also

suggested in Q11), "There is a still a ways to go to deploy differential
privacy," because the need to debug by visually inspecting data will

prevail. To increase privacy protection in those cases, we suggest

using differential privacy with limited visual inspection.

(KF9) Most analysts employed aggregations and visualizations to
fulfill their use case in a timely manner, while machine learning was
not as predominant (see Q12). We found that analysts could employ

differential privacy to explore datasets suitable for all the identified

use cases. However, for the analysis itself, the interviewees voiced

that the noise would invalidate the use cases related to quality, error,

and (some) financial analyses because mistakes in safety decisions

and financial planning are company critical. Nonetheless, for the

use cases that required aggregation and visualization, with enough

data, we suggest analysts fulfill these use cases with differentially

private queries such as counts, averages, and percentiles, among

others (e.g., user behavior, demographics, and some location-based

analyses). However, the available tools for differentially private

ML are not mature for widespread adoption. Thus, we encourage

researchers and practitioners to improve and build systems around

existing proposals in future work, e.g., location-date analysis [105],

heavy hitter identification [71], mining frequent itemsets [114],

deep and supervised learning, random forests, and linear regression,

among others [1, 52, 70, 111, 113].

(KF10) For the interviewed companies, SQL was more important
than machine learning and was considered a meaningful tool fre-
quently employed in their workflow (see Q13 and Q14). Additionally,

on average, 30% of the top SQL queries executed before and af-

ter full dataset access were for aggregation (see Q22, Q23, and

Q24), which researchers have already adapted to fulfill differential

privacy [40, 59, 60]. Therefore, there is still a gap between what re-

searchers have enabled and what practitioners need for enhancing

the privacy of their frequently used SQL queries—a gap we intend

to partly cover in section 7 by proposing 10 key system desider-

ata that an integrable privacy-enhancing analysis system should

fulfill. Beyond SQL, differential privacy and its available tools are

also suitable even when analysts preferred using Python for ag-

gregation and ML use cases that allowed for lower precision. In

particular, we encourage using Python libraries such as IBM’s diff-

privlib [36, 52] that provide many off-the-shelf differentially private

ML models that could provide enough precision for the intended

purpose, such as for the linear regression model one company used

for underwriting (see Q15). However, practitioners will require

further engineering to limit Python to strictly privacy-enhancing

libraries and amenable standard functionalities (e.g. by using policy

enforcement paradigms such as Wang et al.’s Data Capsule [102]).

(KF11) Analysts confirm that differential privacy would be helpful
for dataset exploration, fulfill certain use cases, and for enabling
privacy-enhancing dashboards for dataset visualization (see Q18

and Q21). For aggregation-based use cases where noise has no

detrimental effects, analysts informally reported, on average, a

required accuracy of 98% (see Q16 and Q17). While such a figure

might seem high, given the large amount of data handled, analysts

could potentially find enough for aggregations that fulfill their

privacy/utility tradeoff. For example, as of early 2022, the deep-

dive organization had roughly 2260 datasets in its federated system

amounting to 3.4PB (1.5TB per dataset on average) with an average

daily query execution of over 900TB. However, size might not be

enough for some use cases, as the analysis could be sensitive to

outliers or corrupted data. Lastly, we observe that it is critical for

analysts to know whether the accuracy is above their required level,

which would consume privacy budget and be hard to estimate, e.g.,

when the analysis needs post-processing (clamping or truncation).

6.2 Answers to the Research Questions
RQ1:What is the context of privacy protection in the targeted orga-
nization? The deep-dive organization invests more resources to se-

curity than privacy-enhancing analysis—pattern also present in the

other organizations. Moreover, stewards consider privacy an asset

and strive to provide the best standard for their customers. However,

organizations still employ traditional anonymization techniques.

Furthermore, companies today are unable to tangibly measure the

privacy of their process (see Q3), and while there are specific pri-

vacy and security measures such as access controls, they are hard to

quantify formally. Lastly, we observed that the interviewed compa-

nies are far from having “data at their fingertips”, one of the reasons
being the onerous dataset request processes, which confuse access

hardship with access protection.

RQ2: Could differential privacy tackle the privacy-related pain points
of an analysis workflow in an organization? Yes, to a large extent—In
essence, the main problems are (i) lengthy and cumbersome dataset

request processes. Moreover, given that analysts can sometimes

“see”, download, and share the data once they are granted access, and
even collude with other co-workers with access to linkable datasets,

(ii) only policy protects data once stewards grant access. Based on

our work, we argue that differential privacy can reduce time-to-data

by enabling exploration of critically sensitive data or across third-

party data sources, relax the current data access restrictions thanks

to its formal privacy guarantee, is applicable to some aggregation-

based use cases, and, for some use cases, engineers should consider

building solutions that block analysts from “seeing” the data.

RQ3:When does differential privacy impede an analysis? The an-

swer to this RQ heavily depends on the use case and whether the

analysts are willing to forgo accuracy. On the one hand, noise

addition-based differential privacy is useful in aggregations per-

formed by the interviewees (e.g., querying demographics or fre-

quently used product features). Moreover, on average, interviewees

were comfortable with 98% accuracy. However, differential privacy

is not a silver bullet, as some of the interviewees’ use cases can-

not rely on it (e.g., error analyses or critical financial estimations).

