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ABSTRACT

A large body of research has shown that machine learning models

are vulnerable to membership inference (MI) attacks that violate the

privacy of the participants in the training data. Most MI research

focuses on the case of a single standalone model, while production

machine-learning platforms often update models over time, on data

that often shifts in distribution, giving the attacker more informa-

tion. This paper proposes new attacks that take advantage of one or

more model updates to improve MI. A key part of our approach is

to leverage rich information from standalone MI attacks mounted

separately against the original and updated models, and to combine

this information in specific ways to improve attack effectiveness.

We propose a set of combination functions and tuning methods for

each, and present both analytical and quantitative justification for

various options. Our results on four public datasets show that our

attacks are effective at using update information to give the adver-

sary a significant advantage over attacks on standalone models, but

also compared to a prior MI attack that takes advantage of model

updates in a related machine-unlearning setting. We perform the

first measurements of the impact of distribution shift on MI attacks

with model updates, and show that a more drastic distribution shift

results in significantly higher MI risk than a gradual shift. We also

show that our attacks are effective at auditing differentially private

fine tuning. We make our code public on GitHub.

KEYWORDS

membership inference, model updates, differential privacy, distri-

bution shift

1 INTRODUCTION

Machine learning models are often trained on sensitive user data,

and it is crucial to ensure that these models respect the privacy
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of individuals who contribute their data. However, there is now a

robust body of literature demonstrating that unless explicit steps

are taken to ensure privacy, these models will leak sensitive infor-

mation. In particular, as first shown more than a decade ago by

Homer et al. [18], even the simplest statistical models, when trained

via standard techniques, will allow for membership-inference (MI)

attacks, in which an attacker can detect the presence of individuals

in the training data, or in certain subsets of the training data. MI

attacks can be a concerning privacy violation on their own, if mem-

bership in the training data, or a specific subset of the training data,

indicates something sensitive about the user or can be used as a step

towards reconstructing training examples. MI attacks have since

become an active area of research in statistics, machine learning,

and security, and we now have a rich toolkit of MI attacks [4, 14, 36],

which notably includes black-box attacks on modern large models

in supervised-learning [5, 20, 33, 39, 43].

Most MI research has focused on the case of a single standalone

model. However, in real machine learning workloads, models are

typically updated as new training data arrives, and attackers have

the ability to observe some aspects of the model both before and

after updates. Intuitively, giving the attacker the ability to see the

model before and after the update should reveal information about

the specific training examples in the update set. To illustrate, con-

sider the effect of model updates on MI for the simple statistical

task of mean estimation.

Example 1.1. We are given a set of training examples 𝑥1, . . . , 𝑥𝑛 ∈
R𝑑 and want to release its mean. The theory of MI attacks [14, 36]

tells us that, under natural conditions on the data, we will be able

to accurately infer membership if and only if 𝑑 ≫ 𝑛. However,

suppose that data arrives over time and we initially release the

mean 𝜇0 of the first 𝑛 − 𝑡 points for some 𝑡 ≪ 𝑛, followed by an

update 𝜇1 with the mean of all 𝑛 points. It is not hard to see that we

can combine 𝜇0 and 𝜇1 to obtain the mean of just the last 𝑡 points,

and we can perform accurate membership inference on this even

when 𝑛 ≫ 𝑑 ≫ 𝑡 , which is impossible given only 𝜇1.

While the statistical models trained over user data by modern

machine-learning workloads are far more complex than a simple

mean, the same kind of effect is expected from repeated releases of

updated models. Such repeated releases are common. Production
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training platforms, such as Amazon SageMaker [38], Azure Ma-

chine Learning [2], and Tensorflow-Extended [17, 30], all support

automatic model updating on newly collected data to keep up with

changing distributions or improve models over time. The frequency

and method for model updates differs, but often an update is trig-

gered by the arrival of a sizeable data batch, such as a day’s or a

week’s worth of data, and involves fine-tuning an already deployed

model on data from the new batch and potentially samples from

previous batches [30]. For example, a news-recommendation model

may be updated daily to keep up with events in the news, and a

product-recommendation model may be updated weekly to capture

evolving trends. In each case, updated models are repeatedly re-

leased for serving or are pushed to users’ mobile devices or servers

all around the world for faster predictions.

This paper investigates the threat of repeated model updates for

an attacker who monitors their releases and wishes to infer mem-

bership of specific samples in each update dataset. We formalize the

problem of MI under repeated model updates in a way that supports

a wide range of model update procedures, sizes of update batches,

and distribution shift in the new data (Section 3). Geared toward

this problem, we develop the first black-box MI attack algorithms

that combine information from previously known standalone MI

attacks—such as the state-of-the-art LiRA attack [5]—to let the ad-

versary take advantage of access to both the original model and

one or more updated models to improve MI on the update set (Sec-

tion 4). Our algorithms compute the standalone attack’s confidence

scores separately against the original model, then against the up-

date model(s), and combine them to obtain a confidence score for

membership in the update set. We justify the need to use detailed

confidence scores information by proving that combining only

the binary membership decisions does not increase the attacker’s

power. We consider two different methods for combining scores,

each motivated analytically by the study of a simple example. Our

analysis and experiments demonstrate that the best choice of score

will depend on the specific learning algorithm being attacked.

Some previous works have studied MI attacks involving multiple

models trained on overlapping datasets [35, 44], for example arising

from intermediate computations revealed by federated learning sys-

tems [29, 32, 42] or from model unlearning [9]. Our work, however,

is the first to study a number of aspects specific to the repeated

model-update setting, including updates with sizeable batches of

data, multiple updates, and the effect of distribution shift.

We evaluate our algorithms on four datasets—FMNIST, CIFAR-10,

Purchase100, and IMDb—using suitable linear and neural network

models. We highlight several key contributions and conclusions:

(1) We show that access to one or more updated models makes

an attacker significantly more effective at inferring member-

ship in the training data, compared to having only a single

standalone model (e.g., on FMNIST, MI accuracy increases

from 52% without updates to 79% with updates). We show

this effect is more dramatic the more the distribution shifts

between the original training and the update.

(2) We consider a variety of attack algorithms and tuning meth-

ods, and demonstrate both analytically and empirically that

no single method is best in all situations, highlighting the

need for a varied testing strategy. We also demonstrate that

our attacks are more efficient and effective than attacks de-

signed for the related, but distinct, setting of machine un-

learning [9]. By basing our strategy on existing MI attacks,

we expect our attacks will improve as MI attacks do.

(3) We consider multiple algorithms for updating models, and

show that for small update sets, using the whole dataset to

update the model is less vulnerable to MI attacks compared

to training on just the update set, and the opposite is true

for larger update sets. Our findings offer some guidance for

practitioners employing basic defenses.

(4) We audit differentially private defenses, and show that they

offer strong protection with small privacy parameter, but

only modest protection with large parameter. In particular,

the worst-case bounds offered by differential privacy can be

close to tight in practice (within 2.0-3.6x in some settings).

Overall, our work demonstrates that the model updates arising

from production machine-learning systems significantly increase

the risk of MI attacks, and highlights the many subtleties that arise

in constructing both attacks and defenses.

2 RELATEDWORK

A long line of work has recognized the privacy risks of machine

learning. Early work considered very simple statistical tasks [4, 14,

18, 36], and black-box attacks on machine learning algorithms were

developed later [39, 40, 43]. Other types of privacy attacks have also

been considered, such as training data reconstruction/extraction [7,

35], and attribute inference [43]. MI attacks have also been consid-

ered in white-box [26] and label-only settings [10, 27], and have

been evaluated in unbalanced scenarios, where training points are

much less common than test points [21].

Membership-Inference with Model Updates. Our work con-

siders an adversary seeking to run MI attacks in the setting where

a model is updated repeatedly over its lifetime. A few privacy at-

tacks on model updates have been considered in prior work, but in

distinct settings compared to ours.

First, in federated learning, a decentralized model update proce-

dure, attacks have been shown to leak the label composition [42],

attributes present in local datasets [29], and MI attacks [32].

Second, Salem et al. [35] show that an attacker with query ac-

cess to an initial and an updated model can perform reconstruction

attacks to recover the labels and feature values of the update points.

The reconstruction attack is designed for small updates to themodel,

andworks only in the online learning settingwhere only new points

are considered when generating the update. The differences from

our work are: (1) we focus onmembership inference attacks on mod-

els supporting multiple updates; (2) we develop new attacks for this

setting that combine existing standalone-model MI attacks without

the heavyweight construction of many shadow models; and (3) we

consider a range of model update regimes, by varying the size of

the update samples, the distribution shift in the new data, and the

retraining procedure, including attacks for multiple updates.

Third, Chen et al. [9] construct MI attacks for machine unlearn-

ing, in a setting where an adversary has access to an initial model

and an updated model after a set of examples are removed from

training. We observe that, when updating or unlearning are per-

formed by retraining from scratch, an adversary with access to the
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models before and after unlearning is related to a model update

adversary having access to the models before and after updating.

We perform an experimental comparison with their attacks in Sec-

tion 5.8 and find that our attacks, geared towards our specific setting,

are significantly more powerful compared to theirs, which were

not designed for this setting. In addition, the model updates setting

considered by our work is more general in supporting multiple up-

dates, data distribution shift under updates, and different training

regimes (online learning and full retraining).

Memorization Attacks. Memorization attacks against generative

language models demonstrate that training data can be extracted

by an adversary with black-box query access to a model [6, 7]. [7]

generate and rank text samples from GPT-2 and use MI attacks

to test that a generated sample belongs to the training data. [45]

show that model updates in generative language models improve

memorization attacks.

Differentially Private ML. Privacy attacks have inspired privacy-

preserving training algorithms, including defenses specifically de-

signed to prevent MI attacks [22, 31], as well as the adoption of

differential privacy [13]. Differentially private machine learning

algorithms [1, 3, 8, 41] are a defense against MI attacks, and while

deployments of them exist, they are still relatively rare compared

to the scale of machine learning workloads at large companies. Still,

we experimentally evaluate differential privacy in the context of our

attacks and show that differential privacy is an effective protection

at low privacy parameters, and that our attacks can be an effective

empirical audit of a differential privacy deployment.

3 MI WITH MODEL UPDATES

3.1 Background

Many supervised learning algorithms exist to train machine learn-

ing models from labeled data. In this work, we consider classifi-

cation problems, where samples are taken from a data domain X
and the output space is a discrete set of 𝐾 classes Y = [𝐾]1. With

a training algorithm, the learner typically learns some set of pa-

rameters 𝜃 which are used to evaluate the model function 𝑓 and

minimize a loss function.

In our empirical evaluation, we consider logistic regression and

various neural network models. A neural network is a model 𝑓 (𝑥)
which is computed as the chain of 𝐿 layers𝑔𝐿◦𝑔𝐿−1◦· · ·𝑔1◦𝑥 , where
each layer function 𝑔𝑖 takes its input 𝑎𝑖 and computes ℎ(𝑊𝑖𝑎𝑖 +𝑏𝑖 ),
where𝑊𝑖 , 𝑏𝑖 are trainable weights (the parameters 𝜃 are the weights

from every layer) and ℎ is a nonlinear activation function. A com-

mon activation function is ReLU ℎ(𝑥) = max(0, 𝑥) [16]. In tabular

data, it is common to use simple models, such as logistic regression

(where 𝐿 = 1) or small neural networks (small 𝐿). Image data typi-

cally uses deeper networks which use convolutions [25], a constraint

on the weight matrices which exploits the structure of images to

significantly improve performance. For classification, networks typ-

ically use a softmax output, which produces probability values for

each of the 𝐾 classes.

Training models typically proceeds by using gradient descent on

a given dataset 𝐷 . This requires defining a loss function ℓ , which

measures the model’s performance on a given data point 𝑥,𝑦. After

1
Here and throughout we use the notational shorthand [𝐾 ] = {1, 2, . . . , 𝐾 }.

Figure 1: Membership-inference with a single model update.

An adversary with query access to both models 𝑓0 and 𝑓1 can

more effectively distinguish whether a query point (𝑥,𝑦) is
in the update set 𝐷1 or is an independent sample from the

same distribution as 𝐷1.

initializing 𝜃 , a batch of 𝐵 samples {𝑥 𝑗 , 𝑦 𝑗 }𝐵𝑗=1 is selected from

the training dataset, and the model parameters are updated in the

inverse gradient direction of the loss, averaged over the batch, as

𝜃 ′ = 𝜃 − 𝜂

𝐵

𝐵∑︁
𝑗=1

∇𝜃 ℓ (𝑓 (𝑥 ;𝜃 ), 𝑦),

where 𝜂 is a learning rate. Batches are sampled from 𝐷 until all

points are used, and this is repeated multiple times, called epochs.

3.2 Threat Model

We consider supervised machine learning problems in which the

model parameters are updated over time by retraining with new

data, which is common in applications for a variety of reasons. In

general, as more labeled data becomes available, models should be

updated to correct for potential errors and improve their generaliza-

tion. Another key reason for model update is the potential shift in

data distribution over time. For example, a sentiment analysis model

trained on social media may need to be adapted to take into account

recent events, models used for financial market forecasts or loan

prediction need to be updated as the market evolves continuously,

or medical datasets may need to be updated to incorporate larger

and more diverse populations. The frequency of model updates is

dependent on the application requirements, the data distribution

shift, and the envisioned deployment scenarios. For many industrial

applications, model retraining has become part of machine learning

deployment pipelines. Our goal is to study the privacy implications

of model updates over time, considering factors such as the size of

the update, the number of updates, the data distribution shift, and

the training regime.

