
MAPLE: MArkov Process Leakage attacks on
Encrypted Search

Seny Kamara
MongoDB & Brown University
seny.kamara@mongodb.com

Abdelkarim Kati
Mohammed-VI Polytechnic

University
abdelkarim.kati@um6p.ma

Tarik Moataz∗
MongoDB

tarik.moataz@mongodb.com

Jamie DeMaria†
Elementl

DeMaria@alumni.brown.edu

Andrew Park‡
Carnegie Mellon University

andrewpark@cmu.edu

Amos Treiber
Technical University of Darmstadt

treiber@encrypto.cs.tu-
darmstadt.de

Abstract

Encrypted search algorithms (ESAs) enable private search on
encrypted data and can be constructed from a variety of cryp-
tographic primitives. All known sub-linear ESA algorithms
leak information and, therefore, the design of leakage attacks
is an important way to ascertain whether a given leakage pro-
file is exploitable in practice. Recently, Oya and Kerschbaum
(Usenix ’22) presented an attack called IHOP that targets the
query equality pattern—which reveals if and when two queries
are for the same keyword—of a sequence of dependent queries.

In this work, we continue the study of query equality leak-
age on dependent queries and present two new attacks in
this setting which can work either as known-distribution or
known-sample attacks. They model query distributions as
Markov processes and leverage insights and techniques from
stochastic processes and machine learning. We implement our
attacks and evaluate them on real-world query logs. Our ex-
periments show that they outperform the state-of-the-art in
most settings but also have limitations in practical settings.

1 Introduction

Encrypted search algorithms (ESAs) enable private search
on encrypted data. They can be constructed from a range
of primitives such as searchable symmetric encryption (SSE)
[13, 16, 23, 51] / structured encryption (STE) [14], fully homo-
morphic encryption (FHE) [21], and oblivious RAM (ORAM)
[25].

ESA constructions achieve various trade-offs between ex-
pressiveness, efficiency, and security and the latter is mainly
characterized by well-defined leakage patterns like, for ex-
ample, the query equality pattern, which leaks if and when
queries are repeated.

∗Work done in part at Brown University and Aroki Systems.
†Work done while at Brown University.
‡Work done in part at Brown University.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 430–446
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0025

ESA cryptanalysis. Well-defined leakage patterns are useful
to describe leakage but do not tell us whether the leakage
can be exploited or not in practice. This is typically addressed
by designing leakage attacks which use the observed leakage
usually with some auxiliary information to try and recover
information about queries and/or data (we refer the reader to
[32] for a survey of ESA cryptanalysis). Leakage attacks and
their evaluations cover a lot of different settings, scenarios, and
leakage patterns and make a variety of assumptions. Known-
data attacks assume the attacker has access to some of the
client data while sampled-data attacks assume the attacker has
access to a sample taken from a distribution that is close to the
distribution of the client’s data. Most attacks are passive (i.e.,
they do not interact with the system) and persistent (i.e., they
can observe the interaction between client and server). In most
empirical evaluations of leakage attacks, client queries are
sampled from various artificial distributions but [32] recently
showed that using real-world query data in the form of query
logs can often lead to very different accuracy results.
Dependent queries.Most leakage attacks assume that queries
are independent but, in practice, this may not be the case. For
example, after querying for a certain disease, a user may query
for a corresponding medication or when querying for the city
of “New York” a client may be more likely to also query for
the state of “New York”. Leakage attacks in the dependent
setting was recently considered for the first time by Oya and
Kerschbaum [45]. Here, it is assumed that client queries are
sampled from a Markov process, meaning that a query de-
pends only on the previous query. At a very high level, their
attack, called IHOP, solves an optimization problem whose
costs are set using the number of transitions between queries
observed via the query equality pattern and the number of ex-
pected transitions between keywords given by some auxiliary
information. The evaluation of the attack does not use query
logs but, instead, relies on Wikipedia data. More precisely, it
uses the transition probabilities between different Wikipedia
pages as a stand-in for the transition probabilities between
keywords/queries. The result is that the evaluation of [45]
essentially studies the IHOP attack in a setting where client
queries are Wikipedia pages (rather than their content) and
the query distribution corresponds to the Wikipedia graph.

430

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0025

1.1 Our Contributions

In this work, we continue the study of query equality leakage
in the dependent setting as initiated by [45] and we focus on
STE/SSE-based ESAs. This is an important leakage pattern to
study because it is very common; i.e., most practical construc-
tions reveal it [5, 8, 11–14, 16, 23, 35, 36, 51]. We make the
following contributions:

(1) We introduce a new framework based on hiddenMarkov
models (HMM) to model client queries and query equal-
ity leakage.

(2) We use our framework to design two new passive and
persistent query-recovery attacks, called Stationary and
Decoder, that work in either the known- or sampled-
data setting against dependent queries (i.e., the same
setting as IHOP). While Stationary serves as a warmup
attack, its underlying stochastic techniques are funda-
mental to the design of the Decoder attack.

(3) We implement our attacks as well as the IHOP attack in
the open-source framework LEAKER [32] and conduct a
broad evaluation of all three attacks on both real-world
and synthetic data. More precisely, we use the AOL [46]
and TAIR [19] query logs as our dependent queries. Fur-
thermore, we use a variety of synthetic distributions to
determine the cases for which the attacks work and do
not work. We summarize our results in Table 1 where
one can see that our attacks significantly outperform
IHOP on the TAIR dataset and most artificial distribu-
tions. But, in general, we found that the attacks only
work well when: (1) the auxiliary sequence includes
the client’s exact query sequence; and (2) the client’s
query distribution is sparse in the sense that, for every
keyword, the set of keywords to transition to is small.

Discussion of results and limitations. As discussed above,
our attacks do well in a particular setting but leakage attacks
should not only be evaluated in settings where they work
well. It is important that they be evaluated in a variety of
settings including ones where they might perform poorly. This
is crucial in order to understand whether an attack can be
considered practical or not and points us to settings where
cryptanalysis can be improved.

With this in mind, we note that all three attacks required a
lot of auxiliary knowledge. More precisely, in our evaluations,
the attacks did not performwell given auxiliary sequences that
did not include the client’s exact query sequence. Furthermore,
the attacks are also very computationally expensive, running

in 𝑂 (𝑚2 (𝑚 + 𝑡)) time, where 𝑚 is the number of unique
keywords and 𝑡 is the length of the query sequence. For this
reason, both our evaluation and the one of [45] were only done
on small values of𝑚; 500 in [45] and up to 1 500 in ours. In
many realistic settings, however, a much higher value of𝑚
would be expected and the attacks’ computational cost may
become prohibitive. For example, for𝑚 = 219, which is approx-
imately the number of keywords in the English Wiktionary
[54], the attacks would take over 257 steps. Because of this,
none of the experiments conducted in this work or in [45] tell
us how the attacks would perform on query distributions over
large keyword spaces.

Given these limitations, we do not believe that, at this stage,
query-recovery attacks in the dependent-query setting are
practical and can be characterized as “devastating” or as “se-
vere threats”. Nevertheless, even theoretical leakage attacks
are important as they point us towards potential weaknesses
in designs and, often, lay the groundwork for future more
practical attacks.

2 Related Work

In the following, we review related work on encrypted search
and leakage attacks.
Encrypted search algorithms (ESAs). The first explicit ESA
construction for exact keyword search was proposed by Song,
Wagner and Perrig [51]. Searchable symmetric encryption
(SSE) definitions were given by Goh [23] and Chang and
Mitzenmacher [13] but the notion of adaptive semantic se-
curity for SSE was proposed by Curtmola, Garay, Kamara
and Ostrovsky [16]. [16] also first formalized leakage and
presented the first sub-linear and optimal-time constructions.
Index-based SSE constructions were later generalized as struc-
tured encryption (STE) by Chase and Kamara [15]. STE can
be used to design sub-linear SSE schemes (i.e., schemes that
support private keyword search over encrypted document
collections) but has additional applications.

ESAs can also be built via property-preserving encryption
(PPE) [2, 5], oblivious RAMs (ORAM) [25], secure multi-party
computation (MPC) [24, 56], fully-homomorphic encryption
(FHE) [21], and functional encryption (FE) [7]. Fuller et al. [20]
provide a survey on ESAs.
Leakage attacks. Sublinear ESA constructions (e.g., based on
ORAM and SSE/STE) leak well-defined information. To ascer-
tain how exploitable this information is, leakage attacks try to
recover information about queries and/or data using the leak-
age and, sometimes, auxiliary information. Leakage attacks
can be classified along several dimensions. The target includes
either queries, in which case it is a query-recovery attack; or
data, in which case it is a data-recovery attack. The adversarial
model includes: the snapshot model, where the attacker ob-
tains snapshots of the encrypted data; or the persistent model,
where the attacker obtains the encrypted data and any inter-
action between the client and server. The attack’s auxiliary
information can include: known-data, where the adversary
receives the client’s plaintext data; sampled-data, where the
adversary receives a sample from a distribution that is close to
client’s query and/or data distribution. Finally, attacks can be
passive or active in which case the adversary can inject data
and/or queries.

The first leakage attack was given by Islam et al. [28] and
was a passive query-recovery attack in the persistent model
against co-occurrence leakage and required sampled-data as
auxiliary information; though later evaluations found that,
to achieve reasonable recovery rates it needs known-data as
auxiliary information [10]. Additional sampled-data attacks
[18, 27, 40, 44, 45] and known-data attacks [6, 10, 42, 49] were
later proposed against a variety of leakage patterns and under
a variety of assumptions. There are also a large number of
leakage attacks that target range search specifically [26, 37, 39]

431

Data Source Scenario Max. Efficacy per Attack Median Efficacy per Attack

IHOP [45] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl IHOP [45] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl

TAIR [19] Exact 23.8% 10.5% 99.9% 99.4% 10.1% 7.6% 99.1% 98.6%
Other 4.8% 5.2% 2.9% 3.1% 2.9% 3.4% 1.9% 1.4%

AOL [46] Exact 90.1% 58.2% 88.3% 87.2% 62.5% 21.3% 53.7% 66.7%
Other 14.3% 13.3% 12.6% 0.4% 0.8% 0.1% 0.2% 0.1%

Artificial Sparse 2.4% 8.1% 79.6% 87.2% 0.3% 4.9% 69.2% 71.1%
Non-sparse 2.0% 5.7% 20.7% 18.4% 0.3% 3.1% 12.8% 13.1%

Table 1: Summary of our results, highlighting the maximum and median efficacy (in % of correctly recovered queries)

of our new attacks and the IHOP attack [45] in the same setting (dependent sampled queries given query equality

leakage) on 50 000 queries. Attacks are evaluated on the AOL [46] or TAIR [19] query logs or on artificial query

distributions. For AOL/TAIR, in the Exact adversarial scenario, the attacker has an auxiliary sequence that includes

the client’s exact query sequence, while it does not in the Other scenario. For the artificial distributions, the attacker
has access to the query distribution in the form of a Markov chain transition matrix. In the respective scenario,

the distribution is parameterized such that the matrix is sparse (each keyword has a minimum connection to 1% of

keywords that can follow it) or non-sparse (minimum connection to 10% of keywords).

under various assumptions. A few recent works have proposed
theoretical frameworks to quantify leakage in ESA construc-
tions [26, 29, 30, 38, 55]. Kamara et al. [32] provide a survey of
leakage attacks and an open-source Python framework called
LEAKER to make attack evaluation easier and comparable
across works. The framework is then used to re-evaluate a
number of attacks on real-world query logs, showing that the
choice of data and queries can significantly affect the efficacy
of many attacks.
The IHOP attack.