Therefore, we suggest building systems that enable differential pri-

vacy while maintaining the flexibility of allowing non-differentially

private queries when the use case strictly needs them.

RQ4: How would differential privacy affect the workflow of an ana-
lyst? If differential privacy enabled previously unavailable explo-

ration and provided data for privacy-enhanced dashboards, analysts
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would have a better user experience in their workflow and lower

time spent on processes and exploration, but would also need to

accustom to working with noisy data.

RQ5: Can differential privacy be applied to the frequent SQL-like
queries analysts execute? Yes—While not as frequent as retrievals,

around a third were aggregations amenable to differential privacy.

7 TOWARDS PRACTICAL DIFFERENTIAL
PRIVACY

This section provides a set of critical system desiderata a differ-

ential privacy (DP) analytics system should satisfy for practical

deployments. Subsequently, we identify requirements fulfilled by

state-of-the-art tools (see Table 1) and highlight the gaps in practice.

7.1 Key System Desiderata
In secondary use cases, an alternative to syntactic anonymization

(see section 5.2) for sharing data is an inherently private analy-

sis, i.e., the analysis satisfies a semantic privacy definition such as

DP [21], which uniquely provides a measure of privacy (ε). With

DP, organizations do not necessarily need to use potentially vul-

nerable syntactic techniques (e.g., rounding or truncation) because

the analysis itself already enhances individuals’ privacy. Based on

the (i) interviewees’ description of their analytics workflows and

systems, (ii) the authors’ knowledge in the domain of privacy, and

(iii) the feedback provided by additional privacy practitioners and

researchers who work closely with/in our lab, we propose 10 key

desiderata. The desiderata correspond to a system that enables

differentially-private analyses in the central model and focuses on

dataset exploration and fulfilling use cases requiring aggregations

(see use cases in Q12). These use cases often rely on SQL-like queries

such as counts, averages, etc. Additionally, we inspired some of the

characteristics of the key desiderata related to (III) Security and (V)

Visualization from Kifer. et. al [64] and Nanayakkara. et. al [77].

(I) Differentially Private Analytics. The system bestows DP to a

learning function (e.g., a query or an ML algorithm) by adding

calibrated noise to the deterministic outputs (or by other means).

The system supports the (i) aggregation queries: COUNT, MAX, MIN,
AVG, VAR, and SUM, (ii) provides a complementary ML feature, and

stores executed queries for future retrieval. The queries (iii) allow

for WHERE, GROUP BY, and JOIN clauses.

(II) Usability. The system provides logic to preserve (i) the semantic

consistency of queries (e.g., variance > 0) and across overlapping

domains (e.g., the sum of noisy element counts is not larger than

the noisy total). Moreover, the system presents the option to (ii)

estimate the sensitivity of a query without user input, and (iii) rec-

ommends or sets privacy parameters automatically depending on

the dataset and query.

(III) Security. The system (i) provides a stochastic tester or other

functions to automatically verify whether the algorithm fulfills

DP, (ii) employs cryptographically secure pseudo-random number

generation with careful seed management, (iii) generates noise

impervious to floating-point vulnerabilities [46, 76]. Furthermore,

the system (iv) blocks the user from “seeing” the data, i.e., while
analysts can execute queries, they cannot download or visually

inspect the dataset, (v) does not allow to execute arbitrary code,

(vi) executes heuristic optimizers only at post-processing, and (vii)

protects against timing attacks [64]. A libraries’ and frameworks’

scope limits to fulfilling (i), (ii), and (iii).

(IV) Synthetic Data Generation. When the goal is to develop an

application or explore whether an ML model is suitable for a task,

the system produces synthetic data. After testing, the analyst can

proceed with the real data (without “seeing” it). Synthetic data

generation could rely on simple techniques (e.g., sampling from a

normal distribution with the same mean and standard deviation as

the target attribute), ML [18, 96, 112], or combining DP with either.

If the analyst is only interested in the data schema, the system

produces dummy data, preserving only the schema and data types.

(V) Visualization. The system presents a dashboard depicting in-

teractive plots (e.g., histograms) relying on DP queries for quick

and intuitive (i) dataset exploration. Additionally, the dashboard

visualizes an analysis’ expected (ii) accuracy and (iii) disclosure

risk, (iv) uncertainty (i.e., a measure of how the same mechanism

can produce different outputs with the same input arguments), (v)

statistical inference (i.e., privacy parameter estimation with confi-

dence intervals), and (vi) budget splitting (i.e., help in splitting the

privacy budget across queries) [77].

(VI) Privacy Budget. The system (i) tracks the budget spent (ε
“odometer”), (ii) blocks further queries if analysts exhaust their

budget, and (iii) accommodates the budget for growing datasets.

(iv) It should enable data stewards to specify budgets for teams, in-

dividual analysts, and use cases depending on the data’s sensitivity.

