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ABSTRACT
As part of the responses to the ongoing “crypto wars,” the notion
of Anamorphic Encryption was put forth [Persiano-Phan-Yung Eu-
rocrypt ’22]. The notion allows private communication in spite
of a dictator who (in violation of the usual normative conditions
under which Cryptography is developed) is engaged in an extreme
form of surveillance and/or censorship, where it asks for all private
keys and knows and may even dictate all messages. The original
work pointed out efficient ways to use two known schemes in the
anamorphic mode, bypassing the draconian censorship and hiding
information from the all-powerful dictator. A question left open
was whether these examples are outlier results or whether anamor-
phic mode is pervasive in existing systems. Here we answer the
above question: we develop new techniques, expand the notion,
and show that the notion of Anamorphic Cryptography is, in fact,
very much prevalent.

We first refine the notion of Anamorphic Encryptionwith respect
to the nature of covert communication. Specifically, we distinguish
Single-Receiver Encryption for many to one communication, and
Multiple-Receiver Encryption for many to many communication
within the group of conspiring (against the dictator) users. We then
show that Anamorphic Encryption can be embedded in the ran-
domness used in the encryption, and we give families of construc-
tions that can be applied to numerous ciphers. In total the families
cover classical encryption schemes, some of which in actual use
(RSA-OAEP, Pailler, Goldwasser-Micali, ElGamal schemes, Cramer-
Shoup, and Smooth Projective Hash based systems). Among our
examples is an anamorphic channel with much higher capacity
than the regular channel.

In sum, the work shows the very large extent of the potential
futility of control and censorship over the use of strong encryption
by the dictator (typical for and even stronger than governments
engaging in the ongoing “crypto-wars”): While such limitations
obviously hurt utility which encryption typically brings to safety
in computing systems, they essentially, are not helping the dictator.
While the actual implications of what we show here and what it
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means in practice require further policy and legal analyses and
perspectives, the technical aspects regarding the issues are clearly
showing the futility of the war against Cryptography.
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1 INTRODUCTION
Encryption is rightly associated with communication and data con-
fidentiality and it is the primary tool used in assuring the basic
human right of privacy. Encryption has constantly come under
attack by the so called Crypto Wars, as it is seen as a way to pro-
vide privacy also to outlaws, possibly facilitating illicit doings (see
for example [11]). Hence some state organizations prefer not to
employ cryptography’s full power at all in any of the emerging
technologies of the time (Internet, mobile networks, smartphones)!
Several proposals to cripple and/or limit the use of encryption have
been put forth over the years, and they have ignited a very vigorous
debate on the impact of Encryption on Society (see, for example,
[1]). Essentially, most of the arguments voiced in this debate consid-
ered encryption as being like any other technology, and as such it
could be used, misused, and abused. It is argued by cryptographers,
privacy advocates, and others that limiting cryptography has dear
societal and economic consequences (with much greater impact on
society and its safe exploitation of information technology, than
the potential abuse such measures attempt to limit/ censor).

In addition, the cryptographic and information security commu-
nity has been very active in proposing solutions that try to strike
a balance between the right of an individual to privacy and the
right of Society at large to prosecute crimes. Typically the solutions
presented leverage on cryptographic tools to make sure that every
party involved has access only to the information it is entitled to
and, possibly, to allow trusted party to control the flow of infor-
mation. An early example of such a contribution is the notion of
a Fair Cryptosystem [21] where each user shares their secret key
with a certain number of trusted authorities that release their share
to allow reconstruction of the secret key only if so requested by the
judiciary. This as well as all other proposals [3, 8, 13, 15, 30], the
cryptographic techniques rely on some structural assumptions that
must be enforced by the Law. For example, in Fair Cryptosystems
the implicit assumption is that the share holder will not reveal
the shares and the the Judiciary will only ask for the shares to be
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revealed when prescribed by the law. Even though such proposal
might work in a democracy it is very unlikely that a Dictator will
be limited in his actions by rules. The Dictator will only be stopped
by hard computational problems and by unpredictability of ran-
domness. We employ the Dictator as our adversary to capture a real
extreme case of control and limitation, where the surveillance state
(knowing all keys) and the censorship state (dictating all messages)
apply.

The notion of anamorphic encryption has been put forth in [25]
and it aims at fixing individual privacy under the dictatorship and
its extreme form of censorship and lack of privacy, and providing
citizens access to private communication even in presence of a
Dictator that requests access to all the decryption keys and dictates
all messages. The aim is to demonstrate the limited usefulness
of severely damaging the use of cryptography. Roughly speaking,
in an anamorphic encryption scheme it is possible to generate
an anamorphic public key that comes with two secret keys: an
anamorphic secret key ask and a double key dkey. The pair of
anamorphic public key and anamorphic secret key (apk, ask) is
indistinguishable from a honestly generated pair of public and
secret key and can be used with the regular encryption algorithm
Enc. When asked for their keys by the Dictator, the users will
provide the anamorphic pair and the Dictator will see nothing
wrong with it. The double key dkey instead is used in conjunction
with the anamorphic encryption algorithm aEnc that takes also two
messages, the regular message msg and the anamorphic message
amsg, and outputs an anamorphic ciphertext act. The anamorphic
ciphertext is indistinguishable from a regular ciphertext even by
the adversary that has (apk, ask) and when decrypted returns msg.
On the other hand, if act is given, along with dkey, as input to the
anamorphic decryption algorithm aDec, then amsg is produced.

It has been shown in [25] that anamorphic encryption exists,
and that two encryption schemes from the literature are indeed
anamorphic. We would like to point out that it should be rather
easy to design a new encryption scheme that is anamorphic but
it is very unlikely that the Dictator would allow a scheme that is
designed for the purpose to evade their surveillance. On the other
hand, if an existing scheme is shown to be anamorphic then it is
hard for the Dictator to outlaw the scheme and moreover asking for
the secret key would not help because it only decrypts the regular
message. Also, the citizen can plausibly deny the existence of an
anamorphic encryption scheme as the encryption scheme can also
be used (and is used) as a regular encryption scheme was intended
by its designers.

Themere feasibility of anamorphic encryptionmakes a request of
a citizen’s secret key by the Dictator futile as this would only allow
the Dictator to see the messages that the sender wants them to see.
So either the Dictator bans encryption entirely (and society loses
all the advantages it brings) or it follows the research community
to find out which scheme has been found to be anamorphic and
then make them illegal (note, of course, that not all findings may
appear in the research literature!)

A natural open question suggested by the first work is how
prevalent is the notion of Anamorphic Cryptography and in what
new ways it can be implemented. The goal of this work is to pursue
these two issues in some depth.

Our Technical Contributions
In this paper, in fact, we aim at establishing the prevalence of
anamorphic encryption by showing that, far from being a bizarre
and isolated phenomena, anamorphism is a property of a large
class of encryption schemes, which are classical notions in the
cryptographic research literature, and where, furthermore, some of
which are in extensive practical use. We contribute new notions,
new techniques, and new constructions.

Refining the notion of anamorphic encryption. An anamorphic
encryption scheme creates two channels: one that is open to the
dictator, the regular channel, and one that is hidden to the dicta-
tor, the anamorphic channel. We refine the notion of anamorphic
encryption according to the nature of the regular channel and dis-
tinguish the cases in which the regular channel is single-receiver
or multiple-receiver. Namely, we envisioned the group of mutually
trusting users colluding against the Dictator and, given a public key
of the receiver, they share the extra double key that allows access
to the anamorphic channel. In a first mode, the double key does
not allow access to the regular channel and thus there is a single
receiver as in regular public key systems. In the later case, instead,
the double key allows access also to the regular channel and thus
we have multiple receivers as all members of the group are serving
as receivers. In either case, the anamorphic message is hidden from
parties (such as the dictator) who do not have the double key, while
the dictator can decipher the regular message. Note further that
the regular channel can be used by senders (outside the colluding
group) that are unaware of the anamorphic nature of the public key
and will use the regular encryption algorithm to send a message.
Clearly, this message will be read by the dictator that has the secret
key and, additionally, by the holders of the double key, if the regular
channel is multiple-receiver.

Establishing the prevalence of anamorphic encryption. Having
refined our framework by introducing two flavors of anamorphic
encryption, we set to establish the prevalence of the concept. We
aim at showing that anamorphism is inherent in encryption by
looking at three large classes of encryption schemes and by showing
that they yield anamorphism.

Specifically, we show that anamorphism can be obtained from
the randomness used to create the ciphertext. We show that if an
encryption scheme is randomness recovering, that is, it has a special
decryption algorithm that returns also the randomness used in
producing the ciphertext, then it is also anamorphic. This technique
to obtain anamorphism, in fact, is applicable to numerous schemes
(RSA-OAEP, Paillier, Goldwasser-Micali).

Then we look at the ElGamal encryption schemes (which exists
in numerous algebraic structures) which, in fact, does not seem to
allow for randomness recovery at decryption time, and we give a dif-
ferent albeit related construction. For ElGamal we obtain multiple-
receiver anamorphism. Specifically, we show how knowledge of
the secret key can be used to hide the anamorphic message into
the randomness of the ciphertext. Therefore, since the double key
contains the secret key, the same ciphertext can be decrypted by
all users in order to obtain also the regular message.
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We then investigate anamorphism in encryption for a third fam-
ily of schemes, namely, schemes enjoying the strong security no-
tion of CCA security, and we show that anamorphism is also in-
herent there. We do so by first showing that the paradigm based
on Smooth Projective Hash Functions [10] (SPHF) gives multiple-
receivers anamorphism. We then apply an upgrading of this state
to a single-receiver anamorphic state for the special notable case
of the Cramer-Shoup encryption scheme [9].

Related work. There is a long line of research focusing on the
development of anticensorship techniques that range from network
architectures to cryptographic protocols. In this paper, we focus on
encryption algorithms. Steganography [28] is an early proposal that
is very similar in spirit to anamorphic encryption as it considers the
possibility of injecting messages in innocent looking conversations
by hiding that encrypted communication is taking place at all. On
the other hand, in anamorphic encryption individuals are allowed
to use cryptography to communicate but the Dictator is entitled to
receive the secret keys associated with public keys. The security of
public-key Steganography (see, for example, [29]) critically relies
on the fact that secret keys remain hidden to the Dictator. Moreover,
we note that private-key Steganography (see [2, 7, 12, 17, 19, 28], for
example) offers much smaller bandwidth for the hidden message.
In contrast, in this paper we show that anamorphic encryption can
obtain much larger bandwidth (the anamorphic message has length
proportional to the regular message). Moreover, quoting from [19],
there are two significant barriers to using universal steganographic
systems for censorship-resistant communication: (1) the lack of ap-
propriate samplers for real, desirable covertext channels, like English
text, and (2) the minimum entropy bounds required to use existing
techniques. Anamorphic encryption shows that both barriers can
be overcome by using cryptographic object as carriers of hidden
message thus dispensing with the need of designing samplers.

