
Privacy Preserving Feature Selection for Sparse Linear Regression
Adi Akavia

University of Haifa

Haifa, Israel

adi.akavia@gmail.com

Ben Galili

Technion

Haifa, Israel

benga9@gmail.com

Hayim Shaul

IBM Research

Haifa, Israel

hayim.shaul@gmail.com

Mor Weiss

Bar-Ilan University

Ramat-Gan, Israel

mor.weiss@biu.ac.il

Zohar Yakhini

RUNI & Technion

Herzlia, Israel

zohar.yakhini@gmail.com

ABSTRACT
Privacy-Preserving Machine Learning (PPML) provides protocols

for learning and statistical analysis of data that may be distributed

amongst multiple data owners (e.g., hospitals that own proprietary

healthcare data), while preserving data privacy. The PPML literature

includes protocols for various learning methods, including ridge

regression. Ridge regression controls the 𝐿2 norm of the model, but

does not aim to strictly reduce the number of non-zero coefficients,

namely the 𝐿0 norm of the model. Reducing the number of non-zero

coefficients (a form of feature selection) is important for avoiding

overfitting, and for reducing the cost of using learnt models in prac-

tice. In this work, we develop a first privacy-preserving protocol for

sparse linear regression under 𝐿0 constraints. The protocol addresses
data contributed by several data owners (e.g., hospitals). Our proto-

col outsources the bulk of the computation to two non-colluding

servers, using homomorphic encryption as a central tool. We pro-

vide a rigorous security proof for our protocol, where security is

against semi-honest adversaries controlling any number of data

owners and at most one server. We implemented our protocol, and

evaluated performance with nearly a million samples and up to 40

features.

KEYWORDS
Privacy preserving machine learning, sparse linear regression, fea-

ture selection, secure multiparty computation, homomorphic en-

cryption

1 INTRODUCTION
The Machine Learning (ML) revolution critically relies on large

volumes of data to attain high confidence predictions. However,

the massive amounts of data collected on individuals and organi-

zations incur serious threats to security and privacy. From a legal

perspective, privacy regulations such as the European General Data

Protection Regulation (GDPR) and the California Customer Privacy

Act (CCPA) aim at controlling these threats. From a technological

perspective, Privacy Preserving Machine Learning (PPML) [44] at-

tains ML utility without exposing the raw data,
1
e.g., by leveraging

tools for secure computation [27, 32, 68]. Many PPML solutions

focus on the inference phase, e.g., [11, 30, 33]. A growing body of

literature also addresses training, covering a range of learning tasks

1
Other PPML concerns include limiting the amount of information revealed by the

output, e.g., using differential privacy in [56]; see a survey in [42].

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(1), 300–313
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0017

and techniques, including training decision tree models, e.g., [44],

as well as linear regression, logistic regression and neural networks

models, e.g., [48]. Recently, attention has been drawn also to the

task of privacy preserving feature selection [43], which –in the

context of linear regression– is the focus of our work.

Feature selection [35] is the process of selecting a subset of in-

formative features to be used for model training, while removing

non-informative or redundant ones. Feature selection is important

for avoiding overfitting, that is, for producing models that sup-

port high quality prediction on new data rather than models that

essentially “memorize” the training data set while failing to gener-

alize. Moreover, feature selection supports producing sparse models
whose use for prediction in practice requires measuring only the

few selected features. Sparsity is often a desired property, leading

to significant cost savings when the model is repeatedly used for

prediction, especially when feature extraction is expensive. For

example, sparse models are highly desired in medical applications

where feature extraction might involve medical interventions with

associated financial and morbidity costs (see Section 3.1).

The focus of this work is on feature selection under 𝐿0 con-
straints,2 specifically for wrapper methods. In contrast, previous

work on privacy preserving feature selection considered only fil-
ter [15, 43, 52] and embedded methods [1, 3, 4, 19, 26, 28, 40, 44, 45, 49,
61–63, 65, 67, 70, 70], but not wrapper methods. We next elaborate

on the differences between these methods.

Selecting the subset of features of highest predictive power is

computationally intractable [14]; nonetheless heuristic methods –

which can be categorized into filter, embedded andwrapper methods

– are widely employed in practice with great success. Filter methods

assign a score to each feature in isolation, outputting the highest

scoring features; they are typically very fast, but often fail to select
the best features because they ignore relationships and dependen-

cies between features. Embedded methods intrinsically incorporate

feature selection into the model training process, e.g., in decision

tree regression, as well as in ridge and Lasso regression; The lat-

ter two techniques penalize models according to their (𝐿2 and 𝐿1
respectively) norms, favoring models with fewer high-weight fea-

tures. However, they do not necessarily return a sparse model: the
model often includes a tail of low-weight features (particularly in

ridge regression). Wrapper methods select features in an iterative

process, with a target ML algorithm in mind (e.g., linear regression).

In each iteration: (1) a model is trained on the current subset of

features, then (2) features are ranked according to an evaluation

metric measuring their usefulness for that model, and (3) this rank-

ing is used to specify the subset of features for the next iteration.

Wrapper methods are considerably slower than filter and embedded

2
Concretely, an 𝐿0 constraint determines the intended number of features in the model

(e.g., dictated by hardware considerations and/or limitations, as in [51]). We then look

for the best model that satisfies this constraint.

300

https://orcid.org/0000-0003-0853-3576
https://orcid.org/0000-0001-8432-0623
https://orcid.org/0000-0002-4059-7628
https://orcid.org/0000-0002-0420-5412
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0017

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

methods, due to the multiple rounds of model training, but often
lead to superior outcomes for the target ML algorithm.

In summary, none of the aforementioned methods strictly dom-

inates the others (see, e.g., a comparative study in [39]). Conse-

quently, common practices often examine several methods in search

of the best performing one (using cross-validation to avoid over-

fitting) or use a hybrid approach to combine the strengths of sev-

eral methods. Examples for hybrid approaches include using a

filter method to quickly remove many features, then selecting from

the remaining ones using an embedded or wrapper method (see,

e.g., [18, 58]); or, executing wrapper and embedded methods in

parallel, each scoring the features, where the output includes the

features with highest total score (see, e.g., [16, 17, 34]).

Thus, providing privacy preserving solutions to a wide variety of
feature selection methods is essential to supporting versatile usecases.

1.1 Our Contribution
In this work we present the first privacy-preserving feature selec-
tion solution in a wrapper method, producing a sparse regression
model under 𝐿0 constraint (i.e., with exactly the specified number

of features). Concretely:

Our protocol.We design the Secure Iterative Ridge regression (SIR)
protocol: a new protocol that produces a sparse ridge regression
model, over input data that is (horizontally)-partitioned among dis-

trusting data-owners, and where the bulk of the computation is

outsourced to two non-colluding servers (aka, two-server model).
Horizontal partitioning means that each data owner contributes a

subset of data samples. Our solution utilizes homomorphic encryp-

tion [27, 53] as a central tool. The wrapper method that we realized

in a privacy preserving fashion is the commonly used Recursive
Feature Elimination (RFE) algorithm, introduced in the highly influ-

ential paper [36]. RFE starts by considering all features, iteratively

training a model on the current set of “surviving” features, and re-

moving features of lowest weight (the number of removed features

is a tunable parameter), until reaching the 𝐿0 constraint. The ML

model that we train at each iteration is a ridge regression model,

so that at the termination of all iterations we obtain a sparse re-

gression model. As a central new component we introduce a scaled
ridge regression protocol, which may be of independent interest.

Privacy & Threat Model. Privacy holds against all semi-honest

computationally-bounded adversaries controlling any number of

data owners and at most one of the two servers. The security guar-

antee is that such adversaries cannot infer any information on the

inputs of data owners that they do not control, except for what can

be efficiently computed directly from the public parameters, and

the inputs and outputs of corrupted parties.
3
Our security proof for

SIR covers the case of overdetermined linear regression (more data

samples than features and full rank). To demonstrate the necessity

of the security measures implemented in SIR, we devise explicit
attacks showing that simplified variants without these measures

are insecure.

Complexity. The complexity of each data owner is proportional

only to her input and output size (and polynomial in the security

3
The public parameters consist of the number of input samples and features, data

precision, model regularization parameter, and model sparsity.

parameter). The two servers engage in a two-party protocol with

round complexity logarithmic in the number of input features 𝑑 ,

and complexity that is cubic in 𝑑 (up to poly-logarithmic factors)

and logarithmic in the number of input records 𝑛 (and polynomial

in the security parameter); the protocol includes homomorphic

computations of multiplicative depth at most 𝑂 (log𝑑+ log log𝑛).
System and empirical evaluation. We implemented our protocol SIR

and empirically evaluated its performance. Our system is generic

and can be applied to any dataset with numerical features. As a

concrete example, we ran experiments on a gene-expression dataset

derived from TCGA [59]. The full data matrix taken from TCGA

breast cancer data consists of gene expression profiles for 781 sam-

ples. Each profile, representing a human subject, consists of over

10𝐾 values. Our proof of concept data represents regressing the

expression pattern of a target gene (a vector with 781 entries), based

on arbitrarily selected 40 other genes. Furthermore, we artificially

randomly partition the 781 instances amongst 10 data owners. We

note that horizontal partition, as in our experiments, has inter-

esting use cases in analyzing gene expression related data, e.g.,

in [6, 8, 29, 57]. In our experiments, each iteration removes 10% of

the features, and the 𝐿0 constraint is to produce a model consisting

of 8 features.

We point out that the initial selection of 40 out of 10𝐾 features

would typically be executed using filter methods (due to their fast

runtime), which can be done using the prior art on privacy preserv-

ing filter methods [15, 43, 52]. We focus therefore on selecting the

8 out of 40 remaining features using SIR –our privacy preserving

RFE– which is the contribution of our work.

Our experiments demonstrate that our system produces the de-

sired model – i.e., the same model as produced in the clear. Running

in the clear takes seconds while our privacy preserving system

terminates in just under a day, using 134GB RAM.

Scalability. Our protocol scales favorably with the number of input

records and data owners, as demonstrated by our empirical evalua-

tion on up to 802,816 records and 1000 data owners, where a 512×
growth in the number of records (respectively, 10× growth in the

number of data owners) led to runtime increase by 10% (resp., 1%).

1.2 Comparison to Prior Work
Prior privacy preserving feature selection solutions were in filter or

embedded methods, whereas ours is the first in a wrapper method

(concretely, a privacy preserving RFE). Although none of these

methods dominates the others, RFE was developed in [36] for the

use case of gene expression data, where it excelled. Indeed, the

mean square error (MSE) of the model produced by our system

significantly outperforms the regression models produced by filter,

ridge and Lasso (the baseline); see the full version [2] for details.

In terms of runtime, our system is expected to be slow, since,

even in cleartext, wrapper methods are considerably slower than

filter and embedded ones. This is also evident by our experiments,

where the runtime of our system (on 40 features) is roughly 1 day,

compared to runtimes between slightly under a minute, and a few

hours, on various dataset sizes (with 20-120 features) reported in

previous works [4, 15, 26, 28, 40, 43, 49, 52, 62, 63, 70, 70].

Producing better models (i.e., with smaller MSE) –as in SIR– is

typically desired, even if it incurs a slower (but reasonable) training

301

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

runtime. This is because training a model occurs once, whereas

the fruits of having a better MSE provide recurring benefits in

each use of the model. Furthermore, a runtime of 1 day (and even

more) seems to be reasonable in the context of gene-expression

data, where the trained model is used to guide the manufacturing

of a medical testing device (DNA chip), and our training time is

insignificant when compared to the manufacturing pipeline.

Furthermore, our runtime can be significantly lowered by tuning

the system parameters to remove a larger fraction of the features

in each iteration, thus reducing the total number of iterations. In

particular, when tuning parameters so that our system returns a

model satisfying the 𝐿0 constraint in a single iteration, our system

terminates in only 1 hour (when executed on 20 features and 1000

data samples). This single-iteration parameter setting may be of

independent interest, because it provides a privacy preserving trun-

cated ridge model – i.e., a ridge regression model whose low weight

features are truncated as to satisfy the 𝐿0 constraint. This should be

used with caution though, as our experiments indicate that there

is a tradeoff between runtime and MSE – where performing more

iterations typically yields a better MSE.

In summary, SIR expands over prior work in offering the first

privacy preserving feature selection in a wrapper method. This

widens the PPML toolset to include the commonly used RFE, which

leads to favorable learning outcomes in some use cases of interest.

1.3 Paper Organization
We give an overview of our techniques, along with a comparison to

techniques used in prior work, in Section 2. Preliminary definitions

appear in Section 3; the problem statement in Section 4. The SIR

protocol appear in Section 5. Our system and empirical evaluation

appear in Section 6. Conclusions appear in Section 7.