(VII) Accuracy Adjustment. The system allows the user to propose a

desired accuracy level. Alternatively, after the query execution, the

system provides either information about the noise scales (without

additional budget) or a confidence interval (spending budget) [101].

(VIII) Query Sensitivity. The system enables a practitioner, e.g., a

data analyst or steward, to input the attributes’ bounds (maximum

and minimum values) as function parameters or in the dataset

schema so that the system calculates the query’s sensitivity.

(IX) Privacy-Sensitive Data Annotation. The system enables data

stewards to allowlist attributes based on teams, roles, and use cases.

The system automatically obfuscates attributes outside the allowlist.

(X) Authentication and Access Controls. The system easily integrates

with existing authentication and access control services and enables

data stewards to define their access policies.

7.2 Gaps in Differential Privacy Practice
Despite available open-source tooling, one company found it hard

to find external partners that could bring DP into practice in their

internal analysis workflow. Furthermore, another company stated

after exploring the use of DP that, while it seemed helpful, “[De-
ploying differential privacy] was more expensive than doing nothing."
Instead, the department decided to upload syntactically anonymized

data to a highly secured system, with limitations on access time,

downloads, number of analysts, and audit logs. We kindly argue

that their over-statement was due to the intangible costs of the

dataset request processes and the lack of integrability of current

DP tooling, which makes deployment a complex endeavor.

Overall, our findings indicate a gap between the theory and

practice of DP. Working towards bridging the gap, we qualitatively

mapped in Table 1 our key system desiderata with DP tools to high-

light areas of future work for the privacy community. We selected
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Table 1: Mapping between open-source tools and user interfaces and the key system desiderata. Legend: ✓= functionality fully
available; ✗= limited functionality or not available; N/A = not applicable; P. = Privacy; DP = Differential P.; TF = TensorFlow;
I.i = Enables aggregation queries; I.ii = Enables machine learning; I.iii = Enables query clauses (e.g., JOIN); II.i = Query seman-
tic consistency; II.ii = DP sensitivity calculation; II.iii = Privacy parameter search; III.i = DP correctness verification; III.ii =
Cryptographically secure pseudo-random number generation; III.iii = Protection against floating-point vulnerability; III.iv =
Block data visibility; III.v = Block arbitrary code; VI.i = Budget accountant; VI.ii = Query blocker.

Table 1A: Libraries, frameworks, and systems for differential privacy analytics.
(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Tool/Desiderata DP

Analytics

Usability Security

Synthetic

Data

Visuals

Privacy

Budget

Accuracy

Adjustment

Query

Sensitivity

Data

Annotation

Access

Controls

Libraries†

diffprivlib [52] I.i, ii ✓ II.i ✓ III.ii, iii ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A

Google DP [41] I.i ✓ II.ii ✓ ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A

Opacus [74] I.ii ✓ ✗ III.ii ✓ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A

OpenDP [47] I.i ✓ II.iii ✓ III.ii, iii ✓ ✗ N/A VI.i, ii ✓ ✓ ✓ N/A N/A

TF Privacy [39] I.ii ✓ ✗ ✗ ✗ N/A VI.i ✓ ✗ ✓ N/A N/A

Frameworks†

Chorus [60] I.i, iii ✓ ✗ ✗ ✗ N/A VI.i ✓ ✗ ✓ ✓ N/A

PipelineDP [83] I.i ✓ ✗ III.ii, iii ✓ ✗ N/A VI.i ✓ ✗ ✓ ✗ N/A

P. on Beam [42] I.i ✓ II.ii ✓ ✓ ✗ N/A VI.i ✓ ✗ ✓ ✗ N/A

Tumult Analy.[99] I.i, iii ✓ ✗ ✓ ✗ N/A VI.i, ii ✓ ✗ ✓ N/A N/A

ZetaSQL [40] I.i, iii ✓ II.ii ✓ ✓ ✗ N/A ✗ ✗ ✓ ✗ N/A

Systems
Airavat [90] I.i, ii ✓ ✗ III.iv ✓ ✗ ✗ VI.i, ii ✓ ✗ ✓ ✗ ✓

DJoin [78] I.i, iii ✓ ✗ III.ii, iv, v✓ ✗ ✗ VI.i, ii ✓ ✓ ✓ ✗ ✗
†
Libraries’ and frameworks’ (III) Security scope is limited to three sub-desiderata (i), (ii), and (iii).