In our setting, a learner is given 𝑘 + 1 datasets 𝐷0, 𝐷1, · · ·
𝐷𝑘 over time, where each dataset consists of 𝑛𝑖 samples 𝐷𝑖 ={(
𝑥
(𝑖)
𝑗
, 𝑦

(𝑖)
𝑗

)}𝑛𝑖
𝑗=1

selected from a distributionD𝑖 . The learner runs a

training algorithm 𝐴train on 𝐷0 to produce an initial model 𝑓0. The

learner is then provided with each new dataset 𝐷𝑖 , and produces

a new model 𝑓𝑖 by running an update algorithm 𝐴up using only

datasets 𝐷0, 𝐷1, . . . , 𝐷𝑖 . This process is described in Algorithm 1.

In our work, we consider a fixed value for the update size at each

iteration 𝑛𝑖 = 𝑛up for all 𝑖 > 0, and vary this value 𝑛up.

In standard membership inference (MI) attacks [35, 39, 43], the

adversary can interact with the machine learning model in a black-

box manner, with the goal of distinguishing if a data sample was

part of the training set or not. In our model update setting, we

consider a black-box adversary A, who is capable of observing the
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Algorithm 1: Generating Model Updates

Data: Base learning algorithm 𝐴train, Update algorithm 𝐴up,

number of updates 𝑘 , list of datasets [𝐷0, 𝐷1, . . . , 𝐷𝑘 ]
𝑓0 = 𝐴train (𝐷0)
For 𝑖 ∈ 1 . . . 𝑘 : 𝑓𝑖 = 𝐴up (𝑓𝑖−1;𝐷𝑖 , · · · , 𝐷1, 𝐷0) ;
return 𝑓0, 𝑓1, · · · , 𝑓𝑘

Exp-MI-Updates(A, 𝐴up, 𝐷0, 𝑓0, 𝑛up, D1,D2, · · · ,D𝑘 ):

(1) For 𝑖 ∈ [𝑘], draw 𝑛up samples from D𝑖 : 𝐷
𝑖
up

∼ D𝑛up
𝑖

.

(2) Generate a sequence of models 𝑓1, 𝑓2, · · · , 𝑓𝑘 by iterating

𝑓𝑖 = 𝐴up (𝑓𝑖−1;𝐷𝑖 , . . . , 𝐷1, 𝐷0) as in Algorithm 1.

(3) Sample 𝑎 ∈ [𝑘] and 𝑏 ∈ {0, 1} uniformly at random. 𝑏

represents whether the test sample is in training or not,

while 𝑎 represents which update it belongs to.

(4) If 𝑏 = 0, sample (𝑥,𝑦) ∼ D, otherwise (𝑥,𝑦) ∼ 𝐷𝑎
up
.

(5) Let (𝑎, ˆ𝑏) = A(𝑥,𝑦; 𝑓0, 𝑓1, . . . , 𝑓𝑘 ) be the output of the

attacker. Let 𝑠𝑎 indicate if 𝑎 = 𝑎, let 𝑠𝑏 indicate if
ˆ𝑏 = 𝑏,

and return (𝑠𝑎, 𝑠𝑏 ).

Figure 2: Membership-inference with model updates.

output of each model 𝑓𝑖 on multiple query points, but does not have

knowledge of the specific models architecture or parameters. We

assume the adversary knowswhen themodel is updated, potentially

by querying the model and noticing when it changes its predictions.

As models are retrained with new data, the adversary’s goal is to

infer if a data sample was part of the update set or not. In the setting

with multiple model updates, the adversary is also interested in

inferring at which time epoch the data sample was used to update

the model. Figure 1 visualizes this threat model. We remark that

the adversary here only makes inferences about the update set, not

the initial training set. In general, the update set will generally be

smaller than the initial training set, so our attacks are designed to

cause maximum leakage on a small subset of the data.

3.3 Formalization of MI under Model Updates

We formalize the problem of membership inference with model

updates by adapting the membership inference experiment of [43]

to the model update setting. We present the experiment in full gen-

erality, and introduce specific contexts for which we subsequently

develop specific attack algorithms. Using our experiment, we also

suggest a new form of leakage that can occur in the multiple update

setting, called entry inference.

The membership-inference experiment. Let 𝐴up be a model

update algorithm, 𝐷0 an initial training set, 𝑓0 an initial model,

𝑛up an update set size, and each D𝑖 with 𝑖 ∈ [𝑘] a distribution

over samples (𝑥,𝑦). We define the MI experiment in Figure 2. The

experiment allows the adversary access to all updated models, and

requires it to distinguish between update and test data.

We instantiate this experiment in three settings, for attack algo-

rithm development (Section 4) and evaluation (Section 5): single

update, multiple updates, and single update distribution shift.

Single model update. In the single update setting, we consider

𝑘 = 1, D1 = D, so the initial training distribution does not change

to sample updates. This setting lets us understand the difference

between having access to the models before and after an update

compared to only the final model. To evaluate the performance

of our membership inference attacks, we can measure accuracy,

E[𝑠𝑎], and precision, E[𝑠𝑎 | ˆ𝑏 = 1]. An attack maximizing precision

may differ from one maximizing accuracy. We also measure recall,

E[ ˆ𝑏 = 1|𝑏 = 1], but, as noted in [26] and [21], a MI attack achieving

high precision is likely to be more harmful than one achieving high

recall.
2
An attack which classifies every sample as appearing in the

training set is not harmful, but obtains a high recall; meanwhile, an

attack correctly identifying a single sample as appearing in training

set has tiny recall, but harms that sample.

Multiple model updates. The multiple update setting considers

𝑘 > 1 and D𝑖 = D for all 𝑖 , so the training distribution remains

constant. This lets us understand the difference between access to

multiple models and only the last model. In this setting there is also

a richer set of attacks that can be run.

• Membership Inference: As before, we measure the member-

ship inference accuracy. This is the success rate at inferring

if a data sample is part of any of the 𝑘 update datasets, E[𝑠𝑏 ].
The harm here is identical to the standard harms suggested

for membership inference: membership in a medical study

may indicate that somebody has a disease, or membership

in a loan dataset might indicate that someone applied for a

loan.

• Entry Inference: We also introduce this novel threat, where

the adversary guesses precisely at which update step a user

enters the dataset, with success rate E[𝑠𝑎]. This measures

how well the adversary can determine when a user started

being used in training, which itself may be sensitive. For

example, when a patient enters a medical study may leak

when they contracted a disease, or knowing when a loan

was issued may leak sensitive information about someone’s

financial status. There are also cases where membership in-

ference is more of a threat than entry inference; for example,

if high membership inference success leads to social security

numbers being extractable from a large language model [6],

it is much more important that the social security numbers

are leaked than when they entered the dataset, making mem-

bership inference more scary than entry inference. However,

in other cases, membership inference may also be less of a

concern than entry inference. For example, membership in a

commerce dataset may indicate that someone has been to a

certain coffee shop, which itself may not be risky. However,

knowing when the person entered the dataset may allow an

adversary to link this time with other people’s entry into

the dataset, and learn about meetings between people. Ulti-

mately, membership inference and entry inference are both

2
Carlini et al. [5] suggests measuring true positive rate (TPR) and false positive rate

(FPR). TPR is identical to recall, and FPR can be computed easily from precision, given

that 𝑏 takes the value 0 and 1 equally often.
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risks and can lead to harms in meaningfully different ways.

Finally, we note that any attack which achieves a member-

ship inference accuracy of 𝑝 can be converted to an entry

inference attack by randomly selecting one of the 𝑘 update

sets, achieving entry inference accuracy of 𝑝/𝑘 . A standard

random guessing baseline therefore reaches a membership

inference accuracy of 1/2 and an entry inference accuracy

of 1/2𝑘 .

Distribution shift. In this setting, we consider 𝑘 = 1 and D1 ≠ D.

While distribution shift may happen over several updates, we elect

to isolate the impact that distribution shift has on our attacks. To

measure attack performance, we use the same metrics as in the

single update setting: membership inference accuracy, precision,

and recall.

Retraining methods. There are multiple ways to use the datasets

𝐷0, 𝐷1, · · ·𝐷𝑖 to update model 𝑓𝑖−1 at epoch 𝑖 , which we call:

• SGD-New. This strategy updates the model 𝑓𝑖−1 using only the

new training set 𝐷 = 𝐷𝑖 . To prevent forgetting earlier datasets,

one must use a small learning rate and few epochs.

• SGD-Full. This strategy updates the model 𝑓𝑖−1 using the entire

training set available at epoch 𝑖 , 𝐷 = [𝐷0, 𝐷1, · · ·𝐷𝑖 ]. With a

larger dataset, one can increase the learning rate and number

of epochs, at the cost of using less recent data. This setting is

practical for models with modestly sized training sets, and may

be impractical for some models, like large language models.

These training strategies have also been used by previous work

considering model updates. Zanella-Béguelin et al. [45] compare

both strategies for extracting training data from generative lan-

guage models, while Salem et al. [35] use a variant of continual

training for mounting reconstruction attacks.

4 ATTACK ALGORITHMS

We develop attacks for the single and multiple update instantiations

of the MI under model update problem introduced in the preceding

section. Our attacks are generic with respect to distribution shift

and retraining methods, so we discuss those topics directly as part

of our evaluation of the proposed attacks (Section 5). We first focus

on attacks for the single update setting (Section 4.1). We propose

multiple options and subsequently justify analytically both their de-

signs and the need for the options (Section 4.2). Finally, we propose

several attack options for the multiple update setting (Section 4.3).

Table 1, placed at the end of this section, summarizes the various

attacks and their options for easy access.

4.1 Single Update Attacks

Given a single model 𝑓0 trained on a dataset 𝐷0, and an individual

target example (𝑥,𝑦), the standard black-box way to test member-

ship of 𝑥 in𝐷0 is to compute an appropriate score function ℓ (𝑥,𝑦; 𝑓0)
and apply some threshold to this score.

Now suppose we are given two models 𝑓0, 𝑓1 trained on datasets

𝐷0 and 𝐷0 ∪ 𝐷1 respectively, and a target example (𝑥,𝑦), whose
membership in 𝐷1 we want to infer. Intuitively, being a member of

𝐷1 is equivalent to being a member of 𝐷0 ∪ 𝐷1 and a non-member

of 𝐷1. So, a first attempt is simply to infer membership in 𝐷0 ∪ 𝐷1

and membership in 𝐷0 and decide membership in 𝐷1 appropriately.

However, as we show in Section 4.2, if the score information is

binary (e.g. it is the output of some membership-inference attack

for each standalone model), then model updates do not increase the

accuracy of membership-inference attacks.

However, score-based membership-inference attacks give more

information than just the binary outcome, and a key contribution of

our work is to show how to strictly outperform the preceding base-

line by combining the two scores, ℓ (𝑥,𝑦; 𝑓0) and ℓ (𝑥,𝑦; 𝑓1). Given
these two scores, there are multiple logical ways we could combine

them to produce a single score for membership in 𝐷1. In this work,

we introduce two main strategies: ScoreDiff and ScoreRatio. As

their names suggest, we define

ScoreDiff(𝑥,𝑦, 𝑓0, 𝑓1, ℓ) = ℓ (𝑥,𝑦, 𝑓1) − ℓ (𝑥,𝑦; 𝑓0) and

ScoreRatio(𝑥,𝑦, 𝑓0, 𝑓1, ℓ) =
ℓ (𝑥,𝑦, 𝑓1) + 𝑐
ℓ (𝑥,𝑦; 𝑓0) + 𝑐

where 𝑐 > 0 is a damping constant to avoid instability when the

denominator is close to 0. As we will show empirically in Section 5,

neither of these two methods for combining scores dominates the

other, and in Section 4.2 we give analytical justification for why

each score can sometimes be superior.

While we could take the approach of Chen et al. [9] and learn

how best to combine scores from scratch, our evaluation will show

that choosing a fixed combiner, such as ScoreDiff or ScoreRatio,

is both more efficient and more effective.

To use these methods for combining scores, we need to do two

things: (1) instantiate these strategies by choosing the score func-

tion, and (2) determine a threshold to apply to convert the real-

valued scores into a binarymembership decision. As score functions,

in this paper we use the standard cross-entropy loss [43] and the

state-of-the-art LiRA score function [5]. These are both computable

with only class probabilities, but LiRA requires training shadow

models. Future single-model MI attacks might provide even better

score functions that our strategies can incorporate.

In this work we consider multiple ways to set the threshold. To

motivate these methods, we return to the standard interpretation

of membership inference as a hypothesis-testing problem. Once

the score function is fixed, any query point gets mapped to some

value 𝑣 . Typically, 𝑣 is compared to a threshold 𝑇 : 𝑣 membership as

IN if 𝑣 ≥ 𝑇 , and OUT otherwise. This performs well, because the

distributions 𝑃IN of IN scores and 𝑃OUT of OUT scores will differ.

In practice, however, the attacker does not know the IN and OUT

distributions, and so needs some side information to find a good

threshold. All membership-inference attacks give the attacker some

side information for this goal. In this work we consider a few differ-

ent types of side information the attacker can have, corresponding

to different ways of setting the threshold:

• Batch Strategy. The adversary has access to a dataset containing

both update points (IN) and test points (OUT), but does not know

which are IN. Given these points, the adversary can compute

scores and thereby see samples from the distributions 𝑃IN and

𝑃OUT and can then find an optimal threshold for distinguishing

these points. For example, if the attacker has 𝑘 update points and

𝑘 test points for large 𝑘 , then the quantiles of these 2𝑘 scores will

give a good threshold. In our work we choose the median to maxi-

mize accuracy and the 10
th
percentile to maximize precision. The
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assumption that the attacker has access to many update points is

strong, but a useful thought experiment, since the attacker can

try to approximate these samples on their own using other forms

of side information, as our next approach does.

