
Private Collection Matching Protocols
Kasra EdalatNejad

EPFL

Lausanne, Switzerland

kasra.edalat@epfl.ch

Mathilde Raynal

EPFL

Lausanne, Switzerland

mathilde.raynal@epfl.ch

Wouter Lueks

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

lueks@cispa.de

Carmela Troncoso

EPFL

Lausanne, Switzerland

carmela.troncoso@epfl.ch

ABSTRACT
We introduce Private Collection Matching (PCM) problems, in which

a client aims to determine whether a collection of sets owned by a

server matches their interests. Existing privacy-preserving crypto-

graphic primitives cannot solve PCM problems efficiently without

harming privacy. We propose a modular framework that enables

designers to build privacy-preserving PCM systems that output

one bit: whether a collection of server sets matches the client’s set.

The communication cost of our protocols scales linearly with the

size of the client’s set and is independent of the number of server

elements. We demonstrate the potential of our framework by de-

signing and implementing novel solutions for two real-world PCM

problems: determining whether a dataset has chemical compounds

of interest, and determining whether a document collection has

relevant documents. Our evaluation shows that we offer a privacy

gain with respect to existing works at a reasonable communication

and computation cost.

KEYWORDS
Private set intersection, private computation, homomorphic en-

cryption, private aggregation

1 INTRODUCTION
In many scenarios, a server holds a collection of sets and clients

wish to determine whether these server sets match their own set,

while both client and server keep their privacy. We call these Private
Collection Matching (PCM) problems. In this paper, we study for the

first time the requirements of PCM problems.

We identify the privacy and efficiency requirements of PCM

problems by analyzing three real-world use cases: determining

whether a pharmaceutical database contains compounds that are

chemically similar to the client’s [42, 69, 73], determining whether

an investigative journalist holds relevant documents [21] (or how

many), and matching a user’s profile to items or other users in

mobile apps [72, 74, 75]. We find that PCM problems have three

common characteristics: (1) Clients want to compare their one set
with all sets at the server. (2) Clients do not need per-server set

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 446–468
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0091

results, only an aggregated output (e.g., whether any server set

matches). (3) Clients and server want privacy: the server should

learn nothing about the clients’ set, and the clients should only

learn the aggregated output. However, PCM problems differ in

their definition of when sets match and how to combine individual
matching responses. Now, we discuss these two aspects in more

detail:

Set matching. Typically, set matching is defined as a function of

the intersection of two sets. Hence, clients could detect a matching

server set by using private set intersection (PSI) protocols [13–

15, 38, 57, 57–60] to privately compute the intersection, then post-

process the intersection to determine interest locally. PCM appli-

cations differ in their matching criteria and may decide interest

using measures such as a cardinality threshold, containment, or set

similarity. This local processing approach, unfortunately, reduces
privacy of the server’s sets by leaking information beyond the set’s

matching status to the client. Such leakage could, for instance, re-

veal secret chemical properties of compounds, or the content of

journalists’ sensitive documents.

Many-set. In PCM problems, the server holds a collection of 𝑁
sets. This creates two challenges. First, running one matching (or

PSI) interaction per server set is inefficient. Second, revealing indi-

vidual set-matching statuses harms server privacy. While servers

may be interested in selling data to or collaborating with clients,

they want to ensure that clients cannot use the ‘PCM solution’

to extract information about sets. Clients, meanwhile, often only

need an aggregated response summarizing the utility of a collection.

Servers therefore enact application-dependent aggregation policies

ensuring that clients can, e.g., determine only whether at least one

set matches or learn only the the number of matching sets.

We construct a framework that leverages computation in the
encrypted domain to solve PCM problems. In our framework, shown

in Fig. 1, given an encrypted client set, the server uses a matching

criteria 𝑓𝑀 to compute per-server-set binary answers to “is this

set of interest to the client?”. Next, the server uses an aggregation

policy 𝑓𝐴 to combine per server-set responses into a collection-wide

response. Finally, the client decrypts the aggregated result.

Our work makes the following contributions:

✓ We introduce Private Collection Matching (PCM) problems.

We derive their requirements from three real-world problems.

✓ We design single-set protocols where the client learns a one-
bit output – whether one server set is of interest to the client – and

many-set protocols where the client learns a collection-wide output

446

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0091

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Matching

Client's set

Se
rv

er
's

se
ts

Aggregation

Result

Private Collection Matching

Figure 1: Structure of our PCM framework. Red arrows show
values encrypted under the client’s key. 𝑓𝑀 designates a
matching function: it outputs a binary value 𝜆 indicating
whether two sets match. 𝑓𝐴 is an aggregation function that
combines 𝑛 matching statuses into a collection-wide result.

that aggregates individual matching responses. The communication

cost of our protocols scales linearly with the size of the client’s set

and is independent of the number of server sets and their total size.

✓ Wepropose amodular design that separates flexible set match-

ing criteria from many-set aggregation. Our modularity enables

extending our design with new matching or aggregation policies

and simplifies building privacy-preserving PCM solutions.

✓ We demonstrate our framework’s capability by solving chem-

ical similarity and document search problems. We show that our

framework offers improved privacy with competitive cost com-

pared to custom-made solutions, and significantly improves the

latency, client’s computation cost, and communication cost with

respect to generic solutions that offer the same privacy guarantee.

2 PRIVATE COLLECTION MATCHING
In this section, we define the Private Collection Matching (PCM)

problem. We derive its basic requirements from three real-world

matching problems. We also explain why existing PSI solutions

cannot satisfy the privacy requirements of PCM problems.

2.1 Case studies
We study three cases that can benefit from PCM.

Chemical similarity. Chemical research and development is a

multi-billion dollar industry. When studying a new chemical com-

pound, knowing the properties of similar compounds can speed

up the research. In an effort to monetize research, companies sell

datasets describing thousands to millions of compounds and their

properties. Chemical R&D teams are willing to pay high prices

for these datasets but only if they include compounds similar to

their research target. Determining whether this is the case is tricky:

buyers want to hide the compound they are currently investigat-

ing [69], and sellers want to hide information about the compounds

in their dataset before the sale is finalized.

Chemical similarity of compounds is determined by comparing

molecular fingerprints of compounds [8, 42, 48, 73, 79, 80]. Finger-

prints are based on the substructure of compounds and are repre-

sented as fixed-size bit vectors – these vectors are between a few

hundred and few thousand bits long. Measures such as Tversky [76]

and Jaccard [33] determine the similarity of these fingerprints, and

thus of the compounds.

Revealing pair-wise intersection cardinalities or even similar-

ity scores between the fingerprints of a target compound and the

seller’s compounds results in unacceptable leakage. A buyer can

reconstruct an 𝑛-bit molecular fingerprint 𝐹 by learning similarity

values between 𝐹 and 𝑛 + 1 known compounds [69]. To prevent

inferences, the buyer should learn only the number of similar com-

pounds in the seller’s dataset, or, better, only learn whether at least

one similar compound exists.

Peer-to-peer document search. Privacy-preserving peer-to-peer
search engines help users and organizations with strict privacy

requirements to collaborate safely. We take the example of inves-

tigative journalists who, while unwilling to make their investiga-

tions or documents publicly available, want to find collaboration

opportunities within their network [21].

To identify those opportunities, a journalist performs a search

to learn whether a document owner has documents of interest. A

search query consists of keywords relevant to the journalist’s inves-

tigation. The document owner compares the query to all documents

in his collection. A document is deemed relevant if it contains all
or a sufficient number of queried keywords. Journalists own a col-

lection of a thousand documents (on average), and each document

is represented by around a hundred keywords.

The sensitivity of journalists’ investigations demand that both

the content of the documents and of the queries remain private [21].

Journalists only need to learn one bit of information – that at least

one or a threshold number of documents in the owner’s collection

is relevant – to determine whether they should contact the owner.

Matching in mobile apps. A common feature in mobile apps is en-

abling users to find records of interest in the app servers’ databases,

e.g., restaurants [74], routes for running [72], or suitable dating

partners [51, 75]. Users are typically interested in records that have

at least a number of matching characteristics in common with their

search criteria or that are a perfect match. Also, users need to be

able to retrieve these records.

The user-provided criteria – typically range choices entered via

radio buttons or drop-down menus – are compared to the attributes

of records. An app database can havemillions of records and records

can have dozens to hundreds of attributes.

Both search criteria and records are sensitive. Knowing search

criteria enables profiling of user interests. These are particularly

sensitive for dating applications. Thus, search queries should be

kept private. The secrecy of the records in the database is not only

at the core of the business value of these apps but also required by

law in cases where records contain personal data (e.g., dating apps).

2.2 PCM requirements
We extract requirements that PCM protocols should fulfill based on

the commonalities between the use cases. These come in addition

to basic PSI properties such as client privacy.

RQ.1: Flexible set matching. PCM protocols need to be able to de-
termine matches between sets without revealing other information
such as intersections or cardinalities to the client. In the use cases,

clients do not need to know the intersection or its cardinality. They

are interested only in whether there is a match. Matches in these

examples are a function of the intersection between a client and a

server set: a chemical compound is a match when the Tversky or

447

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

Jaccard similarity with the query exceeds a threshold; a document

is a match when it contains some or all query keywords; and a

record is a match when it includes a threshold of query attributes.

PCM protocols must be able to detect matching sets and compute a

single one-bit matching status per-set.

RQ.2: Aggregate many-set responses. PCM protocols need to have
the capability to provide an aggregated response for a collection of
sets without leaking information about individual sets. Our use cases
highlight that in many applications, a client (buyer, journalist, user)

may want to compare their input (compounds under investiga-

tion, keywords of interest, search criteria) with a collection of sets

(compounds in a database, documents in a collection, records in a

database). More importantly, we observe that clients wish to know

how interesting the collection is as a whole. For example, a buyer

is interested in a chemical dataset if it contains at least one similar

compound and a querier journalist may contact a document owner

if the owner has a number of relevant documents in their collection.

Therefore, to satisfy clients’ needs yet protect the server’s privacy,

PCM protocols should only reveal aggregated per-collection results.

RQ.3: Extreme imbalance. PCM problems have thin clients and im-
balanced input sizes; thus, protocols must not require communication
and computation linear to the server’s input size from clients. Draw-
ing from our earlier scenarios, the total input size of the server may

be as much as 6 orders of magnitude larger than the client’s input,

as shown by the chemical similarity scenario. The server, holding

many sets, can safely be assumed to be resourceful, while clients

may be constrained in their capabilities, e.g., a client running the

PCM protocol from their mobile phone. This can be in terms of

computation, e.g., battery has to be preserved in mobile apps; or in

terms of bandwidth, e.g., journalists that can be in locations with

poor Internet access. Therefore, PCM protocols should not incur a

large client-side cost.

2.3 Formal PCM definition
Let 𝑋 be a client set with 𝑛𝑐 elements {𝑥1, . . . , 𝑥𝑛𝑐 } from input

domain 𝐷 andY be a collection of 𝑁 server sets {𝑌1, . . . 𝑌𝑁 } where
the 𝑖’th server set𝑌𝑖 = {𝑦𝑖,1, . . . , 𝑦𝑖,𝑛𝑖𝑠 } has 𝑛

𝑖
𝑠 elements, also from𝐷 ,

leading to a total server size of 𝑁𝑠 =
∑
𝑖 𝑛

𝑖
𝑠 . We define two families

of functions as follows:

Matching functions 𝜆𝑖 ← 𝑓𝑀 (𝑋,𝑌𝑖) take two sets 𝑋 and 𝑌𝑖
as input and compute a binary matching status 𝜆𝑖 determining

interest. This family represents our flexible matching criteria RQ.1.

For example, in the document search scenario where a server set

(document) is of interest when it contains all queried keywords, we

define 𝑓𝑀 (𝑋,𝑌𝑖) as 1 if 𝑋 ⊆ 𝑌𝑖 and 0 otherwise.

Aggregation functions𝐴← 𝑓𝐴 (𝜆1, . . . , 𝜆𝑁) take𝑁 binarymatch-

ing statuses (𝜆𝑖) and aggregates them into a single response 𝐴. This

family represents our aggregation requirement RQ.2. For example,

if we want to count the number of relevant documents in a search,

we define 𝑓𝐴 (𝜆1, . . . , 𝜆𝑁) as
∑

𝑗 𝜆 𝑗 .

In Table 4 in Appendix A, we summarize the matching and

aggregation functions that we implement.

Definition 1 (PCM). PCM protocols are two-party computations

between a client and a server with common inputs 𝑓𝑀 and 𝑓𝐴 ,

where the client learns an aggregated matching status and the

Table 1: Overview of PSI approaches in the PCM setting.

Privacy Efficiency

RQ.1 RQ.2 RQ.3

Comparison [22, 39, 53, 55, 59, 60] × × ×
OPRF [13–15, 37, 66] × × ✓∗

OPE [11, 16, 24, 30] × × ✓
Generic SMC [31, 34, 56] ✓ ✓ ×
Circuit-PSI [10, 12, 36, 44, 57, 58, 64] ✓ ✓ ×
Flexible func. [28, 32, 69, 82–84] ✓ × ×
This paper ✓ ✓ ✓

∗Efficient communication requires pre-processing.

server learns nothing. Formally:

(𝐴 = 𝑓𝐴 (𝑓𝑀 (𝑋,𝑌1) , . . . , 𝑓𝑀 (𝑋,𝑌𝑁)) ,⊥) ← 𝑃𝐶𝑀𝑓𝑀 ,𝑓𝐴 (𝑋,Y)

We use this notation to define formal properties of PCM protocols.

Definition 2 (Correctness). A PCM protocol is correct if the client

output matches the result of 𝐴 = 𝑓𝐴 (𝑓𝑀 (𝑋,𝑌1), . . . , 𝑓𝑀 (𝑋,𝑌𝑁)).

Definition 3 (Client privacy). A PCM protocol is client private

if the server cannot learn any information about the client’s set

beyond the size of the client’s set.

Definition 4 (Server privacy). A PCM protocol is server private if

the client cannot learn any information about the server elements

beyond the number of server sets 𝑁 , the maximum server set size

max𝑛𝑖𝑠 , and the client output 𝐴 = 𝑓𝐴 (𝑓𝑀 (𝑋,𝑌1), . . . , 𝑓𝑀 (𝑋,𝑌𝑁)).

3 RELATEDWORK
While ad-hoc solutions for chemical (Shimizu et al. [69]) and docu-

ment search (EdalatNejad et al. [21]) exist, most prior work focuses

on building private set intersection (PSI) protocols, which are a spe-

cial case of PCM. We introduce the PSI protocols most relevant to

our work. We leave the detailed comparison with ad-hoc solutions

to the evaluation (see Section 11).

We compare existing work on two critical aspects of PCM prob-

lems: privacy and efficiency. We summarize existing schemes and

their suitability for the PCM scenario in Table 1.

For privacy, we assess whether existing approaches provide flexi-

ble matching (RQ.1) and aggregated many-set responses (RQ.2). We

note that the majority of prior works do not consider, or support,

many sets. When there is no natural extension to support many

sets at once, we run a single-set interaction per server set, leading

to an 𝑁× increase in cost. This naive extension does not provide

the privacy enhancement of many-set aggregation but enables us

to reason about the efficiency of these approaches.

For efficiency, taking into account the extreme imbalance require-

ment (RQ.3), we focus on the client’s computation and communica-

tion cost and require schemes to have a client cost of𝜔 (𝑁𝑠 (≈ 𝑁𝑛𝑖𝑠)).

Traditional single-set PSI. We first study protocols solely fo-
cusing on single-set intersection or cardinality. We study schemes

that offer enhanced functionality or privacy below in the Custom

PSI Protocols section.

448

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

In PSI, clients learn information about the intersection of two sets

while (i) not learning anything about the server’s non-intersecting

elements, and (ii) not leaking any information about their own set

to the server. PSI protocols in the literature focus on providing two

possible outputs: the intersection (e.g., finding common network

intrusions [49], or discovering contacts [19]); and the cardinality
of the intersection (e.g., privately counting the number of common

friends between two social media users [50], or performing genomic

tests [4]). Works in this area opt for a variety of trade-offs between

the computational capability and the amount of bandwidth required

to run the protocol [11, 34, 37, 54]. These works show that PSI can

scale to large datasets [35, 57], and support light clients [37].

We classify PSI protocols according to the techniques they use

to compute the PSI functionality:

Comparison-based protocols. The fastest class of PSI protocols
uses bucketing to enable PSI protocols that run optimized compar-

ison protocols between very small client and server buckets [22,

39, 53, 55, 59, 60]. These approaches use hashing to first map ele-

ments to small buckets. Then they compare the client and server

elements in each bucket using comparison primitives that are effi-

cient when buckets have very few elements, for example built using

oblivious transfer (OT). These approaches reveal comparison re-

sults, and thus intersections or cardinalities, to the client; therefore,

they do not satisfy our single-set privacy requirement (RQ.1). As

these approaches reveal individual detailed set responses, private
aggregation (RQ.2) is impossible. We discuss approaches that do

not reveal the comparison result separately below as ‘Circuit-PSI’.

Each client and server element must participate in at least one

comparison; consequently, the communication cost is linear in the

client size 𝑛𝑐 and total server size 𝑁𝑠 . Therefore, comparison-based

approaches do not satisfy our efficiency requirement (RQ.3).

In Appendix D.3, we confirm our efficiency assessment by eval-

uating the cost of SpOT-light [53], one of the fastest comparison-

based PSI protocols, in the PCM setting. We show significant im-

provement in latency (10–65x), client’s computation (1800–24,800x),

and transfer cost (1.7–27x).

OPRFs. Another technique to construct PSI protocols is to eval-

uate a pseudo-random function (PRF) over client and server set

elements and compare these. To protect privacy, the client oblivi-

ously evaluates the PRF over its elements together with the server,

and the server sends the PRF evaluation of its elements to the

client. Oblivious Pseudo-random Functions (OPRFs) can be con-

structed from asymmetric primitives such as RSA [14, 15, 37], Diffie-

Hellman [37, 66], discrete logarithms [13], or by applying SMC on

symmetric PRFs [34, 37].
1
What distinguishes these OPRF-based

approaches from the previous category is that instead of comparing

many pairs in small buckets, OPRF-based approaches compute a

deterministic tag for each client and server element that can be

compared locally. While the communication cost is linear in the

size of both client and server sets, preprocessing and reusing tags

for server elements can make the transfer cost independent of

the server size [37]. Similar to comparison-based protocols, OPRF

1
We only consider OPRF approaches where the parties can choose the PRF key. Primi-

tives where a random key is generated during the execution [39, 53] can only be used

for comparing-based approaches.

approaches cannot compute flexible set matches without leaking

intermediate data nor do they support aggregation.

Oblivious polynomial evaluation. Another approach is to use (par-

tial) homomorphic encryption [65] to determine set intersection

using oblivious polynomial evaluation (OPE) [11, 16, 24, 30]. The

client encrypts their elements and sends them to the server. The

server constructs a polynomial with its set elements as roots, eval-

uates the polynomial on encrypted client elements, randomizes the

result, and sends them back to the client. The client decrypts the

results, a 0 indicates a matching element. We use a similar approach

in our schemes. Existing OPE-based approaches do not support

flexible set matching or aggregation, but achieve cost independent

of the server input size (𝑁𝑠) for the client.

