
Multipars: Reduced-Communication MPC over Z
2
𝑘

Sebastian Hasler

University of Stuttgart

Stuttgart, Germany

sebastian.hasler@sec.uni-stuttgart.de

Pascal Reisert

University of Stuttgart

Stuttgart, Germany

pascal.reisert@sec.uni-stuttgart.de

Marc Rivinius

University of Stuttgart

Stuttgart, Germany

marc.rivinius@sec.uni-stuttgart.de

Ralf Küsters

University of Stuttgart

Stuttgart, Germany

ralf.kuesters@sec.uni-stuttgart.de

ABSTRACT
In recent years, actively secure SPDZ-like protocols for dishonest

majority, like SPDZ
2
𝑘 , Overdrive2k, and MHz2k, over base rings

Z
2
𝑘 have become more and more efficient. In this paper, we present

a new actively secure MPC protocol Multipars that outperforms

these state-of-the-art protocols over Z
2
𝑘 by more than a factor of

2 in the two-party setup in terms of communication. Multipars is

the first actively secure 𝑁 -party protocol over Z
2
𝑘 that is based

on linear homomorphic encryption (LHE) in the offline phase (in-

stead of oblivious transfer or somewhat homomorphic encryption

in previous works). The strong performance of Multipars relies

on a new adaptive packing for BGV ciphertexts that allows us to

reduce the parameter size of the encryption scheme and the overall

communication cost. Additionally, we use modulus switching for

further size reduction, a new type of enhanced CPA security over

Z
2
𝑘 , a truncation protocol for Beaver triples, and a new LHE-based

offline protocol without sacrificing over Z
2
𝑘 .

We have implemented Multipars and therewith provide the

fastest preprocessing phase over Z
2
𝑘 . Our evaluation shows that

Multipars offers at least a factor of 8 lower communication costs

and up to a factor of 15 faster runtime in theWAN setting compared

to the currently best available actively secure MPC implementation

over Z
2
𝑘 .

KEYWORDS
MPC, SPDZ, SPDZ2k, Overdrive, LowGear, Z2k

1 INTRODUCTION
With multi-party computation (MPC), several parties can compute

arbitrary functions or circuits on private data without revealing

any information about the inputs apart from the result and what

might be inferred from it. While the theoretical foundations of

MPC go well back to the last century, MPC has seen a rise in

popularity in recent years—both in academia and industry, e.g., for

privacy-preserving machine learning [18, 29, 38], which is due to

the development of first (reasonably) efficient MPC protocols like

SPDZ [23]. One of the main features of SPDZ and related protocols

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(2), 5–28
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0038

like [7, 22, 33, 34] are their high security guarantees that protect

privacy of honest parties’ input data even if all otherMPC parties act

maliciously. To achieve both—high security and efficiency—SPDZ-

like protocols use a two-phase approach with an input-independent

offline phase which provides structured random data, e.g., Beaver

triples [9], to a then lightweight online phase. It therewith allows

for an efficient online computation on sensitive input data.

Efficiency of these two-phase MPC protocols is mostly dictated

by their communication complexity (cf. [18, 34]). Both the number

of communication rounds and the amount of data that needs to be

sent are dominating the runtime of protocols if parties communicate

over real networks, e.g., the Internet, which introduces commu-

nication delay and generally has only a limited bandwidth. Local

computation time is usually less critical as it is comparably lower

than the communication time and can often be fully parallelized.

Apart from their effect on the overall runtime, communication and

bandwidth also affect the monetary costs especially when the MPC

protocol is deployed on paid (cloud) infrastructures.

One key characteristic that influences the communication cost

and overall runtime is the type of primitives used by SPDZ-like

protocols in the offline phase: SPDZ [22, 23] and Overdrive High-

Gear [34] use somewhat homomorphic encryption (SHE), MAS-

COT [33] and SPDZ
2
𝑘 [20] use oblivious transfer, and LowGear [34]

uses LHE. The encryption based SPDZ-like protocols use a BGV-

type encryption scheme [12] which is naturally linearly homo-

morphic, i.e., supports the addition of encrypted data and multi-

plication of encrypted data with plaintext vectors—akin to single

instruction multiple data (SIMD) operations. The BGV scheme can

become somewhat homomorphic, i.e., also support one ciphertext-

ciphertext multiplication. However, this requires a larger ciphertext

size.
1
We will refer to protocols that use only the LHE property of

the BGV-scheme and therefore have generally smaller ciphertext

sizes as LHE-based protocols. Protocols that use BGV ciphertext-

ciphertext multiplications are called SHE-based.