As far as we know, the IHOP attack of Oya and Kerschbaum
[45] was the first leakage attack to exploit possible query de-
pendencies 1. At a high level, this is done by modeling the
client’s query distribution as a Markov process and formu-
lating a quadratic optimization problem that is a function of
the transitions between observed queries given by the query
equality pattern and of transition probabilities given as aux-
iliary information. The optimization problem is then solved
with a linear assignment solver. In this work, we also propose
attacks that exploit the query equality of dependent query
sequences but our techniques are different. In contrast to [45],
we model the observed query equality leakage on a dependent
query sequence as the output of the observable process of a
hidden Markov model (HMM). Our model allows us to make
use of sophisticated HMM inference techniques to recover
the query sequence. As we demonstrate in our evaluations,
our proposed attacks can significantly outperform the IHOP
attack.

3 Preliminaries

Notation. The set of all binary strings of length 𝑛 is denoted
as {0, 1}𝑛 , and the set of all finite binary strings as {0, 1}∗. [𝑛]
is the set of integers {1, . . . , 𝑛}. The output 𝑥 of an algorithm
A is denoted by 𝑥 ← A. Given a sequence q of 𝑛 elements,
we refer to its 𝑖th element as 𝑞𝑖 or q[𝑖]. If 𝑆 is a set then #𝑆
refers to its cardinality. 𝑘 will denote the security parameter.

1While this work focuses on the setting where queries are dependent, the IHOP
attack as well as our attacks can also be evaluated when queries are sampled
independently.

Searchable symmetric encryption (SSE). SSE schemes are
cryptographic schemes that allow a client to outsource an
encrypted document collection to a server while supporting
for private keyword search on it. Sub-linear and optimal-time
SSE schemes can be constructed using standard symmetric
encryption and a multi-map encryption scheme. The latter
is a type of STE scheme that encrypts multi-map data struc-
tures in such a way that they can be privately queried. More
precisely, a static and structured or index-based SSE scheme
SSE = (Setup, Search) consists of two efficient algorithms.
Setup takes as input a security parameter 1𝑘 and a document
collection D = (D1, . . . ,D𝑛) of documents over a space D and
outputs a secret key 𝐾 and an encrypted document collection
(EMM, ct1, . . . , ct𝑛), where EMM is an encrypted multi-map
produced by the underlying multi-map encryption scheme
and ct𝑖 , for 𝑖 ∈ [𝑛], are standard encryptions of the documents.
Search is a two-party protocol between a client and a server.
The client inputs its secret key 𝐾 and a keyword𝑤 of the key-
word (or query) spaceW and the server inputs an encrypted
collection (EMM, ct1, . . . , ct𝑛). The client receives a set of en-
crypted documents {ct𝑖 }𝑖∈ids(𝑤) and the server receives ⊥.
Leakage. Every operation of an SSE construction is associated
with leakage which can be itself composed of many leakage
patterns. We call the composition of all of these leakage pat-
terns a leakage profile. In particular, for static structured ESAs,
we differentiate between the setup leakage, L𝑠 , which is the
information revealed to the server at setup time, and the query
leakage, L𝑞 , which is the information revealed to the server
at query time. Leakage patterns are families of functions with
different spaces associated to the underlying data collection.
For a more detailed discussion on leakage patterns we refer
the reader to [34]. In this paper we focus specifically on the
query equality pattern which is defined as follows:
• the query equality pattern is the function family qeq =

{qeq𝑘,𝑡 }𝑘,𝑡 ∈N with qeq𝑘,𝑡 : D𝑘 × W𝑡
𝑘
→ {0, 1}𝑡×𝑡

such that qeq𝑘,𝑡 (D,𝑤1, . . . ,𝑤𝑡) = 𝐵, where 𝐵 is a bi-
nary 𝑡 × 𝑡 matrix such that 𝐵 [𝑖, 𝑗] = 1 if 𝑤𝑖 = 𝑤 𝑗

and 𝐵 [𝑖, 𝑗] = 0 if 𝑤𝑖 ≠ 𝑤 𝑗 . Since qeq is not a func-
tion of the document collection we usually just write
qeq𝑘,𝑡 :W𝑡

𝑘
→ {0, 1}𝑡×𝑡 where qeq𝑘,𝑡 (𝑤1, . . . ,𝑤𝑡) = 𝐵.

432

The query equality pattern is sometimes referred to as
the search pattern in the SSE literature.

In this paper, we focus on constructions that have the following
leakage profile:

Λ =

(
L𝑠 ,L𝑞

)
=

(
★,

(
qeq,★

))
.

where ★ refers to any arbitrary collection of leakage patterns.
Note that most structured SSE schemes in literature have Λ
as their leakage profile [8, 9, 11, 12, 15, 17, 22, 33, 47]. This is
true for all property-preserving encrypted search algorithms
as well [1, 5]. This illustrates the importance of studying the
query equality pattern which is the main focus of this work.
Adversarial models and security. There are different ad-
versarial models that we usually consider in the encrypted
search area. The most common adversaries are persistent and
snapshot adversaries. The former receives the encrypted data
as well as the transcripts of all query executions. The latter
is weaker and only receives the encrypted data after the ex-
ecution of every query. In this paper we consider that the
adversary is persistent. Security definitions are parametrized
by a leakage profile. In particular, leakage-parametrized secu-
rity definitions were introduced by Curtmola et al. [17] and
capture the following: given a leakage profile Λ, we say that
an SSE scheme is Λ−secure, if a persistent (or a snapshot) ad-
versary cannot learn more information than what is captured
by the leakage profile, Λ. For formal definitions, we refer the
reader to [3, 15, 17].
Types of attacks. In this paper, we only consider passive
attacks where the adversary does not get to choose the data
or the queries. Moreover, we solely focus on query recovery
attacks where the adversary has either access to: (1) the exact
query distribution of the client or, (2) a sample of the queries.
We will refer to the former as known distribution attacks and to
the latter as known sample attacks. Note that while knowing
the exact distribution is a very strong assumption, it helps
us nonetheless to understand what can be achieved in such a
setting.

3.1 Stochastic Processes

The majority of leakage attacks work in a setting in which
queries are drawn independently from the client’s query distri-
bution, Q. As discussed in the introduction, the independence
assumption is very strong and likely does not hold in practice.
Furthermore, it is not clear how dependency would impact the
recovery rate of existing attacks.2 In this work, as in [45] we
assume that the client’s queries are dependent. More precisely,
we assume that the client’s query sequence is sampled from
discrete stochastic process with a well-defined dependency
structure. A discrete stochastic process is an ordered set of
random variables that are indexed using some countable set
𝑆 (e.g., the integer set N). One can define various forms of
dependencies between the random variables but in this work,
we focus onMarkov chains. Markov chains are a natural choice
for modeling dependency in query distributions as illustrated

2An evaluation of this is a non-trivial and interesting open problem.

by the fact that they are extensively used in the context of
information retrieval and natural language processing [48].
Markov chain. A Markov chain is a stochastic process com-
posed of an ordered set of random variables which verifies two
main properties: theMarkov property and the time-homogenous
property. The former means that the output of the 𝑛th random
variable,𝑋𝑛 , in the stochastic process only depends on the out-
put of the previous random variable, 𝑋𝑛−1.3 The latter means
that the likelihood of any two consecutive random variables
outputting the same pair (𝑖, 𝑗) is fixed. We provide a formal
definition of Markov chains below.

Definition 3.1 (Markov chain). A stochastic process Θ =

{𝑋𝑛 ∈ {1, · · · , #𝑆} : 𝑛 ≥ 0} on a countable set of states 𝑆 is
a Markov chain if for any 𝑛 ≥ 0, the following two properties
hold,
• (Markov property): for all 𝑖0, · · · , 𝑖𝑛, 𝑗 ∈ {1, · · · , #𝑆},

Pr
[
𝑋𝑛+1 = 𝑗 |𝑋0 = 𝑖0, · · · , 𝑋𝑛 = 𝑖𝑛

]
= Pr

[
𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖𝑛

]
,

• (time-homogenous property): for all 𝑖, 𝑗 ∈ {1, · · · , #𝑆},
Pr

[
𝑋𝑛+2 = 𝑗 | 𝑋𝑛+1 = 𝑖

]
= Pr

[
𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖

]
.

The output of a random variable in a Markov chain is usu-
ally referred to as a state. And an instance of a Markov chain
can be viewed as a series of transitions over a finite number of
states. We sometimes refer to a Markov chain instantiation as
a realization. Markov chains can be defined using only two pa-
rameters: (1) a transition matrix; and (2) an initial distribution.
The transition matrix captures the probability of transition-
ing from a state to another whereas the initial distribution
captures the probability of landing in a given state at the be-
ginning of the process. In the following, we define these two
parameters.

Definition 3.2 (Markov Chain Parameters). A Markov
chain Θ on a countable set of states 𝑆 is characterized by two
parameters:
• (transition matrix): is a square matrix T = (T𝑖, 𝑗)𝑖, 𝑗 ∈[#𝑆]
that verifies for all 𝑛 ≥ 0

T𝑖, 𝑗 = Pr
[
𝑋𝑛+1 = 𝑗 | 𝑋𝑛 = 𝑖] and

∑︁
𝑗 ∈[#𝑆]

T𝑖, 𝑗 = 1.

• (initial distribution): is a vector ` of size #𝑆 such that for
all 𝑖 ∈ {1, · · · , #𝑆},

`𝑖 = Pr[𝑋0 = 𝑖] .

In the subsequent parts of this paper, we write Θ = (T, `)
to denote a Markov chain Θ parameterized by the transition
matrix T and the initial distribution `. Given a transitionmatrix
of size 𝑛 × 𝑛, we often refer to the set of indices {1, · · · , 𝑛} as
the states of the transition matrix.
Query distribution. In this work, we consider the setting
where the query distribution is a Markov chain. In particu-
lar, given a Markov chain Θ = (T, `), the states of the tran-
sition matrix correspond to the query space W. More for-
mally, this correspondence can be captured by a bijection
3There is a natural generalization of the Markov process where the output of
the 𝑛th random variable depends on the previous 𝑘 ∈ N outputs. This is why
the above process is often called a first order Markov process.

433

𝑔 :W→ {1, · · · , #W} that maps every keyword to a state. For
simplicity, we assume that 𝑔 maps the 𝑖th keyword inW to
𝑖 . The values of the transition matrix T𝑖, 𝑗 correspond to the
probability of querying keyword𝑤 𝑗 knowing that the current
query is for the keyword𝑤𝑖 , for some 𝑖, 𝑗 ∈ {1, · · · , #W}. The
initial distribution ` is a vector that captures the probability of
querying any keyword𝑤 ∈ W at the beginning of the process.