2 OVERVIEW OF OUR TECHNIQUES
In this section we give an overview of our techniques. We present

the high level overview of SIR in Section 2.1, elaborate on its key

components in Sections 2.2-2.3, discuss our attacks in Section 2.4,

and compare our techniques to prior work in Section 2.6.

2.1 IR and SIR
We first describe the (insecure) feature selection algorithm, called

Iterated Ridge (IR); and then present our Secure Iterative Ridge

regression (SIR) protocol.

Iterated Ridge (IR, cf. Figure 1) is an RFE algorithm for sparse ridge

regression, analogous to the sparse logistic regression algorithm

used in [25]. IR starts with all features, removing 10% of the fea-

tures in each iteration, until reaching 2 · 𝑠 features, where 𝑠 is the
user-determined target number of features, then removes features

one-by-one.
4
(This follows the paradigm of adjusting the learning

rate to a smaller value when approaching the solution.) Selecting

which features to remove in each iteration is done by solving ridge

regression (see Section 3.1) on the surviving features to obtain an

intermediate model, and removing the features whose weights (in

absolute value) are in the bottom 10%.

4
The fraction of features to be removed in each iteration, and the threshold determining

when to transition to the one-by-one phase, are both user-definable hyper-parameters.

Secure Iterative Ridge (SIR, cf. Figure 2) is executed between𝑚 data

owners DO1, . . . ,DO𝑚 and two non-colluding servers S1,S2. The
data owners’ inputs are a horizontal partition of the data matrix

𝑋 ∈ R𝑛×𝑑 and the target vector ®𝑦 ∈ R𝑛 ; i.e., there is a partition

𝐼1, . . . , 𝐼𝑚 of [𝑛] = {1, . . . , 𝑛} so that each data owner DO𝑗 holds

the restriction of 𝑋 and ®𝑦 to rows with indices in 𝐼 𝑗 , denoted 𝑋
𝑗

and
®𝑦 𝑗 . Let 𝑁 denote a sufficiently large integer (as determined

by Equation 4). In SIR we use homomorphic computation over

encrypted data, which translates into computing on the underlying

cleartext values with arithmetic modulo 𝑁 , i.e., in the ring Z𝑁
(unless explicitly stated otherwise). The values in 𝑋, ®𝑦 are assumed

to be normalized to [−1, 1] (which is common in ML), and each

data owner scales her data to integral values in [−10ℓ , 10ℓ] for a
common precision parameter ℓ . Moreover, 𝑁 is set to be sufficiently

large so that, despite computing modulo 𝑁 , we are able to produce

the same final output as if computing over the integers.

SIR is composed of four phases as detailed next.

Phase I. Setup & Upload: S2 generates a key pair (𝑝𝑘, 𝑠𝑘) for a
fully homomorphic encryption scheme, and publishes 𝑝𝑘 .5 Each

data owner DO𝑗 encrypts (entry-by-entry) 𝐴
𝑗 = (𝑋 𝑗)𝑇 · 𝑋 𝑗 and

®𝑏 𝑗 = (𝑋 𝑗)𝑇 · ®𝑦 𝑗 under 𝑝𝑘 , and sends the ciphertexts to S1 who

homomorphically combines them to obtain ciphertexts for:

𝐴 =
∑︁
𝑗

𝐴 𝑗 + 𝜆𝐼 ∈ R𝑑×𝑑 and
®𝑏 =

∑︁
𝑗

®𝑏 𝑗 ∈ R𝑑 .

Phase II. Obliviously Permute Features: S1 and S2 engage in a 1-

message protocol that concludes with S1 holding ciphertexts for

𝐴𝑝 = 𝑃𝑇 · 𝐴 · 𝑃 and
®𝑏𝑝 = 𝑃𝑇 ®𝑏,

where 𝑃 is a random 𝑑 × 𝑑 permutation matrix. Importantly, S1
and S2 have no information on 𝑃 other than it being a random per-

mutation of the features’ indices [𝑑] = {1, . . . , 𝑑}. For this purpose
𝑃 is sampled obliviously as follows. First, S2 samples a uniformly

random 𝑑 × 𝑑 permutation matrix 𝑃2, encrypts it, and sends the

ciphertexts to S1. Next, S1 samples a uniformly random 𝑑 × 𝑑 per-

mutation matrix 𝑃1, and homomorphically computes 𝑃 = 𝑃1 · 𝑃2,
𝐴𝑝 and

®𝑏𝑝 .
Phase III. Privacy Preserving RFE (cf. Figure 2, Steps 2-3): At the onset
of this phase, S1 initializes the set 𝐹 of surviving features to be all

features, i.e., 𝐹 = [𝑑]. Denote by𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 the restriction of𝐴𝑝

and
®𝑏𝑝 to the surviving features 𝐹 (i.e., include only rows of𝐴𝑝 and

®𝑏𝑝 whose indices are in 𝐹 , and likewise for columns of 𝐴𝑝). While

the number of features in 𝐹 exceeds the 𝐿0 constraint, features are

removed as follows:

(1) Scaled ridge (cf. Figure 3): First, S1 and S2 engage in a two-

party protocol, at the conclusion of which S1 holds a cipher-
text encrypting the scaled ridge regression model:

®𝑤
scaled

= det(𝐴𝑝 |𝐹) ·
[
(𝐴𝑝 |𝐹)−1 · ®𝑏𝑝 |𝐹

]
This is a scaling by factor det(𝐴𝑝 |𝐹) of the ridge regression
model for (𝐴𝑝 |𝐹 , ®𝑏𝑝 |𝐹) which is ®𝑤 = (𝐴𝑝 |𝐹)−1 · ®𝑏𝑝 |𝐹 . This

5
More precisely, S2 produces two key pairs –(𝑝𝑘𝑁 , 𝑠𝑘𝑁) and (𝑝𝑘𝐷 , 𝑠𝑘𝐷) , with
𝑑+1 ≤ 𝐷 ≪ 𝑁– supporting homomorphic computationmodulo𝑁 and𝐷 respectively.

We primarily employ 𝑝𝑘𝑁 ; using 𝑝𝑘𝐷 only briefly during ranking (Phase III, Part 2).

302

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

scaling is central for both the correctness and the efficiency

of our protocol; see a detailed discussion in Section 2.2.

In detail, the scaled ridge protocol operates as follows. First,

S1 homomorphically masks 𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 , and sends their

masked versions to S2, where these masked versions are:

𝐴masked = 𝐴𝑝 |𝐹 · 𝑅 and
®𝑏masked = ®𝑏𝑝 |𝐹 + 𝐴𝑝 |𝐹 · ®𝑟 for uni-

formly random invertible matrix 𝑅 and random vector 𝑟 of

the appropriate dimensions.
6
Next, S2 decrypts, computes

det(𝐴masked) and ®𝑤masked

scaled
= adj(𝐴masked) · ®𝑏masked

in the

clear, encrypts them, and sends the ciphertexts to S1. Fi-
nally, S1 homomorphically unmasks to obtain ciphertexts

for the scaled (un-masked) model, using the algebraic iden-

tity: ®𝑤
scaled

= 𝑅 · ®𝑤masked

scaled
+ det(𝐴masked) · ®𝑟 . We refer the

reader to the full version [2] for the proof of correctness.

(2) Ranking: Next, S1 and S2 engage in a two-party protocol, at

the conclusion of which S1 holds a ranking –in cleartext– of

the surviving features according to their weight in ®𝑤
scaled

;

see details in Section 2.3. Importantly, S1 does not know the

actual weights, only their ordering. This does not violate pri-

vacy, because the features were randomly permuted; details

are provided in the full version [2].

(3) Removal: Finally, S1 removes the (dynamically adjusted de-

sired number of) lowest ranking features, and updates 𝐹 ,

𝐴𝑝 |𝐹 and
®𝑏𝑝 |𝐹 accordingly.

We elaborate on the scaled ridge regression and ranking sub-

protocols in the subsections below.

Phase IV. Obliviously un-permute and rationally reconstruct: At the
onset of this phase the servers hold a subset 𝐹 ⊆ [𝑑] of feature
indices, which satisfies the 𝐿0 constraint, i.e., |𝐹 | = 𝑠 . They now

engage in a two-party protocol to produce a (cleartext) sparse ridge

regression model whose non-zero weights are only on features

in 𝐹 .7 First, S1 and S2 engage in a two-party sub-protocol, at the

conclusion of which S1 holds ciphertexts for the ridge regression
model ®𝑤𝑝 = (𝐴𝑝 |𝐹)−1 · ®𝑏𝑝 |𝐹 for the final set of features 𝐹 . Second,S1
homomorphically un-permutes the features’ order (where features

that did not survive have weight zero), and sends this un-permuted

encrypted model to S2 who decrypts it, and sends it in the clear

to S1. That is, S1 now has ®𝑤 = 𝐴−1|𝐹 · ®𝑏 |𝐹 , where the inverse and
product are computed in Z𝑁 . Finally, S1 maps ®𝑤 to the solution to

ridge regression over the surviving features when computed over the
rationals (rather than in Z𝑁) via rational reconstruction [22, 64],

8

and outputs the resulting model.

2.2 Our Scaled Ridge Protocol
A central new component in our solution is a sub-protocol that we

call scaled ridge regression, which may be of independent interest.

Our scaled ridge builds on the following two observations.

6
This masking was introduced in [28] in the context of privacy preserving ridge

regression. However, unlike our work, they employ masking to produce a ridge model

that is un-scaled and in cleartext; see details in Section 2.6.

7
The ridge regression model is computed similarly to the protocol of [4], except for

restricting the data to the features in 𝐹 , and obliviously masking and un-permuting

over an encrypted model; see Section 2.6.

8
Rational reconstruction refers to the Lagrange-Gauss algorithm which allows one to

recover a rational 𝑞 = 𝑟/𝑠 from its representation 𝑞′ = 𝑟 · 𝑠−1 ∈ Z𝑁 for sufficiently

large 𝑁 (in particular, this holds for 𝑁 which satisfies Equation 4).

Observation 1: Ranking is invariant to scaling. Ranking indices of

a vector ®𝑤 according to the magnitude of their associated values

𝑤 [𝑖] (in absolute value) is invariant to scaling the vector by a pos-

itive factor. Therefore, instead of ranking features according to

their magnitude in the ridge regression model, we can rank them

according to any (non-zero) scaling of this model.

Observation 2: homomorphic ranking is considerably faster with our
scaling. We show that homomorphic ranking is considerably faster

when we scale the ridge regression model as we do. To explain

why this is so, we first provide some background and point out a

key complexity bottleneck in homomorphic ranking of the ridge

regression model. We then explain how to eliminate this bottleneck

using scaling.

Let (𝑋, ®𝑦) be a data matrix and target vector in a ridge regression

problem, and set𝐴 = 𝑋𝑇 ·𝑋 +𝜆𝐼 and ®𝑏 = 𝑋𝑇 · ®𝑦. The ridge regression
model is:

®𝑤 = 𝐴−1 · ®𝑏
where the arithmetic in computing 𝐴, ®𝑏 and ®𝑤 is over the reals. In

our privacy-preserving solution we compute an encrypted model ®𝑤
via homomorphic computation over encrypted 𝐴 and

®𝑏, and where

the underlying plaintext computation is conducted in a finite ring

Z𝑁 of integers modulo 𝑁 (rather than over the reals). To ensure

that the same model is obtained despite performing computations

modulo 𝑁 , two measures are required. First, 𝑁 must be sufficiently

large (cf. Equation 4) so that, e.g., 𝐴 mod 𝑁 and
®𝑏 mod 𝑁 are iden-

tical to 𝐴 and
®𝑏. Second, rational reconstruction must be computed

on each entry of the reduced model 𝐴−1 · ®𝑏 mod 𝑁 to map it to the

model ®𝑤 computed over the reals. Unfortunately, homomorphically
computing rational reconstruction is a complexity bottleneck.

Next, we show that scaling the model by the factor det(𝐴) allows
us to eliminate the need for rational reconstruction. Relying on

the algebraic identity 𝐴−1 = adj(𝐴)
det(𝐴) (where adj(𝐴) is the adjugate

matrix of 𝐴), we can see that the scaled model ®𝑤
scaled

= det(𝐴) ·
𝐴−1 · ®𝑏 is equal to

®𝑤
scaled

= adj(𝐴) · ®𝑏.
Since computing adj(𝐴) involves onlymultiplications and additions,

then –when using a sufficiently large 𝑁 , as we do– no wrap-around

occurs when computing ®𝑤
scaled

modulo 𝑁 . Namely, computing

over Z𝑁 produces an identical scaled model as when computing

over the reals. This implies that we can directly rank the entries

of ®𝑤
scaled

mod 𝑁 without executing rational reconstruction. Namely,

we are able to avoid performing rational reconstruction in each

iteration, thus eliminating a key complexity bottleneck.