Furthermore, SPDZ-like protocols can also be characterized by

the underlying arithmetic model they use. The main branch includ-

ing SPDZ itself and major improvements like [7, 33, 34] work over

finite fields F𝑝 . Finite field arithmetic comes with several strong

properties and supports, for instance, aforementioned single in-

struction multiple data (SIMD) operations in protocols based on

homomorphic encryption (HE), since the underlying cyclotomic

rings decompose nicely over finite fields.

1
We remark that these SHE schemes additionally need some key switching material

not needed for LHE—we refer to [22] for further details.

5

https://orcid.org/0000-0003-0300-8350
https://orcid.org/0000-0003-1808-6140
https://orcid.org/0000-0001-8005-8365
https://orcid.org/0000-0002-9071-9312
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0038

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

While finite field arithmetic has a wide variety of applications,

it is not ideally suited to work with modern CPUs, which naturally

support arithmetic modulo 2
𝑘
. Additionally, arithmetic modulo 2

𝑘
is

better suited to compute binary operations, shifts, truncations, and

comparisons [11, 17, 20]. It is therefore not surprising that a more

recent, but still far less developed, branch of SPDZ-like protocols

tries to construct secure protocols over Z
2
𝑘 . As might be expected,

this is a non-trivial task given the weaker structural properties

available over a base ring. Some of the resulting problems have

however been solved in recent years.

For example, the obvious existence of non-trivial non-invertible

elements in 𝑅 = Z
2
𝑘 implies that the classical MAC authentication,

which guarantees security against malicious adversaries in the F𝑝 -
case, no longer provides any protection. This problem has been

addressed by SPDZ
2
𝑘 [20], where the authors extend the MAC

formalism of SPDZ by computing MACs no longer in 𝑅 directly

but in some larger ring 𝑅′ = Z
2
𝑘+𝑠 and therewith circumvent the

invertibility issues to regain security against malicious adversaries.

Another issue over Z
2
𝑘 is the incompatibility of 2

𝑘
-based cy-

clotomic rings (commonly used in the triple production phase of

LHE/SHE offline phases) with SIMD instructions.
2
Overdrive2k [39]

addresses this problem and presents the first SHE-based protocol.

To this end, the authors of [39] construct a new packing method,

which uses about 20% of the available slots, and hence, 20% of the

SIMD potential of the encryption scheme. While this is still far

less efficient than in the field case, where all ciphertext slots, i.e.,

100%, can be used, it presented a first reasonably efficient HE-based

offline phase in the Z
2
𝑘 setup and sparked further investigation

in this kind of protocol. The currently best ring-based protocol

MHz2k [19] is SHE-based (just as [39]), i.e., it relies on SHE, but

uses a new packing that increases the number of slots that can be

used to approximately 50%.

The focus of our paper is to further improve the efficiency of

SPDZ-like protocols over Z
2
𝑘 with a special focus on the highly rel-

evant low-party setups. Low-party setups are well-suited to cloud-

based applications of MPC in real-world applications [29, 31, 40, 42].

Motivated by the superior performance of Overdrive LowGear in

the case of a base field, we create a Z
2
𝑘 version of LowGear that

outperforms the SHE-based Z
2
𝑘 -protocol [19], e.g., by around 2.2×

in the two-party setup analyzed in [19]. We call our protocol Mul-

tipars (multi-party rust) because we implemented it in the Rust

programming language.

The efficiency of Multipars is based on several technical im-

provements of independent interest. First, we use a new adaptive

packing which changes depending on the operations it is used

in. For some ciphertexts we use the tweaked interpolation packing
from [19], since it has better packing efficiency than the original

packing from Overdrive2k [39]. When we do not need to perform

a slotwise plaintext-ciphertext multiplication, we instead use the

coefficient packing, which allows us to avoid the still significant

factor 2 packing overhead from [19]. That is, we use 50% of the

ciphertext slots with the tweaked interpolation packing in our mul-

tiplication subprotocol (Figure 2) and 100% with the coefficient

2
Note that SPDZ

2
𝑘 uses oblivious transfer which does not use SIMD instructions even

in the field case, i.e., the incompatibility issue does not occur, but also the advantage of

more recent SIMD-based constructions is not used, which ultimately leads to a lower

communication efficiency than, e.g., Overdrive2k [39].

packing in our authentication subprotocol (Figure 3). Similarly, the

BGV parameters are chosen separately (and hence optimally) for

different subprotocols.