Our techniques of using randomness to hide messages has been
used also in the context of network architectures. Telex [31], for
example, is a proposal for an architecture that allows a client to
reach a web site on a black list of forbidden web sites by embedding
the request within a request for a legitimate (i.e., non-forbidden
by the Dictator) web site. Roughly speaking, a Telex station inter-
cepts TLS connections that contain a steganographic tag in the
ClientHello message’s nonce field and forwards the flow to the
forbidden web site. Similarly to Telex, we rely on the randomness
present in the legitimate communication; that is, the nonce fields of
the TLS protocol for Telex and the randomness that is present in se-
cure encryption schemes for anamorphic encryption. We do stress
that Telex stations publish some public information that can be seen
by the Dictator but the security of the architecture relies on the
associated private information to be kept hidden from the Dictator.
The idea of using the nonce in the TLS ClientHellomessage is also
at the base of decoy routing [20], a technique to redirect TCP flows.
Similarly to our model, it is assumed that the decoy proxy shares
some secret information with the sender. We also mention that
the technique of using the randomness present in cryptographic
objects for hidden communication has been suggested in [16] for
the case of the EdDSA signature scheme.

2 PRELIMINARIES
In this section we review some of the concepts that we use in our
constructions.

2.1 Symmetric Encryption schemes
We start by defining the syntax of a symmetric encryption scheme.

Definition 1. A symmetric encryption scheme E is a triplet
E = (KG, Enc,Dec) of PPT algorithms with the following syntax

(1) the key-generator algorithm KG takes as input the security
parameter 1𝜆 and returns the secret key sk← KG(1𝜆);

(2) the encryption algorithm Enc takes as input the secret key sk
and amessage msg, and returns a ciphertext ct← Enc(sk, msg);

(3) the decryption algorithm Dec takes as input the secret key sk
and a ciphertext ct and returns amessage msg← Dec(sk, ct);

that enjoys the following correctness property:

• for every msg, the following probability is negligible

Pr[sk← KG(1𝜆); ct← Enc(sk, msg) : Dec(sk, ct) ≠ msg] .

When we wish to stress the random coin tosses 𝑅 used by the
encryption algorithm we will write ct← Enc(sk, msg;𝑅).

Let us now formalize the notion of security against chosen plain-
text attacks (IND-CPA security) for symmetric encryption schemes
bymeans of the following game cpaG. More precisely, for an encryp-
tion scheme E = (KG, Enc,Dec), bit 𝛽 ∈ {0, 1}, and PPT adversary
A, we consider the following security game cpaG𝛽E,A in which the
adversary is given access to the encryption oracle Oe from which it
can obtain the encryptions of messages of its choice. The adversary
A works in two phases: in the first, it outputs the two messages on
which it wants to be tested; in the second, it receives a ciphertext
carrying one of the two messages and outputs a bit. Essentially,
IND-CPA security requires the output ofA to be independent from
the message encrypted.

cpaG𝛽E,A (𝜆)
(1) sk← KG(1𝜆);
(2) (msg0, msg1, st) ← AOe(sk, ·) (1𝜆);
(3) ct = Oc𝛽 (sk, msg0, msg1);
(4) Return AOe(sk, ·) (ct, st) .

where
• Oc𝛽 (sk, msg0, msg1) = Enc(sk, msg𝛽 );
• Oe(sk,𝑚) = Enc(sk,𝑚).

We are ready for the formal definition of IND-CPA security.

Definition 2. Symmetric encryption schem E is IND-CPA secure
if for all PPT adversaries A we have���Pr[cpaG0

E,A (𝜆) = 1] − Pr[cpaG1
E,A (𝜆) = 1]

��� ≤ negl(𝜆).

2.2 Asymmetric Encryption schemes
We start by defining the syntax of an asymmetric encryption scheme.

Definition 3. An asymmetric encryption scheme E is a triplet
E = (KG, Enc,Dec) of probabilistic algorithms with the following
syntax
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(1) the key-generator algorithmKG takes as input the security pa-
rameter 1𝜆 and returns the pair (pk, sk) ← KG(1𝜆) consisting
of the public key pk and of the secret key sk.

(2) the encryption algorithm Enc takes as input the public key pk
and amessage msg and returns a ciphertext ct← Enc(pk, msg).

(3) the decryption algorithm Dec takes as input the secret key sk
and a ciphertext ct and returns a message msg.

that enjoys the following correctness property:
• for every msg,

Pr[(pk, sk) ← KG(1𝜆); ct = Enc(pk, msg) : Dec(sk, ct) ≠ msg]
≤ negl(𝜆) .

When we wish to stress the random coin tosses R used by the
encryption algorithm we will write ct← Enc(pk, msg;R).

Let us now review the security notion for asymmetric encryp-
tion schemes by presenting the cpaG games. More precisely, for
asymmetric encryption scheme E, bit 𝛽 = 0, 1 and PPT adversary
A, we consider the following game cpaG𝛽E,A .

cpaG𝜂E,A (𝜆)
(1) (pk, sk) ← KG(1𝜆);
(2) (msg0, msg1, st) ← A(pk);
(3) ct = Oc𝛽 (pk, msg0, msg1);
(4) Return A(ct, st) .

where
• Oc𝛽 (pk, msg0, msg1) = Enc(pk, msg𝛽 ).

We are ready for the formal definition of IND-CPA security.

Definition 4. An aymmetric encryption schem E is IND-CPA
secure if for all PPT adversaries A we have���Pr[cpaG0

E,A (𝜆) = 1] − Pr[cpaG1
E,A (𝜆) = 1]

��� ≤ negl(𝜆).

2.3 Computational assumptions
The DDH assumption is an assumption about group systems G. A
group system G is an efficient algorithm that, on input 1𝜆 , outputs
the description G of a cyclic group of order 𝑞, where 𝑞 is a prime of
Θ(𝜆) bits, along with a generator 𝑔 for G.

Definition 5. The decisional Diffie-Hellman assumption for
group system G (the DDH assumption) posits that the family of
distributions {DDH0 (𝜆)}𝜆 and {DDH1 (𝜆)}𝜆 are indistinguishable
where, for 𝜒 = 0, 1, DDH𝜒 (𝜆) is defined as follows:{
(𝑔,G) ← G(1𝜆);𝑎, 𝑏, 𝑐 ← {0, . . . , |G| − 1} :

(
G, 𝑔, 𝑔𝑎, 𝑔𝑏 , 𝑔𝑎 ·𝑏+𝜒 ·𝑐

)}
.

3 ANAMORPHIC ENCRYPTION: AN
EXPANDED NOTION

In this section we review the notion of a Anamorphic Encryption
scheme [25] and then propose refined notions that allow to dis-
tinguish different settings depending on the nature of the double
key1.
1We drop “Receiver” from the terminology Receiver-Anamorphic Encryption scheme
of [25] as we will not consider Sender-Anamorphic Encryption schemes and thus no
ambiguity is generated.

AnAnamorphic Encryption scheme is a normal encryption scheme
E = (KG, Enc,Dec) equipped with an anamorphic triplet AME =

(aKG, aEnc, aDec) of algorithms. AnAnamorphic Encryption scheme
can be deployed in one of two modes: as a normal scheme and as
an anamorphic scheme.

If Bob deploys the scheme as a normal scheme, he obtains the
pair of public and secret key (pk, sk) by running the normal key
generation algorithm KG and, as usual, pk is published. When
Alice wishes to send Bob message𝑚, she produces ciphertext ct by
running the normal encryption algorithm Enc on input pk and𝑚.
When ct is received by Bob, it is decrypted by running the normal
decryption algorithm Dec on input the secret decryption key sk.
Thus, when deployed as normal, an Anamorphic Encryption scheme
is just a regular asymmetric encryption scheme. If the dictator
comes for the secret key, Bob cannot do but surrender sk.

If Bob deploys the scheme as anamorphic, he wants to protect
the confidentiality of the communication with Alice even in the
event that he is forced to surrender his secret decryption key to
the dictator. In this case, Bob runs the anamorphic key generation
algorithm aKG that returns a pair of anamorphic public-secret keys
(apk, ask) along with a double key dkey. Bob privately sends Alice
the double key dkey. Moreover, Bob publishes apk and keeps ask
private along with dkey. If asked, Bob will surrender ask to the
dictator and pretend that it is a real secret key and that there is no
double key dkey. The pair (apk, ask) is a fully functional pair of
keys: if a message𝑚 is encrypted by using Enc and apk, it can be
decrypted by Dec on input ask. Double key dkey is instead used
by Alice to send Bob messages that remain confidential even if
ask is compromised. Specifically, whenever Alice has a message
amsg that must remain confidential, the anamorphic message, she
picks an innocent looking message msg and encrypts (msg, amsg)
using the anamorphic encryption algorithm aEnc with dkey and
apk. The ciphertext ct produced by aEnc has the property that it
returns msg when decrypted with the normal decryption algorithm
Dec and with key ask; whereas it returns amsg when decrypted
by running the anamorphic decryption algorithm aDec on input
the double key dkey. In other words, the dictator will obtain msg
and Bob will obtain msg and amsg. Clearly, the ciphertext produced
by Alice must indistinguishable from a ciphertext of msg produced
using Enc even to an adversary that has access to ask. Our security
notion will formalize this requirement. Let us now proceed more
formally.

We start by defining the syntax of an anamorphic triplet.