2.3 Our Ranking Protocol
We rank features in the scaled ridge model of the current iteration

by their absolute value. This is done by ordering features according

to their “size”, measured as their distance from the nearest multiple

of 𝑁 . This measurement of the “size” of a feature can be thought of

as treating values larger than (𝑁 − 1)/2 as negative, and comparing

the absolute value of the features. Denote the current scaled model

by ®𝑤
scaled

= (𝑧1, . . . , 𝑧𝑑) ∈ Z𝑑𝑁 s.t. it has non-zero values 𝑧𝑖 ≠ 0

only on indices 𝑖 in the current surviving set of features 𝐹 ⊆ [𝑑].
The ranking is computed as follows. First, S1 masks each pairwise

303

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

difference 𝑧2
𝑖
−𝑧2

𝑗
mod 𝑁 , with 𝑖, 𝑗 ∈ 𝐹 , by homomorphically adding

to it a uniformly random integer 𝑟𝑖, 𝑗 (modulo 𝑁), and sends the

masked differences to S2. Second, S2 decrypts each masked differ-

ence 𝑧2
𝑖
− 𝑧2

𝑗
+ 𝑟𝑖, 𝑗 mod 𝑁 , converts it to a binary representation (in

the clear), encrypts this bit-by-bit and sends the ciphertexts to S1.
The encryption of this binary representation is under the key pair

(𝑝𝑘𝐷 , 𝑠𝑘𝐷), generated by S2 during setup, whose plaintext modu-

lus is a small integer 𝐷 larger than 𝑑 . Third, S1 homomorphically

compares each encrypted masked pairwise difference 𝑧2
𝑖
− 𝑧2

𝑗
+ 𝑟𝑖, 𝑗

with his cleartext 𝑟𝑖, 𝑗 (where both are in binary representation,

and while accounting for all possible overflows), producing an en-

crypted outcome bit 𝑏𝑖, 𝑗 which is equal to 1 if-and-only-if 𝑧2
𝑖
> 𝑧2

𝑗

and zero otherwise. Then, for each 𝑖 , S1 homomorphically sums up

the bits 𝑏𝑖, 𝑗 for all 𝑗 to obtain a ciphertext encrypting Ord𝑖 , which

is the number of indices 𝑗 with magnitude 𝑧2
𝑗
smaller than 𝑧2

𝑖
(we

assume all weights are distinct), and sends all these ciphertexts to

S2. Fourth, S2 decrypts all ordinals, computes the set of surviving

features according toOrd1, . . . ,Ord𝑑 (i.e., the set of highest-ranking

features), and sends the indicator vector of this set (in the clear) to

S1.
Importantly, in order to support fast homomorphic summation

of these encrypted results, we instructed S2 – when encrypting the

weights in binary representation – to use a small plaintext modulus

of size 𝐷 , where 𝐷 > 𝑑 is larger than the number of comparison

results to be summed-up. Since 𝐷 > 𝑑 , then there is no overflow

when computing Ord1, . . . ,Ord𝑑 , and so they are a permutation

of {1, . . . , 𝑑} ranking the entries of ®𝑤 by their size. The Boolean

operations computed during the aforementioned homomorphic

comparison are then emulated in Z𝐷 (defining, for 𝑎, 𝑏 ∈ {0, 1},
𝐴𝑁𝐷 (𝑎, 𝑏) = 𝑎 · 𝑏 mod 𝐷 and 𝑋𝑂𝑅(𝑎, 𝑏) = (𝑎 − 𝑏)2 mod 𝐷). This

at most doubles the multiplicative depth of comparison, for the

benefit of making the summation computation a linear function

that requires no multiplications.

The above (simplified) description of the ranking protocol over-

looked the following subtle point: in each iteration, the servers learn

the ordering between the features in the current iteration’s model.

If the same permutation on features were to be used in all iterations,

this knowledge from the execution of multiple iterations might

reveal non-trivial information (similar to the issues which arise by

performing scaled ridge on unpermuted features). To overcome this,

we have S1 apply a fresh permutation on the Ord𝑖 ’s before sending

them to S2. The permutation is inverted at the end of this step, and

does not affect the rest of the computation. Privacy is preserved

because each iteration uses a fresh permutation for ranking (which

is applied on top of the long-term permutation applied at the onset

of the protocol). See the full version [2] for details.

2.4 Security Challenges and Attacks
The iterative training of intermediate models is inherent to wrap-

per methods (and does not occur in filter or embedded methods),

and introduces several security challenges. Indeed, we show that

revealing any of the following (which are revealed in standard IR)

would violate privacy (see the full version [2] for further details):

• The order by which features are removed.

• The intermediate models.

• The scaling factor det(𝐴) in a scaled ridge model.

This demonstrates the necessity of the security measures imple-

mented in SIR. Hiding this information while maintaining efficiency

is a key challenge in designing SIR.

2.5 Discussion: Model Inversion Attacks
Our protocol (SIR) guarantees that only the output model (and

whatever can be efficiently inferred from it) is revealed. This is the

standard security goal in secure computation; however, it leaves

open the question of how much information is revealed by the

output model, and how to reveal even less.

Prior works [23, 24, 69] have shown that learning the model may

indeed reveal non-trivial information on private inputs of honest

parties. Most relevantly, [24] showed, in the context of genomic data

for personalized medicine using a (non-sparse) linear regression
model, that access to the trained model can be abused to infer

private genomic attributes about individuals in the training dataset.

Moreover, [24] showed that differential privacy is not effective for

guaranteeing privacy because it is at odds with utility: when setting

the privacy parameters sufficiently high to prevent their attack, the

produced model does not retain sufficient clinical efficacy.

SIR is likewise susceptible to model inversion attacks. This is

because sparsity of the model in itself does not guarantee security
against inversion attacks, since even a single bit of information

can compromise privacy. For example, in the context of gene-

expression data, certain genetic variants are more common in some

ethnicities than in others, and so revealing whether a feature cor-

responding to such a genetic variant is selected in the model may

reveal the ethnicity of the population represented in the training

dataset. Concretely, we present a model inversion attack showing

that corrupt data owners who inject maliciously crafted inputs (but

otherwise follow the protocol) can infer from the output model

non-trivial information on the inputs of the honest data owners.

The attack holds even when the output is a 1-sparse model, i.e.,

it consists of one selected feature. At a high-level, corrupted data

owners use “balanced” inputs, in which all features have the same

correlation with the response vector. Thus, inputs provided by cor-

rupted parties do not affect the output model, and any correlations

in the inputs of the honest parties will determine which features

are selected in the sparse output model. See the full version [2] for

further details.

To reduce the privacy risk associated with revealing the model,

our solution SIR offers a fine grained control on how, and to whom,

the model is revealed. This can be obtained by applying the fol-

lowing minor changes in Phase IV: “Obliviously un-permute and

rationally reconstruct” step.

Alternative 1: Revealing the output model in cleartext to all par-
ticipants of the protocol (but nothing more). This is the outcome

when executing the protocol as specified in Section 2.1.

Alternative 2: Revealing the model only to one designated party, de-
noted O, who may be an external party participating only in Phase

IV, as follows. S1 sends the (encrypted and un-permuted) model

to O (instead of S2); O homomorphically masks the model with a

random additive mask, and sends the encrypted masked model to

S2 who decrypts and returns the (cleartext) masked model to O; fi-
nally, O removes the masking and computes rational reconstruction

to obtain the output model. This is motivated by scenarios where

304

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

S1,S2 are powerful servers to which computation is outsourced

(say, Amazon AWS and Google Cloud) and where O is some health

organization authorized to receive the computed model (say, the

World Health Organization).

Alternative 3: Outputting the model only in encrypted form. In this

case S1 simply publishes the encrypted model, instead of sending it

to S2 for decryption. The model in this case is specified by a vector

of 𝑑 ciphertexts whose plaintext values are in Z𝑁 and where at

most 𝑠 of them are non-zero (in order to hide both the indices of

the selected features and their weight). Outputting an encrypted

model is motivated by scenarios where the encrypted model is

employed for privacy preserving inference using homomorphic

computation, as follows. Given the encrypted model and a (possibly,

encrypted) sample
9
homomorphically compute the inner product

of the model and sample, homomorphically mask the resulting

value in Z𝑁 (using additive mask), and send the ciphertext to S2 for
decryption; then unmask the returned plaintext and apply rational

reconstruction to obtain the inference result as a rational number.

See the full version [2] for further details. We note that in order

to reduce the efficacy of model inversion attacks it is advised to

enforce a security policy restricting the entities authorize to make

inference queries, and limiting their number of allowed queries.

Analyzing such security measures is beyond the scope of this work.

2.6 Comparison to Prior Techniques
The two-server approach for privacy-preserving ridge regression

dates back to the work of Nikolenko et al. [49], who were also the

first to propose using additive homomorphic encryption for merg-

ing the data from all data owners. We follow them in our Setup &

Upload phase. Solving the linear system (𝐴, ®𝑏) was done in [49] us-

ing garbled circuits to guarantee security. Giacomelli et al. [28] pro-

posed instead to solve a masked linear system (𝐴masked, ®𝑏masked),
where S1 masks the systems using homomorphic addition, S2 de-
crypts, solves, and sends the solution (the model) –in cleartext– to

S1, who unmasks and applies rational reconstruction in the clear.

Importantly, in [28] the model is sent in the clear, and both the

unmasking and the rational reconstruction are done in the clear.

However, this is impossible in our setting: we cannot expose the

intermediate models in the clear, because this compromises privacy

as we show in our attacks. Moreover, we cannot simply have S2
send the model in encrypted form and have S1 process it homomor-

phically, because the rational reconstruction step requires many

sequential steps, making it computationally expensive to compute

homomorphically.

Blom et al. [10] proposed avoiding rational reconstruction by

having S2 send adj(𝐴masked) · ®𝑏masked
and det(𝐴masked) (in the

clear), where S1 unmasks to obtain adj(𝐴) · ®𝑏 and det(𝐴) and then

computes the model 𝐴−1®𝑏 = adj(𝐴) ®𝑏/det(𝐴) with division over the
reals. However, we cannot follow their approach, because we can-

not send these values in the clear (as this would violate privacy,

as we show in our attacks). Moreover, we cannot send the values

in encrypted form, and have S1 homomorphically compute the

9
The sample is a length 𝑑 vector specifying the sample’s value for each features. Note

that we require specifying all 𝑑 features, rather than only the selected 𝑠 features,

because in this scenario we do not reveal which features are selected to the model.

division, because computing division homomorphically (be it mod-

ulo 𝑁 or over the reals) is computationally expensive and thus not

a viable alternative. In fact, even in the final iteration where the

model can be revealed, our attacks demonstrate that it still violates

privacy to reveal the pair (adj(𝐴) ®𝑏, det(𝐴)) rather than only their

ratio adj(𝐴) ®𝑏/det(𝐴). We therefore cannot employ the approach

of [10]. Nonetheless, their approach inspired us in proposing our

scaled ridge regression protocol.

Our proposed scaled ridge regression offers a new formula-

tion, which eliminates the need for both rational reconstruction

and division. In our protocol, S2 sends –in encrypted form– the

pair adj(𝐴masked) · ®𝑏masked
and det(𝐴masked), which S1 homo-

morphically unmasks to obtain ciphertexts for the scaled model

𝑤
scaled

= adj(𝐴) · ®𝑏. Next, S1 homomorphically ranks the features
of this scaled model, without computing any division or rational re-
construction. This is novel to our work, and may be of independent

interest, with potential usage in other privacy preserving solutions

using ridge regression as a component in a larger computation.

The overall structure of our protocol is likewise novel to our

work, including its components of obliviously permuting and un-

permuting the features (Phases II and IV in SIR) as well as the

iterative execution of privacy-preserving regression for the ranking

and removal (Phase III in SIR). We note that this overall structure

necessitates using a fully homomorphic encryption (FHE), e.g.,

BGV [13] or B/FV [12, 21], to support both homomorphic addition

and multiplication with respect to our plaintext modulus 𝑁 (cf. only

additive homomorphism in [10, 28]). However, as observed in [4],

existing FHE libraries (e.g., HElib [38] and SEAL [54]) only support

plaintext modulus of size up to 64-bit, whereas our protocol requires

much larger integers (1260-bit integer in our implementation). To

resolve this issue we follow [4] who suggested using the Chinese

Remainder Theorem to represent each integer modulo 𝑁 as a tuple

of integers modulo small(ish) primes as supported by these libraries.

3 PRELIMINARIES

Notation. Upper-case letters (e.g.,𝑀) denote matrices, and vector

notation (e.g., ®𝑣) denotes vectors. We use boldface letters to denote

ciphertexts (e.g.,M, ®𝑣 for a matrix and vector, respectively). We use

Greek letters to denote masked values.