• Transfer Strategy (“Shadow Models”). The adversary has access to

some set of test points. Using these test points, the attacker trains

shadowmodels [26, 35, 39]
ˆ𝑓0 and then updates thesemodels using

a random half of the test points. Provided that the test points are

drawn from the same (or similar) distribution and the attacker

can train the models in the same (or similar) method as the real

models, this should allow us to approximate 𝑃IN and 𝑃OUT. Since

the attacker knows which points were included in the update set,

the attacker now has a batch of update points and test points, so

the attacker can use the batch strategy to obtain a good threshold

for these points and then transfer that threshold to the models

they are trying to attack. This only uses one shadow model, as

we identify a threshold on a scalar value, rather than train a

classifier, as many shadow model attacks do [9, 35].

• Rank Strategy. The adversary again has access to some set of test

points. The attacker can use these to generate samples from 𝑃OUT,

and given these samples, can use the𝑞-quantile of the distribution

as a threshold. This strategy will achieve a false-negative rate of

𝑞. This strategy was employed by Leino et al. [26].

4.2 Analytical Justification

The preceding single-update attack algorithms rely on two key

insights that our work contributes: (1) that taking advantage of

model updates requires combining rich score information from

individual-model MI attacks against the model and its update; and

(2) that the two specific methods, ScoreDiff and ScoreRatio, that

we propose for combining two scores into a single MI attack in the

model-update setting are both needed and justified. This section

provides analytical justification for these two insights. Section 5

provides empirical evidence in support of these claims.

The need for rich score information.We justify our score combi-

nation approach by showing that model updates can only increase

accuracy of membership-inference when the attacker can obtain

rich (non-binary) score information. We prove that, under reason-

able assumptions, an adversarywith only access to the binary scores

does not improve when given access to the initial model.

Here, we consider a threat model where a MI attack A returns

only binary IN/OUT predictions on a point. Any MI attack even-

tually returns this, and some MI attacks (e.g. the "gap attack" [10])

only use binary information. Given access to two models, there are

four possible outcomes for the MI attack: {A(𝑓0) = 𝐼𝑁 ,A(𝑓0) =
𝑂𝑈𝑇 } × {A(𝑓1) = 𝐼𝑁 ,A(𝑓1) = 𝑂𝑈𝑇 }. The adversary can make

a decision for each of these outputs, the frequencies of which we

write below (as is standard, we assume any point has a .5 probability

of being included in the update or test set, so these frequencies are

the frequencies for an update or a test example).

Update Test

A(𝑓1) : IN A(𝑓1) : OUT A(𝑓1) : IN A(𝑓1) : OUT
A(𝑓0) : IN 𝑝𝑢

11
𝑝𝑢
10

𝑝𝑡
11

𝑝𝑡
10

A(𝑓0) : OUT 𝑝𝑢
01

𝑝𝑢
00

𝑝𝑡
01

𝑝𝑡
00

Theorem 4.1 proves that, under realistic assumptions, knowledge

of 𝑓0 does not improve the adversary’s attack. The assumptions are:

(1) The attack on 𝑓0 returns IN equally often on update and test

points: 𝑝𝑢
11

+ 𝑝𝑢
10

= 𝑝𝑡
11

+ 𝑝𝑡
10
. This is realistic, as both sets of points

are not in 𝑓0’s training set. (2) The attack on 𝑓1 returns IN more

frequently on update than test points, for both points classified

as IN and OUT by the attack on 𝑓0: 𝑝
𝑢
11

> 𝑝𝑡
11
, 𝑝𝑢

01
> 𝑝𝑡

01
. This is

realistic, as the attack should return IN frequently on training data.

Theorem 4.1. For any single-model membership inference attack

A returning only a binary IN/OUT prediction satisfying the above

assumptions, there exists an adversary receiving the output of A on

𝑓1 that obtains at least as high accuracy as any adversary with access

to the output of A on both 𝑓0 and 𝑓1.

Proof Sketch. The proof identifies optimal decisions for the

adversary with and without updates. The optimal strategy without

updates follows the guesses ofA. We show that, because the update

leads to more IN guesses on update points, the optimal strategy with

updates is the same as without. The full proof is in the Appendix.

□

The main takeaway of Theorem 4.1 is that for an attack to suc-

cessfully use model updates, it must exploit some rich score infor-

mation, rather than binary IN/OUT information, which includes the

model’s generalization gaps. We note that it is impossible to prove

that richer score information will lead to successful update-based

attacks; as a simple counterexample, the richer score could take one

of three values, but only two are observed in practice. In this case,

Theorem 6 would apply, and updates would not help. As a result, we

see it is important to design setting-dependent score combination

approaches, as we do in Section 4.1.

Justifying ScoreDiff and ScoreRatio.We justify our choice

of score combination functions by studying the example of com-

puting the mean and the median of the training data. These two

examples will show both that our choices are well motivated, and

also demonstrate that the right approach depends on the specific

learning problem being solved, and thus there is likely not a single

best method. Section 5.5 confirms these claims empirically.

The earliest work in membership-inference [19, 36], in the single-

model/no-update setting, justified specific membership-inference

attacks by exploiting a connection to hypothesis testing and use

the Neyman-Pearson Lemma to devise optimal attacks. Proving

exact optimality typically requires making strong distributional

assumptions, and being able to reason explicitly about the exact

distribution of the outputs of the learning algorithm. In our work,

wemostly consider learning algorithms that are too complex for this

sort of precise analysis (such as neural networks), so we settle for a

more heuristic justification instead. In particular, we will consider

a learning algorithm that outputs the exact minimizer of the loss

function to obtain the initial model 𝑓0, then performs an update on

a single point 𝑥1
𝑖
by performing a single gradient step from 𝑓0 with

fixed step size to obtain the updated model 𝑓1. This update strategy

corresponds to what we call SGD-New, but with a single step of

training. We then analyze how the loss on the point 𝑥1
𝑖
changes as a

result of the update and will see that the change is best reflected by

either ScoreDiff or ScoreRatio, depending on the loss function.
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Algorithm 2:Multiple Update Attacks

Data: Test Sample 𝑥,𝑦, Models 𝑓0, 𝑓1, · · · 𝑓𝑘 , Privacy Score

Function ℓ , Threshold 𝑇 or Thresholds {𝑇𝑖 }𝑘𝑖=1,
Strategy Attack (ScoreDiff or ScoreRatio)

Function BackFront(𝑥,𝑦, 𝑓0, 𝑓1, · · · , 𝑓𝑘 , ℓ,𝑇 ,Attack):
return 1(Attack(𝑥,𝑦, 𝑓0, 𝑓𝑘 , ℓ) < 𝑇 )

Function Delta(𝑥,𝑦, 𝑓0, 𝑓1, · · · , 𝑓𝑘 , ℓ, {𝑇𝑖 }𝑘𝑖=1,Attack):
For 𝑖 ∈ 1 . . . 𝑘

𝑔𝑖 = 1(Attack(𝑥,𝑦, 𝑓𝑖−1, 𝑓𝑖 , ℓ) < 𝑇𝑖 )
If 𝑔𝑖 = IN return (IN, 𝑖)

return OUT

In the Appendix, we show that ScoreRatio is a perfect mem-

bership inference attack for the ℓ2 loss, and ScoreDiff is a perfect

attack for the ℓ1 loss. In the Appendix, we study mean estimation

under updates, showing that model updates provably improve ac-

curacy, and lower bounding the accuracy of ScoreDiff.

4.3 Multiple Update Attacks

Multiple updates can allow leakage in two ways: an adversary can

learn bothwhether a user is contained in a training set (membership

inference), but also when they begin participating in that dataset

(entry inference). The former is the standard membership inference

task, but entry inference may also be sensitive in several settings,

such as in medical datasets, where someone could learn when a

patient contracted a disease. We construct an attack for each goal:

the Back-Front attack for membership inference and the Delta

attack for entry inference, in Algorithm 2.

Back-Front attack. This attack ignores all information except for

the first and last model update, and is designed for the membership

inference case. This attack is the natural adaptation of the single

model attacks to themultiple update setting, as it treats the sequence

of 𝑘 updates as a single, large, update algorithm. The attack uses

either the score difference or ratio between the original model 𝑓0
and the final model 𝑓𝑘 after 𝑘 updates.

Delta attack. This attack is designed to perform entry inference.

In this attack, we identify samples to a specific update 𝑖 when they

have a large loss difference (or ratio) on the two consecutive models

𝑓𝑖−1, 𝑓𝑖 produced by the update. Notice that we can also adapt this

attack (or any entry inference attack) to a membership inference

attack: a sample which is predicted to be in any update is predicted

to be IN. As a result, we measure this attack’s performance on both

membership and entry inference.

Threshold setting. The three thresholding strategies we defined

for the single-update setting, Batch, Transfer, and Rank, can be

adapted to configure the threshold for the multi-update attacks.

However, for simplicity, we focus on the Batch strategy. With Batch,

the adversary is given a dataset 𝐷 which contains each update set

{𝐷𝑖 }𝑘𝑖=1 of size 𝑛𝑢𝑝 , as well as a test set of size 𝑘𝑛𝑢𝑝 . For the Back-
Front attack, we set the threshold to the median value of the entire

dataset 𝐷 . For the Delta attack, we set each threshold𝑇𝑖 so that 𝑛𝑢𝑝
points are classified into each update index.

Method Function Description

ScoreDiff single-update attack compute difference of scores

ScoreRatio single-update attack compute ratio of scores

Back-Front multi-update attack ignore intermediate models

Delta multi-update attack analyze adjacent models

Transfer setting threshold transfer from a shadow model

Batch setting threshold calibrate with update/test points

Rank setting threshold calibrate with test points

Table 1: Proposed attacks and thresholding strategies.

5 EVALUATION

We next evaluate our proposed algorithms for the single- and multi-

update settings by answering seven key questions in the context of

the datasets described in Section 5.1:

Q1: Does access to one model update give the attack an advan-

tage over models with no access to updates? How does the

update set size impact this advantage? (Section 5.2)

Q2: Does attack success improvewithmore updates? (Section 5.3)

Q3: How does the training strategy—SGD-New or SGD-Full—

impact attack performance? (Section 5.4)

Q4: How do the various attacks and thresholding choices impact

attack performance? (Section 5.5)

Q5: How does distribution shift impact attack performance? (Sec-

tion 5.6)

Q6: How would adoption of differential privacy impact attack

performance? (Section 5.7)

Q7: How do our attacks compare to those developed for unlearn-

ing in Chen et al. [9]? (Section 5.8)

Since we propose multiple attacks for two different settings –

single-update and multiple updates – and each attack can be instan-

tiated with multiple score functions and thresholding methods, the

space of experimentation is quite large. Moreover, performance of

an attack can be measured in different ways, such as with accuracy,

precision, and recall for the single-update setting, and membership

inference accuracy and entry inference accuracy for the multiple-

update setting. To tame this large experimentation space, we answer

different questions in the context of different algorithms, methods,

settings, and metrics that are most relevant for the specific question.

Q1-Q3 choose the best-performing attack relevant to the considered

setting – single or multiple updates – and focus on membership

inference accuracy and entry inference accuracy, respectively. Q4

compares key pairs of algorithms and mechanisms under multiple

performance metrics. And Q5-Q7 focus on the single-update setting

and best-performing algorithms.

5.1 Datasets

In this section we describe the datasets used in our evaluation. We

use the Adam optimizer for transfer learning datasets (CIFAR-10

and IMDb) and SGD otherwise, as we find this works best.

FMNIST. FMNIST is a 10-class dataset consisting of 28x28 pixel

grayscale images of different clothing items. On this dataset, the

initial model is a logistic regression model, trained on an initial

dataset of 1000 data points for 50 epochs at a learning rate of 0.01.

We use 1000 data points to be able to train many of these models,

including running LiRA calibration. On average, this achieves 82.5%

training accuracy and 79.5% test accuracy. SGD-New trains for 10

epochs at a learning rate of 0.001, and SGD-Full trains for 10 epochs

at a learning rate of 0.01.
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CIFAR-10. CIFAR-10 is a 10-class dataset of 32x32 pixel RGB im-

ages of various animals and vehicles. This dataset is harder than

FMNIST, and requires more complex models to achieve reasonable

accuracy. We fine-tune a VGG-16 network which was pretrained on

the ImageNet dataset. The initial model is trained with 12 epochs

over a training set of 25000 points at a learning rate of 10
−4
. On

average, this achieves 98.2% training accuracy and 82.6% test accu-

racy. SGD-New trains for 4 epochs at a learning rate of 10
−5
, and

SGD-Full trains for 2 epochs at a learning rate of 10
−4
.

Purchase100. Purchase100 is a 100-class purchase history dataset.

The task is to classify a shopper into one of 100 clusters. Here, our

initial model is a single layer neural network trained on an initial

dataset of 25000 samples for 95 epochs at a learning rate of 0.01.

On average, this achieves 94.1% training accuracy and 84.1% test

accuracy. SGD-New trains for 5 epochs at a learning rate of 0.01,

and SGD-Full trains for 10 epochs at a learning rate of 0.1.

IMDb. IMDb is a text dataset of movie reviews, where the task is

to classify a movie review as either positive or negative. Here, we

fine tune the BERT base model (uncased) which was pretrained on

a large collection of English data. The initial model is trained with

4 epochs over a training set of 25000 points at a learning rate of

10
−5
. On average, this achieves 99.4% training accuracy and 93.8%

test accuracy. SGD-New trains for 6 epochs at a learning rate of

10
−6
, and SGD-Full trains for 3 epochs at a learning rate of 10

−5
.

5.2 Advantage from a Single Update

Q1: Does access to one model update give the attack an ad-

vantage over models with no access to updates? How does

the update set size impact this advantage?

To evaluate MI advantage from a single update, we compare with

three baseline attacks that use only the updated model 𝑓1. The first

baseline, called Loss, uses the approach of Yeom et al. [43], which

compares the loss on a point to the average training loss. The second

baseline, called Gap, uses the gap attack of [10], which classifies

correctly classified points as training and incorrectly classified

points as test. These strategies capture the role of label memorization

as a cause for vulnerability [15], and so attacks which perform better

than these cannot rely solely on such memorization. For all datasets

except IMDb, we also evaluate use the LiRA attack [5] as a baseline,

which trains shadow models to compute sample-specific baseline

loss values to compare to.

