
SoK: Metadata-Protecting Communication Systems
Sajin Sasy

University of Waterloo
Waterloo, ON, Canada
ssasy@uwaterloo.ca

Ian Goldberg
University of Waterloo
Waterloo, ON, Canada
iang@uwaterloo.ca

ABSTRACT
Protecting metadata of communications has been an area of ac-
tive research since the dining cryptographers problem was intro-
duced by David Chaum in 1988. The Snowden revelations from
2013 resparked research in this direction. Consequently over the
last decade we have witnessed a flurry of novel systems designed
to protect metadata of users’ communications online. However,
such systems leverage different assumptions and design choices
to achieve their goal; resulting in a scattered view of the desir-
able properties, potential vulnerabilities, and limitations of existing
metadata-protecting communication systems (MPCS).

In this work we survey 31 systems targeting metadata-protected
communications, and present a unified view of the current state
of affairs. We provide two different taxonomies for existing MPCS,
first into four different categories by the precise type of metadata
protections they offer, and next into six families based on the core
techniques that underlie them. By contrasting these systems we
identify potential vulnerabilities, as well as subtle privacy implica-
tions of design choices of existing MPCS. Furthermore, we identify
promising avenues for future research for MPCS, and desirable
properties that merit more attention.

KEYWORDS
privacy, metadata privacy, anonymous communications

1 INTRODUCTION
Individuals from opposite ends of the world communicate seam-
lessly over the Internet using several choices of popular messengers
like Signal, Whatsapp, or Telegram. We innately expect such con-
versations we have over the Internet to have the same privacy as us
conversing with our correspondent in person in a private space. The
Snowden revelations from 2013 [68], however, revealed that this
expectation was fallacious, resulting in a widespread call to arms
within the security and privacy community to proactively resist
mass surveillance [1, 60]. In practice, this eventually culminated
with the adoption of end-to-end encryption as a standard for the
vast majority of communications over the Internet [35, 66, 75]. End-
to-end encryption effectively hides the contents of any communi-
cation between two parties from network adversaries. Nonetheless,
by virtue of how these communications tools operate, they inher-
ently leak the existence of a conversation and the metadata of who
conversed with whom, when, and how much did they converse.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 509–524
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0030

Unfortunately, in the era of global surveillance that we live in, this
metadata might be sufficient for terrible consequences [3, 52].

Free and democratic societies depend on an informed public,
which depends on whistleblowers shedding light on misdeeds and
corruption [13, 68]. Imagine the plight of a whistleblower, faced
with the daunting task of publishing confidential documents that
would expose acts of incompetence, fraud, or inhumane practices
carried out by their government or employer that thrives on de-
ceiving the public. Any action in such a direction often results in
incarceration or risks to their lives [9, 74]. The same is true of indi-
viduals in oppressive regimes whose lives are endangered by their
mere sexual orientation or political stance [26, 59]. Protecting indi-
viduals’ communications requires a communication system with
strong security and privacy guarantees for both data and metadata.

Related Work. In order to tackle the problem of metadata leakage,
various forms of anonymous communication networks (ACNs) with
varying degrees of metadata protections and design goals have been
proposed. In practice users are limited to a few choices like Tor [27]
or I2P [78]. These systems are designed to enable their users to
protect their communications from a local eavesdropping network
adversary like the user’s Internet Service Provider (ISP). These
systems have low latencies, but they are innately susceptible to
traffic analysis attacks by a global passive network adversary. More-
over, recent attacks have surfaced that make a Tor user’s Internet
usage susceptible to privacy breaches by even local network adver-
saries [37, 54, 73]. Cwtch [43] internally leverages Tor’s v3 onion
services protocol to facilitate peer-to-peer communications, and
consequently inherits the privacy limitations of the Tor network,
and similarly I2P’s threat model too is limited to local adversaries.

Academically, peer-to-peer (P2P) based anonymous communica-
tion networks with varying privacy properties have been designed
and studied [48, 50, 55, 58]. These systems do not provide the de-
sired metadata-protecting guarantees since they too are limited in
their privacy guarantees in the face of a strong global adversary.
Furthermore, several attacks have been demonstrated against such
P2P designs [49, 62, 67, 72]. Most of such early literature focuses on
either designing P2P-based anonymous communication networks
that circumvents some of Tor’s shortcomings (such as its ability
to scale, and the central points introduced in its design), or on
improving DC-net and mixnet based constructions to be more effi-
cient. Earlier surveys on anonymous communication [25, 65] well
cover these aforementioned approaches; these surveys focus on the
routing-level challenges of anonymous communication networks.
However over the last few years there has been a paradigm shift.
Several recent metadata-protecting communication schemes use
radically different approaches than those covered in prior surveys,
to the extent that prior routing hurdles encountered do not apply
anymore.

509

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0030

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

In this work we investigate 31 systems that aim to facilitate
metadata-protecting communications even in the presence of global
network adversaries. To contrast existing works and extract mean-
ingful insights of the status quo, we provide two broad classifica-
tions of these works. Our contributions are:

(1) We classify existing works into four different categories
by the type of metadata privacy guarantees they offer, and
into six different families based on the core techniques that
underpin these works. We then leverage these classifications
to identify tradeoffs induced on such systems by their privacy
guarantees, as well as the inherent limitations and benefits
of the different families of constructions.

(2) Existing works often target different goals. Consequently,
they aspire to different properties and defend against dif-
ferent forms of attacks, resulting in a scattered view of the
desirable properties and potential vulnerabilities of such sys-
tems. In this work, we contrast existing systems under a
unified view of these different facets.

(3) This unified view helps us identify potential vulnerabilities
of existing works, as well as identify promising avenues
for future research of metadata-protecting communication
systems. Additionally, we also highlight subtle but impact-
ful differences in the privacy implications of systems that
leverage the same underlying assumption.

(4) Deployable metadata-protecting messaging systems have
been the aspirational goal of this line of research. We con-
sider this application and highlight factors that hinder such
systems today.

Paper Layout: We first detail our methodology to gather all the
systems we survey in this work in Section 2. In Section 3, we es-
tablish what we mean by a Metadata-Protecting Communication
System (MPCS), and categorize MPCS based on their target func-
tionality and the metadata privacy guarantees they offer. We outline
the properties various MPCS aim to provide in Section 4. We then
provide a high-level overview of these existing MPCS in Section 5,
divided into six families based on the core techniques used; here we
present works within a family together, incrementally exhibiting
the contribution of each system over its predecessor. We then suc-
cinctly systematize all these systems in Table 1, partitioned by the
metadata-privacy guarantee they support. In Section 6, we discuss
the tradeoffs introduced by the different privacy goals, as well as
the tradeoffs inherent to the underlying families. Based on these
discussions, in Section 7 we identify promising directions for future
research for MPCS, and conclude in Section 8.

2 METHODOLOGY
To gather all the works relevant to this SoK, we started with Ex-
press [30] as the seed paper. We then gathered all the works that
were cited by Express, and those that cite Express using Google
Scholar during November 2022. Among them, works that introduce
a new system for metadata-protecting communications (as defined
below) were selected while others where filtered out. This same
process was then repeated transitively for all selected papers, to
finally arrive at the 31 works. Each of these works details a novel
approach towards metadata-protecting communications.

3 METADATA-PROTECTING
COMMUNICATION SYSTEMS (MPCS)

In this work, we define a Metadata-Protecting Communication
System (MPCS) to be any communication system designed with its
threat model accounting for a global network adversary observing
all communications on the network, and protecting (at least one
form of) metadata of its users’ communications. This definition of
an MPCS is intentionally broad, and allows us to capture several
different forms of MPCS designs. We focus on the global adversary
threat model as that is the real-world adversary to combat today in
the context of MPCS. We include systems that are secure even when
a client’s correspondent is adversarial and those that are not [6].
In systematizing existing MPCS, we identify two dimensions that
help categorize existing MPCS, namely functionality and privacy
goals. We first list the different types of functionality and privacy
goals the systems we surveyed target.

Functionality. Existing MPCS are designed to attain either anony-
mous broadcast or end-to-end messaging (E2E). Anonymous broad-
cast protects the sender of a broadcasted message from network
adversaries. End-to-end MPCS protect the conversation relation-
ships of who is communicating with whom on the network, and
possibly even the existence of a conversation.

Privacy Goals. Existing works overload the terms ‘private’ or
‘anonymous’ with different meanings. Kuhn et al. [36] provide a tax-
onomy of themyriad privacy notions attainable in a communication
network. We use their terminology to categorize privacy goals of
existing systems into four, namely: (i) Sender-Message Unlinkability
((𝑆𝑀)𝐿: 𝑆ender-𝑀essage Un𝐿inkability) and (ii) Receiver-Message
Unlinkability ((𝑅𝑀)𝐿) which aim to hide the metadata of who sent
or received somemessage in a system, iii) Relationship Unobservabil-
ity (𝑀𝑂 [𝑀𝐿] short for𝑀𝑂 (𝑆𝑀𝐿, 𝑅𝑀𝐿):𝑀essage Un𝑂bservability
with 𝑆ender-𝑀essage Un𝐿inkability and 𝑅eceiver-𝑀essage Un𝐿ink-
ability) aims to hide the metadata of conversation relationships of
users in the system, and iv) Communication Unobservability (𝐶𝑂)
hides the metadata of even the existence of a conversation.

Contrasting the 31 systems we surveyed fairly poses a challenge
as they have different privacy and functionality goals. Hence we
classifyMPCS into four different categories based on their combined
privacy and functionality goals,1 such that systems within a cate-
gory can be fairly compared. For example, comparing a broadcast
scheme against an end-to-end scheme offers no insights. Similarly
systems that align in functionality but differ in their privacy goals
cannot be fairly compared either. The four categories are:

(1) Sender Unlinkable Messaging Systems (SUMS) [(𝑆𝑀)𝐿,
E2E]: These systems protect the sender and the message they
submit. Typically, clients have a dedicated ‘mailbox’, and
the sender’s message is delivered to its destination mailbox
without leaking which mailbox it was.

(2) Sender Unlinkable Broadcast Systems (SUBS) [(𝑆𝑀)𝐿,
Broadcast]: These are systems designed for metadata-protect-
ed broadcast, and typically operate over epochs. Messages

1While there are eight permutations of functionality and privacy goals, only the four
pairs we detail (plus one more that only appears in the RUS subdesigns) are logically
sound. For instance, broadcast does not pair with relationship unobservability as there
are no relationships to be observed for a broadcast.

510

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

are gathered during the course of an epoch. At the end of an
epoch, the messages are published to a public bulletin board
while hiding the mapping between senders and messages.

(3) Relationship Unobservable Systems (RUS) [𝑀𝑂 [𝑀𝐿],
E2E]: In a RUS, the global adversary can infer the set of
senders and recipients, as well as the number of ongoing
conversations, but they cannot identify any sender-receiver
pair from this pool of active correspondents. We identify
three broad designs for a RUS that start with a system with a
weaker privacy goal, and then boost it to a RUS by enforcing
communication epochs where first each client in the system
sends a message followed by all clients retrieving a message.

(a) Mix Systems (Mix) [(𝑆𝑀)𝐿, (𝑅𝑀)𝐿, E2E]: In these sys-
tems all incoming messages are mixed to break any sender-
message correlations, before they arrive at their destinatio.
From an adversary’s perspective, the senders and receivers
that participate in a round of communication are observ-
able, but the sender-receiver pairs remain hidden.

(b) Sender Unlinkable Messaging Systems (SUMS)
[(𝑆𝑀)𝐿, E2E]: SUMS (discussed earlier) can be converted
into a RUS with the above generic transformation.

(c) Receiver Unlinkable Messaging Systems (RUMS)
[(𝑅𝑀)𝐿, E2E]: In these systems, the sender and the (en-
crypted) message they submit in a round are linkable.
However recipients retrieve messages without revealing
which messages in this round were addressed to them.

(4) Communication Unobservable Systems (CUS) [𝐶𝑂]:
These systems correspond to the highest level of metadata
privacy attainable by Kuhn et al.’s taxonomy, as the global
adversary is unaware of even the existence of a conversation
in such systems. Typically CUS designs attain this high level
of privacy by enforcing rigid requirements on clients. Exist-
ing CUS designs require all clients participating in such a
system to be online at all times and perform predetermined
conversation actions (like sending and receiving dummy
messages) even if they are not currently in a conversation.

4 MPCS PROPERTIES
Informed by the surveyed works, we present several system-level
properties for MPCS, and later we use these properties to contrast
existing schemes. We partition these properties into three cate-
gories, namely Protections, Usability, and Performance.