Generic SMC. Some PSI protocols use generic SMC tools [6, 29, 81]

to construct full circuits such as sort-compare-shuffle [31] to com-

pute the intersection [34, 56]. They can be extended to support

flexible set matching or many-set aggregation. However, circuits

have communication linear in the size of their inputs (wires) which

guarantees a transfer cost of O(𝑛𝑐 + 𝑁𝑠). This is a fundamental

limit. Thus, circuits cannot satisfy our efficiency requirement (RQ.3).

Because circuits can satisfy our privacy requirements, we develop

a generic alternative to our framework using an SMC compiler in

Section 11.2 and show that our system improves latency (2–96x),

client’s computation (75–2250x), and transfer cost (93–2800x). Be-

sides for generic protocols, circuits are used to (1) extend OT-based

protocols (discussed as ‘Circuit-PSI’ below) or (2) obliviously evalu-

ate PRFs [34, 37] such as AES or LowMC [2] (discussed as ‘OPRF’).

Custom PSI protocols. Some PSI protocols go beyond cardinal-

ity and compute more complex functions over the intersection.

Circuit-PSI. A new line of work extends comparison-based PSI

protocols to support arbitrary extensions with generic SMCs [10,

12, 36, 44, 57, 58, 64]. These works compute the intersection of two

sets but instead of revealing the plain result to the client, they secret

share the intersection between the two parties. This secret shared

output enables parties to privately compute arbitrary functions on

top of the intersection. Unfortunately, these work focus on scenarios

with equal client and server sizes as their cost is linear in the input

of both parties O(𝑛𝑐 + 𝑁𝑠). This linear communication cost is a

fundamental limit. As these approaches can satisfy our privacy

requirement, we evaluate Chandran et al. [10], a state-of-the-art

Circuit-PSI paper, in the PCM setting in Section 11.2. We show

that our framework significantly improves latency (580x), client’s

computation (70,000x), and transfer cost (2360x).

Flexible functionality. Several privacy-preserving custom proto-

cols provide functionality beyond computing intersection or car-

dinality. For instance, computing the sum or statistical functions

over associated data [32, 82], evaluating a threshold on intersec-

tion size [28, 83, 84], or computing Tversky similarity [69]. These

approaches improve privacy by supporting flexible set matching

but do not extend well to many-sets scenarios and aggregation.

They are optimized for a specific setting and do not achieve cost

independent of the server input size.

Orthogonal works. We briefly mention two groups of related

work that, while of interest, are orthogonal to PCM problems and

solve different challenges. Encrypted databases and ORAM [45, 61,

449

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

PS
I

eP
SI

-C
A

PS
I

eP
SI

-C
A

Small input

Small domain

PSI layer

Full Match

Threshold
Match

Tversky
Match

X-Agg

CA-Agg

Ret-Agg

NA-Agg

Matching layer Aggregation layer

Figure 2: An overview of our layers and their composition.
Refer to Table 4 for a summary of protocol definitions.

62, 71] let clients query outsourced data, or, in more recent work [9],

subsets of outsourced data via an access control policy. Typically,

these approaches do not limit what the client can learn about the

entries they have access to. This is in contrast with the PCM setting

where the client computes a function over the server’s sets, and

clients should not learn more than the function’s outcome. There-

fore, traditional applications of encrypted databases and ORAM do

not seem to directly enable the construction of PCM solutions. How-

ever, we do not rule out the possibility that they can be extended

or used in creative ways to solve PCM problems.

Inmulti-party PSI [5, 40, 78], 𝑝 parties each with a set 𝑆𝑖 compute

one intersection 𝐼 =
⋂
𝑆𝑖 . PCM problems, instead, are a two-party

protocol where the server holds 𝑁 sets.

4 A FRAMEWORK FOR PCM SCHEMES
We showed that existing work – except for ad-hoc solutions – can-

not solve PCM problems without losing either privacy or efficiency.

We now introduce a modular framework that enables the design

of PCM solutions with minimal effort and strong privacy while

providing performance close to ad-hoc solutions.

The framework has three layers, shown in Fig. 2:

PSI layer protocols operate directly on a client’s and a server’s set.

These protocols compute single-set PSI functionalities such

as intersection or cardinality. Our implementation focuses on

two scenarios: small input domain size and small constant-

size client sets.

Matching layer protocols use PSI layer protocols to compute a bi-

nary answer determining whether each of the server sets

matches the interest of the client according to a pre-defined

matching function 𝑓𝑀 (RQ.1). Computation in this layer is

the same regardless of the scenario chosen in the PSI layer.

Aggregation layer protocols aggregate 𝑁 single-set responses into

one collection-wide response according to a pre-defined ag-

gregation function 𝑓𝐴 (RQ.2). This layer achieves constant

size responses and ensures efficient client communication

(RQ.3).

Modularity.While we provide a large number of protocols for the

PSI, Matching, and Aggregations layers (see Fig. 2), an advantage of

our framework is extensibility. Whenever an application requires

new matching or aggregation criteria, designers can add (or adapt)

a single functionality while taking advantage of the existing opti-

mized layers. As an example, we extend our framework to support

the single-set PSI-SUM functionality in Appendix F.

The layers can also be used as standalone protocols. We include

blocks such as ‘Naive’ aggregation such that even if an application

does not require matching or aggregation the designer can use the

framework to enjoy its capability to tackle the many-set scenario.

Security goals. The PCM framework should protect the privacy

of clients and servers against semi-honest adversaries. Furthermore,

it is desirable that the framework provides server and client privacy

against malicious adversaries, however, as we discuss in Section 9

our framework only guarantees client privacy. Servers are free to

choose their input, allowing them to degrade the quality of the

protocol’s result without any misbehavior. We accept this inherent

weakness of PCM protocols and make the deliberate decision to

aim for correctness only in the semi-honest setting, and not when
the server is malicious.

5 TECHNICAL BACKGROUND
We introduce our notation and define the syntax of the fully homo-

morphic encryption scheme we use.

Notation. Let ℓ be a security parameter. We write 𝑥 ←$ 𝑋 to

denote that 𝑥 is drawn uniformly at random from the set 𝑋 . Let 𝑞

be a positive integer, then Z𝑞 denotes the set of integers [0, . . . , 𝑞),
and Z∗𝑞 represent the elements of Z𝑞 that are co-prime with 𝑞. We

write [𝑛] to denote the set {1, . . . , 𝑛}, and use ⟨𝑎𝑖 ⟩𝑚 to present the

list [𝑎1, . . . , 𝑎𝑚]. We drop the subscript𝑚 when the list length is

clear from the context. We write ⟦𝑥⟧ to denote the encryption of

𝑥 . We write 1[𝐸] to denote the indicator function that returns ‘1’

if the event 𝐸 is true, and ‘0’ otherwise. Table 3 in Appendix A

summarizes our notation.

5.1 Homomorphic encryption
Homomorphic encryption (HE) schemes enable arithmetic opera-

tions on encrypted values without decryption. We use HE schemes

that operate over the ring Z𝑞 with prime 𝑞, such as BFV [23].

Syntax. HE is defined by the following procedures:

• params ← HE.ParamGen(𝑞). Generates HE parameters

with the plaintext domain Z𝑞 .

• 𝑝𝑘, 𝑠𝑘 ← HE.KeyGen(params). Takes the parameters params

and generates a fresh pair of keys (𝑝𝑘, 𝑠𝑘). For brevity, we
do not explicitly mention evaluation keys 𝑒𝑣𝑘 and consider

them to be incorporated in the public key.

• ⟦𝑥⟧ ← HE.Enc(𝑝𝑘, 𝑥). Takes the public key 𝑝𝑘 and a mes-

sage 𝑥 ∈ Z𝑞 and returns the ciphertext ⟦𝑥⟧.
• 𝑥 ← HE.Dec(𝑠𝑘, ⟦𝑥⟧). Takes the secret key 𝑠𝑘 and a cipher-

text ⟦𝑥⟧ and returns the decrypted message 𝑥 .

The correctness property of homomorphic encryption ensures that

HE.Dec(𝑠𝑘,HE.Enc(𝑝𝑘, 𝑥)) ≡ 𝑥 (mod 𝑞).
450

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Algorithm 1 Check whether ⟦𝑥⟧ is zero.

function HE.IsZero(𝑝𝑘, ⟦𝑥⟧)
⟦𝑏⟧ = 1 − ⟦𝑥⟧(𝑞−1) ⊲ 𝑏 ← (𝑥 = 0)
return ⟦𝑏⟧

Homomorphic operations. HE schemes support homomorphic

addition (denoted by +) and subtraction (denoted by −) of cipher-
texts: HE.Dec(⟦𝑎⟧+⟦𝑏⟧) = 𝑎 +𝑏 mod 𝑞 and HE.Dec(⟦𝑎⟧−⟦𝑏⟧) =
𝑎 −𝑏 mod 𝑞. HE schemes also support multiplication (denoted by ·)
of ciphertexts: HE.Dec(⟦𝑎⟧ · ⟦𝑏⟧) = 𝑎 · 𝑏 mod 𝑞.

Besides operating on two ciphertexts, it is possible to perform

addition and multiplication with plaintext scalars. In many schemes,

such scalar-ciphertext operations are more efficient than first en-

crypting the scalar and then performing a standard ciphertext-

ciphertext operation. We abuse notation and write 𝑎⟦𝑥⟧ + 𝑏 to

represent (⟦𝑎⟧ · ⟦𝑥⟧) + ⟦𝑏⟧ = ⟦𝑎𝑥 + 𝑏⟧.
Multiplicative depth.Our framework is designed with fully homo-

morphic encryption (FHE) in mind and assumes unbounded mul-

tiplication depth. For practical purposes, we port the majority, but

not all, of our protocols to support execution with somewhat homo-

morphic encryption (SWHE) and optimize operations in Section 10.

5.2 Core functions
The complex functionality of PCM protocols can be reduced to a

sequence of zero detection and inclusion test procedures. These

two functions allow us to describe our protocol at a higher abstrac-

tion level. Moreover, any improvement to these basic functions

automatically enhances our framework.

Zero detection. The function ⟦𝑏⟧ ← HE.IsZero(𝑝𝑘, ⟦𝑥⟧) com-

putes whether the ciphertext ⟦𝑥⟧ is an encryption of zero. The

binary output 𝑏 ∈ {0, 1} is defined as 𝑏 = 1 if 𝑥 ≡ 0 (mod 𝑞) other-
wise 𝑏 = 0. We use Fermat’s Little Theorem for zero detection [7].

We rely on the prime ring structure of Z𝑞 as any non-zero variable

𝑥 ∈ Z∗𝑞 to the power 𝑞 − 1 is congruent to one modulo the prime 𝑞.

We can perform this exponentiation with lg(𝑞) multiplications. See

Algorithm 1 for the implementation.

The high multiplicative depth of HE.IsZero makes it impractical

for use with most SWHE schemes. We hope that the research and

advances in HE comparison enables efficient instantiations of this

function and unlock our framework’s full capabilities. When eval-

uating our framework in Section 11, we use ad-hoc techniques to

avoid the need for this function.

Inclusion test. The function ⟦𝐼⟧ ← HE.IsIn(𝑝𝑘, ⟦𝑥⟧, 𝑌) checks if
𝑥 is included in the set 𝑌 of cardinality 𝑛. We consider two variants.

In the first, 𝑌 is a set of ciphertexts ⟦𝑦𝑖⟧, in the second, 𝑌 is a set

of plaintexts 𝑦𝑖 . In both cases, the output 𝐼 equals 0 if and only if a

𝑦𝑖 exists such that 𝑥 ≡ 𝑦𝑖 (mod 𝑞), otherwise 𝐼 will be a uniformly

random element in Z∗𝑞 . See Algorithm 2 for the implementation.

The function HE.IsIn relies on oblivious polynomial evaluation

(OPE) [24, 30]. We create an (implicit) polynomial 𝑃 with roots

𝑦𝑖 , and evaluate ⟦𝐼⟧ = ⟦𝑟 · 𝑃 (𝑥)⟧. If 𝑥 is in the set, there exists a

variable 𝑦𝑖 where 𝑥 ≡ 𝑦𝑖 , thus 𝐼 is zero. Otherwise, 𝐼 is the product
of 𝑛 non-zero factors modulo 𝑞. Since 𝑞 is prime, the product of non-

zero values is non-zero. The random value 𝑟 ensures uniformity in

this case. The multiplicative depth of HE.IsIn scales with the size of

Algorithm 2 Check inclusion of an encrypted variable 𝑥 in a plain 𝑌 = {𝑦1, . . . , 𝑦𝑛 }
or an encrypted 𝑌 = {⟦𝑦1⟧, .., ⟦𝑦𝑛⟧} set.

function HE.IsIn(𝑝𝑘, ⟦𝑥⟧, 𝑌 = {⟦𝑦1⟧, .., ⟦𝑦𝑛⟧})
⟦𝐼⟧ ←∏

𝑖∈[𝑛] (⟦𝑥⟧ − ⟦𝑦𝑖⟧)
𝑟 ←$ Z∗𝑞
return 𝑟 · ⟦𝐼⟧

function HE.IsIn(𝑝𝑘, ⟦𝑥⟧, 𝑌 = {𝑦1, .., 𝑦𝑛 })
[𝑎0, . . . , 𝑎𝑛] ← ToCoeffs(𝑌) ⊲ Such that

∏
𝑖 (x − 𝑦𝑖) =

∑
𝑖 𝑎𝑖x

𝑖

⟦𝐼⟧ ← ∑
𝑖∈[0...𝑛] 𝑎𝑖 · ⟦𝑥⟧𝑖

𝑟 ←$ Z∗𝑞
return 𝑟 · ⟦𝐼⟧

𝑌 . We use the second form, where 𝑌 is a set of plaintexts, to lower

the multiplicative depth when ⟦𝑥𝑖⟧ are known, see Section 10.3.

6 PSI LAYER
The PSI layer of our framework implements basic PSI functionalities:

computing intersection or intersection cardinality. These protocols

can be used in isolation, but in our framework they serve to form

the input to the matching layer (see Fig. 2). We build PSI protocols

for two scenarios: (1) scenarios where the client set has a small

constant size (e.g., document search queries which typically have

less than 10 keywords); and (2) scenarios where set elements come

from a small input domain (e.g., gender and age in a dating profile).

We build basic protocols assuming semi-honest clients, but allow

for an extension – see Section 6.3 – that ensures queries represent

a valid input set even if clients deviate from the protocol.

We structure our single-set protocols following Fig. 3. The client

generates aHE key pair (𝑝𝑘, 𝑠𝑘) ← HE.KeyGen(params) and sends
the public key 𝑝𝑘 to the server ahead of the protocol. Clients per-

form qery and send an encrypted representation of their set to

the server. The server runs a protocol-specific processing function

process to obtain the result𝑀 . The protocol is either used as the

first layer and passes𝑀 into the second layer, or is stand-alone and

returns 𝑀 to the client. The server optionally runs qery-check

to randomize the result when a client submits a malformed query

(⟦𝑅⟧ is zero for correctly formed queries). Finally, the client runs

the protocol-specific function reveal to compute the result. We

denote algorithms run by the client in red and by the server in

green. The optional server-side checks that ensure well-formedness

of queries are denoted in blue.

6.1 Small constant-size client set
We start with scenarios where client sets are small and constant-

size, typical for representing a search criteria. Clients use qery to

encrypt their set elements 𝑥𝑖 ∈ 𝑋 as a query 𝑄 and send it to the

server. Algorithm 3 instantiates small input functions.

PSI. The PSI protocol computes PSI(𝑋,𝑌𝑘) = 𝑋 ∩ 𝑌𝑘 . The server
uses the inclusion test HE.IsIn (see Section 5.1) to compute an

inclusion status ⟦𝑠𝑖⟧ for each client element 𝑥𝑖 (see PSI-process).

An element 𝑥𝑖 is in the intersection if and only if the corresponding

inclusion status ⟦𝑠𝑖⟧ is zero (recall that the inclusion test produces

zero for values in the set). When used as a stand-alone protocol,

the server returns the list of encrypted inclusion values𝑀 , which

the client then decrypts (see PSI-reveal).

Cardinality.The PSI cardinality protocols compute PSI-CA(𝑋,𝑌𝑘)
= |𝑋 ∩ 𝑌𝑘 |. There exist two variants: the standard PSI-CA variant

451

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

Client Server

𝑋 = {𝑥1, . . . , 𝑥𝑚 } ⊆ 𝐷 𝑌𝑖 = {𝑦𝑖,1, . . . , 𝑦𝑖,𝑛𝑖𝑠 } ⊆ 𝐷

(𝑝𝑘, 𝑠𝑘) 𝑝𝑘

𝑄 ← (SD-)qery(𝑝𝑘,𝑋) 𝑄 ⟦𝐴⟧ ← process(𝑝𝑘,𝑄,𝑌𝑘)
⟦𝑅⟧ ← (SD-)qery-check(𝑝𝑘,𝑄)

𝑅 ← reveal(𝑠𝑘,𝑀) 𝑀 𝑀 ← ⟦𝐴⟧+⟦𝑅⟧

Figure 3: Single-set protocol structure. SD refers to small
domain variants. The optional blue parts ensure queries are
well-formed.

Algorithm 3 Single set procedures with small input size.

functionqery(𝑝𝑘,𝑋)

⟦𝑥𝑖⟧ ← HE.Enc(𝑝𝑘, 𝑥𝑖)
return𝑄 = ⟨⟦𝑥𝑖⟧⟩

function PSI-process(𝑝𝑘,𝑄 = ⟨⟦𝑥𝑖⟧⟩, 𝑌𝑘)
⟦𝑠𝑖⟧ ← HE.IsIn(𝑝𝑘, ⟦𝑥𝑖⟧, 𝑌𝑘)
return𝑀 ← ⟨⟦𝑠𝑖⟧⟩

function PSI-reveal(𝑝𝑘,𝑀 = ⟨⟦𝑠𝑖⟧⟩)
return {𝑥𝑖 | HE.Dec(𝑠𝑘, ⟦𝑠𝑖⟧) = 0}

function ePSI-CA-process(𝑝𝑘,𝑄 = ⟨⟦𝑥𝑖⟧⟩, 𝑌𝑘)
⟨⟦𝑠𝑖⟧⟩ ← PSI-process(𝑝𝑘, ⟨⟦𝑥𝑖⟧⟩, 𝑌𝑘)
⟦ca⟧ ← ∑

𝑖∈[𝑚] HE.IsZero(⟦𝑠𝑖⟧)
return𝑀 ← ⟦ca⟧

function ePSI-CA-reveal(𝑝𝑘,𝑀 = ⟦ca⟧)
return HE.Dec(𝑠𝑘, ⟦ca⟧)

functionqery-check(𝑝𝑘,𝑄 = ⟨⟦𝑥𝑖⟧⟩)
⟦𝑇⟧ ←∏

𝑖∈[|𝑄 |], 𝑗∈[𝑖−1] (⟦𝑥𝑖⟧ − ⟦𝑥 𝑗⟧)
⟦𝑅⟧ ← 𝑟 · HE.IsZero(𝑝𝑘, ⟦𝑇⟧)
return ⟦𝑅⟧

in which the client learns the cardinality |𝑋 ∩ 𝑌𝑘 | [13, 18], and the

ePSI-CA variant in which the server learns an encrypted cardinal-

ity [84]. We focus on the latter to enable further computation on

the intersection cardinality in the next layers.