Definition 6 (Anamorphic Triplet.). We say that a triplet
AME = (aKG, aEnc, aDec) of PPT algorithms is an anamorphic
triplet if
• the anamorphic key generation algorithm aKG takes as input
the security parameter 1𝜆 and returns a pair (apk, ask) of
anamorphic keys and a double key dkey;
• the anamorphic encryption algorithm aEnc takes as input
the anamorphic public key apk, the double key dkey, and
two messages, the regular message msg and the anamorphic
message amsg, and returns an anamorphic ciphertext act;
• the anamorphic decryption algorithm aDec takes as input
the anamorphic secret key ask, the double key dkey, and an
anamorphic ciphertext act and returns a message𝑚;
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and, in addition, the following correctness requirement is satisfied

• for every regular message msg and anamorphic message amsg,
it holds that

aDec(ask, dkey, act) = amsg

except with negligible in 𝜆 probability, where ((apk, ask),
dkey) ← aKG(1𝜆) and act← aEnc(apk, dkey, msg, amsg) .

3.1 Anamorphic Encryption Schemes
We are now ready to define the notion of an Anamorphic Encryption
scheme (or, simply, an AM Encryption scheme). Roughly speaking,
we will say that a secure encryption scheme E = (KG, Enc,Dec) is
an Anamorphic Encryption scheme if there exists an anamorphic
triplet AME = (aKG, aEnc, aDec) such that no PPT dictator can
distinguish whether E or AME is being used, even if given access to
the secret key. We formalize the notion by means of the following
two games involving a dictator D.

RealGE,D (𝜆)
(1) Set (pk, sk) ← KG(1𝜆)
(2) Return DOe(pk, ·, ·) (pk, sk), where

Oe(pk, msg, amsg) = Enc(pk, msg) .

AnamorphicGAME,D (𝜆)
(1) Set ((apk, ask), dkey) ← aKG(1𝜆)
(2) Return DOa(apk,dkey, ·, ·) (apk, ask), where

Oa(pk, dkey, msg, amsg) =

aEnc(apk, dkey, msg, amsg).

We have the following definition.

Definition 7. We say that an encryption scheme E is an Anamor-
phic Encryption scheme if it is IND-CPA secure and there exists an
anamorphic triplet AME such that for every PPT dictator D there
exists a negligible function negl such that��Pr[RealGE,D (𝜆) = 1] − Pr[AnamorphicGAME,D (𝜆) = 1]

�� ≤ negl(𝜆).

Essentially, the definition says that anamorphic keys and cipher-
texts are indistinguishable from regular keys and ciphertexts even
to someone that has the decryption key and can ask encryption of
messages of their choice.

An anamorphic ciphertext carries two messages, the regular and
the anamorphic message and we have two classes of users, the ones
that have the secret key and the ones that have double key. Clearly,
no privacy for the regular message is guaranteed with respect to the
users that have the secret key (i.e., the legitimate receiver and the
dictator) and it is expected that the anamorphic message is instead
kept private from the dictator. As we shall see in the next section,
the anamorphic requirement of Definition 7 is sufficient to guar-
antee that the dictator does not learn the anamorphic message. In
Section 3.3, we will look at the security of the regular message with
respect to users holding the double key dkey. As we shall see, this
will give rise to a refinement of the notion of anamorphic encryp-
tion schemes into single-receiver and multiple-receiver anamorphic
encryption schemes.

3.2 On the security of the anamorphic message
The main reason to use anamorphic encryption is to be able to
send messages that are hidden from the dictator. Quite surprisingly,
though, Definition 7 does not make any explicit security guarantee
for the anamorphic message with respect to an adversary that
has access to (apk, ask) but, obviously, not to dkey. However, we
observe that Definition 7 requires that the mere existence of the
anamorphic message must be hidden and this, intuitively, should
imply that the anamorphic message itself is hidden from the dictator.
In other words, security of the anamorphic message is a direct
consequence of Definition 7.

Let us be more formal and consider the following IND-CPA
games for the anamorphic message. Here the dictator receives a
pair of anamorphic keys (apk, ask) and is given access to an oracle
Oe that encrypts pairs (msg, amsg) of their choice using the double
key dkey. The dictator picks one regular message msg and two
anamorphic messages amsg0 and amsg1 and receives an anamorphic
ciphertext act carrying (msg, amsg𝛽 ). Then the dictator returns a
bit and we will prove that, for triplets satisfying Definition 7, the
dictator’s output is essentially independent from 𝛽.

aIndCPAG𝛽AME,D (𝜆)
(1) Set ((apk, ask), dkey) ← aKG(1𝜆)
(2) (msg, amsg0, amsg1, st) ← DOe(apk,dkey, ·, ·) (apk, ask)
(3) act← aEnc(apk, dkey, msg, amsg𝛽 )
(4) return DOe(apk,dkey, ·, ·) (st, act), where

Oe(apk, dkey, msg, amsg) = aEnc(apk, dkey, msg, amsg) .
We have the following theorem.

Theorem 1. If E is anamorphic encryption scheme with anamor-
phic triplet AME then, for every PPT dictator D, there exists a negli-
gible function negl such that���Prob [aIndCPAG0

AME,D (𝜆) = 1
]
−

Prob
[
aIndCPAG1

AME,D (𝜆) = 1
] ��� ≤ negl(𝜆) .

Proof. For sake of contradiction, suppose that there exists a
PPT dictator D that contradicts the theorem and assume, without
loss of generality, that there exists a polynomial poly for which

Prob
[
aIndCPAG1

AME,D (𝜆) = 1
]
≥

Prob
[
aIndCPAG0

AME,D (𝜆) = 1
]
+ 1/poly(𝜆).

Then we construct a dictator A that breaks the anamorphism of
E. Specifically, A receives a pair of keys (pk, sk) (they keys could
be regular or anamorphic) and feeds the pair to D .Whenever D
makes an encryption query for (msg, amsg), A uses its own oracle
to reply. Note thatA’s oracle returns either a regular encryption of
msg or an anamorphic encryption of (msg, amsg) .When D outputs
the triplet (msg, amsg0, amsg1) they want to be tested on,A picks a
random 𝛽 and returns the ciphertext returned by their own oracle
on input (msg, amsg𝛽 ). Finally, D return 1 iff A’s output is equal
to 𝛽.

Let us consider two cases and let us denote by 𝑝𝛼,𝛽 the probability
that D returns 𝛼 in game aIndCPAG𝛽 . By assumptions we know
that 𝑝1,1 − 𝑝0,1 ≥ poly(𝜆). IfA is playing AnamorphicG then D is
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provided an interaction of aIndCPAG𝛽 and thus, since 𝛽 is chosen
at random, the probability that A’s output is equal to 𝛽 is equal to

1
2
(
𝑝1,1 + 𝑝0,0

)
=

1
2
+ 1
2
(
𝑝1,1 − 𝑝0,1

)
≥ 1

2
+ 1/(2 · poly(𝜆)) .

On the other hand, ifA is playing RealG thenD’s view is indepen-
dent of 𝛽 and thus the probability that its output equals 𝛽 is at most
1/2. Thus A breaks the anamorphism of E. Contradiction. □

3.3 On the security of the regular message:
single- and multiple-receiver anamorphism

The main reason to consider anamorphic encryption is to create
a communication channel carrying anamorphic messages that are
hidden from the dictator. The double key gives access to this chan-
nel. What about the regular message? Suppose that a user that is
unaware of the anamorphic nature of a public key uses it to send
a regular message. Is the double key sufficient to read this mes-
sage? Or is this message private with respect to the users with the
double key? As we shall see, the notion of anamorphic encryption
formalized by Definition 7 supports both notions. In the first type
of channel, the communication is one-to-one: that is, if one party
sends a regular message then only the owner of the decryption key
ask (and the dictator) can read the message. This will correspond
to the notion of sigle-receiver anamorphic encryption that we for-
malize in Definition 9. The second type of channel is one-to-many:
that is, all regular messages sent by one user are read by the many
users holding the double key. This will correspond to the notion
of multiple-receiver anamorphic encryption that we formalize in
Definition 10.

Single-Receiver Anamorphism. We next give a formal definition
of the notion of a Single-Receiver Anamorphic encryption scheme
that guarantees the privacy of the regular message with respect to
users having access to dkey (and not to ask, of course). We start
by formalizing the concept of a Single-Receiver Anamorphic triplet
AME and we do so by means of game SingleAnG𝛽AME,A , where
A is a PPT adversary and 𝛽 ∈ {0, 1}. As we can see, the game is
the adaptation of the IND-CPA game for asymmetric encryption
schemes to the scheme whose keys are (apk, ask) with respect to
adversaries that have access to dkey along with the public key apk.
That is, in a single-receiver anamorphic encryption scheme the
regular message is hidden, in the IND-CPA sense, from parties that
have the double key and, obviously, can be read by a single receiver,
the owner of the anamorphic secret key ask.

SingleAnG𝛽AME,A (𝜆)
(1) Set ((apk, ask), dkey) ← aKG(1𝜆)
(2) (msg0, msg1, amsg, st) ← A(apk, dkey)
(3) act← aEnc(apk, dkey, msg𝛽 , amsg)
(4) return A(act, st)

Note that in the game above the adversary A is not given any
encryption oracle as they have the public key and the double key
and can thus produce ciphertexts carrying regular and anamorphic
messages of their choice. We have the following definitions.

Definition 8. An Anamorphic triplet AME is a Single-Receive
Anamorphic triplet if for all PPT adversaries A, it holds that���Pr[SingleAnG0

AME,A (𝜆) = 1] − Pr[SingleAnG1
AME,A (𝜆) = 1]

���
is upper bounded by a negligible function of 𝜆.

Definition 9. We say that an encryption scheme E is a Single-
Receiver Anamorphic encryption scheme if it is IND-CPA secure and
there exists a Single-Receiver Anamorphic triplet AME so that E and
AME satisfy Definition 7.

Multiple-Receiver Anamorphism. We now define the notion of
Multiple-Receiver Anamorphic encryption scheme. We want to cap-
ture the notion of an anamorphic encryption scheme for which
decryption is possible even if only the double key is known. One
way of doing this is to formalize a correctness requirement similar
to the one of Definition 1 in which dkey is used. We actually present
a stronger notion: dkey does not simply allow decryption but it
can be used to obtain the anamorphic secret key ask that can be
used to obtain the regular message. As we shall see all multiple-
receiver anamorphic schemes that we present in this paper satisfy
this stronger notion. We have the following definition.

Definition 10. Let E be an anamorphic encryption scheme with
anamorphic triplet AME = (aKG, aEnc, aDec). We say that E is a
Multiple-Receiver Anamorphic encryption scheme if there exists
a PPT algorithm Extract such that Extract(apk, dkey) = ask ex-
cept with negligible in 𝜆 probability whenever ((apk, ask), dkey) ←
aKG(1𝜆).

