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ABSTRACT

Since the advent of cloud computing, storing large quantities of
sensitive data on remote services have demanded secure encryption
practices to maintain data privacy. Merely encrypting data at-rest
leaves ciphertexts vulnerable to inevitable key leakage from mis-
managed keys, side-channel attacks, and security bugs. To combat
this, we propose QUICKeR, a system to facilitate continuous key ro-
tation and ciphertext updates. Unfortunately, continuous ciphertext
updates from key rotation interferes with routine access operations
by introducing race conditions and performance bottlenecks that
preclude prior works from practical use. QUICKeR addresses these
concerns through protocols that eliminate race conditions and even
achieve the stronger linearizability correctness criterion. In addi-
tion, QUICKeR proposes three approaches to implement frequent
ciphertext updates. We show how these different update schemes
perform under different database bottlenecks. Finally, we demon-
strate that QUICKeR is practical through end-to-end experiments
showing that routine access operations are not significantly im-
pacted by ciphertext update operations.
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1 INTRODUCTION

Cloud computing has enabled the distribution of computing re-
sources over the Internet. The ubiquity of cloud computing in ev-
eryday life means that external hardware continues to store more
private data than ever before, necessitating strong security and
privacy measures. In order to ensure confidentiality, standard prac-
tice involves encrypting data at-rest to prevent complete privacy
compromise from unauthorized access to a database.

However, merely encrypting data at-rest still leaves a major
problem: cryptographic keys are susceptible to leakage over time
in numerous ways. Mishandled keys can be inadvertently revealed
or deliberately stolen by rogue employees and insiders, resulting
in decryptable ciphertexts [23, 33]. Malware [32] and attacks on
buggy code [21] can steal sensitive cryptographic secrets. Finally,
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cryptographic operations are vulnerable to side-channel attacks
such as power output analysis, timing based attacks, electromag-
netic radiation analysis and more attacks that analysts have yet to
uncover [22, 29, 30]. Leaked keys are often the cause of large data
breaches, resulting in millions of dollars in monetary damage, loss
of reputation, and other severe repercussions [33].

One standard practice to limit the effects of inevitable key leak-
age is by periodically retiring old cryptographic keys for new ones,
called key rotation [2, 28]. Periodic key rotation shortens the life-
time of a cryptographic key, called a cryptoperiod, by transitioning
an operational key to a post-operational key, which is an accessi-
ble key for decrypting data but no longer encrypts new data [2].
Not only are short cryptoperiods good practice, they are a rec-
ommended government standard that limits ciphertext exposure
from key compromise, limits the available time for computation-
ally intensive cryptanalysis, and restricts the time available for an
attacker to penetrate access mechanisms protecting cryptographic
keys [2, 28]. While government standards define cryptoperiods of
up to 2 years, cloud service providers have default cryptoperiods
of a month [1, 8, 10, 15].

In addition to key rotation, updating ciphertexts (also known
as re-encrypting) to the most recent key limits the effects of key
leakage because it provides post-compromise security, meaning that
messages encrypted by new keys maintain confidentiality even
when outdated keys are compromised. However, safely destroying
post-operational keys without losing access to the data is impossible
without updating the ciphertext. Hence, modern systems require
periodic ciphertext updates.

This presents a problem because the costs of key rotation and
updating ciphertexts at-rest grow as the amount of data stored in
untrusted infrastructure continues to grow. These costs cannot be
ignored because updating ciphertexts interferes with the routine
access operations of storing and retrieving encrypted data. If per-
formed offline, then key rotations and ciphertext updates would
require the system to be periodically taken down for maintenance,
which can cost companies millions of dollars. An offline solution
may still be insufficient anyway because the amount of sensitive
data stored could grow to the point that the only solution is con-
stantly updating ciphertexts to fit within a cryptoperiod. If key
rotations are performed online, then updating ciphertexts to new
keys creates race conditions between updates and routine opera-
tions, resulting in incorrect executions. Finally, key rotation and
ciphertext updates produce performance bottlenecks like network
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Figure 1: SecurePut

bandwidth that limit how frequently both ciphertext updates and
routine access operations can be performed.

Prior work has introduced updatable encryption, where en-
crypted data can be updated to a new key dynamically [4-6, 11-
13, 17, 18, 20, 24, 25, 27]. However, these works do not consider the
impact of ciphertext updates on routine access operations. In addi-
tion, database systems, which implement their own concurrency
control, are not optimized to handle the need to update an entire
database that key rotation demands.

We introduce QUICKeR, a system which enables online key
rotations and ciphertext updates that occur concurrently with rou-
tine access operations of storing and retrieving encrypted data.
QUICKeR ensures correctness of concurrent operations by elimi-
nating race conditions. To achieve this, a key contribution of our
work is modifying routine access operations and ciphertext up-
dates to enable the stronger correctness guarantee of linearizability.
We support this with a formal proof of linearizability. In addition,
QUICKeR introduces three practical approaches for updating cipher-
texts with tradeoffs in performance and security. Our first approach
is fairly straightforward, having the fewest security assumptions
but high network costs. Our second and third approaches utilize
updatable encryption, which result in lower network costs but re-
quires stronger security assumptions. We show how the different
update approaches perform under different database bottlenecks
such as network bandwidth and CPU. We also implement an end-
to-end system for QUICKeR and experimentally demonstrate its
scalability to more data. Hence, QUICKeR improves the standard
cloud practice for encrypting data at-rest, a process known as en-
velope encryption. Envelope encryption is a two-level encryption
practice where the plaintext data is encrypted using a data key, and
the data key is encrypted with a root key.

The remainder of the paper is organized as follows. Section 2 elab-
orates on the problem statement. Section 3 discusses QUICKeR’s
system architecture and the modifications made to SecureGet, Se-
curePut, and ciphertext updates needed to achieve linearizability
as a correctness criterion. Section 4 discusses our straightforward
ciphertext update approach. Section 5 describes our ciphertext up-
date approach using updatable encryption. Section 6 evaluates the
performance of our proposed approaches through experimental
results. Finally, Section 7 concludes the paper.
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Figure 2: SecureGet

2 PROBLEM STATEMENT

In this section, we explain the problem statement by first describing
astandard deployment of envelope encryption [9]. Then, we explore
key rotation for this deployment in practice and in prior works.
Based on this overview, we identify goals and limitations of prior
work that we aim to address.

2.1 Data Model

In a standard cloud deployment, data can be stored on a key-value
store with a PUT request and retrieved with a GET request. We
use the term index in place of key-value pair keys to disambiguate
them from cryptographic keys, so a PUT request takes as param-
eters index i and value v to store v in a database server. A GET
request takes as parameters index i and returns a value v. We de-
fine SecurePut and SecureGet as operations that store and retrieve
encrypted data values using PuT and GET requests with a plaintext
index, respectively.

We assume a simplified database backend with a single key-value
store. Although we do not assume transactional processing guar-
antees, we assume that the key-value store ensures correctness
by locking data items until completion. Typical database backends
replicate and shard data amongst many different machines for avail-
ability and scalability reasons. We leave open as future work re-
search questions related to applying our techniques to a distributed
system and transactional processing system.

2.2 Envelope Encryption

Private data can be securely stored on cloud databases when en-
crypted by a cryptographic key. However, government and industry
regulations [2, 28] mandate that the key must be stored and operated
over cryptographic modules such as Hardware Security Modules
(HSMs) to prevent adversaries from accessing the key. HSMs are
certified to provide international standards of physical security,
including the highest level of FIPS 140-2 security [26].

Since HSMs are limited in their ability to operate on large data
sizes and to scale to large numbers compared to conventional ma-
chines, encrypting many megabyte-sized messages on HSMs be-
comes computationally expensive and a primary bottleneck. To
solve this problem, a recommended design pattern by the Payment
Card Industry Data Security Standard (PCI-DSS) [28] and stan-
dard practice by many cloud service providers such as Google [9],
Microsoft [15], IBM [10], and Amazon [1] is to envelope encrypt
data.
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Envelope encryption is the practice of encrypting plaintext mes-
sages with a data key into a ciphertext and encrypting the data key
with a root key into a wrap.! The wrap and ciphertext together
form the envelope encryption and can be safely stored on the cloud
database. This design eliminates the HSM as a bottleneck because
common conventional machines encrypt plaintext data with data
keys. Instead of HSMs encrypting many large plaintexts, HSMs are
only required to encrypt small data keys with root keys. Since data
keys and wraps are orders of magnitude smaller in size (less than
100 bytes) than typical plaintext data (kilobytes to megabytes), the
HSM workload is significantly reduced. Additionally, HSMs have
limited key storage capacity and this setup ensures that HSMs do
not store many unique data keys.