Our ePSI-CA protocol (see ePSI-CA-process) first computes the

inclusion statuses ⟦𝑠𝑖⟧ using PSI-process and then uses HE.IsZero

to compute – in the ciphertext domain – the cardinality, i.e., the

number of elements ⟦𝑠𝑖⟧ that are zero. When used as a stand-alone

protocol, the server returns ⟦ca⟧ to the client which decrypts it to

obtain the answer (see ePSI-CA-reveal).

When the cardinality protocol is used as a stand-alone protocol

without next layers, it is possible to mimic earlier work [13] and

construct a cardinality protocol from the above-mentioned naive

PSI protocol by shuffling server responses𝑀 before returning them.

Efficiency.While literature often dismisses OPE-based schemes

due to their ‘quadratic’ total computation cost O(|𝑋 | · |𝑌𝑘 |), this
approach excels in PCM scenarios with small client input. Our

protocols achieve client computation and communication costs of

O(𝑛𝑐), which is independent of the server’s input size. While the

‘extra’ burden for the server is linear in the size of the client set

which is a small constant.

6.2 Small input domain
When the set’s input domain 𝐷 is small, sets can be efficiently

represented and manipulated as bit-vectors [5, 67, 69]. Parties agree

on a fixed ordering 𝑑1, . . . , 𝑑 |𝐷 | of the elements in 𝐷 . Then, clients

use SD-qery to compute a vector of encrypted inclusion statuses

Algorithm 4 Single set procedures with small input domain.

function SD-qery(𝑝𝑘,𝑋)

𝑧𝑖 ← (𝑑𝑖 ∈ 𝑋)
⟦𝑧𝑖⟧ ← HE.Enc(𝑝𝑘, 𝑧𝑖)
return𝑄 = ⟨⟦𝑧𝑖⟧⟩

function PSI-SD-process(𝑝𝑘,𝑄 = ⟨⟦𝑧𝑖⟧⟩, 𝑌𝑘)
𝑣𝑖 ← (𝑑𝑖 ∈ 𝑌𝑘)
⟦𝑠𝑖⟧ ← ⟦𝑧𝑖⟧ · 𝑣𝑖
return𝑀 ← ⟨⟦𝑠𝑖⟧⟩

function ePSI-CA-SD-process(𝑝𝑘,𝑄 = ⟨⟦𝑧𝑖⟧⟩, 𝑌𝑘)
⟨⟦𝑠𝑖⟧⟩ ← PSI-SD-process(𝑝𝑘, ⟨⟦𝑧𝑖⟧⟩, 𝑌𝑘)
⟦ca⟧ ← ∑

𝑑𝑖 ∈𝐷⟦𝑠𝑖⟧
return𝑀 ← ⟦ca⟧

function SD-qery-check(𝑝𝑘,𝑄 = ⟨⟦𝑧𝑖⟧⟩)
⟦𝑡𝑖⟧ ← HE.IsIn(𝑝𝑘, ⟦𝑧𝑑⟧, {0, 1})
⟦𝑅⟧ ← ∑

𝑑∈𝐷⟦𝑡𝑖⟧
return ⟦𝑅⟧

⟨⟦𝑧𝑖⟧⟩, where 𝑧𝑖 = 1 iff 𝑑𝑖 ∈ 𝑋 and 0 otherwise, for all 𝑑𝑖s in 𝐷 . We

instantiate small domain procedures, except for reveal processes

that are not impacted by the domain size, in Algorithm 4.

The function PSI-SD-process creates a bit vector of the intersec-

tion. The status ⟦𝑠𝑖⟧ is an encryption of 1 if𝑑𝑖 is present in both sets
and 0 otherwise. To do so, the server multiplies the indicator ⟦𝑧𝑖⟧
with another binary indicator 𝑣𝑖 determining whether the element

𝑑𝑖 is present in the server set𝑌𝑘 . The function ePSI-CA-SD-process

computes the sum of the inclusion statuses ⟦𝑠𝑖⟧ for all domain val-

ues 𝑑𝑖 ∈ 𝐷 . The functions qery, qery-check, and base layer

process must have the same domain size. The rest of the functions

and layers are not impacted by the choice of domain.

Efficiency. While the idea of representing sets as bit-vectors is

not new [5, 67, 69], existing works dismiss FHE protocols as too

costly and focus on additively homomorphic solutions. We use the

inherent parallelism of schemes such as BFV [23], that we discuss in

Section 10, to achieve lower computation and communication costs,

especially in the many-set scenario. In Appendix D.1, we show that

PSI-CA-SD has a competitive performance to the existing schemes

such as Ruan et al. [67].

6.3 Ensuring well-formed queries
In this section we consider a specific class of misbehaving clients:

those that encrypt a malformed input and submit it as a query.

Since the client’s query is encrypted, the server cannot directly

verify well-formedness of the query. In this section we show how

we can ensure that if a client’s query is malformed, i.e., it does not

correspond to a valid set 𝑋 , the client’s output is random.

Zero-knowledge proofs are not practical in the FHE setting, so

we rely on an HE technique to ensure queries are well-formed. The

server uses (SD-)qery-check to compute a randomizer term ⟦𝑅⟧
that is random in Z𝑞 if the client misbehaves and 0 otherwise. By

adding ⟦𝑅⟧ to the result ⟦𝐴⟧, misbehaving clients learn nothing

about the real result. With abuse of notation, the server adds a

vector of fresh randomizers when the result is a vector such as

the output of PSI-SD-process. The server can amortize the cost of

computing 𝑁 randomizers ⟦𝑅𝑖⟧ for 𝑁 variables 𝑖: The server first

computes ⟦𝑅⟧ as before, then picks a fresh randomness 𝛿𝑖 ←$ Z∗𝑞
and sets ⟦𝑅𝑖⟧ ← 𝛿𝑖 · ⟦𝑅⟧.

452

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Small domain. Misbehaving clients can submit non-binary ci-

phertexts ⟦𝑧𝑖⟧ to learn more than the cardinality. We compute a

term ⟦𝑅⟧ which is zero when all 𝑧𝑖s are binary, and is random

otherwise. The term ⟦𝑡𝑖⟧ ← HE.IsIn(𝑝𝑘, ⟦𝑧𝑖⟧, {0, 1}) evaluates to
0 if 𝑧𝑖 ∈ {0, 1} and to a uniformly random element in Z∗𝑞 otherwise.

Therefore, the distribution of ⟦𝑅⟧ ← ∑
𝑑∈𝐷⟦𝑡𝑖⟧ will be close to

uniformly random in Z𝑞 as long as at least one non-binary 𝑧𝑖 exists

in the client’s query. See Appendix B for the exact distribution.

Small input. The client sends a list of encrypted values ⟦𝑥𝑖⟧ to
the server. This list represents a set as long as all elements are

distinct, so the server needs to ensure that no two client elements

are equal. First, the server computes ⟦𝑇⟧, the product of pairwise
differences of the client elements. Since these multiplications are

performed in a prime group Z∗𝑞 , the product will be zero if and only
if two equal elements exist. Second, the server uses a uniformly

random element 𝑟 ← Z𝑞 in combination with the zero detection

on ⟦𝑇⟧ to compute the additive randomizer ⟦𝑅⟧.
Since the zero detection function is impractical, we provide a

practical alternative protection method which deviates from our

structure. The client can deterministically compute 𝑇 , allowing us

to protect the result in a multiplicative way by returning 𝑀 ←
⟦𝐴⟧ · ⟦𝑇⟧. As long as 𝑇 is not zero, which signifies a malicious

query, the client can reverse 𝑇 and recover 𝐴← 𝑀 ·𝑇−1.
Without this protection, misbehaving clients are still limited to

submitting a list of scalar values, with a limited size, which is equiv-

alent to a multi-set. Depending on the flexible matching function,

allowing multi-set queries may or may not impact the security. On

one hand, if the server reveals PSI-CA, allowing multi-sets may

lead to the extraction of the intersection from the cardinality. On

the other hand, if the server is computing F-Match, which checks

𝑋 ⊆ 𝑌𝑘 , there is no difference between querying a set or a multi-set.

At first glance,qery-check’s quadratic computation costO(𝑛𝑐 2)
seems expensive. However, we target imbalanced scenarios where

𝑛𝑐 ≪ 𝑁𝑠 . In Section 10.1, we discuss how this optional protection

cost will be overshadowed by the cost of our PSI layer O(𝑛𝑐 · 𝑁𝑠);
thus, not having any impact on our final cost.

Next layers.We note that the checks on well-formedness in the

PSI layer extend to the matching and aggregation layers by instead

applying the randomizer ⟦𝑅⟧ computed on the client’s query to

the results that the matching and aggregation layers compute.

7 MATCHING LAYER
Given the output of the PSI layer, the matching layer determines

whether the server set 𝑌𝑘 is of interest to the client. The matching

layer outputs a matching status ⟦𝛾𝑘⟧. Similar to the inclusion test,

HE.IsIn in Section 5.1, 𝛾𝑘 is zero for sets of interest and a random

value in Z∗𝑞 otherwise. The value ⟦𝛾𝑘⟧ can be revealed as a binary

output 𝜆𝑘 or passed-on to the next layer.

These matching operations can use either the small input or

the small domain PSI layer protocols. To instantiate a matching

protocol, the client and the server proceed as in Fig. 3, but plug in the

desired process variant based on 𝑓𝑀 . As match-process functions

have identical outputs, they share the same match-revealmethod.

We provide threematching functions 𝑓𝑀 : full matching (F-Match),

which determines if the client’s query set is fully contained in the

server set; threshold matching (Th-Match), which determines if

Algorithm 5 Processing matching variants.

function F-match-process(𝑝𝑘,𝑄,𝑌𝑘) ⊲ Full match

⟨⟦𝑠𝑖⟧⟩ ← PSI-process(𝑝𝑘,𝑄,𝑌𝑘)
⟦𝛾𝑘⟧ ←

∑
𝑖∈[𝑛]⟦𝑠𝑖⟧

return ⟦𝛾𝑘⟧

function Th-match-process(𝑝𝑘,𝑄,𝑌𝑘 ,A = 𝑡min) ⊲ Threshold

⟦ca⟧ ← ePSI-CA-process(𝑝𝑘,𝑄,𝑌𝑘)
𝑇 ← {𝑡 | 𝑡 ∈ Z𝑞 , 𝑡min ≤ 𝑡 ≤ min(|𝑄 |, |𝑌𝑘 |) } ⊲ Threshold to set

⟦𝛾𝑘⟧ ← HE.IsIn(𝑝𝑘, ⟦ca⟧,𝑇)
return ⟦𝛾𝑘⟧

function Tv-match-process(𝑝𝑘,𝑄,𝑌𝑘 ,A = (𝑡, 𝛼, 𝛽)) ⊲ Tversky

⟦ca⟧ ← ePSI-CA-process(𝑝𝑘,𝑄,𝑌𝑘)
(𝑎,𝑏, 𝑐) ← Tversky-param-process(𝛼, 𝛽, 𝑡)
𝑇 = {𝑡 | 𝑡 ∈ Z𝑞 , 0 ≤ 𝑡 ≤ (𝑎 − 𝑏 − 𝑐) |𝑌𝑘 | }

⟦sizeX⟧ ←
{
⟦|𝑄 |⟧ For small input size variants∑

𝑖⟦𝑧𝑖⟧ For small domain var. with𝑄 = ⟨⟦𝑧𝑖⟧⟩
⟦𝑇 𝑣⟧ ← 𝑎 · ⟦ca⟧ − 𝑏⟦sizeX⟧ − 𝑐 |𝑌𝑘 |
⟦𝛾𝑘⟧ ← HE.IsIn(𝑝𝑘, ⟦𝑇 𝑣⟧,𝑇)
return ⟦𝛾𝑘⟧

function match-reveal(𝑠𝑘,𝑀 = ⟦𝛾𝑘⟧) ⊲ Reveal matching output

𝛾𝑘 ← HE.Dec(𝑠𝑘, ⟦𝛾𝑘⟧)
𝜆𝑘 ← 1[𝜆𝑘 = 0]
return 𝜆𝑘

the size of intersection exceeds a threshold; and Tversky matching

(Tv-Match), which determines if the Tversky similarity between

the client’s and the server’s set exceeds a threshold. The associated

process variants are described in Algorithm 5.

Full matching. The F-Match variant determines if all the client

elements are inside the server’s set, i.e., 𝑓𝑀 (𝑋,𝑌𝑘) = 1[𝑋 ⊆ 𝑌𝑘].
The server first computes the inclusion statuses ⟦𝑠𝑖⟧ by calling

PSI-process (see F-match-process). Recall ⟦𝑠𝑖⟧ is zero when 𝑥𝑖 ∈
𝑌𝑘 . Therefore, when 𝑋 ⊆ 𝑌𝑘 , the sum ⟦𝛾𝑘⟧ of all ⟦𝑠𝑖⟧ is zero.

When an element 𝑥𝑖 is not in the server set, its inclusion status 𝑠𝑖 is

uniformly random in Z∗𝑞 , and therefore the sum 𝜆𝑘 is also random.

The F-Match protocol has a small false-positive probability when

more than one 𝑥𝑖 exists such that 𝑥𝑖 ∉ 𝑌𝑘 . Adding multiple random

⟦𝑠𝑖⟧ ∈ Z∗𝑞 PSI responses can, incorrectly, lead to a zero sum ⟦𝛾𝑘⟧. In
Appendix B, we bound the probability of a false-positive to 1/(𝑞−1).
Moreover, we bound the difference between the distribution of the

sum 𝑅 and uniformly random over Z𝑞 to 1/(𝑞 − 1)2 at all points
when more than one 𝑥𝑖 is missing. The false-positive probability is

zero when only one 𝑥𝑖 is missing.

Note that the F-Match protocol computes containment and not

equality. Thus, hashing and comparing the client set with server’s

set does not work as the server would need to hash every combina-

tion of |𝑋 | server set elements resulting in an exponential cost.

Threshold matching. The Th-Match variant determines if the two

sets have at least 𝑡min elements in common, i.e., 𝑓𝑀 (𝑋,𝑌𝑘 ; 𝑡min) =
1[|𝑋 ∩ 𝑌𝑘 | ≥ 𝑡min]. The server first computes the encrypted cardi-

nality ⟦ca⟧ using ePSI-CA-process, then evaluates the inequality

ca ≥ 𝑡min (see Th-match-process).

Directly computing this one-sided inequality over encrypted

values is costly. However, we know that |𝑋 ∩𝑌𝑘 | ≤ min(|𝑄 |, |𝑌𝑘 |) =
𝑡𝑚𝑎𝑥 , where we bound the client set size by the size of the query.

The server evaluates the inequality 𝑡min ≤ ca ≤ 𝑡max by performing

the inclusion test ca ∈ {𝑡 | 𝑡min ≤ 𝑡 ≤ 𝑡max} using HE.IsIn.

Tversky similarity. The Tv-Match variant determines if the Tver-

sky similarity of the two sets exceeds a threshold 𝑡 . Formally, the

453

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

protocol computes 𝑓𝑀 (𝑋,𝑌𝑘 ;𝛼, 𝛽, 𝑡) = 1[Tv𝛼,𝛽 (𝑋,𝑌𝑘) ≥ 𝑡] where

Tv𝛼,𝛽 (𝑋,𝑌𝑘) =
|𝑋 ∩ 𝑌𝑘 |

|𝑋 ∩ 𝑌𝑘 | + 𝛼 |𝑋 − 𝑌𝑘 | + 𝛽 |𝑌𝑘 − 𝑋 |
is the Tversky similarity with parameters 𝛼 and 𝛽 . Computing the

Tversky similarity in this form is difficult as it requires floating-

point operations. We assume 𝑡, 𝛼, and 𝛽 are rational, and known to

both the client and the server. We follow the approach of Shimizu

et al. [69] and transform the inequality Tv𝛼,𝛽 (𝑋,𝑌) ≥ 𝑡 to

(𝑡−1 − 1 + 𝛼 + 𝛽) |𝑋 ∩ 𝑌 | − 𝛼 |𝑋 | − 𝛽 |𝑌 | ≥ 0

⇒ (𝑎, 𝑏, 𝑐) ∈ Z3

𝑞, 𝑎 |𝑋 ∩ 𝑌 | − 𝑏 |𝑋 | − 𝑐 |𝑌 | ≥ 0 (1)

for appropriate integer values of 𝑎, 𝑏, 𝑐 . The server either knows |𝑋 |
(|𝑋 | = |𝑄 |) or can compute it (⟦|𝑋 |⟧ =

∑
𝑖⟦𝑧𝑖⟧ for small domain

protocols). The server also knows |𝑌𝑘 | and can compute ⟦ca⟧ =

|𝑋 ∩𝑌𝑘 | using ePSI-CA-process. Evaluating the inequality requires
two steps (see Tv-match-process):

Step 1. Transform coefficients (𝑡−1−1+𝛼 +𝛽), 𝛼 and 𝛽 to equivalent

integer coefficients 𝑎, 𝑏, 𝑐 . We describe this in detail in Appendix A.

Step 2. Evaluate the Tversky similarity inequality (1). We convert

this inequality to a two-sided equation. We know |𝑋 | ≥ |𝑋 ∩ 𝑌𝑘 |
and |𝑌𝑘 | ≥ |𝑋 ∩ 𝑌𝑘 |, thus

𝑎 |𝑋 ∩ 𝑌𝑘 | − 𝑏 |𝑋 | − 𝑐 |𝑌𝑘 | ≤ (𝑎 − 𝑏 − 𝑐) |𝑋 ∩ 𝑌𝑘 | ≤ (𝑎 − 𝑏 − 𝑐) |𝑌𝑘 |.

Therefore, two sets 𝑋 and 𝑌𝑘 satisfy Tv𝛼,𝛽 (𝑋,𝑌𝑘) ≥ 𝑡 iff

0 ≤ 𝑎⟦ca⟧ − 𝑏 |𝑋 | − 𝑐 |𝑌𝑘 | ≤ (𝑎 − 𝑏 − 𝑐) |𝑌𝑘 |.

The server uses an inclusion test to evaluate this inequality.

8 AGGREGATION LAYER
The aggregation layer combines the outputs of the matching layer,

over many sets, into a single collection-wide result. We provide

four aggregation functions 𝑓𝐴: naive aggregation (NA-Agg), which

returns outputs as is; existential search (X-Agg), which returns

whether at least one server set matched; cardinality search (CA-Agg)

which returns the number of matching server sets; and retrieval

(Ret-Agg) which returns the index of the 𝜅’th matching server set.

Figure 4 shows the structure of the aggregation protocols. Upon

receiving the query𝑄 , the server runs the desiredmatching protocol

match-process (e.g., one from Algorithm 5) on each of its sets to

compute the matching output ⟦𝛾 𝑗⟧. The response ⟦𝛾 𝑗⟧ is zero

if the set 𝑌𝑗 is interesting for the client and random otherwise.

The server next runs an aggregation function agg-process that

takes 𝑁 matching responses ⟦𝛾 𝑗⟧ as input and computes the final

result 𝐴. We show how to instantiate agg-process and reveal

in Algorithm 6. If using naive aggregation (NA-Agg), the client

runs NA-reveal. Otherwise, the client runs reveal to compute

the result. Finally, the server can run (SD-)qery-check on the

query and apply it to the final result 𝐴 for protection.