4 ANAMORPHIC ENCRYPTION FROM
RECOVERED RANDOMNESS

In this section we present our constructions based on randomness
recovering. We give three main results. First, in Section 4.1, we
present a general construction that proves that any scheme with the
randomness recovery property is anamorphic. Then we show that
some of the most widely used encryption schemes, including RSA-
OAEP, Goldwasser-Micali, and Paillier, enjoy randomness recovery
and thus, by the general construction, they are anamorphic. Finally,
we note that the ElGamal encryption scheme does not seem to
enjoy the randomness recovery property. Nonetheless we show in
Section 4.3 that it is multiple-receiver anamorphic.

4.1 Anamorphism from Randomness Recovery
The syntax of the encryption algorithm ct = Enc(pk, msg;𝑅) of
a secure encryption scheme seems to suggest that anamorphism
is a natural property of an encryption scheme. Indeed, we notice
that Enc takes three arguments: the public key pk, that is generated
by receiver, and the message msg and the randomness 𝑅 that are
selected by the sender. In other words, the ciphertext depends
on two values originating with the sender: the regular message
msg and the randomness 𝑅 which could be playing the role of the
anamorphic message amsg. However there are two obstacles that
must be dealt with:

(1) first of all, the decryption algorithm is not guaranteed to
return also the randomness 𝑅 and thus the receiver might
be unable to recover the anamorphic message amsg;
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(2) second, if the randomness can be recovered by the receiver,
then the Dictator can recover it as well; moreover, 𝑅 must
be random for otherwise security of the encryption scheme
is not guaranteed.

To address the first issuewe restrict ourselves to encryption schemes
that support randomness recovery; that is, the receiver can use the
secret key to obtain not only the message but also (part of) the ran-
domness used to construct the ciphertext. As we shall see several
encryption schemes from the literature enjoy this property. For the
second issue, we let the anamorphic encryption aEnc encrypt the
anamorphic message amsg using a key 𝐾 shared with the receiver
and the use the resulting ciphertext act as the randomness 𝑅 for
Enc to encrypt the regular message msg. In other words, the ran-
domness 𝑅 is not set equal to amsg but rather it is set equal to an
encryption act of amsg. Indeed, for this to work, the randomness
𝑅 = act must be indistinguishable from true randomness and we
thus use the so-called encryption schemes with pseudorandom ci-
phertexts (at which case the schemes become a natural anamorphic
message hosted within the randomness recovered in decryption).
We note that such encryption schemes can be constructed by as-
suming only one-way functions and several encryption schemes
used in practice are assumed to have this property (AES in CTR
mode, being a primary example).

Let us now proceed more formally.

Definition 11. An encryption scheme E = (KG, Enc,Dec) is
randomness-recovering if there exists a randomness-recovering PPT
decryption algorithm rrDec such that rrDec(sk, ct) = (msg, 𝑅) when-
ever ct = Enc(pk, msg;𝑅′), 𝑅 is a substring of 𝑅′ and (pk, sk) ← KG.

We could have made the definition more general by requiring
rrDec to return a general function of the randomness 𝑅′ used by
the encryption algorithm and not necessarily a substring. We chose
a simpler definition as it is satisfied by all the encryption schemes
for which we apply this paradigm.

We next define the notion of a symmetric encryption scheme
prE = (prKG, prEnc, prDec) with pseudorandom ciphertexts using
the following game PRCtG𝛽prE,A , where 𝛽 ∈ {0, 1}, prE is a sym-
metric encryption scheme, and A is a PPT adversary . We assume
that prE for security parameter 𝜆 encrypts 𝑛(𝜆)-bit plaintexts into
ℓ (𝜆)-bit ciphertexts.

PRCtG𝛽prE,A (𝜆)
(1) Set 𝐾 ← prKG(1𝜆)
(2) Return AOPr𝛽 (𝐾, ·) (), where

OPr0 (𝐾, msg) returns a randomly selected ℓ (𝜆)-bit string;
OPr1 (𝐾, msg) = prEnc(𝐾, msg) .

Definition 12. Let prE = (prKG, prEnc, prDec) be an IND-CPA
symmetric encryption scheme. We say that prE has pseudorandom
ciphertexts if for every PPT adversary A we have���Pr[PRCtG0

prE,A (𝜆) = 1] − Pr[PRCtG1
prE,A (𝜆) = 1]

��� ≤ negl(𝜆) .

Symmetric encryption schemes with pseudorandom ciphertexts
can be constructed starting from one-way functions. For example,
consider the encryption scheme whose secret key 𝐾 is the seed
of PRF F . To encrypt message msg, one selects 𝑟 and outputs the

pair ct = (𝑟, msg ⊕ F (𝐾, 𝑟 )). It is easy to see that the scheme is
IND-CPA secure and that the ciphertext ct is indistinguishable
from a randomly selected string of the same length.

A technicality. For the sake of concreteness, we have presented
Definition 12 for the case in which the ciphertext is indistinguish-
able from a string of the same length. By looking ahead, we note
that in some of our constructions, we will need the ciphertext to
be indistinguishable from an element of a group G. In this case
the definition is obtained by considering the game in which oracle
OPr0 returns random elements from G.

The anamorphic triplet. Let E = (KG, Enc,Dec) be a randomness-
recovering encryption scheme with randomness-recovering algo-
rithm rrDec and let prE = (prKG, prEnc, prDec) be an encryption
scheme with pseudorandom ciphertexts. We next show how to use
prE to construct an anamorphic triplet for E.

For security parameter 𝜆, we denote by 𝑟 (𝜆) the polynomial
number of bits of randomness used by the encryption algorithm
of E and extracted by rrDec and by ℓ (𝜆) the polynomial length of
the ciphertexts produced by the encryption algorithm of prE. For
the sake of compact notation and ease of presentation, we assume
that the two polynomials coincide; that is, ℓ (·) = 𝑟 (·). Let us now
consider the following anamorphic triplet (aKG, aEnc, aDec).

(1) The anamorphic key-generation algorithm aKG(1𝜆) runs
KG(1𝜆) to obtain (pk, sk) and prKG(1𝜆) to obtain 𝐾 . Finally,
aKG outputs apk := pk, ask := sk, and dkey := 𝐾 .

(2) The anamorphic encryption algorithm aEnc(apk, dkey, msg,
amsg) proceeds as follows. First, it computes prct← prEnc(
𝐾, amsg); then it sets 𝑅 := prct; finally, it computes act =

Enc(apk, msg;𝑅).
(3) The anamorphic decryption algorithm aDec(ask, dkey, act)

first runs the randomness-recovering algorithm rrDec and
obtains msg and the randomness 𝑅 used by aEnc; then aDec
runs prDec on input ciphertext prct := 𝑅 and 𝐾 to obtain
amsg.

Proof of Anamorphism. We next show that any randomness-
recovering encryption scheme is anAnamorphic Encryption scheme
via the anamorphic triplet described above.

Lemma 1. If there exists an encryption scheme with pseudorandom
ciphertexts prE then any randomness-recovering IND-CPA encryption
scheme E is an anamorphich scheme.

Proof. Consider the anamorphic tripletAME = (aKG, aEnc, aDec)
described above. Suppose that there exists a dictator D that dis-
tinguishes RealGE from AnamorphicGAME. Then we construct an
adversary A that breaks the pseudorandomness of the ciphertexts
of prE.

Specifically, A has access to an oracle 𝑂 (·). Oracle 𝑂 is either
OPr0 (amsg), that returns random strings, or OPr1 (𝐾, amsg), that
returns an encryption of amsg with respect to a randomly selected
secret key 𝐾 of prE.
A starts by generating a pair of keys (pk, sk) ← KG(1𝜆) and

then runs D on input (pk, sk). A simulates the replies to D’s
queries (msg, amsg) in the following way.A computes𝑅 = 𝑂 (amsg)
and then returns ct = Enc(pk, msg;𝑅).
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Let us now examine D’s view in relation to the nature of the
oracle 𝑂 that has been provided to A. First of all, observe that
(pk, sk) produced by A is always output of KG, just as in the two
games RealG and AnamorphicG. However, when 𝑂 = OPr0 the
replies that D receives to his queries (msg, amsg) consist of an
encryption of msg computed with true randomness; that is, they
have the same distribution of the replies computed by Oe. This
implies that, in this case,D’s view is the same as the view in RealG
and thus

Prob
[
PRCtG0

prE,A (𝜆) = 1
]
= Prob

[
RealGE,D (𝜆) = 1

]
.

Suppose now that 𝑂 = OPr1. Then the replies that D receives
to his query (msg, amsg) is an encryption of msg computed using
as randomness an encryption of amsg; that is, they have the same
distribution of a reply computed by Oa. This implies that, in this
case, D’s view is the same as the view in AnamorphicG and thus

Prob
[
PRCtG1

prE,A (𝜆) = 1
]
= Prob

[
AnamorphicGAME,D (𝜆) = 1

]
.

By assumption we have that��Prob [RealGE,D (𝜆) = 1
]
− Prob

[
AnamorphicGAME,D (𝜆) = 1

] ��
is at least 1/poly(𝜆) which leads to a contradiction of the pseudo-
randomness of the ciphertexts of prE. □

Theorem 2. Any IND-CPA secure randomness-recovering encryp-
tion scheme E is an anamorphic encryption scheme.

Proof. First of all observe that if E is IND-CPA secure, then there
exists a one-way function [18] and thus one can build a symmetric
encryption scheme with pseudorandom ciphertexts. This means
that we can construct the anamorphic triplet (aKG, aEnc, aDec)
described above. Finally, we apply Lemma 1. □

Before giving concrete examples, let us consider if the general
method described above gives single- or multiple-receiver anamor-
phism. It seems unlikely that we can prove that the resulting scheme
is single-receiver. Indeed observe that knowledge of the double-key
dkey = 𝐾 makes the coin-tosses 𝑅 used to produce the anamorphic
ciphertext non-random and it is difficult to argue that in general the
resulting scheme is IND-CPA. On the other hand, even if we cannot
prove security, it is not clear if in general the non-randomness of
the coin tosses used allow to decrypt. We are in a gray area. Note
that this is not a problem for anamorphism as the dictator D does
not have access to 𝐾 and thus the coin tosses 𝑅 appear random to
them.