Second, we lift the recent optimized LHE-based protocol of [41]

to the Z
2
𝑘 setup. LowGear 2.0 [41] avoids the costly sacrificing

step in LowGear by intertwining the triple production and triple

authentication subprotocols. On its own, this approach is no longer

secure if we work over Z
2
𝑘 , since an adversary can deviate from

the honest packing technique. However, the tweaked interpolation

packing from [19] comes with a zero-knowledge proof of message

knowledge (ZKPoMK) which prevents such an attack. Additionally,

[41] as well as [34] use the enhanced CPA security of the underlying

cryptosystem to protect against selective failure attacks (in theMAC

checks). Again, this property does not transfer to our cryptosystems

over Z
2
𝑘 . In fact, [16] showed that enhanced CPA security does not

hold for any HE scheme over Z
2
𝑘 . We circumvent this problem by

introducing a slightly relaxed form of enhanced CPA security, which

we call 2
𝑠 -enhanced CPA security. We prove that our cryptosystems

provide this type of security. In particular, a new truncation protocol

for Beaver triples allows us to use this 2
𝑠−enhanced CPA security

to construct a maliciously secure triple generation protocol.

Third, we employ modulus switching to reduce the size of (most)

ciphertexts, which leads to about 40% less overall communication.

To use modulus switching for size reduction (instead of its tradi-

tional use as noise reduction) is a useful tool that might be applicable

in other SPDZ-like setups.

Last, we construct a new zero-knowledge proof of plaintext

knowledge (ZKPoPK) for BGV with plaintext modulus 2
𝑘
that—in

contrast to prior work [7, 19]—does not require post-processing

the ciphertexts while attaining the same security parameters. In

our concrete instantiation of the ZKPoPK, we employ the rejection

sampling idea from [36] in the non-interactive setting and therewith

reduce the soundness slack and as a byproduct achieve perfect

(instead of statistical) zero-knowledge.

We formally prove the security of our new protocols and have

implemented Multipars in Rust. We therewith provide the cur-

rently fastest software implementation of a preprocessing phase

for SPDZ
2
𝑘 . Our implementation is available at [4].

We have evaluated Multipars in terms of communication per

triple produced and compare it against prior works in the Z
2
𝑘

setting: In the two-party
3
setup Multipars outperforms MHz2k [19]

by around 2.2×, Overdrive2k [39] by around 11×, and SPDZ
2
𝑘 [20]

by 8–30×. Our benchmarks show that, even in fast networks (LAN,

1 Gbps, 0.2 ms RTT, 16 local threads, 64-bit statistical security and

plaintext size) where computation is the bottleneck, Multipars can

produce more triples per second than the SPDZ
2
𝑘 preprocessing

phase implemented in MP-SPDZ [21]—the only SPDZ-like protocol

over Z
2
𝑘 with a publicly available implementation besides ours.

Our advantage compared to SPDZ
2
𝑘 is especially pronounced in

the WAN setting (100 ms RTT) with a speedup of up to 13.7× at

50 Mbps or 15.2× at 500 Mbps.

Contributions.

3
In the related works we compare against, only the two-party setup has been analyzed.

6

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

• Wepresent a new SPDZ-like triple generation protocolMultipars

over Z
2
𝑘 that outperforms the prior best protocol in the same

setting, MHz2k, by a factor of 2.2 in terms of communication.

• With the newly introduced concept of 2
𝑠 -enhanced CPA security

and a new truncation technique for Beaver triples, we provide

an efficient protection against selective failure attacks.

• We introduce technical tools of independent interest (adaptive

packing, new modulus switching based techniques, maliciously

secure key generation) which contribute to the security and

the high efficiency of Multipars compared to previous protocols

over Z
2
𝑘 .

• We present a new software implementation of an HE-based

preprocessing phase for SPDZ
2
𝑘 . Previous HE-based protocols

like MHz2k [19] or Overdrive2k [39] do currently not provide an

implementation. Our implementation computes triples up to 15.2

times faster than the fastest existing ring-based implementation

in MP-SPDZ [21].

2 PRELIMINARIES
Notation. For 𝑛 ∈ N, let [𝑛] := {0, . . . , 𝑛 − 1}, let Z𝑛 := Z/𝑛Z
and let Z∗𝑛 be its group of units. We use bold letters for vectors

(𝒗) and capital letters for matrices (𝐴). For vectors 𝒗,𝒘 we denote

their concatenation by 𝒗 | |𝒘 . For 𝑥 ≡ 𝑦 (mod 2
𝑘) we also use the

shorthand notation 𝑥 ≡𝑘 𝑦.

2.1 Secret Sharing Scheme
We use the authenticated additive secret sharing scheme introduced

in [20] for base rings Z
2
𝑘 : Given a security parameter 𝑠 , each party

𝑃𝑖 receives a [𝛼]𝑖 ∈ Z2𝑠 such that 𝛼 ≡𝑘+𝑠
∑
𝑖 [𝛼]𝑖 for a secret MAC

key 𝛼 ∈ Z
2
𝑘+𝑠 . For a secret 𝑥 ∈ Z

2
𝑘 each party 𝑃𝑖 receives an

additive share [𝑥]𝑖 ∈ Z2𝑘+𝑠 such that 𝑥 ≡𝑘
∑
𝑖 [𝑥]𝑖 . To open a shared

[𝑥], each party 𝑃𝑖 broadcasts [𝑥]𝑖 and all parties can reconstruct

𝑥 . The scheme is full threshold, i.e., if an adversary controls all

but one share, they still cannot deduce any information on the

secret value. In addition to the actual share [𝑥]𝑖 , each party 𝑃𝑖
also gets a share [𝛾𝑥]𝑖 ∈ Z2𝑘+𝑠 such that

∑
𝑖 [𝛾𝑥]𝑖 ≡𝑘+𝑠 𝛼

∑
𝑖 [𝑥]𝑖 .