Naive aggregation (NA-Agg). The naive variant runs the matching

protocol on all 𝑁 server sets and returns 𝑁 results to the client, i.e.,

𝑓𝐴 (𝜆1, ...𝜆𝑁) = 𝜆1, ...𝜆𝑁 . This enables our framework to support

many-sets when there is no need for aggregation and reduces the

client’s cost by computing and sending the query 𝑄 only once.

Existential search (X-Agg). The existential search variant deter-

mines if at least one server set𝑌𝑗 is of interest to the client. Formally,

Client Server

𝑋 = {𝑥1, . . . , 𝑥𝑚 } Y = [𝑌1, . . . , 𝑌𝑁]
(𝑝𝑘, 𝑠𝑘) 𝑌𝑖 = {𝑦𝑖,1, . . . , 𝑦𝑖,𝑛𝑖𝑠 }

Auxiliary match-process data A
𝑝𝑘

𝑄 ← (SD-)qery(𝑝𝑘,𝑋) 𝑄 ⟦𝛾 𝑗⟧ ← match-process(𝑝𝑘,𝑄,𝑌𝑗 ,A)
⟦𝐴⟧ ← agg-process(𝑝𝑘, ⟨⟦𝛾 𝑗⟧⟩)
⟦𝑅⟧ ← (SD-)qery-check(𝑝𝑘,𝑄)

𝐴← reveal(𝑠𝑘, ⟦𝐴⟧) ⟦𝐴⟧ ⟦𝐴⟧ ← ⟦𝐴⟧ + ⟦𝑅⟧

Figure 4: Aggregation protocol structure.

Algorithm 6 Processing 𝑓𝑀 .

function NA-agg-process(𝑝𝑘, ⟨⟦𝛾 𝑗⟧⟩)
return ⟨⟦𝛾 𝑗⟧⟩

function NA-reveal(𝑠𝑘,𝑀 = ⟨⟦𝛾 𝑗⟧⟩) ⊲ Naive output

match𝑗 ← match-reveal(𝑠𝑘, ⟦𝛾 𝑗⟧)
return ⟨match𝑗 ⟩

function X-agg-process(𝑝𝑘, ⟨⟦𝛾 𝑗⟧⟩) ⊲ At least one match

⟦𝐴⟧ ←∏
𝑗∈[𝑁]⟦𝛾 𝑗⟧

return ⟦𝐴⟧

function CA-agg-process(𝑝𝑘, ⟨⟦𝛾 𝑗⟧⟩) ⊲ Number of matches

⟦𝑏 𝑗⟧ ← HE.IsZero(𝑝𝑘, ⟦𝛾 𝑗⟧)
⟦𝐴⟧ ← ∑

𝑗∈[𝑁]⟦𝑏 𝑗⟧
return ⟦𝐴⟧

function Ret-agg-process(𝑝𝑘, ⟨⟦𝛾 𝑗⟧⟩,D, 𝜅) ⊲ Retrieve data for the 𝜅’th match

⟦𝑏 𝑗⟧ ← HE.IsZero(𝑝𝑘, ⟦𝛾 𝑗⟧)
⟦ctr0⟧ ← ⟦0⟧
⟦ctr𝑗⟧ ← ⟦ctr𝑗−1⟧ + ⟦𝑏 𝑗⟧ ⊲ #matches before 𝑗 ’th set

⟦𝐼 𝑗⟧ ← HE.IsZero(𝑝𝑘, ⟦ctr𝑗⟧ · ⟦𝑏 𝑗⟧ − 𝜅) ⊲ Create index

⟦𝐴⟧ ← ∑
𝑗∈[𝑁] D𝑗 · ⟦𝐼 𝑗⟧

return ⟦𝐴⟧

function reveal(𝑠𝑘,𝑀 = ⟦𝐴⟧)
return HE.Dec(𝑠𝑘, ⟦𝐴⟧)

the aggregation computes 𝑓𝐴 (𝜆1, ...𝜆𝑁) = 1[∃𝑖 |𝜆𝑖 = 1]. Recall that
interesting sets produce zero matching responses ⟦𝛾 𝑗⟧, so a collec-

tion will have an interesting set if and only if the product of match-

ing responses is zero (see X-agg-process). As responses 𝛾 𝑗 are ele-

ments of the prime fieldZ𝑞 , their product will never be zero without

having a zero response; thus, there will be no false-positives.

Cardinality search (CA-Agg).The cardinality search variant counts
the number of interesting server sets𝑌𝑗 , i.e., 𝑓𝐴 (𝜆1, ..., 𝜆𝑁) = |{𝑖 |𝜆𝑖 =
1}|. This aggregation (see CA-agg-process) follows the same pro-

cess as ePSI-CA and uses HE.IsZero to turn the matching responses

⟦𝛾 𝑗⟧ into binary values 𝑏 𝑗 and computes their sum.

Similar to the single set PSI-CA, we can use shuffling to con-

vert the naive aggregation into cardinality search with minimal

computational overhead. This gain comes at the cost of increased

communication as the protocol needs to send the 𝑁 shuffled set

responses to the client instead of a single encrypted cardinality.

Retrieval (Ret-Agg). The retrieval variant returns associated data

D𝑗 of the 𝜅th matching server set 𝑌𝑗 . Formally, 𝑓𝐴 (𝜆1, ...𝜆𝑁) =
D𝑗 | (𝜆 𝑗 = 1) ∧ (|{𝑖 |𝜆𝑖 = 1 ∧ 𝑖 < 𝑗}| = 𝜅). Clients use this variant
when they are not concerned about whether a matching set exists,

but rather about information related to this matching set – such

as an index (D𝑗 = 𝑗) for retrieving records. A good example is the

matching scenario where apps want to retrieve a lot of data about

454

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

the matching records. Apps would first run the Ret-Agg protocol

to retrieve the index of the matching record and then follow with a

PIR request to retrieve the matching set’s associated data.

The Ret-Agg protocol takes an input parameter 𝜅 denoting that

the client wants to retrieve the associated data of the 𝜅th matching

set. The server builds an encrypted index of interesting sets in three

steps (see Ret-agg-process): (1) The server uses HE.IsZero to com-

pute ⟦𝑏 𝑗⟧ indicating if a set is interesting. (2) The server computes

a counter ⟦ctr𝑗⟧ to track how many interesting sets exist in the

first 𝑗 sets. (3) The server combines ⟦𝑏 𝑗⟧ and ⟦ctr𝑗⟧ to compute

an index ⟦𝐼 𝑗⟧ where 𝐼 𝑗 is 1 if 𝑌𝑗 is the 𝜅th interesting set, and zero

otherwise. Adding weighted ⟦𝐼 𝑗⟧ values produces the result.

9 SECURITY AND PRIVACY
Section 2.3 defines correctness (Definition 2), client privacy (Defi-

nition 3), and server privacy (Definition 4) of PCM protocols. We

now discuss the correctness and privacy properties of our frame-

work in the semi-honest and malicious settings. Our theorems rely

on properties of the HE scheme, which are defined formally in

Appendix C.1.

Semi-honest setting. When both parties are semi-honest, our

protocols achieve all three security properties.

Theorem 1. Our protocols are correct, client private, and server
private against semi-honest adversaries as long as the HE scheme is
IND-CPA secure and circuit private.

We simulate our protocols in a real-world/ideal-world setting to

prove Theorem 1 in Appendix C.2.

Malicious setting. When the server is malicious, server privacy

does not apply. Moreover, our framework does not provide any

correctness guarantee to clients. Malicious servers can produce arbi-

trary, fixed (always match/no match) or input-dependent, responses

to the clients without detection. However, servers cannot learn in-

formation about the clients’ private input even if they misbehave.

Theorem 2. Our protocols provide client privacy against malicious
servers, as long as the HE scheme is IND-CPA.

In Appendix C.3, we prove Theorem 2 by reducing client privacy

to the IND-CPA security of the underlying HE scheme. The client’s

sole interaction is sending encrypted queries. The server cannot

extract information from these encrypted queries without knowing

the secret key or breaking the security of the HE scheme.

When the client is malicious, client privacy does not apply. The

correctness property, which requires that the malicious client’s

output is correct, does not apply either. In Appendix C.4, we reason

about server privacy when the client is malicious in a non-standard

model.

System-wide security. We proved the security of our frame-

work in isolation, where there is no honest interaction outside our

framework. In practice, when integrating our framework into a

larger system, e.g., allowing journalists to contact document own-

ers after a document search, user interactions may leak information

such as the outcome of the search. Therefore, whenever protocol

designers decide to integrate our framework into a larger system,

they must perform a system-wide security analysis.

Table 2: Asymptotic cost of our protocols. See Table 3 for a
summary of our parameter definition. SD stands for small
domain protocols. The columnCalls denotes which protocols
from earlier layers are called.

Calls Add Mult. Exp.

PSI - 𝑛𝑐𝑛
𝑖
𝑠 𝑛𝑐𝑛

𝑖
𝑠

PSI-SD - |𝐷 |
ePSI-CA 1×PSI 𝑛𝑐
ePSI-CA-SD 1×PSI-SD |𝐷 |
F-Match 1×PSI 𝑛𝑐
Th-Match 1×ePSI-CA |𝑇 | |𝑇 |
Tv-Match 1×ePSI-CA |𝑇 | |𝑇 |
NA-Agg 𝑁×Match

X-Agg 𝑁×Match 𝑁

CA-Agg 𝑁×Match 𝑁 𝑁

Ret-Agg 𝑁×Match 2𝑁 2𝑁 2𝑁

Query check - 𝑛𝑐
2

SD-Query check - |𝐷 | |𝐷 |

10 FROM THEORY TO PRACTICE
We first analyze the asymptotic cost of our schemes, and explain

the optimizations we implement to make our schemes practical.

10.1 Asymptotic cost
Our framework ismodular and supports arbitrary protocol combina-

tions. Hence, we report the cost of layers separately. Table 2 summa-

rizes the asymptotic costs of modules in our framework. We report

the number of homomorphic additions, multiplications, and expo-

nentiations (counting scalar-ciphertext operations as ciphertext-

ciphertext operations; but excluding operations in earlier layers).

The PSI and matching layers’ costs are reported for a single set

(recall 𝑛𝑖𝑠 is the size of the server’s 𝑖’th set). As the well-formedness

check is optional, we report its one-time cost separately.

As an example, we compute the cost of using existential search

with full-match interest criteria with no input domain restriction.

The client runs a single X-Agg protocol, which per server set calls

one F-Match and one small input PSI protocol. This leads to 𝑁

multiplications in the aggregation layer,

∑𝑁
𝑖 (𝑛𝑐) = 𝑁𝑛𝑐 additions

in the matching layer, and

∑𝑁
𝑖 𝑛𝑐𝑛

𝑖
𝑠 = 𝑛𝑐𝑁𝑠 multiplications in

the PSI layer. Additionally, the server needs to perform the well-

formedness check once, leading to 𝑛2𝑐 extra multiplications. The

total cost will be 𝑁 + 𝑁𝑛𝑐 + 𝑛𝑐𝑁𝑠 + 𝑛2𝑐 , but knowing that the total
number of server elements (𝑁𝑠) is larger than the set number (𝑁)

or the client size (𝑛𝑐), we simplify the cost to O(𝑛𝑐𝑁𝑠).
Communication. The client sends a query 𝑄 in the PSI layer

and receives a response 𝐴 from the aggregation layer. The query’s

size only depends on the PSI layer variant and is independent

from the server’s input. Small input queries are an encrypted list

of client elements containing 𝑛𝑐 encrypted scalars while small

domain queries are encrypted bit-vectors containing |𝐷 | scalar
elements. The response size depends on the aggregation method.

Naive aggregation has to produce 𝑁 individual responses for 𝑁

sets, while other aggregation methods produce a single scalar value.

455

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

This results in a total cost of O(|𝑄 |) for non-naive and O(|𝑄 | + 𝑁)
for naive protocols which is the minimum achievable cost.

Computation. The PSI layer dominates the cost of our framework.

Each PCM run calls 𝑁 instances of PSI leading to a cost of O(𝑛𝑐𝑁𝑠)
for small client input and O(𝑁 · |𝐷 |) for small input domain variants.

Our cost is asymptotically higher than alternatives [13, 37, 54] and

is often dismissed as “quadratic” and too expensive. In contrast,

approaches [3, 12, 14, 15, 57] with “linear” cost O(𝑘 (𝑛𝑐 + 𝑁𝑠)),
where 10 < 𝑘 < 100 determines the protocol’s false positive rate,

are considered acceptable. The extreme imbalance requirement

(RQ.3) leads to scenarios where 𝑛𝑐 ≪ 𝑁𝑠 or even 𝑛𝑐 < log(𝑁𝑠)
and impacts how asymptotic costs should be interpreted. We show

a how “quadratic” cost O(𝑛𝑐𝑁𝑠) can outperform the “linear” cost

O(𝑘 (𝑛𝑐 + 𝑁𝑠)) in Section 11.

10.2 Implementation
Fully homomorphic encryption schemes assume unbounded multi-

plication depth and rely on bootstrapping, which is prohibitively

expensive. Thus, we use the somewhat homomorphic BFV cryp-

tosystem [23] with a fixed multiplicative depth.

Let 𝑁𝑑𝑒𝑔 be the degree of the RLWE polynomial, 𝑚𝑝𝑡 be the

plaintext modulus, and𝑚𝑐𝑡 be the ciphertext modulus. The polyno-

mial degree 𝑁𝑑𝑒𝑔 and ciphertext modulus𝑚𝑐𝑡 determine the multi-

plicative depth of the scheme. The plaintext modulus determines

the input domain. We define two sets of parameters: 𝑃
8𝑘 (𝑁𝑑𝑒𝑔 =

8192,𝑚𝑝𝑡 = 4,079,617) and 𝑃
32𝑘 (𝑁𝑑𝑒𝑔 = 32,768,𝑚𝑝𝑡 = 786,433),

and follow the Homomorphic Encryption Security Standard guide-

lines [1] to choose𝑚𝑐𝑡 s that provide 128 bits of security. We use

relinearization keys to support multiplication, and rotation keys

to support some of our optimizations (see next section). Generat-

ing and communicating keys is expensive. Therefore, we assume

that clients generate these keys once at setup and use them for

all subsequent protocols. In Appendix A, we provide more details

on our parameters in Table 5 and a microbenchmark of basic BFV

operations and key sizes in Table 6.

We implement a subset of our protocols using the Go language.

Our code is open-source and 1,620 lines long.
2
We use the Lattigo

library [41, 47] for BFV operations. Unfortunately, Lattigo does

not support circuit privacy. We discuss the implications of this

lack of support and possible countermeasures in Appendix C.1. We

run experiments on a machine with an Intel i7-9700 @ 3.00 GHz

processor and 16 GiB of RAM. Reported numbers are single-core

costs. As the costly operations are inherently parallel, we expect

our scheme to scale linearly with the number of cores.

10.3 Optimizations
We explain how we optimize our implementation and limit the mul-

tiplicative depth of (some of) our algorithms to improve efficiency.

NTT batching. We use BFV in combination with the number-

theoretic transformation (NTT) so that a BFV ciphertext encodes

a vector of 𝑁𝑑𝑒𝑔 elements [70]; BFV additions and multiplications

act as element-wise vector operations. This batching enables single

instruction multiple data (SIMD) operations on encrypted scalars.

Performing operations between scalars in the same ciphertext (such

2
Code available online: https://github.com/spring-epfl/private-collection-matching

as computing the sum or product of elements) requires modifying

their position through rotations. Rotations require rotation keys.

Batching renders HE.IsZero infeasible. The exponentiation with

𝑚𝑝𝑡 −1 consumes a multiplicative depth of lg(𝑚𝑝𝑡) inHE.IsZero, so
𝑚𝑝𝑡 must be small. To use batching, however, the plaintext modulus

𝑚𝑝𝑡 must be prime and large enough that 2𝑁𝑑𝑒𝑔 | 𝑚𝑝𝑡 − 1. Batch-
ing does not support small𝑚𝑝𝑡 s and consequently HE.IsZero; we

prioritize efficiency and only evaluate variants that do not require

zero detection. The parameters we use support batching.

Replication. The client’s query is small with respect to the ca-

pacity of batched ciphertexts, i.e., |𝑄 | ≪ 𝑁𝑑𝑒𝑔 . We use two forms

of replications to make full use of SIMD operations: powers and

duplicates. When using a small input PSI variant, the client encodes

powers of each element 𝑥 (e.g., [𝑥, 𝑥2, . . . , 𝑥𝑡]) into the query cipher-
text to reduce the multiplicative depth of HE.IsIn, see the second

variant in Algorithm 2. Next, the client encodes 𝑘 duplicates of the
full query (including powers, when in use) regardless of the PSI

variant.

Replication is straightforward when the client is semi-honest,

but impacts security when the clients can misbehave. We follow a

similar process to qery-check to enforce correct replication. The

server computes a second randomizer ⟦𝑅⟧ such that 𝑅 will be zero

when (1) all duplicates are equal and (2) for all consecutive power

elements 𝑥𝑖 and 𝑥𝑖+1, the equality 𝑥𝑖+1 = 𝑥1 · 𝑥𝑖 holds. The server
needs to compute this check only once per query. We implemented

this check and included its cost in all figures.

11 PCM IN PRACTICE
To demonstrate our framework’s capability, we solve the chemical

similarity and document search problems. We discuss matching in

mobile apps in Appendix E. We focus on end-to-end PCM solutions

and do not evaluate single-set protocols or scenarios.

11.1 Chemical similarity
Recall from Section 2.1 that chemical similarity of compounds is

determined by computing and comparing molecular fingerprints [8,

42, 48, 73, 79, 80]. We use the Tversky similarity matching algo-

rithm, Tv-Match, to compute whether a compound in the seller’s

database is similar to the query compound. As fingerprints are

short, we instantiate Tv-Match with the small-domain ePSI-CA-SD

and represent molecular fingerprint as bit-vectors.

We follow a popular configuration [69] where compounds are

represented by 166-bit MACCS fingerprints [20] and Tversky pa-

rameters are set to 𝛼 = 1, 𝛽 = 1, 𝑡 = 80%. Processing these raw

parameters (see Algorithm 5) leads to the inequality

𝑎, 𝑏, 𝑐 = 9, 4, 4← Tversky-param-process(1, 1, 0.8)
0 ≤ 9⟦ca⟧ − 4|𝑋 | − 4|𝑌 | ≤ |𝑌 |.

We evaluate two aggregation policies. We apply X-Agg aggrega-

tion to determine whether at least one compound in the database

matches and CA-Agg to count the number of matching compounds.

These variants have high multiplicative depth, so we modify them

to enable efficient deployment without relying on bootstrapping.

Existential search. The X-Agg protocol applied to a collection of

𝑁 compounds requires a multiplicative depth of lg(𝑁) to compute∏
𝑗 ∈[𝑁]⟦𝛾 𝑗⟧. This depth is too high for our parameters. Instead,

456

https://github.com/spring-epfl/private-collection-matching

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

2k 8k 32k 128k 512k 2M
#Chemical compounds

102

103

104

Ti
m

e
(s

)

X-Agg (P32k)

CA-Agg (P32k)

12

18

30

54

102

192

378

Tr
an

sf
er

co
st

(M
B

)

Figure 5: Computation time (solid lines) and transfer cost
(dotted lines) for computing aggregated chemical similarity.

we relax the output requirements and reduce the output as much

as possible: For a fixed depth 𝑙 , we return ⌈𝑁 /2𝑙 ⌉ encrypted scalars
⟦𝜆𝑘⟧ =

∏
𝑘2𝑙 ≤ 𝑗< (𝑘+1)2𝑙 ⟦𝛾 𝑗⟧ to the client. This relaxation reduces

the privacy of X-Agg – it is less than full X-Agg but better than

CA-Agg – at the gain of efficiency. If this reduced privacy is unac-

ceptable, the client just needs to choose larger HE parameters.