RSA-OAEP [4] is randomness-recovering. The key generation al-
gorithm constructs a pair (pk, sk) of RSA public and secret key.
The encryption algorithm uses two hash functions, modeled as
random oracles in the proof,𝐺 and 𝐻 . On input an 𝑛/2-bit message
𝑚, the algorithm randomly selects 𝑟 ← {0, 1}𝑛 , sets𝑚′ = 𝑚 |0𝑛/2,
�̂�1 = 𝐺 (𝑟 ) ⊕𝑚′ and sets

�̂� = �̂�1 | (𝑟 ⊕ (𝐻 (�̂�1)) .
Finally the ciphertext ct is set equal to the encryption of �̂� with
respect pk. We notice that the receiver can decrypt ct using the
RSA secret key sk and thus obtain �̂�, from which 𝑟 can be obtained
by XORing the first half of �̂� with its hash value with respect to 𝐻 .

By combining the above discussion with Theorem 2 we obtain the
following theorem.

Theorem 3. If RSA-OAEP is IND-CPA secure, then RSA-OAEP is
an Anamorphic Encryption scheme.

Paillier [24] is randomness-recovering. Let us review the Pail-
lier encryption scheme. The key generation algorithm selects two
primes of the same length 𝑝, 𝑞, sets 𝑁 = 𝑝 · 𝑞 and outputs public
key pk := 𝑁 and secret key sk := (𝑁,𝜙 (𝑁 )). To encrypt message
𝑚 ∈ Z𝑁 with respect to public key 𝑁 , the sender randomly se-
lects 𝑟 ← Z𝑁 and outputs ct := (1 + 𝑁 )𝑚 · 𝑟𝑁 mod 𝑁 2 . Finally,
decryption of ciphertext ct is obtained by computing

𝑚 :=
(ct𝜙 (𝑁 ) mod 𝑁 2) − 1

𝑁
· 𝜙 (𝑁 )−1 mod 𝑁 .

Nowwe describe the randomness-recovering algorithm rrDec. First
of all rrDec decrypts ct and obtains𝑚. Then the algorithm com-
putes 𝑟𝑁 mod 𝑁 2 by dividing ct by (1+𝑁 )𝑚 . Finally 𝑟 is obtained
by first computing 𝑟 modulo 𝑝2 and modulo 𝑞2 (see [26]) and then
combining the result using the Chinese Remainder Theorem to ob-
tain the result modulo 𝑁 2. Finally 𝑟 is obtained by taking the result
modulo 𝑁 . By combining the above discussion with Theorem 2 we
obtain the following theorem.

Theorem 4. If the Paillier encryption scheme is IND-CPA then it
is a an Anamorphic Encryption scheme.

4.2 The Goldwasser-Micali encryption scheme
In this section we look at the Goldwasser-Micali encryption scheme
[14] and show that it is randomness-recovering that implies, by
Theorem 2, that it is anamorphic.

Let us first review the Goldwasser-Micali public key encryption
scheme and then we discuss its anamorphic properties.

(1) The key generation algorithm GM.KG(1𝜆) proceeds as fol-
lows. A 𝜆-bit RSA modulus 𝑁 = 𝑝𝑞 is generated and a fixed
𝛼 ∈ 𝑍★

𝑁
such that the Legendre symbols satisfy

(
𝛼
𝑝

)
=

(
𝛼
𝑞

)
=

−1 is selected. Note that 𝛼 is a quadratic non-residue modulo
𝑁 with Jacobi symbol

(
𝛼
𝑁

)
= +1. The public key consists of

pk = (𝛼, 𝑁 ). The private key is sk = (𝑝, 𝑞).
(2) The encryption algorithm GM.Enc(pk, 𝑥) encrypts bit 𝑥 as

follows: randomly select 𝑦 ∈ 𝑍★
𝑁

and output 𝑐 = 𝑦2𝛼𝑥

(mod 𝑁 ).
(3) The decryption algorithm GM.Dec(sk, 𝑐) uses the factoriza-

tion sk = (𝑝, 𝑞) of 𝑁 to determine whether the value 𝑐 is a
quadratic residue; if so, return 𝑥 = 0, otherwise return 𝑥 = 1.

We now show that GM is randomness recovering. Indeed, the
randomness-recovering algorithm on input ct removes 𝛼𝑥 and
obtains 𝑦2 (mod 𝑁 ) . Now observe that 𝑦2 has four square roots
modulo 𝑁 that can be computed by using 𝑁 ’s factorization. To re-
solve the ambiguity of which of the squares carries the anamorphic
message, we can use one of several standard techniques. For exam-
ple, when 𝑁 is a Blum integer every square has exactly four square
roots, of which exactly two have Jacobi symbol +1. Moreover of
the two square roots with Jacobi symbol +1, exactly one is smaller
than 𝑁 /2 and similarly for the two squares with Jacobi symbol
-1. Therefore at encryption time, the anamorphic message amsg is
encrypted by computing 𝑦 := prEnc(𝐾, amsg) until 𝑦 is an element
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of 𝑍★
𝑁

smaller than 𝑁 /2 with Jacobi symbol +1. Note that since 𝑦 is
pseudorandom over the 𝜆-bit strings at least half of the ciphertexts,
up to negligible factors, represent an element of 𝑍★

𝑁
. Of these, half

have Jacobi symbol +1 and half are smaller than 𝑁 /2. Therefore
it takes on average at most 8 tries before the right 𝑦 is sampled.
Note that this does not alter the distribution of the ciphertext and
𝑦2 is a randomly chosen quadratic residue, just like in a regular
ciphertext. Another possible way is to encrypt the message with
some authentication tag and the receiver will try to decrypt all four
roots and with some high probability only one when decrypted will
be of the right form.

By combining the above discussion with Theorem 2 we obtain
the following theorem.

Theorem 5. The Goldwasser-Micali encryption scheme is anamor-
phic.

A noted property of this scheme is that the anamorphic message
is larger than the regular 1-bit message.

4.3 Multiple-Receiver Anamorphism: the
ElGamal Scheme Case

In this section we show that ElGamal is a multiple-receiver anamor-
phic encryption scheme. This means that the double key dkey can
also be used to decrypt and therefore the regular plaintext is exposed
to all players that have access to dkey. Let us start by reviewing
the ElGamal public key encryption scheme and then we discuss its
anamorphic properties. The ElGamal scheme uses a group system
G for which the DDH assumption holds (see Assumption 5).

(1) The key generation algorithm ElKG(1𝜆) runs G(1𝜆) and
samples the description of a group G of order 𝑞, with |𝑞 | =
Θ(𝜆), along with a generator 𝑔 of G. Then the algorithm
randomly selects 𝑥 ← {0, . . . , 𝑞−1} and publishes (𝑔,𝑦 = 𝑔𝑥 )
(the exponentiation is performed in G) as a public key and
keeps 𝑥 as the secret key.

(2) The encryption algorithm ElEnc((𝑔,𝑦), msg) takes a message
msg ∈ G and computes the ciphertext ct by randomly select-
ing 𝑟 ← {0, . . . , 𝑞 − 1} and setting ct = (𝑔𝑟 , 𝑦𝑟 · msg) .

(3) On input ciphertext ct = (𝑐0, 𝑐1) and secret key sk = 𝑥 , the
decryption algorithm ElDec returns msg = 𝑐1 · 𝑐−𝑥0 .

ElGamal is Anamorphic. The idea is to use the randomness of
the ciphertext to embed the ciphertext of a symmetric encryp-
tion scheme with pseudorandom ciphertexts and the most natural
approach would be to use 𝑟 for this purpose. Unfortunately, the
recipient will not be able to recover 𝑟 as this would be equivalent to
solving the discrete log problem in G and knowledge of the secret
key will not help in this case. We adopt instead the following ap-
proach. The sender encrypts the anamorphic message amsg using
a symmetric encryption scheme with pseudorandom ciphertexts
and sets 𝑐0 equal to the ciphertext obtained. Now observe that the
sender does not know 𝑟 such that 𝑐0 = 𝑔𝑟 so 𝑐1 is computed as
𝑐1 = 𝑐𝑥0 · msg. In other words, the secret key of ElGamal is used to
complete the ciphertext.

Before proceeding more formally, we would like to discuss a sub-
tle point. In our construction, the first component 𝑐0 of the ElGamal
ciphertext is the ciphertext carrying the anamorphic message. As
𝑐0 is a random element from G, we need an encryption scheme

prE whose ciphertexts are pseudorandom over G. A similar issue
arises in the context of Telex [31] and a solution was provided
by Elligator [5]. For the specific case of ElGamal, we observe that
ElGamal itself (with an independently chosen random key that is
shared as part of dkey) can play the role of prE. Note that in this
way we will need two regular ciphertexts to carry one anamorphic
ciphertext. As a third alternative, one might consider the ElGamal
variants of [22, 32] in which ciphertexts are indistinguishable from
random strings of the same length and then we can have prE to be
any encryption scheme with pseudorandom ciphertexts.

We are now read to formally describe the anamorphic triplet
aElE = (aElKG, aElEnc, aElDec),

(1) The anamorphic key generation algorithm aElKG runs ElGa-
mal’s key generation algorithm ElKG to obtain (pk = 𝑦, sk =

𝑥) and sets apk = 𝑦 and ask = 𝑥 . In addition, it runs the key
generation algorithm of prE to obtain a secret key 𝐾 and it
sets dkey = (𝐾, 𝑥).

(2) The anamorphic encryption algorithm aElEnc takes as in-
put apk, dkey = (𝐾, 𝑥) and a pair (msg, amsg) of a regu-
lar and anamorphic messages and computes the anamor-
phic ciphertext act = (𝑐0, 𝑐1) as follows. First, it sets 𝑐0 =

prEnc(𝐾, amsg) and then 𝑐1 = 𝑐𝑥0 · msg.
(3) The anamorphic decryption algorithm aElDec receives act =

(𝑐0, 𝑐1) and obtains the anamorphic message by decrypting
𝑐0 using algorithm prDec with key 𝐾 .

Theorem 6. ElGamal is a multiple-receiver anamorphic encryp-
tion scheme.

Proof. Consider the anamorphic triplet aElE described above.
First of all observe that the double key contains the decryption
key and thus the extract algorithm is straightforward. Next, we
observe that the pair (apk, ask) has the same distribution as a
regular ElGamal pair of keys. The difference between a regular
ciphertext and anamorphic ciphertext is that in former 𝑐0 is random
element of G whereas in the latter 𝑐0 is a ciphertext of prE. The
theorem then follows by the pseudo-randomness of the ciphertexts
of prE in G.