Figure 3 shows the accuracy of the best of our single-update

attacks, compared to the best baseline without access to updates.

We show these accuracies for update sizes varying from 1% to

32% of the original training set (except IMDb, where we use a

fixed 10-320 points for acceptable running time). The best attack

differs in each setting. For updates, fixing the Batch threshold-

ing strategy, we choose the best of {ScoreDiff, ScoreRatio} ×
{loss score, LiRA score}. For no updates, we choose the best of

{Gap, Loss, LiRA} baselines. For both update and no-update, we

show accuracy for both training strategies SGD-Full and SGD-New.

For all datasets, update sizes, and training strategies, attacks

with model updates outperform the no-update attacks. As expected,

the gap between updates and no updates decreases as the update

set gets larger. On FMNIST, for example, at 10 update points, the

Batch attack achieves 79% accuracy, while the Batch attack achieves

70% accuracy at 320 update points. The gap between the update

and no update attacks decreases from 27% to 18%. As an additional

exploration of this effect, we compare the accuracy of our attacks

with the success rate of single model attacks when the training set

is the same size as the update in Appendix C, and find that our

attacks are often more effective than this setting as well. Also in

Appendix C, we evaluate disparate impact, finding some classes are

somewhat more vulnerable to our attacks.

Q1 answer: Overall, our results show that updates give the adver-

sary significant advantage to identify training set members.

5.3 Advantage from Multiple Updates

Q2: Does advantage improve with the number of updates?

To evaluate the threat of MI and entry inference with the number

of updates, we run our multi-update attacks on a sequence of 1 to 10

updates, and observe how each attack’s performance changes. To

isolate the role of multiple updates, we fix 𝑛up to 250 for CIFAR-10,

100 for Purchase100, and 10 for FMNIST and IMDb (1%, .4%, 1%, and

.04% of the initial dataset, respectively). We measure both member-

ship and entry inference accuracies, which are the metrics relevant

for the multi-update attack, however we focus in this section on

entry inference accuracy and evaluate membership inference accu-

racy in a subsequent section. However, we remind the reader that

a membership inference attack can be used to construct an entry

inference attack, which we will use as a baseline.

We compare against two baselines. The first, called Random, is

random guessing. It randomly selects IN or OUT with probabil-

ity 1/2 and selects the update index uniformly at random. This

results in a success probability of 1/2𝑘 when there are 𝑘 updates.

We also define a stronger baseline, called Generic, which runs a

membership inference attack to answer IN or OUT, and selects the

update uniformly at random. We ignore the details of membership

inference attacks for this section. If the membership inference ac-

curacy of the attack is 𝑝 , then it obtains entry inference accuracy

𝑝/𝑘 . When membership inference accuracy is better than random

chance (𝑝 > 1/2), Generic outperforms Random.

Figure 4 shows the multiplicative improvement of entry infer-

ence accuracy over random guessing as a function of the number

of updates. As before, we show the best attack for each case, fixing

the thresholding strategy to Batch. Our best attacks significantly

outperform the baselines for entry inference, with the gap increas-

ing with the number of updates. For example, for SGD-New on

CIFAR-10, at 2 updates, our best attack (in this case, ScoreRatio

with cross-entropy loss as the score) outperforms the baseline by

a factor of 2.03×, while at 8 updates, it outperforms the baseline

by 6.10×. Still, for both the baselines and our attacks, the absolute

value of entry inference accuracy decays with the number of up-

dates. This is natural, as increasing the number of updates makes

it more difficult to guess which of the many updates a point was

used in—this is why the Random and Generic baselines’ success

probabilities – 1/2𝑘 and 𝑝/𝑘 , respectively – decay with 𝑘 . For our

attack, the absolute value of entry inference accuracy for CIFAR-10

is 50.8% at 2 updates and 38.1% at 8 updates. Yet, our attacks fare

much better compared to baselines, whose entry inference accuracy

for CIFAR-10 is 25% at 2 updates and 6.25% at 8 updates. For a real

adversary, it is unclear whether the absolute accuracy level or the
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(a) FMNIST (b) CIFAR-10 (c) Purchase100 (d) IMDb

Figure 3: (Q1, Q3) Accuracy of attacks with access to one update (solid lines) vs. without access to updates (dashed lines). Each

line corresponds to the best attack for each setting (see text). Even one update gives the adversary significant power to identify

training set members.

(a) FMNIST (b) CIFAR-10 (c) Purchase100 (d) IMDb

Figure 4: (Q2, Q3) Improvement of entry inference accuracy over random guessing (y axis), as a function of the number of

updates (x axis). For 𝑘 updates, Random guessing achieves 1/2𝑘 accuracy. We present the best attack strategy for each dataset:

for FMNIST and Purchase100, this is loss difference, but loss ratio for CIFAR-10. As the number of updates increases, the attack

performs significantly better than random guessing, although the absolute accuracy decays.

improved attack performance will be more relevant, and future

work may be required to increase the absolute attack success rate

further, especially for very long training processes.

Q2 answer: Thus, as the number of updates increases, the abso-

lute accuracy fundamentally decreases for all cases, but our attack

significantly outperforms appropriate baselines.

5.4 Impact of Training Strategy

Q3: How does the training strategy—SGD-New or SGD-Full—

impact attack performance?

The success of the MI attack depends on the training strategy,

which is a choice the learner makes that the adversary cannot

influence. If one training strategy were consistently less vulnerable

to attack than the other, then the learner could choose the former,

as a heuristic defense. We find that such a heuristic exists, but it

depends on the update size and dataset, making it difficult for the

learner to configure without experimentation with our attacks.

We revisit Figures 3 and 4, which already illustrate the effect

of SGD-New and SGD-Full on attack performance with one and

multiple updates, respectively. For a single update, Figure 3 shows

the attack is more effective with SGD-New when the update set is

small. However, the attack’s performance on SGD-New degrades

faster than on SGD-Full as the update set size increases. For ex-

ample, on CIFAR, the gap between 250 and 8000 update points is

10% for SGD-New but only 2% for SGD-Full. This faster drop in

performance with SGD-New on larger update sets makes SGD-Full,

in fact, more vulnerable to attack for large update sets on CIFAR-

10 compared to SGD-New. The reason for this inversion is that

SGD-Full would naturally use a higher learning rate for the up-

date set compared to SGD-New. Interestingly, the inversion already

happens on Purchase100 at the smallest update set size.

For multiple updates, we observe a similar and even more con-

sistent effect. Figure 4, which uses a very small update set of 1% of

the original training set, shows the attack as most effective with

SGD-New. This is true even more consistently across datasets than

with a single update. In the multiple update setting, SGD-New only

uses each update point once, so an update point will observe a

larger loss decrease in the update in which it appears compared

to the loss in updates in which it does not appear. SGD-Full, by

contrast, should observe a loss decrease in each update. We include

results in Appendix C (Figure 10a) showing that for a larger update

set size of 10% of the original training set, attacks on SGD-Full are

more effective relative to attacks on SGD-New.

Q3 answer: Thus, as a rule of thumb, when update sets are small,

training on the whole dataset is less vulnerable to MI attack; but

when update sets are larger, training on only the update set is less

vulnerable. The point at which the inversion happens depends on

the dataset, so a learner should tune this heuristic, for example, by

running our attack. Section 5.6 evaluates differential privacy as a

far more principled approach for defense against MI attacks, yet

still one that will likely require some tuning or auditing in practice,

for which our attacks could still prove useful.
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5.5 Impact of Attack Strategy

Q4: How do the various attacks and thresholding choices

impact attack performance?

In the preceding questions, we picked the best performing attack

algorithm and thresholding strategy from the suite we are propos-

ing. But are all these attacks/thresholds really needed, or do some

of them outperform others consistently? The answer is, indeed,

that different algorithms and thresholds perform better in different

settings, so they are all relevant in an attacker’s toolkit. For exam-

ple, the LiRA score function is more difficult to compute than loss,

so should be used when it can be reliably estimated. Recall that the

adversary’s knowledge determines their choice of threshold. We

show here a few main comparisons.

ScoreDiff vs. ScoreRatio in terms of accuracy. Focusing

first on the single update setting, Table 2 shows attack accuracy

with an update size of 1% of the original training set. We compare

ScoreDiff and ScoreRatiowhen using the standard cross-entropy

loss and either the Batch or Transfer thresholding strategy (Batch

and Transfer are the only ones relevant for accuracy). We show

results for both SGD-New and SGD-Full training strategies. The

ScoreRatio strategy typically outperforms ScoreDiff. However,

there are exceptions, especially at large update set sizes. The two

threshold selection strategies, Batch and Transfer, have comparable

performance in the cases we show. We also ran the same evaluation

with LiRA as the score in ScoreDiff and ScoreRatio. LiRA con-

sistently performs better than traditional loss, except on CIFAR-10,

where there is not enough data to train sufficient shadow models

for it to perform well. We find LiRA tends to be strongest with

ScoreRatio, but ScoreDiff performs comparably.

For the multiple update setting, there is similarly no single best

choice for the attacker. For example, loss ratio outperforms loss

difference on CIFAR-10, while loss difference outperforms loss ratio

on FMNIST and Purchase100, and there is little difference on IMDb.

For a specific use case, an adversary might experiment on their

own shadowupdatedmodel to determinewhether to use ScoreDiff

or ScoreRatio, andwhich privacy score to use. Thresholding strate-

gies are determined by what the adversary has access to.

ScoreDiff vs. ScoreRatio in terms of precision/recall. The

broad takeaways for precision are similar to those for accuracy.

SGD-New outperforms SGD-Full, as we can see from compar-

ing Table 3 and a table we included in the Appendix, Table 7. At

𝑛up = 0.01𝑛0, Batch achieves 90% precision on FMNIST for SGD-

New, while the best attack achieves 86% precision for SGD-Full.

This difference is more pronounced for other datasets. Precision is

larger when fewer update points are used: Transfer achieves 86%

precision with 𝑛up = 0.01𝑛0 on FMNIST, but only 78% precision

with 𝑛up = 0.08𝑛0. For precision, we have three strategies for select-

ing the threshold: Batch, Transfer, and also Rank. While Rank often

achieves a higher recall than the other strategies, Batch and Trans-

fer typically achieve a higher precision. Thus, once again, the choice

of algorithm and its configurations requires experimentation.

Delta vs. Back-Front in terms of membership inference accu-

racy. For the multiple update setting, we proposed twomembership

inference strategies for the attacker: Delta, which compares each

adjacent pair of models; and Back-Front, which only compares the

first and last models. Figure 5 compares these two strategies for

SGD-Full in terms of membership inference accuracy. As before,

no strategy strictly dominates. The Delta attack performs the best

for CIFAR-10. On Purchase100, the Back-Front attack is best. On

FMNIST, the Back-Front and Delta attack perform comparably. As

before, an adversary could decide between one strategy versus an-

other based on experiments with a shadow model that they train

themselves.

Q4 answer: These results show that the variety of algorithms and

configurations that we proposed is truly needed, because no single

algorithm and configuration will work best in all situations.

5.6 Impact of Distribution Shift

Q5: How does distribution shift impact attack performance?

An important characteristic of the model retraining setting we

tackle in this paper is that models are updated to keep up with a

shifting distribution. How distribution shift impacts MI attack per-

formance has been evaluated very little in prior literature, hence its

investigation, in the context of our proposed attacks, is a significant

contribution of our work. The contribution consists of two com-

ponents: (1) a new methodology that we developed for evaluating

impact of distribution shift on MI attacks and (2) the evaluation of

our proposed attack algorithms with this methodology.

Methodology.We consider two types of distribution shift: subpop-

ulation shift and covariate shift.

We consider subpopulation shift using the BREEDS framework [37].

The BREEDS framework generates subpopulation shift by gener-

ating a hierarchy of classes and shifting between classes which

are close in the hierarchy. For example, a “dog” class trained on

images of dalmatians may struggle to recognize poodles as dogs.

We adapt BREEDS to CIFAR-10 with an “animal vs. vehicle” binary

task, and vary the animals and vehicles to simulate distribution

shift. “Animals” are { bird, cat, deer, dog, frog, horse}; “vehicles”
are { airplane, automobile, ship, truck }. For the “animal” class, we

consider a source class 𝑠𝑎 and a target class 𝑡𝑎 (both class 0 in the

binary task). Likewise, the “vehicle” class has a source class 𝑠𝑣 and

target class 𝑡𝑣 (both class 1). We write the distribution of a given

class 𝑐 as D𝑐
. We consider balanced classes, so that the source

distribution is D𝑆 = 1

2
(D𝑠𝑎 + D𝑠𝑣 ) and the target distribution

D𝑇 = 1

2
(D𝑡𝑎 + D𝑡𝑣 ). The original training distribution is D𝑆 , and

the update distribution is D1 = (1 − 𝛼)D𝑆 + 𝛼D𝑇 , where the shift
ratio 𝛼 controls the strength of the distribution shift.

For covariate shift, we use the CINIC-10 dataset [11]. CINIC-10

is a combination of the CIFAR-10 dataset and the ImageNet dataset,

filtered to the 10 classes of the CIFAR-10 dataset. The covariate

shift we consider is from a D𝑆 consisting of purely CIFAR-10 data

(or purely ImageNet data) to a mixture of an 𝛼 fraction of CIFAR-

10 and a 1 − 𝛼 fraction of ImageNet data. This is not a form of

subpopulation shift as CIFAR-10 and ImageNet do not represent

different subpopulations of each class, rather a different distribution

of examples for each class (with ImageNet consisting of harder data).

We also describe in Appendix C an experiment using CINIC-10 to

confirm our subpopulation shift experiments on a larger dataset.