Cardinality search.We use the shuffling variant of the CA-Agg

protocol due to its lower multiplicative depth. When the server

shuffles the𝑁 matching responses, the client only learns the number

of interesting compounds. Shuffling batched encrypted values is

hard, so the server shuffles the compounds (server sets) as plaintext

before processing the query to the same effect.

Our modifications to both aggregators increase the transfer cost

from a single aggregated result to linear in the number of server

sets. Yet, the X-Agg protocol sends 1 scalar value per 2
𝑙
compounds.

Evaluation.We evaluate our similarity search on the ChEMBL

database [26, 46], which contains more than 2 million compounds

and is one of the largest public chemical databases. The database

contains compounds in the SMILES format. We use the RDKit li-

brary [63] to compute MACCS fingerprints from this format.

Figure 5 shows the cost of running our protocols with the BFV

parameter set 𝑃
32𝑘 . We ran 5 times the experiments with databases

containing up to 256k compounds, and 3 times the larger experi-

ments. We report the average cost. Standard errors of the mean are

small, so error bars are not visible.

The server batches 128 compounds per ciphertext. Performing

the PSI layer protocol ePSI-CA only requires 1 multiplication per ci-

phertext, while computing the binary Tversky score requires a depth

of 7. For the X-Agg protocol, we set 𝑙 = 6 and aggregate up to 64

matching results into each scalar ⟦𝛾𝑘⟧. As each ciphertext holds 32k
scalars, the aggregation of up to 2𝑀 server sets requires 1 ciphertext.

CA-Agg transfers 1 ciphertext per 32k compounds. The cost of the

extra X-Agg multiplications is insignificant compared to computing

similarity, leading to similar computation costs for both protocols.

The client computation of searching among 2 million compounds

is less than a second and the transfer cost is 12MB for X-Agg and

378MB for CA-Agg. These protocols can be run by a thin client.

The server, however, requires 3.5 hours of single-core computation.

Comparison to ad-hoc solution. Shimizu et al. [69] build a

custom chemical search that computes the number of matching

compounds. They offer the same functionality/privacy as our CA-

Agg protocol, but reveal more information than our X-Agg variant.

Shimizu et al. protect privacy against malicious adversaries, but

malicious servers can violate correctness. They use the secp192k1

curve which provides less than 100-bit of security, while we offer

full 128-bit security. Moreover, their use of differential privacy re-

quires distributional assumptions. Shimizu et al. report the cost of

searching 1.3 million compounds as: 167 seconds of server computa-

tion, 172 seconds of client computation, and 265MB of data transfer.

Our X-Agg and CA-Agg solutions achieve higher security, lower

client computation, and lower ratio of bandwidth consumed per

compound, at the cost of higher server computation.

11.2 Peer-to-Peer document search
To implement peer-to-peer document search, we represent queries

and documents by the sets of keywords they contain. A single docu-

ment, represented by the keyword set 𝑆 , is of interest to the querier

if it contains all query keywords 𝑄 , i.e., 𝑄 ⊆ 𝑆 . This functionality

can be implemented with the full matching (F-Match) variant.

The client and the server must agree on how keywords are

represented in Z𝑞 . We use hash functions to do the conversion. As

the search queries typically contain few keywords and the domain

for searchable keywords is too large for our small domain variant,

we construct F-Match with PSI with a small client input. There are

two sources of false-positive in our setup:

False positive of mapping words. The parameter𝑚𝑝𝑡 (recall𝑚𝑝𝑡 =

𝑞) determines the input domain. Since𝑚𝑝𝑡 is small, multiple words

could be mapped to the same Z𝑞 element. This can lead to F-Match

claiming there is a match, even though one of the colliding key-

words is absent in the server’s set. Since𝑚𝑝𝑡 impacts the multiplica-

tive depth of our HE schemes, choosing a large value is impractical.

Instead of directly increasing the size of𝑚𝑝𝑡 to reduce the false

positive rate, the client hashes the 𝑛𝑐 query keywords with 𝑡 hash

functions and encodes them into 𝑡 𝑛𝑐 scalar values, which reduces

the false-positive rate to 1/𝑞𝑡 . When running PSI-process, the

server knows the corresponding hash function for each scalar

value and hashes them accordingly. Afterward, the server runs

the F-Match protocol on all 𝑡 𝑛𝑐 PSI outputs together; a document

matches if and only if all hashed keywords are present.

Using multiple hashes to reduce false positives does not impact

privacy, as it is straightforward to simulate a query with 𝑡 hashes,

with 𝑡 F-Match queries. Thismodification increases the computation

cost and the number of scalar values in the query by a factor of 𝑡 .

However, there is no concrete change in the communication cost

as the client can still pack 𝑡𝑛𝑐 scalars into one ciphertext.

False positive of F-Match. The F-Match protocol itself has a false

positive rate of ∼ 1/𝑞 (see Section 7) caused by internal randomness.

An easy way to reduce this FP rate is to run 𝑟 instances of F-Match

with different randomness and reveal the 𝑟 responses. This repeti-

tion reduces the FP rate of a single matching response to ∼ 1/𝑞𝑟 ,
while increasing the server’s computation cost by a factor 𝑟 .

Aggregation.We explore two aggregation policies: existential (X-

Agg) to determine whether at least one document in the collection

matches; and cardinality (CA-Agg) to count matching documents.

Since the multiplicative depth of F-Match is low, we can fully reduce

457

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

8 32 128 512 2048 8192
#Documents

100

101

102

103

104

L
at

en
cy

(s
)

CA-Agg (P8k) X-Agg (P32k) SMC-CA-Agg SMC-X-Agg Circuit-PSI

8 32 128 512 2048 8192
#Documents

10−2

10−1

100

101

102

103

C
lie

nt
’s

co
m

pu
ta

tio
n

co
st

(s
)

8 32 128 512 2048 8192
#Documents

100

101

102

103

Tr
an

sf
er

co
st

(M
iB

)

Figure 6: The end-to-end search latency (left), client’s computation cost (middle), and communication cost (right) of document
search. We limit execution to a single CPU core and enforce a bandwidth of 100 Mbps and an RTT of 100 ms on the connection.

the X-Agg output to one encrypted scalar. For the CA-Agg variant,

we still use the shuffling variant for lower multiplicative depth.

Evaluation. We use the parameters 𝑃
8𝑘 for CA-Agg and 𝑃

32𝑘 for

X-Agg protocols. We base our evaluation on the requirements set

out in EdalatNejad et al. [21]. We limit the number of keywords in

each query to 8 and generate random documents of 128 keywords.

We represent each keyword with two hash functions leading to

false-positive rates of 2
−44

for CA-Agg and 2
−39

for X-Agg due to

the mapping to Z𝑞 . We need to account for false-positive errors as

we run a single F-Match per document. This error increases with

the number of documents and reaches its peak at 8k documents

where the probability of overestimating the cardinality is 0.2% (CA-

Agg) and existence is 1% (X-Agg). Our protocols do not have false

negatives. We skip qery-check from Section 6.3 since F-Match is

not impacted by repeated keywords in the query, but still perform

checks from Section 10.3 to enforce honest batching. Our use of

power replication leads to a multiplicative depth of 1 in the PSI layer

while F-Match only uses addition. We report the cost of our doc-

ument search in Fig. 6 and discuss our performance in Section 11.3.

Comparison to ad-hoc solution. EdalatNejad et al. [21] build

a document search engine that performs PSI-CA in a many-set set-

ting and post-processes the output, in the client, to detect relevant

documents. EdalatNejad et al. protect privacy against malicious ad-

versaries, but malicious servers can violate correctness. To enhance

performance, they sacrifice privacy and leak more information than

individual intersection cardinalities, yet less than vanilla PSI. The

protocol of EdalatNejad et al. has a latency of less than 1 second

to search 1k documents while our framework requires 8.7 s for

CA-Agg and 54 s for X-Agg. Our CA-Agg search does not reveal

information about individual documents and X-Agg only reveals a
single bit about the collection. As expected, this privacy gain comes

at a performance cost.

11.3 Comparison with generic solutions
After comparing against ad-hoc solutions, we compare our docu-
ment search against generic SMC and circuit PSI that can offer the

same privacy and functionality (see Table 1). See Appendix D.2 for

implementation details. In Appendix D.3, we compare our docu-

ment search to one of the fastest OT-based solutions, which cannot
satisfy our privacy requirements.

Generic SMC. We use a semi-honest SMC compiler, EMP tool-

kit [77], to build two custom search engines. Our circuits take 1

client and 𝑁 server sets as input. They compute PSI and F-Match

using boolean logic then aggregate the 𝑁 matching results follow-

ing either X-Agg or CA-Agg policy. We call these two approaches

‘SMC-X-Agg’ and ‘SMC-CA-Agg’.

Circuit-PSI. We compare against Chandran et al. [10] which is a

state-of-the-art single-set circuit-PSI protocol. To support many-set,

we run one PSI per document. Chandran et al. support extending

the intersection computation with arbitrary circuits allowing us to

perform F-Match and then X-Agg or CA-Agg aggregation. However,

we consider the cost of computing the intersections as a lower

bound for the cost of search and do not extend the circuit.

Figure 6 reports the latency, client’s computation, and transfer

cost of document search. We repeat each experiment 4 times and

report the average cost and the standard error of the mean. Unfor-

tunately, the SMC and circuit-PSI solutions crash on runs with 4k

documents and more, hence we only show entries up to 2k docu-

ments. The stable trend of our measurements let us think that one

could easily extrapolate results for those settings from the measure-

ments that we report. To estimate the latency of our framework, we

run it in a single process and add the expected network time (as we

have one round, we consider 1 round trip time plus transfer time).

Now we show that our framework supports thin clients by sig-

nificantly reducing the clients’ computation and communication

costs. Moreover, our framework provides better latency and in

Appendix D.2 we show that we have a competitive server cost.

Latency. Both SMC and Circuit-PSI require many rounds of com-

munication and are thus heavily impacted by the network’s round-

trip time (RTT).We assume a transatlantic RTT of 100ms. In this set-

ting, our framework consistently outperforms competitors. When

performing existential search (X-Agg), our framework cuts the end-

to-end latency in half while our improvement factor increases to

96x when doing a cardinality search (CA-Agg) on 1k documents.

458

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Client’s computation. Circuit-based approaches have a balanced

computation load between clients and servers while we outsource

almost all the computations to the server. The client’s computation

cost of our framework is independent of the number of the server

sets and is only 50ms for the X-Agg and 5ms for the CA-Agg search.

While slower, the SMC approach is computationally efficient and

only requires 3.7 s for the existential (X-Agg) and 11.3 s for the

cardinality (CA-Agg) search for a 1k document collection. SMC’s

cost is still acceptable for thin clients, however using our frame-

work leads to a saving factor of 75–2250x on client computation. In

contrast, Chandran et al. require a prohibitive cost of 352 seconds,

which is 70,000x higher than ours.

Communication. The X-Agg protocol has a constant communica-

tion cost of 12 MB while the cost of CA-Agg grows linearly with

the number of documents. However, this cost is fixed to 768KB for

CA-Agg in our evaluation since we can pack up to 8k results in a

𝑃
8𝑘 ciphertext. Both SMC and Circuit-PSI have costs linear in the

inputs size. The SMC search requires 1.1GiB for X-Agg and 2.1GiB

for CA-Agg queries when searching 1k documents while Chandran

et al. require 1.7GiB; thus, both approaches are prohibitively ex-

pensive. Ultimately, our framework reduces communication by a

factor of 93–2800x.

12 TAKEAWAYS AND FUTUREWORK
In this work, we introduce and formalize private collection match-

ing problems. Using homomorphic encryption, we build a modular

framework for solving them. Our framework and its layers-based

design simplify the construction of PCM schemes that achieve com-

plex goals while limiting the leakage to what is required by the

functionality, nothing more. Relying on homomorphic encryption

is extremely advantageous in theory. Our work shows, however,

that using it in practice is challenging. We have overcome these

challenges by using optimizations from the literature, at the cost

of reduced flexibility of our framework. Ultimately, our framework

is competitive with ad-hoc solutions and outperforms generic ap-

proaches in all three latency, communication, and computation

costs, sometimes by several orders of magnitude. As example, our

framework requires 12MB of communication and less than a second

of client computation to determine matching of a chemical com-

pound against a database of 2 million compounds; or respectively

768KB and 50ms to determine whether the owner of a thousand

documents has content of interest to a querier journalist. We be-

lieve further work on homomorphic encryption schemes – and

ciphertext-based comparison methods in particular – will allow

our framework to operate in a wider range of settings. We hope

that our work fosters the evolution of homomorphic encryption

in further areas so that the community can build a wider range of

privacy-preserving applications.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive feedback

and the shepherd for helping us improve the paper. This research

received no specific grant from any funding agency in the public,

commercial, or not-for-profit sectors.

REFERENCES
[1] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org.

[2] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and

Michael Zohner. 2015. Ciphers for MPC and FHE. In EUROCRYPT.
[3] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. 2011. (If) Size

Matters: Size-Hiding Private Set Intersection. In PKC.
[4] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene

Tsudik. 2011. Countering GATTACA: efficient and secure testing of fully-

sequenced human genomes. In CCS.
[5] Aslí Bay, Zeki Erkin, Mina Alishahi, and Jelle Vos. 2021. Multi-Party Private Set

Intersection Protocols for Practical Applications. In SECRYPT.
[6] Donald Beaver, Silvio Micali, and Phillip Rogaway. 1990. The Round Complexity

of Secure Protocols (Extended Abstract). In STOC.
[7] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dimitropoulos.

2010. SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events

and Statistics. In USENIX.
[8] Adrià Cereto-Massagué, María José Ojeda, Cristina Valls, Miquel Mulero, Santiago

Garcia-Vallvé, and Gerard Pujadas. 2015. Molecular fingerprint similarity search

in virtual screening. Methods (2015).
[9] Anrin Chakraborti and Radu Sion. 2019. ConcurORAM: High-Throughput State-

less Parallel Multi-Client ORAM. In NDSS.
[10] Nishanth Chandran, Divya Gupta, and Akash Shah. 2022. Circuit-PSI With Linear

Complexity via Relaxed Batch OPPRF. PoPETs (2022).
[11] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast Private Set Intersection from

Homomorphic Encryption. In CCS.
[12] Michele Ciampi and Claudio Orlandi. 2018. Combining Private Set-Intersection

with Secure Two-Party Computation. In SCN.
[13] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2012. Fast and Private

Computation of Cardinality of Set Intersection and Union. In CANS.
[14] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. 2010. Linear-Complexity

Private Set Intersection Protocols Secure in Malicious Model. In ASIACRYPT.
[15] Emiliano De Cristofaro and Gene Tsudik. 2009. Practical Private Set Intersection

Protocols with Linear Computational and Bandwidth Complexity. IACR Cryptol.
ePrint Arch. (2009).

[16] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. 2009. Effi-

cient robust private set intersection. In ACNS.
[17] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. 2021. Fast Vector

Oblivious Linear Evaluation from Ring Learning with Errors. In WAHC@CCS.
[18] Sumit Kumar Debnath and Ratna Dutta. 2015. Secure and Efficient Private Set

Intersection Cardinality Using Bloom Filter. In ISC.
[19] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. 2018. PIR-PSI: Scaling

Private Contact Discovery. PoPETs (2018).
[20] Durant, Joseph L and Leland, Burton A and Henry, Douglas R and Nourse, James

G. 2002. Reoptimization of MDL keys for use in drug discovery. Journal of
chemical information and computer sciences (2002).

[21] Kasra Edalatnejad, Wouter Lueks, Julien Pierre Martin, Soline Ledésert,

Anne L’Hôte, Bruno Thomas, Laurent Girod, and Carmela Troncoso. 2020.

DatashareNetwork: A Decentralized Privacy-Preserving Search Engine for Inves-

tigative Journalists. In USENIX.
[22] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. 2019. Private Set Inter-

section with Linear Communication from General Assumptions. InWPES@CCS.
[23] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. IACR Cryptol. ePrint Arch. (2012).
[24] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. 2004. Efficient Private

Matching and Set Intersection. In EUROCRYPT.
[25] Taher El Gamal. 1985. A public key cryptosystem and a signature scheme based

on discrete logarithms. IEEE Trans. Inf. Theory (1985).

[26] Gaulton, Anna and Bellis, Louisa J and Bento, A Patricia and Chambers, Jon

and Davies, Mark and Hersey, Anne and Light, Yvonne and McGlinchey, Shaun

and Michalovich, David and Al-Lazikani, Bissan and others. 2012. ChEMBL: a

large-scale bioactivity database for drug discovery. Nucleic acids research (2012).

[27] Craig Gentry. 2009. A fully homomorphic encryption scheme. Ph. D. Dissertation.
Stanford University, USA.

[28] Satrajit Ghosh and Mark Simkin. 2019. The Communication Complexity of

Threshold Private Set Intersection. In CRYPTO.
[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In STOC.
[30] Carmit Hazay. 2015. Oblivious Polynomial Evaluation and Secure Set-Intersection

from Algebraic PRFs. In TCC.
[31] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are

Garbled Circuits Better than Custom Protocols?. In NDSS.
[32] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,

David Shanahan, and Moti Yung. 2017. Private Intersection-Sum Protocol with

459

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

Applications to Attributing Aggregate Ad Conversions. IACR Cryptol. ePrint
Arch. (2017).

[33] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. New phytologist
(1912).

[34] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and

Christian Weinert. 2019. Mobile Private Contact Discovery at Scale. In USENIX.
[35] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. 2013.

Scaling Private Set Intersection to Billion-Element Sets. In FC.
[36] Ferhat Karakoç and Alptekin Küpçü. 2020. Linear Complexity Private Set Inter-

section for Secure Two-Party Protocols. In CANS.
[37] Agnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. 2017.

Private Set Intersection for Unequal Set Sizes with Mobile Applications. PoPETs
(2017).

[38] Lea Kissner and Dawn Xiaodong Song. 2005. Privacy-Preserving Set Operations.

In CRYPTO.
[39] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-

ficient Batched Oblivious PRF with Applications to Private Set Intersection. In

CCS.
[40] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.

2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-

niques. In CCS.
[41] Lattigo v2.1.1 2020. Lattigo. http://github.com/ldsec/lattigo. EPFL-LDS.

[42] Laufkötter, Oliver and Miyao, Tomoyuki and Bajorath, Jürgen. 2019. Large-Scale

Comparison of Alternative Similarity Search Strategies with Varying Chemical

Information Contents. ACS Omega (2019).
[43] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography.
[44] Jack P. K. Ma and Sherman S. M. Chow. 2022. Secure-Computation-Friendly

Private Set Intersection from Oblivious Compact Graph Evaluation. In AsiaCCS.
[45] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2017.