𝛾𝑥 ∈ Z2𝑘+𝑠 is called MAC of 𝑥 . The MACs are used in our MAC

check protocol ΠSingleCheck (cf. Figure 6) to verify the integrity

of opened shares and to detect malicious behavior. We call the

pair J𝑥K𝑖 = ([𝑥]𝑖 , [𝛾𝑥]𝑖) an authenticated share of 𝑥 at party 𝑃𝑖 .

Please note that this (authenticated) secret sharing scheme allows

local computation of linear combinations of (authenticated) shares,

i.e., [𝑥]𝑖 + [𝑦]𝑖 = [𝑥 + 𝑦]𝑖 or 𝑐 · [𝑥]𝑖 = [𝑐 · 𝑥]𝑖 for shares of 𝑥
and 𝑦 and a public known constant 𝑐 . The same properties also

apply to authenticated shares, e.g., J𝑥 + 𝑦K𝑖 = J𝑥K𝑖 + J𝑦K𝑖 . For the
multiplication of two shared value [𝑥] and [𝑦] we use Beaver triples
(J𝑎K𝑖 , J𝑏K𝑖 , J𝑐K𝑖) where 𝑐 = 𝑎𝑏 and 𝑎, 𝑏 ∈ Z2𝑘 are uniformly random.

Each party 𝑃𝑖 first opens the masked inputs [𝑥]𝑖 − [𝑎]𝑖 , [𝑦]𝑖 − [𝑏]𝑖
and reconstructs 𝑥−𝑎,𝑦−𝑏. A share of the product is then computed

as J𝑥 · 𝑦K𝑖 = (𝑥 − 𝑎) · J𝑦K𝑖 + J𝑎K𝑖 · (𝑦 − 𝑏) + J𝑐K𝑖 . The Beaver triples
are generated in the offline phase.

2.2 Cyclotomic Ring of Integers
For𝑚 ∈ N, Φ𝑚 denotes the𝑚-th cyclotomic polynomial. In this

work, we require𝑚 to be a prime number, in which case Φ𝑚 (𝑋) =

(𝑋𝑚 − 1)/(𝑋 − 1) = ∑𝑚−1
𝑖=0 𝑋 𝑖 . We define R := Z[𝑋]/Φ𝑚 (𝑋) and

R𝑛 := R/𝑛R for a natural number 𝑛.

Power Basis. 𝐵power := (𝑋 𝑖)𝑖∈Z∗𝑚 = (𝑋 1, . . . , 𝑋𝑚−1) is a Z-basis of
R. We call it the power basis.4 Unless otherwise stated, the term
coefficients refers to the coefficients in the power basis. For 𝐵 ∈ Nwe

denote by R≤𝐵 the set of polynomials from R where all coefficients

are within [−𝐵, 𝐵). We can pack 𝑚 − 1 elements 𝑎1, . . . , 𝑎𝑚−1 of

Z into the coefficients of a polynomial 𝑓 ∈ R in the power basis,

i.e., 𝑓 (𝑋) = ∑𝑚−1
𝑖=1 𝑎𝑖𝑋

𝑖
. We call this trivial packing the coefficient

packing of 𝑎1, . . . , 𝑎𝑚−1.

Statistically Close Distributions. For 𝛿 ∈ R≥0 and two distributions

X,Y that output an element or a tuple of elements from R, we de-
note by X ≈𝛿 Y that each (power basis) coefficient of the output of

X is distributed within statistical distance ≤ 𝛿 of the corresponding
coefficient of the output of Y.