4 The Stationary Attack

In this section, we describe our first attack, Stationary. We
would like to highlight that the main goal of this attack is
to serve as a warmup for our main attack, Decoder. In par-
ticular, the Stationary attack shows how one could recover
the query sequence solely based on the knowledge of the
stationary distribution of the auxiliary Markov chain. The at-
tack can be thought of as a frequency attack as it does not
leverage the dependencies between queries beyond what is
implicitly included in the stationary distribution. We describe
the Stationary attack as a known-distribution attack in the
sense that it requires the adversary to know the exact query
distribution in form of a query transition matrix, but we will
show in Section 6 how we can use this attack as a building
block to design a known-sample attack. Before describing our
attack, we describe two fundamental notions of Markov chains
which are: (1) the notion of stationary distributions; and (2)
the average number of visits.
Stationary distribution. A stationary distribution is a prob-
ability distribution that captures the probabilities to be at
any given state independently of the initial distribution of
the Markov chain. In other words, if the stochastic process
runs for a long period of time, then the stationary distribution
captures the fraction of time spent in a given state. From a
mathematical standpoint, the stationary distribution 𝜋 is a
row matrix that remains the same even when multiplied by
the transition matrix of the Markov chain.

Definition 4.1 (StationaryDistribution). Given aMarkov
chain Θ = (T, `), we say that a distribution 𝜋 is stationary over
a countable set 𝑆 if for all 𝑖 ∈ [#𝑆]

𝜋𝑖 =
∑︁

𝑗 ∈[#𝑆]
𝜋 𝑗 · T𝑗,𝑖 .

The existence and the uniqueness of the stationary distri-
bution depend on the structure of the transition matrix. As
an example, ergodic Markov chains have a unique stationary
distribution but many others do not. We note, however, that
in all the evaluations of our attacks (see Section 7), we were
always able to generate the stationary distribution. We refer
the reader to [43] for more details.
Average number of visits. A close concept to the one above
is the average number of visits made to a particular state.
Given a sequence of 𝑡 states that a Markov chain visited, one
can compute the frequency of visits made to every state. In
contrast to stationary distributions, the average number of
visits can always be computed.

Definition 4.2 (Average number of visits). For a given
Markov chain Θ = {𝑋𝑛 : 𝑛 ≥ 0}, the number of visits to the

• Stationary
(
ℓ ,Θ) :

(1) parse Θ as (T, `) and ℓ as (𝐵𝑖,𝑗)𝑖,𝑗∈[𝑡] ;
(2) initialize a map 𝛼 : [𝑡] →W;
(3) compute the stationary distribution

𝜋 = 𝜋 · T
if it exists, otherwise abort;

(4) compute the query frequency v = (𝑣1, · · · , 𝑣𝑡) of
unique queries in qeq such that

𝑣𝑖 =
∑︁
𝑗∈[𝑡]

𝐵𝑖,𝑗 /𝑡 ;

(5) instantiate an empty set𝑈 ;
(6) for all 𝑖 ∈ [𝑡],

(a) find 𝜌 that verifies

𝜌 = argmin
𝑗∈[#W]\𝑈

|𝑣𝑖 − 𝜋 𝑗 |;

(b) set 𝛼 (𝑖) := 𝑤𝜌 and add 𝜌 to𝑈 ;
(7) output 𝛼 .

Figure 1: Our attack: Stationary.

𝑖th state for all 𝑛 ≥ 0 equals

𝑣𝑖,𝑛 =
1
𝑛
·

𝑛∑︁
𝑗=1

1(𝑋 𝑗=𝑖) ,

where 1(𝑋 𝑗=𝑖) is an indicator function defined as

1(𝑋 𝑗=𝑖) =

{
1 if 𝑋 𝑗 = 𝑖

0 otherwise.

There is a relationship between the number of visits and
the stationary distribution. In particular, after a large number
of steps 𝑛 ∈ N, the stationary distribution is approximatively
equal to the average number of visits. We formalize this rela-
tionship in the lemma below.

Lemma 4.3 (Convergence of the average number of
visits). Given a Markov chain Θ = (T, `) and its stationary
distribution 𝜋 , the average number of visits to the 𝑖th state for a
sufficiently large 𝑛 ∈ N verifies

𝑣𝑖,𝑛 ≈ 𝜋𝑖 ,

where 𝜋𝑖 is 𝑖th value of the stationary distribution 𝜋 .

The above lemma is an important component of our our
Stationary attack which we describe in Figure 1.
Attack overview. Stationary takes as input the query equality
ℓ := qeq(q) of the client’s query sequence and a Markov chain
Θ representing the client’s query distribution. First, it parses
the query equality as a square matrix (𝐵𝑖, 𝑗)𝑖, 𝑗 ∈[𝑡] where 𝑡
denotes the length of the sequence of queries. It also parses
theMarkov chainΘ to obtain the transitionmatrix T.4 The goal
of the attack is to map every query, or every index in{1, · · · , 𝑡},
to the corresponding keyword in the keyword spaceW. For
this, the attack initializes a mapping 𝛼 : [𝑡] → W. It then

4Note that the Stationary attack does not require the knowledge of the initial
distribution ` of Θ. This implies that the Stationary attack requires slightly
less information than the exact knowledge of the query distribution.

434

computes the stationary distribution 𝜋 of the Markov chain’s
transition matrix, T, such that

𝜋 = 𝜋 · T.
Note that the attack aborts if the computation of the station-
ary distribution is not possible—refer to our discussion above.
Next, given the query equality, the attack computes the query
frequency v of all unique queries. This can be calculated by
simply summing the number of times every unique query is
made, and then dividing it by the total number of queries 𝑡 .
From a stochastic lens, the query frequency v is exactly equal
to the average number of visits over the states of the Markov
chain. Given the result of Lemma 4.3, we know that the aver-
age number of visits to the 𝑖th state is approximately equal
to the 𝑖th component of the stationary distribution, 𝜋 . As a
result, given the stationary distribution 𝜋 = (𝜋1, · · · , 𝜋𝑚) and
the number of visits v = (𝑣1, · · · , 𝑣𝑡), the attack simply maps
the closest value in 𝜋 to 𝑣𝑖 , for all 𝑖 ∈ [𝑡]; effectively mapping
every query to a state (and therefore to a keyword). Finally,
the attack outputs the mapping 𝛼 .
Efficiency. Given a query sequence of length 𝑡 and a keyword
space W of size𝑚, the total running time of the Stationary
attack is

𝑂
(
𝑚 · (𝑚2 + 𝑡)

)
.

This running time can be broken down into three main parts.
• (part 1): computing the stationary distribution 𝜋 re-
quires 𝑂 (𝑚3) steps,5
• (part 2): calculating the query frequency v takes 𝑂 (𝑡)
steps,
• (part 3): calculating the arg min takes 𝑂 (𝑚 · 𝑡) steps.

We observe that the computation of the stationary distribution
is the most expensive part of the attack.
Note. The Stationary attack is similar to other attacks like
Frequency-An [41] or Att-Gen [40]. Though these attacks
all rely on computing the argmin between the observed and
known frequencies, they do not exploit the dependencies of
queries. The Stationary attack, on the other hand, does and
highlights an important relationship between the stationary
distribution and the average number of visits which is a crucial
observation that our main attack, Decoder, leverages.

5 The Decoder Attack

In this section, we describe our second attack Decoder. Simi-
lar to Stationary, we will first describe Decoder as a known-
distribution attack but later in Section 6, we show how to use
it to build a known-sample attack. As any known-distribution
attack, theDecoder attack tries to solve the following problem:

Given observed leakage and a known query
distribution, what is the query sequence that most

likely explains this leakage?
Our attack considers this question in the context of query
distributions that areMarkov chains and solves it modeling the
problem as an inference problem on hidden Markov models
(HMM). Before we describe the attack we first recall what
5Note that there are more efficient ways to calculate 𝜋 . We are assuming that
the underlying solver makes use of the LU decomposition [50].

hidden Markov models are and how they are connected to our
problem.
Hidden Markov Model (HMM). An HMM is a pair of depen-
dent stochastic processes where the first process is a hidden
Markov chain while the second process is observable, i.e., its
output states can be observed. In particular, the output of the
second process depends on the output of the first process. We
provide a formal definition below.

Definition 5.1 (Hidden Markov Model (HMM)). A hid-
den Markov model (HMM) HMM is composed of:
• a Markov chain process Θ = {𝑋𝑛 ∈ [#𝑆] : 𝑛 ≥ 0} over
a countable set 𝑆 whose outputs are hidden,
• a stochastic process Γ = {𝑌𝑛 ∈ [#𝑇] : 𝑛 ≥ 0} over a
countable set 𝑇 that verifies,

Pr
[
𝑌𝑛 = 𝑖 | 𝑋𝑛 = 𝑗] = O𝑖, 𝑗

where O = (O𝑖, 𝑗)𝑖∈[#𝑆], 𝑗 ∈[#𝑇] is the observation matrix.

The observation matrix captures the probability of observ-
ing the 𝑗 th value in𝑇 given that the hidden process is at the 𝑖th
state in 𝑆 . We characterize a hidden Markov modelHMMwith
three parameters: (1) the transition matrix T of the hidden
Markov chain processΘ; (2) the initial distribution ` ofΘ; and
(3) the observation probability O. We write HMM = (T,O, `).
HMM inference. For theDecoder attack, we model the user’s
query distribution as the hiddenMarkov chain of an HMM and
the corresponding leakage as the observable process. Given
such an HMM, we are interested in solving the question above.
In particular, given the observation (the leakage) and the
Markov chain parameters (the query distribution), we can
leverage existing results in stochastic processes to output the
sequence of queries that best explains the observation. This
can be efficiently solved using the Viterbi algorithm [52] which
was first described in 1967 as a decoder for convolutional codes.
At a high level, the Viterbi algorithm finds the query sequence
q★ that maximizes

Pr
[
q | o,HMM

]
where o is the observed leakage and HMM is the hidden
Markov model. We describe the Viterbi algorithm in Figure 8
of Appendix A, but at a high level, given an HMM = (T,O, `)
and a sequence of observation o = (𝑜1, · · · , 𝑜𝑡), the Viterbi
algorithm outputs a sequence r = (𝑟1, · · · , 𝑟𝑡) where 𝑟𝑖 is a
state in the hidden Markov chain, for all 𝑖 ∈ [𝑡].

We describe the Decoder attack in Figure 2 and provide
more details below. Note that Decoder can be instantiated in
different ways depending on how the observation matrix is
constructed. In this work, we consider two ways to do this
which results in two instantiations:Decoder-N andDecoder-B.
These two variants achieve different recovery rates depending
on the shape of the auxiliary distribution as we will see in
Section 7.4. We take a top-down approach where we first
describe the generic Decoder attack and then describe the two
variants.
Attack overview. At a high level, Decoder is composed of
two phases. The first phase, and by far the most challenging
of the two, consists of computing the observation matrix O

435

• Decoder(ℓ ,Θ) :
(1) parse Θ as (T, `) and ℓ as (𝐵𝑖,𝑗)𝑖,𝑗∈[𝑡] ;
(2) initialize a map 𝛼 : [𝑡] →W;
(3) compute the stationary distribution

𝜋 = 𝜋 · T,
if it exists, otherwise abort;

(4) compute the set I of all unique queries from the leakage

I :=
{
𝑖 : 𝐵𝑖,𝑗 = 0, for all 𝑗 < 𝑖 and 𝑖 ∈ [𝑡]

}
;

(5) compute the query frequency v = (𝑣𝑖)𝑖∈I of queries
such that for all 𝑖 ∈ I

𝑣𝑖 =
∑︁
𝑗∈[𝑡]

𝐵𝑖,𝑗 /𝑡 ;

(6) compute O← Obv
(
𝜋, v

)
;

(7) set HMM to (T,O, `) ;
(8) set o := (𝑜1, · · · , 𝑜𝑡) where for all 𝑖 ∈ [𝑡],
𝑜𝑖 := 𝑗★ where 𝐵𝑖,𝑗★ = 1 and 𝐵𝑖,𝑘 = 0 ∀𝑘 < 𝑗★;

(9) compute r← Viterbi(HMM, o) ;
(10) set 𝛼 (𝑖) := 𝑤𝑟𝑖 , for all 𝑖 ∈ [𝑡];
(11) output 𝛼 .