For a vector ®𝑤 we denote the number of its non-zero entries by

nnz (®𝑤), and call it 𝑠-sparse if nnz(®𝑤) ≤ 𝑠 . For a vector ®𝑣 (similarly,

set 𝑆), we use |®𝑣 | (|𝑆 |) to denote its length (size). For a matrix 𝑋 , we

use 𝑋𝑖 to denote its 𝑖’th row, and 𝑋𝑇 to denote its transpose. For a

matrix𝐴, we use adj (𝐴) , det (𝐴) to denote the adjugate matrix and

determinant of 𝐴, respectively. We note that for any pair 𝐴, 𝐵 of

matrices it holds that adj (𝐴 · 𝐵) = adj (𝐵)·adj (𝐴), and det (𝐴 · 𝐵) =
det (𝐴) · det (𝐵). For natural 𝑑, 𝑁 ∈ N, we use GL (𝑑,Z𝑁) to denote
the group of all invertible 𝑑 × 𝑑 matrices with entries in Z𝑁 .

For a real value 𝑥 , we use abs (𝑥) to denote its absolute value,

and ⌊𝑥⌉ to denote its nearest integer. We extend the notation to

apply to vectors and matrices entry-by-entry. We say that 𝑥 ∈ R
has precision ℓ if 𝑥 is given as a real number with ℓ digits after

the decimal point (which could be 0). If 𝑥 has precision ℓ , then by

scaling 𝑥 to lie in Z we mean multiplying 𝑥 by 10
ℓ
.

For 𝑁 ∈ N, [𝑁] denotes the set {1, 2, . . . , 𝑁 }, and Z𝑁 denotes

the ring of integers modulo 𝑁 . In our protocols, elements of Z𝑁
305

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

are represented using the integers 0, 1, . . . , 𝑁 − 1 (this is without
loss of generality). We treat values in Z𝑁 that are greater or equal

to 𝑁 /2 as negative. In particular, this allows us to define the “size”

– alternatively, the “absolute value” – of a group element as its

distance from the nearest multiple of𝑁 . For example, 1 is considered

to be smaller than 𝑁 − 2 ≡ −2 mod 𝑁 .

For random variables R, R′, R ≈ R
′
denotes that R, R′ are compu-

tationally indistinguishable. negl (𝜅) denotes a function which is

negligible in 𝜅, and PPT is shorthand for Probabilistic Polynomial

Time. We use the standard notion of computational indistinguisha-

bility (e.g., from [31]).

Fully Homomorphic Encryption (FHE) [27, 53] is an encryption

scheme that allows computations to be performed over encrypted

data (“homomorphic computation”), producing an encrypted ver-

sion of the result. Computation is specified by an arithmetic circuit

over a ring called the plaintext ring. Our protocol employs FHE as

a black-box. See a tutorial in [37].

3.1 Sparse Linear Regression & Applications
Linear regression is an important and widely-used statistical tool

for modeling the relationship between properties of data instances

®𝑥𝑖 ∈ R𝑑 (features) and an outcome 𝑦𝑖 ∈ R (response) using a linear

function 𝑦𝑖 = ®𝑥𝑖 ®𝑤 (the feature vectors are augmented with an

additional first entry set to 1, as is standard). Training a regression

model, takes 𝑛 data instances (®𝑥𝑖 , 𝑦𝑖) ∈ R𝑑+1 and returns a model

®𝑤 ∈ R𝑑+1 that minimizes a loss function, e.g., the Mean-Square-

Error (MSE):

®𝑤 = argmin

®𝑢∈R𝑑+1
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
(1)

where the rows of the matrix 𝑋 are the 𝑛 (augmented) vectors

®𝑥𝑖 ∈ R𝑑+1 .
As we will discuss below, regularizing the solution ®𝑤 to Equa-

tion 1 is often beneficial, leading to LASSO regression [9, 60] and

ridge regression, both are special cases of controlling the norm of

®𝑤 . Ridge regression [4, 28, 41] seeks to find

®𝑤 = argmin

®𝑢∈R𝑑+1

(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ 𝜆 ∥®𝑢∥2

2

)
(2)

where notation is as above and 𝜆 ≥ 0 is the reg-

ularization (hyper)-parameter. Lasso seeks to find: ®𝑤 =

argmin®𝑢∈R𝑑+1
(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ 𝜆 ∥®𝑢∥

1

)
.

In certain cases it is desired (or even required) that the output

model ®𝑤 be sparse. That is, we are seeking a model ®𝑤 with many

zero coefficients. Even stronger –due to hardware limitations, for

example– we would be seeking a model with a fixed number of

features. The latter is called 𝐿0 sparsity, and leads to the following

optimization task:

®𝑤 = argmin

®𝑢∈R𝑑+1,nnz(®𝑢) ≤𝑠

(
∥ ®𝑦 − 𝑋 ®𝑢∥2

2
+ 𝜆 ∥®𝑢∥2

2

)
(3)

where nnz(®𝑢) denotes the number of non-zero entries in ®𝑢, and 𝑠 ∈
N is the sparsity (hyper)-parameter. This task is the one addressed

in this work, and is referred to as sparse linear regression.
In typical datasets, learning sparse linear models is useful due to

two main reasons. First, simpler models are preferred during the

training stage to avoid overfitting [9, 55]. Lower complexity trans-

lates to lower degree of polynomial models and/or less features in

the output model. The latter can be reduced to model sparsity. The

second reason to prefer sparser models is due to practical consider-

ations. In some cases, hardware limitations restrict the number of

features which can be measured when using the prediction model

in the execution phase - when used to predict values, 𝑦, for new

instances. In other cases, using more features in the execution pre-

diction model is more expensive. For example, if𝑦 represents tumor

severity, it might be reasonable to assume that 𝑦 can be expressed

as a linear (or polynomial) combination of molecular genomic in-

formation, say gene expression levels, in 𝑋 . However, we expect,

from a biological perspective, most genes to minimally affect the

prediction performance. That is, the biology will be driven by a

small number of genes.
10

Therefore, most components of ®𝑤 can

be zero so that an assay used in clinical practice, based on such a

predictive model, can use less expensive hardware, quantifying the

expression levels of fewer genes [7, 20, 25, 50, 66].

3.2 Feature Selection and Iterated Ridge
Feature selection is an essential component in computational mod-

elling and in the practical application of models. It has therefore

been an active and prolific field of research in various domains

such as pattern recognition, machine learning, statistics and data

mining [46, 47]. Clever selection of the set of features to be used for

data modelling, and as part of the execution models derived from

learning, has been shown to improve the performance of supervised

and unsupervised learning. Reasons are discussed above, as well as

in the literature [7, 20, 36, 51]

Feature selection methods can be classified into several types

based on the employed techniques, as discussed in Section 1. In this

work we focus on a variant of Recursive Feature Elimination [36],

a wrapper approach. A detailed description of the approach, in the

clear, follows. Our approach is an iterative one that starts with all

features, and iteratively removes features. This is similar to [25],

that developed a sparse logistic regression model using RFE. In each

iteration we run ridge regression with 𝜆 ≥ 0 [4, 55] to calculate

the weights for all features considered. Then, we remove features

with low weights (in absolute value). The algorithm operates in

two phases. In the first phase, we remove a 0.1-fraction of features,

whereas when the current number of features decreases below

a (user-defined) threshold thr, we move to the second phase, in

which we remove a single feature in each iteration (this latter

phase is analogous to Backward Subset Selection). The choice of

the actual value of thr and the choice of the fraction removed in

the early stages can affect the computational complexity of the

process. Moreover, they are hyper-parameters of the model and can

be tuned by cross validation. The pseudo-code of this algorithm is

given in Figure 1.

4 PROBLEM STATEMENT
We follow the security and threat model of [4], and parts of this

section are taken almost verbatim from [4]. SIR guarantees com-

putational security, in the passive setting, against a single server

10
The human genome codes for roughly 30𝐾 genes and many more functional

elements.

306

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

Input: A dataset 𝐷 ∈ R𝑛×𝑑 and a target vector ®𝑦 ∈ R𝑛 (where entries are

normalized to the same scale), and parameters 𝑠 , rej ∈ (0, 1) , thr ∈ [𝑑].
Output: A set Ω𝑠 of the 𝑠 ≤ 𝑑 selected features, and a ridge regression

model ®𝑤𝑠 on these features.

Steps:
(1) Initialize Ω to be the set of all features, and ®𝑤 = ®1.
(2) While nnz(®𝑤) > thr:

(a) ®𝑤 = 𝐿𝑅 (𝐷, 𝑦,Ω)
(b) 𝜋 = argsort(abs (®𝑤))
(c) prefix(𝜋) = 𝜋[0: rej · |Ω |]
(d) Ω = Ω \ prefix(𝜋)

(3) While nnz(®𝑤) > 𝑠:
(a) ®𝑤 = 𝐿𝑅 (𝐷, 𝑦,Ω)
(b) smallest = argmin(abs (®𝑤))
(c) Ω = Ω \ {smallest}

(4) Let Ω𝑠 = Ω and ®𝑤𝑠 = 𝐿𝑅 (𝐷, 𝑦,Ω𝑠) . Return (Ω𝑠 , ®𝑤𝑠) .

Figure 1: Iterated Ridge (IR). Notations: 𝐿𝑅(𝐷,𝑦,Ω) denotes
the solution of the linear regression system given by (𝐷,𝑦)
when using only features in Ω; nnz(®𝑤) denotes the number of
non-zero elements in ®𝑤 ; the function argsort sorts the indices
of an array according to the values it contains; abs (®𝑤) returns
the absolute value of each entry of ®𝑤 . The regularization
parameter 𝜆 is implicit in this pseudo-code.

colluding with a proper subset of the data owners. More specifically,

we assume all parties, even corrupted ones, are PPT and follow the

protocol (though corrupted parties will try to infer additional infor-

mation). We guarantee correctness of the output, and privacy of the

inputs, in this setting. Specifically, the only information revealed to

the corrupted parties is the leakage profile, namely the information

that is explicitly revealed by the protocol. In our protocols, the leak-

age profile consists of the output model ®𝑤 , as well as the following

public parameters: the number 𝑛 of data instances; the number 𝑑 of

features; the precision ℓ ; a sparsity parameter 𝑠; and a regulariza-

tion parameter 𝜆 ≥ 0. More formally, we consider 𝑘-privacy in the

passive setting, for inputs 𝑋 such that 𝐴 = 𝑋𝑇𝑋 + 𝜆𝐼 is invertible
in the ring Z𝑁 (invertability is needed for IR correctness; and in

our case – as in previous works [4, 28] – also for privacy). We note

that the input is horizontally-partitioned between the data owners

(i.e., data owners hold disjoint subsets of rows of (𝑋, ®𝑦)).

Terminology. Let Π be an (𝑚 + 2)-party protocol executed between

PPT data owners DO1, . . . ,DO𝑚 and PPT servers S1,S2. We as-

sume that every pair of parties share a secure point-to-point chan-

nel, and that all parties share a broadcast channel. We also restrict

attention to protocols in which all parties obtain the same output,

and only the data owners have inputs. For inputs 𝑥1, . . . , 𝑥𝑚 of

DO1, . . . ,DO𝑚 , we use Π (𝑥1, . . . , 𝑥𝑚) to denote the random vari-

able describing the output in a random execution of Π (the probabil-

ity is over the randomness of all participating parties, including the
servers). For 𝐼 ⊂ {DO1, . . . ,DO𝑚,S1,S2}, the (joint) view of 𝐼 in Π,
denoted V

Π
𝐼
(𝑥1, . . . , 𝑥𝑚), is the random variable consisting of the in-

puts and randomness of all parties in 𝐼 , as well as the messages they

received from the honest parties in a random execution of Π with

inputs 𝑥1, . . . , 𝑥𝑚 . We say a subset 𝐼 ⊆ {DO1, . . . ,DO𝑚,S1,S2} is
𝑘-permissible if it contains at most 𝑘 data owners, and at most one

of the servers.

Security notion. We consider standard computational security

against a passive adversary (see, e.g., [31]), adapted to the setting

of non-colluding servers as in [49]. Since optimal feature selection

under 𝐿0 (Equation 3) is NP hard in general [14], we focus on pro-

viding a secure variant of the Iterated Ridge heuristic approach (see

Section 3.1). Specifically, we require correctness in the sense that

the secure variant has the same output as the cleartext iterated

ridge algorithm, and privacy in the sense that any 𝑘-permissible set

𝐼 learns nothing except the leakage profile (which consists of the

public parameters and the output model) and the inputs of the par-

ties in 𝐼 (and anything efficiently computable therefrom). We also

offer the option of returning an encrypted model (cf. Section 2.5),

in which case the output model is excluded from the leakage profile

and the adversary learns nothing beyond the public parameters

and the input of the parties in 𝐼 (and anything efficiently computed

therefrom). Following [28] we define correctness with respect to

a subset T of inputs (where there is no correctness guarantee for

inputs not in T). Formally,

Definition 4.1 (Secure Iterated Ridge Implementation). Let𝑚,𝑘 ∈
N, let 𝜅 be a security parameter, let D,R be an arbitrary domain

and range, let 𝑓 : D𝑚 → R be an iterated ridge algorithm (e.g., the

algorithm of Figure 1), and let T ⊆ D𝑚 . We say that an (𝑚 + 2)-
party protocol Π is a secure iterated ridge implementation of 𝑓 with

𝑘-privacy for inputs in T with leakage profile L if:

(1) Correctness: there exists a negligible function negl (𝜅) :
N→ N such that for all inputs (𝑥1, . . . , 𝑥𝑚) ∈ T ,
Pr [Π (𝑥1, . . . , 𝑥𝑚) = 𝑓 (𝑥1, . . . , 𝑥𝑚)] = 1 − negl (𝜅)

where the probability is over the randomness of the parties.