CRT Basis. Let 𝑞 be a prime number and let 𝑑 be the order of 𝑞

in Z∗𝑚 . Let 𝑟 := 𝜑 (𝑚)/𝑑, 𝜑 (𝑚) = 𝑚 − 1 and Z be a primitive𝑚-th

root of unity. Then Φ𝑚 mod 𝑞 factors into 𝑟 distinct irreducible

monic (and hence pairwise coprime) polynomials 𝑓𝑖 ∈ F𝑞 [𝑋], i.e.,
Φ𝑚 (𝑋) ≡

∏𝑟−1
𝑖=0 𝑓𝑖 (𝑋) (mod 𝑞). Each of those factors has degree

𝑑 . By the Chinese Remainder Theorem (CRT) it follows that R𝑞 �>𝑟−1
𝑖=0 F𝑞 [𝑋]/(𝑓𝑖). We call the preimage 𝐵CRT := (𝑏CRT

𝑖
)𝑖∈[𝑟] ∈ R𝑟𝑞

of the standard basis of

>𝑟−1
𝑖=0 F𝑞 [𝑋]/(𝑓𝑖) ≃ (F𝑞𝑑)𝑟 in R𝑞 the

CRT basis of R𝑞 , i.e., the preimage of (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) ∈
(F𝑞𝑑)𝑟 .We call the coefficients CRT(𝑎) := (𝑎𝑖)𝑖∈[𝑟] ∈ Z𝑞 [𝑋]/(𝑓𝑖) ≃
F𝑞𝑑 of the an element 𝑎 ∈ 𝑅𝑞 in the CRT basis the CRT representa-

tion of 𝑎, i.e., 𝑎 = ⟨𝐵CRT, (𝑎𝑖)𝑖∈[𝑟]⟩.
Furthermore note that while Gal(F𝑞 (Z)/F𝑞) = AutF𝑞 (F𝑞 (Z)) ≃

⟨𝑞⟩ ⊂ Z∗𝑚 preserves the irreducible factors F𝑞 [𝑋]/(𝑓𝑖), the Galois
group Gal(Q(Z)/Q) ≃ Z∗𝑚 acts by ^𝑖 : R → R, 𝑓 (𝑋) ↦→ 𝑓 (𝑋 𝑖)
transitively on the set of components {Z[𝑋]/(𝑓𝑖) : 0 ≤ 𝑖 < 𝑟 }. The
quotient Z∗𝑚/⟨𝑞⟩ then acts freely and transitively on the respective

set over F𝑞 , i.e., we find for each two components exactly one

element ℎ ∈ Z∗𝑚/⟨𝑞⟩ such that ^ℎ maps one component to the other.

Since𝑚 is prime, Z∗𝑚 is cyclic and we find a generator 𝑔 ∈ Z∗𝑚 , i.e.,

ℎ = 𝑔𝑘 for some 𝑘 . This allows us to fix an order of the irreducible

factors F𝑞 [𝑋]/(𝑓𝑖) such that 𝑓𝑖+𝑘 mod 𝑟 (𝑋) = gcd(𝑓𝑖 (𝑋𝑔
𝑘),Φ𝑚 (𝑋))

(cf. [26]). We will use this order in the rest of the paper.

Finally, we use Hensel’s lemma to lift the construction to prime

powers 𝑞𝑇 , i.e., we find monic irreducible polynomials
˜𝑓𝑖 ∈ Z𝑞𝑇 [𝑋]

such that
˜𝑓𝑖 mod 𝑞 = 𝑓𝑖 , deg(𝑓𝑖) = deg(˜𝑓𝑖), Φ𝑚 mod 𝑞𝑇 =

∏𝑟−1
𝑖=0

˜𝑓𝑖 ,

and Z𝑞𝑇 [𝑋]/(Φ𝑚) ≃
>𝑟−1
𝑖=0 Z𝑞𝑇 [𝑋]/(˜𝑓𝑖).

2.3 Tweaked Interpolation Packing
Let 𝑡 := 𝑘 + 2𝑠 . We want to use the previously described spaces R𝑞𝑇
in the special case 𝑞 = 2 and for some suitable natural number 𝑇

to compute multiplications of elements from Z
2
𝑡 in a SIMD way.

A direct approach to do this is to choose 𝑇 = 𝑡 and to encode

numbers from Z
2
𝑡 in the constant coefficient of Z

2
𝑇 [𝑋]/(˜𝑓𝑖). Since

4
Note that this is not the traditional power basis as used in [37]: instead of the constant

𝑋 0
, we include the element 𝑋𝑚−1 ≡ −∑𝑚−2

𝑖=0 𝑋 𝑖
. This makes it easier to change be-

tween power basis and CRT basis via Rader’s FFT algorithm, as the constant coefficient

is always 0.

7

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

R
2
𝑇 contains 𝑟 components Z

2
𝑇 [𝑋]/(˜𝑓𝑖) we can encode an 𝑟 -tuple

of numbers from Z
2
𝑡 in one element of R

2
𝑇 . Now multiplication

in R
2
𝑇 results in a component-wise multiplication of the 𝑟 -tuples,

i.e., we can simultaneously perform 𝑟 multiplications of elements

in Z
2
𝑡 . However, this direct approach only uses 1/𝑑 of the available

coefficients, i.e., only the constant terms of a degree 𝑑 polynomial

in Z
2
𝑇 [𝑋]/(˜𝑓𝑖). To better use the full potential of R

2
𝑇 we have to

use more evolved packing methods to pack more elements from Z
2
𝑡

into slots of R
2
𝑇 such that multiplication in R

2
𝑇 still corresponds

to component-wise multiplication of (then larger) tuples from Z
2
𝑡 .