Figure 2: Our attack: Decoder.

of the (observable) Markov chain. Recall that we assume that
the adversary only knows the query distribution but does not
know the observation probabilities O. Now, given the obser-
vation matrix O, the attack has a complete description of an
HMM which it then uses as input to the Viterbi algorithm. Ul-
timately, the accuracy of Decoder relies on two criteria: first,
how well the observation matrix O captures the relationship
between the hidden state and the observation state; and sec-
ond, how accurate the inference algorithm is given the HMM
and the concrete observation. The latter is handled by the
Viterbi algorithm.6 The former is harder to deal with because
the observation matrix could be instantiated differently de-
pending on the auxiliary distribution. We provide two possible
instantiations, but first we give details on how the Decoder
attack works.

Phase 1: Decoder takes as inputs the query equality pattern
ℓ := qeq(q) of the client’s query sequence and the Markov
chain Θ. First, it parses the query equality as a square matrix
(𝐵𝑖, 𝑗)𝑖, 𝑗 ∈[𝑡] where 𝑡 denotes the length of the query sequence.
It also parses the Markov chain Θ to get the transition matrix
T and the initial distribution `. In addition, it initializes a
mapping 𝛼 : [𝑡] → W. Given T, the attack computes the
stationary distribution 𝜋 = (𝜋1, · · · , 𝜋𝑚) where𝑚 = #W is the
number of keywords (or states) inW. Similar to the Stationary
attack, the attack aborts if the stationary distribution does not
exist.7 Next, the frequency, 𝑣𝑖 , of each unique query 𝑖 ∈ I is
first calculated using the query equality

𝑣𝑖 =
∑︁
𝑗 ∈[𝑡]

𝐵𝑖, 𝑗/𝑡 .

6Note that one could replace the Viterbi algorithm inside our Decoder attack
with any new algorithm that provides better efficiency and/or accuracy.
7Throughout all of our experiments, we were always able to calculate the
stationary distribution.

Note that the set I corresponds to the set of unique queries in
ℓ . In particular, given (𝐵𝑖, 𝑗)𝑖, 𝑗 ∈[𝑡] , we can identify the position
of the first time a query for a keyword𝑤 ∈ W is made. Then,
the attack computes the observationmatrix in line 6 of Figure 2.
Note that theObv function can be instantiated in various ways,
but we specifically focus on two approaches: Obv-N, which
is based on the ℓ1-norm; and Obv-B, which is based on the
binomial distribution.

Phase 2: the only remaining element to prepare before run-
ning the Viterbi algorithm is the sequence of observation, o.
Given the query equality pattern (𝐵𝑖, 𝑗)𝑖, 𝑗 ∈[𝑡] , the attack builds
the sequence of observation of length 𝑡 as follows: first, it as-
signs every new query an index which is equal to the time the
query is made. So if a query is made more than once, it will be
mapped to the same position it was assigned to the first time
it was made. More formally, for every 𝑖 ∈ [𝑡], we have

𝑜𝑖 := 𝑗★ where 𝐵𝑖, 𝑗★ = 1 and 𝐵𝑖,𝑘 = 0 ∀𝑘 < 𝑗★,

where 𝑗★ ∈ [𝑖] represents the position the first time the 𝑖th
query was made. Given the observation matrix O built in
phase 1, the attack now has a complete set of parameters for
a hidden Markov model HMM = (T,O, `). Given HMM and
the sequence of observation o, the attack runs the Viterbi
algorithm which outputs r. The output represents the most
likely sequence of visited states in the hidden process. Finally,
it populates and outputs the mapping 𝛼 such that the 𝑖th query
maps to the 𝑟𝑖 ’th keyword,𝑤𝑟𝑖 , for all 𝑖 ∈ [𝑡].
The ℓ1-norm variant ofDecoder. TheObv-N function builds
on the observation that the number of times an adversary
sees a given state in the observable stochastic process of the
HMM is likely to equal the (known) stationary distribution of
a specific keyword, and specifically, the one with the closest
value. This same observation is leveraged by the Stationary
attack and is formally captured by Lemma 4.3 which states
that the average number of visits made to the 𝑖th state tends to
the 𝑖th item of the stationary distribution for a given Markov
chain.8 We detail Obv-𝑁 in Figure 3 and it works as follows.
For all 𝑖 ∈ [#W], for the 𝑗th unique query where 𝑗 ∈ [#v],
if the distance between the frequency 𝑣 𝑗 and the stationary
distribution of the 𝑖th state is less than 𝜖 , setO𝑖, 𝑗 to 1− |𝑣 𝑗 −𝜋𝑖 |.
Otherwise, set O𝑖, 𝑗 to 0. The matrix components are then
normalized such that the sum of each row is equal to 1. Note
that this is a requirement for a well-formed observation matrix.
We made the choice of using the ℓ1-norm, but other distances
can be used for this phase as well. Note also that this variant
makes use of an error parameter that is fixed throughout our
implementation. We refer to the Decoder attack that makes
use of the Obv-N function as Decoder-N.
The binomial variant ofDecoder.TheObv-B function builds
on the observation that the leakage, ℓ , can be viewed as a se-
ries of binomial experiments with different success values. In
particular, the attack views the leakage as a sequence of #I bi-
nomial experiments such that in every experiment, we fix the

8Note that this observation applies to our case since the number of states in the
observable stochastic process is smaller or equal to the number of states in the
hidden one, but also because we know that every hidden state can only map to
a single observable state. This holds true because the query equality pattern is a
permutation function.

436

• Obv-N(𝜋, v) :
(1) parse v as (𝑣𝑖)𝑖∈I and 𝜋 as (𝜋𝑖)𝑖∈[#W] ,
(2) for all 𝑖 ∈ [#W],

(a) initialize a counter count := 0;
(b) for all 𝑗 ∈ I,

(i) if |𝑣𝑗 − 𝜋𝑖 | ≤ 𝜖 , then set O𝑖,count := 1 − |𝑣𝑗 − 𝜋𝑖 |
and 0 otherwise;

(ii) increment count;
(c) set _𝑖 :=

∑
𝑗∈[#I] O𝑖,𝑗 ;

(d) for all 𝑗 ∈ [#I], set O𝑖,𝑗 := O𝑖,𝑗 /_𝑖 ;

Figure 3: The Obv-N variant.

• Obv-B(𝜋, v) :
(1) parse v as (𝑣𝑖)𝑖∈I and 𝜋 as (𝜋𝑖)𝑖∈[#W] ,
(2) for all 𝑖 ∈ [#W],

(a) initialize a counter count := 0;
(b) for all 𝑗 ∈ I,

(i) set O𝑖,𝑗 =
(𝑡
𝑡 ·𝑣𝑗

)
· 𝜋𝑡 ·𝑣𝑗

𝑖
· (1 − 𝜋𝑖)𝑡−𝑡 ·𝑣𝑗 ;

(ii) increment count;
(c) set _𝑖 :=

∑
𝑗∈[#I] O𝑖,𝑗 ;

(d) for all 𝑗 ∈ [#I], set O𝑖,𝑗 := O𝑖,𝑗 /_𝑖 ;

Figure 4: The Obv-B variant.

number of successes to the number of times a specific query
has been queried for. The attack then assigns the observation
matrix component to the corresponding binomial probability
mass function. More formally, given a fixed keyword𝑤𝑖 , we
consider its corresponding stationary distribution 𝜋𝑖 as the
parameter of the binomial distribution, for all 𝑖 ∈ [#W]. And
we consider the sequence length 𝑡 as the number of trials in
each experiment. Then for every unique query 𝑗 , we know
from the leakage that it has been queried 𝑡 · 𝑣 𝑗 times. The
attack then sets

O𝑖, 𝑗 =

(
𝑡

𝑡 · 𝑣 𝑗

)
· 𝜋𝑡 ·𝑣𝑗

𝑖
· (1 − 𝜋𝑖)𝑡−𝑡 ·𝑣𝑗 .

The matrix components are then normalized such that the
sum of each row is equal to 1, refer to Figure 4 for a detailed
description. The rationale behind this variant can also be ex-
plained through the lens of the Stationary attack. In particular,
one needs to first observe that the binomial probability mass
function reaches its maximum value when the number of suc-
cesses is equal to the expected value, which is equal to 𝑡 · 𝜋𝑖 .
This means that O𝑖, 𝑗 attains its maximum value if and only if
𝑡 ·𝜋𝑖 ≈ 𝑡 · 𝑣 𝑗 which again shows the relationship to Lemma 4.3.
We refer to the Decoder attack that makes use of the Obv-B
function as Decoder-B.
Remark. Both variants share the property that the compo-
nents of the observation matrix attain their maximum values,
for a given row, at exactly the same indices. However, contrary
to the ℓ1-norm variant, the binomial variant never assigns a
zero to any component in the matrix which leaves more pos-
sible sequences for the attack to output. This is especially
helpful in cases where the sequence length 𝑡 is small or when
the leakage resulted from an unlikely observation.

Efficiency. Given a query sequence of length 𝑡 and a keyword
spaceW of size𝑚, the running time of the Decoder attack is

𝑂
(
𝑚2 · (𝑚 + 𝑡)

)
.

The asymptotic calculation can be broken down into four main
parts:
• (part 1) computing the stationary distribution 𝜋 takes
𝑂 (𝑚3) steps,
• (part 2) calculating the query frequency v takes 𝑂 (𝑡)
steps,
• (part 3) populating the observation matrix O takes
𝑂 (𝑚2) steps for both variants,
• (part 4) computing the Viterbi algorithm takes𝑂 (𝑚2 ·𝑡)
steps.

Note that computing the Viterbi algorithm and the stationary
distribution are the most expensive parts of the attack.

6 From Distributions to Samples

In this section, we transform our known-distribution attacks
into known-sample versions, which we call Stationary-Smpl
and Decoder-Smpl. 9 In the following, we first describe the
different forms of auxiliary data our attacks can take as input.
Adversarial knowledge. Assume that the adversary is given
as auxiliary data aux, a sequence of queries q := (𝑞1, · · · , 𝑞𝑛)
where the queries are for keywords in a set W′ which can
be different from the client’s keyword spaceW. In this case,
we write aux = (𝑞1, · · · , 𝑞𝑛). We also consider a more general
setting where the auxiliary data is composed of multiple query
sequences aux =

(
q1, · · · , qp

)
where q𝑖 = (𝑞𝑖,1, · · · , 𝑞𝑖,𝑡𝑖), for

all 𝑖 ∈ [𝑝]. Moreover, we assume that the auxiliary query
sequences are sampled from of a Markov chain process.
Learning the Markov chain. Our known-sample attacks
build on the Stationary and the Decoder attacks. As described
in Sections 4 and 5, these attacks take as input the query
equality pattern and a Markov chain. However, along with the
query equality pattern, the adversary only has a sequence of
queries as input. A natural question then arises:

Can we learn a Markov chain knowing only its
realization?