(2) Privacy: for every 𝑘-permissible 𝐼 there exists a PPT simu-

lator Sim such that for every (𝑥1, . . . , 𝑥𝑚) ∈ T :

V
Π
𝐼 (𝑥1, . . . , 𝑥𝑚) ≈ Sim

((
𝑥 𝑗
)
DO𝑗 ∈𝐼 ,L

)
.

5 SIR PROTOCOL
Our privacy preserving iterated ridge protocol SIR is specified in

Figures 2-3 (with further details available in in the full version). See

also an overview in Section 2; remarks on input encoding, parameter

choice, and useful observations in Section 5.1. Our security and

complexity analysis of SIR is summarized below. Complexity is

stated in term of 𝑑 and 𝑁 where log𝑁 = 𝑂 (𝑑 log𝑛) (by Equation 4).

Theorem 5.1 (SIR analysis). Let 𝑚,𝑛,𝑑 ∈ N, 𝑋 ∈ R𝑛×𝑑 and
®𝑦 ∈ R𝑛×1 s.t. 𝑋 has full rank and 𝑑 ≤ 𝑛. Then, the following holds
when executing SIR on (𝑋, ®𝑦) when horizontally partitioned amongst
𝑚 data-owners:
Security. SIR (Figure 2) is a secure iterated ridge implementation of
IR (Figure 1) with𝑚-privacy.
Complexity. Let E = (Gen, Enc,Dec, Eval) be the homomorphic
encryption scheme with which SIR is instantiated, and Z𝑁 be the used
plaintext ring, then:
• Each data owner runtime is dominated by the time to com-
pute 𝑑2 encryptions, and her communication complexity is
dominated by transmitting 𝑑2 ciphertexts (in one round).
• S1 runtime is dominated by the time to rank features, which
entails homomorphically evaluating 𝑂 (log𝑑) circuits, each

307

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

with 𝑂 (𝑑2 log𝑁)= 𝑂 (𝑑3 log𝑛) multiplication gates and of
multiplicative depth 𝑂 (log log𝑁)= 𝑂 (log𝑑 + log log𝑛).11
• S2 runtime complexity is dominated by the time to solve (in
the clear) 𝑂 (log𝑑) linear systems of size 𝑑 × 𝑑 .
• The communication of the two servers consists of𝑂 (log𝑑) com-
munication rounds, transmitting𝑂 (𝑑2 log𝑁)= 𝑂 (𝑑3 log𝑛) ci-
phertexts in each round.12

See the full version [2] for the proof.

5.1 Input, Parameters and Observations
Remarks clarifying some implementation details follow.

Remark 5.2 (Input representation and encoding.). We assume

that the datasets entries are in the range [−1, 1], given with ℓ-digit

precision. The inputs are scaled to be in Z𝑁 for a sufficiently large𝑁

(for the choice of 𝑁 , see Remark 5.3). All subsequent computations

in the protocol are performed in Z𝑁 or in Z𝐷 for some 𝐷 ≥ 𝑑 .

Note that 𝐷 is much smaller than 𝑁 . All inputs (and intermediate

values generated during the computation) are encoded as in [4].

(We refer the interested reader to [4] for a detailed description of

the encoding and its efficiency benefits.)

Remark 5.3 (On the choice of 𝑁). The plaintext ring Z𝑁 should

be sufficiently large to guarantee that all computations during the

(scaled) ridge regression step emulate the corresponding compu-

tations over the reals (i.e., no overflows occur), as well as to allow

for rational reconstruction to be performed on the output model at

the end of the protocol. This can be guaranteed by using the same

plaintext ring Z𝑁Gia
as [28]. However, for our selection protocol we

will need the modulo 𝑁 to be at least square that value, namely:

𝑁 = 𝑁 2

Gia
>

(
2𝑑 (𝑑 − 1)

𝑑−1
2 10

4ℓ𝑑 (𝑛2 + 𝜆)2𝑑
)
2

(4)

where 𝑛,𝑑, ℓ, 𝜆 are as specified in Section 4.

Remark 5.4 (On the choice of the plaintext modulus𝐷 in SIR.). For
efficiency reasons, we would like to avoid (when possible) perform-

ing computations in the ring Z𝑁 , since such computations would

be heavy due to the size of 𝑁 (as described above). Instead, in SIR

we are able to use a smaller modulus 𝐷 for some computations. We

can make due with any 𝐷 ≥ 𝑑 which can be used as a plaintext

modulus in the underlying FHE scheme.

Remark 5.5 (Dimension reduction and projection). Our protocol

iteratively reduces the set 𝐹 of current features (i.e., ones that will

be part of the output model), which is done in two steps as follows.

(1) reset the entries of 𝐴, ®𝑏 that correspond to entries in [𝑑] \ 𝐹 ,
by setting to zero the rows and columns of 𝐴 (the entries of

®𝑏, re-
spectively) that are indexed by 𝑖 ∉ 𝐹 , resulting in a matrix 𝐴′ and a

vector
®𝑏 ′. (2) projecting𝐴′, ®𝑏 ′ to 𝐹 by erasing the rows and columns

of 𝐴′ (entries of ®𝑏, respectively) indexed by 𝑖 ∉ 𝐹 . We denote this

operation by pjct𝐹 (·) (this operation can be applied to a matrix

11
We ignore addition gates, since additive homomorphism is much faster than multi-

plicative homomorphism in practice. We note that the masking step includes matrix

multiplication, which has complexity cubic in 𝑑 , but since it entails only additive

homomorphism it is not accounted for in the complexity analysis.

12
When using a homomorphic encryption that supports packing sl plaintext values in

each ciphertext with support for single instruction multiple data (SIMD) computation,

the time and communication complexity of the servers can be divided by sl.

or a vector), namely we compute pjct𝐹 (𝐴′) , pjct𝐹
(
®𝑏 ′
)
. Step (1) is

obtained by multiplying with a nullifier matrixN𝐹 which is defined

as follows:N𝐹 ∈ Z𝑑×𝑑𝑁
is obtained from the 𝑑 ×𝑑 identity matrix by

resetting the diagonal entries in all rows indexed by 𝑖 ∉ 𝐹 (we omit

𝑑 from the notation, since it is clear from the context). More specif-

ically, we set 𝐴′ = N𝐹 · 𝐴 · N𝐹 and
®𝑏 ′ = N𝐹 · ®𝑏. Notice that for any

matrix 𝑋 , multiplying byN𝐹 from the left (right, respectively) rests

the rows (columns, respectively) indexed by 𝑖 ∉ 𝐹 , and similarly

when multiplying a vector ®𝑣 byN𝐹 from the left. Another operation

which will be used in our protocols is an expansion from dimen-

sion 𝐹 to dimension [𝑑]. Specifically, we define expd𝐹 (·) such that

on input an |𝐹 | × |𝐹 | matrix 𝑋 (a length-|𝐹 | vector ®𝑣 , respectively)
returns the 𝑑 × 𝑑 matrix 𝑋 ′ (length-𝑑 vector ®𝑣 ′, respectively) such
that for every 𝑖 ∉ 𝐹 the 𝑖th row and column in 𝑋 ′ (𝑖th entry in ®𝑣 ′,
respectively) is 0, and additionally 𝑋 = pjct𝐹 (𝑋 ′) , ®𝑣 = pjct𝐹 (®𝑣 ′).
Remark 5.6 (Unique Entries in Intermediate Models). Our security
analysis will rely on the assumption that for every intermediate

model ®𝑧𝐹 computed in Step 3a of the SIR protocol (Figure 2), all

entries are unique (i.e., if 𝑖 ≠ 𝑗 then ®𝑧𝐹,𝑖 ≠ ®𝑧𝐹,𝑗). This can be easily

achieved as follows. First, when scaling the inputs in the setup phase,

we incorporate log𝑑 additional “empty” least-significant bits. That

is, instead of scaling an ℓ-precision real number by multiplying it by

10
ℓ
, we multiply it by 10

ℓ+log𝑑
. Then, at the end of each scaled ridge

regression iteration (Figure 3) we replace the log𝑑 least-significant

bits of ®𝑧𝐹,𝑖 with the binary representation of 𝑖 (this can be done

because at this point the ciphertext is encrypted entry-by-entry).

Remark 5.7 (Emulating Boolean circuits using arithmetic circuits).
Our protocols embed Boolean values into a larger ring Z𝐷 , and
operate over these representations. This is done as follows. 𝑎 ∧ 𝑏
is implemented by multiplying 𝑎 · 𝑏 in Z𝐷 . 𝑎 ⊕ 𝑏 is implementing

by computing (𝑎 − 𝑏)2 in Z𝐷 . This perfectly emulates AND and

XOR whenever 𝑎, 𝑏 ∈ Z𝐷 ∩ {0, 1}. We negate a Boolean value 𝑐 by

computing 1 − 𝑐 (where 1 is the identity of Z𝐷).

6 SYSTEM AND EMPIRICAL EVALUATION
We implemented the SIR protocol into a system and ran experiments

on real data to evaluate its concrete complexity and correctness

(i.e., that output models match cleartext results). Furthermore, we

compare the iterated ridge approach (as securely realized in SIR) to

the filter and truncation approaches for feature selection, showing it

significantly outperforms the latter (see details in the full version).

6.1 Data
The Cancer Genome Atlas (TCGA), a landmark cancer genomics

program, molecularly characterized over 20,000 primary cancer and

matched normal human tissue samples spanning 33 cancer types.

The program integrates contributions from many researchers com-

ing from diverse disciplines and from multiple institutions. The

data spans genomic, epigenomic, transcriptomic, and proteomic

data measured on the aforementioned samples. We used a small

portion of this data for our experiments. Concretely we used ran-

domly selected portions of one of the breast cancer transcriptomics

data matrices. We start with a matrix with features normalized to

lie in [−1, 1] with 3-digit precision. The matrix has 781 rows (sam-

ples/instances) and > 10𝐾 columns (features, representing genes

308

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

Public parameter: an FHE scheme E = (KeyGen, Enc,Dec, Eval) , a
security parameter 𝜅 , a regularization parameter 𝜆, dimensions 𝑛 ×𝑑 of the

input matrix, a plaintext ring size 𝑁 satisfying the requirements of

Remark 5.3, the number of data owners𝑚, positive input sizes

𝑛1, 𝑛2, . . . , 𝑛𝑚 > 0 such that

∑𝑚
𝑗=1 𝑛 𝑗 = 𝑛, a sparsity parameter 𝑠 < 𝑑 , a

precision parameter ℓ , a sparsity parameter rej which determines the

fraction of features that are removed in each iteration, and a threshold

parameter thr which determines when the protocol starts to remove a

single feature in each iteration. Additionally, let 𝐷 ≥ 𝑑 (see Remark 5.4).

Inputs: For every 𝑗 ∈ [𝑚], the input of data owner DO𝑗 consists of a data

matrix 𝑋 𝑗 ∈ R𝑛 𝑗×𝑑
and a response vector ®𝑦 𝑗 ∈ R𝑛 𝑗

. We denote by (𝑋 | ®𝑦)
the combined input obtained from all 𝑋 𝑗 , ®𝑦 𝑗

. That is, [𝑛] is partitioned
into𝑚 subsets 𝐼1, . . . , 𝐼𝑚 ⊆ {1, . . . , 𝑛}, and 𝑋 𝑗 , ®𝑦 𝑗

is the restriction of

𝑋, ®𝑦 to the rows in 𝐼 𝑗 . (Here, 𝑋 and ®𝑦 are scaled to lie in Z, and then

embedded in Z𝑁 for a sufficiently large 𝑁 , see Remark 5.3.) The servers

S1, S2 have no input.

Output: all parties obtain as output an 𝑠-sparse model ®𝑤 ∈ R𝑑 .
Steps:

(1) Setup: The parties execute the setup protocol (described in the full

version [2]) to obtain keys

(
pk𝑁 , sk𝑁

)
and

(
pk𝐷 , sk𝐷

)
. Then, the

parties execute the data uploading, merging and permuting

protocols (described in the full version), and S1 obtains encryptions
of the aggregated input matrix and response vector 𝐴, ®𝑏.