A first non-trivial (but still simple) packing method was introduced

in Overdrive2k [39] which allows to use approximately 𝑑0.6 of the

𝑑 polynomial coefficients (in each slot). Overdrive2k [39] encodes

several values from Z
2
𝑡 in a sparse polynomial in a way that (some)

coefficients of the polynomial product are simple multiplications

of coefficients of the factors (rather than sums over coefficients),

e.g., (𝑎𝑋 + 𝑎′) (𝑏𝑋 + 𝑏 ′) = 𝑎𝑏𝑋 2 + (𝑎𝑏 ′ + 𝑎′𝑏)𝑋 + 𝑎′𝑏 ′ contains the
products 𝑎𝑏 and 𝑎′𝑏 ′ as 2- and 0-coefficient.

MHz2k [19] proposes a far more evolved and far more efficient

packing method that uses 1/2 of the available slots. The idea of this
so-called tweaked interpolation packing is to pack values from Z

2
𝑡

into evaluation points of the polynomials in different slots. More

concretely, [19] introduces maps

pack : Z𝑀
2
𝑡 → R2𝑇 , unpack : R

2
𝑇 → Z𝑀

2
𝑡

for𝑇 = 𝑡 + 2𝛿 , 𝛿 > 0 suitably large, 𝐷 := ⌊(𝑑 + 1)/2⌋, and𝑀 := 𝐷 · 𝑟
such that for 𝒙 = (𝑥 (𝑖, 𝑗)) (𝑖, 𝑗) ∈[𝑟]×[𝐷] we have

CRT(pack(𝒙))𝑖 (𝑗) = 2
𝛿 · 𝑥 (𝑖, 𝑗) mod 2

𝑡+𝛿
, (1)

i.e., pack maps𝑀 numbers 𝑥 (𝑖, 𝑗) ∈ Z2𝑡 to a polynomial pack(𝒙) ∈
R
2
𝑇 whose 𝑖-th component polynomial CRT(pack(𝒙))𝑖 = pack(𝒙)
(mod

˜𝑓𝑖) evaluates at the point 𝑗 to 2𝛿 ·𝑥 (𝑖, 𝑗) mod 2
𝑡+𝛿

. [19] shows

that for a suitably large 𝛿 such a packing exists. Furthermore, the

choice 𝐷 := ⌊(𝑑 + 1)/2⌋ guarantees that the polynomial degree

of the product of packed values in each component Z
2
𝑇 [𝑋]/(˜𝑓𝑖)

remains smaller than 𝑑 and does not wrap around. The evaluation

values 2
𝛿 · 𝑥 (𝑖, 𝑗) mod 2

𝑡+𝛿
are chosen such that for the product of

two values `𝑖 𝑗 = 2
𝛿 · 𝑥 (𝑖, 𝑗) mod 2

𝑡+𝛿
and a𝑖 𝑗 = 2

𝛿 ·𝑦 (𝑖, 𝑗) mod 2
𝑡+𝛿

one has `𝑖 𝑗a𝑖 𝑗 ≡𝑇 𝑧 (𝑖, 𝑗)22𝛿 for 𝑧 (𝑖, 𝑗) = 𝑥 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) mod 2
𝑡
, i.e., the

product of our values in Z
2
𝑡 can be reconstructed from (the values

of the) polynomial product. In particular, to unpack a product one

simply evaluates at each 𝑗 ∈ [𝐷] and then removes the factor 2
2𝛿

from the value. As in [19], in order to later use a more efficient

ZKPoMK with the BGV encryption scheme, we work with 𝑇 =

𝑡 + 2𝛿 + 𝐸 (instead of 𝑇 = 𝑡 + 2𝛿) for some small 𝐸 ∈ N. The
unpack operation then has to first remove these 𝐸 additional bits

and then unpack products as described before, i.e., by evaluation

and removing the 2
2𝛿

factor. Overall, pack and unpack have the

following homomorphic property:

unpack(pack(𝒂) · pack(𝒃)) = 𝒂 ⊙ 𝒃 .

where ⊙ denotes the component-wise multiplication in Z𝑀
2
𝑡 . For

proofs and further details we refer to [19].