SecurePut and SecureGet are routine access operations for stor-
ing and retrieving envelope encrypted data. These operations typi-
cally involve three types of machines: (1) a client machine, (2) the
Hardware Security Module (HSM), and (3) the database server. To
SecurePut a plaintext data value (Figure 1) for an index i, a client
machine generates a new data key dek, encrypts the plaintext data
with the data key dek into a ciphertext, and then the HSM encrypts
dek with the root key k into a wrap. Finally, the wrap and cipher-
text are stored in the database. To SecureGet data (Figure 2) for
an index i, the reverse operation is performed. The client machine
communicates with the HSM to decrypt the wrap using the root
key to retrieve the corresponding data key, and finally decrypts
the ciphertext using this retrieved data key to access the private
plaintext. While other server side encryption system architectures
allow the database to interface directly with the HSM to encrypt
and decrypt data on the database locally, we study a client side en-
cryption architecture because a compromised database in a server
side encryption model completely compromises all data. Hence,
this client side encryption approach is more secure.

2.3 Key Rotation in Practice

In practice, plaintext data can be large in size, incurring high costs
when an entire database of ciphertexts is updated. For instance,
Google reports storing data in ciphertext chunks typically between
256 KB and 8 MB in size [7]. Hence, current cloud providers may at
most rotate root keys and update wraps [1, 8, 10, 15] while avoid-
ing data key rotations and ciphertext updates because updating
small key wraps incurs significantly lower costs. These updates are
performed by generating a new root key on the HSM, retrieving
wraps from the database, decrypting wraps with the old root key,
encrypting new wraps with the new root key, and finally upload-
ing the new wraps to the database. Eschewing data key updates
still has a major flaw: the data keys are not rotated and thus have
no post-compromise security. If either root keys or data keys are
compromised, then ciphertexts are still vulnerable. Hence, we aim
to rotate both data keys and root keys, thereby updating the entire
ciphertext to limit the size of the vulnerability window.

!Data keys are also known as data encryption keys (DEK) and root keys also known
as key encryption keys (KEK).
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2.4 Threat Model & Goals

To achieve a practical solution to frequent key rotation, we discuss
the threat model and our goals in rotating keys within a cryptope-
riod while minimally impacting routine access services.

Threat Model: We allow an adversary to learn any outdated
keys and learn ciphertexts updated to current keys. Since our goal is
to provide post-compromise security, then attacks that compromise
outdated root and data keys and view currently encrypted data on
the database should not provide an adversary any power to violate
confidentiality. We remark that this is similar to the security models
of many updatable encryption works [4-6, 11-13, 17, 18, 20, 24, 27]
and most similar to Jarecki et al’s security model [16], except we
have a stronger model that additionally allows for data key compro-
mises.? We discuss how our security assumptions differ between
our three proposed solutions in Section 5. We do not prevent denial-
of-service attacks, so if an adversary compromises the database
and blocks update operations, then our system no longer limits
vulnerability windows. However, even if a rogue database were to
deviate from the protocol, we still aim to ensure that the privacy of
ciphertexts in the database is maintained and that no extra informa-
tion is leaked. Finally, we allow an adversary who compromises the
database to modify or insert ciphertexts, so client machines should
be able to verify the authenticity of a plaintext.

Security Goal: Since it is difficult to provide any security guar-
antees when an adversary gains access to a ciphertext decryptable
by a compromised key (also known as trivial wins), we aim to update
all ciphertexts from old cryptographic keys to new keys by the time
a cryptoperiod expires. This limits the vulnerability window that
an adversary has to perform an attack by providing post-compro-
mise security. Higher key rotation rates mean that more ciphertexts
can be updated to satisfy a cryptoperiod and shorter vulnerability
windows during which the database continues to store ciphertexts
encrypted by compromised keys.

Correctness Goal: Besides ensuring that client updates (Se-
curePut) and ciphertext updates lead to ciphertexts that can be
correctly retrieved (SecureGet), one problem is that concurrent
routine access and ciphertext update operations create race condi-
tions that can result in incorrect executions. We aim to eliminate
such race conditions by modifying routine access operations and
ciphertext updates in order to provide and prove linearizability
guarantees. This ensures that routine access and ciphertext update
operations can execute concurrently and still guarantee a correct
ordered sequence of events.

Performance Goal: Our system aims to perform concurrent
updates alongside routine access operations where key rotations
and ciphertexts updates can occur frequently with minimal loss
in routine access operation throughput. In addition, routine ac-
cess operations should not incur high latency penalties for using
schemes that enable continuous key rotation. Finally, our solution
should scale to realistic workloads, capable of rotating databases
comprising of a large number of ciphertexts with message sizes
between 256 KB to 8 MB within a cryptoperiod.

2 Although Jarecki et al.’s security model further ensures that the HSM be oblivious to
the data key, their techniques can also be applied our solutions to achieve the same
guarantees.
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2.5 Prior Work

Prior work has proposed different updatable encryption schemes
[4-6, 11-13, 17, 18, 20, 24, 27] to enable more efficient key rotations,
but no prior works consider a practical deployment where factors
such as concurrent operations and overall system performance
become important. They either do not rotate both root keys and
data keys or fail to achieve the outlined goals of practical, frequent
updates while minimizing its impact on routine access operations.
Jarecki et al. [16] and ReCrypt [11] are the only two related works
that explore a similar system model of envelope encryption. Jarecki
et al. [16] proposes an oblivious updatable key management sys-
tem based on Diffie-Hellman assumptions that updates only root
keys; however, this work is unable to provide post-compromise
security to data keys. Everspaugh et al. [11] observe that merely
rotating root keys provides insufficient security and proposed an
updatable encryption scheme called ReCrypt that updates both
root and data keys. Because ReCrypt relies on key-homomorphic
pseudo-random functions (PRFs), they report performance costs of
encryption and decryption 1000x slower than standard private-key
encryption schemes. Using ReCrypt would therefore impose an
undesirable high latency penalty on routine access operations. We
aim for a system that is practical for basic operations and rotates
keys often to minimize the vulnerability window of ciphertext and
keys. In addition, both works do not consider the impact of update
operations on routine access operations. For instance, updating
frequently can interrupt routine access service by creating race con-
ditions or consuming network bandwidth and processors shared by
SecurePut and SecureGet operations, which decreases the through-
put of these routine access operations. These are critical concerns
in our system, QUICKeR.

Lastly, though conventional solutions to concurrency control
have long existed, such as multiversion concurrency control (MVCC)
[3] and optimistic concurrency control (OCC) [19], each has its
flaws in our domain. MVCC may leave old ciphertexts on the data-
base (due to long running transactions, backup and recovery, or
delayed garbage collection) which can violate post-compromise
security, while OCC may trigger many aborts and retries which
affects performance. We deviate from these approaches and provide
linearizability guarantees by carefully considering every concur-
rency violation.
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3 QUICKER ARCHITECTURE

We introduce our system, QUICKeR, which modifies the standard
envelope encryption deployment. Our system architecture is gen-
eralized to three different approaches of ciphertext updates with
varying trade-offs.

3.1 QUICKeR System Overview

QUICKeR consists of a secure database (a key-value store) storing
client data encoded with envelope encryption; an HSM that stores
root key information; a set of client machines that issue secure
routine access operations on the database and a set of trusted update
machines that continuously rotate keys and update ciphertexts
concurrently with the routine access operations issued by the client
machines (Figure 3).