More formally, let us assume that there exists a dictator D that
breaks the anamorphism of El with triplet aElE and construct the
following adversary A for the pseudorandomness of the cipher-
texts of prE in G. A has access to an oracle 𝑂 that when invoked
on amsg either returns a random element of G or an encryption of
amsgwith a randomly selected key 𝐾 of prE.A sets upD by gener-
ating a pair (pk, sk) of keys by using algorithm ElKG. Then every
time D issues a query for (msg, amsg), A executes the ElGamal
encryption algorithm aElEnc with one exception: 𝑐0 is computed
as 𝑐0 := 𝑂 (amsg). Finally, A returns D’s output.

First of all, observe that the pair of keys received in input by D
has the same distribution as in RealGEl,D and AnamorphicGEl,D .
Let us now look at the ciphertexts returned toD byA . If𝑂 returns
random elements of G then it is easy to see that the reply to query
(msg, amsg) is an ElGamal ciphertext of msg. That is, ifA is playing
OPr0 then D receives the same view as in RealGEl,D and thus

Prob
[
PRCtG0

prE,A (𝜆) = 1
]
= Prob

[
RealGEl,D (𝜆) = 1

]
.
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On the other hand, if 𝑂 returns encryptions of amsg then the reply
prepared byA toD’s queries is an anamorphic ciphertext carrying
(msg, amsg). That is, ifA is playingOPr1 thenD receives the same
view as in AnamorphicGaElE,D and thus

Prob
[
PRCtG1

prE,A (𝜆) = 1
]
= Prob

[
AnamorphicGaElE,D (𝜆) = 1

]
.

Since, by assumption, D breaks the anamorphism of El and aElE,
A contradicts the pseudorandomness of the ciphertexts of prE.
Contradiction. □

5 ANAMORPHIC ENCRYPTION FROM CCA
SECURITY

In Section 5.1 (see Theorem 8) we look at the Cramer-Shoup en-
cryption scheme, arguably the most practical encryption scheme
proved CCA-secure in the standard model, and show that it is
single-receiver anamorphic; that is, knowledge of the double key
is not sufficient to decrypt the regular message contained in an
anamorphic ciphertexts and thus privacy of the regular message
is protected with respect to users holding the double key. In Sec-
tion 5.2, we extend our investigation to the paradigm based on
Smooth Projective Hash Functions and show that it yields multiple-
receiver anamorphic encryption schemes; that is, the double key
allows the decryption of the regular message too. See Theorem 11.

5.1 Cramer-Shoup: CCA security with
single-receiver anamorphism

In this sectionwe show that Cramer-Shoup is single-receiver anamor-
phic. We start by describing csE, the Cramer-Shoup encryption
scheme [9]. The csE encryption scheme uses a group system G for
which the DDH Assumption (see Definition 5) is conjectured to
hold and a universal one-way family of hash functionsH (this can
be constructed from one-way functions [27]).

(1) The key-generation algorithm csKG(1𝜆) samples G(1𝜆) to
obtain a cyclic groupG of order 𝑞, where 𝑞 is a prime ofΘ(𝜆)
bits, and a generator 𝑔1 of G. Then the algorithm randomly
selects another generator 𝑔2 of G and 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧 ← Z𝑞 .
The algorithm sets 𝑐 := 𝑔𝑥11 · 𝑔

𝑥2
2 , 𝑑 := 𝑔𝑦11 · 𝑔

𝑦2
2 , and ℎ := 𝑔𝑧1 .

Next the algorithm randomly selects 𝐻 ← H(1𝜆). Finally,
the algorithm outputs the public key cspk = (𝐻,G, 𝑔1, 𝑔2, 𝑐, 𝑑,
ℎ) and the secret key cssk = (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧).

(2) The encryption algorithm csEnc on input a public key cspk =

(𝐻,G, 𝑔1, 𝑔2, 𝑐, 𝑑, ℎ) and a message msg ∈ G proceeds as fol-
lows.
The algorithm randomly selects 𝑘 ← Z𝑞 and computes 𝑢1 =
𝑔𝑘1 , 𝑢2 = 𝑔

𝑘
2 , 𝑒 = ℎ

𝑘 ·𝑚, 𝛼 = 𝐻 (𝑢1, 𝑢2, 𝑒), and 𝑣 = 𝑐𝑘 · 𝑑𝑘𝛼 .
Finally, the ciphertext csct is set equal to (𝑢1, 𝑢2, 𝑒, 𝑣).

(3) The decryption algorithm csDec takes as input a ciphertext
csct = (𝑢1, 𝑢2, 𝑒, 𝑣) and a secret key cssk = (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧)
and proceeds as follows.
First, the algorithm computes 𝛼 = 𝐻 (𝑢1, 𝑢2, 𝑒) and verifies
that 𝑣 = 𝑢𝑥1+𝛼𝑦11 𝑢

𝑥2+𝛼𝑦2
2 . If the test fails, decryption aborts.

Otherwise, the decryption algorithm returns𝑚 = 𝑒/𝑢𝑧1 .
We have the following theorem.

Theorem 7 ([9]). If H is a universal one-way family of hash
functions and the DDH assumption holds for the group system G then
csE is a CCA secure encryption scheme.

To show that csE is anamorphic, we follow the idea used for
the ElGamal encryption scheme and make one of the components
of the ciphertext the encryption of the anamorphic message amsg.
Specifically, we let prE = (prKG, prEnc, prDec) be a symmetric en-
cryption schemewith pseudorandom ciphertexts (see Definition 12).
Then we encrypt amsg using prE and set 𝑢2 equal to the resulting
ciphertext prct. Now there seems to be a problem as the other two
components of the ciphertext, 𝑢1 and 𝑒 , are supposed to have the
same exponent as 𝑢2 for otherwise the check will fail except with
negligible probability. This would be fatal as the dictator will be
able to perform the check (as they have the secret key) and the
anamorphic ciphertext will be flagged as suspicious. To avoid this
problem we add 𝑥1, 𝑥2, 𝑦1, 𝑦2 to the double key dkey. This allows
the sender to compute 𝑣 and 𝛼 so to pass the check even though
𝑢1 and 𝑢2 have different exponents. In other words, dkey contains
information that allows to bypass the check and, since the test on
𝑣 in the decryption algorithm csDec is crucial to guarantee CCA
security, CCA security fails to hold with respect to parties that
have access to dkey. As we shall prove in Theorem 9, CPA security
continues to hold for the regular message even if we release dkey.

Let us now proceed more formally and describe the Cramer-
Shoup anamorphic triplet acsE = (acsKG, acsEnc, acsDec). We let
prE = (prKG, prEnc, prDec) denote a symmetric encryption scheme
with pseudorandom ciphertexts.

(1) The anamorphic key-generation algorithm acsKG(1𝜆) ob-
tains cspk = (𝐻,G, 𝑔1, 𝑔2, 𝑐, 𝑑, ℎ) and cssk = (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧)
from running csKG(1𝜆) and sets apk := cspk and ask :=
cssk. The algorithm then runs the key generation algorithm
prKG(1𝜆) to obtain 𝐾 . Finally, the algorithm sets dkey =

(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝐾).
(2) The anamorphic encryption algorithm acsEnc takes as input

apk and dkey and two messages, the regular message msg
and the anamorphic message amsg, and proceeds as follows.
First, it encrypts amsg by setting prct ← prEnc(𝐾, amsg).
Then, the algorithm randomly selects 𝑘 ← Z𝑞 and computes
𝑢1 = 𝑔𝑘1 and 𝑒 = ℎ𝑘 · msg. Value 𝑢2 is set equal to prct and
𝛼 is computed as 𝛼 = 𝐻 (𝑢1, 𝑢2, 𝑒). Finally, 𝑣 is computed as
𝑣 = 𝑢

𝑥1+𝛼𝑦1
1 𝑢

𝑥2+𝛼𝑦2
2 . The anamorphic ciphertext acsct is set

equal to (𝑢1, 𝑢2, 𝑒, 𝑣).
(3) The anamorphic decryption algorithms receives an anamor-

phic ciphertext acsct = (𝑢1, 𝑢2, 𝑒, 𝑣) and obtains the anamor-
phic message amsg by decrypting𝑢2 using the key𝐾 found in
dkey. We note that the regular message msg is also obtained
as msg = 𝑒 · 𝑢−𝑧1 .

5.1.1 Cramer-Shoup is anamorphic. We have the following theo-
rem.

Theorem 8. Under the DDH assumption, the Cramer-Shoup en-
cryption scheme is an Anamorphic Encryption scheme.
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Proof. LetD be any PPT dictator. To prove that gamesRealGcsE,D
and AnamorphicGacsE,D are indistinguishable, we consider the fol-
lowing intermediate hybrid games 𝐻0, . . . , 𝐻3 where 𝐻0 is defined
to be the real game RealGcsE,D .

(1) Hybrid𝐻1 is the game in which we replace oracleOewith or-
acleOe1 that differs fromOe in theway 𝑣 is computed. Specif-
ically, Oe1 receives cspk and dkey and computes the value
of 𝑣 by setting 𝑣 = 𝑢𝑥1+𝛼𝑦11 𝑢

𝑥2+𝛼𝑦2
2 , where 𝛼 = 𝐻 (𝑢1, 𝑢2, 𝑒).

We note that the views of the dictator in 𝐻0 and 𝐻1 are
identical.