Similar to the decoding attack, learning the parameters of
a Markov chain given some observation is one of the most
fundamental inference problems in the area of hidden Markov
models. The well-known Baum-Welch (BW) algorithm [53]
can efficiently find the HMM parameters that maximizes the
probability of making a given observation. At a high level, BW
outputs the parameters HMM★ that maximizes the following
quantity

Pr
[
o | HMM

]
where o is a sequence of observations. In particular, we use
BW to generate the transition matrix T which we then feed
to either Stationary or Decoder. We provide the details of the
Baum-Welch algorithm in Figure 9 of Appendix A.We describe
the Stationary-Smpl and Decoder-Smpl attacks in Figure 5.
9We similarly denote by Decoder-N-Smpl and Decoder-B-Smpl the known-
sample versions of the Decoder attack when the observation function isObv-N
and Obv-B, respectively. This notation will become helpful when describing
our experimental results.

437

• ★-Smpl
(
ℓ , aux) :

(1) initialize an empty map 𝛼★ and set 𝑠★ := ∞;
(2) for all q ∈ aux,

(a) compute HMM← Baum-Welch(q) ;
(b) parse HMM as (T,O, `) and set Θ := (T, `) ;
(c) compute (𝛼, 𝑠) ← Stationary(ℓ ,Θ) ;
(d) if 𝑠 < 𝑠★, set 𝛼★ := 𝛼 and 𝑠★ := 𝑠 ;

(3) output 𝛼★.

Figure 5: Our inference attack: ★-Smpl, where ★ is a

placeholder for Stationary and Decoder.

Attack overview. Both Stationary-Smpl and Decoder-Smpl
take as inputs the query equality qeq and the auxiliary data
aux. . For every query sequence q in aux, the attacks run
Baum-Welsh algorithm to learn the Markov chain Θq. Then
the attacks simply run their corresponding known data attacks
as a subroutine. The main difference is that instead of only
outputting a mapping 𝛼 , the subroutine attacks also output
an error score 𝑠 . This score can be viewed as a metric that
quantifies the quality of the mapping. The smaller the score,
the better the mapping. In the following, we describe how
the score is calculated for both the Stationary and Decoder
attacks:
• for the Stationary attack, the score 𝑠 is calculated by
summing the 1-norm distance between the query fre-
quency 𝑣𝑖 and the chosen stationary probability 𝜋𝜌 such
that, for all 𝑖 ∈ [𝑡],

𝑠 := 𝑠 + |𝑣𝑖 − 𝜋𝜌 |.

The score is then equal to the sum of all the distances
between 𝑣𝑖 and 𝜋𝜌 , where 𝜌 corresponds to the position
in 𝜋 that minimizes the distance |𝑣𝑖 − 𝜋 𝑗 |.10
• for the Decoder attack, we also introduce a score that
tries to capture the accuracy of the Viterbi algorithm.
The idea is similar to the above but tries to measure
the accuracy of the chosen Viterbi path. We refer to the
reader to Figure 8 in Appendix A for more details.

For every iteration, every attack outputs a mapping 𝛼 and a
score 𝑠 . The attacks compare the new score 𝑠 to the previous
smallest score 𝑠★, if 𝑠 < 𝑠★, the attack changes its preferred
mapping to 𝛼 and sets 𝛼★ := 𝛼 .
Efficiency.The efficiency of Stationary-Smpl andDecoder-Smpl
is similar to the one of Stationary and Decoder, respectively,
except for the additional cost of the Baum-Welsh (BW) algo-
rithm. BW has a running time equal to 𝑂 (𝑚2

𝑖
· 𝑡𝑖) where𝑚𝑖 is

the size of the keyword space of the 𝑖th query sequence q in
aux, whereas 𝑡𝑖 is the length of q𝑖 . To sum up, the time complex-
ity of Stationary-Smpl is equal to𝑂

(
𝑚 · (𝑚2+𝑡) +∑𝑝

𝑖=1𝑚
2
𝑖
·𝑡𝑖

)
,

whereas the time complexity of Decoder-Smpl is equal to
𝑂
(
𝑚2 · (𝑚+𝑡)+∑𝑝

𝑖=1𝑚
2
𝑖
·𝑡𝑖
)
,where 𝑝 is the number of query se-

quences in aux. If we assume that𝑚𝑖 =𝑚 and 𝑡𝑖 = 𝑡 = 𝑂 (𝑚),

10While there is a correlation between a small score 𝑠 and the accuracy of the
mapping 𝛼 , it is not however an implication. It is possible to have a score 𝑠 = 0
and the accuracy of the mapping being completely off. So our decision to pick
the mapping with the smallest score is a heuristic decision.

for all 𝑖 ∈ [𝑝], then Stationary-Smpl and Decoder-Smpl at-
tacks have a running time equal to𝑂

(
𝑝 ·𝑚3) . Even though the

running time of both attacks is polynomial in𝑚, they can be
prohibitive in practice. We noticed this during our evaluations
as we struggled to scale our attacks to large keyword spaces.
As an example, for keyword spaces of size 1, 000 and auxiliary
sequences aux composed of 10 query sequences, both attacks
require around 248 steps. There are ways to reduce the over-
head by using more efficient variants of BW, Viterbi and of
the computation of the stationary distribution, but this would
lead to a loss in accuracy.

7 Empirical Evaluation

In this section, we evaluate our known-distribution and known-
sample attacks across a wide variety of scenarios and use both
real-world query logs and synthetic query distributions. We
implement and evaluate our attacks using the LEAKER frame-
work [32] and we compare the recovery rates of our attacks
with the ones of the IHOP attack [45]—the only currently-
known attack that exploits the query equality pattern under
dependent queries. We start by briefly describing our imple-
mentation, our query logs, query distributions, and our eval-
uation setting. We then describe our results before finally
providing our takeaways on the various risks our attacks pose.

7.1 Implementation

We implemented our attacks in Python 3.9 and added it as
an extension to the open-source LEAKER [32] framework
which already implements 15 leakage attacks found in more
than 12 different papers. LEAKER’s modular design allowed
us to integrate and comparatively evaluate the effectiveness
of our attacks under different assumptions using queries from
multiple query logs and distributions.

While LEAKER has several modules for exact and range
search attacks, it only supports the independent query gen-
eration. As a result, we extended LEAKER to support depen-
dent queries and attack evaluations in this setting. We imple-
mented Stationary, Decoder with its two variants Decoder-N
and Decoder-B, Stationary-Smpl, Decoder-Smpl with its two
variants Decoder-N-Smpl and Decoder-B-Smpl, and finally
IHOP which totaled 2, 595 lines. All the implementations can
be found in the following private repository [4]. Upon accep-
tance of our paper, we will open a pull request in order to
merge our results with the LEAKER framework.

7.2 Query Logs and Query Distributions

In this section, we describe the query logs as well as the syn-
thetic query distributions we used in our evaluation.
Query logs. No prior work evaluated their attacks on real-
world query logs. In particular, the evaluation of the IHOP
attack [45] used the url links in Wikipedia pages to model
client query distributions.

For our evaluation, we use the following two publicly avail-
able query logs from [32]:
• AOL is a publicly available search engine query log [46]
that contains web searches. AOL contains 52M queries
that were issued by 656 thousand users between March

438

1𝑠𝑡 and May 31𝑠𝑡 , 2006. The total number of unique
keywords is 2.9M.
• The Arabidopsis Information Resource [19], or TAIR, is a
publicly available query log for plant genetic annota-
tions containing 650 thousand unique keywords issued
by 1.3 thousand users between January 1𝑠𝑡 , 2012 and
April 30𝑡ℎ , 2013. The total number of unique keywords
is 14K.

Each query log can be viewed as a sequence q itself com-
posed of several client query sequences, q𝑢 , for 𝑢 ∈ U, where
U denotes the set of users in the log. Given q, LEAKER’s
pre-processor module parses, tokenizes, extracts, stems and
removes stop words. In the case of the AOL query log, we also
discarded the queries issued by the 1, 000 most active users
because their query behavior suggested that they were bots.
Query distributions.We consider four synthetic query distri-
butions all of which are Markov chains with various transition
matrices. The first distribution, Uniform, captures settings
where all the keywords can be queried with uniformly dis-
tributed transition probabilities. In particular, in this case, all
the query sequences are possible. The second distribution,Zipf,
is similar to Uniform in the sense that all query sequences are
possible, but some transitions are more likely than others. The
next two distributions capture a different setting where, given
a current keyword, the next query can only be made from a
subset of all possible keywords. In otherwords, some keywords
are unreachable. This constraint results in creating sparsity in
the transition matrix and we control its degree in two differ-
ent ways. For Binomial-Zipf, we assume that the number of
possible transitions (non-zero values) per row follows a Bino-
mial distribution, whereas for Zipf-Zipf, we assume that the
number of possible transitions is Zipf distributed. We describe
all the distributions below, where we show how to generate
their transition matrices.11

• Uniform: for every 𝑖, 𝑗 ∈ [𝑛], compute T𝑖, 𝑗
$← {0, 1}𝑘 .

• Zipf: for every 𝑖 ∈ [𝑛], we pick a permutation 𝛽𝑖 :
[𝑛] → [𝑛] at random.We then set T𝑖, 𝑗 := 𝑓𝑠,𝑛

(
𝛽𝑖 (𝑗)

)
for

all 𝑗 ∈ [𝑛], where 𝑓𝑠,𝑛 is the probability mass function of
the Zipf distribution with parameter 𝑠 ≥ 0 and support
size 𝑛,

𝑓𝑠,𝑛 (𝑘) =
𝑘−𝑠

𝐻𝑛,𝑠
,

where 𝐻𝑛,𝑠 =
∑𝑛
𝑖=1 𝑖

−𝑠 is the general harmonic number.
In our experiments, we set 𝑠 = 2.
• Binomial-Zipf: for every 𝑖 ∈ [𝑛], sample a permutation
𝛽𝑖 : [𝑛] → [𝑛] at random. And for all 𝑗 ∈ [𝑛], sample a

value \𝑖, 𝑗
$← Bernoulli(𝑝) where 0 ≤ 𝑝 ≤ 1. If \𝑖, 𝑗 = 1,

then set T𝑖, 𝑗 := 𝑓𝑠,𝑛
(
𝛽𝑖 (𝑗)

)
, otherwise set T𝑖, 𝑗 := 0. In

our evaluation, we set 𝑝 = 0.5 and 𝑠 = 2. Observe that
the number of non-zero transition probabilities follows
a Binomial distribution.
• Zipf-Zipfa : first, for every 𝑖 ∈ [𝑛], sample a Zipf value

\𝑖
$← Zipf (𝑠, 𝑛), then compute \𝑖 := \𝑖 + a which repre-

sents the number of non-zero transitions the 𝑖th state
11Note that the details of row normalization are straightforward and therefore
skipped from the description below.