Table 1B: User interfaces for differential privacy analytics (cf. adapted [77]).
(V.i) (V.ii) (V.iii) (V.iv) (V.v) (V.vi)

User Interface/Desiderata Dataset

Exploration

Accuracy

Visualization

Risk

Visualization

Uncertainty

Visualization

Statistical

Inference

Budget

Splitting

Bittner et. al [12] ✗ ✓ ✗ ✗ ✗ ✗

DPcomp [49] ✓ ✓ ✗ ✗ ✗ ✗

DPP [56] ✗ ✓ ✓ ✗ ✗ ✗

Overlook [97] ✓ ✓ ✗ ✓ ✗ ✗

PSI (Ψ) [32] ✓ ✗ ✗ ✗ ✗ ✓

ViP [77] ✓ ✓ ✓ ✓ ✓ ✓

the tools from the related work in section 3 that offer open-source

implementations for the central model of DP (see tool descriptions

in Appendix F). We must highlight that some of these tools are li-
braries (provide specific functions) or frameworks (abstractions used
to build specific applications) and, thus, lack functionalities that

a system (end-to-end application) like Airavat [90] could provide,

such as (III.iv) Blocking the visibility of data or (X) Authentication
and access controls. Note that libraries and frameworks assume

analysts have data access. Additionally, we regard user interfaces
(systems focused on visualizations and providing analytics meta-

data) as a set of tools that should fulfill key desiderata specific to (V)

Visualization. Accordingly, we assign each open-source software to

its category in Tables 1A and B for an appropriate comparison.

We must highlight that the mapping of Table 1 provides high-

level guidance, as there are (out-of-scope) nuances Table 1 does

not capture. For example, user interfaces such as Bittner et. al [12]

and DPP [56] in Table 1B provide exploratory results for using

DP ML and for disclosure risk, respectively; however, they do not

help understanding the dataset, which is a critical requirement

for data analysts. Regarding the tools in Table 1A, diffprivlib [52]

offers multiple ML models (PCA, Naive Bayes, liner and logistic

regression, k-means) while others focus on deep learning (Opacus

[74] and TensorFlow (TF) Privacy [39]) or MapReduce functionality

(Airavat). Additionally, the frameworks are designed for large-scale

datasets. We note that Google DP [41] provides the building blocks

for ZetaSQL [40] and Privacy on Beam [42] (and PipelineDP [83]),

which add more functionality for considering datasets with multi-

ple individual’s contributions. Lastly, most tools provide only an

“odometer” for privacy budgeting, while a few block new queries if

the budget is spent (e.g., OpenDP [47] and Tumult Analytics [99]),

and Google DP offers functionality to distribute budget across differ-

ent DP mechanisms [14, 23]. None, however, account for growing

datasets, which is a challenge recently tackled in [68]. One may

find more of these nuances in [36].

Based on the non-availability or limited implementations of

some desiderata in Table 1, we conclude that differential privacy
tool designers can learn from one another, no tool outperforms the
rest in every aspect, and, most importantly, that bridging the gap
is primarily an engineering problem. Subsequently, we identify the

major gaps in differential privacy practice:
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Gap 1: (II) Usability. While semantic consistency is sometimes de-

sirable for analysts, it can also introduce more error/bias in some

scenarios. Only diffprivlib implements mechanisms to fulfill DP and

consistency for specific queries (e.g., variance > 0), whereas Google

DP or Tumult Analytics only truncate values in post-processing.

Furthermore, only Google DP can calculate the query sensitivity in

a privacy-enhancing manner without any user input, which is nec-

essary when an analyst lacks domain knowledge of the application

(i.e., input bounds). Thus, none of the tools in Table 1 completely

fulfill the usability desiderata. Guidance: [2, 41, 52, 88, 89, 103, 104]
Gap 2: (III) Security. The tools do not provide many security fea-

tures individually. E.g., most lack stochastic testers to verify that

an analysis fulfills DP, and none implement protections against

time-attacks [64]. Wrt to secure random number generation: TF

Privacy inherits TF’s insecure RNG [43, 44] and Airavat employs

the insecure utility java.util.Random [91] in contrast to DJoin,

which relies on FairplayMP [10, 11]. Moreover, while TF Privacy

developers are aware [73], we encourage them to include floating-

point protections in their deep learning models or rely on discrete

noise distributions [16, 37]. Moreover, most tools should tackle

their precision-based attack vulnerability [46]. Lastly, we highlight

some of the good practices Kifer et. al [64] proposed: open-sourcing

systems (the community can check for vulnerabilities) and perform-

ing code audits and unit tests to ensure correctness in DP, privacy

accounting, and noise sampling. Guidance: [4, 41, 64]
Gap 3: (IV) Synthetic Data Generation (SDG). Similarly to tools

offering DP ML [39, 52, 74, 90], we suggest developers package and

include DP SDG logic. Guidance: [17, 18, 96, 98, 106, 109, 110, 112].
Gap 4: (V) Visualization. While there is enough research on user

interfaces, the most popular frameworks and libraries do not adopt

them. We suggest packaging available DP user interfaces for patch-

ing analytics tools. Guidance: [77, 97].
Gap 5: (VI) Privacy Budget. A surprisingly high number of tools

implement privacy “odometers” without a logic to block queries

after exceeding the budget. Guidance: [42, 78, 90].
Gap 6: (VII) Accuracy Adjustment. While most user interfaces pro-

vide some form of accuracy calculation and visualization, many

other tools overlook such feature. Guidance: [77, 101].
Gap 7: (IX & X) Functionality for Data Stewards. Only a few tools

enable data stewards and owners to (IX) annotate sensitive data

and (X) define and enforce access controls. Developers do not need

to reinvent the wheel, as they adopt current best practices from

popular cloud platforms [9, 38, 75]. Guidance: [56, 60, 90].
Given that most functional requirements are fulfilled in compo-

nents across tools, we conclude that engineering efforts are within
striking distance. To complement these building blocks, we offer an

early stage, high-level system design blueprint in Appendix H. The

blueprint aims to spark interest in practitioners to develop holistic

analytics tooling that follows the identified key system desiderata.