4.1 Protections
(1) (Server) Robust: In this work we consider the property

of server robustness as the ability of an MPCS to function
correctly while tolerating server churn.2

(2) Anonymity Set (AS) Protection: The anonymity set of
honest clients participating in the system must not be re-
ducible by malicious servers. This property ensures that an
adversarial server cannot perform deanonymization attacks
by controlling the anonymity set. Being able to manipulate
the inclusion or exclusion of clients using an MPCS can place
adversarial servers at a strong vantage point. For instance, in

2Within our definition of robustness, we do not include fairness or guaranteed output
notions of robustness from the secure multi-party computation (SMC) literature.

the extreme case an adversarial server could perform an 𝑛−1
attack [63] to deanonymize a user and their message in a
sender-anonymous broadcast system. This ability to manip-
ulate participation can also be used by servers for targeted
blocking of clients, as captured by the notion of censorship
resistance [2], or the ‘audit attack’ [51].

(3) DoS Resistance: There are broadly two types of DoS attacks
that MPCS aim to protect against, namely:

(a) Resource Exhaustion (RE): Like traditional DoS attacks,
clients can attempt to overwhelm servers through Sybil
messages, precluding honest clients from communicating.

(b) Disruption: In some synchronous systems a client can
potentially submit malformedmessages that disrupt a com-
munication round for all users. Alternatively in asynchro-
nous systems, clients can craft malformed messages that
disrupt the logical database that stores all client messages.

(4) Disconnection Impact: Several MPCS impose liveness as-
sumptions on its users; i.e., they require the set of clients
be the same throughout the operation of the system (until a
reset at which point new clients can be enrolled), and that
these clients never go offline. Alternatively, some construc-
tions do not impose a liveness assumption, but participants
incur privacy penalties when users go offline during a round
of communication. We identify four possible outcomes for
user disconnections (and present the symbols we later use to
denote them): (i) system fails altogether (9), (ii) correspon-
dent leaked (]), (iii) anonymity set reduction (L), and (iv)
temporary anonymity set preservation (≈), i.e., even when a
client disconnects for a small window of time they can still
appear to send and receive messages by offloading this work
to an untrusted server on their behalf.

4.2 Usability
(1) Setup: TheMPCSwe cover do not require clients to have any

IT knowledge or host servers to support metadata-protected
communications, however some systems do have other pre-
requisites of clients. Namely, some systems require (i) clients
exchange information (public keys, pseudorandom addresses,
etc.) out of band (¯), or (ii) out-of-band exchange, plus
clients must participate in a dialing protocol (see Section 4.4)
before they can send actual conversation data (�).

(2) Parallel Conversations: The ability of an E2E MPCS to
support multiple simultaneous conversations for a user.

(3) Asynchronous: Users in an asynchronous system can send
messages to others even if the recipients are not currently
online; such messages can then be retrieved the next time
the recipients connect to the system.

(4) Low Latency: To use an MPCS for messaging, it needs
to have an acceptable messaging latency; i.e., when a user
sends a message it should be delivered to their correspon-
dent (or published) within a reasonable time frame. We set
this acceptable latency to 10 s for a system serving more
than 105 clients, about two orders of magnitude greater than
messaging latencies enjoyed by users today over standard
non-metadata-protecting messengers (supporting billions
of users). It typically takes few seconds for a user to type

511

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

a message, so the idea of a 10 s acceptable latency is that
sending a message should not take too much longer than
creating one for a seamless messaging experience.

4.3 Performance
(1) Horizontal Scalability: The ability of a system to scale as

more users join by adding more servers to the system. In the
context of MPCS, the system needs to be able to scale while
maintaining metadata protections without partitioning the
anonymity set. Later, we will quantify the multiplicative
factor of servers required to scale horizontally such that the
work done per server remains the same when the system’s
user base grows by a factor of 𝑘 .

(2) Client Overhead: The asymptotic computational or com-
munication overheads induced by the MPCS on its clients.

(3) Messages and Message/Compute Complexity: The num-
ber of messages the MPCS can process in a logical round,
and the corresponding message (or compute) complexity
induced on its servers.

4.4 Dialing and Conversation Protocols
Several existing designs for E2E MPCS divide communication into
two subprotocols, namely dialing and conversation protocols. Di-
aling protocols enable an online user Alice to express their desire
to communicate with another user Bob. If Bob is online, and re-
ciprocates this interest, such protocols result in Alice and Bob
establishing a shared secret that they can leverage to facilitate their
metadata-protected conversation. The dialing protocol itself must
also be designed to hide metadata.

Once the shared secret is established by a dialing protocol, Alice
and Bob converse using a conversation protocol. Conversation pro-
tocols typically require the correspondents to have a pre-established
shared secret. Different systems from the literature suggest differ-
ent frequencies of dialing to conversation rounds in the network;
this ratio is typically system- and application-dependent.

The requirement of a dialing protocol is an artifact of designs
that assume a synchronous communication model between users.
In such works a pair of users can enjoy metadata-protected conver-
sations only when they are both online and actively conversing, but
users cannot send messages to an offline user for later retrieval. In
several cases [29, 40, 42, 69, 71] it even hurts the privacy guarantees
of a user, if their correspondent goes offline during a conversation
round or vice versa, as we detail later in Section 7.2. If a metadata-
protecting communication network is asynchronous by design then
it removes the requirement of a dialing protocol to check if their
participant is currently online, as we see later in Section 5.4.

5 EXISTINGWORK
In this section, we provide a high-level overview of the 31 different
MPCS that we survey in this work. We broadly categorize these
metadata-protecting communications systems into six different
families based on the core cryptographic technique that underpins
their security and privacy properties, namely DC-nets, mixnets,
Private Information Retrieval (PIR), Reverse PIR, differential pri-
vacy (DP), and secure multi-party computation (SMC). For ease of
exposition we discuss the various system designs by family here,

but later in Table 1 we present these systems partitioned by the
category of metadata privacy guarantees they offer.

5.1 DC-net Based Systems
The dining cryptographers problem introduced by David Chaum [14]
poses the question of designing communication networks ingrained
with sender and recipient unobservability, and introduced DC-
nets (1988) as a solution. This original DC-net solution envisions a
network with all clients connected to each other without any server
involvement in the protocol; we hence call this an all-client DC-net.
Participants communicate lockstep in a series of rounds, with each
round split into as many slots as there are participants. Only one
participant sends a real message in a given slot of a round, while the
rest of the participants provide “cover” ciphertexts carefully crafted
such that when any participant XORs all the ciphertexts received
in a given slot, they end up with the message of that slot. While
DC-nets guarantee perfect sender and recipient unobservability,
they induce significant communication overheads to do so, as well
as have several constraints that make them impractical to deploy.

For instance, DC-nets are prone to Denial-of-Service or disrup-
tions, when more than one participant attempts to send a real
message in a round. Disruptions are only feasible in certain designs
of metadata-protecting schemes. In particular DC-net based and
reverse PIR based schemes (that we discuss later in Section 5.5) are
susceptible to such attacks, as these underlying techniques enable
clients to influence the contents of other messages in the system.
Dissent [22] (2010) addresses the disruption problem by scheduling
slots for its participants while preserving the anonymity of senders.
They do so by introducing an accountable group shuffle protocol,
the output of the shuffle determines the slot ordering of the round.3

Another fundamental problem with DC-nets is their inability to
scale as they require an all-to-all communication network among all
participating clients. To address this, Wolinsky et al. [77] leverage
the anytrust model in proposing D3 (2012), which converts the
classical DC-net from a fully peer-to-peer network to a client-server
model with𝑛 clients and𝑚 servers. In the anytrust model the clients
need only trust that at least one server from the set of𝑚 servers
behaves honestly.4 The privacy guarantees are upheld even if the
honest server is not the client’s immediate upstream server. The
anytrust model reduces the overheads imposed on a client, as the
client outsources the bulk of its cover ciphertext generation to its
upstream server. Dissent in Numbers [76] (2012) (Dissent v2)
leverages the anytrust assumption from D3 to enable the original
Dissent protocol to support more clients.

While these systems that leverage the anytrust assumption are
efficient, they are still susceptible to disruptions, where malicious
clients deviate from the standard protocol and transmit arbitrary
ciphertexts, which prevents revealing the plaintext for that round.
Hence, D3 and Dissent v2 additionally introduce a retroactive blame
protocol to detect disruptors in a group. However, they cannot
prevent a disruption from happening in the first place. Verdict [23]
(2013) attempts to prevent disruptions by introducing verifiable

3In Dissent, the disruption resistance only applies to the shuffle protocol, but not the
communication protocol itself; i.e., clients misbehaving in the shuffle protocol can
be detected and removed but Dissent cannot protect against clients disrupting the
following communication rounds.
4This is the same trust model as Chaum’s mix networks [15].

512

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

DC-nets. Clients in Verdict submit a proof of correctness to prove
their contribution is well formed. This defence incurs significant
overheads of verifying correctness proofs of all client messages.

5.2 Mixnet Based Systems
Riffle [39] (2016) uses the anytrust assumption as well, but instead
of the servers facilitating a DC-net, they act as a mixnet. The servers
form an ordered chain, and each server performs a verifiable shuffle
on the set of messages it receives in a given round and passes it on
to the next server; hence as long as one of the servers in this mixnet
is honest no information about the ordering of messages is revealed
to any malicious nodes after the honest node in the chain. At the
end of a round the last server publishes all the shuffled messages
thus providing sender anonymity, hence making Riffle a SUBS.

cMix [16] (2016) proposes a fixed cascade of mix servers like
Riffle with the same trust assumption. The key innovation in cMix
is the separation of all the (expensive) public key operations into a
precomputation phase, which allows for lighter computation during
the online phase of the protocol. cMix can serve as a SUBS or a RUS
as these shuffled messages can then be published, or forwarded to
their intended recipient if they have a recipient identifier.

Leibowitz et al. introduced the Anonymous Post-Office Protocol,
AnonPOP (2016), a synchronous mix-cascade network with Post
Office (PO) and mix servers. In AnonPOP, each client has a mailbox
that is maintained by one of the PO servers. Messages in AnonPOP
are onion routed with authenticated encryption through a set of
random mix servers. To retrieve messages, clients send a pull re-
quest (which contains a proof of ownership of the mailbox) to their
mailbox PO through a mixchain, and the PO responds back with the
first message in the client’s mailbox. Their main contributions are
techniques for bad-server isolation, and the notions of request pool
and per-epoch mailboxes that enable limited disconnection of a
client, without complete loss of their sender and recipient anonym-
ity. However, the latter two mechanisms, while efficient defences,
provide only heuristic security.5

Kwon et al.’s Atom [38] (2017) is the first system in this line of
work that has the explicit design goal of horizontal scalability. Atom
is an anonymous broadcast protocol designed for ‘short latency-
tolerant’ messages, enabling anonymous microblogging. The high-
level idea of Atom is to have its servers arranged as a random
permutation network and shuffle clients’ messages as they pass
through the network. Atom uses the square network by Håstad [34],
which can permute𝑚 elements using

√
𝑚 nodes with each shuffling√

𝑚 ciphertexts and connects to
√
𝑚 nodes in the subsequent layer.6

In Atom each logical server in this network is realized by a group
of physical servers such that the anytrust assumption holds over
the group. The number of servers in each group is tuned to ensure
that given the total number of servers, and knowledge that up to a
bounded fraction of them can be malicious, at least one server in
each group should be honest with very high probability. To send a
message, a user picks an entry group and encrypts their message
to the public keys of all servers in that group, and then sends it

5These defences are fragile. They assume honesty of a particular server (as opposed to
any one server of a pool like anytrust), and the defence fails if that server is adversarial.
This leads us to use the term heuristic security.
6This network only requires constant iterations of mixing to produce a near-uniform
random permutation, and in their work they use 10 iterations of mixing.

to all servers in that entry group. Once enough ciphertexts are
available to an entry group, each server in a group shuffles the
ciphertexts and passes them on to the next server. The last server
after shuffling divides the permuted ciphertexts into

√
𝑚 batches,

and passes all the batches back to the first server. Each server then
leverages the out-of-order reencryption property of El Gamal to
partially decrypt their portion from each batch and reencrypt the
ciphertexts to the next group that this batch is destined for. The
last group in the network simply makes the plaintexts available,
completing the anonymous broadcast functionality.

In order to protect against malicious servers that could tamper
with client messages in Atom, Kwon et al. propose two techniques
i) using non-interactive zero knowledge (NIZK) proofs and ii) using
client-inserted trap messages (which turns out to be significantly
faster than using NIZK proofs in practice, but at the expense of
doubling the number of messages in the system). Finally, in order
to prevent the system from being blocked due to server churn they
also propose a fault-tolerant version of their protocol by leveraging
‘manytrust’ groups, which are anytrust groups with at leastℎ honest
servers in each group, such that each group can tolerate up to
ℎ failures by replacing the group’s public key with the key of a
threshold cryptosystem.