Key rotations and ciphertext updates operate in rounds. Before
the round, the HSM initially has a prior root key generated from the
previous round. The update machines begin a new round with a
brief setup step where it communicates with the HSM to generate
a new root key and notifies the database and client machines of
the new root key. For the entire round, the HSM stores both the
new root key and the prior root key, which we call the old root
key. The new root key is operational, i.e., it is the current, active
key for encrypting and decrypting data. The old root key is post-
operational, i.e., it can be used for decrypting data but no longer
encrypts new data. For this paper, we assume a single old root
key and new root key, but QUICKeR extends to systems that want
multiple root keys for different data by having multiple old and new
root keys in a round. In each round, update machines update one-by-
one all envelope encrypted ciphertexts in the database from the old
root and data key to the new root key and the newly generated data
key. This update is performed by one of the three ciphertext update
approaches. Once the update machines finish updating a ciphertext,
the new ciphertext is PUT into the database, any data using the old
envelope encrypted ciphertext is removed from the database, and
the update machines continue to update other outdated ciphertexts.
This means that during a round, some ciphertexts are still encrypted
by the old root key, some ciphertexts are in the process of being
updated, and the rest have already been updated to the new root
key. A round of key rotation is completed when all ciphertexts
encrypted by the old root key have been updated the new root key
and the HSM destroys the old root key to ensure it is not accessible
to an adversary. A new round of key rotations can subsequently
start. The time taken for a round of updates to start and end is the
maximum vulnerability window of a ciphertext and should be no
longer than the standard cryptoperiod of keys.

Performing frequent key rotations and ciphertext updates in-
troduces race conditions where concurrent SecureGet, SecurePut,
and ciphertext updates can lead to incorrect executions. Hence,
QUICKeR provides a generalized solution to ensure linearizability
[14], which is applied to all three approaches for updating cipher-
texts. Linearizability means that the operations reflect an ordered
sequence of events, thereby ensuring that executing concurrent
operations always results in a correct execution. We now discuss
the challenges with concurrent operations and our modifications
to routine access operations and ciphertext updates.
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Figure 4: QUICKeR SecureGet

3.2 SecureGet Correctness & Concurrency

Update machines frequently rotating keys and updating ciphertexts
introduces several challenges for executing SecureGet:

(1) Client machines need to know which root key to use to
decrypt ciphertexts.

(2) Retrieving a ciphertext in the process of being updated can
result in incorrect retrieval.

(3) A client machine may retrieve a ciphertext encrypted by a
destroyed root key.

Challenge (1): Since ciphertexts update operations occur one-
by-one during a round, some ciphertexts on the database will be
encrypted by the old root key and some ciphertexts will have been
updated to the new root key. The HSM stores both the old and new
root key so the client machines need to distinguish which root key
decrypts a ciphertext.

To solve (1), QUICKeR helps client machines distinguish between
a wrap encrypted by an old and a new root key by storing root key
identification, called a root key id along with each ciphertext and
wrap on the database. A root key id uniquely identifies the root key
on the HSM used to encrypt the wrap. When an update machine
updates a ciphertext to the new root key, the root key id, wrap,
and ciphertext all replace the old data. A client machine executing
SecureGet is now able to GET the root key id, wrap, and ciphertext.
The client machine then uses the root key id to decrypt the wrap,
correctly accessing the data encryption key, and then decrypt the
ciphertext. Whether the ciphertext has been updated to the new
root key or not, the client machine will correctly determine the
root key used to decrypt the data.

Challenge (2): A ciphertext may be in the process of being
updated to the new root key. Data retrieval for such ciphertexts
can result in incorrect executions. For example, a SecureGet and
ciphertext updates can concurrently occur for the same index of the
database. The client machine executing SecureGet may GET a par-
tially updated ciphertext or updated wrap with the old ciphertext,
resulting in incorrect retrieval.

To solve (2), QUICKeR requires that ciphertext update operations
atomically replace the old ciphertext data on the database and that
SecureGet atomically GET data from the database. Atomically re-
placing data means that although ciphertext update operations take
processing time, the operation modifies nothing in the database un-
til all of the processing time completes. When the processing time
completes, all three of the wrap, ciphertext, and root key id are puT
into the database at once. An atomic GET retrieves the wrap, cipher-
text, and root key in one database operation before starting another
database operation. This helps guarantee linearizability because
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Figure 5: Setup step where an update machine notifies the
database and client machines.

SecureGet can only GET untouched or completely updated data.
A SecureGet will GET the completely updated ciphertext data if it
executes after the ciphertext atomically updates and will otherwise
GET the old ciphertext data, resulting in a linearizable execution
where the SecureGet occurs before or after a ciphertext update.

Challenge (3): A client machine may retrieve an envelope en-
crypted ciphertext that it cannot decrypt because the HSM has
destroyed its root key. This can occur towards the end of a round
when a client machine executes a SecureGet and retrieves a cipher-
text still encrypted by the old key. As this is happening, the update
machines finish updating all ciphertexts to the new root key and the
HSM destroys the old root key, marking the end of the round. The
client machine is now unable to decrypt the envelope encrypted
ciphertext.

To solve (3), the client machine retries the SecureGet by retriev-
ing an updated ciphertext. Since a round of ciphertext updates has
completed, the retry is guaranteed to GET the updated ciphertext.

SecureGet Summary: In accordance to these challenges, Figure
4 shows the modifications necessary to SecureGet. Given index
i, a client machine atomically GETs the ciphertext C, wrap wrap,
and root key id keyID; from the database. Using keyID;, the client
machines identify the correct root key on the HSM to decrypt the
wrap wrap and access the data key dek. Though not depicted in
Figure 4, if the HSM has destroyed the key corresponding to keyID;,
then the client machine simply retries the entire operation. Finally,
the client machine can decrypt C using the dek into the plaintext
data. Each ciphertext also has an associated version number v;,
which is needed for modifications to SecurePut that we discuss
later.

3.3 SecurePut Correctness & Concurrency

Frequently rotating keys and updating ciphertexts introduces chal-
lenges for executing SecurePut:

(1) Client machines may SecurePut data by envelope encrypting
with a root key that is no longer operational.

(2) Ciphertext update operations may incorrectly overwrite con-
current SecurePut operations.

Challenge (1): Since the operational root key changes every
round, the client machines may not be aware of new root keys and
encrypt using root keys that are no longer operational (either have
become post-operational or deleted completely). This is problematic
because this can result in lost access to plaintext data when its root
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key is deleted and could pose a security flaw when messages are
encrypted with expired keys.

To solve (1), QUICKeR has a setup step at the beginning of a
round where update machines notify all client machines and the
database of the new root key. This enables client machines to en-
crypt with the new root key and the database to reject ciphertexts
not encrypted by the new root key. If the database rejects a cipher-
text, then client machines retry the SecurePut by encrypting their
data with the new root key. Figure 5 summarizes the setup step. The
client machines and database each locally keep track of the new
root key id with local values keyID_jjep; and keyIDj,:apase- Te-
spectively. The client machines and database initially have keyID;
assigned as the new root key id referring to k;. When a new round
begins, the update machines (1) generate a new root key k2 on the
HSM, (2) obtain the root key id keyID, and (3) notify the data-
base of the new key id keyID;. The database (4) updates its local
value keyIDj,sabase 10 keyIDy so the database rejects ciphertexts
that aren’t encrypted with the new root key. This ensures that
all accepted ciphertexts are encrypted by an operational root key.
The update machines then (5) notify the client machines, which (6)
update their local value keyID, jjopn; to keyID2. QUICKeR notifies
the database before the client machines so that the database only
receives ciphertexts encrypted by root keys that it is aware of. After
the setup step, client machines only complete SecurePut operations
by encrypting with the new root key so that new plaintext data
moving forward is encrypted with an operational root key.

Challenge (2): A client machine executing a SecurePut for a
ciphertext concurrently with the ciphertext update process can
result in incorrect execution. Consider a ciphertext update opera-
tion in the process of updating a specific ciphertext. The ciphertext
update process GETs the original ciphertext to update and during
its processing time, a concurrent SecurePut operation PUT newer
data; however, this newer data is overwritten when the ciphertext
update operation completes by PUTTING a ciphertext correponding
to the original data, resulting in a lost SecurePut.