8 FURTHER CHALLENGES
Beyond the engineering and organizational challenges discussed in

the previous sections, there exist other critical technical challenges

in DP. In combination: Managing privacy budgets on large-scale

user data streams [68] with unknown domains and user contribu-

tions on multiple records [4] across different systems while adapt-

ing the noise level as the budget diminishes. Furthermore, fitting

a mathematical model to such a system’s semantics and verifying

DP fulfillment with, e.g., unit tests, poses additional difficulties [64].

Additionally, DP might not be fair [62] in some use cases where a

DP calculation determines a critical outcome, e.g., a user’s financial

support in an underwriting model (see challenges in Appendix G).

Our work highlights the challenges blocking the broader adop-

tion of DP in organizations’ workflows. Dwork et al. [27] partly

studied these challenges by interviewing DP experts, while our

study brings non-experts into the discussion. Dwork et. al distilled

four main challenges from their interviews (section 3.6 [27]), which

overlap with a few of our findings: (i) Part of the challenges deploy-
ing DP were design based. In section 7, we highlight that current

DP tools still require engineering effort to be easily deployable in

organizations. (ii) DP deployment complexity is also institutionally
based. A common theme of the interviewed companies was their

intricate networks of stakeholders and processes, which hamper

goal alignment and technology deployments. (iii) There was no con-
sistency in DP approaches across institutions, indicating a need for
shared learning. One of our conclusions in section 7 signals that tool

designers can learn from one another. (iv) Transparency and testable
privacy statements can benefit companies in the regulatory landscape.
Similarly, section 7 advocates for transparency in system designs

and moving towards DP-centered systems and away from syntactic

privacy definitions that only guarantee factual anonymity.
Future work. We suggest privacy practitioners fill the gaps high-

lighted in section 7 and tackle the challenges of Appendix G. More-

over, specifically for privacy researchers, we encourage (i) improv-

ing guidance on selecting ε [27, 56] and (ii) studying and communi-

cating to non-experts how mechanism designs affect utility. For ex-

ample, studying how output consistency can imbue bias [2, 103, 104]

or floating-point protection may provide less utility. As new DP de-

ployments increasingly resort to more complicated algorithms [69],

we suggest (iii) studying the unpredictable artifacts these algo-

rithms may introduce (e.g., in the 2020 US Census [34]). Lastly, we

encourage improving current proposals of differentially private (iv)

ML and (v) synthetic data generation.

9 CONCLUSION
We conclude that DP can improve the work of data scientists across

industries by enabling sensitive data exploration across silos, po-

tentially shortening data access times by relaxing the adversity of

data request processes, and can fulfill some types of use cases. Fur-

thermore, analysts meaningfully and frequently employed analyses

amenable to DP and, on average, would feel comfortable with a 98%

of accuracy. Therefore, we suggest companies focus on privacy-

enhancing analysis to harvest these benefits, not mainly on security.

Moreover, we regard enabling analysts to work without “seeing”
data and providing analysis accuracy expectation as critical, mul-

tifaceted challenges for the research community to solve. We also

highlight that current open-source tools do not facilitate easy de-

ployments, a problem requiring engineering effort within striking

distance. Consequently, we encourage the community of privacy

practitioners to tackle this engineering problem and ease deploy-

ments by enabling interactive dashboards, accuracy expectation

measurements, improving usability and security, and integration

of data annotation and access control capabilities, for ultimately

bridging the identified gap between theory and practice.
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A INTERVIEWED COMPANIES OVERVIEW
Table 2 presents a summary of the characteristics of the interviewed

companies. The companies belong to a diverse set of industries,

predominantly SW development, and 4 of the 9 companies are

significantly large, with over 100, 000 employees. 5 companies are

under the jurisdiction of the EUwith regulations such as the General

Data Protection Regulation [30], and 4 companies operate under

US law, e.g., the California Consumer Privacy Act [80].

Table 2: Overview of the interviewed companies. Legend: SW
dev. = Software development

Industry (focus) Size
(employees)

Team’s
Location

Team operates internationally
Automotive (car manufacturer) > 100, 000 Germany

Insurance (health) > 100, 000 Germany

SW dev. (data processing) < 2, 000 Germany

SW dev. (subscription newsletters) < 2, 000 USA

Team operates nationally
Consultancy (banking and big pharma) > 100, 000 Spain

Entertainment (finance) < 2, 000 USA

SW dev. (business operations) > 100, 000 Germany

SW dev. (data processing) < 2, 000 USA

SW dev. (smart sound system) < 2, 000 USA

B INTERVIEW QUESTIONNAIRE FOR DATA
STEWARDS
RQ1:What is the context of privacy protection in the targeted
organization?
Q1: What is the institution’s motivation for privacy protec-
tion?
Q2:What are your privacy concerns when an analyst has
full dataset access?
Q3: At what level of data granularity are you protecting
and measuring privacy?
Q4:What could be improved in the dataset request process?
Q5:What are your typical questions for the current interview-
based full dataset access authorization?
Q6: Instead of the interview process, would you be capable
to run a program provided by the analyst s.t. the analysis is
carried out without the analyst ever “seeing” the dataset?
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C INTERVIEW QUESTIONNAIRE FOR DATA
ANALYSTS