Maliciously Secure Multi-Client ORAM. In ACNS.
[46] David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij,

Eloy Félix, María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał

Nowotka, et al. 2019. ChEMBL: towards direct deposition of bioassay data. Nucleic
Acids Research (2019).

[47] Christian Mouchet, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre Hubaux.

2020. Multiparty Homomorphic Encryption: From Theory to Practice. IACR
Cryptol. ePrint Arch. (2020).

[48] Ingo Muegge and Prasenjit Mukherjee. 2016. An overview of molecular finger-

print similarity search in virtual screening. Expert Opinion on Drug Discovery
(2016).

[49] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita

Borisov. 2010. BotGrep: Finding P2P Bots with Structured Graph Analysis. In

USENIX.
[50] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko, N. Asokan, and

Ahmad-Reza Sadeghi. 2013. Do I Know You? Efficient and Privacy-Preserving

Common Friend-Finder Protocols and Applications. In ACSAC.
[51] OkCupid. OkCupid: Free Online Dating. https://www.okcupid.com/.

[52] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT.
[53] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-Light:

Lightweight Private Set Intersection from Sparse OT Extension. In CRYPTO.
[54] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

Fast, Malicious Private Set Intersection. In EUROCRYPT.
[55] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:

Private Set Intersection Using Permutation-based Hashing. In USENIX.
[56] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. 2009.

Secure Two-Party Computation Is Practical. In ASIACRYPT.
[57] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.

2019. Efficient Circuit-Based PSI with Linear Communication. In EUROCRYPT.
[58] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.

Efficient Circuit-Based PSI via Cuckoo Hashing. In EUROCRYPT.
[59] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private Set

Intersection Based on OT Extension. In USENIX.
[60] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable Private

Set Intersection Based on OT Extension. ACM Trans. Priv. Secur. (2018).
[61] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted

Database using Semantically Secure Encryption. Proc. VLDB Endow. (2019).
[62] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-

nan. 2011. CryptDB: protecting confidentiality with encrypted query processing.

In SOSP.
[63] RDKit. RDKit: Open-source cheminformatics. http://www.rdkit.org.

[64] Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-

PSI from Vector-OLE. In EUROCRYPT.
[65] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. 1978. On data banks

and privacy homomorphisms. Foundations of Secure Computation (1978).

[66] Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Intersection

for Small Sets. In CCS.

[67] Ou Ruan, Zihao Wang, Jing Mi, and Mingwu Zhang. 2019. New Approach to

Set Representation and Practical Private Set-Intersection Protocols. IEEE Access
(2019).

[68] SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

[69] Kana Shimizu, Koji Nuida, Hiromi Arai, Shigeo Mitsunari, Nuttapong Attra-

padung, Michiaki Hamada, Koji Tsuda, Takatsugu Hirokawa, Jun Sakuma,

Goichiro Hanaoka, et al. 2015. Privacy-preserving search for chemical com-

pound databases. BMC bioinformatics (2015).
[70] Nigel P. Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD opera-

tions. Des. Codes Cryptogr. (2014).
[71] Emil Stefanov, Marten van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher W.

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An

Extremely Simple Oblivious RAM Protocol. J. ACM (2018).

[72] Strava Route Explorer . Strava Rolls Out Significant New Routes Fea-

ture. https://www.dcrainmaker.com/2020/03/strava-rolls-out-significant-new-

routes-feature.html.

[73] Dagmar Stumpfe and Jürgen Bajorath. 2011. Similarity searching. Wiley Interdis-
ciplinary Reviews: Computational Molecular Science (2011).

[74] The Fork. The Fork: Restaurant Booking System. https://www.thefork.com/.

[75] Tinder. Tinder: An Online Dating Application. https://tinder.com/.

[76] Amos Tversky. 1977. Features of similarity. Psychological review (1977).

[77] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[78] Zhusheng Wang, Karim Banawan, and Sennur Ulukus. 2021. Multi-Party Private

Set Intersection: An Information-Theoretic Approach. IEEE J. Sel. Areas Inf.
Theory (2021).

[79] Peter Willett, John M Barnard, and Geoffrey M Downs. 1998. Chemical similarity

searching. Journal of chemical information and computer sciences (1998).
[80] Ling Xue, Florence L Stahura, Jeffrey W Godden, and Jürgen Bajorath. 2001. Mini-

fingerprints detect similar activity of receptor ligands previously recognized

only by three-dimensional pharmacophore-based methods. Journal of chemical
information and computer sciences (2001).

[81] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets (Extended

Abstract). In FOCS.
[82] Jason H. M. Ying, Shuwei Cao, Geong Sen Poh, Jia Xu, and Hoon Wei Lim.

2022. PSI-Stats: Private Set Intersection Protocols Supporting Secure Statistical

Functions. In ACNS.
[83] Yongjun Zhao and Sherman S. M. Chow. 2017. Are you The One to Share? Secret

Transfer with Access Structure. PoPETs (2017).
[84] Yongjun Zhao and Sherman S. M. Chow. 2018. Can You Find The One for Me?.

In WPES@CCS.

A EXTRA MATERIAL
We provide extra materials in this section.

Summary. Table 3 summarizes our notation and asymptotic pa-

rameters and Table 4 summarizes the functionality of our protocols.

Tversky similarity. Algorithm 7 shows how to process rational

Tversky parameters to enable computing similarity with modular

arithmetic.

BFV parameters. We report full details of our BFV parameters

including their supported multiplicative depth in Table 5. Next

we provide a microbenchmark of basic operations and key sizes

in Table 6. It is possible to reduce the size of the rotation keys in

exchange for more costly rotation operations. We report key sizes

that provide a balanced computation/communication trade-off.

B SUM OF RANDOM Z∗𝑞 ELEMENTS
In Section 7, we argued that the distribution of the sum 𝑠 =

∑𝑘
𝑖=1 𝑥𝑖

of 𝑘 random 𝑥𝑖 ←$ Z∗𝑞 elements is close to uniform when 𝑞 is prime.

Nowwe prove that the probability of the sum being zero is bounded

by 1/(𝑞 − 1) and the difference between the probability of the sum

being zero vs a non-zero value 𝑎 is at most 1/(𝑞 − 1)2 when 𝑘 is

larger than one.

460

http://github.com/ldsec/lattigo
https://www.okcupid.com/
http://www.rdkit.org
https://github.com/Microsoft/SEAL
https://www.dcrainmaker.com/2020/03/strava-rolls-out-significant-new-routes-feature.html
https://www.dcrainmaker.com/2020/03/strava-rolls-out-significant-new-routes-feature.html
https://www.thefork.com/
https://tinder.com/
https://github.com/emp-toolkit

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Table 3: Notation.

𝑞,Z𝑞,Z∗𝑞 A prime number, a prime ring, and a prime field.

ℓ The security parameter.

𝑎 ←$ 𝐴 Draw 𝑎 uniformly at random from the set 𝐴.

[𝑛], ⟨𝑎𝑖 ⟩ Present the set {1, . . . , 𝑛} and the list [𝑎1, . . . , 𝑎𝑚].
1[𝐸] Function that returns ‘1’ when 𝐸 is true and ‘0’ otherwise.

HE An IND-CPA circuit-private homomorphic scheme.

𝑝𝑘, 𝑠𝑘 The client’s public and private HE keys.

⟦𝑎⟧ An encryption of 𝑎.

𝑁𝑑𝑒𝑔 The degree of the RLWE polynomial.

𝑚𝑝𝑡 ,𝑚𝑐𝑡 The plaintext and ciphertext modulus of the HE scheme.

𝑋,Y, 𝑌𝑖 The client’s set, server’s collection, and server’s 𝑖’th set.

𝑛𝑐 , 𝑛
𝑖
𝑠 The size of client set |𝑋 | and server’s 𝑖’th set |𝑌𝑖 |.

𝑁, 𝑁𝑠 The number of server sets and their total size 𝑁𝑠 =
∑
𝑖 𝑛

𝑖
𝑠 .

𝐷 The set input domain.

𝑇 The matching threshold [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥].
⟦𝑧𝑖⟧ The client’s encrypted bit-vector 𝑧𝑖 ← (𝑑𝑖 ∈ 𝑋).
𝑄 The client’s query. Small input: ⟨⟦𝑥𝑖⟧⟩, domain: ⟨⟦𝑧𝑖⟧⟩.
⟦𝑠𝑖⟧ An encrypted status determining iff 𝑥𝑖 ∈ 𝑌𝑘 .
⟦ca⟧ An encrypted cardinality of intersection ca = |𝑋 ∩ 𝑌𝑘 |.
⟦𝛾𝑘⟧ A matching response. 𝜆 = 0 iff the set 𝑌𝑘 is interesting.

⟦𝐴⟧ An aggregated collection-wide response.

⟦𝑅⟧ A term to randomize the output of malicious users.

Table 4: Summary of our protocols. We show the computed
functionalities, their output range, and auxiliary input vari-
ables in the table.

Protocol Function Range Aux.

PSI 𝑋 ∩ 𝑌 {0, 1}𝑛𝑐
PSI-CA |𝑋 ∩ 𝑌 | Z

Matching: 𝜆 ← 𝑓𝑀 (𝑋,𝑌)
F-Match 𝑋 ⊆ 𝑌 {0, 1}
Th-Match |𝑋 ∩ 𝑌 | ≥ 𝑡 {0, 1} 𝑡

Tv-Match Tv𝛼,𝛽 (𝑋,𝑌) ≥ 𝑡 {0, 1} 𝑡, 𝛼, 𝛽

Aggregation: 𝐴← 𝑓𝐴 (𝜆1, . . . , 𝜆𝑁)
NA-Agg ⟨𝜆𝑖 ⟩ {0, 1}𝑁
X-Agg ∃𝑖 |𝜆𝑖 = 1 {0, 1}
CA-Agg |{𝑖 | 𝜆𝑖 = 1}| Z
Ret-Agg 𝐷 𝑗 |𝜆 𝑗 = 1 ∧ |{𝑖 | 𝜆𝑖 = 1 ∧ 𝑖 ∈ [𝑗]}| = 𝜅 Z 𝐷,𝜅

Table 5: BFV parameters with 128-bit security

𝑁𝑑𝑒𝑔 𝑚𝑝𝑡 lg(𝑚𝑐𝑡) Mult. depth

𝑃
8𝑘 8192 4079617 218-bit 2

𝑃
16𝑘 16384 163841 438-bit 7

𝑃
32𝑘 32768 786433 880-bit 16

Let 𝑧 [𝑘] be the probability that the of sum of 𝑘 elements from Z∗𝑞
is zero and 𝑝𝑎

[𝑘]
be the probability that the of sum is a non-zero

Algorithm 7 Process Tversky parameters 𝑡, 𝛼 , and 𝛽 to compute integer coefficients

(𝑎,𝑏, 𝑐) .
function Tversky-param-process(𝛼, 𝛽, 𝑡)

(𝛼1, 𝛼2) ← ToRational(𝛼) ⊲ 𝛼 = 𝛼1/𝛼2

(𝛽1, 𝛽) ← ToRational(𝛽) ⊲ 𝛽 = 𝛽1/𝛽
(𝑡1, 𝑡2) ← ToRational(𝑡) ⊲ 𝑡 = 𝑡1/𝑡2
𝑙 ← LCM(𝑡1, 𝛼2, 𝛽2)
𝑎 ← 𝑙 · (𝑡−1 − 1 + 𝛼 + 𝛽)
𝑏 ← 𝑙 · 𝛼
𝑐 ← 𝑙 · 𝛽
𝑔← GCD(𝑎,𝑏, 𝑐)
return (𝑎/𝑔,𝑏/𝑔, 𝑐/𝑔)

Table 6: Cost of basic BFV operations.

𝑃
8𝑘 𝑃

16𝑘 𝑃
32𝑘

Addition (𝜇s) 29 115 530

Multiplication (ms) 7.3 36.3 182

Plaintext mult. (ms) 0.97 4.13 18.3

Rotation by 1 (ms) 2.16 10.8 57

Ciphertext (KB) 384 1536 6144

Public key (KB) 512 2048 7680

Relinearization key (MB) 3 12 60

Rotation key (MB) 22 96 510

value 𝑎. When 𝑘 = 1, e.g., we sum one element, these probabilities

are 𝑧 [1] = 0 and 𝑝𝑎
[1] = 1/(𝑞 − 1). The 𝑘 elements 𝑥𝑖 are indepen-

dent from each other so we choose the value of the last element

and recursively compute the probability by using the distribution

of 𝑘 − 1 elements.

𝑧 [𝑘] =
𝑞−1∑︁
𝑎=1

𝑝𝑎
[𝑘−1]/(𝑞 − 1) = 𝑝𝑎

[𝑘−1]

𝑝𝑎
[𝑘] = 𝑧 [𝑘−1]/(𝑞 − 1) +

∑︁
𝑖∈Z∗𝑞−{𝑎}

𝑝𝑎−𝑖 [𝑘−1]/(𝑞 − 1)

= 𝑧 [𝑘−1]/(𝑞 − 1) + (𝑞 − 2) · 𝑝𝑎 [𝑘−1]/(𝑞 − 1)

= 𝑝𝑎
[𝑘−1] + (𝑧 [𝑘−1] − 𝑝𝑎 [𝑘−1])/(𝑞 − 1)

The probability gap of 𝑧 [𝑘] and 𝑝𝑎 [𝑘] gets narrower as the num-

ber of elements 𝑘 increases as:

𝑝𝑎
[𝑘] − 𝑧 [𝑘] = 𝑝𝑎

[𝑘−1] + (𝑧 [𝑘−1] − 𝑝𝑎 [𝑘−1])/(𝑞 − 1) − 𝑝𝑎 [𝑘−1]

= (𝑧 [𝑘−1] − 𝑝𝑎 [𝑘−1])/(𝑞 − 1)

The highest probability of a zero sum happens when summing

two random elements and the probability is bound by 𝑧 [2] =

𝑝𝑎
[1] = 1/(𝑞 − 1). Similarly the highest probability difference hap-

pens when 𝑘 = 2 and is bound by 𝑧 [2] −𝑝𝑎 [2] = (𝑝𝑎 [1] −𝑧 [1])/(𝑞−
1) = 1/(𝑞 − 1)2. This means that the probability of false-positive

in our approach is bounded by 1/(𝑞 − 1) while the probability of

distinguishing the number of non-zero elements (when at least one

non-zero element is present) is 1/(𝑞 − 1)2.
461

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

C PRIVACY PROOF
Weprove the security and privacy of our framework.We throughout

assume that honest users do not have any interaction outside our

framework that can leak information.

Roadmap. We start by formally defining security properties of

HE schemes such as IND-CPA security, circuit privacy, and strong

input privacy in Appendix C.1. Next, we address our framework’s

security in a semi-honest setting and use real-world/ideal-world

simulation to prove Theorem 1 in Appendix C.2.We studymalicious

servers in Appendix C.3 and provide a tight reduction from our

client privacy to the semantic security of our HE scheme to prove

Theorem 2. Finally, we extend the notion of real-world/ideal-world

simulation to a new paradigm called cipher-world, which provides

better support for simulating HE protocols in a malicious setting.

We use this new notion to prove the server privacy of our scheme

against malicious clients in a non-standard manner in Appendix C.4.

C.1 Security properties of HE schemes
We formally define the security properties of HE schemes in this sec-

tion. We start with semantic security (IND-CPA). Next, we discuss

noise in HE schemes and define circuit privacy, which ensures that

the noise contained in ciphertexts does not leak information about

the computation performed on them. Finally, we extend circuit

privacy, which only applies in a semi-honest setting, to a malicious

setting and introduce strong input privacy.

Definition 5 (IND-CPA). An encryption scheme is indistinguish-

able against chosen plaintext attacks if no PPT adversary A exists

such that:

Pr

𝑝 ← HE.ParamGen(1ℓ)
(𝑝𝑘, 𝑠𝑘) ← HE.KeyGen(𝑝)
(st,𝑚0,𝑚1) ← A(𝑝𝑘)

𝑏 ←$ {0, 1}
𝑐𝑏 ← HE.Enc(𝑝𝑘,𝑚𝑏)

𝑏 ′ ← A(st, 𝑐𝑏)

: 𝑏 = 𝑏 ′

>

1

2

+ 𝜖

Each BFV ciphertext 𝑐 contains noise. The amount of noise in-

creases with each operation and can be measured. As a result, a

ciphertext 𝑐 contains more information than its decrypted value

𝑝 ← HE.Dec(𝑠𝑘, 𝑐). If the noise grows beyond the HE parameter’s

noise budget, then the decryption fails ⊥ ← HE.Dec(𝑠𝑘, 𝑐). Infor-
mally, circuit privacy states that the ciphertext 𝑐 should not reveal

any information about the computation performed on 𝑐 beyond the

decrypted result 𝑝 . We follow the definition of Castro et al. [17]:

Definition 6 (Circuit privacy). Let HE be a leveled homomorphic

encryption scheme and let

params← HE.ParamGen(𝑞)
(𝑠𝑘, 𝑝𝑘) ← HE.KeyGen(params)

𝑐𝑖 ← HE.Enc(𝑠𝑘,𝑚𝑖)
𝑀 ← 𝑓 (𝑚1, . . . ,𝑚𝑛, 𝑝1, . . . , 𝑝𝑘)

be an (honestly) generated key pair, ciphertexts, and output of the

computation. The scheme HE is 𝜖-circuit private if a PPT simula-

tor S exists such that for all functions 𝑓 of depth 𝑙 ≤ 𝐿 all PPT

distinguisher algorithms D are bounded by���Pr[D (HE.Eval (𝑝𝑘, 𝑓 , ⟨𝑐𝑖 ⟩, ⟨𝑝𝑖 ⟩) , 𝑠𝑘, 𝑝𝑘, ⟨𝑐𝑖 ⟩)) = 1

]
−

Pr

[
D (S (𝑠𝑘, 𝑝𝑘,𝑀) , 𝑠𝑘, 𝑝𝑘, ⟨𝑐𝑖 ⟩)) = 1

] ��� ≤ 𝜖 .

The circuit privacy’s definition focuses on the semi-honest set-

ting and requires honest generation of HE keys and ciphertexts.

We extend this definition by (1) removing the honest generation

requirement, which extends the property to the malicious setting,

and (2) relaxing privacy by revealing the functionality 𝑓 and only

hiding the evaluator’s private data ⟨𝑝𝑖 ⟩.
Definition 7 (Strong input privacy). A leveled homomorphic en-

cryption scheme HE is 𝜖-strong input private if a simulator S𝑠𝑖𝑝
exists such that all PPT adversaries A are bounded by:

Pr

(st, 𝑝𝑘, 𝑠𝑘) ← A(1ℓ)
(st, 𝑓 , ⟨𝑐𝑖 ⟩, ⟨𝑝𝑖 ⟩) ← A(st)

𝑏 ←$ {0, 1}
𝑚𝑖 ← HE.Dec(𝑠𝑘, 𝑐𝑖)
𝑀 ← 𝑓 (⟨𝑚𝑖 ⟩, ⟨𝑝𝑖 ⟩)

𝑎0 ← HE.Eval(𝑝𝑘, 𝑓 , ⟨𝑐𝑖 ⟩, ⟨𝑝𝑖 ⟩)
𝑎1 ← S𝑠𝑖𝑝 (𝑠𝑘, 𝑝𝑘, 𝑓 , ⟨𝑐𝑖 ⟩, 𝑀)

𝑏 ′ ← A(st, 𝑎𝑏)

: 𝑏 = 𝑏 ′

≤ 1

2

+ 𝜖

Similar to the circuit privacy definition, 𝑓 is the computed function-

ality, ⟨𝑐𝑖 ⟩ is the client’s encrypted input, and ⟨𝑝𝑖 ⟩ is the server’s
plaintext input while st is an state for the adversary for storing

information between interactions.