We run our single update attacks from Section 4.1 on the preced-

ing distribution shift methodologies. Our goal is to isolate the role of

distribution shift on attack performance. For both settings, we vary
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Dataset

SGD-New SGD-Full

No Update ScoreDiff (loss) ScoreRatio (loss) No Update ScoreDiff (loss) ScoreRatio (loss)

Gap Loss Batch Transfer Batch Transfer Gap Loss Batch Transfer Batch Transfer

FMNIST 0.51 0.53 0.68 * 0.67 * 0.71 ** 0.72 ** 0.52 0.51 0.63 0.55 0.57 0.58

CIFAR-10 0.50 0.53 0.61 ** 0.62 ** 0.65 ** 0.68 ** 0.50 0.59 0.58 0.59 0.61 0.63 **

Purchase100 0.51 0.50 0.56 ** 0.56 ** 0.57 ** 0.58 ** 0.51 0.51 0.54 * 0.54 * 0.55 ** 0.54 *

IMDb 0.50 0.45 0.63 ** 0.60 * 0.63 ** 0.60 * 0.50 0.47 0.58 0.55 0.58 0.55

Table 2: (Q4) Accuracy for single update models with smallest update size. Values with
∗
improve over the best no update attack

(𝑝 < 0.05), values with
∗∗

improve with higher significance (𝑝 < 0.01).

(a) FMNIST (b) CIFAR-10 (c) Purchase100 (d) IMDb

Figure 5: (Q4) Membership inference accuracy for attacks with multiple updates. We select the best strategy for each case: for

FMNIST, this is always loss difference (although ratio performs similarly), and is loss ratio for CIFAR-10 and Purchase100.

Dataset 𝑛up Loss Batch Transfer Rank

FMNIST 10 0.53/0.11 0.78/0.16 0.86/0.24 0.82/0.28

CIFAR-10 250 0.54/0.10 0.85/0.17 0.82/0.22 0.69/0.46

Purchase100 250 0.53/0.11 0.60/0.12 0.63/0.07 0.60/0.14

IMDb 10 0.58/0.12 0.58/0.12 0.56/0.32 0.52/0.25

FMNIST 80 0.52/0.10 0.74/0.15 0.78/0.13 0.69/0.25

CIFAR-10 2000 0.55/0.11 0.83/0.17 0.79/0.25 0.69/0.44

Purchase100 2000 0.49/0.10 0.63/0.13 0.65/0.10 0.61/0.16

IMDb 80 0.46/0.09 0.67/0.13 0.70/0.12 0.59/0.25

Table 3: (Q4) Precision/recall results for single update models

on SGD-Full. Rank sets the threshold to the top 10% of the

test data. We report values for two update set sizes. It is well

known that no update loss obtains poor precision [5, 26].

the parameter 𝛼 and the “hardness” of shift, keeping everything

else constant. For subpopulation shift, we consider two settings of

(𝑠𝑎 → 𝑡𝑎), (𝑠𝑣 → 𝑡𝑣). The first, which we call Hard, is (Airplane

→ Automobile), (Cat→ Bird). The second, which we call Easy, is

(Automobile → Truck), (Cat → Dog). Hard is a distribution shift

where the original model will not perform well on the new data,

due to the dissimilarity between original and update classes. Easy is

a distribution shift where the original model will perform well. For

covariate shift, we call starting with CIFAR-10 as the Hard setting,

as this model will perform poorly on ImageNet data, and starting

with ImageNet is the Easy setting, as this model will perform better

on CIFAR-10 data.

Importantly, our methodology does notmeasure the ability of an

adversary to distinguish the old and new distributions. This is be-

cause our MI game formulation from Section 3 samples test points

and update points identically, from the same distribution. Instead,

we are measuring the ability to distinguish shifted training points

from shifted testing points. Intuitively, a large distribution shift re-

quires the model to fit to the specific update points to accommodate

the new distribution, thereby making the update points vulnerable

to MI. It is worth noting that the only prior work investigating

distribution shift’s impact on privacy, namely Zanella-Béguelin et

Metric Shift

𝛼 = 0.2 𝛼 = 0.6 𝛼 = 1.0

Diff Ratio Diff Ratio Diff Ratio

Accuracy

Hard 0.551 0.559 0.602 0.634 0.600 0.687

Easy 0.685 0.685 0.574 0.581 0.560 0.562

Prec./Recall

Hard .73/.15 .90/.18 .94/.19 .96/.19 .98/.20 .94/.19

Easy .64/.13 .74/.15 .58/.12 .90/.18 .71/.14 .94/.19

Table 4: (Q5) Accuracy and precision/recall of attacks af-

ter subpopulation shift on SGD-New. Ratio, Diff stand for

ScoreRatio, ScoreDiff, respectively, with loss score.Ratio

performs best, a Hard distribution shift results in better at-

tacks as 𝛼 increases, and SGD-New is typically more vulnera-

ble than SGD-Full.

Metric Shift

𝛼 = 0.2 𝛼 = 0.6 𝛼 = 1.0

Diff Ratio Diff Ratio Diff Ratio

Accuracy

Hard 0.628 0.718 0.615 0.694 0.596 0.673

Easy 0.595 0.614 0.588 0.616 0.589 0.652

Prec./Recall

Hard .93/.19 .87/.17 .89/.18 .83/.17 .80/.16 .79/.16

Easy .89/.18 .90/.18 .91/.18 .89/.18 .87/.17 .84/.17

Table 5: (Q5) Accuracy and precision/recall of attacks after co-

variate shift on SGD-New.Ratio,Diff stand for ScoreRatio,

ScoreDiff, respectively, with loss score. Here, Ratio per-

forms best for accuracy, and a Hard distribution shift results

in more accurate attacks than an Easy shift, but 𝛼 no longer

has as significant an impact as with subpopulation shift.

al. [45], shows that some outputs are more likely after a distribution

shift, but their experiments cannot isolate whether this is a privacy

violation or just the model adapting to the new distribution. We

thus believe that our methodology can constitute a better platform

for future measurements of MI under distribution shift.

Evaluation. The second component of our distribution-shift con-

tribution is the evaluation of our proposed algorithms using the

preceding methodologies. We focus on the single update attacks,

and use the Batch thresholding strategy. For the subpopulation shift

setup, we use 𝑛up = 50 and 𝑛0 = 5000. The covariate shift is a more

complex task, so we set 𝑛up = 1000 and 𝑛0 = 10000. We evaluate

accuracy and precision/recall for both shifts with 𝛼 ∈ {0.2, 0.6, 1.0},
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with results for subpopulation shift shown in Table 4 and results for

covariate shift in Table 5. We show results for SGD-New, using both

ScoreDiff and ScoreRatio with the loss score (SGD-Full results

for subpopulation shift can be found in Table 10 in the Appendix).

Accuracy: ScoreRatio is the most effective strategy in all cases.

For the Hard subpopulation shift, the faster the change in distribu-

tion (larger 𝛼), the more effective MI is. As 𝛼 increases from 0.2 to

1.0, accuracy on SGD-Full increases by 0.07, and accuracy increases

by 0.13 on SGD-New. Interestingly, there is no strong trend with 𝛼

for covariate shift, likely because the task is complex enough that it

leads to high risk regardless (our attacks with covariate shift tend

to have high accuracy and precision). Similar to how SGD-New is

more influenced by 𝑛up in Section 5.4, SGD-New is also more heav-

ily influenced by 𝛼 . Interestingly, accuracy decreases as 𝛼 grows for

the Easy shift. This shows that a drastic shift requires significant

changes to be made to the model, leading the model to overfit to

the specific update points and make them more vulnerable.

Precision/Recall: The lessons for precision/recall are similar to

those for accuracy, but precision tends to be much higher than

accuracy, often reaching >90% (and as high as 98%), especially at

more drastic subpopulation shifts. For subpopulation shift, we still

find that ScoreRatio is generally more effective, and Hard shifts

and large 𝛼 result in higher precision. For covariate shift, neither

attack clearly outperforms the other, and precision is always high,

even with small 𝛼 and Easy shifts. The key difference with accuracy

we note is that even the Easy shift results in large precision at high

𝛼 (and even at low 𝛼 for covariate shift); this is likely because, even

when the distributions are similar, there are some samples which

still require the model to change significantly to learn them.

Disparate Impact: Finally, we consider whether our attacks have

disparate impact [23, 46]. That is, we ask whether some subpopula-

tions are more impacted by our attacks. We focus on this question

here, due to the explicit distinctions made between source and tar-

get distributions. For covariate shift, we find no disparate impact.

This is likely due to the lack of distinction between subpopulations.

For subpopulation shift with CIFAR, we do find disparate impact:

with 𝛼 = .2, new examples from the Hard shift reach 78% accuracy,

while old examples are less vulnerable, with 42% accuracy. The Easy

shift is less drastic: new examples reach 62% accuracy, while old

examples reach 53% accuracy.

Q5 answer: A drastic subpopulation shift can result in higher MI

risk than a gradual shift, but not if MI risk is already high.

5.7 Differential Privacy

Q6: How does differential privacy impact our attacks?

A rigorous strategy for preventing our attacks is by training with

differential privacy. Indeed, training with (𝜀, 𝛿)-differential privacy,
imposes some upper bound on the accuracy of any MI attacks

and also on the precision at a fixed level of recall. We evaluate the

effectiveness of this strategy by training with DP-SGD [1, 3, 41], the

standard algorithm for training differentially private models. This

algorithm modifies standard SGD by clipping gradient norms and

adding noise. We use the implementation provided by Tensorflow

Privacy [28]. We fix 𝛿 = 10
−4
, and vary the noise multiplier to reach

fixed values of 𝜀, computed with the accounting provided by the

repository. We focus on the Fashion-MNIST dataset, with an update

(a) Attacking DP training (b) Auditing 𝜀

Figure 6: (Q6) (a) Effectiveness of differential privacy at de-

fending against single update attacks, as 𝜀 varies for SGD-

New. Accuracy and precision for both SGD-New and SGD-Full

observe similar behavior, where no update attacks are similar

at small 𝜀, but fall behind at larger 𝜀. (b) Using our attacks to

audit differentially private SGD-Full and SGD-New. All lower

bounds for SGD-Full are 0. For multiple values of 𝜀, SGD-New

lower bounds are a 2.0-3.6x factor from upper bounds.

size of 100, a clipping norm of 0.5, and we fix all other parameters to

be the same as in previous sections. We focus on the single update

setting for simplicity. This model retains accuracy similar to the

non-private model (around 75% test accuracy) when epsilon is at

or above 0.2. However the test accuracy decreases below 65% at an

epsilon of 0.06.

Protectionwaneswith 𝜀.Wepresent the results of this experiment

in Figure 6a. As expected, as 𝜀 increases, its protection from our

attacks decreases. For example, at 𝜀 = 0.26, our best attack reaches

a precision of only 0.59, but at 𝜀 = 1.1, it reaches a precision of 0.63.

The precision levels off as 𝜀 increases. The gap between the attacks

with and without access to updates is also largest at moderate 𝜀

values. At 𝜀 < 1, there is little difference. The no-update attacks also

catch up at extremely large 𝜀, where the noise addition is minor,

and gradient-clipping is the major difference between DP-SGD and

the standard implementation of SGD.

Auditing differentially private deployments with our attacks.

Following [20, 33], we can use our results to provide empirical

lower bounds on the privacy of each update algorithm, as a means

of understanding how worst-case upper bounds on 𝜀 correspond to

practical privacy against state-of-the-art attacks. We can convert

the bound used by either [20] or [33] to a bound on precision, giving

that precision 𝑝 should be bounded by 𝑒𝜀/(1 + 𝑒𝜀 ), or, identically,
that 𝜀 is lower bounded by 𝑝/(1 − 𝑝). Since we cannot measure 𝑝

directly, we follow [20] and compute conservative estimates via

Clopper-Pearson confidence intervals. We have 400 trials for each

𝜀, as we train 20 models with 20 points in each trial. We report in

Figure 6b these computed 𝜀 values for both SGD-New and SGD-Full.

We enforce a confidence of 98% for each reported value.

We highlight two key takeaways. First, as in non-private training,

SGD-New empirically offers less privacy protection than SGD-Full

for those points in the update. In fact, our attack does not refute the

possibility that SGD-Full satisfies differential privacy with 𝜀 = 0,

although we stress that this is not robust evidence that privacy is

not a concern when retraining with SGD-Full. The second takeaway

is that the provable upper bounds on the privacy of SGD-New are

nearly tight for moderate values of 𝜀. With provable 𝜀 in .12-1.09,
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our lower bounds are within a 2.0-3.6x factor of the theoretical

upper bound. A gap smaller than 3.6x is perhaps remarkable, since

state-of-the-art attacks on standalone models trained with DP-SGD

have gaps of 5-10x [20, 33], suggesting that model updates represent

an especially risky scenario for private model training.

Q6 answer:Our results show that differential privacy is an effective

protection at lower 𝜀, and also that our attacks can be an effective

method of empirically auditing a differential privacy deployment.

5.8 Comparison with Chen et al. [9]

Q7: How do our attacks compare to those developed for un-

learning in Chen et al. [9]?

We observe that machine unlearning can be viewed as the “re-

verse operation” of our model update setting. Then we can adapt

the MI attacks designed for machine unlearning in Chen et al. [9],

and compare them to ours. In their strategy, the adversary trains

shadow models to learn an “attack model”. This attack model takes

as input some combination of the probability vectors returned by

the two models, and outputs a prediction for whether the point

was unlearned. They experiment with different instantiations of

the attack, and we reproduce their SortedDiff attack in our setting,

which takes the difference between sorted probability vectors be-

fore and after deletion. They note SortedDiff is their best attack

on well-generalized models, as our models are. We run their attack

with up to 30 shadow models, with each of the attack model ar-

chitectures tested, and report the best attack from these. We focus

on our loss score attacks with Transfer thresholds, as this fits the

threat model they consider (LiRA requires training different types

of shadow models, so we avoid this comparison for simplicity). Our

attacks here will therefore only use a single shadow model (to set

the threshold), while their attacks will be allowed up to 30.