(2) Let 𝐹 = [𝑑] (i.e., initially 𝐹 contains all features), and let

𝐴𝐹 = 𝐴, ®𝑏𝐹 = ®𝑏.
(3) While |𝐹 | > 𝑠 , do:

(a) Ridge Regression Iteration: S1 and S2 execute the scaled
ridge protocol of Figure 3, where the input of S1 consists of 𝐹 ,
encryptions A𝐹 , ®b𝐹 of 𝐴𝐹 , ®𝑏𝐹 , respectively, and the input of S2
is 𝐹, sk𝑁 . The output of S1 is an entry-wise encryption ®z𝐹 of a

vector ®𝑧𝐹 ∈ Z𝑑𝑁 under key pk𝑁 .

(b) Selecting features:
• Large-set case: If |𝐹 | > thr then set 𝑘′ = ⌊rej · |𝐹 | ⌋.
(Intuitively, when |𝐹 | > thr the set of current features is still

sufficiently large that we can remove a subset of features in

each iteration.)

• Small-set case: Otherwise (i.e., |𝐹 | ≤ thr), set 𝑘′ = 1. (In this

case, the set of current features is small, so features should be

removed one at a time.)

• S1 and S2 execute the selection protocol (see the full

version [2]) to find the smallest 𝑘′ features. S1 has input ®z𝐹 ,
S2 has input sk𝑁 , and both parties have input

pk𝑁 , pk𝐷 , 𝐹 , 𝑘
′
. The output of both servers is the set 𝑆

del

consisting of the 𝑘′ features to be removed.

(c) Compacting data for the next iteration: Let 𝐹 ∗ = 𝐹 \ 𝑆
del

.

Then S1 locally executes the compacting algorithm (described in

the full version [2]), with input 𝐹 ∗, pk𝑁 ,A and
®b (encrypting 𝐴

and
®𝑏, respectively). The output of S1 are updated (compacted)

A𝐹 ∗ , ®b𝐹 ∗ .
(d) set 𝐹 = 𝐹 ∗.

(4) Output: Parties execute the computing and unpermuting output

protocol (described in the full version [2]) to obtain the 𝑠-sparse

model ®𝑤.

Figure 2: SIR: Secure Iterated Ridge

profiled). Each (𝑖, 𝑗) entry of the matrix represents the expression

level of gene 𝑗 in sample 𝑖 . We use D to denote this full TCGA

breast cancer expression profiling matrix. The TCGA data also in-

cludes 781 TIL levels for this cohort, as part of additional data to

The protocol uses the circuitsMatMultR𝑀 , VecMatMultR®𝑟 ,
MatVecMultL𝑀 , Add, Sub, VecScalerMult®𝑟 and ScalerVecMult𝑐 of

Section 5.1.

Public parameters: E = (KeyGen, Enc,Dec, Eval) , 𝑑, 𝑁 , as in Figure 2.

Inputs from previous phases: the public encryption key pk𝑁 , the set

𝐹 ⊆ [𝑑] of feature indices that “survived” to the current iteration, and

encryptions A𝐹 , ®b𝐹 of the matrix 𝐴𝐹 = N𝐹 ·𝐴 · N𝐹 ∈ Z𝑑×𝑑𝑁
and vector

®𝑏𝐹 = N𝐹 · ®𝑏 ∈ Z𝑑𝑁 (see Remark 5.5 for the description of the nullifier

matrix N𝐹 ; and recall that intuitively, 𝐴𝐹 , ®𝑏𝐹 are obtained from 𝐴, ®𝑏 by

resetting the rows, columns, and entries for 𝑖 ∉ 𝐹). S2 additionally has as

input the private decryption key sk𝑁 .

Output: the output of S1 is an encryption ®z, under key pk𝑁 , of ®𝑧 ∈ Z𝑑
𝑁

such that ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 , where: (1) 𝐴

′
𝐹
= pjct𝐹 (𝐴𝐹) is the projection

of 𝐴𝐹 to the indices in 𝐹 ; (2) 𝐴′
𝐹
· ®𝑤′

𝐹
= pjct𝐹

(
®𝑏𝐹

)
, and additionally (3)

®𝑤𝐹 = expd𝐹

(
®𝑤′
𝐹

)
. (See Remark 5.5 for a description of expd𝐹 (·) and

pjct𝐹 (·) .) The other parties have no output.

Steps:
(1) Masks Generation: S1 picks a random invertible matrix

𝑅′ ← GL (|𝐹 | ,Z𝑁) , and a random vector ®𝑟 ′ ← Z𝑑
𝑁
. Then, S1

computes 𝑅 = expd𝐹 (𝑅′) , ®𝑟 = N𝐹 · ®𝑟 ′.
(2) Data masking: S1 masks the data by homomorphically computing

Γ𝐹 = 𝐴𝐹 · 𝑅 and
®𝛽𝐹 = ®𝑏𝐹 +𝐴𝐹 · ®𝑟 as follows:

• ΓΓΓ𝐹 ← Eval

(
pk𝑁 ,MatMultR𝑅,A𝐹

)
.

• ®𝑡𝑡𝑡 ← Eval

(
pk𝑁 ,VecMatMultR®𝑟 ,A𝐹

)
.

• ®𝛽𝛽𝛽𝐹 ← Eval

(
pk𝑁 ,Add,

®b𝐹 , ®𝑡𝑡𝑡
)
.

Then, S1 sends ΓΓΓ𝐹 , ®𝛽𝛽𝛽𝐹 to S2. (Notice that for every 𝑖 ∉ 𝐹 , the 𝑖th
row and column in Γ𝐹 is ®0, and similarly the 𝑖th entry of

®𝛽𝐹 is 0.)

(3) Decrypting Masked Data: S2 decrypts Γ𝐹 = Dec (sk𝑁 , ΓΓΓ𝐹) and
®𝛽𝐹 = Dec

(
sk𝑁 ,

®𝛽𝛽𝛽𝐹
)
. Then, S1 projects Γ𝐹 , ®𝛽𝐹 to the indices in 𝐹

by computing Γ = pjct𝐹 (Γ𝐹) ∈ Z
|𝐹 |×|𝐹 |
𝑁

and

®𝛽 = pjct𝐹

(
®𝛽𝐹
)
∈ Z|𝐹 |

𝑁
.

(4) Masked learning: S2 computes adj (Γ) and Δ = det (Γ) , as well as
®𝜁 = adj (Γ) · ®𝛽 . Then, S2 computes

®𝜁𝐹 = expd𝐹 (𝜁) ∈ Z𝑑𝑁 . Finally,

S2 encrypts ®𝜁𝜁𝜁 𝐹 ← Enc

(
pk𝑁 ,

®𝜁𝐹
)
and ΔΔΔ← Enc

(
pk𝑁 ,Δ

)
, and

sends
®𝜁𝐹 ,ΔΔΔ to S1. (Intuitively, S2 solves the linear system Γ · ®𝜔 = ®𝛽

to obtain the masked model ®𝜔 . Notice that ®𝜁 = det (Γ) · ®𝜔 .)
(5) Unmasking: S1 homomorphically computes ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 ,

where 𝐴′
𝐹
= pjct𝐹 (𝐴𝐹) . This is done by performing the following:

• ®𝑡𝑡𝑡1 ← Eval

(
pk𝑁 ,MatVecMultL𝑅,

®𝜁𝜁𝜁 𝐹
)
. (Notice that

®𝑡1 = 𝑅 · ®𝜁𝐹
so
®𝑡1 = det (Γ) · (®𝑤𝐹 + ®𝑟) .)

• ®𝑡𝑡𝑡2 ← Eval

(
pk𝑁 ,VecScalerMult®𝑟 ,ΔΔΔ

)
. (Notice that

®𝑡2 = det (Γ) · ®𝑟 .)
• ®𝑡𝑡𝑡3 ← Eval

(
pk𝑁 , Sub,

®𝑡𝑡𝑡1, ®𝑡𝑡𝑡2
)
. (Notice that

®𝑡3 = ®𝑡1 − ®𝑡2 = det (Γ) · ®𝑤𝐹 .)

• ®z← Eval

(
pk𝑁 , ScalerVecMult

det(𝑅′)−1 ,
®𝑡𝑡𝑡3
)
. (Notice that

®𝑧 = det (𝑅′)−1 · ®𝑡3, so ®𝑧 = det

(
𝐴′
𝐹

)
· ®𝑤𝐹 , because Γ = 𝐴′

𝐹
· 𝑅′ so

det (Γ) = det (𝑅′) · det
(
𝐴′
𝐹

)
.)

(6) S1 sets ®z to be its output for the phase.

Figure 3: Scaled ridge regression (single iteration).

309

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

support biological and clinical interpretation. TIL levels quantify

tumor infiltrating immune cells in the (tumor) samples.

To run an experiment with 𝑑 features, that is adequate for our

current running time complexity, we chose to work with 4, 10, 40

and 100 features. To generate a dataset for a given 𝑑 , we randomly

(uniformly) selected 𝑑 features (columns of D) to be the columns

of the data matrix 𝑋 . We then set the target vector ®𝑦 to be the

vector of TIL levels. To support bias, we add an extra column of

1’s to 𝑋 . When relevant, we evenly distributed the 781 samples

between the data owners. As described in the protocol, each data

owner computed 𝐴 = ⌊10ℓ𝑋𝑇𝑋 ⌉ and ®𝑏 = ⌊10ℓ𝑋𝑇 ®𝑦⌉, which also

scaled and rounded the values. Note that in our experiments on 𝑑

features, 𝐴 and
®𝑏 are therefore of dimensions (𝑑 + 1) × (𝑑 + 1) and

(𝑑 + 1), respectively. Solving for ®𝑦 continues in the same way as in

Protocol 2 (computing adjugate and determinant of a (𝑑+1)× (𝑑+1)
matrix), but computing the ranks of the features involves only 𝑑

features because the bias is not treated as a selectable feature.

6.2 System Implementation Details

Ring size. To obtain correctness in SIR, the ring sizes needed for

our experiments exceeded the sizes currently supported by FHE

libraries. For example, for inputs with 40 features, we require a ring

of size 1,260 bits, while current libraries support rings of size less

than 64 bits. To support such large ring sizes, we encoded the input

using the Chinese Remainder Theorem (CRT) with several distinct

30-bit primes, as was used in [4].

Permuting the input. In a preliminary step S1 and S2 participate
in a protocol to permute the input: 𝐴 = (𝑃1 · 𝑃2)𝑇 · 𝑇 1 · (𝑃1 ·
𝑃2) (for 𝑇 1

an intermediate value), where 𝑃1 and 𝑃2 are random

permutation matrices chosen by S1 and S2, respectively. There
are several ways to compute this step. One option is for S1 to

perform all the computations using FHE (with multiplicative depth

2). Another option – which is the one used in our implementation

– is to utilize a protocol between S1 and S2 that uses masking

and requires only additive homomorphism. This step is executed

only once at the onset of the protocol, and its running time is

inconsequential compared to the total protocol runtime (e.g., 1,152

out of 84,690 seconds on 40 features, see Table 1).

Ranking weights. To decide which entries of ®𝑤 to remove in each

iteration, we compute a full ranking over the entries. This involves

comparing pairs of entries. Our experiments show that the ma-

jority of the running time is spent in this step. For example, the

total real time of SIR when 𝑑 = 40 was 84,690 seconds, while

computing the ranks took 76,184 seconds (see Table 1). To Com-

pare a single pair 𝑤𝑖 ,𝑤 𝑗 of entries, S1 compares 𝑤2

𝑖
−𝑤2

𝑗
+ 𝑟𝑖 𝑗 to

ranges received from S2, to determine whether𝑤2

𝑖
−𝑤2

𝑗
∈ [0, 𝑁 /2]

(and hence 𝑤𝑖 ≥ 𝑤 𝑗). In our implementation S1 performed all(𝑑
2

)
comparisons. An alternative is to use an approach similar to

Bitonic sort (or Batcher sort, see [5]). However, while a sorting ap-

proach performs only
𝑑
2

(⌈log
2
𝑑 ⌉

2

)
comparisons, it is less amenable

to parallelization. Specifically, the sorting approach is faster when

⌈ 1

CPUs

(𝑑
2

)
⌉ > ⌈ 𝑑/2

CPUs
⌉ ·

(⌈log
2
𝑑 ⌉

2

)
, so for the number of features and

CPUs in our experiments the naive all-pairs approach was faster.

We stress that to utilize the Bitonic sort alternative (which would be

faster for larger 𝑑’s), one only needs to implement the comparison

step using Bitonic sort, making our protocol flexible, efficiently

supporting both regimes of 𝑑 .