Scenarios Leakage qeq(q) Auxiliary s
Known q Sampled q

Exact (E) − q← BW(q𝑖) q𝑖
All (A) − q← BW(q𝑖) (q1, · · · , q𝑛)
Split (S) q𝑖 |2 q← BW(q𝑖 |2) q𝑖 |1
Other (O) q𝑖 q← BW(q𝑖) (q1, · · · , q𝑖−1, q𝑖+1, · · · , q𝑛)

Table 2: Summary of the evaluation setup for known-

sample attacks to recover the queries of the 𝑖th user.

can have. We then sample a permutation 𝛽𝑖 : [𝑛] → [𝑛]
at random, select a set 𝑆𝑖 = { 𝑗1, · · · , 𝑗\𝑖 } of size \𝑖 at ran-
dom from {1, · · · , 𝑛}, and compute T𝑖, 𝑗𝑝 := 𝑓𝑠,𝑛

(
𝛽𝑖 (𝑗𝑝)

)
for all 𝑝 ∈ [\𝑖], and T𝑖, 𝑗 := 0 otherwise.

The initial distribution ` is the same for all distributions and is
simply ` = (1/𝑛, · · · , 1/𝑛), i.e., all keywords are equally likely
to be queried at the beginning.
Sparsity. To measure the sparsity of a given distribution, we
compute the minimum Hamming weight (HW) of a Markov
chain as follows. First, we compute the HW of the 𝑖th state
which is the number of non-zero transition probabilities in
T𝑖 , for 𝑖 ∈ [𝑛]. The minimum HW of a Markov chain is then
simply the minimum HW across all states. We later show in
Section 7.4 that varying the sparsity of the transition matrix
significantly impacts the accuracy of our known-distribution
attacks.
Note. Using synthetic query distributions is by no means an
ideal setup, but it is unfortunately our only option due to the
scarcity of publicly-available query logs. The query logs we
run our attacks against are a great resource but they are lim-
ited and do not necessarily capture the most common query
distributions. We try to fill this gap with synthetic query dis-
tributions so that we can better understand how the attacks
behave in various scenarios. Note that the four distributions
described above are not exhaustive, but they were carefully
crafted to capture different properties of the transition matrix
which, we believe, can impact the recovery rate of the attacks.
Such properties include, at a high level, the degree of connec-
tivity between the states, the level of sparsity and different
shapes of the stationary distributions.

7.3 Evaluation Setup

Weevaluate our known-distribution attacks on synthetic query
distributions, and we evaluate our known-sample attacks on
the publicly available query logs described in Section 7.2. In the
following, we describe the evaluation setup for each setting.
Known-distribution setting. For every query distribution,
we sample a query sequence s and compute the query equality
pattern on it. Sampling from a Markov chain works as follows.
We pick an initial state uniformly at random from all possible
states and, for every transition, we pick the next state based
on the probabilities of the transition matrix. The adversary is
then given the qeq on the sampled query sequence s and the
query distribution.
Known-sample setting. We consider four different cases
that capture different scenarios. For all scenarios, we need
to specify the target client/user (say 𝑖th user). Moreover, in

439

every case except for the first and the second, we consider
the leakage to be either: fixed or sampled. For the former, we
generate the leakage by computing the qeq on (a subset of)
the 𝑖th user’s query log sequence. For the latter, we: (1) learn
the 𝑖th user’s query distribution by applying the Baum-Welsh
algorithm to (a subset of) its query log sequence; (2) sample
a new query sequence s from the learned Markov chain; and
(3) compute the qeq on sampled sequence s. Note that all the
following four cases apply to both the AOL and TAIR query
logs. We summarize these four cases in Table 2 and describe
them below.

• Exact (E): the adversary receives as auxiliary sequence
the query log sequence q𝑖 of the 𝑖th user. Moreover,
in this case, we only consider the sampled leakage set-
ting where the adversary receives as leakage the query
equality pattern of a query sequence s sampled from
the distribution learned from q𝑖 using BW.
• All-Users (A): the adversary receives as auxiliary se-
quence the query log sequences of all users including
of the the 𝑖th user (the target user).
In this case, we only consider sampled leakage where
the adversary receives the query equality pattern of a
query sequence s sampled from a distribution learned
from the 𝑖th user’s query log sequence q𝑖 .
• Split (S): the adversary receives as auxiliary sequence
the first half of the 𝑖th user’s query log sequence, q𝑖 |1.
In the fixed leakage setting, the adversary also receives
the query equality pattern of the second half of the 𝑖th
user’s query log sequence, q𝑖 |2. In the sampled leakage
setting, the adversary receives the query equality pat-
tern on a query sequence s sampled from a distribution
learned from the second half of the 𝑖th user’s query log
sequence, q𝑖 |2.
• Other-Users (O): the adversary receives as auxiliary se-
quence the query logs sequences of all users except for
the 𝑖th user (the target user). The query equality pat-
tern that the adversary receives in both the fixed and
sampled leakage settings is similar to the All-Users case.

These settings are listed in decreasing strength with respect
to adversarial knowledge and may correspond to certain real-
world events which we describe below:

• Exact (E): This scenario captures a setting in which the
adversary (possibly the server) is able to compromise
a user’s machine for a long period of time and obtain
its query log. After the period of compromise, the ad-
versary can only observe the query equality pattern on
the new queries issued by the user.
• All-Users (A): In this scenario, the adversary not only
obtains the query log of the target user, but a set of users
in the system. This can occur by compromising all the
users’ machines for a period of time. Similar to the
above, after the period of compromise, the adversary
can only observe the query equality pattern on new
queries issued by the target user.
• Split (S): This scenario is similar to the Exact scenario.
The difference however is in how the user generates its

queries after the period of compromise, please refer to
the paragraph above for more details.
• Other-Users (O): In this scenario, the adversary is not
able to compromise the target user’s machine but is
able to compromise the other users’ machines.

Experimental setup.Our experimentswere run on anUbuntu
20.04machine with 390GB memory and 1TB disk space. When
evaluating our known-data attacks, we varied the following
parameters. First, for all query distributions, we varied the size
of the keyword space,𝑚, from 250 up to 1, 500. Second, we
varied the sparsity of the transition matrix for the Zipf-Zipfa
query distribution by varying the minimum Hamming weight
from 5 to 450; here, the size of the keyword space is fixed to 500.
Finally, we also varied the size of the sampled query sequence,
𝑡 , from 1, 000 up to 5 · 105 queries12 . We run each attack 30
times and report the median, maximum and minimum recov-
ery rates. The recovery rate is simply the fraction of correctly
recovered queries over the length of query sequence.

When evaluating our known-sample attacks, we proceeded
as follows. First, for each query log, we selected 10 users. These
users were fixed for the entire set of experiments. These users
were selected carefully so that their respective query log se-
quences had between 500 and 1, 000 unique keywords.13 While
there were more than 10 users that verified this condition, we
just picked 10 arbitrarily for feasibility. For the AOL query
log, the number of unique keywords per user varies between
313 and 782, whereas for TAIR it varies between 587 and 848.
We then selected 5 users from the 10 as target users. All our
results are the average recovery rate of running the attacks
against each individual user of the selected 5 users. We run
these attacks 10 times per user and report the median, maxi-
mum and minimum recovery rates over all 5 attacked users.
Note that these 5 users are again selected and fixed throughout
the entire experiment and that our experiments target users
individually but present aggregated results.

7.4 Experimental Results

The recovery rate of our known-sample attacks with sampled
and fixed leakage are given in Figure 6 and Table 3, respectively.
The recovery rates of our known-distribution attacks are in
Figure 7 and Figure 11 in Appendix B. Due to space limitations,
we only report the results for the Zipf-Zipf distribution in the
main body of the paper. We now summarize our findings with
a focus on the median metric.
Known-sample attacks with sampled leakage. Our re-
sults with sampled leakage (cf. Figure 6) show that our known-
sample attacks achieve their best recovery rates in theAll-Users
and Exact settings. In particular, in the latter,Decoder-N-Smpl
achieves 99.1% recovery rate (cf. Table 1) with TAIR and 53.7%
withAOL for query sequence of size 50, 000. TheDecoder-B-Smpl
attack behaves similarly but with a slight increase in the case
of the AOL dataset where it achieves 98.6% recovery rate

12While users may not issue a large number of queries, we use a wide range to
identify where the attacks do and do not work. A similar range was also used to
evaluate the IHOP attack [45].
13Wewere limited to such a small number of keywords because of the non-trivial
computational overhead of our attacks as well as the IHOP attack.

440

Data Source Scenario Max. Efficacy per Attack Median Efficacy per Attack

IHOP [45] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl IHOP [45] Stationary-Smpl Decoder-N-Smpl Decoder-B-Smpl

TAIR [19] Other (O) 5.4% 4.7% 2.1% 2.3% 3.0% 3.8% 1.4% 1.7%
Split (S) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AOL [46] Other (O) 0.4% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0%
Split (S) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 3: Results summary of our attacks and the IHOP attack [45] in the known-sample setting with fixed leakage.

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary-Smpl
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

Figure 6: Our new attacks and the IHOP attack [45] evaluated againstAOL (top) and TAIR (bottom) in the known-sample
setting for the Exact, All, Other and Split scenarios (from left to right).

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

250 States

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

500 States

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

1 000 States

103 104 105 5.105
0.0

0.2

0.4

0.6

0.8

1

#Queries

Re
co
ve
ry

Ra
te

Stationary
Decoder-N-Smpl
Decoder-B-Smpl
IHOP

1 500 States

Figure 7: Our new attacks and the IHOP attack [45] evaluated on the Zipf-Zipf query distribution. All evaluations are

done using a fixed minimum Hamming weight = 2.

with TAIR and 66.7% with AOL. This is compared to 10.1%
and 62.5% for IHOP with the same datasets. When increasing
the size of the query sequence to 500, 000, Decoder-N-Smpl
and Decoder-B-Smpl have a median recovery rate of approxi-
mately 99%with TAIR and approximately 90% and 85%, respec-
tively, with AOL compared to about 10% and 60% for IHOP.
That is, the larger the query sequence the more accurate the
two variants of the Decoder-Smpl become on both query logs.
We also note that two variants of the Decoder-Smpl attack
together significantly outperform IHOP with TAIR and AOL
for query sequences of any size. Stationary performs worse
than the other attacks in the Exact setting, achieving a median
recovery rate of 7.6% and 21.3% with TAIR and AOL, respec-
tively.

All the attacks achieve poor results in the Split and Other
settings—the most realistic settings of our work. In particular,
Stationary-Smpl has a median recovery rate of 3.4% which is
the highest among all the attacks on TAIR. For AOL, all the
attacks achieve a recovery rate smaller than 1% with IHOP
achieving the highest recovery rate of 0.8%.

Overall, the two variants of the Decoder-Smpl attack out-
perform together the IHOP attack and the Stationary-Smpl
attack in almost all instances.
Known-sample attacks with fixed leakage. Recall that in
this case, we only consider the Split and Other settings (cf.
Table 3). We observe that none of the attacks worked in the
Split and Other settings. In the Split setting, the attacks had
a 0% recovery rate. In the Other setting, the Stationary-Smpl

441

had the best median recovery rate of 3.8% which was achieved
with TAIR.
Known-distribution attacks. We present the results for our
known-distribution attacks on the Zipf-Zipf distribution in
Figure 7 where the minimum Hamming weight is 2. We ob-
serve that the two variants of the Decoder attack significantly
outperform all the other attacks for any number of states. Start-
ing from query sequences of length 50, 000, both Decoder-N
and Decoder-B achieve a 99% recovery rate.