To solve (2), one classic approach to handle race conditions and
ensure linearizability is by blocking (using locks) either update
operations or SecurePut operations until the other operation com-
pletes. A problem with this approach is that since the ciphertext
update operation may last a long time, waiting for an update to
complete means that several SecurePut operations can queue up,
significantly impacting throughput and the performance of the sys-
tem. QUICKeR introduces a more efficient solution by using atomic
PUT in SecurePut and selectively aborting ciphertext updates to
avoid overwriting newer data. Ciphertext update operations are
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aborted when the ciphertext has been modified by a SecurePut
during its execution. QUICKeR uses a ciphertext version number
for each ciphertext to detect such changes. The version number is
incremented whenever a SecurePut PUTs newer data, so that during
the ciphertext update process, the database atomically checks the
version number for changes before replacing with the ciphertext
updated to the new root key. If the version number has changed,
the ciphertext update is aborted for this particular ciphertext. Recall
that SecurePut is using the new root key, and hence its ciphertext re-
flects new data encrypted by the new data and root key. This ensures
linearizability without completely blocking operations because ei-
ther the ciphertext update puTs an updated ciphertext before the
ciphertext is overwritten by a concurrent SecurePut, or a SecurePut
atomically PUTs new data and increments the version number.

SecurePut Summary: Figure 6 summarizes QUICKeR’s modifi-
cations to SecurePut which performs an update to the data of the
entry with index i in the key-value store. The client machine and
database each have a root key id: keyID,j;e,; and keyIDgg:abase
respectively, which is relayed by an update machine at the begin-
ning of a round. The client machine uses keyID_j;¢,; to envelope
encrypt its data, and the database uses keyIDj,s0pase tO €nsure
that the ciphertext is encrypted by the active key (Step 7). If the
ciphertext is encrypted by the operational key, then the database
atomically replaces the entry corresponding to index i with the
updated ciphertext and increments the corresponding ciphertext
version number (or 0 if uninitialized).

Insertions and Deletions: SecurePut operations for new in-
dices (i.e. insertion) do not cause concurrency bugs because Se-
curePut always encrypts with the most recent key during a round.
In future rounds, update machines can still update them to newer
keys. Regarding deletion, the database can abort a concurrent ci-
phertext update if the index has been deleted and still guarantee
linearizability.

3.4 Linearizability Proof

We provide an informal proof sketch here and defer our formal proof
for linearizability correctness of QUICKeR’s SecurePut, SecureGet,
and ciphertext updates to Appendix A.

Theorem: For all concurrent executions of SecureGet, SecurePut, and
ciphertext updates in QUICKeR, there exists a linearization where the
order of non-overlapping operations is maintained and the behavior
of QUICKEeR is correct.

The main ideas behind the proof are as follows: 1) We assume
that some steps of operations are atomic by the implementation of
the database (such as the ones described in SecurePut, SecureGet,
and ciphertext updates). 2) Based on those assumptions, we identify
steps where the operations effectively take place atomically, called
linearization points. For example, when QUICKeR’s SecurePut atom-
ically updates the version number and pUTS a new ciphertext, the
SecurePut operation from the perspective of other concurrent op-
erations appears to have taken effect instantly. 3) Finally, based on
the linearization points, we show that every concurrent execution
has an equivalent sequential execution with the same behavior.
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Figure 7: Naive Ciphertext Updates

4 NAIVE CIPHERTEXT UPDATES

QUICKeR’s first method of updating the ciphertexts to new root
and data keys is straightforward: update machines retrieve the old
ciphertexts, re-encrypt, and finally store the updated ciphertext. Fig-
ure 7 shows the steps required for each ciphertext in the key-value
store. The update machine (1) GETs the wrap wrap; and ciphertext
C1 from the database with the corresponding version number v;
and root key id keyID; and (2) generates a new data key dek;. Then
in (3-6) the update machine communicates with the HSM to decrypt
wrap; into old data key dek; and (7-10) encrypt dek; into new wrap
wrapy. Next, the update machine (11) decrypts C; into message
data m and (12) encrypts m with dek; into ciphertext Cy. Finally,
(13-15) the new wrap wrap and ciphertext Cy are atomically puT
in the database if the version number v; of this ciphertext has not
changed and not been deleted, otherwise, the ciphertext update is
aborted. (Step 13 shows v; renamed to vz to disambiguate the old
version number from a possibly modified version number.)

Naive ciphertext updates provide better security than current
practice, which at most updates wraps, by trivially provide post-
compromise security of both data and root keys. Since the new
ciphertext is encrypted by an entirely new root and data key, com-
promising previous keys provides an adversary no additional power
to learn the plaintext information. Naive ciphertext updates also
provides integrity guarantees by using an authenticated encryption
scheme such as AES-GCM. In addition, naive ciphertext updates
maintain conventional encryption schemes, so routine access op-
erations of SecurePut and SecureGet do not incur extra latency
from using a different encryption scheme. Naive ciphertext updates
are also easy to integrate into current practice because it does not
require significant modifications to client machine source code.

The main problem with naive ciphertext updates is that cipher-
text updates can adversely affect the performance of routine access
operations. Naive ciphertext updates require downloading and up-
loading many large ciphertexts. This consumes a significant portion
of the database’s network bandwidth, which is shared by concurrent
routine access operations of SecurePut and SecureGet. Network
bandwidth can become the primary bottleneck in databases, and it
limits how frequently routine access operations and naive updates
can concurrently execute. In our evaluation, we show experiments
for exactly this: A linear tradeoff between the throughput of routine
access operations and the throughput of ciphertext updates oper-
ations when network bandwidth is a bottleneck. Surprisingly, we
also show that the high network costs of naive ciphertext updates
lead to CPU bottlenecks, which affects routine access operations.
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Updatable encryption solutions such as ReCrypt [11] avoid trans-
ferring entire ciphertexts and thus have significantly lower network
costs by instead generating a small update token for the database
to update the ciphertext.

5 UPDATABLE ENCRYPTION

Since naive ciphertext updates have a major performance bottleneck
in network bandwidth, QUICKeR proposes an alternative ciphertext
update process that enables direct updates of encrypted ciphertexts
in place on the database, thus reducing bandwidth costs drastically.

5.1 Updatable Encryption Background

Much theoretical groundwork has introduced and studied updatable
encryption [4-6, 11-13, 17, 18, 20, 24, 27]. To avoid the expensive
costs of downloading and uploading ciphertexts for key rotation,
the key idea behind updatable encryption is to upload a small update
token that the database uses to locally update the ciphertext.

Updatable Encryption Definition: An updatable encryption
scheme, UE, is composed of algorithms for a data owner and an out-
sourced storage server. The data owner wants to encrypt and store
their data m on the storage server, and later update ciphertexts to a
new key. Formally, an updatable encryption scheme is composed
of the following five algorithms:

e k « UE.KeyGen(1?%) : First, the data owner locally runs
UE.KeyGen to generate a key k with security parameter A.

e C « UE.Enc(k, m) : Then, the data owner locally encrypts
its data m with k to compute a ciphertext C, which is stored
on the storage server.

e m « UE.Dec(k,C) : When the data owner wants to later ac-
cess their data m, the owner first downloads their ciphertext
C from the storage server and decrypts it with the current
key k.

e A « UE.TokenGen(ki, k2) : To update the ciphertext to a
new key, the data owner first generates a new key ky from
UE.KeyGen. Next, the data owner executes UE. TokenGen to
generate a small update token A, which is sent to the storage
server to update the ciphertext to the new key ky. Some up-
datable encryption schemes are ciphertext-independent [6, 13,
17, 18, 20, 24, 27], meaning that generating a token A does
not depend on any information from the original ciphertext.
Other schemes are ciphertext-dependent [4, 11] and require
downloading a small portion of the ciphertext called a header
Cheader to generate a token A« UE . TokenGen(k1, k2, Cheqd—
er)-

e Cy « UE.Update(A,Cq) : On receipt of a token A, the stor-
age server executes UE.Update to generate a new ciphertext
Co, which is the encryption of data m by the new key.