XRD [40] (2019) (short for Crossroads) further reduced the over-
heads of shuffling in such mixnet based protocols. XRD aims to
support relationship-unobservable communications and hence is
by design a RUS, unlike the other mixnets schemes discussed so far
that are SUBS that can be extended to a RUS. Each client in XRD
has a unique mailbox associated with them. Servers in the system
are organized into mix chains, and in each round each user sends a
message along ℓ chains. The system is designed such that all pairs
of users have at least one chain in common, and the choice of chains
themselves are publicly computable; in order for this to operate
correctly given 𝑞 chains, clients have to choose ℓ ≈ √

𝑞 chains to
ensure that they have an intersecting chain with every other user.
The high-level idea is that users not communicating send ℓ ‘loop-
back messages’ in a round which return to their mailbox, while if
two users Alice and Bob are communicating in a given round they
replace their common chain with messages for each other instead
of the loopback message. This results in an adversary always ob-
serving each active user’s mailbox receiving ℓ messages in each
round, and they cannot determine whether any two individuals are
actively communicating or not.

The two immediate downsides that arise from this network de-
sign based on chain intersections is that clients effectively have to
send𝑂 (

√
𝑛) messages for 𝑛 users in the system, and given𝑚 servers

each server also consequently has to process 𝑂 (𝑛/
√
𝑚) messages

as opposed to𝑂 (𝑛/𝑚) by other horizontally scalable designs. Addi-
tionally, XRD does not provide (or recommend) a dialing protocol
for their system, and none of the currently existing dialing proto-
cols are appropriate for XRD. However, XRD introduces a novel
technique ‘aggregate hybrid shuffle’ (AHS) to circumvent having to
perform expensive verifiable shuffles, and hence has lower latencies
for each round of communication.

Loopix [56] (2017) takes a significantly different approach. Other
than mix servers and users, Loopix includes special service provider
nodes. The service provider nodes act as entry and exit points of the
network (bookending the mix servers), and clients interface with

513

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

the Loopix system through these nodes. The network itself consists
of mix nodes that are organized in a stratified network topology
with shallow depth, with each node connected to all the other nodes
from its next and previous layer.7 The high-level idea is that users
send each other messages by routing their messages through this
network with source-picked delays from a Poisson distribution
at each of the mix nodes. Mixes and users also generate cover
traffic using a Poisson distribution to thwart passive and active
attacks; consequently the entire system can be viewed as a large
Poisson mixing process, providing it with formal guarantees on its
message delivery and privacy. The service provider plays a semi-
trusted role and maintains clients’ mailboxes. If a client is offline,
their service provider stores the messages destined for that client,
enabling clients to retrieve messages even after they go offline,
making it the only mixnet design with support for asynchrony.

Unfortunately, Loopix relies on trusting its clients’ service pro-
vider nodes. A malicious service provider node can violate receiver
anonymity, as they can observe receivers’ interactions with their
mailbox, and can infer metadata about the messages received. Fi-
nally, while Loopix implicitly leverages the manytrust assumption,
its design has concerning privacy implications when contrasted
with other systems that leverage the same assumption, as we detail
later in Section 6.3.1.

Trellis [41] (2022) introduces an anonymous broadcast system
that is robust to server churn. Their work, however, assumes a syn-
chronous communication network and user liveness (i.e., all users
are online for all rounds of communication). Similar in flavour to
cMix, the high-level idea of Trellis is to lift all the heavyweight pub-
lic key cryptography operations into a one-time path establishment
phase, followed by lightweight message transmission rounds.

In Trellis, Langowski et al. introduce two novel cryptographic
building blocks, namely Anonymous Routing Tokens (ART) and
Boomerang Encryption (BE). Similar to Atom, Trellis leverages a
permutation network to instantiate the mix network. ART enables
a user to generate a publicly verifiable random next server for
routing their message through the permutation network. Given a
chain of servers to onion encrypt a message for (dictated by the
ART at each layer), BE onion encrypts a message in the reverse
path (of the onion encryption chain), and then onion encrypts
this in the forward direction. The resulting ciphertext serves as
a proof of message delivery in onion routing schemes, when the
message in the reverse direction is set to be a random nonce, as
this guarantees that every server along the path decrypted onion
layers correctly and forwarded it to the next server. The interplay
of ART and BE enables honest servers to blame deviant servers if
messages for an ART it is responsible for is missing or faulty, during
both path establishment as well as message broadcast rounds. In
order to recover from such faults, similar to Atom, Trellis leverages
proactive secret sharing to distribute the secret key of each server
in the permutation network across an anytrust group, thus enabling
a substitute server to recover the state of a faulty (or malicious)
server, and resume operations in the event of a blame protocol.

7In its experiments, Loopix uses a network depth of three.

5.3 Differential Privacy Based Systems
These systems start with a mixnet design and further enhance them
by leveraging differential privacy (DP) [28]. However, using DP
implies their privacy guarantees are significantly different from
those of mixnets (as we detail later in Section 6.1), so we treat them
as their own family.

Vuvuzela [71] (2015) introduced this approach of leveraging DP
to noise the adversary-observable variables of a communication net-
work. This allows them to claim via DP that any set of observations
made given a user’s real action is almost as likely as what would be
observed given any other plausible cover story. They apply this DP
principle to build a metadata-protected messaging system using
two protocols: i) a point-to-point conversation protocol, and ii) a
dialing protocol to initiate the conversation.

Vuvuzela consists of a single chain of servers under an anytrust
assumption, which clients communicate through. In Vuvuzela, users
communicate through virtual locations called dead drops. Two con-
versing users send their messages to the same dead drop. Convers-
ing clients are assumed to know each other’s long-term public key
a priori, and the dead drop location is computed for a given round
via a shared secret derived from their public keys and the current
round number. Clients send onion-encrypted messages through the
server chain, to have their message delivered to their desired dead
drop at the last server in the chain. In order to achieve privacy, each
server in the chain after peeling its layer of encryption shuffles all
the messages it receives and forwards it to the next. After all the
messages have arrived at the dead drop (if two arrive at the same
dead drop, they get exchanged), the messages make their way back
through the system in reverse order with each server reversing the
shuffle they performed.

In order to hide the true number of conversations happening in
the system, all users irrespective of if they are actually conversing
or not send a message. Users not participating in a conversation
send messages to a random dead drop. Additionally each server in
the chain also injects two forms of cover traffic: single-message and
pair-message dead drop cover traffic, which hides the true count of
conversing and non-conversing users in the system.

Since Vuvuzela is throttled in scalability by the number of mes-
sages each server has to process as the number of users in the
system grow, Stadium [69] (2017) was designed with the goal of
horizontal scalability. All servers add noisemessages collaboratively
at the start of a round into the system, and throughout the duration
of the round they get processed along with users’ messages by
verifiable processing techniques. In Stadium, the system comprises
two types of mix chains, input chains and output chains, with the
same anytrust assumption held true for each individual chain. Two
users conversing with each other choose a random input chain,
but the same output chain as their messages are destined for the
same dead drop. In order to reduce the overheads of the verifiable
shuffle they extend the hybrid verifiable shuffling techniques from
Riffle [39], and separate verifiable shuffling of large messages onto
shuffle proofs over smaller AEAD keys.

The deviation from Vuvuzela’s design then arises from Stadium’s
phase of distributing messages from input to output chains. In order
to prevent malicious servers from tampering with users’ messages,
servers in an input chain collaborate to compute a hash of the

514

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

messages intended for each output chain and sends the hash to
every server of that output chain. If every server in the input chain
acts honestly, these hashes will be equivalent, and the distribution
phase would have been correctly executed.

Karaoke [42] (2018) further refines the horizontal scalability by
introducing two key techniques, namely efficient noise verification
and optimistic indistinguishability. In Karaoke, Lazar et al. point
out that instead of performing verifiable operations, it is sufficient
to verify that all noise messages inserted into the system still exist
in the system at the end of round. Towards this end they propose
using Bloom filters [10]; each server at each layer in Karaoke’s
topology computes a Bloom filter of all the messages it has received
and sends this to all other servers. The other servers then verify
whether the noise messages they generated appear in the Bloom
filter. If any server indicates that their noise has been lost, the round
is stopped. This circumvents the overheads of verifiable shuffle in
exchange for efficient hash operations.

Instead of each user sending and receiving one message like
in Vuvuzela and Stadium, Lazar et al. observe that if users send
and receive two messages in a round they can appear to be in
a conversation. In this setting, when the adversary is passive or
there are no network outages, the number of dead drop accesses
reveals no metadata about the communication of any pair of users,
since for a pair of users either idling or chatting, there will be two
dead drops both of which are accessed twice. If messages are lost,
however, the adversary may observe a dead drop with a single
access, which reveals some information. Karaoke addresses this
through the addition of noise messages, as in the prior systems.
Interestingly, message loss is detectable by the user in Karaoke
since they can see the messages received back from the server.
Hence, in Karaoke, Lazar et al. make the distinction of “leakage-free”
rounds for rounds where no message loss is incurred. Karaoke’s
leakage-free rounds allow them to improve performance by tuning
the amount of noise messages injected depending on whether the
system is currently experiencing message loss or not.

Barman et al. introduced Groove [8] (2022) which further re-
fines DP-based systems with three main user flexibility options.
The first is oblivious delegations, which enables a user to lever-
age an untrusted service provider to participate in the typically
rigid mechanisms of a CUS; i.e., users can preemptively provide
servers with their messages for some number of future rounds of
communications, which enables these service providers to receive
messages from the users’ correspondents while they go offline.
Upon reconnection, users can retrieve just the messages of interest
by a shuffle-and-select protocol that hides which of the messages
were retrieved. Second, Groove enables users to converse with mul-
tiple correspondents (a system constant of 50) in parallel, and finally
it enables multi-device usage for clients so they can use Groove
over multiple devices, without any privacy leakages that may arise
from lack of synchronization between these devices.

5.4 Private-Read Based Systems
We classify PIR-based systems into private-read and private-write
based systems. Private-read systems leverage PIR in the standard
fashion. Private-write systems use ‘PIR in reverse’ [21] instead, and
hence we call this technique Reverse PIR (RPIR). The high-level

operation of a PIR-based MPCS is that arriving messages are placed
into a data structure, and receivers use PIR to privately read that
data structure without revealing which messages were read.

Pynchon Gate [61] (2005) is one of the earliest works that used
PIR to design private communications; their work proposes a prac-
tical pseudonymous mail retrieval system. Their system consists of
three types of nodes: a nym server, a collator, and distributors. The
nym server is the public-facing end of Pynchon Gate that sends
and receives pseudonymous email. On its own the nym server does
not provide sender anonymity but clients can leverage mix net-
works [15] for sender anonymity. The nym server collects mails
for all the pseudonyms and at the end of every ‘cycle’ passes these
messages to the collator. The collator organizes the mails into a
structure that allows clients to query for their mails. The collator
then distributes this structure across the distributor nodes, and the
clients use Chor’s ℓ-server PIR protocol [19] to retrieve their mail.

Pung [7] (2016) proposed the first PIR-based MPCS and indeed
the first MPCS at all since the original (disruption-prone) all-clients
DC-net that does not rely on an assumption about non-colluding
servers. They treat the problem as a metadata-protected key-value
store, and enable clients to privately retrieve messages from this
key-value store by leveraging the computational PIR (CPIR) scheme,
XPIR [47]. In each round, clients send and retrieve exactly one
message. The key for each message is a random label generated
by a shared secret (established via sharing public keys through
an out-of-band channel), and the value is the encrypted message.
At the end of the round, the Pung server organizes the received
messages into a binary search tree, and clients perform an oblivious
search by labels to retrieve messages of interest to them.

Angel et al. [5] improved the efficiency of CPIR schemes with
SealPIR (2018), by i) reducing the network bandwidth overheads
of CPIR schemes by a novel query compression technique which
reduces the query size from𝑂 (𝑛) ciphertexts to𝑂 (1) for an𝑛-record
PIR database and ii) a data-encoding scheme for multi-query PIR
schemes that allows it to amortize the cost of processing a batch of
requests from a single client. They port these techniques to Pung
to further reduce the network costs and throughput of Pung.

Talek [17] (2020) introduces a private group messaging system
that aims to provide privacy for its users via access sequence in-
distinguishability. Talek’s core abstraction is a private log, that
enables a single writer to share messages with many readers. In
order to convert this to a group messaging protocol, each member
subscribes to the logs of all other group members.