Cryptographic Libraries. At a high level, the steps of our protocol

can be categorized into two types with different characteristics:

• Ranking steps. Computing the ranks of features in ®𝑤 , when
the entries are given in binary. These steps involve a sub-

circuit of large depth for sorting 𝑑 large numbers in binary

representation, e.g. 1,260-bit numbers when 𝑑 = 40. This

requires a key that supports large-depth circuits, and possi-

bly also bootstrapping. We note that the plaintext modulo

needed by these steps is relatively small.

• CRT steps consist of all other steps, and operate over num-

bers that are represented using CRT. The CRT steps of the

protocol require only additive homomorphism, but necessi-

tate multiple (co-prime) plaintext moduli to implement the

CRT. Preferably, these plaintext moduli should be as large

as possible, because larger moduli mean less elements in the

CRT encoding.

We used two different FHE libraries (with different schemes) to

implement these two types of steps. For ranking we use BGV in

HElib [38] 2.1.0, because it supports bootstrapping (unlike SEAL).

For CRT steps we use B/FV in SEAL [54] 4.0, in which it is easier

to configure keys for multiple plaintext moduli. Switching between

the two libraries and schemes is done by S2, who generated the

keys (𝑝𝑘𝑁 , 𝑠𝑘𝑁) and (𝑝𝑘𝐷 , 𝑠𝑘𝐷) in HElib and SEAL respectively.

In detail, in HElib [38] 2.1.0 we initialize the keys while setting the

plaintext modulo to 17
2
, and the cyclotomic polynomial degree to

78,881. This resulted in ciphertexts with 7,000 slots, supporting a

multiplicative depth of 28, as well as bootstrapping. In SEAL we

initialize the keys while setting the cyclotomic polynomial degree

to 8,192, a chain length of 7, chain bits of 25 and prime bits of 30.

This resulted in ciphertexts with 4,096 slots that support additive

homomorphism.

6.3 Evaluation Setup
We executed SIR (Protocol 2) on the data generated from TCGA

described in Section 6.1, and measured performance of the data

owners and servers. We executed two types of experiments: end-

to-end and single-iteration experiments. In all experiments rej was

set to 10% and the ring size 𝑁 was determined by Equation 4.

End-to-end experiments measure performance when executing the

entire SIR protocol, including the data encoding and all iterations,

until producing a sparse model that selects 𝑠 out of the 𝑑 initial

features from a dataset of 𝑛 records distributed amogst 𝑚 data

owners. We ran end-to-end experiments on the following𝑚,𝑛,𝑑, 𝑠

parameters: (1) TCGA data with number of features (𝑑, 𝑠) varying
between (4, 2), (10, 4), (40, 8) and (𝑚,𝑛) = (10, 781); (2) Synthetic
data with number of records 𝑛 =1568, 6272, 12544, 50176, 100352,

200704, 401408, 802816 and (𝑚,𝑑, 𝑠) = (10, 10, 2); (3) Synthetic data
with number of data owners𝑚 = 100, 200, . . . , 1000 and (𝑛,𝑑, 𝑠) =
(802816, 10, 2).
Single-iteration experiments measure performance when executing

a single iteration (Protocol 2, Step 3, i.e., computing scaled ridge,

ranking the features, and removing the features with the smallest

310

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

(𝑑, 𝑠, 𝑁) RAM encrypt permute mask unmask decrypt solve pair diffs ranges ranks total

(4, 2, 2180) 21 1 (×2) 11 (×84) 1 (×100) 5 (×78) 1 (×100) 7 (×70) 1 (×10) 7 (×4) 1510 (×5) 2142 (×4)
(10, 4, 2360) 43 80 (×2) 105 (×80) 3 (×100) 41 (×60) 11 (×87) 56 (×70) 2 (×24) 23 (×17) 4540 (×24) 5718 (×21)
(40, 8, 21260) 134 80 (×2) 1152 (×52) 76 (×58) 1408 (×35) 152 (×92) 1584 (×40) 66 (×77) 336 (×65) 76184 (×79) 84690 (×74)
Table 1: Runtime (seconds), memory consumption (GB), and parallelization ratio (in parenthesis) in end-to-end SIR executions.

(𝑑, 𝑁) mask unmask decrypt solve pair diffs ranges ranks

(5, 2210) 2 (×29) 3 (×42) 1 (×7) 3 (×61) 1 (×3) 5 (×4) 806 (×10)
(10, 2360) 1 (×100) 20 (×53) 4 (×80) 24 (×64) 1 (×10) 11 (×25) 939 (×43)
(15, 2510) 3 (×57) 44 (×44) 1 (×130) 42 (×40) 1 (×23) 39 (×47) 2319 (×63)
(20, 2660) 5 (×46) 77 (×34) 4 (×100) 72 (×29) 1 (×51) 45 (×58) 4147 (×87)
(25, 2810) 5 (×56) 139 (×32) 4 (×86) 158 (×38) 1 (×97) 38 (×67) 7104 (×90)
(30, 2960) 6 (×64) 274 (×36) 26 (×91) 323 (×44) 2 (×65) 55 (×63) 13093 (×87)
(35, 21110) 7 (×57) 371 (×29) 9 (×90) 394 (×32) 3 (×72) 57 (×63) 11728 (×95)
(40, 21260) 9 (×58) 473 (×30) 24 (×91) 519 (×34) 5 (×72) 54 (×70) 19354 (×91)

Table 2: Runtime (seconds) in a single SIR iteration, and parallelization ratio (in paren-
thesis).

(𝑑, 𝑁) 𝑛 solve ranks

(10, 2360) 1568 97 7407

(10, 2420) 6272 112 7391

(10, 2450) 12544 113 7373

(10, 2480) 50176 114 7367

(10, 2510) 100352 112 7312

(10, 2540) 200704 126 8166

(10, 2540) 401408 133 8209

(10, 2570) 802816 139 8048

Table 3: Runtime (seconds) of SIR
on a growing number of records (𝑛).

weight) on different values of 𝑑 . Concretely, we take 5 ≤ 𝑑 ≤ 40

features, in increments of 5.

Hardware. In all experiments, we used a single virtual machine to

simulate the data owners, S1 and S2. The virtual machine had 100

Xeon 2.7GHz CPUs and 900 GigaBytes of RAM. These are off-the-

shelf standard CPUs. Nonetheless, each data owner was executed

on a single CPU, to capture the prevalent usecase in which data

owners are computationally significantly weaker than the servers.

What we measured. We report the total runtime, as well as the

runtime of each sub-task in SIR: encrypt; permute; mask (Figure 3,

Step 2); unmask (Figure 3, Step 5); decrypt (Figure 3, Step 3);
13

solve (Figure 3, Step 4);
14 pair diff ; ranges; ranks. Furthermore, we

report the parallelization ratio, which is the ratio between runtime

when executing the computation on a single CPU (as measured

by the operating system) vs. the runtime on our 100-cores system.

Intuitively, this indicates the average number of CPUs that were

busy performing the task, where a higher ratio means the task

is more amenable to parallelization as it utilize more CPUs (the

maximum being 100).

6.4 SIR Performance
Tables 1-2 summarize the performance exhibited in the end-to-

end experiments and the single-iteration experiments, respectively.

Table 3 presents SIR runtime on various database sizes.

Runtime. The total runtime is dominated by the time it takes to

rank the weights. For example, ranking took 91% (94%) of the total

runtime in our end-to-end (single-iteration) experiment on 𝑑 = 40.

Increasing the number of records by 512× (from 1568 to 802,816

records) led to runtime increase by less than 10% (from 7,504 to

8,187 seconds). Increasing the number of data owners by 10× (from

100 to 1000 data owners) affects only the time to homomorphically

13
Recall that we encoded the numbers using CRT; the time reported here includes the

CRT decoding time.

14
Here the computations are overZ𝑁 , where𝑁 is large (e.g., 1, 260-bits for 40 features).

merge the data, that indeed increased by ten-fold (from 10 to 102

seconds); however this has only a minor influence on the overall

runtime (which is dominated by the 8048 seconds to rank features),

and so a ten-fold increase in the number of data owners led to an

increase in the total runtime by roughly 1%.

RAM. The RAM usage of our system was significantly lower than

the allocated RAM, ranging from 21GB to 134GB. Furthermore, our

experiments indicate that the RAM requirement grows sub linearly

in the measured values for 𝑑 (e.g. from 43GB when 𝑑 = 10 to 134GB

when 𝑑 = 40). This is because our ciphertexts had more slots than

needed for our encodings (for small 𝑑’s), so the total number of

ciphertexts grew only mildly in 𝑑 .

Parallelization. As 𝑑 grows, most tasks become more parallelizeable.

In particular, the ranking task –which dominates the bulk of the

runtime– is “embarrassingly” parallelizable since we make all

(𝑑
2

)
comparisons, which can be executed in parallel. We note that if

we had an unlimited number of CPUs, the ranking runtime would

essentially be the time of a single comparison. For example, when

(𝑑, 𝑁) = (40, 21260) (cf. Table 2 bottom row), our ranking utilized

an average of 91 CPUs (the system had 100 CPUs), whereas having

access to

(𝑑
2

)
CPUs is expected to improved the ranking runtime by

a factor of

(
40

2

)
/91 ≈ 8.6, thus improving the total runtime by 6×.

We remark that an alternative way to compute the rankingwould

be to homomorphically evaluate an oblivious sorting algorithm

(e.g., bitonic sort). Bitonic sort would require less comparisons –

𝑂 (𝑑 log2 𝑑); but this type of sorting admits a circuit structure having

𝑂 (log2 𝑑) layers, which is less amenable to parallelization. For 40

features and 100 CPUs, this alternative would have higher runtime.

7 CONCLUSIONS
We present a privacy-preserving multi-party protocol for running

sparse linear regression in a federated learning setup, based on an

iterated ridge framework. Our protocol enjoys rigorous security,

and scales favorably with the number of records and data owners.

311

Proceedings on Privacy Enhancing Technologies 2024(1) Akavia et al.

Moreover, our protocol naturally gives a privacy-preserving ridge

truncation protocol, which is less accurate (as we have shown), but

simpler and faster, and therefore may be preferred in some cases.

The design of our protocol is based, amongst other consideration,

on certain potential attacks that can be developed when partial or

intermediate information is leaked. In particular, we show that

revealing the order in which features are removed can be used to

infer non-trivial information about the input data. We also extend

this attack to other leakages such as revealing intermediate models

or the determinant of the intermediate𝐴matrices. SIR is susceptible

to model inversion attacks (cf. Section 2.5); determining the exact

extent to which such attacks are harmful, and devising measures

to protect against them, are left for future work.

We mostly focus on the case 𝑑 ≤ 𝑛. In particular, our security

proof addresses this case and furthermore requires the matrix 𝐴 to

be invertible. Our protocol can be adjusted for settings with 𝑑 > 𝑛

by combining SIR with a faster learning method (e.g., filter) to first

partially reduce the number of features. One can similarly perform

a preparatory step to handle the case in which 𝑋 is not full rank.

ACKNOWLEDGMENTS
We thank the anonymous POPETs reviewers for their helpful com-

ments. The first author was supported in part by the Israel Science

Foundation grant 3380/19, and the Israel National Cyber Directorate

via Haifa, BIU and Tel-Aviv Cyber Centers. The results described

in this manuscript are partially based upon data generated by the

TCGA Research Network: https://www.cancer.gov/tcga.

REFERENCES
[1] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. 2021. Secure training of

decision trees with continuous attributes. Proc. Priv. Enhancing Technol. 2021, 1
(2021), 167–187.

[2] Adi Akavia, Ben Galili, Hayim Shaul, MorWeiss, and Zohar Yakhini. 2023. Privacy

Preserving Feature Selection for Sparse Linear Regression. IACR Cryptol. ePrint
Arch. 2023, 1254 (2023). https://eprint.iacr.org/2023/1354

[3] Adi Akavia, Max Leibovich, Yehezkel S Resheff, Roey Ron, Moni Shahar, and

Margarita Vald. 2022. Privacy-preserving decision trees training and prediction.

ACM Transactions on Privacy and Security 25, 3 (2022), 1–30.

[4] Adi Akavia, Hayim Shaul, MorWeiss, and Zohar Yakhini. 2019. Linear-Regression

on Packed Encrypted Data in the Two-Server Model. InWAHC@CCS’19. ACM,

21–32.

[5] Selim G. Akl. 2011. Bitonic Sort. In Encyclopedia of Parallel Computing. Springer,
139–146.