An updatable encryption scheme guarantees correctness in that
ciphertexts are decryptable by the current key and guarantees
post-compromise security in that messages are confidential, even
when past keys are compromised. Although prior work has shown
that updatable encryption can guarantee post-compromise secu-
rity even in the face of compromised keys [13, 27], there are other
combinations of compromised update tokens and keys that inher-
ently leak information. For instance, suppose an adversary has
access to a ciphertext C; « UE.Enc(k, m), which is message m
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Figure 8: Updatable Encryption Approach

encrypted with key k;. Also suppose that the adversary has com-
promised a future key kz and token A; 2 « UE.TokenGen(ky, k2)
was generated from keys ki and kj. Then the adversary can always
decrypt the message by first updating ciphertext C; from key kq
to k2 using Ap2 and then decrypting with key ks into message
m « UE.Dec(kg, UE.Update(A,2, C1)). This unpreventable attack
means that updatable encryption schemes require security assump-
tions that adversaries cannot compromise certain combinations
of update tokens and keys whereas the naive ciphertext update
approach avoids these security drawbacks. Despite these security
assumptions, updatable encryption schemes are useful to study for
their significantly lower network costs, which can lead to better
overall performance.

5.2 An Updatable Encryption Approach

QUICKeR’s second approach minimizes network overheads of up-
dating ciphertexts by using updatable encryption. The protocol
design capitalizes on the observation that the most expensive part
of updating envelope encrypted ciphertexts is from updating old
to new data keys. First, we choose to rotate root keys naively be-
cause downloading and uploading a wrap is inexpensive (at only
48 bytes). Second, we encrypt data and rotate data keys with an
updatable encryption scheme. This approach is generalized for any
updatable encryption scheme (including both ciphertext-dependent
and ciphertext-independent schemes). Instead of downloading and
uploading the full ciphertext, the update machine generates and
sends an update token for the database to update the ciphertext
from the old data key to the new data key. Since the wrap needs
to be naively updated anyway, QUICKeR piggybacks uploading
update token with a new wrap to reduce the number of network
round trips and overall latency. For ciphertext-dependent updatable
encryption schemes which require downloading a small header
Cheader» QUICKeR piggybacks downloading the header with the
old wrap.

QUICKeR’s updatable encryption approach replaces the plain-
text data encryption in SecurePut and SecureGet with an updatable
encryption scheme to efficiently update ciphertexts. The cipher-
text update operation for updating an entry with index i to a new
root key with root key id keyID, using updatable encryption is
described in Figure 8. An update machine (1) GETS the wrap wrap;,
ciphertext header Cpqq.r (for ciphertext-dependent encryption
schemes), root key id keyID1, and version number v; from the data-
base for index i and (2) generates a new data key deks. Then, (3-6)
the update machine communicates with the HSM and uses keyID;
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Figure 9: Ciphertext update operations on the database mo-
nopolize the single thread of execution, blocking other rou-
tine access operations until the update completes.

to decrypt wrap; into data key dek; and (7-10) uses keyID; to en-
crypt deky to a new wrap wrapy. Next, (11) the update machine
generates an update token A = UE. TokenGen(dek, deka, Cheader)-
Finally, (12-13) the update machine sends the index i, token A, new
wrap wrapy, new root key id keyID,, and version number vy (which
is renamed to vy in the figure) to the database, which (14-15) first
generate C; = UE.Update(A, C1) and then atomically puTs the new
ciphertext Cy, the new wrap wraps, and root key id keyID; if the
version number v; hasn’t changed.

QUICKeR’s updatable encryption approach provides post-com-
promise security and integrity guarantees because updatable en-
cryption schemes are designed to provide both guarantees (with
some assumptions for post-compromise security). In terms of im-
pact on concurrent routine access operations, the updatable encryp-
tion approach improves on the naive ciphertext update approach by
significantly reducing the bandwidth overhead of updates from the
size of an entire ciphertext to merely bytes: A key wrap is small (only
48 bytes) and ciphertext headers for ciphertext-dependent encryp-
tion schemes are also inexpensive. The update machine need only
upload a new wrap and an update token to the database. Whereas
the naive ciphertext update approach is primarily bottlenecked by
the database’s bandwidth, which significantly trades throughput
of routine access operations for the throughput of ciphertext up-
dates, the updatable encryption approach eliminates bandwidth as
a primary bottleneck. Therefore, this reduces the tradeoff between
the performance of routine access operations and the size of the
vulnerability window.

Unfortunately, a straightforward application of updatable en-
cryption would still adversely impact the performance of routine
access operations. Since many databases are often designed to syn-
chronize operations, databases that execute updatable encryption’s
update computation UE. Update block concurrent GET and PUT op-
erations by obtaining exclusive locks until the computationally ex-
pensive ciphertext update operation completes. These long update
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operations monopolize the single thread of operation execution,’
blocking and queuing up other routine access operations that GET
or pUT data. As shown in Figure 9, a typical database performing
an update blocks a concurrent routine access operation until after
the update completes. Increasing the frequency of updates would
therefore detrimentally impact the performance of routine access
operations.

5.3 Multithreaded Updatable Encryption

QUICKeR’s third approach eliminates the problem of updatable en-
cryption monopolizing the database’s single thread of transaction
execution by multithreading parts of the ciphertext update opera-
tion. Instead of locking when the database executes UE . Update and
blocking other GeT and pUT requests, QUICKeR only locks in the
portion of the ciphertext update that needs to GET old data or puT
updated data. The ciphertext update operation can be broken down
to three steps: 1) the database GETs the old ciphertext data, 2) the
database performs UE.Update, which computes an updated cipher-
text using the old ciphertext data and provides the update token,
and 3) the database puTs the updated ciphertext data, which in-
cludes a ciphertext, wrap, root key id, and version number. Locking
during the GET and PUT in steps 1 and 3 is necessary to ensure that
the database maintains correctness with other operations. However,
the database executes UE.Update (step 2) on a separate thread to
ensure that UE.Update doesn’t block other concurrent database op-
erations. Figure 10 shows how this multithreading approach avoids
impacting routine access operations. When an update machine
sends an update token and wrap to update a ciphertext to a new
key, only the initial ciphertext data access and puT are locked. This
avoids blocking concurrent access operations during UE . Update.
Overall correctness of the multithreaded updatable encryption
approach is still guaranteed using the techniques discussed in Sec-
tion 3.2 and 3.3. The approach has the same security guarantees as
the single-threaded updatable encryption approach. Finally, since

3 Although multithreaded databases do process network I/O and other miscellaneous
actions in separate threads, they often still lock data items until completion.
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it no longer monopolizes the database’s single thread of execution,
frequent ciphertext updates no longer severely impact the through-
put of routine access operations. As we show in our evaluation, the
multithreading approach has the best performance.

5.4 Choice of Updatable Encryption Scheme

We choose the best updatable encryption scheme by considering
their security guarantees and conducting updatable encryption
microbenchmarks in our evaluation (Section 6.1). We compare three
ciphertext-dependent updatable encryption schemes (ReCrypt [11],
Nested UAE [4], and KH-PRF [4]) and one ciphertext-independent
encryption scheme (SHINE [6]).

First, we consider the security of different schemes. The four
cryptographic schemes offer similar security guarantees, assuming
no trivial wins. All four provide integrity and confidentiality for
both messages and updates, but there are nuanced differences:

o Confidentiality: All four schemes ensure message and up-
date confidentiality, which encompasses post-compromise
security. While ReCrypt satisfies update and chosen-plaintext

(CPA) security, KH-PRF and Nested UAE provide stronger

update and CPA security in which updated ciphertexts are in-

distinguishable from newly encrypted ciphertexts. However,

Nested UAE only guarantees security up to a limited number

of updates, which we explain in greater detail later. Lastly,

SHINE satisfies an even stronger definition for ciphertext-

independent schemes which additionally defends against

chosen-ciphertext attacks (CCA).

Integrity: While all four provide integrity guarantees, Nest-

ed UAE satisfies a stronger integrity guarantee than ReCrypt

and KH-PRF. In Nested UAE, adversaries can also update

malformed ciphertexts without compromising integrity [4].