The log itself is hosted by ℓ non-colluding ITPIR servers, and
leverages a blocked cuckoo hash table [53] to improve efficiency.
In Talek, clients issue writes to pseudorandom locations on each
server, where the locations are determined by applying a PRF to a
secret log handle that is shared between the log’s writer and readers.
The cuckoo hash table is parameterized to have 𝑏 buckets, each
with 𝑑 messages in them, which dictates the maximum capacity of
messages 𝑛 in the system to be 𝑏 ×𝑑 . When new messages enter the
system after this maximum capacity, the oldest entries are evicted
from the bucket they get assigned to. Hence, unlike other metadata-
protecting communication systems Talek has to be parameterized
first to set this value of 𝑛, 𝑏, and 𝑑 to trade off the time-to-live (TTL)
for each message in the system with the latency of each PIR request.

515

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

Their other core contribution is a private notification system via
Bloom filters [10], which allow users to check which of their sub-
scribed logs have updates with significantly lower overheads than
performing a PIR request. This allows users to poll their subscribed
logs periodically and perform PIR requests efficiently.

5.5 Private-Write Based Systems
In contrast to systems from the previous section, instead of leverag-
ing PIR to retrieve amessage from a collection of messages privately,
RPIR systems use PIR to insert a message into a collection privately.
Corrigan-Gibbs et al. introduced this idea with Riposte [21] (2015),
a novel design for anonymous broadcast, allowing clients to anony-
mously post messages to a shared ‘bulletin board’, maintained by a
small set of non-colluding servers. Riposte effectively implements
a write-private and disruption-resistant database scheme.

In Riposte’s efficient variant, two of the three servers act as ITPIR
servers that the client issues requests to, while the third is an ‘audit’
server that participates in an MPC protocol to ensure clients submit
well-formed requests. The system operates in epochs, and at the end
of every epoch the Riposte servers publish all the write requests
they received during an epoch, providing each honest client an
anonymity set of honest clients that participated in that epoch. The
two servers together hold a logical database, and each client aims
to anonymously drop messages into a slot in this database.

Since clients drop messages into a random slot via private writes,
collisions could render messages unreadable. Corrigan-Gibbs et al.
address this issue in two ways: i) tuning the size of the database
table to be large enough to accommodate the expected number of
write requests for a given success rate, and ii) introducing a novel
technique to recover from collisions at the expense of storage. Given
the expected number of messages in an epoch, these two techniques
can be tuned to set a database size that imposes the least overheads
for the PIR scheme. Finally, in order to improve the bandwidth
efficiency of the PIR scheme, they propose using Distributed Point
Functions [32] (DPFs) to reduce the asymptotic overhead of client
requests from 𝑂 (𝐿) to 𝑂 (

√
𝐿), where 𝐿 is the number of entries in

the database (set by the tuning described earlier).
Express [30] (2021) details a metadata-protecting messaging

system that only incurs constant-factor overheads on the client
side regardless of the number of users. Express is a natural exten-
sion of Riposte, and similar to Riposte leverages a non-collusion
assumption among the two servers of the system. Unlike Riposte,
in Express all participating recipients have their own individual
mailbox. Hence Express does not operate in epochs, since messages
can only be read by their recipient, making it the first asynchronous
metadata-protecting communication system that leverages PIR.

The key developments in this work are the utilization of a more
efficient DPF scheme[12], and using Secret-shared Non-Interactive
Proofs (SNIP) [11, 20] instead of the more expensive zero knowledge
proof that was used in Riposte for auditing the client-submitted
DPFs. The former reduces their client-side overhead to logarith-
mic in the number of mailboxes, instead of square root. However,
in addition they propose using a virtual address space of 2_ for
mailboxes, and senders need to know their recipient’s virtual and
physical mailbox address in order to send messages, making the

client overhead 𝑂 (_). This virtual address trick enables Express to
prevent targeted disruption attacks.

More recently, Vadapalli et al.’s Sabre [70] (2022) illustrated how
both Riposte and Express are susceptible to resource exhaustion
(RE) attacks. Although they both defend against ill-formed DPFs, an
RE attacker can still submit well-formed DPFs that write to a non-
existentmailbox resulting in the server having to perform expensive
𝑂 (𝑛) operations for an effective no operation, yielding a DoS attack
with an exponential amplification factor as the client work is 𝑂 (_ ·
log𝑛) lightweight operations. In the process of defending against
this form of resource exhaustion DoS attack, Sabre also succeeds at
fundamentally speeding up the message delivery protocol.

The improvement arises from Vadapalli et al.’s observation that
mailbox address verification (i.e., verifying that a client is writing a
message to a valid mailbox in the system) can be performed sep-
arately from message delivery. This allows, for 𝑛 users, the use
of smaller 𝑂 (log𝑛) instead of 𝑂 (_) sized DPF keys that Express
uses for message delivery (this is better since in practice log𝑛 ≪ _

typically). However, one still needs to performmailbox address veri-
fication, and to this end Vadapalli et al. provide two novel protocols,
the more efficient one of which is an 𝑂 (_) protocol. Only if that
check passes, the audit protocol then ensures the well-formedness
of the DPF, for which Sabre has another innovation enabling servers
to only perform 𝑂 (_ · log𝑛) work, thus removing the DoS ampli-
fication factor, unlike Express where the server has to perform
𝑂 (_ · 𝑛) work. In concrete performance their experiments show
that their optimizations result in a significant multiplicative factor
improvement under “good” write conditions (i.e., no malicious DoS
attacker writes), with this performance gap widening up to one to
two orders of magnitude as the ratio of bad to good writes increases.

Newman et al.’s Spectrum [51] (2021) solves a closely related yet
slightly different problem of high-bandwidth anonymous broadcast.
Their setting considers a small number of broadcasters that wish to
share documents or large files with many subscribers by leveraging
two or more non-colluding servers. Unlike the previous systems
discussed so far, by limiting the number of broadcasters to 𝐿 out of
𝑛 participants (broadcasters + subscribers) they succeed at reducing
the server-side computations to𝑂 (𝐿) per message write, while still
providing these𝐿 broadcasters an anonymity set of all𝑛 participants.
The trick lies in allocating one ‘channel’ (synonymous to mailboxes
from Riposte and Express) to each of these 𝐿 broadcasters, with
the broadcaster having a credential that allows them to publish
to this channel. The messages to the channels leverage the same
DPF-based technique discussed for Riposte and Express, with the
only difference being the share of one’s credential being sent along
with the DPF key share to each server. The subscribers too can
submit message writes which are intended for any of the channels,
however these writes are strictly zero entries.

Additionally, Newman et al. also point out that Riposte, Express,
(and Sabre) are susceptible to malicious servers selectively dropping
valid client messages to perform selective deanonymization attacks.
To address this they design BlameGame, an audit protocol that helps
the honest servers detect if any of the other servers are deviating
from their protocol, by having clients send their message shares
encrypted under a verifiable encryption scheme to each server and
having all servers commit to the message share they used, allowing
the servers to implicate a malicious client or server.

516

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

5.6 Secure Multiparty Computation (SMC)
Based Systems

MCMix [4] (2017) recasts the problem of metadata-protected com-
munication as a SMC consisting of dialing and conversation func-
tionalities. The system operates in rounds; at the end of each con-
versation round conversing users have the messages they sent into
the system swapped. To do so, users interested in conversing es-
tablish their intent via the dialing protocol, which allows them to
establish a dead drop location for the next (possibly several) com-
munication rounds. This dead drop location is a 64-bit address that
can be generated by both participants by a hash function via their
shared secret and the current conversation round. Once all mes-
sages for a communication round have been gathered, the servers
perform an SMC protocol that obliviously sorts all the messages
by the dead drop addresses and swaps adjacent messages that are
destined for the same address. This oblivious sort is in fact the
crux and bottleneck of their protocol, and they leverage the “shuffle
before sort” paradigm from Hamada et al. [33], which results in an
overarching 𝑂 (𝑛 log𝑛) complexity for both their conversation and
dialing protocols when there are 𝑛 participants.

Clarion [29] (2021) designs an improved three-party malicious
secure shuffle protocol, and shows how it can serve as an anony-
mous broadcast channel by having the servers publish the secret-
shared shuffled messages at the end of the shuffle. Clarion details a
simple mechanism to use such an anonymous broadcast channel
as a drop-in replacement for the conversation protocol in MCMix.
Instead of having conversation participants send messages to the
same dead drop address, they now send messages addressed with
two unique dead drop locations derived from the same shared se-
cret, one for each direction of the conversation. At the end of the
broadcast, each client retrieves the location their correspondent
would have written to, and clients that are not in an active con-
versation retrieve the same random location they wrote to. Since
every client still always sends and retrieves a single message iden-
tified by a random address tag, the behaviour of clients having a
conversation remains indistinguishable from the other clients. Clar-
ion’s improvement stems from the fact that the new secret-shared
shuffle protocols are 𝑂 (𝑛) protocols, saving a log𝑛 factor over the
oblivious sort underlying MCMix.

Lu et al. presentAsynchromix and PowerMix [45] (2019). They
propose techniques to provide robustness guarantees to SMC proto-
cols, without incurring the additional overheads of malicious-secure
SMC protocols. They aim to support fairness and guaranteed out-
put, in addition to the notion of robustness we consider in Section 4.
The high-level idea for both designs is to have each server in the
system obtain a share of each client’s message, mix the message
shares, and reconstruct the messages once the mixing has disassoci-
ated the clients and their messages. To receive valid message shares
from clients without the overheads induced by Verifiable Secret
Sharing [57], Lu et al. propose clients blind their message before
broadcasting it to the servers. The blinding value is provided by the
servers; each server provides a share of a random blinding value to
the client, and clients reconstruct and blind their messages with it.
Once the client broadcasts their blinded message, the servers repro-
duce shares of the original message by removing their share of the
blind from it. Asynchromix [45] has𝑂 (log2 𝑛) round complexity as

it leverages 𝑂 (log𝑛) rounds of iterated butterfly networks (which
have depth𝑂 (log𝑛) towards mixing the messages. This results in a
protocol with𝑂 (𝑚𝑛 log2 𝑛) communication and computation costs.
Alternatively, PowerMix [45] only has 2 rounds of communication,
but incurs significantly more computation. PowerMix leverages
Newton’s sums instead of a shuffle network. In order to mix a batch
of 𝑛 messages, the servers compute the powers of each share of
the message from 1 to 𝑛 and then compute the sums of each power.
This can be computed with a single round of communication by
using precomputed powers of random secret-shared values. The
servers then reconstruct the sums of each power publicly, and then
solve for the set of messages.

Blinder [2] (2020) leverages SMC towards enabling robust anony-
mous broadcast. Blinder aims to limit the ability of malicious servers
to block honest clients from submitting their messages, and refers
to this property as censorship resistance, effectively preventing the
system from reducing the anonymity set offered by honest clients.
Blinder is based on Shamir secret sharing [64], and leverages the re-
cent observation of an efficient ‘sum of products’ gate [18]. Blinder
reuses the server-side storage layout and collision handling tech-
niques from Riposte. Clients compress their queries in a fashion
similar to recursive PIR [19] to reduce the communication over-
heads, and the servers perform a format verification on the com-
pressed query. Censorship resistance is achieved via a robust input
sharing protocol that prevents malicious servers from discarding
(more than a small number of) honest client messages.

RPM [44] (2022) proposes three schemes for anonymous broad-
cast. Their idea is to generate a permutation matrix to shuffle the
client messages in a round. Each server picks its own permuta-
tion matrix, and secret shares it with the rest. All servers multiply
these shared matrices to get the final permutation matrix. The first
scheme requires an inner product SMC computation in the online
phase, and the second removes this by shifting it into an offline
phase. Both variants require constructing and multiplying 𝑛-by-𝑛
matrices for 𝑛 client messages in the offline phase, which is prohib-
itive for large 𝑛. The third variant repurposes the first two schemes
as building blocks, by using them as the nodes of Håstad’s permuta-
tion network [34], resulting in offline creation and multiplication of
a constant number of permutation matrices of size

√
𝑛-by-

√
𝑛. The

first two variants are limited in scalability as they incur complexity
cubic in the number of clients, while the third variant brings down
the online computation complexity to 𝑂 (𝑛1.5).

6 DISCUSSION
We succinctly summarize all the works we detailed in Section 5 into
Table 1, partitioned by the type of metadata privacy guarantee these
systems achieve, and highlighting the properties from Section 4. The
table also contrasts each scheme’s asymptotic communication and
computation complexities, and any dialing or offline computation
overheads induced as well. We refrain from comparing concrete
performance numbers here as each proposed system uses their own
experimental setup for evaluating their prototype implementations.
Appendix A provides details on the performance numbers reported
by these works for a better sense on practicality of these schemes,
which is not immediate from the underlying complexities.