Ciphertext indistinguishability. When simulating our pro-

tocols, in the next section, the simulator generates ciphertexts. As

part of our proof, we need to show that these ciphertexts are indis-

tinguishable from the output of our protocols. Hence, we discuss

when a distinguisher D can distinguish two ciphertexts 𝑐 and 𝑐 ′ in
three settings:

Known public key. We first consider the case where the distin-

guisher only knows the public key (𝑝𝑘). This scenario directly

follows from the IND-CPA property. As long as the HE scheme is

IND-CPA secure and ciphertexts have the same size |𝑐 | = |𝑐 ′ |, then
the distinguisher D(𝑝𝑘, 𝑐, 𝑐 ′) has a negligible chance.

Semi-honest with known secret key. Next, we consider the case
where the distinguisher knows both the secret and public keys

(𝑠𝑘, 𝑝𝑘) in the semi-honest setting, i.e., keys and ciphertexts are

honestly generated. In this scenario, the distinguisher can decrypt

ciphertexts so IND-CPA is not enough. Decrypting a ciphertext

𝑝 ← HE.Dec(𝑠𝑘, 𝑐) results in a plaintext 𝑝 and a measurable noise

𝜖 . This transforms ciphertext indistinguishability to showing two

statements: both decrypted plaintexts and ciphertext noises are

indistinguishable. While comparing decrypted values 𝑝 is straight-

forward, we rely on circuit privacy to ensure noises are indistin-

guishable. As long as the HE scheme is IND-CPA secure and circuit-
private, and 𝑝 ← HE.Dec(𝑠𝑘, 𝑐) ∧ 𝑝 ′ ← HE.Dec(𝑠𝑘, 𝑐 ′) ∧ 𝑝

c≡ 𝑝 ′,
then the distinguisher D(𝑠𝑘, 𝑝𝑘, 𝑐, 𝑐 ′) has a negligible chance in a

semi-honest setting.

Malicious with known secret key. The distinguisher knows both
the secret and public keys (𝑠𝑘, 𝑝𝑘) in a malicious setting. We require

our scheme to be IND-CPA secure and strongly input private in this

462

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

setting and use the simulator of strong input privacy (S𝑠𝑖𝑝) to
produce indistinguishable ciphertexts.

Lack of circuit privacy. The Lattigo library does not provide

circuit privacy. This is not surprising since other popular HE li-

braries such as Microsoft Seal [68] do not provide circuit privacy

either. While there are possible mitigations in the semi-honest set-

ting such as noise-flooding [27] (alternatively called noise smudg-

ing) to achieve circuit privacy, there is no known mechanism for

the malicious setting (i.e., no HE scheme achieves strong input

privacy). Noise-flooding is only proven private in a semi-honest

scenario where keys are generated honestly and the computation is

guaranteed to start on freshly encrypted ciphertexts. Beyond flood-

ing, there is a new line of work [17] that uses careful parameter

selection in RNS or DCRT representation of ciphertexts to achieve

lightweight circuit privacy. We hope this approach will be adopted

by HE libraries.

Our implementation does not add extra defense mechanisms to

prevent possible leakage from noise, due to the extra cost associated

with these defenses. Despite this leakage, practical attacks using

noise are limited. The complexity and depth of our functions make

extracting information from this noise more challenging; especially

since the size of the server’s private data, 𝑁𝑠 , is significantly larger

than the capacity of the noise for storing information.

C.2 Semi-honest security
We use real-world/ideal-world simulation to prove the security of

our PCM protocols in the semi-honest setting (see Theorem 1). Our

well-formedness checks, computed using (SD-)qery-check, have

no impact on honest execution as they only add ⟦0⟧ to the result
when the query is generated honestly. Therefore, we ignore these

functions in this section. Our framework can be instantiated to

support different functionalities, but they share a similar structure,

which enables us to write a single proof that is customizable de-

pending on the protocol variation. As seen in Definition 1, PCM is

a two-party interaction that computes

(𝑓𝑐 (𝑋,Y),⊥) ← 𝑃𝐶𝑀𝑓𝑀 ,𝑓𝐴 (𝑋,Y)
where 𝑓𝑐 (𝑋,Y) = 𝑓𝐴 (𝑓𝑀 (𝑋,𝑌1) , . . . , 𝑓𝑀 (𝑋,𝑌𝑁)) is a deterministic
function selected from the Table 4. To reason about the properties

the matching layer, we allow 𝑓𝐴 to be equal to the identity function.

To reason about the PSI layer, we allow 𝑓𝑐 to have the natural PSI

and PSI-CA definition.

Our semi-honest scenario has deterministic output functions.

Therefore, we can use the simpler formulation of security in Lin-

dell [43] which requires schemes to satisfy two properties to be

secure. Correctness: the output of parties is correct. Privacy: the
view of parties can be separately simulated as follows:{
S𝐶

(
1
ℓ , 𝑋, 𝑓𝑐 (𝑋,Y)

)}
𝑋,Y,ℓ

c≡ {View
client

(ℓ, 𝑋,Y)}𝑋,Y,ℓ ,{
S𝑆

(
1
ℓ ,Y,⊥

)}
𝑋,Y,ℓ

c≡ {Viewserver (ℓ, 𝑋,Y)}𝑋,Y,ℓ

where ℓ is the security parameter, 𝑋 is the client input, and Y
is the server input. We omit ℓ in the rest of this section. We as-

sume that the client honestly generates the key pair (𝑝𝑘, 𝑠𝑘) ←
HE.KeyGen(params) and sends the public key 𝑝𝑘 to the server

before running the protocol.

Correctness. In a semi-honest scenario where both parties fol-

low the protocol specification, showing that Algorithms 3 to 6

compute the functionality described in Table 4 is straightforward

math. We have described the intuition behind these algorithms in

Sections 6 to 8, so we do not repeat the argument here.

Server privacy. We simulate the view of clients to ensure server

privacy. Let the view of the client be

View
client

(𝑋,Y) = (𝑋, rnd, 𝑄, 𝑅,𝐴 = 𝑓𝑐 (𝑋,Y))
where rnd is the internal random tape, 𝑄 is the encrypted query, 𝑅

is the server’s encrypted response, and 𝐴 is the client’s output.

All our protocols start with clients sending an encrypted query

𝑄 to the server and receiving an encrypted response 𝑅. Afterward,

clients apply the appropriate reveal function on 𝑅 to compute the

output 𝐴← reveal(𝑠𝑘, 𝑅). Correctness ensures that the output 𝐴
computed by the reveal algorithm is equal to the expected output

𝑓𝑐 (𝑋,Y) summarized in Table 4.

Now we build a simulator S𝐶 that given the input (𝑋, rnd, 𝐴 =

𝑓𝑐 (𝑋,Y)) simulates the clients view as follows:

(1) The simulator uses 𝑄 ′ ← (SD-)qery(𝑝𝑘,𝑋) to compute a

query depending on the domain size with rnd as internal

randomness.

(2) We categorize the client’s output based on the range of

𝑓𝑐 (𝑋,Y) into 3 groups:

𝐴 ∈

{0, 1} For: F-Match, Th-Match, Tv-Match, X-Agg

{0, 1}𝑘 For: PSI, NA-Agg

Z For: PSI-CA, CA-Agg, Ret-Agg

Depending on the range category, the simulator computes

the server response 𝑅′ as follows using the circuit-privacy
simulator to ensure equivalent noise levels:

𝑅′ ←

HE.Enc(𝑝𝑘, 𝑟 · 𝐴) 𝐴 ∈ {0, 1}
⟨HE.Enc(𝑝𝑘, 𝑟 𝑗 · 𝐴[𝑗])⟩ 𝐴 ∈ {0, 1}𝑘
HE.Enc(𝑝𝑘,𝐴) 𝐴 ∈ Z

where 𝑟 ←$ Z∗𝑞 and 𝑟 𝑗 ←$ Z∗𝑞 are random values.
3

(3) The simulator returns (𝑋, rnd, 𝑄 ′, 𝑅′, 𝐴).
Now we show that the distribution returned from the simula-

tor S𝐶 is indistinguishable from View
client

. The three variables

𝑋,𝐴, rnd are taken from the input and are guaranteed to have the

same distribution between the simulation and the view. Therefore,

we only need to show that the joint distribution for the query

and the server response are indistinguishable – conditional on the

common 𝑋,𝐴, and rnd variables.

Both the query𝑄 and response 𝑅 are ciphertexts. As discussed in

‘ciphertext indistinguishability’ in Appendix C.1, we are in a semi-

honest scenario where the distinguisher knows both the public and

private keys (𝑝𝑘, 𝑠𝑘). Our HE scheme is both IND-CPA and circuit

private so we only need to show that these ciphertext pairs, (𝑄,𝑄 ′)
and (𝑅, 𝑅′), decrypt to the same value. Queries are computed fol-

lowing𝑄 ← (SD-)qery(𝑝𝑘,𝑋). The query function only encrypts

the input set 𝑋 as the query so both 𝑄 and 𝑄 ′ should decrypt to

the same value. The server’s response 𝑅 depends on the client’s

output 𝐴 and this relation is specified in our reveal functions. Our

3
When evaluating F-Match, the simulator chooses random variables from Z𝑞 instead

of Z∗𝑞 to ensure the same false positive probability as the real-world execution.

463

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

correctness property ensures that the following relation between 𝑅

and 𝐴 holds in the real-world:

𝑅 ←

⟦𝑏⟧ 𝑏 =

{
0 𝐴 = 0

←$ Z∗𝑞 𝐴 = 1

���� 𝐴 ∈ {0, 1}

⟨⟦𝑏 𝑗⟧⟩ 𝑏 𝑗 =

{
0 𝐴[𝑗] = 0

←$ Z∗𝑞 𝐴[𝑗] = 1

���� 𝐴 ∈ {0, 1}𝑘

⟦𝐴⟧ 𝐴 ∈ Z

.

It is straightforward to see that the underlying plaintext of 𝑅′,
produced in step (2) by S𝐶 , follows the same distribution. □

Client privacy. We simulate the view of servers to ensure client

privacy. Simulating the server’s view is considerably simpler than

the client’s as the server only observes ciphertexts encrypted under

the client’s key. In this simulation, the adversary is a semi-honest

server and the distinguisher does not have access to the client’s

secret key. Moreover, our HE scheme is IND-CPA, which simplifies

ciphertext indistinguishability to ensuring |𝑐 | = |𝑐 ′ | (see Appen-
dix C.1).

Let the server’s view be Viewserver = (Y, rnd, 𝑄, 𝑅). We build a

simulator S𝑆 that given the input (Y, rnd) proceeds as follows:

(1) The simulator chooses two random variables 𝑟1 and 𝑟2 with

the same size as the query and the server response then

encrypts them.

𝑄 ′ ← HE.Enc(𝑝𝑘, 𝑟1), 𝑅′ ← HE.Enc(𝑝𝑘, 𝑟2)

(2) The simulators return (Y, rnd, 𝑄 ′, 𝑅′).

The variables Y and rnd are taken from the input and have the

same distribution between the simulation and the view. The two

variables 𝑄 ′ and 𝑅′ are encrypted under the client’s key. Without

the knowledge of the secret key 𝑄
c≡ 𝑄 ′ and 𝑅 c≡ 𝑅′ hold indepen-

dent of their content. □

C.3 Malicious server
Now, we study the setting where the server is malicious. In this

setting, the client is honest and server privacy is not applicable.

Our framework provides no correctness guarantee in this setting.

The malicious server can force a corrupted response that depends

on the client input or fix the outcome independent of the query.

Despite the lack of correctness guarantee, malicious servers cannot

learn any information about the client’s private data. We restate

client privacy (Definition 3) more formally, then prove Theorem 2

by giving a tight reduction from our scheme’s client privacy to

the IND-CPA security of our HE encryption scheme. During this

proof, we assume that the client’s input fits into a single batched

ciphertext, which holds throughout our evaluation. Adjusting the

proof to support input encrypted in 𝑘 ciphertexts is straightforward

and gives a 𝑘-fold advantage to the adversary.

Definition (Client privacy). A PCM protocol is client private if no

PPT adversary A exists such that:

Pr

𝑝 ← HE.ParamGen(1ℓ)
(𝑝𝑘, 𝑠𝑘) ← HE.KeyGen(𝑝)
(st, 𝑋0, 𝑋1) ← A(𝑝𝑘)

𝑏 ←$ {0, 1}
𝑄𝑏 ← (SD-)qery(𝑝𝑘,𝑋𝑏)

𝑏 ′ ← A(st, 𝑄𝑏)

:

|𝑋0 | = |𝑋1 |
𝑏 = 𝑏 ′

>

1

2

+ 𝜖 .

Proof. Let A be an adversary that can break the client privacy

property with a non-negligible probability 𝜖 . We build a new ad-

versary A ′ that can break the IND-CPA security (Definition 5) of

our HE scheme with the same probability 𝜖 .

(1) The adversaryA ′ starts an IND-CPA challenge and receives

a public key A ′(𝑝𝑘).
(2) The adversary A ′ calls (st, 𝑋0, 𝑋1) ← A(𝑝𝑘).
(3) Depending on the domain size,A ′ converts sets 𝑋𝑎 to𝑚𝑎 =

⟨𝑥𝑖 ⟩ or𝑚𝑎 = ⟨𝑧𝑖 ⟩ following the logic of (SD-)qery.

(4) The adversary A ′ continues the IND-CPA challenge with

(st,𝑚0,𝑚1) and receives A ′(st, 𝑐𝑏).
(5) The adversaryA ′ passes the challenge 𝑏 ′ ← A(st, 𝑄𝑏 = 𝑐𝑏)

to A and returns 𝑏 ′ as the output.

We show that the adversary A cannot distinguish interaction

with A ′ from our protocol. The adversary A has two interactions

in the client privacy challenge. The first interaction is getting a fresh

public key 𝑝𝑘 which is the same between the IND-CPA and client

privacy challenges. In the second interaction, A receives a query

𝑄𝑏 produced by (SD-)qery. We know that (SD-)qery consists of

two steps: convert 𝑋 into 𝑝 = ⟨𝑥𝑖 ⟩ or 𝑝 = ⟨𝑧𝑖 ⟩ which A ′ performs

in (3) and encrypting 𝑝 with 𝑝𝑘 which is performed as part of IND-

CPA challenge. This ensures that 𝑐𝑏 is computed in the same way

as 𝑄𝑏 and follows the same distribution. The adversary A ′ runs
one instance of client privacy with A and succeeds the IND-CPA

as long as the A succeeds leading to the same 𝜖 advantage. □

C.4 Malicious clients
When addressing malicious clients, client privacy is irrelevant and

correctness does not apply either as the server has no output. There-

fore, we only need to address our protocols’ server privacy.

Theorem 3. Our protocols provide server privacy against mali-
cious clients if the HE scheme is IND-CPA and strongly input private.

Unfortunately, direct application of real-world/ideal-world simu-

lation on our protocols in the malicious setting is not possible. The

biggest challenges in simulation proofs in the malicious setting is

that the adversary is not required to use its input and random tape

during the execution. Therefore, the simulation needs to extract the

effective input that the malicious adversary uses to determine the

corresponding output. In our protocols, the server only receives an

encrypted query from the client and there is no further interaction,

such as having ROM calls in the client, to provide any extraction

opportunity. Therefore, the semantic security of our HE scheme pre-

vents extracting the effective inputs. To address this challenge, we

adapt the ideal-world paradigm and introduce a new notion for sim-

ulating HE protocols called cipher-world. Cipher-world is inspired

by trapdoor commitments and allows the trusted party to decrypt

464

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

Ideal-world Decrypt &
Check

Cipher-world

Ideal-world

Figure 7: Structure of the cipher-world and its difference with
the ideal-world.

the query and compute the ideal functionality. We first prove that

cipher-world provides the same server privacy guarantee as the

ideal-world then use it to prove our framework server-private. The

introduction of cipher-world as a new paradigm to prove security

makes our proof highly non-standard.

Cipher world
We extend the notion of real-world/ideal-world simulation for two-

party HE-based schemes in which exactly one party, called the

querier, holds a pair of HE keys while the other party, called the

evaluator, performs computation in the encrypted domain. This ex-

tension is one-sided and only addresses the privacy of the evaluator

(i.e., the server in our protocols). We call this extension cipher-

world.

Cipher-world assumes that the trusted party defined in the ideal-

world accepts encrypted inputs, is computationally unbounded, and
can extract the secret key 𝑠𝑘 of the querier from its public key

𝑝𝑘 – breaking the security of the HE scheme in the process. The

trusted party uses this secret key to extract the effective input 𝑋 of

malicious queriers. Unlike the ideal-world, there is no guarantee

that the decrypted input of the cipher oracle is valid and follows the

input restrictions. The cipher oracle first verifies input restrictions

and outputs⊥ if any check fails; otherwise, it computes and outputs

𝑓 (𝑋,𝑌). Additionally, the cipher-world reveals the secret key 𝑠𝑘 to

the simulator. This key is solely used for the purpose of simulating

ciphertext noise. Figure 7 shows the structure of the cipher-world

and how it compares to the standard ideal-world setting. We define

both ideal-world and cipher-world oracles below to highlight their

differences:

𝑓 (𝑋,𝑌) ← IDEAL(ℓ, 𝑋,𝑌)
(𝑠𝑘, 𝑓 (𝑋,𝑌)/⊥) ← CIPHER(ℓ, (𝑝𝑘, 𝑐 = ⟦𝑋⟧), 𝑌).

Recall that here 𝑌 contains the evaluator’s private input.

Theorem 4. The cipher-world provides the same privacy guaran-
tee for the evaluator’s private information as the ideal-world.

Proof. It is clear that queriers can learn more information from

interacting with cipher oracles than ideal oracles. However, we

show that this leakage does not impact evaluator’s privacy. First,

we formally prove that this leakage L is bounded to providing

an oracle 𝑠𝑘 ← OExt (𝑝𝑘) which extracts the secret key from HE

public keys. Next, we prove that the leakage L is independent of

the evaluator’s private date 𝑌 .

We assume that a PPT adversary A exists such that A gains

more advantage from interacting with a cipher oracle instead of an

ideal oracle than L = {OExt}. We build a new adversary A ′ that
given an ideal oracle IDEAL(𝑌, ·) and an extraction oracle OExt can

simulate the view of A.

(1) Adversary A ′ initiates a new interaction with A and re-

ceives (𝑝𝑘, 𝑐 = ⟦𝑋⟧) ← A(·).
(2) AdversaryA ′ uses the extraction oracle within L to extract

the secret 𝑠𝑘 ← OExt (𝑝𝑘).
(3) Adversary A ′ decrypts A’s query 𝑋 ← HE.Dec(𝑠𝑘, 𝑐).
(4) Adversary A ′ verifies whether 𝑋 passes input restrictions.