In our protocol ΠTriple in Figure 4 we will have to mask a product

of packed values pack(𝒂) ·pack(𝒃). To find a suitable mask, observe

that each such product is in the group G of Z
2
𝑇 -polynomials of de-

gree smaller than 𝑑 whose values on [𝐷] are in 2
2𝛿Z

2
𝑡 . Our unpack-

ing procedure, i.e., evaluate on [𝐷] and multiply by 2
−2𝛿

, is then a

surjective group homomorphism G → Z𝑀
2
𝑡 .
5
We denote its fiber, i.e.,

the preimage over 𝒆 ∈ Z𝑀
2
𝑡 by pack

′(𝒆). Now the masks are sampled

uniformly from G and added to a product pack(𝒂) · pack(𝒃). Since
we are in the group G this is a one-time-pad encryption and there-

fore (information-theoretically) secure. If we unpack the masked

product we get 𝒂 ⊙ 𝒃 + 𝒆 if the mask was taken from pack′(𝒆). Note
that the uniform distribution on G induces the uniform distribution

on {(𝒆, 𝑥) | 𝒆 ∈ Z𝑀
2
𝑡 , 𝑥 ∈ pack′(e)} and we can therefore also sam-

ple 𝒆 ∈ Z𝑀
2
𝑡 uniformly at random first and then sample an element

of the fiber pack′(𝒆). In slight abuse of notation we will denote the

uniform sample from the fiber also by pack′(𝒆).

3 BGV OVER Z
2
𝑘

In this section we describe the LHE scheme BGV used in our se-

cure offline protocol. We explain the homomorphic properties of

BGV and how they can be used in a secure multiplication protocol.

Furthermore, we add a short description of a secure key generation

usually not discussed in the literature.

Our instantiation of the BGV encryption scheme [12] for a plain-

text space R
2
𝑘 is the same as in [39] and is based on [27]. We simi-

larly use the NewHope [3] approximation of the discrete Gaussian

distribution. That is, we replace the discrete Gaussian by the cen-

tered binomial distribution CB of the same variance, which is easier

to sample in software.

We describe the scheme for plaintext space R
2
𝑇 . In our protocol

(Section 5) we instantiate the scheme with two different values of𝑇 ,

depending on the packing used. Our BGV parameters for concrete

instantiations of our protocol can be found in Section 7.2.

Following [39], in order to enable modulus switching, we use

two moduli 𝑞0 := 𝑝0 and 𝑞1 := 𝑝0𝑝1 where 𝑝0 and 𝑝1 are primes

with 𝑝1 ≡ 1 (mod 2
𝑇) and 𝑝0 ≡ 𝑝1 ≡ 1 (mod 𝑚).

Distributions. Apart from the uniform distribution over R𝑞1 , the
BGV scheme also requires to sample the following distributions.

• HWT (ℎ): This samples a random polynomial from R with ℎ

non-zero coefficients, i.e., with Hamming weight ℎ, (in power

basis) where all coefficients are from {−1, 0, 1} (as in [22, 34, 39]).

• CB(𝜎2): This samples a random polynomial from R where all

coefficients (in power basis) are sampled from the centered bi-

nomial distribution with variance 𝜎2.

Typically, 𝜎 = 3.2 and ℎ = 64 + Stat_sec are used [22, 23, 34]. We

use 𝜎2 = 10 as [19, 39].

Key Generation, Encryption and Decryption.

• KeyGen(): Sample sk ← HWT (ℎ), 𝑎 $← R𝑞1 , 𝑒 ← CB(𝜎2)
and set 𝑏 := 𝑎 · sk + 2𝑇 𝑒 . Return the secret key sk and public key

pk := (𝑎, 𝑏) ∈ R2𝑞1 .
• Encpk (𝑚 ∈ R2𝑇): To encrypt 𝑚, sample small polynomials

𝑣 ← CB(0.5) and 𝑒0, 𝑒1 ← CB(𝜎2). Return the ciphertext

𝒄 := (𝑐0, 𝑐1) := (𝑏𝑣 + 2𝑇 𝑒0 +𝑚,𝑎𝑣 + 2𝑇 𝑒1) ∈ R2𝑞1 .
5
Surjective since pack((1, . . . , 1)) · pack(𝒂) maps back to 𝒂 for each 𝒂 ∈ Z𝑀

2
𝑡 ; linear

since the value at some 𝑗 ∈ [𝐷] of the sum of 2 polynomials is the sum of their values

at 𝑗 .

8

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

• SwitchMod(𝒄 ∈ R2𝑞1): Compute 𝒅 ∈ R2 with 𝒅 ≡ 𝒄 (mod 𝑝1),
𝒅 ≡ 0 (mod 2

𝑇), ∥𝒅∥∞ ≤ 2
𝑇−1𝑝1. Return 𝒄 ′ := (𝒄−𝒅)/𝑝1 ∈ R2𝑞0 .