517

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

System

Year

Type

Family

Assumption

Robust
AS Protection
RE ResistantDisruption

ResistantDisconnection

Impact
Setup
ParallelConversations
AsynchronousLow LatencyHorizontally

Scalable
AuditComplexity
ClientOverhead

Message
[Compute if

different]
Complexity

Messages

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Protections

U
sability

Perform
ance

Vuvuzela
[71]

2015
CU

S
(M

ix)
D
P

(1
:
𝑚
)-S:D

P
L

�
×

𝑚
𝑛
·𝑚

+
𝑛
·𝑚

𝑛

Pung
[7]

2016
CU

S
(RU

M
S)

PIR
RLW

E
L

�
𝑘

2
×

𝑛
𝑛

2+
𝑛

1
A
nonPO

P
[31]

2016
CU

S
(M

ix)
M

𝑓-S:D
P

≈
¯

𝑘
×

ℓ
𝑛
·
ℓ

𝑛

Stadium
[69]

2017
CU

S
(M

ix)
D
P

𝑓-S:D
P

L
�

𝑘
×

ℓ
(𝑛

+
𝑚
𝑑)·𝑚

𝑑
+
𝑛
·
ℓ+

𝑚
3

𝑛

M
CM

ix
[4]

2017
CU

S
SM

C
(1

:3)-S
L

�
×

1
𝑛
·log

𝑛
+
𝑛
·log

𝑛
𝑛

SealPIR
[5]

2018
CU

S
(RU

M
S)

PIR
RLW

E
L

�
𝑘

2
×

𝑛
𝑛

2+
1
[𝑛

+
𝑛]

1
Karaoke

[42]
2018

CU
S
(M

ix)
D
P

𝑓-S:D
P

L
�

𝑘
×

ℓ
(𝑛

+
𝑚
𝑑)·𝑚

𝑑
+
𝑛
·
ℓ+

𝑚
3

𝑛

X
RD

[40]
2019

CU
S

M
𝑓-S

L
�

𝑘
2

×
√
𝑚

𝑛
2+

𝑛
· √

𝑚
1

Clarion
[29]

2021
CU

S
SM

C
(2

:3)-M
A

]
�

×
1

𝑛
·log

𝑛
+
𝑛

𝑛

G
roove

[8]
2022

CU
S
(M

ix)
D
P

𝑓-S:D
P

≈
�

𝑘
×

ℓ
(𝑛

+
𝑚
𝑑)·𝑚

𝑑
+
𝑛
·
ℓ+

𝑚
3

𝑛

D
C-nets[14]

1988
CU

S/SU
BS

D
C

N
one

9
¯

×
𝑛

𝑛
2[𝑛]

1
D
issent[22]

2010
CU

S/SU
BS

D
C

N
one

9
¯

𝑛
3

𝑛
𝑛

2
+
𝑛

2
[𝑛

2
+
𝑛]

1
D
3/D

issentv2
[76,77]2012

CU
S/SU

BS
D
C

(1
:
𝑚
)-S

L
¯

𝑛
2·𝑚

𝑚
𝑛
·𝑚

+
𝑛
·𝑚

1
Verdict[23]

2013
CU

S/SU
BS

D
C

(1
:
𝑚
)-S

L
¯

𝑛
2·𝑚

𝑚
𝑛
·𝑚

+
𝑛
·𝑚

1
Riposte

[21]
2015

SU
BS

RPIR
(2

:3)-S
L

×
9

𝑘
2

𝑛
√
𝑛

√
𝑛
[𝑛]

1
Riffl

e
[39]

2016
SU

BS
M

(1
:
𝑚
)-S

L
×

9
×

𝑚
𝑛
·𝑚

𝑛
cM

ix
[16]

2016
SU

BS
M

(1
:
𝑚
)-S

L
×

×
𝑚

𝑛
·𝑚

𝑛

A
tom

[38]
2017

SU
BS

M
𝑓-S

L
×

9
𝑘

×
1

𝑛
·𝑚

𝑛

A
synchroM

ix
[45]

2019
SU

BS
SM

C
(2𝑛/3

:
𝑛)-M

L
×

9
×

𝑚
𝑚

·
𝑛

2·log 2
𝑛
+
𝑚

·
𝑛
·log 2

𝑛
𝑛

Pow
erM

ix
[45]

2019
SU

BS
SM

C
(2𝑛/3

:
𝑛)-M

L
×

9
×

𝑚
𝑛

2
+
𝑚

·
𝑛
[𝑛

2
+
𝑛

3+
𝑚
]

𝑛

Blinder[2]
2020

SU
BS

SM
C

(3𝑛/4
:
𝑛)-M

L
×

9
𝑚
· √
𝑛
𝑚
· √
𝑛
𝑚
·𝑛·log

𝑛
+
𝑚
·𝑛

[𝑚
·𝑛·log

𝑛
+
𝑛

2]
𝑛

Spectrum
[51]

2021
SU

BS
RPIR

(1
:
𝑚
)-S

L
×

9
1

𝑚
𝑚

[𝑚
·𝑏]

1
Trellis[41]

2022
SU

BS
M

𝑓-M
9

×
9

𝑘
×

log
𝑚

𝑛·log 2
𝑚

+
𝑛·log

𝑚
[𝑛·𝑚

]
𝑛

RPM
[44]

2022
SU

BS
SM

C
(3𝑛/4

:
𝑛)-M

L
×

9
×

𝑚
𝑚

·
𝑛

1
.5
+
𝑛
[𝑚

·
𝑛

2
+
𝑛

1
.5]

𝑛

Sabre
[70]

2022
SU

M
S/SU

BS
RPIR

(1
:2)-S

L
¯

𝑘
2

log
𝑛

log
𝑛

1
[𝑛]

1
Express[30]

2021
SU

M
S

RPIR
(1

:2)-S
L

¯
𝑘

2
𝑛

_
1
[𝑛]

1
M
ixnets[15]

2003
RU

S
(M

ix)
M

(1
:
𝑚
)-S

9
×

×
𝑚

𝑛
·𝑚

𝑛
Pynchon

G
ate

[61]
2005

RU
S
(RU

M
S)

PIR
(1

:
𝑚
)-S:TTP

L
×

×
𝑛·𝑚

𝑛
·𝑚

1
Loopix

[56]
2017

RU
S
(M

ix)
M

𝑓-S:TTP
L

¯
𝑘

×
1

ℓ
1

Talek
[17]

2020
RU

S
(RU

M
S)

PIR
(1

:
𝑚
)-S

L
¯

×
𝑚

𝑛
·𝑚

1
Table

1:(I)N
otation:(i)Fam

ily:D
C
=
D
C
-nets,M

=
M
ixnets,R

PIR
=
R
everse-PIR

,D
P
=
D
iff

erentialPrivacy,SM
C
=
Secure

M
ultiparty

C
om

putation.(ii)Variables:
𝑛=#clients,

𝑚
=#servers,𝑚

𝑑 =#servers
in

dialing
protocol,

𝑓=fraction
of

m
alicious

servers,
ℓ=#servers

on
an

anytrustchain
(ℓ=

𝑔(𝑓
,𝑚

)
w
here

𝑔
depends

on
the

system
design

to
ensure

thatat
leastone

server
in

every
anytrustch

ain
is
h
onest),

𝑏=#broadcasters.(iii)A
ssu

m
ptions:T

T
P:T

rusted
T
h
ird

Party.R
LW

E:R
ing

Learning
W

ith
Errors.(𝑥

,
𝑦)-T

:A
tleast

𝑥
of

𝑦

servers
should

be
honest,w

ith
servers

of
type

T
:S

-Sem
ihonest,M

-M
alicious,M

A
-M

alicious
butA

vailable.
𝑓-T

:A
tm

ostfraction
𝑓
of

𝑚
servers

can
be

m
alicious,w

ith
servers

of
type

T.(iv)D
isconnection

Im
pact:

9
:system

fails,]
:correspon

den
t
leaked,L:an

on
ym

ity
set

reduction
,≈

:tem
porary

an
on

ym
ity

set
preservation

.(v)Setu
p:

¯
:clien

ts
exchange

inform
ation

outof
band,�

:
¯

+
dialing

protocol.(vi)Perform
ance:D

ialing
or

shuff
ling

(for
slotscheduling)costs

in
blue.Preprocessing/off

line
costs

in
gray.

(II)M
eanings

of
:(i)R

obust:non-robustoff
line

phase.(ii)D
isruption

resistant:disruption
resistantscheduling,butnotconversations.(iii)A

synchronous:T
he

R
U
S
underlying

Pung
and

SealPIR
is
asynchronous,butas

a
C
U
S
itis

notasynchronous.G
roove

allow
s
users

to
disconnectfor

a
sm

allconstantnum
ber

of
rounds.Loopix’s

asynchrony
has

a
privacy

expense
(Section

5.2).Talek
asynchronous

m
essages

can
be

lostby
its

design
(Section

6.5).
(III)T

he
blue-dashed

box
highlights

the
three

crucialproperties
required

for
a
m
etadata-protecting

m
essaging

system
as

w
e
discuss

in
Section

6.4.

518

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

6.1 Tradeoffs Between Families
DC-nets are the oldest line of work towards metadata-protecting
communications, and can easily be adapted for use towards E2E
or broadcast applications. Interestingly, DC-nets innately achieve
a CUS by design. Unlike the other systems that attain a CUS by
padding up with cover traffic as we discuss later in Section 6.2.4,
the notion of cover traffic in these systems is implicit in the design.
The primary weakness of DC-nets are its susceptibility to disrup-
tions, and the works we detail in Section 5.1 aim to address that.
Furthermore, DC-nets are inherently synchronous, and have poor
scalability in spite of three decades of research scrutiny.

Meanwhile mixnets have shown incredible promise over the
years. While earlier designs like Riffle and cMix lacked the ability
to scale, more recent designs like Atom, Loopix, and Trellis provide
horizontally scalable constructions. Moreover, some of the recent
constructions like Atom and Trellis are even robust. The main
shortcomings of this family are its inability to support asynchronous
messaging. While Loopix supports asynchrony, it does so at the
expense of a stronger trust assumption, namely trusting the service
provider node that clients attach to.

The DP-based family can scale horizontally as well as support
significantly lower latency than most prior metadata-protecting
communication systems. However, this is achieved at the expense
of shifting the underlying privacy guarantee; namely, these works
provide differentially privatemetadata-protections rather than cryp-
tographic ones. This shift in privacy guarantee has two significant
drawbacks. First, DP guarantees are based on the probability gap
between two possible scenarios (the user sending a real message or
a dummy message), and users gain their metadata protections by
being able to provide a ‘plausible cover story’ to deny their actual
action. However, this gap may be sufficient for certain adversaries
to act upon. Second, the degree of privacy attained by a user is
dependent on the number of rounds in which they participate. The
more rounds a user participates in, the more their privacy degrades.
Eventually with enough number of rounds they exhaust the allo-
cated privacy budget with which the system was designed, at which
point the privacy guarantees are unclear.

On the other hand, the PIR-based (private read) and RPIR-based
(private write) families to their merit can support asynchrony, but
have poor horizontal scalability and no support for robustness.
Their design and experiments are limited to the 2 or 3 server settings,
and as the number of users in these system increases they are
computation bound by each of these servers. Designs from the SMC-
based family lack the ability to scale horizontally. However, recent
works from the SMC-based family [2, 44, 45] address anonymity
set protection, a property that has received hardly any attention.

6.2 Tradeoffs Within Categories
6.2.1 SUBS. Existing SUBS constructions stem from all but DP and
PIR families as observed in Table 1; the merits of DP and PIR simply
do not align with the goal of SUBS and hence this is unsurprising.
Amongst existing SUBS, RPIR based constructions (in particular
Sabre) outperform other works by orders of magnitude in terms of
concrete latency as detailed in Appendix A, but unfortunately do
not support robustness, anonymity set protections, or horizontal
scalability. Fortunately, recent SUBS constructions from the SMC

family (like Blinder) have focused on robustness and anonymity set
protection, and achieve these goal albeit at the cost of performance.
Unfortunately, almost all existing SUBS as seen from Table 1 fall
short of being able to scale horizontally, except the mixnet designs
Atom and Trellis. However, both these designs achieve horizontal
scalability at the expense of significant latency overheads in Atom,8
and in Trellis at the expense of a rigid immutable set of users who
are assumed to be online at all times.