As we interviewed non-experts in differential privacy, we mini-

mized the number of questions that contained the words or required

knowledge of “differential privacy”.We kept a few because we aimed

to assess whether systems offering differential privacy functionality

could be valuable to analysts. First, we briefly explained differential

privacy in a simplified manner: “Differential privacy is a technique
that adds noise to analytics results so that one cannot reverse engineer
the outputs to a specific person.” Additionally, if we perceived the

interviewees were disoriented with Q18 or Q19, we explained that

the hypothetical system would be the same as the one they used

every day, the only difference being that the results would slightly

differ from the deterministic outputs. Picturing the system they

used daily was very helpful for imagining one where the outputs

are noisy. Furthermore, we carefully parsed their answers to assess

whether they understood the concept or its integration into their

system. If they did not, we kindly repeated the procedure above.

RQ2: Could differential privacy tackle the privacy-related pain
points of an analysis workflow in an organization?
Q7:What is your workflow to analyze data?
Q8:Why do you need full dataset access?
Q9: How often do you request full dataset access? How long
does it usually take?
Q10: What do you think about the process to request full
dataset access in your organization?
Q11: What features do you think are missing in your orga-
nization’s data analysis workflow?

RQ3:When does differential privacy impede an analysis?
Q12: In which analytics use cases have you been involved?
Q13: Is SQL-meaningful for your work? Howmany SQL-like
queries do you make weekly?
Q14: How often do you need machine learning to fulfill your
analysis in contrast to using SQL?
Q15: What are your most used machine learning models?
Q16: If you were to use differential privacy to fulfill your
analysis, when and howmuch accuracy would you be willing
to forgo?

RQ4: How would differential privacy affect the workflow of
an analyst?
Q17: How much would the noise affect your analysis?
Q18: Would you find it helpful to execute differentially pri-
vate SQL queries to explore and fully analyse datasets with-
out the standard permissions?
Q19:Only based on the information extracted from a dataset
exploration with differential privacy, could you write a script
to fulfill your analysis goal?
Q20: What are the minimum properties for you as an ana-
lyst such that you are confident to write an analysis script
without full dataset access?
Q21: Would you find it helpful to use a dynamic dashboard
that visualizes dataset information with differential pri-
vacy?

RQ5: Can differential privacy be applied to the frequent SQL-
like queries analysts execute?

Q22: What are your top SQL-like queries before you have
full dataset access?
Q23:What are your top SQL-like queries after you have full
dataset access?
Q24: What is the ratio between aggregation queries and
queries to retrieve items?

D FREQUENT QUERIES
In Table 3, we include the most frequent SQL queries recorded dur-

ing the interviews with the data analysts before and after accessing

a dataset. Note that not all analysts were allowed to explore datasets

and a few did not employ SQL for data preparation or analytics;

instead, they resorted to Python scripts for statistical analysis, ML,

and visualization or tools such as Tableau [95], Knime [66], or pro-

prietary SAP data management software. For exploring the dataset

prior to access, 14 analysts resourced to SELECT * to get a “feeling”
for the data. Furthermore, COUNT and DISTINCT, and WHERE and

GROUP BY were the most frequently used functions and clauses,

respectively.

Table 3: Most frequent queries before (data exploration) and
after (data preparation/analysis) data access. Legend: Freq. =
Frequency (i.e., number of analysts who used such query).

Query Freq. before Freq. after
access access

Function
COUNT 7 7

DISTINCT 6 4

MAX 4 5

MIN 4 5

AVG 4 4

VAR 2 3

Statement
SELECT * LIMIT 14 12

Clause
WHERE 13 10

GROUP BY 12 9

JOIN 2 8

E FREQUENTLY ASKED QUESTIONS FROM
DATA STEWARDS TO ANALYSTS

We compiled the most frequently asked questions data stewards

make to data analysts during the data access request process.

• Could you describe in detail the analytics use case?

• Is the use case approved by the corresponding internal stake-

holders?

• Why is the dataset needed?

• Is the dataset adequate regarding quality, volume, and use

case?

• Could you reach the goal without dataset access?

• Is the entire dataset needed or only a set of attributes?

• Is the dataset already available, or must a data engineer

create a new dataset?
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• Is the dataset classified as very sensitive? If affirmative, ad-

ditional access control measures and monitoring must be

defined in detail.

F OPEN-SOURCE TOOLS DESCRIPTIONS
We provide a quick description of each of the selected open-source

tools mapped to the key system desiderata in section 7 appearing

in Table 1.