We compare ScoreDiff and ScoreRatiowith the Chen et al. [9]

attack in Figure 7, for both SGD-Full and SGD-New, on the FMNIST

dataset. We observe that both ScoreDiff and ScoreRatio always

outperform their attack, although the gap can be somewhat small,

depending on the update size. We are able to do this with a single

shadow model, because it is easier to identify a good threshold on

a single feature, than learn a good function on 10 features
3
. We

corroborate this on Purchase100.

To further demonstrate the strength of the test statistics we com-

pute, we run an experiment allowing the Chen et al. attack model

to access our ScoreDiff and ScoreRatio features, in addition to

the features they use (this results in 12 features, two of ours, and

10 SortedDiff features from their paper). We allow this improved

Chen et al. attack 30 shadow models, and have it learn a logistic re-

gression attack model on these 12 features. We inspect the weights

the model learns, as a way to measure how useful the features are,

and find that the average weight assigned to our features is, on

average, 7.5x higher than the weight assigned to one of the Sorted-

Diff features! This speaks to the value of carefully constructing a

useful test statistic, rather than attempting to learn one from a high

dimensional space. Shadow models are more useful when used to

improve a simple test statistic, as our results with LiRA show.

3
We also note that their attacks are much stronger on overfit models, and the attack

they performed on MNIST models that do not exhibit a large amount of overfitting

only achieved an AUC of .51.

(a) SGD-Full (b) SGD-New

Figure 7: (Q7) Performance of Chen et al. [9] relative to our

attacks. We consistently outperform their attack, despite

only using a single shadowmodel to set our attack threshold.

Q7 answer: ScoreDiff and ScoreRatio are more efficient (fewer

shadow models) and more effective (higher accuracy) than [9].

6 CONCLUSIONS

We have presented and evaluated MI attacks which leverage model

updates. Our attacks apply to a variety of settings, including when

models are repeatedly updated and when the distribution shifts

over time. Our strategies are theoretically justified and empirically

achieve both high accuracy and high precision. Empirically, we find

the role of the update set size, the training algorithm, and any dis-

tribution shift to be key factors impacting our attacks’ performance.

As a general rule, the smaller the update set size, the more effective

our attacks are. This holds true for attacks on single updates as

well as multiple updates, and for both SGD-New and SGD-Full. It

is well known that MI attacks are more successful when training

sets are smaller [14, 36], so our results confirm this in the model up-

dates setting. Since model accuracy also improves more with larger

updates, this is a nice win-win for privacy and utility! A drastic

distribution shift also improves the performance of an attack, as

learning the new distribution requires fitting heavily to the update

points. Zanella-Béguelin et al. [45] also notice that distribution shift

results in memorization in the generative language model setting,

but our results are the first to identify this as privacy leakage, rather

than the model adapting to a new distribution. Finally, the specific

training setup used by the learner can impact the accuracy of MI.

Models updated repeatedly can be used to improve MI, and can also

leak the time that a data point appeared in the training set. Learn-

ers training with SGD-New are more vulnerable than SGD-Full at

small update set sizes and when distributions shift significantly,

but this trend tends to reverse as the update set gets larger and the

distribution is more stable.
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Update Test

A(𝑓1) : IN A(𝑓1) : OUT A(𝑓1) : IN A(𝑓1) : OUT
A(𝑓0) : IN 𝑝𝑢

11
𝑝𝑢
10

𝑝𝑡
11

𝑝𝑡
10

A(𝑓0) : OUT 𝑝𝑢
01

𝑝𝑢
00

𝑝𝑡
01

𝑝𝑡
00

Table 6: Probabilities used in Theorem 4.1

A PROOF OF THEOREM 4.1

We now prove Theorem 4.1, which shows that rich score informa-

tion is required to take advantage of updates. We begin by restating

the theorem and assumptions.

• The attack run on 𝑓0 returns IN equally often on update

and test points: 𝑝𝑢
11

+ 𝑝𝑢
10

= 𝑝𝑡
11

+ 𝑝𝑡
10
. This is a reasonable

assumption as both sets are not in 𝑓0’s training set and are

identically distributed, so the attack should not perform

differently.

• The attack run on 𝑓1 is more likely to return IN on points in

the update than on points in the test set, for both points with

IN and OUT guesses from the attack on 𝑓0: 𝑝
𝑢
11

> 𝑝𝑡
11
, 𝑝𝑢

01
>

𝑝𝑡
01
. This is realistic, as the membership inference attack

should return IN more frequently on training data than on

testing data.

Theorem A.1 (Theorem 4.1, restated). For any single-model

membership inference attack A returning only a binary IN/OUT

prediction satisfying the above assumptions, there exists an adversary

receiving the output of A on 𝑓1 that obtains at least as high accuracy

as any adversary with access to the output of A on both 𝑓0 and 𝑓1.

Proof. Given only knowledge of 𝑓1, the adversary may only

make a decision based on A(𝑓1). Then a uniform decision must be

made for points withA(𝑓1) = IN, representing a 𝑝𝑢
11
+𝑝𝑢

01
fraction of

update points and a 𝑝𝑡
11
+𝑝𝑡

01
fraction of test points. Because there is

a balance between update and test points, there will bemore updates

points in this set when 𝑝𝑢
11

+ 𝑝𝑢
01

> 𝑝𝑡
11

+ 𝑝𝑡
01
, so the optimal attack

should guess IN when this inequality holds and OUT otherwise.

The fraction of overall points which are correctly classified by this

rule will be
1

2
(max(𝑝𝑢

11
+𝑝𝑢

01
, 𝑝𝑡

11
+𝑝𝑡

01
)). Similarly, points for which

A(𝑓1) = OUT should be guessed as IN if 𝑝𝑢
10

+ 𝑝𝑢
00

> 𝑝𝑡
10

+ 𝑝𝑡
00

and

OUT otherwise. Then the optimal attack achieves accuracy

1

2

[
max(𝑝𝑢

11
+ 𝑝𝑢

01
, 𝑝𝑡

11
+ 𝑝𝑡

01
) +max(𝑝𝑢

10
+ 𝑝𝑢

00
, 𝑝𝑡

10
+ 𝑝𝑡

00
)
]
.

Now, Assumption 2 states that the attack guesses IN on update

data more than on test data, so max(𝑝𝑢
11

+ 𝑝𝑢
01
, 𝑝𝑡

11
+ 𝑝𝑡

01
) = 𝑝𝑢

11
+

𝑝𝑢
01
; the optimal attack should guess IN when A does. Similarly,

max(𝑝𝑢
10

+ 𝑝𝑢
00
, 𝑝𝑡

10
+ 𝑝𝑡

00
) = 𝑝𝑡

10
+ 𝑝𝑡

00
, so the optimal attack should

guess OUT when A does. The optimal attack here is to simply use

predictions returned by A. This optimal attack strategy reaches an

accuracy of
1

2
(𝑝𝑢

11
+ 𝑝𝑢

01
+ 𝑝𝑡

10
+ 𝑝𝑡

00
).

Using Updates. Now, an attack with access to both 𝑓0 and 𝑓1 may

make decisions based on both attack results. Following the same

argument as before, we see that a 𝑝𝑢
11

fraction of update points are

guessed as IN for both models, while a 𝑝𝑡
11

fraction of test points

are, so the optimal attack should classify these points as update

if 𝑝𝑢
11

> 𝑝𝑡
11

and test otherwise. Applying the same logic to all

four possible attack results, we see that the optimal attack achieves

accuracy

1

2

[
max(𝑝𝑢

11
, 𝑝𝑡

11
) +max(𝑝𝑢

01
, 𝑝𝑡

01
)
]
+ 1

2

[
max(𝑝𝑢

10
, 𝑝𝑡

10
) +max(𝑝𝑢

00
, 𝑝𝑡

00
)
]
.

Again, Assumption 2 givesmax(𝑝𝑢
11
, 𝑝𝑡

11
) = 𝑝𝑢

11
andmax(𝑝𝑢

01
, 𝑝𝑡

01
) =

𝑝𝑢
01
. Assumption 1 states that the attack returns IN equally often

on update and test points on 𝑓0, so combining Assumption 1 and

Assumption 2 gives 𝑝𝑢
10

< 𝑝𝑡
10
, so that max(𝑝𝑢

10
, 𝑝𝑡

10
) = 𝑝𝑡

10
. Finally,

Assumption 1 implies that 𝑝𝑢
01

+ 𝑝𝑢
00

= 𝑝𝑡
01

+ 𝑝𝑡
00
. Combining this

with Assumption 2 gives us that 𝑝𝑢
00

< 𝑝𝑡
00
, so max(𝑝𝑢

00
, 𝑝𝑡

00
) = 𝑝𝑡

00
.

Then the accuracy of the optimal attack when given both 𝑓0 and 𝑓1
is

1

2

[
𝑝𝑢
11

+ 𝑝𝑢
01

+ 𝑝𝑡
10

+ 𝑝𝑡
00

]
,

equivalent to the attack which did not use updates. The attack in

both cases is identical - follow the guesses made by A when run

on 𝑓1. □

B ADDITIONAL THEORETICAL ANALYSIS

B.1 Justifying ScoreDiff and ScoreRatio

We consider two loss functions: (1) the ℓ2
2
loss, which is denoted

ℓ𝑚 (𝑥, 𝑓 ) = ∥ 𝑓 − 𝑥 ∥2
2
, and whose minimizer is the dataset’s mean,

and (2) the ℓ2 loss ℓ𝑔 (𝑥, 𝑓 ) = ∥ 𝑓 − 𝑥 ∥2, whose minimizer is the

dataset’s geometric median. For simplicity we also consider a single

update point 𝑥 .

For the ℓ2
2
loss, the update rule is

𝑓𝑚
1

= 𝑓𝑚
0

− 𝜂∇ℓ𝑚 (𝑥, 𝑓𝑚
0
) = 𝑓𝑚

0
− 2𝜂 (𝑓𝑚

0
− 𝑥) .

Now we have,

ℓ𝑚 (𝑥, 𝑓𝑚
1
) =

〈
(𝑓𝑚
1

− 𝑓𝑚
0
) + (𝑓𝑚

0
− 𝑥), (𝑓𝑚

1
− 𝑓𝑚

0
) + (𝑓𝑚

0
− 𝑥)

〉
= ∥ 𝑓𝑚

0
− 𝑥 |2

2
+ ∥ 𝑓𝑚

1
− 𝑓𝑚

0
∥2
2
+ 2

〈
𝑓𝑚
1

− 𝑓𝑚
0
, 𝑓𝑚
0

− 𝑥
〉

= ℓ𝑚 (𝑥, 𝑓𝑚
0
) + (4𝜂2 − 4𝜂)∥ 𝑓𝑚

0
− 𝑥 ∥2

2

= (1 − 2𝜂)2ℓ𝑚 (𝑥, 𝑓𝑚
0
) .

When recomputing the mean, the loss after update is a fixed ratio

decrease from the loss before the update. Meanwhile, the probability

that a randomly drawn test point will have the same loss ratio is 0.

Then, with a single update point and a known learning rate, loss

ratio is a perfect membership test.

For the ℓ2 loss, the update rule is

𝑓
𝑔

1
= 𝑓

𝑔

0
− 𝜂∇ℓ𝑔 (𝑥, 𝑓 𝑔

0
) = 𝑓 𝑔

0
− 𝜂

𝑓
𝑔

0
− 𝑥

∥ 𝑓 𝑔
0
− 𝑥 ∥2

.

Now we have,

ℓ𝑔 (𝑥, 𝑓 𝑔
1
) =

√︃
∥(𝑓 𝑔

1
− 𝑓 𝑔

0
) + (𝑓 𝑔

0
− 𝑥)∥2

2

=

√︃
∥ 𝑓 𝑔

0
− 𝑥 ∥2

2
+ ∥ 𝑓 𝑔

1
− 𝑓 𝑔

0
∥2
2
+ 2

〈
𝑓
𝑔

1
− 𝑓 𝑔

0
, 𝑓
𝑔

0
− 𝑥

〉
=

√√
ℓ𝑔 (𝑥, 𝑓 𝑔

0
)2 +

𝜂2∥ 𝑓 𝑔
0
− 𝑥 ∥2

2

∥ 𝑓 𝑔
0
− 𝑥 ∥2

2

− 2𝜂
∥ 𝑓 𝑔

0
− 𝑥 ∥2

2

∥ 𝑓 𝑔
0
− 𝑥 ∥2

=

√︃
ℓ𝑔 (𝑥, 𝑓 𝑔

0
)2 + 𝜂2 − 2𝜂ℓ𝑔 (𝑥, 𝑓 𝑔

0
)

= ℓ𝑔 (𝑥, 𝑓 𝑔
0
) − 𝜂,
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which shows that recomputing the geometric median results in a

fixed constant decrease from the loss before the update, making it

also a perfect membership test in this setting.

B.2 Mean Estimation

In this section we give a more detailed treatment of Example 1.1

from the Introduction. Namely, we analyze the effect of updates in

a very simple case: a single update of a rudimentary “model” that

estimates the mean over a multi-dimensional dataset.

We consider the task of estimating the mean of samples drawn

from a𝑑-dimensional spherical Gaussian distributionD = N(𝜇, I𝑑×𝑑 ).
We consider a learner 𝐴train = 𝐴up which simply outputs the sam-

ple mean of its training data, and which produces two models—the

first, 𝜇0, is computed on a dataset 𝐷0 of 𝑛0 samples, and the second,

𝜇1, is computed with an additional 𝑛1 samples. The total dataset

𝐷 = [𝐷0;𝐷1] contains 𝑛 = 𝑛0 + 𝑛1 samples. We consider an adver-

sary who seeks to identify whether a given 𝑣 was contained in 𝐷1.