(2) Hybrid 𝐻2 differs from hybrid 𝐻1 in the way the 𝑢2 compo-
nent of the ciphertext is computed. Specifically, the adversary
is given access to oracle Oe2 that computes the ciphertext
by setting 𝑢2 equal to a random element of Z𝑞 .
Next we argue that, under the DDH assumption, 𝐻2 is indis-
tinguishable from 𝐻1.
Indeed suppose that there exists a PPT dictator D that dis-
tinguishes 𝐻1 from 𝐻2. Suppose that D makes 𝑞(𝜆) queries
and consider hybrids 𝐻𝑖,2, for 𝑖 = 0, . . . , 𝑞(𝜆), in which the
first 𝑖 queries are answered using oracle Oe2 and the last
𝑞(𝜆) − 𝑖 queries are answered using oracle Oe1. Note that
𝐻0,2 coincides with 𝐻1 and 𝐻𝑞 (𝜆),2 coincides with 𝐻2. By
assumption D distinguishes 𝐻1 and 𝐻2 and, since 𝑞(𝜆) is
bounded by a polynomial, there must exist an index 𝑖 such
that D distinguishes 𝐻𝑖−1,2 from 𝐻𝑖,2. Note that the only
difference between these two hybrid is in the way the 𝑖-th
query is answered: using Oe1 in 𝐻𝑖−1,2 and using Oe2 in
𝐻𝑖,2.
Now consider the following PPT algorithmA that receives in
input an instance (G, 𝑔, 𝐴, 𝐵,𝐶) of the DDH problem where
𝐴 = 𝑔𝑎 , 𝐵 = 𝑔𝑏 and 𝐶 is either equal to 𝑔𝑎𝑏 or 𝐶 is random
from G. A uses D to decide the nature of 𝐶 in the input
triplet and to do so it provides D with the pair (cspk, cssk)
and replies to D’s oracle queries. To compute the pair of
keys A executes the key-generation algorithm csKG with
the only difference that A sets 𝑔1 = 𝑔 and 𝑔2 = 𝐴. Note that
this does not alter the distribution of the pair and so it is
distributed exactly as in 𝐻1 and 𝐻2.
Then A answers D’s queries; the first 𝑖 − 1 queries are
answered by A just as in 𝐻1, the last 𝑞(𝜆) − 𝑖 queries are
answered just as in𝐻2. The 𝑖-th query specifies twomessages
amsg (which is ignored) and msg andA computes its reply by
setting 𝑢1 = 𝐵, 𝑢2 = 𝐶 , 𝑒 = 𝐵𝑧 · msg, and 𝑣 = 𝑢𝑥1+𝛼𝑦11 𝑢

𝑥2+𝛼𝑦2
2 ,

where 𝛼 = 𝐻 (𝑢1, 𝑢2, 𝑒). A returns (𝑢1, 𝑢2, 𝑒, 𝑣).
Now observe that if 𝐶 = 𝑔𝑎𝑏 then the ciphertext produced
by A as a reply to the 𝑖-th query is a regular Cramer-Shoup
ciphertext for msg with 𝑘 = 𝑏, exactly as in 𝐻𝑖−1,2. On the
other hand, if 𝐶 is random, the ciphertext produced by A is
distributed like a ciphertext in 𝐻𝑖,2. In other words, depend-
ing on the nature of the triplet (𝐴, 𝐵,𝐶), the adversary sees a
distribution of 𝐻𝑖−1,2 or 𝐻𝑖,2. This completes the proof that,
under the DDH assumption,𝐻1 and𝐻2 are indistinguishable.

(3) Hybrid 𝐻3 differs from 𝐻2 in two respects. First, it samples
𝐾 ← prKG(1𝜆). Second, D is provided with oracle Oe3 that
receives msg and amsg and sets 𝑢2 equal to an encryption
prct of amsg computed as prct← prEnc(𝐾, amsg). We next

prove that, under the pseudorandomness of the ciphertexts
of prE, 𝐻2 and 𝐻3 are indistinguishable.
For sake of contradiction suppose that there exists a dictator
that distinguishes 𝐻2 and 𝐻3 and consider the following
adversary A that distinguishes PRCtG0 from PRCtG1 (see
Definition 12). A has access to an oracle 𝑂 such that either
𝑂 = OPr0 or 𝑂 = OPr1 and proceeds as follows. It prepares
the pair of public and secret keys just as in 𝐻2 (which is the
same as in 𝐻3 without selecting key 𝐾) and then runs D.
WhenD issued a query for (msg, amsg),A proceeds as in𝐻2
with the only exception that𝑢2 is computed as𝑢2 = 𝑂 (amsg).
Now observe that if 𝑂 = OPr0, then a randomly selected
random string is returned and thus D’s view is exactly as in
𝐻2. On the other hand, if 𝑂 = OPr1, then an encryption of
amsg with key 𝐾 is returned and thus D’s view is exactly as
in 𝐻3. Therefore if D distinguishes 𝐻2 and 𝐻3 then A can
break the pseudorandomness of the ciphertexts of prE.

To complete the proof, observe that𝐻3 coincideswithAnamorphicG.
□

5.1.2 Cramer-Shoup is single-receiver anamorphic. In this section
we prove that, under the DDH assumption, the anamorphic triplet
acsE = (acsKG, acsEnc, acsDec) is a single-receiver anamorphic
triplet. Essentially, we will prove that knowledge of (𝑥1, 𝑥2, 𝑦1, 𝑦2)
will not compromise the IND-CPA security of the Cramer-Shoup
encryption scheme.

Theorem 9. Under the DDH Assumption, triplet acsE is single-
receiver anamorphic.

Proof. For sake of contradiction, we assume that there exists
a PPT adversary A that distinguishes the two games SingleAnG0

and SingleAnG1 and we construct a successful PPT adversary B
for the DDH assumption.
B receives a DDH challenge (G, 𝑔, 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶), where

either 𝐶 = 𝑔𝑎𝑏 or 𝐶 is random in G. B prepares apk and dkey
for A as follows. B sets 𝑔1 = 𝑔 and randomly generator 𝑔2 for G.
and then B randomly selects 𝑥1, 𝑥2, 𝑦1, 𝑦2 and 𝐾 , sets 𝑐 = 𝑔𝑥11 · 𝑔

𝑥2
2 ,

𝑑 = 𝑔
𝑦1
1 ·𝑔

𝑦2
2 , and ℎ = 𝐵. Finally, apk = (G, 𝑔1, 𝑔2, 𝑐, 𝑑, ℎ) and dkey =

(𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝐾). Let (msg0, msg1, amsg) be the triplet of messages
output byA. Then B replies to query for (msg0, msg1, amsg) by ran-
domly picking 𝛽 ← {0, 1} and setting 𝑢1 = 𝐴, 𝑢2 = prEnc(𝐾, amsg),
𝑒 = 𝐶 · msg𝛽 , ℎ = 𝐻 (𝑢1, 𝑢2, 𝑒) and 𝑣 = 𝑢

𝑥1+𝛼 ·𝑦1
1 · 𝑢𝑥2+𝛼 ·𝑦22 . B then

outputs 1 iff A outputs 𝛽 on input act
For 𝛼, 𝛽 ∈ {0, 1}, let us denote by 𝑝𝛼𝛽 the probability that A

outputs 𝛼 in game SingleAnG𝛽 . Since A distinguishes the two
games we can assume, without loss of generality, that 𝑝11 ≥ 𝑝10 +
1/poly(𝜆). Observe that if 𝐶 = 𝑔𝑎𝑏 then A’s view is the same as in
SingleAnG𝛽 . Therefore the probability that A outputs 𝛽 , and thus
B outputs 1, is 1

2 (𝑝11 + 𝑝00) which is equal to

1
2
(𝑝11 + 1 − 𝑝10) ≥

1
2
+ 1
2
(𝑝11 − 𝑝10) ≥

1
2
+ 1
2poly(𝜆) .

On the other hand if 𝐶 is a random element from G then A’s view
is independent from 𝛽 and thus in this case the probability that A
outputs 𝛽 , and thus B outputs 1, is at most 1/2. Therefore B breaks
the DDH assumption. □

180



The Prevalence of Anamorphic Encryption Proceedings on Privacy Enhancing Technologies 2023(4)

5.2 Multiple-Receiver Anamorphism of Smooth
Projective Hash Functions based Systems

In this section we show that the encryption schemes obtained
via the framework based on smooth projective hash functions of
Cramer and Shoup [10] are multiple-receiver anamorphic.

We start by defining the concept of a smooth projective hash
function.

Definition 13. A smooth projective hash function (SPHF)Hash
for a domain 𝑋 and an NP language 𝐿 ⊂ 𝑋 consists of the following
four algorithms:

(1) HashKG(1𝜆) returns the hashing key hk for 𝐿;
(2) ProjKG(hk) computes the projection key hp associated with

the hashing key hk;
(3) Hash(hk, 𝑥) computes the hash of 𝑥 ∈ 𝑋 using the hashing

key;
(4) ProjHash(hp, 𝑥, 𝜔) computes the hash of 𝑥 ∈ 𝐿 using projec-

tion hp and the witness 𝜔 for 𝑥 ∈ 𝐿.
with the following two properties:

(1) Projection: Hash(hk, 𝑥) = ProjHash(hp, 𝑥, 𝜔), whenever hp
is the projection of hk and 𝜔 is a witness for 𝑥 ∈ 𝐿;

(2) Smoothness: for every 𝑥 ∉ 𝐿, the value Hash(hk, 𝑥) looks
statistically close to a random string, even given the projection
key hp.

We say that Hash is 2-smooth projective hash function (2-SPHF) if
the following stronger condition holds:

(1) 2-Smoothness: for any two 𝑥, 𝑥 ′ ∉ 𝐿, the values ofHash(hk, 𝑥)
and Hash(hk, 𝑥 ′) look statistically close to two random and
independent strings, even given the projection key hp.

Cramer and Shoup [10] showed that one can construct a CCA
secure encryption scheme HE starting from SPHF for languages 𝐿
for whichmembership is hard.More formally, we have the following
definition of an hard membership problem.

Definition 14. An hard membership problem is a collection
M = {𝑀𝜆}𝜆>0 of efficiently in 1𝜆 sampable distributions. The distri-
bution 𝑀𝜆 associated with security parameter 𝜆 returns an istance
consisting of a quadruple (𝑋, 𝐿,𝑊 , 𝑅) of descriptions of sets such that

(1) 𝐿 ⊂ 𝑋 ;
(2) 𝑅 ⊂ 𝐿 ×𝑊 is a polynomial-time relation;
(3) it is possible to efficiently sample a pair (𝑥,𝑤) ∈ 𝑅 with 𝑥 ∈ 𝐿;

the distribution of 𝑥 must be negligibly close to uniform in 𝐿.
In addition, we have that the following two collectionsU = {𝑈𝜆}𝜆>0
andV = {𝑉𝜆}𝜆>0, where

𝑈𝜆 = {(𝑋, 𝐿,𝑊 ) ← 𝑀𝜆 ;𝑥 ← 𝑋 \ 𝐿 : (𝑋, 𝐿,𝑊 , 𝑥)}
and

𝑉𝜆 = {(𝑋, 𝐿,𝑊 ) ← 𝑀𝜆 ; (𝑥,𝑤) ←𝑊 : (𝑋, 𝐿,𝑊 , 𝑥)} ,
are indistinguishable.