6.2.2 CUS. As evidenced by the table, almost all CUS designs from
the literature require either a shuffle (DC-net schemes) or a dialing
protocol from its participants prior to any actual communication,
which lower bounds the latencies they can achieve.9 Furthermore,
the only horizontally scalable constructions for CUS arise from the
DP family, with the exception of XRD, a mixnet CUS design that is
horizontally scalable. However, XRD has weaker scalability than
that of the DP family as described earlier in Section 5.2. The other
immediate observation from the table is the lack of asynchronous
designs for CUS. However, this lack of asynchrony is in fact a
conscious design choice for CUS for two reasons: i) it is easier to
analyze metadata protections under a synchronous communication
assumption, and ii) having all users synchronously communicate
in all rounds of communication circumvents statistical inference
and intersection attacks [24, 46] that prior ACNs fall prey to.

6.2.3 RUS. As we mention in Section 3, there are three broad
directions one can employ to achieve a relationship unobservable
system, namely SUMS, RUMS, andmixnets. A RUS based onmixnets
is synchronous and in fact provides the exact metadata privacy
purported by the definition of a RUS, as messages from all senders
during a round get mixed before they are distributed to the intended
recipients; this allows an adversary to infer the exact set of senders
and recipients in a round of communication. This is permissible
by definition of a RUS; recall that the goal is to hide the pairwise
sender-recipient relationships.

On the other hand, SUMS and RUMS constructions leverage PIR
(in the form of PIR-writes and PIR-reads respectively), and hence
innately support asynchrony. In SUMS, senders send their message
into one mailbox amongst the pool of all possible registered mail-
boxes within the system. These systems do not have a notion of
communication rounds; a recipient checks their mailbox periodi-
cally to retrieve any messages they may have received.10 Hence this
style of RUS innately benefits from a larger anonymity set (of all
possible clients registered in the system) for the recipients, instead
of just the true recipient set as in mixnets.

While RUMS has a notion of rounds, recipients in RUMS retrieve
messages from the pool of all submitted messages within a round
in a fashion that hides the message that they retrieved. Provided all
clients in the system attempt to retrieve a message in every round
(irrespective of whether they have real messages to retrieve or not),
like SUMS, RUMS systems too can support a larger anonymity set
for its recipients. This suggests that realizing a RUS via SUMS or

8For instance, with 2 million users transmitting a tweet-length message takes about
30 minutes.
9The exception is AnonPOP, for which each client has a designated mailbox as we
detailed in Section 5.2.
10The guidance provided by existing works consequently is that recipients do so in a
predictable fashion, agnostic of the underlying real communication pattern.

519

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

RUMS in fact provides better metadata privacy guarantees than the
definition of a RUS, since the recipient anonymity set is always the
set of all possible clients (that have mailboxes) in the system, and
is agnostic of the true recipient set for any batch of messages.

6.2.4 RUS + Cover Traffic = CUS. CUS provides the highest level of
metadata protections feasible in a communication network. How-
ever, attaining this in practice is non-trivial, and as mentioned
earlier typically requires that all participants of the system send
and receive messages at all times so as to essentially provide cover
traffic for any actual ongoing conversations. RUS on the other hand
can be viewed as a relaxation of CUS without the stringent require-
ment of all users being online (and pretending to converse) at all
times, at the expense of weaker metadata-privacy guarantees and
susceptibility to intersection attacks. The gap between these two
categories can be bridged by some trivial impositions on the clients
of the system, and boils down to having sufficient cover traffic at
all times. Any RUS design can trivially be converted into a CUS by
requiring that all clients in the system send and receive a (dummy,
if they do not have a real) message within an allocated time frame.
This is in fact the case with several existing works [4, 5, 7, 29, 40],
for which we mention the underlying RUS type in Table 1. We note
that the two partially asynchronous statuses in the table, for Pung
and SealPIR, stem from the fact that the underlying RUS that is
converted into a CUS does support asynchrony.

6.3 Limitations of Security Assumptions
Amongst the pool of assumptions that have been leveraged towards
constructing MPCS, traditional all-clients DC-nets assume the least,
as the protocol requires no servers (nor any server assumptions
consequently); while clients could be malicious and could DoS the
system, they cannot subvert metadata privacy. However, scaling DC-
nets requires moving to the anytrust assumption. Assumptions that
are based on splitting trust across multiple entities, either anytrust,
or non-collusion amongst servers, are hard to realize in practice
and moreover dangerous as these trust assumptions can be silently
subverted, endangering the privacy of all users of such systems.
This makes systems designed on top of CPIR (with assumptions
like RLWE) significantly more desirable in practice from a privacy
standpoint. Unfortunately such systems are computationally ex-
pensive and consequently incur prohibitively high latencies for
message delivery; additionally, currently proposed schemes from
these families lack horizontal scalability.

6.3.1 The Many Manytrusts. There is a silent but concerning dif-
ference in the metadata privacy guaranties attained by the different
manytrust systems we detailed in Section 5. While on the surface
they all require 𝑓 out of𝑚 servers being honest, and seem equiva-
lent in their trust and privacy implications, the way in which these
servers are used dictates if metadata privacy guarantees are upheld
or not. For instance, Atom’s manytrust assumption hopes to dis-
tribute at least one of these 𝑓 honest servers into each group that
realizes a logical node in the permutation network used to route
messages. Consequently to subvert even a single user’s message,
the adversary would have to subvert at least one entire path on the
entire permutation network; since Atom reuses the nodes of the

permutation network, this means the adversary would have to effec-
tively subvert all the anytrust groups in the system to deanonymize
any traffic.11 Hence, this is the strongest privacy guarantee one can
extract under the manytrust model, as unless all manytrust groups
are subverted, clients’ metadata privacy guarantees are upheld.

A weaker variant of manytrust is achieved by designs like XRD,
Stadium, and Karaoke, that leverage multiple anytrust groups in
isolation for manytrust. Recall in XRD, the manytrust assumption
arises from leveraging anytrust assumption over each chain of
servers. Hence subverting even one chain of servers that depends
on anytrust for its metadata privacy results in the adversary being
able to undermine metadata privacy of all communications over
that particular chain. Similarly for Stadium and Karaoke, the system
creates several input and output chains each of which leverage the
anytrust assumption, resulting in the manytrust assumption. In
this setup, any adversarially controlled input and output chain pair,
leaks the metadata of all communications that use these two chains.

The manytrust assumption is at its weakest in Loopix due its
stratified network structure, which implies messages get mixed
over a few hops of mixing relays. Hence leveraging the same trust
assumption of 𝑓 servers out of all the 𝑛 servers in the system be
honest, results in an uneven privacy distribution as some subset of
conversationswill have all servers on their hop path be adversarially
controlled, resulting in no metadata privacy guarantees.

6.4 Application: Metadata-Protected Messaging
TheMPCSwe cover in this work have been designedwith two broad
application goals, namely anonymous broadcast and metadata-
protected messaging. While most of the existing CUS schemes
have been proposed towards messaging, we observe that the vast
majority of these schemes do not achieve low enough latencies to
be a practical messaging system. In order to be usefully deployable,
a messaging system requires at least three fundamental properties:
(i) low latency, (ii) support for asynchrony, and (iii) horizontal scal-
ability. Table 1 highlights systems that have low latencies (even
with a generous definition of ‘low latency’), and we observe that
only eight systems achieve this.12

Out of these eight systems, Pung, SealPIR, Express, Riposte, and
Sabre (the RPIR and PIR based schemes) all have a fundamental
problem that messages are processed sequentially; i,e, this low la-
tency is only true if one user submits a message and others do not. If
all users submit their messages at the same time, each message has
to be processed sequentially and users would experience significant
delays in delivering their messages. Furthermore, their horizontal
scalability is quadratic in the amount of user growth (𝑘2× as seen
in the table for an increase of 𝑘× users). So while these five systems
support asynchrony, their low latency has the drawback of poor
throughput, and subpar horizontal scalability. Loopix on the other
hand has low latency and high throughput, but their asynchrony is
at the expense of a trust assumption as detailed in Section 5.2, and
additionally as we mentioned in Section 6.3.1 their design has an
uneven privacy distribution. Finally, Karaoke and Groove support

11Although if they accomplish this, they get to deanonymize all traffic in the system.
12Loopix has a partial marker for messaging latency, as their implementation only
demonstrates a < 2 s latency with 500 clients, but the design of the system suggests
that even as users grow the latency should not increase significantly more, as the route
length remains same with more servers to distribute traffic over.

520

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

messaging with low latency and high throughput, and horizontal
scalability, but fall short of supporting asynchrony. Groove pro-
poses novel directions for temporary disconnection of users (a form
of partial asynchrony), permitting users to go offline for a small
constant number of rounds after which they can no longer receive
messages. We see from our systematization that there is a clear
dearth of MPCS designs that can simultaneously achieve these
three fundamental properties, and we hope that this prompts future
research to focus on such constructions.

6.5 Asynchronous Message Storage
In the RUS and CUS designs that do not support asynchrony, there
is no notion of message storage for later retrieval. However in the
asynchronous paradigm, this poses an interesting challenge that
has not been well addressed yet. Systems like Pung and SealPIR that
leverage CPIR in fact can handle this type of asynchronous storage
in the best fashion possible, at the expense of server storage and
computation. The server simply stores all the messages received in
each round, and clients that reconnect to the system after several
rounds can poll each of the rounds they missed to retrieve any
messages they missed. This action leaks no additional information
as both the CPIR server as well as any global adversary is already
aware of when the client last interacted with the system.

Talek introduces a novel middle ground for asynchronous mes-
sage storage. Recall from Section 5.5 that Talek is initiated with
system parameters that dictate the TTL for any message in the
system. Older messages eventually get evicted to make space for
newer messages. However interestingly their private notification
system that uses a Bloom filter, retains the memory of existence
of messages in a conversation. While the message itself may have
been evicted, this Bloom filter system can notify a user that has
gone offline for a long duration of time of the existence of messages
they missed and can no longer retrieve. Such users can then request
missed messages from their correspondents.

Loopix sidesteps this problem altogether as the design achieves
asynchrony by trusting the service provider node, and reveals the
number of real messages a client receives and the timing metadata
of received messages to this trusted node.

7 DIRECTIONS FOR FUTURE RESEARCH
7.1 Robustness and Availability
Robustness is an important property of any system to ensure live-
ness and availability. The notion of robustness or handling server
churn was discussed by Atom, but did not receive any further atten-
tion in most other mixnet designs until Trellis recently. Robustness
has been extensively studied in the SMC literature, and unsurpris-
ingly recent SMC-based MPCS schemes address robustness. More
research needs to be done to investigate how to efficiently enable
robustness within the other families of MPCS. In fact, Blinder shows
promise in this regard, since it merges ideas from both the SMC
(for robustness and censorship resistance) and RPIR literature (to
reduce bandwidth and computation overheads).

7.2 Anonymity Set Protections
Most existing systems towards MPCS do not provide strong pro-
tections against anonymity set manipulation attacks as seen from

Table 1. The ability to manipulate if a particular client participates in
a communication system or not enables adversaries to perform sev-
eral deanonymization attacks. Such an adversary, along with some
Sybil clients, can easily subvert the victim’s purported metadata
privacy in a RUS or SUBS. The adversary simply manipulates the
anonymity set or participants in a round to be composed of just the
victim (padded up with Sybil client submissions) to deanonymize
the recipient of their communication in the case of RUS, or the mes-
sage they broadcasted in SUBS. While the definition of a CUS may
seem to protect its clients from such attacks, that is not the case. An
adversary with the ability to manipulate client participation can ex-
ploit the underlying scheme’s structure to launch deanonymization
attacks. For instance, recall from Section 5.2 that in XRD clients
send and receive ℓ messages in each round. Excluding a client cur-
rently in an active conversation from participating in the system
can result in their correspondent receiving one fewer message back
to their mailbox in that round. Similarly, in Clarion if an active
client is excluded from a round, it will result in their correspon-
dent attempting to collect a message from an index that does not
have a submission, again revealing the communication relationship.
Hence an important avenue for future research is designing MPCS
with strong anonymity set protection guarantees for honest clients
participating in the system even in the face of malicious servers,
lest they open up to such deanonymization attacks. Techniques
towards this end have surfaced in the SUBS literature for the SMC
(Asynchromix, Blinder, RPM) and RPIR (Spectrum) families and
these ideas need to percolate back into CUS and RUS designs.

7.3 Asynchronous E2E Metadata-Protected
Communications

As we point out in Section 6.2.2, there is a dearth of E2E MPCS that
can support asynchronicty. There are several components that merit
further research and clarity here. An important area of research
for bringing MPCS closer to practice would be a more thorough
study on the guarantees one can have in an asynchronous metadata-
protecting E2E communication design. Further, techniques to han-
dle asynchronous metadata-protected mailbox storage is another
important avenue for further research. As detailed in Section 6.5,
this area has received scant attention as asynchronous E2E systems
themselves have not received sufficient attention.