In Figure 10 in Appendix B, we varied the Hamming weight
and fixed the number of states to 500. We observed that an
increased Hamming weight decreased the recovery rate of the
attacks. Starting with Hamming weight of 100, the maximum
recovery rate is already below 20%. This suggests the “denser”
transition matrices may be harder to attack even when the
adversary knows the client’s query distribution. Finally, refer
to Figure 11 of Appendix B for more results on the three other
query distributions Uniform, Zipf and Binomial-Zipf. Overall,
we obtained lower recovery rates for these distributions be-
cause, we believe, their transition matrices are significantly
denser.
A note on the Decoder variants. Our evaluation shows that
the recovery rates ofDecoder-N andDecoder-B, and similarly,
ofDecoder-N-Smpl andDecoder-B-Smpl, are similar through-
out the scenarios. The only exception was for AOL in the sam-
pled leakage setting, where we observed thatDecoder-B-Smpl
does better when the length of the query sequences is smaller
than 100, 000.
Summary. Our evaluation shows that Decoder-N-Smpl and
Decoder-B-Smpl in the Exact and All-Users settings with sam-
pled leakage,14 and Decoder-N and Decoder-B with a known
distribution achieve the best recovery rates. However, despite
our attacks outperforming the state-of-the-art in most cases,
it is also fair to say that, from our results, none of the attacks
work in the more realistic settings such as the Split and Other
settings. It thus remains open to find attacks that work in more
realistic settings where the attacker does not know the exact
query sequence of the user.

Additionally, attacks with significant recovery rates re-
quired query sequences with at least 10, 000 queries, refer to
Figure 6. None of our real-world query logs had sequences of
such length so we could only simulate longer query sequences
(when either sampling the queries in the known-sample set-
ting or when working in the known distribution setting). In
particular, in AOL [46], the most active user issued 815 queries
and the average sequence length is 79. In TAIR [19], the most
active user issued 2, 059 queries and the average sequence
length is 500. Assessing the efficacy of our attacks on real
query logs with longer query sequences is an important future
work. However, we would like to emphasize that studying the
efficacy of our attacks on query sequences of smaller lengths is
still very important and that there is no setting which is more
realistic than another. This is for several reasons. First, ESA
deployments can be used in variety of settings where users

14We would like to note that the Decoder-B-Smpl attack achieves a better
recovery rate when the query sequence was less than 100, 000 queries.

could generate query sequences with different lengths over
a given period of time. Another reason is that, as proposed
in [31], the query complexity of an attack can be used to set
the query capacity of an ESA; where the query capacity is
the number of queries that can be executed before the under-
lying structure is rebuilt. In such a setting, knowing how an
attack performs even on relatively small query sequences is
important.

Moreover, it is important to highlight that the computa-
tional overhead of all the attacks—ours included—could make
them prohibitive in practice. In fact, in order to run our exper-
iments, we had to choose specific users in the query logs and
use a small number of states in the known-distribution setting
otherwise the evaluation would take many years to complete.
For example, evaluating our attacks in the Others scenario
with sampled leakage took almost 38 hours to complete.

Acknowledgment

We would like to thank the anonymous reviewers for their
helpful feedback and specifically for suggesting we consider
using the binomial distribution to build the observation matrix.
This led to the design of the binomial variant of theDecoder at-
tack. This project received funding from theDeutsche Forschungs-
gemeinschaft (DFG) within SFB 1119 CROSSING/236615297
and GRK 2050 Privacy & Trust/251805230. This project was
carried out using the African Super-Computer Center HPC
service, supported by Mohammed-VI Polytechnic University.

References

[1] R. Ada Popa, C. Redfield, N. Zeldovich, andH. Balakrishnan. 2011. CryptDB:
Protecting confidentiality with encrypted query processing. In ACM Sym-
posium on Operating Systems Principles (SOSP). 85–100.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu.
2004. Order preserving encryption for numeric data. In International
Conference on Management of Data (SIGMOD).

[3] Ghous Amjad, Seny Kamara, and Tarik Moataz. 2019. Breach-Resistant
Structured Encryption. In Proceedings on Privacy Enhancing Technologies
(Po/PETS ’19).

[4] Anonymized. 2023. Private repository. https://github.com/anonymous-
repo-submission/artifact.

[5] Mihir Bellare, Alexandra Boldyreva, and AdamO’Neill. 2007. Deterministic
and efficiently searchable encryption. In Annual International Cryptology
Conference (CRYPTO).

[6] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leak-
age Abuse Attacks. In Network and Distributed System Security Symposium
(NDSS ’20).

[7] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption:
Definitions and challenges. In Theory of Cryptography Conference (TCC).

[8] R. Bost. 20016. Sophos - Forward Secure Searchable Encryption. In ACM
Conference on Computer and Communications Security (CCS ’16).

[9] R. Bost, B. Minaud, and O. Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives.
In ACM Conference on Computer and Communications Security (CCS ’17).

[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. 2015. Leakage-Abuse Attacks
against Searchable Encryption. In ACM Conference on Communications
and Computer Security (CCS ’15). ACM, 668–679.

[11] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel Rosu, and Michael Steiner. 2014. Dynamic Searchable
Encryption in Very-Large Databases: Data Structures and Implementation.
In Network and Distributed System Security Symposium (NDSS ’14).

[12] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner.
2013. Highly-Scalable Searchable Symmetric Encryption with Support for
Boolean Queries. In Advances in Cryptology - CRYPTO ’13. Springer.

[13] Yan-Cheng Chang and Michael Mitzenmacher. 2005. Privacy preserving
keyword searches on remote encrypted data. In International Conference
on Applied Cryptography and Network security (ACNS).

[14] M. Chase and S. Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology - ASIACRYPT ’10 (Lecture Notes in

442

https://github.com/anonymous-repo-submission/artifact
https://github.com/anonymous-repo-submission/artifact

Computer Science, Vol. 6477). Springer, 577–594.
[15] Melissa Chase and Seny Kamara. 2010. Structured encryption and con-

trolled disclosure. In International Conference on the Theory and Application
of Cryptology and Information Security (ASIACRYPT).

[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. 2006. Searchable
Symmetric Encryption: Improved Definitions and Efficient Constructions.
In ACM Conference on Computer and Communications Security (CCS ’06).
ACM, 79–88.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006.
Searchable symmetric encryption: Improved definitions and efficient con-
structions. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[18] Marc Damie, Florian Hahn, and Andreas Peter. 2021. A Highly Accurate
Query-Recovery Attack against Searchable Encryption using Non-Indexed
Documents. In USENIX Security Symposium (USENIX Security).

[19] Maria Esch, Jinbo Chen, Stephan Weise, Keywan Hassani-Pak, Uwe Scholz,
and Matthias Lange. 2014. A query suggestion workflow for life science
IR-systems. Journal of Integrative Bioinformatics 11, 2 (2014).

[20] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel
Hamlin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K
Cunningham. 2017. SoK: Cryptographically protected database search. In
IEEE Symposium on Security and Privacy (S&P).

[21] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In
ACM Symposium on Theory of Computing (STOC).

[22] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papaman-
thou, and Rasool Jalili. 2018. New constructions for forward and backward
private symmetric searchable encryption. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 1038–1055.

[23] E-J. Goh. 2003. Secure Indexes. Technical Report 2003/216. IACR ePrint
Cryptography Archive. See http://eprint.iacr.org/2003/216.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any
mental game. In ACM Symposium on Theory of Computing (STOC).

[25] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996).

[26] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Pa-
terson. 2019. Learning to reconstruct: Statistical learning theory and
encrypted database attacks. In IEEE Symposium on Security and Privacy
(S&P).

[27] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. 2021. Rethinking
Searchable Symmetric Encryption. IACR ePrint 879 (2021).

[28] M. Saiful Islam, M. Kuzu, and M. Kantarcioglu. 2012. Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation.
In Network and Distributed System Security Symposium (NDSS ’12).

[29] Mireya Jurado, Catuscia Palamidessi, and Geoffrey Smith. 2021. A Formal
Information-Theoretic Leakage Analysis of Order-Revealing Encryption.
In 2021 IEEE 34th Computer Security Foundations Symposium (CSF). 1–16.
https://doi.org/10.1109/CSF51468.2021.00046

[30] Mireya Jurado and Geoffrey Smith. 2019. Quantifying Information Leakage
of Deterministic Encryption. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Cloud Computing Security Workshop (London, United Kingdom)
(CCSW’19). Association for Computing Machinery, New York, NY, USA,
129–139. https://doi.org/10.1145/3338466.3358915

[31] S. Kamara. 2015. Encrypted Search. XRDS 21, 3 (March 2015), 30–34.
https://doi.org/10.1145/2730908

[32] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos
Treiber, and Michael Yonli. 2022. SoK: Cryptanalysis of Encrypted Search
with LEAKER - A framework for LEakage AttacK Evaluation on Real-world
data. In IEEE European Symposium on Security and Privacy (EuroS&P).

[33] S. Kamara and T. Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In Advances in Cryptology - Eurocrypt’ 19.

[34] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. 2018. Structured En-
cryption and Leakae Suppression. In Advances in Cryptology - CRYPTO
’18.

[35] S. Kamara and C. Papamanthou. 2013. Parallel and Dynamic Searchable
Symmetric Encryption. In Financial Cryptography and Data Security (FC
’13).

[36] S. Kamara, C. Papamanthou, and T. Roeder. 2012. Dynamic Searchable Sym-
metric Encryption. In ACM Conference on Computer and Communications
Security (CCS ’12). ACM Press.

[37] G. Kellaris, G. Kollios, K. Nissim, and A. O’ Neill. 2016. Generic Attacks
on Secure Outsourced Databases. In ACM Conference on Computer and
Communications Security (CCS ’16).

[38] Evgenios M Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou,
and Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying
Privacy in Searchable Encryption. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 1829–1842.

[39] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto
Tamassia. 2021. Response-hiding encrypted ranges: Revisiting security via
parametrized leakage-abuse attacks. In 2021 IEEE Symposium on Security

and Privacy (SP). IEEE, 1502–1519.
[40] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan. 2014. Search

pattern leakage in searchable encryption: Attacks and new construction.
Information Sciences 265 (2014).

[41] M. Naveed, S. Kamara, and C. V. Wright. 2015. Inference Attacks on
Property-Preserving Encrypted Databases. InACMConference on Computer
and Communications Security (CCS) (Denver, Colorado, USA) (CCS ’15).
ACM, 644–655. https://doi.org/10.1145/2810103.2813651

[42] Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li, Jian
Weng, and Robert H Deng. 2021. LEAP: Leakage-abuse attack on efficiently
deployable, efficiently searchable encryption with partially known dataset.
In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

[43] James R Norris. 1998. Markov chains. Number 2. Cambridge university
press.

[44] Simon Oya and Florian Kerschbaum. 2021. Hiding the access pattern is
not enough: Exploiting search pattern leakage in searchable encryption.
In USENIX Security Symposium (USENIX Security).