To describe the CCA encryption scheme based on SPHF, we fix
a randomly selected instance (𝑋, 𝐿,𝑊 , 𝑅) with security parameter
𝜆 and we assume the existence of a SPHF HF1 for 𝐿 and of a 2-
SPHF HF2 for the language 𝐿 × {0, 1}ℓ , where ℓ is the length of
the projective hash for HF1 which, for convenience, we assume to
coincide with the message length.

(1) hKG(1𝜆) generates hashing key hk1 ← HashKG1 (1𝜆) for
HF1 and hk2 ← HashKG2 (1𝜆) for HF2 along with the cor-
responding projected keys hp1 = ProjKG1 (hk1) and hp2 =

ProjKG2 (hk2). The algorithm outputs the public key pk =

(hp1, hp2) and the secret key sk = (hk1, hk2) .
(2) The encryption algorithm hEnc((hp1, hp2), msg) randomly

selects 𝑥 ∈ 𝐿 along with a witness 𝜔 . Then the algorithm
computes the ciphertext (𝑥, 𝑐, 𝜋2) by setting𝜋1 = ProjHash1 (
hp1, 𝑥, 𝜔), 𝑐 = msg ⊕ 𝜋1 and 𝜋2 = ProjHash2 (hp2, (𝑥, 𝑐), 𝜔).

(3) The decryption algorithm hDec((hk1, hk2), (𝑥, 𝑐, 𝜋2)) first
checks that Hash(hk2, (𝑥, 𝑐)) = 𝜋2 and then returns msg =

𝑐 ⊕ Hash1 (hk1, 𝑥).
We have the following theorem.

Theorem 10 ([10]). If M is a hard membership problem then
(hKG, hEnc, hDec) is a CCA encryption scheme.

SPHFs give anamorphic encryption. We next show that the above
encryption scheme is anamorphic by exhibiting an anamorphic
triplet for it. The idea is close to the one used for the Cramer-Shoup
encryption scheme but with an important difference that we will
discuss later. The anamorphic algorithms can be briefly described as
follows. A ciphertext contains the one-time pad of msg with 𝜋1, the
randomly selected value 𝑥 and hash value 𝜋2. Then, the anamorphic
message amsg can be embedded in 𝑥 using an encryption key with
pseudo-random ciphertexts. If 𝑥 is computed in this way, then it
very unlikely that 𝑥 ∈ 𝐿 and thus there would be no witness𝜔 for it.
Therefore, the double key contains the hashing key that allows to
compute the hash values for any value in 𝑋 and thus it is possible
to make the ciphertext pass the test performed by the decryption
algorithm.

Let us proceed more formally and describe the anamorphic al-
gorithms (ahKG, ahEnc, ahDec). As before we denote by prE =

(prKG, prEnc, prDec) a symmetric-key encryption scheme with
pseudorandom ciphertexts. Note, that in this case we will need
the ciphertexts to be indistinguishable from a random element from
𝑋 .

(1) Algorithm ahKG runs the key generation algorithm hKG
to obtain pk = (hp1, hp2) and sk = (hk1, hk2) and the key
generation algorithm prKG to obtain 𝐾 . Then it outputs
apk := pk and, ask := sk and dkey = (sk, 𝐾).

(2) The encryption algorithm ahEnc(pk, dkey, msg, amsg) pro-
ceeds as follows. First, it encrypts amsg by setting prct←
prEnc(𝐾, amsg) and sets 𝑥 = prct. Then the algorithm sets
𝜋1 = Hash1 (hk1, 𝑥), 𝑐 = msg⊕𝜋1 and𝜋2 = Hash2 (hk2, (𝑥, 𝑐))
and outputs ciphertext act = (𝑥, 𝑐, 𝜋2).

(3) The decryption algorithm ahDec on input ciphertext act =

(𝑥, 𝑐, 𝜋2) uses 𝐾 to decrypt 𝑥 and return amsg.

Theorem 11. Encryption schemeHE is amultiple-receiver anamor-
phic encryption scheme.

Proof’s sketch. We observe that dkey includes the secret key
sk and thus the extractor is straightforward. To prove that games
RealG and AnamorphicG are indistinguishable, we consider the fol-
lowing intermediate hybrid games 𝐻0, . . . , 𝐻3 where 𝐻0 is defined
to be the real game RealG.
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(1) In 𝐻1 all hash computations are performed using hk1 and
hk2 instead of hp1 and hp2. Specifically, the reply to an
adversary’s query for (msg, amsg), is computed by setting
𝜋1 = Hash(hk1, 𝑥) and 𝜋2 = Hash(hk2, (𝑥, 𝑐)) .
The view of the adversary does not change by the Projection
property (see Item 1 in Definition 13).

(2) In 𝐻2, 𝑥 is chosen at random from 𝑋 \ 𝐿. The view of the
adversary in𝐻1 and𝐻2 are indistinguishable for the hardness
of the membership problem and 2-smoothness.

(3) Finally in 𝐻3, 𝑥 is the ciphertext encrypting amsg. The view
of the adversary in 𝐻3 and 𝐻2 are indistinguishable by the
pseudorandomness of the ciphertext.

Discussion. Let us briefly explain why the general paradigm on
SPHF yieldsmultiple-receiver anamorphismwhereas Cramer-Shoup
is single-receiver anamorphic. Indeed, the Cramer-Shoup encryption
scheme could be seen as a special case of the construction of CCA
secure encryption schemes based on SPHFs for the language of
DH pairs (𝑢1, 𝑢2); that is, pairs for which there exists 𝑟 such that
𝑢1 = 𝑔𝑟1 and 𝑢2 = 𝑔𝑟2, where 𝑔1 and 𝑔2 are two generators. Under
the DDH assumption, the language is membership hard. There is
however one crucial difference. By looking at the description of
the Cramer-Shoup encryption scheme one can see that it employs
pairs (𝑢1, ℎ𝑘 ) and (𝑢1, 𝑢2), forHF1 andHF2, respectively. In Cramer-
Shoup encryption both are chosen as DH pairs and thus the sender
only needs the projected keys (that are provided in the public key).
In the anamorphic encryption scheme though only the former is a
DH pair whereas the latter is non-DH; we remind the reader that𝑢2
is the ciphertext carrying the anamorphic message amsg. Therefore
there is no need to release the hashing key for HF1 whereas the
hashing key forHF2 is needed to correctly compute the anamorphic
ciphertext. This is very fortunate since hiding the hashing key for
HF1 preserves the privacy of the regular message msg.

In other words, whereas the general construction based on SPHF
employs one 𝑥 ∈ 𝐿, the Cramer-Shoup encryption scheme employs
two instances of membership in 𝐿 with one common element. Al-
lowing two pairs has the effect of untangling decryption of the
ciphertext (the task of the (𝑢1, ℎ𝑘 ) pair) and verification of the well-
formedness of the ciphertext (the task of the (𝑢1, 𝑢2) pair) and the
anamorphic encryption needs only to “cheat” the verification thus
leaving the normal message private.

6 RECAP AND CONCLUSIONS
The concept of anamorphic encryption has been introduced in [25]
that essentially provided two constructions2.

The first very general construction is based on rejection sampling
and it only guarantees logarithmic anamorphic bandwidth. Specifi-
cally, for security parameter 𝜆, the anamorphic message consists of
𝑂 (log 𝜆) bits, whereas the regular message is of length poly(𝜆).

The rate, namely, the ratio of the two bandwidths, goes to 0 as
𝜆 increases. The second construction instead shows that the Naor-
Yung encryption scheme [23] is anamorphic. Here, for security
parameter 𝜆, the regular and anamorphic message were of the same
poly(𝜆) length. Therefore, the rate is 1 but, this should be considered

2We are restricting the discussion to receiver-anamorphic encryption schemes.

more as a feasibility result since the Naor-Yung encryption scheme
is a general paradigm more than a system used in practice.

The aim we set for this paper was three-fold:
• to refine the notion of anamorphic encryption;
• to show that anamorphism is prevalent, by giving several
examples of anamorphic encryption schemes; and
• to show that anamorphic encryption is practical.

To discuss practical aspects, let us concentrate first on cipher-
text size. Since ciphertexts carrying anamorphic messages must
be indistinguishable from regular ciphertexts then there cannot be
any expansion in the ciphertext size. Let us next look at the encryp-
tion/decryption time and at the rate. For presented anamorphic
schemes, encryption (decryption) only needs one extra symmet-
ric encryption (respectively, decryption) which is typically very
efficient. Moreover and thirdly, the randomness extraction is quite
straightforward for all of our constructions. Finally, the rate of
our schemes is constant as the anamorphic bandwidth is at least a
constant of the regular bandwidth. In terms of rate, we note that
the Goldwasser-Micali encryption scheme has a rate greater than 1.
This is due to the fact that it is a one-bit encryption scheme and its
inefficiency can be used in our favor.

To be more concrete in our analysis, let us take a closer look
at the RSA-OAEP construction that we consider to be the most
frequently used in practice among those presented in this paper.
The size of the anamorphic message transported through RSA-
OEAP depends on the concrete implementation details and the
choice of parameters and we will use [6] as our reference. The
random parameter mgfSeed from this technical recommendation
corresponds to 𝑟 in the description from Section 4.1. According
to [6], the length of mgfSeed is the length of hash values created
by the hash function chosen for the scheme instantiation. So, for
hosting an anamorphic ciphertext, we would have 256 bits in the
case of SHA-256 or 512 bits in the case of SHA-512. At the same time,
for RSA-OAEP based on 2048-bit RSA with SHA-256, the regular
message would consist of at most 2048 − 2 · 256 − 16 = 1520 bits.
Thus the rate is slightly larger than 1/3. It is worth noting that the
only extra operations for anamorphic processing are encryption of
amsg and decryption of mgfSeed with dkey and the (presumably
fast) symmetric algorithms. Thus, the extra computational effort
is not substantial compared to the exponentiation operations of
RSA. We also note that safe implementations against side-channel
attacks (which are beyond the scope of this work) should be able
mask this negligible added work, using available techniques.

In conclusions, based on our results and the above discussion, it
seems that we have achieved the goals of this paper by refining the
notion introduced in [25] and by giving several constructions, all
of which are reasonably efficient.
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