SHINE satisfies an analogous (though modified) integrity

guarantee to Nested UAE’s integrity guarantee for ciphertext-

independent schemes.

e Token Security: All four schemes also share a vulnerability
when tokens and keys are compromised. Suppose that an
adversary has access to recently updated ciphertext Ca «
UE.Update(Aj2, C1) from a ciphertext C; < UE.Enc(k;, m)
and update token Ay « UE.TokenGen(ky, k2, Chegder) OF
A1 « UE.TokenGen(ki, k2) in the case of SHINE. Also
suppose that the adversary has access to old key k; and
token Aq . In all four schemes, access to update token A2
allows the adversary to downgrade ciphertext Cz to C1 and
then decrypt it with k1, breaking security.

From this analysis, we conclude that all four schemes have com-
parable security, with ReCrypt having the weakest security guar-
antees of the four. Next, we compare the performance of the four
updatable encryption schemes. From the microbenchmark exper-
iments (Table 1), we determined that Nested UAE had the best
performance. In addition, downloading Nested UAE’s ciphertext
header Cpeqqer (84 bytes) and uploading Nested UAE’s token Ay 2
(184 bytes) are inexpensive to piggyback with downloading and
uploading wraps. For performance and security reasons, we choose
to use Nested UAE in QUICKeR.
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When applied to QUICKeR, Nested UAE provides post-compro-
mise security with two caveats: (1) As previously mentioned, com-
promised update tokens along with certain keys can leak informa-
tion. Although recent works have proposed updatable encryption
schemes that do not have this vulnerability [13, 27], they rely on
public key encryption which is significantly more computationally
expensive, especially for large ciphertexts. Due to the available
attacks, the updatable encryption approach has an extra security
assumption that adversaries cannot obtain update tokens to down-
grade ciphertexts to a compromised key, which the naive approach
does not have. To help prevent update token compromises, tokens
need to be deleted from the database as soon as updates complete.
(2) Nested UAE can only guarantee security until the number of
ciphertext updates exceed a configurable number. The configurable
number trades off the size of the ciphertext and longer decryption
time for more updates, so QUICKeR sets the maximum number
of ciphertext updates to a reasonable number (such as 64). Since
Nested UAE updates ciphertexts to a new key by encrypting a new
layer over the old ciphertext, decryption time scales linearly with
the number of times a ciphertext has been updated. When the num-
ber of updates run out, QUICKeR defaults to a naive ciphertext
update to refresh the number of updates. Despite naively updat-
ing ciphertexts once the number of updates run out, the updatable
encryption approach can decrease the impact ciphertext updates
have on performance of routine access operations, which we show
in our experimental results.

6 EVALUATION

We evaluate the practicality of routine operations and concurrent
key rotation and ciphertext updates. The main questions we aim to
answer are as follows:

e Which updatable encryption schemes provide the least per-
formance penalty compared to naive encryption and would
be most suitable QUICKeR?

e What are the potential bottlenecks of key rotation?

e What impact do key rotations have on routine operations?

e How well does QUICKeR scale to more data?

To answer each of these questions, we present three different ex-
periments: 1) updatable encryption microbenchmarks 2) bottleneck
experiments and 3) end-to-end experiments. We first run updatable
encryption microbenchmarks to determine which updatable encryp-
tion scheme has the least overhead compared to naive schemes and
is hence most suitable for QUICKeR. Next, we examine the potential
bottlenecks of updating ciphertexts on a database with a simplified
experimental setup. The simpler experimental setup enables us
the opportunity to isolate factors that might bottleneck the data-
base. Finally, we share experimental results from our end-to-end
implementation on different workloads and conduct experiments
to examine QUICKeR’s scalability with different amounts of data.

6.1 Microbenchmark Experiments

We compare the performance of several recent updatable encryp-
tion schemes over different plaintext sizes to determine the schemes
with the least overhead compared with a naive AES-GCM encryp-
tion scheme. The updatable encryption schemes we compared are
SHINE [6], ReCrypt [11], Nested UAE [4], and KH-PRF [4]. Like the
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Keygen
Naive SHINE ReCrypt Nested UAE KH-PRF
Encryption [6] [11] [4] [4]
3.1x10° [ 6.58x10° | 1.20x 10 [ 3.28X10° [ 3.50x10°°
Encryption
Ptxt Naive SHINE ReCrypt Nested KH-PRF
Size Encryption [6] [11] UAE [4] [4]
1KB 3.31x107° | 5.12x10° | 1.73x107T | 1.02x107° | 2.44x107*
10KB | 5.85%107° | 1.32x 10! | 1.64x10° | 1.28x107° | 2.86x107*
100KB | 3.19x107° 3.99x107° | 2.02x1073
1MB 2.90x1074 3.02x107% | 1.97x1072
10MB | 2.99x1073 2.99%1073 | 1.96x107"
Decryption
Ptxt Naive SHINE ReCrypt Nested KH-PRF
Size Encryption (6] [11] UAE [4] [4]
1KB 1.72x107° | 8.37x107% | 1.62x107T | 6.28x10™> | 1.65x107%
10KB | 1.00x107° | 8.24x107! | 1.54x 10° | 1.38x107* | 2.12x107*
100KB | 8.53x107° 1.37x107* | 1.88x1073
1 MB 7.96x1074 9.42x1073 | 1.85%1072
10MB | 8.03x1073 1.02x1071 | 1.84x107!
Token Gen
SHINE ReCrypt | Nested UAE KH-PRF
[6] [11] [4] [4]
6.07x10™° | 4.90x 107> | 8.13x 107 | 8.88x 10>
Ciphertext Update
Ptxt SHINE ReCrypt Nested UAE KH-PRF
Size (6] [11] [4] [4]
1KB 1561072 | 1.52x 1077 | 5.47x 107 | 1.66 x 1077
10KB | 1.44x107! | 1.49%x10° | 8.38x107° | 1.79x 107*
100 KB 2.09% 107> | 1.60 x 1073
1MB 3.26 X107 | 1.61x 1072
10 MB 3.39x 1073 | 1.60 x 107!

Table 1: Updatable Encryption Microbenchmarks (in seconds
per operation)

four updatable encryption schemes, the naive encryption scheme
also provides message integrity guarantees. For the KH-PRF scheme,
we use the best performing Ring Learning With Errors parameters
with modulus size |g| = 60. We set the Nested UAE scheme (which
only does a limited number of key rotations) to allow up to 64
updates. Both ReCrypt and SHINE rely on elliptic curve cryptogra-
phy; however, the implementation of ReCrypt utilizes Curve25519
whereas SHINE employs secp256k1. We ran these microbenchmarks
on a t2.medium machine.

Table 1 shows microbenchmark results for different plaintext
sizes. We did not obtain results for SHINE and ReCrypt at plaintext
sizes of 100 KB and greater because the schemes did not efficiently
scale to those sizes. The microbenchmarks show that Nested UAE
[4] has the least performance cost compared to a naive encryption
scheme. Nested UAE has a small latency penalty when compared
to naive encryption and is the updatable encryption scheme that
we use for the remaining experiments. The microbenchmarks also
suggest that ReCrypt, an updatable encryption scheme which up-
dates both root and data keys, is too computationally expensive for
typical data sizes of 32 KB and 8 MB [7] when compared to naive
encryption.

6.2 Bottleneck Experiments

In these set of experiments, we seek to understand how different
ciphertext update approaches perform under different performance
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Figure 11: Bottleneck Experiments

bottlenecks. We consider three potential bottlenecks on the data-
base: (a) low CPU, (b) low network bandwidth, and (c) lock con-
tention. Each of these three bottlenecks can inadvertently arise in
a real system, and the goal of these experiments is to understand
how different update approaches affect the performance of routine
operations.