In this setting, we can upper bound the performance of any attack

when the adversary has no access to model updates (that is, it only

has access to 𝜇1). Next, we show that, when given access to model

updates (both 𝜇0 and 𝜇1), the adversary can outperform this upper

bound.

Theorem B.1. Consider membership-inference using mean esti-

mation in R𝑑 with an initial dataset of size 𝑛0 and a single model

update with a set of size 𝑛1. If

1

2

+
√︂

2𝑑

𝑛 − 1

< Φ

(√︄
𝑑

80(𝑛1 − 1)

)
(1)

then there is an attacker with access to both 𝜇0 and 𝜇1 that outperforms

every adversary with access to only 𝜇1. Here Φ(𝑧) = Pr[𝑁 (0, 1) ≤ 𝑧]
is the Gaussian CDF.

The condition (1) is always satisfied when 𝑛 ≫ 𝑑 ≫ 𝑛1, in

which case the left-hand side is close to 1/2 and the right-hand

side is close to 1. We now prove this statment, by breaking it into

two lemmas. Lemma B.2 upper bounds all adversaries with access

to only 𝜇1. Lemma B.3 analyzes a specific attack using 𝜇0 and 𝜇1
together. Combining these lemmas proves Theorem B.1.

Lemma B.2. For the task of membership inference of a sample 𝑣 on

mean estimation, with probability > 1 − exp(−𝑑) over the selection
of 𝑣 , all adversaries A have success rate bounded above by

Acc(A) = 1

2

+ 1

2

(√︂
5𝑑

𝑛 − 1

+
√
𝑑

𝑛 − 1

)
.

Proof. Notice that 𝜇0 is distributed as N(𝜇, 𝜎2

𝑛0
I) and 𝜇1 as

N(𝜇, 𝜎2

𝑛0+𝑛1 I). An adversary seeking to distinguish between the

cases where a sample 𝑣 is contained in 𝐷1 or not must distinguish

between two distributions: the distribution over means where 𝑣 is

not contained in 𝐷1, DOUT = N(𝜇, 𝜎2

𝑛 I), and the distribution over

means where 𝑣 is contained in 𝐷1, DIN = 1

𝑛 𝑣 +N( 𝑛−1𝑛 𝜇,
𝜎2 (𝑛−1)
𝑛2

I).
We can upper bound the success of this adversary by a function

of the total variation (TV) distance between the two distributions:

1

2
+ 1

2
𝑇𝑉 (DOUT,DIN).

Recall that the TV distance between N(𝑥0, Σ0) and N(𝑥1, Σ1)
can be upper bounded [12] by

𝑇𝑉 (N (𝑥0, Σ0),N(𝑥1, Σ1) ≤
Σ−1/2

0
(𝑥0 − 𝑥1)


2

+I − Σ
−1/2
0

Σ1Σ
−1/2
0


𝐹
.

We use this to bound 𝑇𝑉 (DOUT,DIN) as follows:

𝑇𝑉 (DOUT,DIN) ≤
( 𝑛

𝜎
√
𝑛 − 1

I

) (
1

𝑛
𝑣 − 1

𝑛
𝜇

)
2

+I − 𝑛

𝜎
√
𝑛 − 1

I

(
𝜎2

𝑛
I

)
𝑛

𝜎
√
𝑛 − 1

I


𝐹

=
∥𝑣 − 𝜇∥2
𝜎
√
𝑛 − 1

+
 1

𝑛 − 1

I


𝐹

=
∥𝑣 − 𝜇∥2
𝜎
√
𝑛 − 1

+
√
𝑑

𝑛 − 1

.

Because 𝑣 −𝜇 ∼ N(0, 𝜎2I), we have ∥𝑣 −𝜇∥2 < 𝜎
√
5𝑑 [24] except

with probability at most exp(−𝑑), which gives us

𝑇𝑉 (DOUT,DIN) ≤
√︂

5𝑑

𝑛 − 1

+
√
𝑑

𝑛 − 1

.

This completes the proof. □

Lemma B.3. For the task of membership inference of a sample 𝑣

on mean estimation with model updates, there exists an adversary A
with success rate

Acc(A) ≥ Φ

(√︄
𝑑

80(𝑛1 − 1)

)
.

This holds with probability > 1 − 2 exp(−𝑑/16) over the choice of 𝑣 ,
and when 𝑛1 > 1.

Proof. We consider an adversary with access to model updates,

receiving two quantities. The first is themean of𝐷0, 𝜇0 ∼ N(𝜇, 𝜎2

𝑛0
I).

The next is the overall mean 𝜇1. When 𝑣 is not contained in 𝐷1, 𝜇1

is distributed as
𝑛0
𝑛 𝜇0 +

𝑛1
𝑛 N(𝜇, 𝜎2

𝑛1
I). When 𝑣 is found in 𝐷1, 𝜇1 is

distributed as
𝑛0
𝑛 𝜇0 +

1

𝑛 𝑣 +
𝑛1−1
𝑛 N(𝜇, 𝜎2

𝑛1−1 I).
With both of these quantities, the adversary computes the mean

of only 𝐷1: 𝜇Delta = 𝑛
𝑛1
𝜇1 − 𝑛0

𝑛1
𝜇0. The task of determining whether

𝑣 is contained in 𝐷1 can now be written as the task of distinguish-

ing between the distribution of 𝜇Delta when 𝑣 is not included,

DDelta,OUT, and the distribution when it is included, DDelta,IN,

both written below:

DDelta,OUT = N
(
𝜇,
𝜎2

𝑛1
I

)
and DDelta,IN =

1

𝑛1
𝑣+N

(
𝑛1 − 1

𝑛1
𝜇,
𝜎2 (𝑛1 − 1)

𝑛2
1

I

)
.

Now, the adversary computes 𝑠 (𝜇Delta, 𝑣) = (𝜇Delta−𝜇) · (𝑣 −𝜇).
In the OUT case, 𝑠 (𝜇Delta, 𝑣) is distributed as N(0, ∥𝑣−𝜇 ∥

2

2
𝜎2

𝑛1
). In

the IN case, it is distributed as N( 1

𝑛1
∥𝑣 − 𝜇∥2

2
,
∥𝑣−𝜇 ∥2

2
𝜎2 (𝑛1−1)
𝑛2
1

).

The adversary guesses OUT if 𝑠 (𝜇Delta, 𝑣) is below 𝑇 = 1

2𝑛1
∥𝑣 −

𝜇∥2
2
and IN otherwise. If DDelta,IN and DDelta,OUT had equal vari-

ance, this would be the optimal Neyman-Pearson distinguisher [34];

because the variances are similar, the test will still be effective. For

convenience, we write 𝑐 = ∥𝑣 − 𝜇∥2
2
𝜎2.
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The probability the adversary succeeds when 𝑣 is OUT is

𝐴𝑐𝑐OUT = Pr

[
N

(
0, 𝑐𝑛1

)
≤ 𝑇

]
,

and the probability of success when 𝑣 is IN is

𝐴𝑐𝑐IN = Pr

[
𝑇 ≤ N

(
2𝑇,

𝑐 (𝑛1−1)
𝑛2
1

)]
= Pr

[
N

(
0,
𝑐 (𝑛1−1)
𝑛2
1

)
≤ 𝑇

]
.

The adversary achieves accuracy 𝐴𝑐𝑐 = 1

2
(𝐴𝑐𝑐OUT +𝐴𝑐𝑐IN).

We have 𝐴𝑐𝑐IN ≤ 𝐴𝑐𝑐OUT because of its higher variance. Then

we can use proceed by computing 𝐴𝑐𝑐IN as a lower bound for 𝐴𝑐𝑐 .

To compute this probability, we notice that, due to the distribution

of 𝑣 , we have ∥𝑣 − 𝜇∥2 < 𝜎
√
5𝑑 with probability > 1− exp(−𝑑), and

∥𝑣 − 𝜇∥2 > 𝜎
√︁
𝑑/2 with probability > 1 − exp(−𝑑/16) [24]. We can

therefore lower bound 𝑇 > 𝑑𝜎2/4𝑛1 and upper bound 𝑐 < 5𝑑𝜎4, in

all giving

Acc(A) > Pr

[
N

(
0,
5𝑑𝜎4 (𝑛1 − 1)

𝑛2
1

)
≤ 𝑑𝜎2

4𝑛1

]
= Φ

(√︄
𝑑

80(𝑛1 − 1)

)
This completes the proof. □

B.3 ScoreDiff Achieves High Accuracy

We now show that ScoreDiff with the loss score on mean estima-

tion achieves high accuracy when 𝑑 >> 𝑛1.

Theorem B.4. Suppose 𝑓0 is the mean of 𝐷0, and 𝑓1 is produced

by taking a single gradient step from 𝑓0 with a learning rate of 𝜂

on the ℓ𝑚 loss. Then there is some constant 𝐶 and threshold 𝑇 such

that, if 𝑑 > 𝐶𝑛1, running ScoreDiff with a threshold of 𝑇 reaches

a membership inference accuracy of >90% for both SGD-Full and

SGD-New.

In the following, wewrite themean of𝐷1 as 𝜇up. When excluding

a sample 𝑥 , we write the mean of𝐷1/𝑥 as 𝜇rest. We begin by proving

Lemma B.5.

Lemma B.5. For the task of mean estimation with an update 𝐷1,

when 𝑓0 is the mean of the original dataset 𝐷0, a gradient step with

learning rate 𝜂 using SGD-Full is equal to a gradient step using SGD-

New with a learning rate of 𝜂 ′ = 𝑛1𝜂
𝑛0+𝑛1 .

Proof. In SGD-New, the gradient step is performed on 𝐷1 is

−2𝜂
∑︁
𝑥𝑖 ∈𝐷1

𝑓0 − 𝑥𝑖
𝑛up

= 2𝜂 (𝜇up − 𝑓0) .

In SGD-Full, the gradient step on 𝐷0 ∪ 𝐷1 is

−2𝜂
∑︁

𝑥𝑖 ∈𝐷0∪𝐷1

𝑓0 − 𝑥𝑖
𝑛0 + 𝑛up

=
2𝑛up𝜂

𝑛0 + 𝑛up
(𝜇up − 𝑓0),

as the gradient on 𝐷0 adds to 0, because 𝑓0 is the minimizer of ℓ𝑚
on 𝐷0. We see that these gradient steps are rescalings of each other,

as we wanted to show. □

Having proven Lemma B.5, we can now prove Theorem B.4, by

fixing an 𝜂 and analyzing the loss difference with SGD-New.

Proof. We write the loss for a fixed 𝑥 and 𝜂, and will later

consider the cases where 𝑥 is IN 𝐷1 and where 𝑥 is a test point,

OUT of 𝐷1.

ℓ𝑚 (𝑓1, 𝑥)
=⟨𝑓1 − 𝑥, 𝑓1 − 𝑥⟩
=⟨(𝑓1 − 𝑓0) + (𝑓0 − 𝑥), (𝑓1 − 𝑓0) + (𝑓0 − 𝑥)⟩
=∥ 𝑓1 − 𝑓0∥22 + ∥ 𝑓0 − 𝑥 ∥22 + 2⟨𝑓1 − 𝑓0, 𝑓0 − 𝑥⟩
=ℓ𝑚 (𝑓0, 𝑥𝑖 ) + ∥2𝜂 (𝜇up − 𝑓0)∥22 − 4𝜂

〈
𝜇up − 𝑓0, 𝑥 − 𝑓0

〉
.

Now, the norm ∥2𝜂 (𝜇up − 𝑓0)∥2
2
can be computed from 𝑓0 and

𝑓1, so we consider only the distribution of the rightmost term 𝑑 =

−4𝜂
〈
𝜇up − 𝑓0, 𝑥 − 𝑓0

〉
, showing that this is smaller for update points

than for test points. In the OUT case, we write 𝑑 as 𝑑OUT, which is

distributed as

𝑑OUT

= − 4𝜂

(〈
𝜇up − 𝜇, 𝑥 − 𝜇

〉
+ ∥ 𝑓0 − 𝜇∥22 − ⟨𝑥 − 𝜇, 𝑓0 − 𝜇⟩−〈

𝜇up − 𝜇, 𝑓0 − 𝜇
〉)

= − 4𝜂

(
𝜎2

𝑛0
𝑋1 + 𝜎2

√︃
𝑛0+𝑛1
𝑛0𝑛1

(𝑋2 − 𝑋3) + 𝜎2

√
𝑛0𝑛1

(𝑋4 − 𝑋5)
)
,

where each of the 𝑋𝑖 are independent samples from a Chi square

distribution 𝜒2
𝑑
. The mean of 𝑑OUT is

−4𝜂
𝑛0
𝑑𝜎2, and its variance is

32𝑑𝜂2𝜎4
(
𝑛1+2𝑛2

0
+2𝑛1𝑛0+2𝑛0
𝑛2
0
𝑛1

)
= 𝑂

(
𝑑𝜂2𝜎4

(
1

𝑛0
+ 1

𝑛1

))
.

In the IN case, we write 𝑑 as 𝑑IN, distributed as

𝑑IN

= − 4𝜂

(〈
𝜇up − 𝜇, 𝑥 − 𝜇

〉
+ ∥ 𝑓0 − 𝜇∥22 − ⟨𝑥 − 𝜇, 𝑓0 − 𝜇⟩−〈

𝜇up − 𝜇, 𝑓0 − 𝜇
〉)

= − 4𝜂

(
1

𝑛1
∥𝑥 − 𝜇∥2

2
+ 𝜎2

𝑛0
𝑋1 + 𝜎2 (𝑛1+1)

𝑛1
√
𝑛0

(𝑋2 − 𝑋3)

𝜎2 (𝑛1−1)
𝑛1

√
𝑛1

(𝑋4 − 𝑋5) + 𝜎2 (𝑛1−1)
𝑛1

√
𝑛0𝑛1

(𝑋6 − 𝑋7)
)
,

where each of the 𝑋𝑖 are independent samples from a Chi square

distribution 𝜒2
𝑑
. The mean of 𝑑IN is

−4𝜂
𝑛0
𝑑𝜎2 − 4𝜂

𝑛1
∥𝑥 − 𝜇∥2

2
, and its

variance is 𝑂

(
𝑑𝜂2𝜎4

(
1

𝑛0
+ 1

𝑛1

))
.