8 CONCLUSION
In this work, we survey 31 recent systems proposed for metadata-
protecting communications. Since each of these systems make dif-
ferent design choices and assumptions, they have their own ad-
vantages and disadvantages. In this work we group them into four
categories based on the functionality and metadata-privacy guaran-
tees they achieve, and into six families based on the core underlying
technique that underpins the metadata protection. We examine the
innate benefits and shortcomings of these categories and families
of works towards this goal. We point out subtleties in the way some
security assumptions are used to design MPCS that make certain
systems provide a false sense of privacy, as well as identify promis-
ing directions for future research to further metadata-protected
communications.

521

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

ACKNOWLEDGMENTS
We thank Sebastian Angel, Debajyoti Das, and our PoPETs review-
ers for their feedback and discussions that helped improve this pa-
per. We thank the Ontario Graduate Scholarships program, NSERC
(CRDPJ-534381), and the Royal Bank of Canada for supporting this
work. This research was undertaken, in part, thanks to funding
from the Canada Research Chairs program.

REFERENCES
[1] 2014. An Open Letter from US Researchers in Cryptography and Information

Security. http://masssurveillance.info/. Accessed February 2023.
[2] Ittai Abraham, Benny Pinkas, and Avishay Yanai. 2020. Blinder – Scalable,

Robust Anonymous Committed Broadcast. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[3] ACLU of Northern California. 2014. Metadata: Piecing Together a Privacy Solu-
tion. https://www.aclunc.org/sites/default/files/Metadata%20report%20FINAL%
202%2021%2014%20cover%20%2B%20inside%20for%20web%20%283%29.pdf. Ac-
cessed February 2023.

[4] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias.
2017. MCMix: Anonymous Messaging via Secure Multiparty Computation. In
26th USENIX Security Symposium.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-
pressed Queries and Amortized Query Processing. In 2018 IEEE Symposium on
Security and Privacy (S&P).

[6] Sebastian Angel, David Lazar, and Ioanna Tzialla. 2018. What’s a Little Leakage
Between Friends?. In Proceedings of the 2018 Workshop on Privacy in the Electronic
Society (WPES).

[7] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication Over
Fully Untrusted Infrastructure. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[8] Ludovic Barman, Moshe Kol, David Lazar, Yossi Gilad, and Nickolai Zeldovich.
2022. Groove: Flexible Metadata-Private Messaging. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[9] BBC News. 2021. Putin critic Navalny jailed in Russia despite protests. https:
//www.bbc.com/news/world-europe-55910974. Accessed February 2023.

[10] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. (1970).

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs.
In 39th Annual International Cryptology Conference, Advances in Cryptology -
CRYPTO.

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Im-
provements and Extensions. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS).

[13] Buzzfeed News. 2020. The FinCEN Files. https://www.buzzfeednews.com/
article/jasonleopold/fincen-files-financial-scandal-criminal-networks. Accessed
February 2023.

[14] David Chaum. 1988. The Dining Cryptographers Problem: Unconditional Sender
and Recipient Untraceability. Journal of Cryptology (1988).

[15] David Chaum. 2003. Untraceable Electronic mail, Return Addresses and Digital
Pseudonyms. In Secure Electronic Voting.

[16] David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri
De Ruiter, and Alan T Sherman. 2017. cMix: Mixing with Minimal Real-Time
Asymmetric Cryptographic Operations. In International Conference on Applied
Cryptography and Network Security (ACNS).

[17] Raymond Cheng, William Scott, Elisaweta Masserova, Irene Zhang, Vipul Goyal,
Thomas Anderson, Arvind Krishnamurthy, and Bryan Parno. 2020. Talek: Private
Group Messaging with Hidden Access Patterns. In Annual Computer Security
Applications Conference (ACSAC).

[18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda
Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority MPC for Malicious
Adversaries. In Advances in Cryptology - CRYPTO.

[19] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
Information Retrieval. In IEEE Foundations of Computer Science (FOCS).

[20] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable
Computation of Aggregate Statistics. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation (NSDI).

[21] Henry Corrigan-Gibbs, Dan Boneh, andDavidMazières. 2015. Riposte: AnAnony-
mous Messaging System Handling Millions of Users. In 2015 IEEE Symposium on
Security and Privacy (S&P).

[22] Henry Corrigan-Gibbs and Bryan Ford. 2010. Dissent: Accountable Anonymous
Group Messaging. In Proceedings of the 17th ACM conference on Computer and
Communications Security (CCS). ACM.

[23] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. 2013. Proac-
tively Accountable Anonymous Messaging in Verdict. In 22th USENIX Security
Symposium.

[24] George Danezis. 2003. Statistical Disclosure Attacks. In IFIP International Infor-
mation Security Conference.

[25] George Danezis, Claudia Diaz, and Paul Syverson. 2009. Systems for Anonymous
Communication. CRC Handbook of Financial Cryptography and Security (2009).

[26] Deutsche Welle. 2019. Iran defends execution of gay people. https://www.dw.
com/en/iran-defends-execution-of-gay-people/a-49144899. Accessed February
2023.

[27] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium.

[28] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography
Conference (TCC).

[29] Saba Eskandarian and Dan Boneh. 2022. Clarion: Anonymous Communication
from Multiparty Shuffling Protocols. In 29th Network and Distributed System
Security Symposium (NDSS).

[30] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. 2021.
Express: Lowering the Cost of Metadata-hiding Communication with Crypto-
graphic Privacy. In 30th USENIX Security Symposium.

[31] Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz. 2018. Two Cents for
Strong Anonymity: The Anonymous Post-office Protocol. In Cryptology and
Network Security (CANS).

[32] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-
tions. In Advances in Cryptology - EUROCRYPT.

[33] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
2013. Practically Efficient Multi-party Sorting Protocols from Comparison Sort
Algorithms. In Information Security and Cryptology (ICISC) 2012.

[34] Johan Håstad. 2006. The square lattice shuffle. Random Struct. Algorithms (2006).
[35] IETF. 2018. TLS v1.3. https://www.rfc-editor.org/rfc/rfc8446.txt. Accessed

February 2023.
[36] Christiane Kuhn, Martin Beck, Stefan Schiffner, Eduard Jorswieck, and Thorsten

Strufe. 2019. On Privacy Notions in Anonymous Communication. Proceedings on
Privacy Enhancing Technologies (PoPETs) (2019).

[37] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. In 24th USENIX Security Symposium.

[38] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. 2017.
Atom: Horizontally Scaling Strong Anonymity. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP).

[39] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Riffle. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs) (2016).

[40] Albert Kwon, David Lu, and Srinivas Devadas. 2020. XRD: Scalable Messaging
System with Cryptographic Privacy. In Proceedings of the 17th Usenix Conference
on Networked Systems Design and Implementation (NSDI).

[41] Simon Langowski, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Trellis:
Robust and Scalable Metadata-private Anonymous Broadcast. Cryptology ePrint
Archive, Paper 2022/1548. https://eprint.iacr.org/2022/1548 https://eprint.iacr.
org/2022/1548.

[42] David Lazar, Yossi Gilad, and Nickolai Zeldovich. 2018. Karaoke: Distributed Pri-
vate Messaging Immune to Passive Traffic Analysis. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[43] Sarah Jamie Lewis. 2018. Cwtch: Privacy Preserving Infrastructure for Asynchro-
nous, Decentralized, Multi-Party and Metadata Resistant Applications. https:
//cwtch.im/cwtch.pdf.

[44] Donghang Lu and Aniket Kate. 2022. RPM: Robust Anonymity at Scale. Cryp-
tology ePrint Archive, Paper 2022/1037. https://eprint.iacr.org/2022/1037 https:
//eprint.iacr.org/2022/1037.

[45] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket
Kate, and Andrew Miller. 2019. HoneyBadgerMPC and AsynchroMix: Practical
Asynchronous MPC and Its Application to Anonymous Communication. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[46] Nick Mathewson and Roger Dingledine. 2004. Practical Traffic Analysis: Extend-
ing and Resisting Statistical Disclosure. In International Workshop on Privacy
Enhancing Technologies (WPES).

[47] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private Information Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies (PoPETs) (2016).

[48] PrateekMittal andNikita Borisov. 2009. ShadowWalker: Peer-to-peer Anonymous
Communication using Redundant Structured Topologies. In 16th ACM Conference
on Computer and Communications Security (CCS).

[49] Prateek Mittal and Nikita Borisov. 2012. Information Leaks in Structured Peer-
to-Peer Anonymous Communication Systems. ACM Transactions on Information
and System Security (TISS) (2012).

[50] Arjun Nambiar and Matthew Wright. 2006. Salsa: A Structured Approach to
Large-Scale Anonymity. In Proceedings of the 13th ACM conference on Computer

522

http://masssurveillance.info/
https://www.aclunc.org/sites/default/files/Metadata%20report%20FINAL%202%2021%2014%20cover%20%2B%20inside%20for%20web%20%283%29.pdf
https://www.aclunc.org/sites/default/files/Metadata%20report%20FINAL%202%2021%2014%20cover%20%2B%20inside%20for%20web%20%283%29.pdf
https://www.bbc.com/news/world-europe-55910974
https://www.bbc.com/news/world-europe-55910974
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.buzzfeednews.com/article/jasonleopold/fincen-files-financial-scandal-criminal-networks
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://www.rfc-editor.org/rfc/rfc8446.txt
https://eprint.iacr.org/2022/1548
https://eprint.iacr.org/2022/1548
https://eprint.iacr.org/2022/1548
https://cwtch.im/cwtch.pdf
https://cwtch.im/cwtch.pdf
https://eprint.iacr.org/2022/1037
https://eprint.iacr.org/2022/1037
https://eprint.iacr.org/2022/1037

SoK: Metadata-Protecting Communication Systems Proceedings on Privacy Enhancing Technologies 2024(1)

and Communications Security (CCS).
[51] Zachary Newman, Sacha Servan-Schreiber, and Srinivas Devadas. 2022. Spectrum:

High-Bandwidth Anonymous Broadcast with Malicious Security. In Proceedings
of the 19th USENIX Conference on Networked Systems Design and Implementation
(NSDI).

[52] NYR Daily. 2014. We Kill People Based on Metadata. https://www.nybooks.com/
daily/2014/05/10/we-kill-people-based-metadata/. Accessed February 2023.

[53] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. (2004).
https://doi.org/10.1016/j.jalgor.2003.12.002

[54] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-
nen, Martin Henze, and Klaus Wehrle. 2016. Website Fingerprinting at Internet
Scale. In 23rd Network and Distributed System Security Symposium (NDSS).

[55] Andriy Panchenko, Stefan Richter, and Arne Rache. 2009. NISAN: Network
Information Service for Anonymization Networks. In 16th ACM Conference on
Computer and Communications Security (CCS).

[56] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and George
Danezis. 2017. The Loopix Anonymity System. In 26th USENIX Security Sympo-
sium.

[57] T. Rabin and M. Ben-Or. 1989. Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority. In Proceedings of the Twenty-First Annual ACM Symposium
on Theory of Computing (STOC).

[58] Marc Rennhard and Bernhard Plattner. 2002. Introducing MorphMix: peer-to-
peer based anonymous Internet usage with collusion detection. In Proceedings of
the 2002 ACM workshop on Privacy in the Electronic Society (WPES).

[59] Reuters. 2018. UN Experts says Egypt systematically targets rights activists. https:
//www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899. Accessed
February 2022.

[60] Phillip Rogaway. 2015. The Moral Character of Cryptographic Work. (2015).
[61] Len Sassaman, Bram Cohen, and Nick Mathewson. 2005. The Pynchon Gate: A

Secure Method of Pseudonymous Mail Retrieval. In Proceedings of the 2005 ACM
Workshop on Privacy in the Electronic Society (WPES).

[62] Max Schuchard, Alexander W. Dean, Victor Heorhiadi, Nicholas Hopper, and
Yongdae Kim. 2010. Balancing the Shadows. In Proceedings of the 9th Annual
ACM Workshop on Privacy in the Electronic Society (WPES).

[63] Andrei Serjantov, Roger Dingledine, and Paul Syverson. 2002. From a Trickle
to a Flood: Active Attacks on Several Mix Types. In International Workshop on
Information Hiding.

[64] Adi Shamir. 1979. How to Share a Secret. Communicatios of the ACM (1979).
[65] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael

Backes, and Claudia Diaz. 2018. A Survey on Routing in Anonymous Communi-
cation Protocols. Comput. Surveys (2018).