6.2.1 Experimental Setup. We implemented this experimental set-
up in C++ consisting of one update machine, one client machine,
and one database server. This is not an end-to-end QUICKeR sys-
tem, does not include a HSM, and does not attempt to guarantee
correctness to test the effects of locking. To isolate the database bot-
tlenecks, we kept the client and update machines ona r5n. 8xlarge
instance (so each has plenty of bandwidth and CPU) and changed
the database machine to have different CPU and network bandwidth
resources. The database machines for (a) low CPU, (b) low network
bandwidth, (c) lock contention were r5n.2xlarge, t3.2xlarge,
and r5n. 8xlarge instances, respectively. During the experiments,
the client machine has 45 threads connected to 45 database threads
that continuously encrypt and PUT or GET uniformly at random and
decrypt (for convenience, we’ll call them routine access operations)
a 1 MB plaintext. Simultaneously, the update machine has a num-
ber of threads (0, 1, 2, 4, 8, 15, 30, or 45) connected to the database
continuously updating a same-sized ciphertext. Modulating the
number of update threads helps us understand how the frequency
of updates affects the throughput of routine operations and network
and CPU loads on the database. We examine how locking affects
performance by testing naive updates with and without database
locks, and Nested UAE [4] with database locks, without locks, and
unlocking during updates (as described in Section 5.3). We ran these
experiments over a 200 second experiment period and seeded the
randomness so different experiments can be better compared. We
ran each experiment 30 times for different random seeds and report
99% confidence intervals.

6.2.2 Experimental Results. The experimental results are shown in
Figure 11 for (a) low CPU, (b) low network bandwidth, and (c) lock
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contention. The graphs show how ciphertext update throughput on
the x-axis affects 1) routine access operation throughput, 2) CPU
utilization, and 3) network utilization on the y-axis. 99% confidence
intervals for both the x and y axes are depicted in the graphs as
boxes. Most data points have such small confidence intervals that
they are barely visible points. A scheme shows better performance
when increasing the throughput of ciphertext updates does not
decrease the throughput of routine access operations. In the graphs,
the schemes extend to different peak ciphertext update through-
puts (on the x-axis) because the ciphertext update throughput is
determined by the number of update machine threads.

When (a) CPU is the primary bottleneck, we were expecting to
see the naive encryption schemes perform better since using updat-
able encryption would require CPU. However, we instead saw that
increasing the throughput of ciphertext updates steeply decreases
the routine access operation throughput for both kinds of schemes.
This is explainable because handing a high network workload is
surprisingly CPU intensive, resulting in a tradeoff between routine
access operation throughput and update throughput.

When (b) the network bandwidth is the primary bottleneck,
both naive encryption schemes (with and without locking) suffer
the same linear throughput loss in routine access operations. The
Nested UAE schemes did not suffer the same tradeoffs as the naive
schemes did because network bandwidth was not the limiting fac-
tor. We remark that these experiments had the largest confidence
intervals because the database was run on a burstable instance with
occasionally higher performance.

When neither CPU nor network are bottlenecks, then (c) lock
contention can become the primary bottleneck. These experiments
show that the schemes with no locking perform better than all other
schemes. Following that, unlocking during Nested UAE updates
performs better than Nested UAE which locks the entire update.
Note that the CPU utilization for the schemes that lock remains low
at around 35%, meaning that the CPU is waiting for locks whereas
the CPU utilization for the schemes that have no locking rise to
full utilization.
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Figure 12: End-to-end Experiments

6.3 End-to-end Experiments

In these set of experiments, we seek to understand QUICKeR’s end-
to-end performance under different workloads and different update
throughputs.

6.3.1 Experimental Setup. We developed an end-to-end implemen-
tation of QUICKeR in C++. In this experiment, we have a client, an
update machine that interact with our database server. The client
and update machines interface with three HSMs to encrypt and
decrypt data encryption keys. The client machine, update machine,
and database server are all r5n.8xlarge instances. We first initial-
ize our database with 20000 indices (key-value pairs) of encrypted
1 MB plaintext. Our client machine connects to the database on
45 threads and continuously performs SecurePut and SecureGet
operations over indices randomly sampled from a Zipfian distri-
bution. We disregard insertion and deletion of indices and focus
on SecurePut for existing indices since insertion and deletion do
not substantially change our results. Simultaneously, the update
machine connects with the server on different thread counts (0, 1, 2,
4, 8, 15, 30, 45, and 90) and continuously updates ciphertexts in the
database in rounds. We compared naive encryption, single-threaded
Nested UAE, and multi-threaded Nested UAE over different ratios
of SecureGet and SecurePut (80% and 20%, 50% and 50%, and 20%
and 80% SecureGet and SecurePut, respectively). Over a 200 second
experiment period, we measure the throughput of operations, the
number of concurrent SecureGet and ciphertext update operations
over the same index, and the number of concurrent SecurePut and
ciphertext updates over the same index. We ran each experiment
30 times and seed the randomness appropriately.

6.3.2 Experimental Results. The results for these experiments are
shown in Figure 12 with bounding boxes representing 99% confi-
dence intervals for both the x and y axes. The graphs show different
peak ciphertext update throughputs (on the x-axis) for different
schemes because the ciphertext update throughput is determined
by the number of update threads. The graphs for ciphertext update
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Figure 13: Scalability Experiment

throughput vs routine access operation throughput show that naive
encryption initially performs better than the updatable encryption
approaches because of the extra latency of updatable encryption.
Nested UAE has higher decryption latency when a ciphertext has
been updated more (because of needing to decrypt each additional
layer). Hence, our results show that the two updatable encryption
schemes perform better during higher workloads of SecurePut,
which also resets the number of updates on a ciphertext. At higher
update throughput, the multi-threaded updatable encryption ap-
proach performs the best because it avoids holding locks during
the update computation.

All three schemes showed generally the same amount of con-
current SecureGet and ciphertext updates as well as concurrent
SecurePut and ciphertext updates (labeled in Figure 12 as SecureGet
conflicts and SecurePut conflicts), with the multi-threaded updat-
able encryption scheme having more conflicts because it supports
a higher throughput updates. There are generally more SecureGet
conflicts because we implemented QUICKeR with read and write
locks that allow multiple concurrent reads but only a single writer.



Proceedings on Privacy Enhancing Technologies 2024(1)

6.4 Scalability Experiment

Finally, we ran experiments to determine how QUICKeR scales with
the size of the database.

6.4.1 Experimental Setup. Using our end-to-end system, we had
an update machine, client machine, and database server each on
r5n.24xlarge instances and 3 HSMs. The database server is ini-
tialized with different amounts of data to measure scalability which
are 100,000, 300,000, and 500,000 ciphertexts of 1 MB plaintext data,
totalling 100, 300, and 500 GB of data. The update machine has one
thread continuously performing ciphertext updates and simultane-
ously the client machine has 45 threads continuously performing
50% SecurePut and 50% SecureGet operations on indices sampled
from a zipfian distribution. We ran these experiments 30 times for
naive encryption and multi-threaded updatable encryption with
seeded randomness for 200 seconds and calculated the key rotation
time.

6.4.2 Experimental Results. Figure 13 show how the key rotation
time and routine operation throughput on the y-axis changes with
the number of indices on the x-axis. 99% confidence intervals are
depicted for the y-axis on both graphs. The top graph has barely
visible confidence intervals because the intervals are smaller than
35 seconds for all points. The top graph demonstrates that for
both schemes the key rotation time increases linearly with the
amount of data (as we would expect). Meanwhile, the bottom graph
shows that the throughput of routine access operations for both
schemes doesn’t change significantly with the number of indices.
Together, these graphs show that QUICKeR scales well for higher
data amounts. Lastly, although the updatable encryption scheme
can perform a round of key rotation faster, the updatable encryption
scheme impacts the throughput of routine access operations more
due the algorithm’s latency.

In the context of a database at the scale of a petabyte, we argue
that QUICKeR’s performance is practical with these results. This ex-
periment shows that using a single thread, QUICKeR can rotate keys
for 500 GB in less than 70 minutes with the naive scheme and around
1 hour with the multi-threaded updatable encryption scheme. In
addition, our single-threaded updatable encryption scheme would
likely perform similarly to multi-threaded updatable encryption
scheme in this experiment based on our end-to-end experiments
(Figure 12) showing similar performance for low update through-
puts. A database at the scale of a petabyte would necessarily be
sharded into smaller database servers that can each independently
use QUICKeR’s system to update ciphertexts. For instance, suppose
there are 2000 database servers each hosting 500 GB of data (a
petabyte total), then a conservative estimate for all three schemes
would only require 4 QUICKeR update machines continuously run-
ning a single thread to update an entire petabyte of plaintext data
in one month. Without considering transactional processing and
replication, this suggests that all three of QUICKeR’s approaches
are practical.