Now, the difference in means for 𝑑OUT and 𝑑IN is 4𝜂∥𝑥 − 𝜇∥2
2
/𝑛1,

which is distributed as 4𝜂𝜒2
𝑑
/𝑛1, which we can bound below by

𝑑𝜂𝜎2/𝑛1 with probability > 1 − exp(−𝑑/16) [24] over the random-

ness of selecting𝑥 . Thenwe can consider a threshold of 1
2
(E[𝑑OUT]+

E[𝑑IN]) ≥ E[𝑑OUT] + 0.5𝑑𝜂𝜎2/𝑛1. The success at distinguishing
between the IN and OUT case is then bounded below by 𝐴𝑐𝑐 >

Pr

[
𝑑OUT < E[𝑑OUT] + 0.5𝑑𝜂𝜎2/𝑛1

]
. To measure this probability,

notice that the variance of 𝑑OUT is 𝑉𝑎𝑟 [𝑑OUT] = 𝑂
(
𝑑𝜂2𝜎4

𝑛1

)
, if we

assume 𝑛1 < 𝑛0. Then there is some 𝐶OUT for which the variance

𝑉𝑎𝑟 [𝑑OUT] <
𝐶OUT𝑑𝜂

2𝜎4

𝑛1
. Thenwe can use Chebyshev’s Inequality

4

4
For a random variable 𝑌 , Pr[ |𝑌 − E[𝑌 ] | ≥ 𝑘

√︁
𝑉𝑎𝑟 (𝑌 ) ] ≤ 1

𝑘2
.
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Figure 8: Demonstrating the power of updates. Here, we use

𝑛0 = 200, 𝑑 = 250, 𝜇 = 0, 𝜎 = 0.1, and vary 𝑛1 along the x axis,

reporting performance averaged over 60 trials.

to bound our success probability from below as

𝐴𝑐𝑐 = Pr

[
𝑑OUT < E[𝑑OUT] +

√︁
𝑉𝑎𝑟 [𝑑OUT]

√︃
𝑑

8𝐶OUT𝑛1

]
≥1 − 8𝐶OUT𝑛1

𝑑
.

The analysis for the IN case is identical, although requires a different

constant𝐶IN, due to the different variance term. Then, to guarantee

> 90% accuracy as in the theorem statement, we can take 𝐾 =

80max(𝐶IN,𝐶OUT). □

C EXTENDED EXPERIMENTS

Algorithm 3: Neyman-Pearson Optimal [34] Distinguisher

for Mean Estimation

Data: Test Sample 𝑥 , Estimated Mean 𝜇, True Mean 𝜇, True

Variance 𝜎2, Dimensions 𝑑 , Dataset Size 𝑛

Function NeymanPearson(𝑥, 𝜇, 𝜇, 𝜎, 𝑑, 𝑛):

𝑝IN =

(
𝑛−1
2𝜋𝜎2

)𝑑/2
exp

(
−𝑛−1

2𝜎2
∥𝜇 − 𝑛−1

𝑛 𝜇 − 1

𝑛𝑥 ∥
2

2

)
𝑝OUT =

(
𝑛

2𝜋𝜎2

)𝑑/2
exp

(
− 𝑛
2𝜎2

∥𝜇 − 𝜇∥2
2

)
return 1(𝑝IN > 𝑝OUT)

Mean Estimation

To validate the improved performance of model updates for

mean estimation, we test attacks on the mean estimation setup

described earlier in the Appendix. For these experiments, we set

𝜇 = 0, 𝑛0 = 200, 𝑑 = 250, 𝜎 = 0.1, and we vary 𝑛1. We experiment

an attack which leverages updates, and one which doesn’t.

In the no update case, we run the Neyman-Pearson optimal

attack [34], as described in Algorithm 3. This attack, when pro-

vided a 𝜇1, computes the PDF values 𝑝OUT = DOUT (𝜇1) and 𝑝IN =

DIN (𝜇1), and returns IN (𝑔0 = 1) if 𝑝IN > 𝑝OUT and OUT (𝑔0 = 0)

otherwise. For Algorithm 3, we set 𝜇 = 𝜇1 and 𝑛 = 𝑛0 + 𝑛up.

Figure 9: Membership inference on non-updated models

trained on small datasets (SGD-Full and SGD-New) vs. models

updated on small datasets (LiRA). Attacks onmodels updated

on small datasets appear to be more resilient to dataset size

than models trained on small datasets.

In the update case, we run the corresponding Neyman-Pearson

optimal attack, which is equivalent to the no update Neyman-

Pearson optimal attack, replacing 𝜇1 with 𝜇Delta. When provided

𝜇1 and 𝜇0, the attack computes the mean of 𝐷1 as 𝜇Delta = 𝑛
𝑛1
𝜇1 −

𝑛0
𝑛1
𝜇0, and then computes the PDF values 𝑝OUT = DDelta,OUT (𝜇1)

and 𝑝IN = DDelta,IN (𝜇1), where the distributions DDelta,OUT and

DDelta,IN are defined in the proof of Lemma B.3. Then the attack

returns IN (𝑔0 = 1) if 𝑝IN > 𝑝OUT and OUT (𝑔0 = 0) otherwise. For

Algorithm 3, we set 𝜇 = 𝜇Delta and 𝑛 = 𝑛up.

In Figure 8, we empirically evaluate these attacks. The imme-

diate takeaway is that using model update never results in worse

performance than not using updates. However, notice that this

message holds in a variety of scenarios, even those which are not

covered by our theoretical analysis. Because 𝑑 = 250 and 𝑛0 = 200,

when 𝑛1 < 50, we see that even when 𝑑 > 𝑛, the model update

attack outperforms the no update attack, a setting our analysis per-

forms poorly in. Also, even when 𝑛1 is much larger than 𝑛0, we see

the attack which uses updates does not perform poorly relative to

the attack which does not. The improved performance from using

model updates is robust to a wide range of parameter settings.

Section 5.2 Experiments - Single Update.We report the preci-

sion and recall for SGD-New attacks in Table 7. These precision

values are even higher than precisions reached by SGD-Full pre-

sented in Table 3.

Section 5.2 Experiments - Comparison to Single Update At-

tacks with Small Datasets. A model trained on a small dataset is

more likely to overfit than one trained on a larger dataset, naturally

leading to increased membership inference risk. As a result, it is

perhaps unsurprising that we find that larger update set sizes are

less vulnerable to our attacks. Here, we experiment on FMNIST

to see if the increased vulnerability on small datasets is different

between the two settings: a model trained on a small dataset, or a
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Dataset

𝑛up = 0.01𝑛0 𝑛up = .08𝑛0
Loss Batch Transfer Test Loss Batch Transfer Test

FMNIST .53/.11 .90/.18 .80/.48 .82/.38 .51/.10 .71/.14 .83/.09 .66/.20

CIFAR-10 .47/.09 .92/.18 .90/.06 .83/.46 .49/.10 .83/.17 .84/.14 .77/.36

Purchase100 .54/.11 .70/.14 .77/.09 .68/.18 .49/.10 .54/.11 .54/.22 .54/.12

IMDb .50/.10 .83/.17 .70/.34 .75/.22 .52/.10 .70/.14 .74/.14 .69/.16

Table 7: Precision/recall results for single update models on SGD-New. Loss, Batch, Transfer, and Rank are defined in Table 2.

We report for two 𝑛up values.

(a) Entry Inference Accuracy

(b) Membership Inference Accuracy

Figure 10: Entry inference and membership inference accu-

racy of multiple update attacks on FMNIST with 𝑛up = 100,

using loss difference. As in Section 4.1, SGD-New attacks per-

form worse relative to SGD-Full.

model updated with a small dataset. The results of our experiment

can be found in Figure 9. Here, we find that, while the standard

LiRA attack is as strong as our adaptation on SGD-New, its perfor-

mance drops much more quickly than our update attacks, so that

the update setting leaks (according to our attacks) more than the

fixed dataset setting. Furthermore, in practice, updating a model

with a small dataset is likely to be tolerable, as it will not worsen an

already accurate model, while training a model entirely on a small

dataset will likely lead to an inaccurate model, which is unlikely to

be deployed, making our finding here more worrisome.

Section 5.2 Experiments - Disparate Impact of Single Update

Attacks. To evaluate the disparate impact of our attacks in the

(a) SGD-Full

(b) SGD-New

Figure 11: Membership inference accuracy for each update

index used to train a given model 𝑓𝑖 . Results shown for the

Back-Front attack with loss difference on FMNIST with SGD-

Full and SGD-New at 𝑛up = 100.

absence of distribution shift, we measure per-class attack accuracy

on FMNIST in Figures 12a and 12b. We report single update SGD-

Full and SGD-New accuracies with 𝑛up ∈ {10, 160}. While there are

no strong differences, Class 1 (trouser), is reliably easy to attack,

with perfect accuracy at 𝑛up = 10 for both SGD-Full and SGD-New.

Class 7 (sneaker) also has somewhat higher vulnerability to our

attacks.

Section 5.5 Experiments - Multiple Updates. We present in

Figures 10a and 10b the results for attacks on FMNIST when 𝑛up =

100, to compare against the results from Section 4.3, which use

𝑛up = 10.
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In Figure 10a, we show that, at larger update set sizes, attacks

on SGD-Full can outperform attacks on SGD-New, in line with

experiments from Section 4.1. The entry inference accuracy of

attacks with𝑛up = 100 is also smaller than for attacks with𝑛up = 10,

which also corroborates our experiments in Section 4.1.

In Figure 10b, we make similar observations to those in Fig-

ure 10a. Attacks are less powerful at large update set sizes, and

attacks on SGD-Full perform better relative to attacks on SGD-New.

Section 5.6 Experiments - Distribution Shift. We now repro-

duce our subpopulation shift findings in the CINIC-10 dataset. Here,

we use CINIC-10 to construct a dataset of ImageNet images cor-

responding to 9 classes from CIFAR-10 (all but bird). Again using

the BREEDS framework, and we select source and target subclasses

which should have “Easy” transfer based on how close they are in

the ImageNet sysnet tree (we select leaf classes which share a par-

ent node), and we select “Hard” subclasses by selecting leaf classes

which only share the CIFAR-10 label, making them far apart in the

tree. We detail these classes in Table 8. We also need to make sure

these classes are well represented, so we only select subclasses with

more than 200 images in CINIC-10 (due to the large number of bird

classes, we could not find bird subclasses fitting this requirement,

so we omit it). We then use an update set size of 900, and vary the

shift ratio 𝛼 between 0.2, 0.6, 1.0, as before. We report accuracy and

precision of our attacks in Table 9. Interestingly, the correlations

we observed in our CIFAR-2 dataset for BREEDS do not hold up,

similarly to the covariate shift case with CINIC-10. This is likely to

be because the attacks are already highly successful without much

shift, making it harder for these shifts to improve upon them.

(a) SGD-Full

(b) SGD-New

Figure 12: Membership inference accuracy for each class in

the FMNIST dataset on 𝑛up = 10, and 𝑛up = 160.
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CIFAR-10 class ImageNet Source Easy Target Hard Target

Airplane airbus widebody aircraft amphibious aircraft

Automobile race car stock car limousine

Cat Abyssinian cat Siamese cat lion

Deer musk ox bison white-tailed deer

Dog sled dog husky Newfoundland dog

Frog green frog leopard frog European toad

Horse carthorse shire horse Arabian

Ship dugout canoe kayak speedboat

Truck passenger van delivery truck fire truck

Table 8: Classes used for the CINIC subpopulation shift experiment.

Metric Shift

𝛼 = 0.2 𝛼 = 0.6 𝛼 = 1.0

Diff Ratio Diff Ratio Diff Ratio

Accuracy

Easy 0.587 0.643 0.566 0.587 0.604 0.625

Hard 0.593 0.630 0.583 0.592 0.607 0.630

Prec./Recall

Easy .75/.15 .69/.14 .79/.16 .77/.15 .88/.18 .87/.17

Hard .88/0.18 .83/.17 .84/0.17 .85/.17 .89/.18 .88/.18

Table 9: Accuracy and precision/recall of attacks after sub-

population shift on SGD-New with CINIC-10.
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Metric Shift

SGD-New SGD-Full

𝛼 = 0.2 𝛼 = 0.6 𝛼 = 1.0 𝛼 = 0.2 𝛼 = 0.6 𝛼 = 1.0

Diff Ratio Diff Ratio Diff Ratio Diff Ratio Diff Ratio Diff Ratio

Accuracy

Hard 0.551 0.559 0.602 0.634 0.600 0.687 0.574 0.597 0.578 0.585 0.595 0.666

Easy 0.685 0.685 0.574 0.581 0.560 0.562 0.597 0.606 0.570 0.570 0.598 0.598

Prec./Recall

Hard .73/.15 .90/.18 .94/.19 .96/.19 .98/.20 .94/.19 .63/.13 .76/.15 .69/.14 .95/.19 .80/.16 .94/.19

Easy .64/.13 .74/.15 .58/.12 .90/.18 .71/.14 .94/.19 .54/.11 .64/.13 .47/.09 .70/.14 .62/.12 .86/.17

Table 10: (Q5) Accuracy and precision/recall of attacks after subpopulation shift.Ratio,Diff stand for ScoreRatio, ScoreDiff,

respectively, with loss score.Ratio performs best, a Hard distribution shift results in better attacks as 𝛼 increases, and SGD-New

is typically more vulnerable than SGD-Full.
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