[6] Miriam Ragle Aure, Israel Steinfeld, Lars Oliver Baumbusch, Knut Liestøl, Doron

Lipson, Sandra Nyberg, Bjørn Naume, Kristine Kleivi Sahlberg, Vessela N Kris-

tensen, Anne-Lise Børresen-Dale, et al. 2013. Identifying in-trans process associ-

ated genes in breast cancer by integrated analysis of copy number and expression

data. PloS one 8, 1 (2013), e53014.
[7] Amir Ben-Dor, Nir Friedman, and Zohar Yakhini. 2001. Class discovery in gene

expression data. In RECOMB’21. 31–38.
[8] Shay Ben-Elazar, Miriam Ragle Aure, Kristin Jonsdottir, Suvi-Katri Leivonen,

Vessela N Kristensen, Emiel AM Janssen, Kristine Kleivi Sahlberg, Ole Christian

Lingjærde, and Zohar Yakhini. 2021. miRNA normalization enables joint analysis

of several datasets to increase sensitivity and to reveal novelmiRNAs differentially

expressed in breast cancer. PLoS computational biology 17, 2 (2021), e1008608.

[9] Christopher M. Bishop. 2007. Pattern recognition and machine learning. Springer.
[10] Frank Blom, Niek J. Bouman, Berry Schoenmakers, and Niels de Vreede. 2021.

Efficient Secure Ridge Regression from Randomized Gaussian Elimination. In

CSCML’21 (Lecture Notes in Computer Science, Vol. 12716). Springer, 301–316.
[11] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. 2015. Machine

Learning Classification over Encrypted Data. In NDSS’15. The Internet Society.
[12] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-

ing from classical GapSVP. In Annual Cryptology Conference. Springer, 868–886.
[13] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) fully

homomorphic encryption without bootstrapping. TOCT 6, 3 (2014), 1–36.

[14] Thomas M Cover and Jan M Van Campenhout. 1977. On the possible orderings

in the measurement selection problem. Transactions on SMC 7, 9 (1977), 657–661.

[15] Jack L. H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor

Shoup. 2018. Doing Real Work with FHE: The Case of Logistic Regression.

In WAHC@CCS’18. ACM, 1–12.

[16] Jose Cruz, Wilson Mamani, Christian Romero, and Ferdinand Pineda. 2021. Se-

lection of Characteristics by Hybrid Method: RFE, Ridge, Lasso, and Bayesian for

the Power Forecast for a Photovoltaic System. SN Computer Science 2, 3 (2021),
1–14.

[17] Houjiao Dai, Minhua Lu, Bingsheng Huang, Mimi Tang, Tiantian Pang, Bing Liao,

Huasong Cai, Mengqi Huang, Yongjin Zhou, Xin Chen, et al. 2021. Considerable

effects of imaging sequences, feature extraction, feature selection, and classifiers

on radiomics-based prediction of microvascular invasion in hepatocellular carci-

noma using magnetic resonance imaging. Quantitative imaging in medicine and
surgery 11, 5 (2021), 1836.

[18] Sanmay Das. 2001. Filters, wrappers and a boosting-based hybrid for feature

selection. In Icml, Vol. 1. Citeseer, 74–81.
[19] Sebastiaan De Hoogh, Berry Schoenmakers, Ping Chen, and Harm op den Akker.

2014. Practical secure decision tree learning in a teletreatment application. In

FC’14. Springer, 179–194.
[20] David L Donoho, Yaakov Tsaig, Iddo Drori, and Jean-Luc Starck. 2012. Sparse

solution of underdetermined systems of linear equations by stagewise orthogonal

matching pursuit. IEEE transactions on Information Theory 58, 2 (2012), 1094–

1121.

[21] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-

phic encryption. Cryptology ePrint Archive (2012).
[22] Pierre-Alain Fouque, Jacques Stern, and Jan-Geert Wackers. 2002. CryptoCom-

puting with Rationals. In FC’02. 136–146.
[23] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and communications
security. 1322–1333.

[24] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas

Ristenpart. 2014. Privacy in pharmacogenetics: An end-to-end case study of

personalized warfarin dosing. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 17–32.

[25] Ben Galili, Xavier Tekpli, Vessela N Kristensen, and Zohar Yakhini. 2021. Efficient

gene expression signature for a breast cancer immuno-subtype. Plos one 16, 1
(2021), e0245215.

[26] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,

Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear

Regression on High-Dimensional Data. Proc. Priv. Enhancing Technol. 2017, 4
(2017), 345–364.

[27] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[28] Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page, and Kyonghwan Yoon.

2018. Privacy-Preserving Ridge Regression with only Linearly-Homomorphic

Encryption. In ACNS’18 (Lecture Notes in Computer Science, Vol. 10892). Springer,
243–261.

[29] Sean M Gibbons, Claire Duvallet, and Eric J Alm. 2018. Correcting for batch

effects in case-control microbiome studies. PLoS computational biology 14, 4

(2018), e1006102.

[30] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael

Naehrig, and John Wernsing. 2016. CryptoNets: Applying Neural Networks

to Encrypted Data with High Throughput and Accuracy. In ICML’16. 201–210.
[31] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2: Basic Appli-

cations. Cambridge University Press.

[32] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental

game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 307–328.

[33] Thore Graepel, Kristin Lauter, and Michael Naehrig. 2013. ML Confidential:

Machine Learning on Encrypted Data. In ICISC’12. Springer-Verlag, Berlin, Hei-
delberg, 1–21.

[34] Madhuri Gupta and Bharat Gupta. 2021. A novel gene expression test method of

minimizing breast cancer risk in reduced cost and time by improving SVM-RFE

gene selection method combined with LASSO. Journal of Integrative Bioinfor-
matics 18, 2 (2021), 139–153.

[35] Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature

selection. Journal of machine learning research 3 (2003), 1157–1182.

[36] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002.

Gene selection for cancer classification using support vector machines. Machine
learning 46, 1 (2002), 389–422.

[37] Shai Halevi. 2017. Homomorphic encryption. In Tutorials on the Foundations of
Cryptography. Springer, 219–276.

[38] Shai Halevi and Victor Shoup. 2014. Algorithms in helib. In Annual Cryptology
Conference. Springer, 554–571.

[39] Trevor Hastie, Robert Tibshirani, and Ryan Tibshirani. 2020. Best subset, forward

stepwise or lasso? Analysis and recommendations based on extensive compar-

isons. Statist. Sci. 35, 4 (2020), 579–592.

312

https://www.cancer.gov/tcga
https://eprint.iacr.org/2023/1354

Privacy Preserving Feature Selection for Sparse Linear Regression Proceedings on Privacy Enhancing Technologies 2024(1)

[40] Shengshan Hu, Qian Wang, Jingjun Wang, Sherman SM Chow, and Qin Zou.

2016. Securing fast learning! Ridge regression over encrypted big data. In 2016
IEEE Trustcom/BigDataSE/ISPA. 19–26.

[41] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[42] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-

nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. 2021. Advances and open problems in federated learning.

Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[43] Xiling Li, Rafael Dowsley, and Martine De Cock. 2021. Privacy-preserving feature

selection with secure multiparty computation. In ICML’21. PMLR, 6326–6336.

[44] Yehuda Lindell and Benny Pinkas. 2000. Privacy preserving data mining. In

CRYPTO’00. Springer, 36–54.
[45] Lin Liu, Rongmao Chen, Ximeng Liu, Jinshu Su, and Linbo Qiao. 2020. Towards

practical privacy-preserving decision tree training and evaluation in the cloud.

IEEE Transactions on Information Forensics and Security 15 (2020), 2914–2929.

[46] Alan Miller. 2002. Subset selection in regression. CRC Press.

[47] Pabitra Mitra, CA Murthy, and Sankar K. Pal. 2002. Unsupervised feature selec-

tion using feature similarity. IEEE transactions on pattern analysis and machine
intelligence 24, 3 (2002), 301–312.

[48] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In S&P’17. 19–38.
[49] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and

Nina Taft. 2013. Privacy-Preserving Ridge Regression on Hundreds of Millions

of Records. In S&P’13. 334–348.
[50] In Ja Park, Yun Suk Yu, Bilal Mustafa, Jin Young Park, Yong Bae Seo, Gun-Do Kim,

Jinpyo Kim, Chang Min Kim, Hyun Deok Noh, Seung-Mo Hong, Yeon Wook Kim,

Mi-Ju Kim, Adnan Ahmad Ansari, Luigi Buonaguro, Sung-Min Ahn, and Chang-

Sik Yu. 2020. A Nine-Gene Signature for Predicting the Response to Preoperative

Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Cancers
12, 4 (March 2020), 800.

[51] Yonatan Peleg, Shai Shefer, Leon Anavy, Alexandra Chudnovsky, Alvaro Israel,

Alexander Golberg, and Zohar Yakhini. 2019. Sparse NIR optimization method

(SNIRO) to quantify analyte composition with visible (VIS)/near infrared (NIR)

spectroscopy (350 nm-2500 nm). Analytica Chimica Acta 1051 (2019), 32–40.
[52] Vanishree Rao, Yunhui Long, Hoda Eldardiry, Shantanu Rane, Ryan Rossi,

and Frank Torres. 2019. Secure Two-Party Feature Selection. arXiv preprint
arXiv:1901.00832 (2019).

[53] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. 1978. On data banks

and privacy homomorphisms.

[54] SEAL 2022. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA..

[55] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[56] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In

CCS’15. 1310–1321.
[57] Andrew H Sims, Graeme J Smethurst, Yvonne Hey, Michal J Okoniewski, Stuart D

Pepper, Anthony Howell, Crispin J Miller, and Robert B Clarke. 2008. The

removal of multiplicative, systematic bias allows integration of breast cancer

gene expression datasets–improving meta-analysis and prediction of prognosis.

BMC medical genomics 1, 1 (2008), 1–14.
[58] Saúl Solorio-Fernández, J Ariel Carrasco-Ochoa, and José Fco Martínez-Trinidad.

2016. A new hybrid filter–wrapper feature selection method for clustering based

on ranking. Neurocomputing 214 (2016), 866–880.

[59] TCGA. n.d.. The Cancer Genome Atlas Program. https://www.cancer.gov/tcga,

accessed 16.8.2022.

[60] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[61] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving federated

learning. In AISec Workshop. 1–11.
[62] Marie Beth van Egmond, Gabriele Spini, Onno van der Galien, Arne IJpma, Thijs

Veugen, Wessel Kraaij, Alex Sangers, Thomas Rooijakkers, Peter Langenkamp,

Bart Kamphorst, et al. 2021. Privacy-preserving dataset combination and Lasso

regression for healthcare predictions. BMC medical informatics and decision
making 21, 1 (2021), 1–16.

[63] Thijs Veugen, Bart Kamphorst, Natasja van de L’Isle, and Marie Beth van Egmond.

2021. Privacy-Preserving Coupling of Vertically-Partitioned Databases and Sub-

sequent Training with Gradient Descent. In CSCML. Springer, 38–51.
[64] Paul S. Wang, M. J. T. Guy, and James H. Davenport. 1982. P-adic reconstruction

of rational numbers. ACM SIGSAM Bulletin 16, 2 (1982), 2–3.

[65] David J. Wu, Tony Feng, Michael Naehrig, and Kristin E. Lauter. 2016. Privately

Evaluating Decision Trees and Random Forests. Proc. Priv. Enhancing Technol.
2016, 4 (2016), 335–355.

[66] Mengwei Wu, Xiaobin Li, Taiping Zhang, Ziwen Liu, and Yupei Zhao. 2019. Iden-

tification of a Nine-Gene Signature and Establishment of a Prognostic Nomogram

Predicting Overall Survival of Pancreatic Cancer. Frontiers in Oncology 9 (Sept.

2019).

[67] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. 2020.

Privacy Preserving Vertical Federated Learning for Tree-based Models. Proc.
VLDB Endow. 13, 11 (2020), 2090–2103.

[68] Andrew C Yao. 1982. Protocols for secure computations. In FOCS’82. IEEE, 160–
164.

[69] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song.

2020. The secret revealer: Generative model-inversion attacks against deep

neural networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 253–261.

[70] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. 2019. Helen:

Maliciously secure coopetitive learning for linear models. In S&P’19. 724–738.

313

https://github.com/Microsoft/SEAL
https://www.cancer.gov/tcga

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison to Prior Work
	1.3 Paper Organization

	2 Overview of Our Techniques
	2.1 IR and SIR
	2.2 Our Scaled Ridge Protocol
	2.3 Our Ranking Protocol
	2.4 Security Challenges and Attacks
	2.5 Discussion: Model Inversion Attacks
	2.6 Comparison to Prior Techniques

	3 Preliminaries
	3.1 Sparse Linear Regression & Applications
	3.2 Feature Selection and Iterated Ridge

	4 Problem Statement
	5 SIR Protocol
	5.1 Input, Parameters and Observations

	6 System and Empirical Evaluation
	6.1 Data
	6.2 System Implementation Details
	6.3 Evaluation Setup
	6.4 SIR Performance

	7 Conclusions
	Acknowledgments
	References