Libraries
diffprivlib: IBM researchers developed a general-purpose Python

library to execute differentially private aggregation queries and

machine learning in the context of data science (namely Note-

books) [52].

Google DP: Google researchers developed a library in multiple

languages (C++, Go, and Java) that an expert may use to build new

applications supporting differential privacy [41].

Opacus: Meta researchers developed a library dedicated to train-

ing machine learning models offered by PyTorch in a differentially

private manner [74].

OpenDP: Harvard implemented a flexible architecture for differen-

tially private analysis, consisting of a (pluggable) runtime in Rust

wrapped around a Python API, in addition to a “validator” that

calculates parameters such as the sensitivity of a query. [47].

TensorFlow Privacy: Google researchers developed a library that

includes TensorFlow differentially-private optimizers for training

machine learning models [39].

Frameworks
Chorus: Johnson et al.’s [59, 60] wrote a framework in Scala that

works in cooperation with existing infrastructure (a SQL database)

to explore the use of differentially private SQL queries at scale.

PipelineDP (experimental): OpenMined, in collaboration with

Google, propose a framework to execute differentially private ag-

gregations in large-scale datasets using batch processing systems

(Apache Spark and Apache Beam) [83].

Privacy on Beam: Similarly to PipelineDP, Privacy on Beam [42]

proposes a solution based on Apache Beam and Google DP [41] for

executing differentially private analytics at scale.

Tumult Analytics: Tumult Labs provides a Python library built

atop a framework similar to OpenDP for computing aggregate sta-

tistics over tabular data at scale [99].

ZetaSQL: Google researchers wrote a framework for SQL that de-

fines a language, a parser, and an analyzer meant to work with an

existing database engine [40].

Systems:
Airavat: Roy et al. [90] designed a MapReduce-base system written

in Java for distributed computations on sensitive data that integrates

differential privacy and access control with policies defined by data

owners/stewards.

DJoin: Narayan et al. [78] built a system capable of processing a

wide range of differentially private SQL queries across datasets from

different organizations and leverages homomorphic primitives to

hide inputs.

User Interfaces:
Bittner et. al [12]: With a focus on ML, Bittner et. al aim to help

researchers decide which algorithm to use by offering an interface

that quantifies the disclosure risk of different algorithms.

DPcomp: A web-based system enabling researchers to assess the

utility of differentially private algorithms and understand their re-

spective incurred error [49].

DPP: This user interface specifically helps data owners to set the

noise level per the disclosure risk of an attribute. The underlying

mechanism relies on a novel parameter selection procedure for

differential privacy [56].

Overlook: Thaker et al. [97] designed a system for differentially

private data exploration that supports counts with an interactive

browser-interfacing dashboard (namely visualizing histograms).

PSI (Ψ): Harvard’s Privacy Tools Project works on a data sharing

interfaces for researchers to explore datasets with differential pri-

vacy [32].

ViP: Visualizing Privacy is an interface that provides informa-

tion about the relationships between utility, ε , and disclosure risk

(among others), allowing users to adjust the privacy parameters

of their analysis based on visualizations of expected risk and accu-

racy [77].

G DIFFERENTIAL PRIVACY CHALLENGES
This section enumerates other critical challenges we encourage

researchers and system designers to investigate.

(1)While DP is highly adaptable to use cases (e.g., using the local

or central model) and algorithms (e.g., queries or ML), the adap-

tations are non-trivial and have often led to erroneous implemen-

tations [25]. Thus, practitioners should exercise extreme care to

ensure the correctness of their DP implementation with the same

sentiment as “do not write your own crypto.”
(2) Fairness could be another obstacle to DP adoption, which Har-

vard researchers also highlighted when referring to the US Census

of 2020 [62]. Specifically, one analyst underlined the topic of fairness

when asked about how noise would affect their analysis (Q17). If

analysts add differentially private noise during training underwrit-

ing linear regression models, users might be over- or under-funded.

While the company would not incur a loss as the predictions would

be “right” on average, the effect noise has on their users could

impact their brand perception.

(3)Managing user-level privacy budgets in user data streams [68].

(4) Tracking the privacy budget across systems and adapting the

noise level based on the remaining budget.

(5) There is a significant difference between the local and central

model noise levels.

(6) Choosing ε and other privacy parameters [27].

(7) Building systems that fulfill DP for (i) large-scale datasets (ii)

when users make contributions to multiple records (iii) with un-

known domains [4].

(8) Verifying DP compliance of a complex system by proving and

fitting a mathematical model to the system’s semantics [64] and

developing unit tests to ensure the system conforms to such model.

H SYSTEM DESIGN
Although there are many potential ways to construct privacy-

enhancing analytics systems, to show the feasibility of covering all

system desiderata presented in section 7, this section discusses one
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design to guide practitioners in their development. The design is

in an early stage, and, thus, we cannot discuss the components in

detail. Instead, we sketch the system’s primary components, aiming

to spark interest in further system development and research in the

community.