7 CONCLUSION

In this work, we introduced QUICKeR, a system for frequent key
rotations and ciphertext updates. QUICKeR improves the standard
cloud deployment for encrypting data at-rest by minimizing the
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vulnerability windows of ciphertexts. QUICKeR operates in an on-
line manner where key rotations and ciphertext updates occur
concurrently with routine access operations. We achieved this by
introducing modifications to SecureGet, SecurePut, and ciphertext
updates to provide linearizability guarantees. We proposed three
approaches to performing frequent ciphertext updates with trade-
offs in security assumptions and performance. Our experimental
evaluation show how different performance bottlenecks affect naive
and updatable encryption differently. Our end-to-end implemen-
tation and scalability experiments show that QUICKeR can rotate
keys and update ciphertexts efficiently without adversely affecting
routine operations and scale to real world data sizes.

7.1 Limitations and Future Work

In this paper, we assumed a simplified database backend with a
single, multi-threaded key-value store that ensures correctness by
locking data items until completion. Future directions can explore
applying QUICKeR to distributed and transactional processing sys-
tems. For instance, QUICKeR does not solve transactional process-
ing systems with underlying security flaws such as multiversion
concurrency control leaving old ciphertexts on the database. Further
research need also examine the challenges of ciphertext updates
amidst replication.

7.2 Ciphertext Unlinkability

Many updatable encryption schemes are also designed to provide
ciphertext unlinkability. Unlinkability means that an adversary
would be unable to link an old ciphertext to its updated ciphertext.
QUICKeR trivially cannot provide unlinkability because database
indices link an old ciphertext to a new ciphertext. Future work can
explore providing unlinkability from a system perspective, which
requires eliminating indices, such as with ORAM [31].
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Figure 14: Abstract Implementation for SecureGet

A LINEARIZABILITY PROOF

We prove that QUICKeR satisfies linearizability correctness. In
essence, linearizability means that operations appear to take effect
instantaneously in time [14]. This implies that concurrent opera-
tions do not lead to wrong execution results. We first define sev-
eral terms and then formally prove that concurrent executions in
QUICKeR are linearizable by showing its equivalence to a sequential
execution.

Definition 1: Concurrent operation executions are modelled
with a history of operations. A history is a finite sequential order
of events, which are either invocation events or response events.
An invocation event represents when an operation begins and a
response event represents when an operation completes. Invocation
and response events are labeled by its process ID, operation and
arguments. A history is valid if for all response events there exists
a unique, matching invocation event labeled the same preceding
the response event in the history.

Definition 2: A history H is sequential if (1) the first event is
an invocation event and (2) all invocation events are immediately
followed by a matching response.

Definition 3: Two operations are concurrent if the operations
overlap. Two operations do not overlap if one operation’s invoca-
tion event occurs after the response event of the other operation;
otherwise, the operations overlap.

Definition 4: An implementation is linearizable if for every
history of operations there exists a sequential history, called a lin-
earization, where (1) the order of non-overlapping operations are
maintained and (2) the behavior of the implementation matches a
sequential history for an abstract implementation. (1) means that if
an invocation event for some operation comes after the response
event (or the completion) of another operation, then a linearization
needs to preserve this quality. (2) means that the implementation
achieves the same result as a sequential execution.

We define abstract implementations for SecureGet, SecurePut,
and naive ciphertext rotation in Figures 14, 15, and 16, respectively.
Note that in the abstract implementation of key rotation, it is not
necessary to update a ciphertext which is already encrypted by the
new root key for the round, so the operation aborts in that case.
Assume without loss of generality that QUICKeR is rotating from
root key k; to kji1, then we prove the following:

THEOREM A.1. For all valid histories H of concurrent executions of
SecureGet, SecurePut, and ciphertext updates in QUICKeR, there exists
a linearization where the order of non-overlapping operations in H is
maintained and the behavior of QUICKeR matches the behavior of
the sequential history of the abstract implementation.
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Figure 16: Abstract Implementation for Naive Key Rotation

Proof: We prove through forward simulation that given a history
H, there exists a linearization L that maintains H’s partial order for
QUICKeR. Take Figures 4, 6, and 7 as QUICKeR’s implementations
of SecureGet, SecurePut, and (without loss of generality) ciphertext
updates, respectively, where each operation is composed of multiple
atomic steps to complete the operation. (For instance, the first step
for SecureGet (Figure 4) is to atomically get the wrap, ciphertext and
root key ID.) Our forward simulation works as follows: sequentially
iterate through each event in H. On an invocation event, add the
operation to a pending operation list. On a response event, simulate
the possible orders of the atomic steps in the pending operation list
to mark the completion of this event and move on to the next one.
To show linearizability correctness, we prove that for any history
H and any order of steps, the results are the same as a linearization
of the abstract implementations.

We identify linearization points in QUICKeR’s implementation
for all three operations. A linearization point represents when the
operation appears to have been instantaneously completed to other
concurrent operations in the linearization. The linearization point
of SecureGet is in step 1 when the client machine gets the wrap,
ciphertext, and root key ID. The linearization point for SecurePut
is in step 7a when the wrap, ciphertext, root key ID, and version
number are atomically put into the database. Finally, the lineariza-
tion point for naive ciphertext updates is in step 15 when either
the new ciphertexts are atomically put into the database or the
operation is aborted. As each of these linearization points of these
operations are simulated, the invocation and response event of the
corresponding abstract implementation is added to the linearization
L.

We now prove that for any history H and order of steps results
in linearization L. Observe that the primary shared resource is the
data access and storage on the database which cause race condi-
tions. (Note that encrypting or decrypting wraps on the HSM does
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not change the root key.) For SecureGet (Figure 4), the only step
that causes races conditions is step 1. During this step, the client
atomically GETs the wrap, ciphertext, and root key ID. All other
steps are local operations exactly the same as the abstract imple-
mentation of SecurePut (Figure 14). This means that step 1 is when
the operation "instantaneously" takes effect, since other concurrent
operations no longer affect the result of SecureGet. Since SecurePut
and ciphertext updates only atomically puT the wrap, ciphertext,
and root key ID, then an atomic GET will only obtain values where
all three are updated.

For SecurePut (Figure 6), the only step that causes race conditions
is step 7a. All other steps are local operations exactly represented
by the abstract implementation, except for the additional ciphertext
version numbers. (The ciphertext version number has no impact
on the result of SecurePut.) At step 7a, all values (wrap, ciphertext,
root key ID, and ciphertext version number) are atomically PuT into
the database, so this step is when the operation "instantaneously"
takes effect. If there are multiple concurrent SecurePuts, then the
wrap, ciphertext, and root key ID will never be in an inconsistent
state because either all or none of the wrap, ciphertext, and root
key ID are atomically puT into the database.

For ciphertext updates (Figure 7), there are two operations which
may cause race conditions: obtaining old ciphertext data and placing
new ciphertext data, which are steps 1 and 15, respectively. Except
for ciphertext version numbers, all other steps are the same local
operations as the abstract implementation (Figure 16). Step 1 of
QUICKeR’s implementation atomically GETS the wrap, ciphertext,
root key ID, and version number. Similar to SecureGet, the retrieved
data is correctly decryptable because other concurrent operations
atomically puT all of the values at once.

Finally, step 15 in QUICKeR’s implementation only aborts if the
version number stays the same from step 0 to 15. We prove that this
results in the same behavior as a linearized abstract implementation,
which aborts if the ciphertext is already encrypted by root key kj1.
If the ciphertext version number has changed, then a concurrent Se-
curePut for the same index i has already atomically PUT new values
for the wrap, ciphertext, root key ID, and version number before
step 15 in QUICKeR’s ciphertext update implementation. Since Se-
curePut only PUTS new values if the ciphertext’s root key ID is the
new root key ID, then the new ciphertext must already be encrypted
by the next root key kj+1. Therefore, QUICKeR’s implementation
results in the same behavior as the abstract implementation.
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