[66] Signal Foundation. 2013. Advanced Cryptographic Ratcheting. https://signal.
org/blog/advanced-ratcheting/. Accessed February 2023.

[67] Parisa Tabriz and Nikita Borisov. 2006. Breaking the Collusion Detection Mecha-
nism of MorphMix. In Privacy Enhancing Technologies (PET).

[68] The Guardian. 2013. NSA Files Decoded: What the revelations mean for
you. https://www.theguardian.com/world/interactive/2013/nov/01/snowden-
nsa-files-surveillance-revelations-decoded#section/1. Accessed February 2023.

[69] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai Zeldovich.
2017. Stadium: A Distributed Metadata-Private Messaging System. In Proceedings
of the 26th Symposium on Operating Systems Principles (SOSP).

[70] A. Vadapalli, K. Storrier, and R. Henry. 2022. Sabre: Sender-Anonymous Messag-
ing with Fast Audits. In IEEE Symposium on Security and Privacy (S&P) .

[71] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable Private Messaging Resistant to Traffic Analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. ACM.

[72] QiyanWang, PrateekMittal, and Nikita Borisov. 2010. In Search of an Anonymous
and Secure Lookup: Attacks on Structured Peer-to-Peer Anonymous Commu-
nication Systems. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS).

[73] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective Attacks and Provable Defenses for Website Fingerprinting. In 23rd
USENIX Security Symposium.

[74] Washington Post. 2018. Leak charges against Treasury official show encrypted
apps only as secure as you make them. https://www.washingtonpost.com/news/
powerpost/paloma/the-cybersecurity-202/2018/10/18/the-cybersecurity-202-
leak-charges-against-treasury-official-show-encrypted-apps-only-as-secure-
as-you-make-them/5bc74eaa1b326b7c8a8d1a3a/. Accessed February 2023.

[75] WIRED. 2014. Whatsapp Switches to End-to-End Encryption. https://www.
wired.com/2014/11/whatsapp-encrypted-messaging/. Accessed February 2023.

[76] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson.
2012. Dissent in Numbers: Making Strong Anonymity Scale. In 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[77] David I Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. 2012.
Scalable Anonymous Group Communication in the Anytrust Model. In Proceed-
ings of the Fifth European Workshop on System Security (EuroSec 2012).

[78] Bassam Zantout and Ramzi Haraty. 2011. I2P Data Communication System. In
10th International Conference on Networks (ICN).

A LARGEST EXPERIMENTS REPORTED
Table 2 reports the details of the largest experiment conducted
by each of the systems we discussed in Section 5. This provides a
concrete timing benchmark for each system albeit constrained by
their choices of experimental setup. This prevents us from an apples-
to-apples comparison across designs since each of these works i)
leverage different underlying machines for their experiments, ii)
choose experiment setups that highlight their system’s advantages,
and iii) have nuanced goals and assumptions. For instance, timing
benchmarks of asynchronous and synchronous systems typically
have very different implications. Systems from the DP family like
Karaoke transmit one real message from each client in a round
implying a high throughput. On the flip side, private-write based
systems like Sabre perform low-latency delivery of a single message
from a single client, and their throughput is fundamentally limited
by 𝑛, the number of clients in the system and the time taken to
process a single request, which scales with 𝑛.

Nonetheless these timing benchmarks give us a concrete sense
of the state of affairs of current MPCS designs, and the stark gap
in performance with popular messenger choices today that can
accommodate billions of users with latencies in the order of mil-
liseconds. We also note that the timings reported in Table 2 are
a lower bound since the timing benchmark quoted for several of
the designs in the table do not account for the overheads of setup
phases such as the shuffling of keys in the DC-net based schemes,
or the cost of the dialing protocol in synchronous schemes. The
cost of these phases would further increase the timing benchmark,
although such costs are typically amortized over several rounds
of communication. Next we contrast benchmarks of representa-
tive candidates from the different families of metadata-protecting
communication systems we have discussed.

Synchronous Constructions. Systems from the DC-net, mixnet,
DP, and SMC based families are typically synchronous in nature.
The exception is Loopix, which supports asynchrony at the expense
of trusting special service provider nodes in the system. DC-net
based schemes scale very poorly as one would expect. The most
efficient construction we have seen so far is Verdict [23] with 1000
clients, and 24 servers, takes more than 10 s to transmit one message
of 128 bytes, and note that this is in fact assuming no client is
actively attempting to disrupt the network, nor accounting for
the shuffle protocol that is required to slot all the participants in
the network for its communication round, both of which further
exacerbates the time to transmit a message. Furthermore as detailed
in Section 6, none of these construction can scale horizontally.

SMC-based constructions can serve more clients than the DC-net
based ones, but note that more servers do not translate to reduced
latency or higher throughput in these SMC-based systems; i.e., these
schemes too do not scale horizontally. In terms of performance,
Clarion in their prototype demonstrate that they can transmit 1
message of 160 bytes from each of the 106 clients to its intended
recipient in 80 s with a three-server instantiation of their protocol.

In contrast, recent constructions from the mixnet based and
DP based families have been designed with the explicit goal of
horizontal scalability. For instance, the mixnet based scheme XRD’s
experiments demonstrates that with 2 × 107 clients all sending a
100-byte message to another client in the system takes 251 s. While

523

https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/daily/2014/05/10/we-kill-people-based-metadata/
https://doi.org/10.1016/j.jalgor.2003.12.002
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://www.dw.com/en/iran-defends-execution-of-gay-people/a-49144899
https://signal.org/blog/advanced-ratcheting/
https://signal.org/blog/advanced-ratcheting/
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#section/1
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded#section/1
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2018/10/18/the-cybersecurity-202-leak-charges-against-treasury-official-show-encrypted-apps-only-as-secure-as-you-make-them/5bc74eaa1b326b7c8a8d1a3a/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2018/10/18/the-cybersecurity-202-leak-charges-against-treasury-official-show-encrypted-apps-only-as-secure-as-you-make-them/5bc74eaa1b326b7c8a8d1a3a/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2018/10/18/the-cybersecurity-202-leak-charges-against-treasury-official-show-encrypted-apps-only-as-secure-as-you-make-them/5bc74eaa1b326b7c8a8d1a3a/
https://www.washingtonpost.com/news/powerpost/paloma/the-cybersecurity-202/2018/10/18/the-cybersecurity-202-leak-charges-against-treasury-official-show-encrypted-apps-only-as-secure-as-you-make-them/5bc74eaa1b326b7c8a8d1a3a/
https://www.wired.com/2014/11/whatsapp-encrypted-messaging/
https://www.wired.com/2014/11/whatsapp-encrypted-messaging/

Proceedings on Privacy Enhancing Technologies 2024(1) Sajin Sasy and Ian Goldberg

Table 2: Details of the largest experiments reported (if experimental results were provided) by the systems detailed in Section 5.

System Year Type Family
Largest Experiment Reported (𝑛 |𝑠 |𝑚 |𝑏 |𝑡)

Clients (𝑛) Messages Servers (𝑚) Message Time (𝑡)Sent (𝑠) Size (𝑏)

Vuvuzela [71] 2015 CUS (Mix) DP 2 × 106 2 × 106 3 256 55 s
Pung [7] 2016 CUS (RUMS) PIR 106 1 1 288 1.3 s

AnonPOP [31] 2016 CUS (Mix) M 5 × 105 5 × 105 4 1000 30 s
Stadium [69] 2017 CUS (Mix) DP 5 × 107 5 × 107 100 136 200 s
MCMix [4] 2017 CUS SMC 105 105 3 256 100 s
SealPIR [5] 2018 CUS (RUMS) PIR 2.56 × 105 1 1 288 0.51 s
Karaoke [42] 2018 CUS (Mix) DP 1.6 × 107 1.6 × 107 100 256 28 s
XRD [40] 2019 CUS M 8 × 106 8 × 106 100 256 > 16m

Clarion [29] 2021 CUS SMC 106 106 3 160 80 s
Groove [8] 2022 CUS (Mix) DP 1.5 × 108 1.5 × 108 100 56 80 s

Dissent [22] 2010 CUS/SUBS DC 40 1 0 106 > 14m
D3 [77] 2012 CUS/SUBS DC 576 1 10 256 > 2m

Dissent v2 [76] 2012 CUS/SUBS DC 1000 1 24 128 > 10 s
Verdict [23] 2013 CUS/SUBS DC 1000 1 8 128 > 10 s

Riposte [21] 2015 SUBS RPIR 3.8 × 105 1 3 160 0.35 s
Riffle [39] 2016 SUBS M 1.2 × 106 106 3 160 > 10 s
Atom [38] 2017 SUBS M 107 107 1024 32 28m

AsynchroMix [45] 2019 SUBS SMC 4096 4096 100 32 120 s
PowerMix [45] 2019 SUBS SMC 1024 1024 100 32 140 s
Blinder [2] 2020 SUBS SMC 106 106 20 160 8m

Spectrum [51] 2021 SUBS RPIR 105 1 2 106 > 500 s
RPM [44] 2022 SUBS SMC 1.6 × 105 1.6 × 105 4 16 48.14 s

Sabre [70] 2022 SUMS/SUBS RPIR 218 1 2 1000 0.05 s
Express [30] 2021 SUMS RPIR 218 1 2 1000 0.5 s

cMix [16] 2016 RUS (Mix) M 500 1000 5 256 4.6 s
Loopix [56] 2017 RUS (Mix) M 500 3 × 104 10 224 1.9 s
Talek [17] 2020 RUS (RUMS) PIR 3.2 × 104 1 3 1000 1.7 s

Karaoke the most recent work in the DP based family in their
experiments demonstrates that with 1.6 × 107 clients (a similar
number of clients as XRD) and each sending a message to another
client in the system, can transmit all of these messages in a 100-
server instantiation of their protocol in 28 s; i.e., almost an order of
magnitude faster, at the expense of the weaker privacy guarantees
due to DP as we detailed in Section 5.3. Ultimately the biggest
drawback in these schemes remains the synchronicity assumption.
Schemes like Karaoke can serve close to 17 million clients in tens of
seconds, but the expectation that all these clients will remain online
without any disruption in perpetuity is extremely unrealistic, and
disconnections of a user during a conversation harms the privacy
of both participants of the conversation.

Asynchronous Constructions. PIR can be leveraged to design asyn-
chronous MPCS, as seen in Express [30], Talek [17], and Sabre [70].
The only other asynchronous design is Loopix (mixnet), but it re-
quires trusting service provider nodes to support asynchrony.

Sabre is the latest iteration of private-write based metadata-
hiding communication networks. In their work, their experiments

demonstrate that in a two-server instance of Sabre with 218 reg-
istered mailboxes a client can deliver a message to any of these
mailboxes in 0.05 s, which is the smallest latency (ignoring through-
put) by almost two orders of magnitude in comparison with the
other works we have detailed. However as we mention in Sec-
tion 5.5, as more users enter such systems the cost to deliver a
message increases linearly. Furthermore, these systems incur qua-
dratic overheads for scaling horizontally.

Loopix on the other hand attains asynchronous communication
capabilities by leveraging a semi-trusted service provider node in
their construction. Their experimental evaluation is limited to a
500-client instantiation with a network comprising of 4 service
providers and 6 mixnet nodes. Their end-to-end latency in this
setup is 1.9 s with other experiments that justify that with increase
in clients and servers this end-to-end cost would remain unaffected,
and is mostly dependent on the system parameter that tunes the
delay for a message at each of these mixes. However, as we de-
tail in Section 5.2, a malicious service provider node undermines
recipients’ metadata privacy.

524

	Abstract
	1 Introduction
	2 Methodology
	3 Metadata-Protecting Communication Systems (MPCS)
	4 MPCS Properties
	4.1 Protections
	4.2 Usability
	4.3 Performance
	4.4 Dialing and Conversation Protocols

	5 Existing Work
	5.1 DC-net Based Systems
	5.2 Mixnet Based Systems
	5.3 Differential Privacy Based Systems
	5.4 Private-Read Based Systems
	5.5 Private-Write Based Systems
	5.6 Secure Multiparty Computation (SMC) Based Systems

	6 Discussion
	6.1 Tradeoffs Between Families
	6.2 Tradeoffs Within Categories
	6.3 Limitations of Security Assumptions
	6.4 Application: Metadata-Protected Messaging
	6.5 Asynchronous Message Storage

	7 Directions for Future Research
	7.1 Robustness and Availability
	7.2 Anonymity Set Protections
	7.3 Asynchronous E2E Metadata-Protected Communications

	8 Conclusion
	Acknowledgments
	References
	A Largest Experiments Reported