We consider two roles interacting with the system: (i) data stew-
ards have the authority to access the original data and the legal

background for data management. Stewards can authorize data

access inside an organization and ensure compliance. (ii) Data ana-
lysts analyze data to fulfill use cases. Analysts often need to access

data by employing SQL aggregation or retrieval and python scripts.

In the current system design, we mainly consider SQL aggregation

and retrieval. Lastly, we assume that analysts cannot share query

results with unauthorized recipients. In such a setting, we present

our high-level system design blueprint in Fig. 2.

The components are the following:

Database Schema: The system requires one dedicated component

to manage the database schema and ensure its consistency at all

places to make sure all components have a consistent view of the

processed data format.

Policy Panel: Data stewards create and update the configuration

stored in the policy panel to authorize data access from data ana-

lysts to satisfy desiderata (X), annotate data sensitivity to satisfy

desiderata (VIII) and (IX), and ensure compliance. Other system

components rely on the configuration in the policy panel to decide

whether to proceed with particular requests or queries.

User Registration Service: The user registration service compo-

nent maintains a user system to standardize the onboarding pro-

cedure of data analysts to satisfy desiderata (X); thus, the system
can distinguish between different data analysts with different data

access requirements and permissions.

StatisticDashboard: The statistic dashboard is a privacy-enhanced
visualization for database statistics, which will help authorized data

analysts explore datasets, thus satisfying desiderata (V).
Query Gateway: The query gateway reads annotated data schema

from the policy panel and uses it to analyze the query structure,

parsing the query for later stages. The system can thus run a pre-

liminary policy check on the incoming query and route it to the

corresponding database proxy.

Original Database: The database service stores the original sensi-
tive data securely to satisfy desiderata (III), ideally with encrypted

storage and restricted access for the data steward and other neces-

sary system security components to fully comply with (III).
Budget Manager: With the information about both the database

schema and the sensitivity annotation from the policy panel, the

budget manager models the differential privacy budget and keeps

track of the budget consumption in various queries.

Differentially Private Database Proxy: Before executing the

query from the data analyst on the tables in the original database,

the proxy analyzes how to apply differential privacy by transform-

ing the query and also calculates the budget consumption to satisfy

desiderata (I), (II) and (VI). Before returning the query result, it

also outputs the query’s accuracy estimation to satisfy (VII).
Synthesized Database: The synthesized database maintains the

dummy or differential-privately synthesized versions of tables in

the original database to satisfy desiderata (IV).
Synthetic Database Proxy: Upon receiving queries to the dummy

or differential-privately synthesized data, the proxy checks whether

the required version of the tables has already been generated in the

synthesized database. If the required version is missing, the proxy

orchestrates the generation procedure from the original database

on-demand.

Lastly, we describe the communication between system compo-

nents to explain the workflow to access different privacy-enhancing

analytic functionalities.

(1) Data Analyst User Registration.Once the system is correctly

set up, data analysts should begin to create their user accounts in

the system with the user registration service.

(2) Submission of the Query Request. The request should in-

clude both the SQL query and a piece of metadata that specify the

privacy details like accuracy requirements or whether to use the

dummy or synthesized data. The query gateway checks the query

request to see if it is compliant with the system policy and routes it

to the corresponding database proxy.

(3) Exploring Data Statistics on the Dashboard. Data analysts
can use the dashboard to explore dataset statistics that are periodi-

cally gathered from the original database.

(4) Data Steward Adjustment for Data Access Policy. In addi-

tion to allowing the data steward to configure the data access policy

manually, ideally, the policy panel should also make suggestions on

potentially useful policy changes. Such suggestions can be based

on the data access application or frequently rejected requests to

other system components during user registration.

(5) User Registration Following Policies in the Policy Panel.
If the data steward decides to include specific steps during the

registration procedure (e.g., signing acknowledgments, reading ma-

terials, finishing tutorials), the registration procedure would reflect

such requirements.

(6) User Access to Query and Dashboard Service Determined
by Policy. Considering both queries and the statistic dashboard

exploration reveal information about the original data, the policy

panel should control the access of data analysts to both services.

(7) QueryExecutionWithOneProxy.Depending on the privacy-
related metadata, one of the proxies executes the query with its

transformation and returns the query result with privacy details

like result accuracy or budget consumption. If the result consumes

the privacy budget, the proxy also notifies the budget manager to

track the change.

(8) On-Demand Data Synthesis. If the synthetic database proxy
cannot find the required version of the dummy of synthetic tables

from the synthesized database, it triggers the generation of that

required version.

(9) Unified Schema Synchronization Between System Com-
ponents. The database schema component enforces consistency

by tracking the changes in the original database. It locks the whole

system for schema changes until the updates are applied to all

system components.

As of September 2022, our GitHub hosts an early-stage open-

source effort to benchmark libraries and frameworks suitable for

some of the system components in Fig. 2:

https://github.com/camelop/dp-lab
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Figure 2: High-level system design blueprint of a privacy-enhancing analytics tool. The components and communication links
are described inAppendixH. Solid lines represent communications between components triggered by all relevant query events,
while dashed lines represent communications that happen periodically or only under certain circumstances. We specify those
circumstances in the workflow description.
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