[45] Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical
Query Recovery against Searchable Symmetric Encryption through Qua-
dratic Optimization. In USENIX Security Symposium (USENIX Security).

[46] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of
search. In International Conference on Scalable Information Systems (INFOS-
CALE).

[47] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Miti-
gating Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding
for Multi-Maps via Hashing. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFengWang,
and Jonathan Katz (Eds.). ACM, 79–93. https://doi.org/10.1145/3319535.
3354213

[48] Karl Pearson. 1905. The problem of the random walk. Nature 72, 1865
(1905), 294–294.

[49] Ruben Groot Roessink, Andreas Peter, and Florian Hahn. 2021. Experimen-
tal review of the IKK query recovery attack: Assumptions, recovery rate
and improvements. In International Conference on Applied Cryptography
and Network Security (ACNS).

[50] Alex Schwarzenberg-Czerny. 1995. On matrix factorization and efficient
least squares solution. Astronomy and Astrophysics Supplement, v. 110, p.
405 110 (1995), 405.

[51] Dawn Xiaoding Song, David Wagner, and Adrian Perrig. 2000. Practical
techniques for searches on encrypted data. In IEEE Symposium on Security
and Privacy (S&P).

[52] Andrew Viterbi. 1967. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE transactions on Information
Theory 13, 2 (1967), 260–269.

[53] Lloyd R Welch. 2003. Hidden Markov models and the Baum-Welch algo-
rithm. IEEE Information Theory Society Newsletter 53, 4 (2003), 10–13.

[54] Wikimedia Foundation. 2022. Wiktionary Statistics. https://en.wiktionary.
org/wiki/Special:Statistics. Accessed 2022-10-31.

[55] Charles V. Wright and David Pouliot. 2017. Early Detection and Analysis
of Leakage Abuse Vulnerabilities. IACR Cryptol. ePrint Arch. (2017), 1052.
http://eprint.iacr.org/2017/1052

[56] Andrew C Yao. 1982. Protocols for secure computations. In Annual Sym-
posium on Foundations of Computer Science (FOCS).

A Markov Algorithms

We present the Viterbi algorithm in Figure 8 and the Baum-
Welch algorithm in Figure 9. The Viterbi algorithm [52] takes
as input a sequence of observed states o = (𝑜1, · · · , 𝑜𝑡) and a
hidden Markov model HMM = (T,O, `). It outputs the most
likely sequence of states of the hidden Markov chain that
produced o as well as an error score 𝑠 . Note that the value
𝑠 is only calculated when the Viterbi algorithm is run as a
subroutine of the Decoder-Smpl attack, but not for Decoder.
The Baum-Welch algorithm [53] takes as input an observed
sequence o = (𝑜1, · · · , 𝑜𝑡) and outputs a local maximum of
the hidden Markov model parameters HMM = (T,O, `). Note
that the algorithm has the convergence level as well as the
number of states hardcoded. The convergence level parameter
can be tuned to obtain better accuracy.

443

http://eprint.iacr.org/2003/216
https://doi.org/10.1109/CSF51468.2021.00046
https://doi.org/10.1145/3338466.3358915
https://doi.org/10.1145/2730908
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://en.wiktionary.org/wiki/Special:Statistics
https://en.wiktionary.org/wiki/Special:Statistics
http://eprint.iacr.org/2017/1052

• Viterbi(HMM, o) :
(1) parse o = (𝑜1, · · · , 𝑜𝑡) and HMM = (T,O, `) ;
(2) instantiate two zero-matrices 𝛿 and 𝜙 of size 𝑡 × 𝑛 where 𝑛 is the number of states in T;
(3) for all 𝑖 ∈ [𝑛], compute

𝛿1,𝑖 = `𝑖 · O𝑖,𝑜1 and 𝜙1,𝑖 = 0;
(4) for all 𝑗 ∈ {2, · · · , 𝑡 } and 𝑖 ∈ [𝑛], compute

𝛿 𝑗,𝑖 = max
𝑘∈[𝑛]

(
T𝑘,𝑖 · 𝛿 𝑗−1,𝑘

)
· O𝑖,𝑜 𝑗

and 𝜙1,𝑖 = argmax𝑘∈[𝑛]

(
T𝑘,𝑖 · 𝛿 𝑗−1,𝑘

)
;

(5) set
𝑟𝑡 := argmax𝑘∈[𝑛] (𝛿𝑡,𝑘) ;

(6) compute the error score
𝑠 := max

𝑘∈[𝑛]
(𝛿𝑡,𝑘) ;

(7) for 𝑗 ∈ {𝑡 − 1, · · · , 1}, set
𝑟 𝑗 := 𝜙 𝑗+1,𝑟 𝑗+1 ;

(8) output r = (𝑟1, · · · , 𝑟𝑡) and (optionally) s.

Figure 8: The Viterbi algorithm [52].

• Baum-Welch(o) :
(1) parse o = (𝑜1, · · · , 𝑜𝑡) and initialize count := 0;
(2) instantiate a hidden Markov model HMM = (T,O, `) such that

(a) populate T = (T𝑖,𝑗)𝑖,𝑗∈[𝑛] such that,

(i) compute T𝑖,𝑗
$← {0, 1}𝑘 ;

(ii) set T𝑖,𝑗 := T𝑖,𝑗 /_𝑖 where _𝑖 =
∑𝑛

𝑗=1 T𝑖,𝑗 ;
(b) populate O = (O𝑖,𝑗)𝑖,𝑗∈[𝑛] such that,

(i) compute O𝑖,𝑗
$← {0, 1}𝑘 ;

(ii) set O𝑖,𝑗 := O𝑖,𝑗 /_𝑖 where _𝑖 =
∑𝑛

𝑗=1 O𝑖,𝑗 ;
(c) set ` := (1/𝑛, · · · , 1/𝑛) ;

(3) while count ≤ level,
(a) for all 𝑖 ∈ [𝑛] and 𝑡 ′ ≤ 𝑡 , compute

𝛼𝑖,1 = `𝑖 · O1,𝑖 and 𝛼𝑖,𝑡′+1 = O𝑜𝑡′+1,𝑖 ·
𝑛∑︁
𝑗=1

(
𝛼 𝑗,𝑡′ · T𝑗,𝑖

)
(b) for all 𝑖 ∈ [𝑛] and 𝑡 ′ ≤ 𝑡 , compute

𝛽𝑖,𝑡 = 1 and 𝛽𝑖,𝑡′ =

𝑛∑︁
𝑗=1

𝛽 𝑗,𝑡′+1 · T𝑖,𝑗 · O(𝑡′+1), 𝑗

(c) calculate the following for all 𝑖, 𝑗 ∈ [𝑛] and 𝑡 ′ ≤ 𝑡 ,

𝛾𝑖,𝑡′ =

(
𝛼𝑖,𝑡′ · 𝛽𝑖,𝑡′

)
·
(𝑛∑︁
𝑗=1

𝛼 𝑗,𝑡′ · 𝛽 𝑗,𝑡′

)−1
and,

b𝑖,𝑗,𝑡′ =

(
𝛼𝑖,𝑡′ · T𝑖,𝑗 · 𝛽 𝑗,𝑡′+1 · O𝑜𝑡′+1, 𝑗

)
·
(𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝛼𝑖,𝑡′ · T𝑖,𝑗 · 𝛽 𝑗,𝑡′+1 · O𝑜𝑡′+1, 𝑗

)−1
(d) update the parameters for HMM for all 𝑖, 𝑗 ∈ [𝑛] ,

`𝑖 = 𝛾𝑖,1 and T𝑖,𝑗 =
(𝑡−1∑︁
𝑡′=1

b𝑖,𝑗,𝑡′

)
·
(𝑡−1∑︁
𝑡′=1

𝛾𝑖,𝑡′

)−1
and O𝑖,𝑗 =

(𝑡∑︁
𝑡′=1

1(𝑜𝑡′=𝑗) · 𝛾𝑖,𝑡′
)
·
(𝑡∑︁
𝑡′=1

𝛾𝑖,𝑡′

)−1
(e) increment count;

(4) output HMM = (T,O, `) .

Figure 9: The Baum-Welch algorithm [53].

B Evaluation Results

We present in Figure 10 the evaluation result when we vary
the Hamming weight and fix the number of states to 500.

We present in Figure 11 the evaluation results of our known-
distribution attacks when the user queries are sampled from
the Binomial-Zipf, Uniform and Zipf distributions.

444

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
5

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
10

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
15

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
20

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
50

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
10
0

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
35
0

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

H-
W
=
45
0

F
i
g
u
r
e
1
0
:
O
u
r
n
e
w

a
t
t
a
c
k
s
a
n
d
t
h
e
I
H
O
P
a
t
t
a
c
k
[
4
5
]
e
v
a
l
u
a
t
e
d
o
n
t
h
e
Zi
pf
-Z
ip
f
d
i
s
t
r
i
b
u
t
i
o
n
s
e
t
t
i
n
g
.
E
v
a
l
u
a
t
i
o
n
s
a
r
e
d
o
n
e
u
s
i
n
g
a
va

ri
ab

le
H
a
m
m
i
n
g
w
e
i
g
h
t
a
n
d

a
fi
xe
d
n
u
m
b
e
r
o
f
s
t
a
t
e
s
=
50
0.

445

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

25
0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

50
0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

10
00

St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

15
00

St
at
es

E
v
a
l
u
a
t
i
o
n
o
n
t
h
e
B
in
om

ia
l-
Zi
pf

d
i
s
t
r
i
b
u
t
i
o
n
.

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

25
0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

50
0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

10
00

St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

15
00

St
at
es

E
v
a
l
u
a
t
i
o
n
o
n
t
h
e
U
ni
fo
rm

d
i
s
t
r
i
b
u
t
i
o
n
.

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P 25

0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

50
0
St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

10
00

St
at
es

10
3

10
4

10
5

5.
10

5
0.
0

0.
2

0.
4

0.
6

0.
81

#Q
ue
rie

s

RecoveryRate

St
at
io
na
ry

D
ec
od

er
-N

-S
m
pl

D
ec
od

er
-B
-S
m
pl

IH
O
P

15
00

St
at
es

E
v
a
l
u
a
t
i
o
n
o
n
t
h
e
Zi
pf

d
i
s
t
r
i
b
u
t
i
o
n
.

F
i
g
u
r
e
1
1
:
O
u
r
n
e
w

a
t
t
a
c
k
s
a
n
d
t
h
e
I
H
O
P
a
t
t
a
c
k
[
4
5
]
e
v
a
l
u
a
t
e
d
i
n
t
h
e
k
n
o
w
n
-
d
i
s
t
r
i
b
u
t
i
o
n
s
e
t
t
i
n
g
.
T
h
e
r
e
s
u
l
t
s
r
e
p
r
e
s
e
n
t
t
h
e
a
v
e
r
a
g
e
r
e
c
o
v
e
r
y
r
a
t
e
o
v
e
r
30

r
u
n
s
.

446

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Stochastic Processes

	4 The Stationary Attack
	5 The Decoder Attack
	6 From Distributions to Samples
	7 Empirical Evaluation
	7.1 Implementation
	7.2 Query Logs and Query Distributions
	7.3 Evaluation Setup
	7.4 Experimental Results

	References
	A Markov Algorithms
	B Evaluation Results