(4.a) If any check fails, A ′ sets 𝐴← ⊥.
(4.b) Otherwise, A ′ interacts with the ideal world oracle with

the decrypted input and sets 𝐴← IDEAL(𝑋,𝑌).
(5) Adversary A ′ finishes the execution A(𝑠𝑘,𝐴).
We need to show that the adversaryA cannot distinguish (𝑠𝑘,𝐴)

produced in our simulation from the output of the cipher-world.

Both the simulation and the cipher-world oracle are directly us-

ing the extraction oracle OExt to produce the secret key 𝑠𝑘 which

ensures secret key indistinguishability. We study two cases for 𝐴:

(1) The adversary A does not follow the input restriction. In this

case, the cipher oracle responds with the failure symbol ⊥. The
adversary A ′ performs the same input verification process as the

cipher oracle which leads to setting 𝐴← ⊥ when one of step (4.a)

checks fail. (2) The adversary A follows the input restriction. In

this scenario, both the cipher and ideal oracles compute the same

output ensuring that 𝐴 = 𝑓 (𝑋,𝑌). This proves that the leakage of
cipher-world can be bound to L = {OExt}.

Now we need to show that the leakage of the cipher-world

is independent of the evaluator’s private data. As we bound the

leakage to an extraction oracle {OExt}, this independence is clear
since extraction is not impacted by changing the evaluator’s private

data 𝑌 . Note that in our protocol, exactly one party, the querier,

generates HE keys, so assuming that HE key extraction is easy has

no impact on the evaluator. Therefore, our cipher-world provides

the same evaluator privacy guarantee as the ideal world. □

We showed that our cipher-world provides the same server (eval-

uator) privacy as the original ideal-world. Note that the cipher-

world is one-sided and does not make any security claim about

clients (queriers). To prove that our protocol provides server pri-

vacy, we have to show that the real-world view can be simulated

given access to a cipher-world oracle.{
CIPHER

Client

S′
𝐶

(𝑋,Y)
}

c≡
{
REAL

Client

A (𝑋,Y)
}

⇕

S′𝐶 (𝑋, rnd,A,CIPHER(𝑌, ·)) c≡ ViewA (𝑋,Y) = (𝑋, rnd, 𝑄, 𝑅,𝐴)

We build a simulator S′
𝐶
that given a PPT real-world malicious

client A and a cipher-world oracle CIPHER(Y, ·) fixed with the

server’s input, simulates the real-world as follows:

(1) SimulatorS′
𝐶
initiates a new interaction withA and receives

(𝑝𝑘,𝑄 = ⟦𝑋 ′⟧) ← A(·).
(2) Simulator S′

𝐶
interacts with the cipher oracle and learns

(𝑠𝑘,𝐴′) ← CIPHER((𝑝𝑘,𝑄)).
465

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

(3) If the cipher-world detects a malicious query 𝑄 which does

not respect input checks (i.e., 𝐴′ = ⊥), the simulator S′
𝐶

chooses a random response 𝑡 ←$ Z𝑞 , sets the output accord-

ingly 𝐴′ ← reveal(𝑠𝑘, ⟦𝑡⟧), and skips to the step 5.

(4) Otherwise, S′
𝐶
computes the response 𝑡 as follows:

𝑡 ←

𝑟 · 𝐴′ 𝐴 ∈ {0, 1}
⟨𝑟 𝑗 · 𝐴′[𝑗]⟩ 𝐴 ∈ {0, 1}𝑘
𝐴′ 𝐴 ∈ Z

.

Note that the range of 𝐴 is determined by functionality 𝑓

and is independent of the parties’ input.

(5) Simulator S′
𝐶
performs 𝑅′ ← S𝑠𝑖𝑝 (𝑠𝑘, 𝑓 ,𝑄, 𝑡).

(6) Adversary A only learns the response 𝑅 if the decryption

succeeds. Therefore, Simulator S′
𝐶
checks if the decryption

HE.Dec(𝑠𝑘, 𝑅′) succeeds. Otherwise, S′
𝐶
sets 𝐴′ ← ⊥.

(7) The simulator returns (𝑋, rnd, 𝑄 = ⟦𝑋 ′⟧, 𝑅′, 𝐴′).
Now, we show that the real view (𝑋, rnd, 𝑄 = ⟦𝑋 ′⟧, 𝑅, 𝐴) is

indistinguishable from the simulated view (𝑋, rnd, 𝑄, 𝑅′, 𝐴′). The
simulator S′

𝐶
does not use variables 𝑋 and rnd as there is no guar-

antee that malicious clients will use their input or random tapes.

As (𝑋, rnd, 𝑄) are directly taken from the input, we only need to

show that (𝑅,𝐴) c≡ (𝑅′, 𝐴′) conditional on the common variables.

We split our analysis into three cases:

Malicious queries which do not represent a set. When the client is

malicious there is no guarantee that the query represents a set. In

Section 6.3, we designed (SD-)qery-check functions and proved

that they randomize the output of our protocols when the query

does not represent a set as long as the HE abstraction holds. Our

simulator S′
𝐶
relies on the cipher oracle to detect when the query

does not represent a valid set in step 3 and assigns a uniformly

random value 𝑡 to be encrypted as the response 𝑅′. To ensure that

𝑅′ has an indistinguishable noise from the real response 𝑅, instead

of directly using the encryption in step 5, S′
𝐶
uses the simulator

S𝑠𝑖𝑝 from the strong input privacy property (Definition 7). Our

simulator follows the same reveal process to compute the output

𝐴 from the response as the real protocol. Since 𝑅
c≡ 𝑅′, we will have

𝐴
c≡ 𝐴′ as long as the server response 𝑅′ decrypts successfully.
The malicious query decrypts to the set 𝑋 ′:When the query repre-

sents a set, (SD-)qery-check produces an encrypted zero and does

not impact the output of the protocol (i.e., adding ⟦0⟧ is neutral).
Knowing that the query is an encryption of the set𝑋 ′, our protocols
ensure that 𝐴 = 𝑓 (𝑋 ′,Y) as long as the decryption of 𝑅 succeeds.

This guarantee follows from combining (1) our semi-honest correct-

ness from Appendix C.2 and (2) knowing that the query decrypts to

the same value as (SD-)qery(𝑝𝑘,𝑋 ′). The simulator S′
𝐶
follows a

similar process to compute 𝑅 from 𝐴 as our semi-honest simulator

S𝐶 with the difference of replacing HE.Enc with S𝑠𝑖𝑝 (i.e., relying

on strong input privacy instead of circuit privacy).

Failed decryption. Unlike the semi-honest setting where we know

that the client’s query is freshly encrypted, the server may receive

queries with a high noise level. This may lead to producing server

responses that fail the decryption. The use of S𝑠𝑖𝑝 in step 5 ensures

that the response of S′
𝐶
has the same noise level as our real-world

response. Therefore, the decryption of 𝑅′ fails if and only if the

decryption of 𝑅 fails. When the decryption fails, the real-world

8 16 32 64 128 256 512 1024
#Sets

102

103

104

Ti
m

e
(m

s)

Ours-256 (P32k)

Ours-4096 (P32k)

Ruan-256
Ruan-4096

Figure 8: Computation cost for performing small domain PSI-
CA. Two systems provide different security levels: Ruan et al.
support 80-bit security while ours provide 128-bit security.

cannot compute the output (𝐴 = ⊥) while the simulator S′
𝐶
sets

𝐴′ ← ⊥ in step 6.

D EXTRA BENCHMARKS
In this section, we provide extra details on our evaluation and add

more benchmarks. First, we compare our small domain PSI layer to

an existing small domain paper. Second, we provide more detail on

howwe design and evaluate generic solutions with the same privacy

and functionality as our document search engine and provide extra

performance plots. Third, we compare our document search engine

to one of the fastest OT-based PSI protocols which does not satisfy

our privacy requirements.

D.1 Small-domain protocols
In this section, we evaluate the performance of our small domain

PSI-CA protocol and compare it to existing work. We focus on Ruan

et al. [67] in this section. We compare with Shimizu et al. [69] in

Section 11. We do not consider Bay et al. [5] here, as it focuses on a

multi-party scenario, which leads to higher costs.

The code for the protocol of Ruan et al. is not available but the

paper provides a detailed cost analysis. We use the same scenario

and the same CPU (Intel Core i7-7700) to allow us to directly com-

pare performance without requiring us to rerun their protocol from

scratch. Moreover, we extend and optimize their approach for a

many-set scenario. Ruan et al. use bit-vectors encrypted with El-

Gamal [25] or Paillier [52] encryption to perform PSI. We extend

their approach to only compute the query once and apply it to

many sets. Their detailed performance benchmark allows us to

compute the cost of performing a many-set query with 𝑁 sets. In

Fig. 8, we show the computation cost with a fixed input domain

size (|𝐷 | ∈ {256, 4096}) and varied the number of sets. The cost

does not include the key exchange. The performance of our scheme

is comparable to Run et al. – which scheme is performing best

depends on the specific scenario.

Despite having the same operating point for both approaches,

they have very different security guarantees. Ruan et al. assume

a semi-honest privacy model and use Pallier keys with 1024-bit

RSA primes which only provide 80-bit security. Extracting more

466

Private Collection Matching Protocols Proceedings on Privacy Enhancing Technologies 2023(3)

information than cardinality from their protocol is trivial for mali-

cious clients. On the other hand, we provide full 128-bit security
and protect against malformed queries by misbehaving clients (see

Section 6.3).

D.2 Circuit-based protocols
In this section, we provide more details on our evaluation of the

generic solutions in the document search scenario of Section 11.2.

We expand on their threat model and properties. Moreover, we

report and compare the server computation cost of all approaches.

Generic SMC. We use a high-level SMC compiler, EMP tool-

kit [77], to design and evaluate circuits providing the same proper-

ties as our search engine. More specifically, we use the ‘EMP-sh2pc’

branch of the compiler that provides security in a two-party semi-

honest setting and supports both boolean and arithmetic circuits.

We encode each input as a 32 bits binary value, which results

in a higher false-positive rate due to encoding keywords than our

framework, where we encode keywords using 39 or 44 bits.We use a

private equality check offered by EMP for comparing encrypted set

elements. To determine whether one keyword of the client set has

a match in a given document, we perform equality tests against all

keywords of a document and perform an OR over the comparison

results. To perform the full matching, we do an AND over the

matching status of all client keywords. This produces a 1-bit result

for each document determining its relevance. The F-Match process

does not create any extra false-positive in this approach.

Now we have to aggregate 𝑁 1-bit document matching statuses

according to our X-Agg and CA-Agg policies. The X-Agg variant

is straightforward and we use an OR to check if any document

is relevant. To count the number of relevant documents, we first

convert binary matching statuses to integers encoding ‘0’ or ‘1’ to

enable us to continue the computation with an arithmetic circuit.

Then, we compute the sum of these integer statuses.

Circuit-PSI. We choose Chandran et al. [10] as a state-of-the-

art circuit-PSI paper that is secure against semi-honest adversaries.

Circuit-PSI protocols perform an intersection between the sets of

two parties and secret share the output among them. This enables

using circuits to privately compute arbitrary functions over the

intersection. Despite the capability of Chandran et al. to be extended

with circuits to compute F-Match matching and X-Agg or CA-Agg

aggregation, we decide to not extend their circuit and use the time

necessary for computing the intersection as a lower bound on the

cost of searching. Since the PSI protocol of Chandran et al. is a

single set protocol, we run 𝑁 instances of Circuit-PSI sequentially

to simulate searching 𝑁 documents. We use the default parameters

decided by Chandran et al., meaning that each item is encoded

using 32 bits with an additional false positive rate of 2
−40

due to

computation.

Server’s computation cost. We have already reported the end-

to-end latency, communication cost, and client’s computation cost

in the main body (Fig. 6). We report the server’s computation cost in

Fig. 9. Starting from 16 documents, our framework has lower server

computation than Chandran et al. [10]. On the other hand, the EMP

solutions have better server efficiency than our scheme which is not

surprising as our framework outsources the computation load from

8 32 128 512 2048 8192
#Documents

10−1

100

101

102

103

Se
rv

er
’s

co
m

pu
ta

tio
n

co
st

(s
)

CA-Agg (P8k)

X-Agg (P32k)

SMC-CA-Agg
SMC-X-Agg

Circuit-PSI

Figure 9: Server’s computation cost for document search.

thin clients to the server. Despite our outsourcing, our CA-Agg

search only increases the server cost by a factor of 2.5x and X-Agg

by a factor of 30x when searching 1k documents.

D.3 OT-based protocol
There are efficient PSI protocols that are based on the oblivious

transfer in both the semi-honest (such as SpOT-light [53]) and the

malicious setting (such as PaXoS [54]). As discussed in Section 3,

this line of research focuses on computing one-to-one equality tests

between the client and server which leaks information about each

server set and cannot satisfy our privacy requirements. Despite

providing a lower privacy guarantee, we compare our approach to

the SpOT-light protocol as a baseline cost.

Document search with SpOT-light. We follow the document

search setting from the Section 11.2 and evaluate the cost of using

SpOT-light to search 𝑁 documents. SpOT offers 128-bit security

in a semi-honest setting and accepts 256-bit input elements which

bypasses the false-positive rate of mapping keywords. However,

SpOT is (1) a single-set protocol and (2) does not support privacy

extensions such as computing relevance without leaking the in-

tersection cardinality to the client (i.e., private set matching) or

aggregating the search result of multiple documents similar to our

X-Agg and CA-Agg variant. We handle the single-set limitation

by running 𝑁 sequential PSI interactions to search 𝑁 documents,

but we do not add any countermeasure for the lack of matching

or aggregation functionality. We encountered concurrency issues

(with async IO) when running SpOT. This issue gets amplified when

repeating the protocol 𝑁 times. Instead of directly running the code,

we benchmarked the cost of each interaction through multiple runs

with 𝑁 = 8, then extrapolate the cost for all entries.

We report the end-to-end latency, computation, and communica-

tion costs of SpOT-light in Fig. 10. In the single-set setting and for

a small number of documents, SpOT provides better performance.

However, as soon as reaching 32 documents, our CA-Agg variant

starts to provide better latency, computation, and communication

than SpOT despite providing better privacy. When searching 1k

documents, our framework improves latency by a factor of 10–65x,

communication by a factor of 1.7–27, and client’s computation by

a factor of 1800–24,800x depending on the search functionality.

467

Proceedings on Privacy Enhancing Technologies 2023(3) EdalatNejad et al.

8 32 128 512 2048 8192
#Documents

100

101

102

103

L
at

en
cy

(s
)

CA-Agg (P8k) X-Agg (P32k) SpOT

8 32 128 512 2048 8192
#Documents

10−2

10−1

100

101

102

C
lie

nt
’s

co
m

pu
ta

tio
n

co
st

(s
)

8 32 128 512 2048 8192
#Documents

100

101

102

Tr
an

sf
er

co
st

(M
iB

)

8 32 128 512 2048 8192
#Documents

100

101

102

Se
rv

er
’s

co
m

pu
ta

tio
n

co
st

(s
)

Figure 10: The end-to-end latency (upper-left), communica-
tion cost (lower-left), and client and server computation cost
(right) of the document search.

E SOLVING MATCHING IN MOBILE APPS
We do not separately evaluate the matching in the mobile apps

scenario as it is similar to the chemical similarity scenario. The

set of attributes to be matched can be represented using a small

domain as the number of attributes is limited and they have few

possible values. Matching of individual records can be implemented

using the threshold matching (Th-Match) protocol. This allows for

approximate matches. The results can then be combined using naive

aggregation to reveal the matching indices to the querier. Since

Th-Match is simpler than the Tv-Match protocol and the threshold

for matching is likely smaller than the chemical similarity case, we

expect better performance for matching than chemical similarity.

F PSI-SUM
A benefit of our framework’s modular design is extensibility. To

show the ease of adding new functionality, we design a new protocol

called PSI-SUM in this section which is getting more popular in the

literature due to its use in private ad-monetization systems [32, 44,

82]. In the PSI-SUM protocol, the server assigns a weight to each

of its elements and the client wants to compute the sum of weights

of common elements, i.e., PSI-Sum(𝑋, (𝑌,𝑊)) = ∑
{𝑖 |𝑦𝑖 ∈𝑋 }𝑤𝑖 .

We add this new protocol in our PSI layer following the structure

in Fig. 3. We define the PSI-SUM algorithms in Algorithm 8. The

PSI-SUM-process computes a binary inclusion status ⟦𝑡𝑖⟧ for each
server element 𝑦𝑖 . The server then proceeds similarly to ePSI-CA

to compute the encrypted weighted sum. The server can continue

processing this value in the next layers, such as checking for a

threshold value on the sum, or return ⟦𝑊 ⟧ to the client which

decrypts it to obtain the answer (see PSI-SUM-reveal). Our exten-

sions such as ensuring query well-formedness and many-set can

directly apply to this protocol without any extra effort.

Algorithm 8 Adding PSI-SUM capabilities.

function PSI-SUM-process(𝑝𝑘,𝑄 = ⟨⟦𝑥𝑖⟧⟩, 𝑌 ,𝑊 = ⟨𝑤𝑖 ⟩)
⟦𝑡𝑖⟧ ← HE.IsZero(𝑝𝑘,HE.IsIn(𝑝𝑘, 𝑦𝑖 , ⟨⟦𝑥 𝑗⟧⟩))
⟦W⟧ ← ∑

𝑖∈[𝑛] 𝑤𝑖 · ⟦𝑡𝑖⟧
return ⟦W⟧

function PSI-SUM-SD-process(𝑝𝑘,𝑄 = ⟨⟦𝑧𝑖⟧⟩, 𝑌 ,𝑊 = ⟨𝑤𝑖 ⟩)
⟨⟦𝑡𝑖⟧⟩ ← PSI-SD-process(𝑝𝑘, ⟨⟦𝑧𝑖⟧⟩, 𝑌)
⟦W⟧ ← ∑

𝑑𝑖 ∈𝐷 𝑤𝑖 · ⟦𝑡𝑖⟧
return𝑀 ← ⟦W⟧

function PSI-SUM-reveal(𝑝𝑘,𝑀 = ⟦W⟧)
return HE.Dec(𝑠𝑘, ⟦W⟧)

468

	Abstract
	1 Introduction
	2 Private Collection Matching
	2.1 Case studies
	2.2 PCM requirements
	2.3 Formal PCM definition

	3 Related Work
	4 A Framework for PCM Schemes
	5 Technical Background
	5.1 Homomorphic encryption
	5.2 Core functions

	6 PSI Layer
	6.1 Small constant-size client set
	6.2 Small input domain
	6.3 Ensuring well-formed queries

	7 Matching Layer
	8 Aggregation Layer
	9 Security and Privacy
	10 From Theory To Practice
	10.1 Asymptotic cost
	10.2 Implementation
	10.3 Optimizations

	11 PCM in Practice
	11.1 Chemical similarity
	11.2 Peer-to-Peer document search
	11.3 Comparison with generic solutions

	12 Takeaways and Future Work
	Acknowledgments
	References
	A Extra material
	B Sum of Random Zq* Elements
	C Privacy Proof
	C.1 Security properties of HE schemes
	C.2 Semi-honest security
	C.3 Malicious server
	C.4 Malicious clients

	D Extra benchmarks
	D.1 Small-domain protocols
	D.2 Circuit-based protocols
	D.3 OT-based protocol

	E Solving Matching in Mobile Apps
	F PSI-SUM