• Decsk (𝒄 ∈ R2𝑞𝑖) for 𝑖 ∈ {0, 1}: To decrypt 𝒄 = (𝑐0, 𝑐1), compute

𝑚′ := 𝑐0−sk·𝑐1 and return the plaintext𝑚 := (𝑚′ cmod 𝑞𝑖) mod

2
𝑇 ∈ R

2
𝑇 . Here cmod denotes the centered modular reduction

that produces a polynomial with coefficients in (−𝑞𝑖/2, 𝑞𝑖/2].

Homomorphic Operations and Noise. Let 𝒄 = (𝑐0, 𝑐1) and 𝒄 ′ =

(𝑐 ′
0
, 𝑐 ′
1
) be ciphertexts that encode𝑚 and𝑚′, respectively. We can

add two ciphertexts 𝒄 + 𝒄 ′ := (𝑐0 +𝑐 ′
0
, 𝑐1 +𝑐 ′

1
), obtaining a ciphertext

that encodes𝑚 +𝑚′. Subtraction works analogously. Multiplication

in our linearly homomorphic variant of BGV is only supported

by a plaintext polynomial. For a publicly known 𝑓 ∈ R
2
𝑇 , we can

multiply 𝑓 · 𝒄 := (𝑓 𝑐0, 𝑓 𝑐1), obtaining a ciphertext that encodes 𝑓𝑚.

Note that correct decryption of the ciphertexts obtained through

these homomorphic operations is only guaranteed as long as the

noise of the ciphertext is not too large. The noise of a ciphertext

𝒄 = (𝑐0, 𝑐1) is defined as noisesk (𝒄) := 𝑐0 − sk · 𝑐1.

Modulus Switching. The modulus switching protocol SwitchMod
described above, allows a party to convert a ciphertext 𝒄 under

a modulus 𝑞1 into a ciphertext 𝒄 ′ under a smaller modulus 𝑞0.

SwitchMod follows the classical constructions from [12] and [27,

Appendix D]. When employing modulus switching, we have to be

careful that the target modulus is still large enough to guarantee

correct decryption. This is captured by the following lemma, which

can be proven analogously to [12, Lemma 1].

Lemma 1. Let 𝑞0 = 𝑝0 and 𝑞1 = 𝑝0𝑝1 where 𝑝0 and 𝑝1 are prime
numbers with 𝑝1 ≡ 1 (mod 2

𝑇) and 𝑝0 ≡ 𝑝1 ≡ 1 (mod 𝑚). Let 𝒄 ∈
R2𝑞1 and 𝒄

′
:= SwitchMod(𝒄). Then, for any skwith ∥noisesk (𝒄)∥∞ <

𝑞1/2 − 2𝑇−1 · 𝑝1 · ℓ1 (sk), we have Decsk (𝒄) = Decsk (𝒄 ′).

Drowning. As in the original LowGear protocol [34], we likewise

need to apply so-called drowning to certain ciphertexts to make

sure that the ciphertexts’ noise does not leak sensitive information

(to someone who knows the secret key). That is, the party who

knows the secret key should be able to learn the plaintext value (by

decrypting) but should not be able to infer, e.g., how this value was

computed. Drowning is performed using a modified encryption

algorithm Enc′. In contrast to [34], we explicitly define Enc′ and
formalize (in Theorem 1) the security guarantees we obtain from it.

Our definition corresponds to what is currently used in practice [32].

Enc′ is defined as follows.

• Enc′pk (𝑚 ∈ R2𝑇 , 𝐵 ∈ N): To encrypt and drown𝑚 with noise

bound 𝐵, proceed as in Encpk (𝑚), except that 𝑒0 is sampled uni-

formly at random from the set of polynomials with coefficients

in [−𝐵, 𝐵).
Intuitively, the security guarantee from drowning is that any two

drowned ciphertexts are indistinguishable from each other, even

for the party who knows the secret key, as long as both encrypt the

same plaintext𝑚. This is formalized in the following theorem. The

proof is included in Appendix B.

Theorem 1. Let 𝑆 ∈ R≥1, let sk, 𝑒 ∈ R with ∥sk∥∞ ≤ 𝑆 and ∥𝑒 ∥∞ ≤
2𝜎2𝑆 , and let 𝒄0, 𝒄1 ∈ R2𝑞0 be ciphertexts with Decsk (𝒄0) = Decsk (𝒄1).
For any 𝑎 ∈ R𝑞1 , define pk(𝑎) := (𝑎, 𝑎 · sk + 2𝑇 𝑒). For statistical

security parameter Stat_sec and

𝐵 ≥ 2
Stat_sec (∥⌊noisesk (𝒄𝑖)/2𝑇 ⌋∥∞ + 𝜑 (𝑚)4𝜎2𝑆) ∀𝑖 ∈ {0, 1},

the two distributions{(
𝑎

$← R𝑞1 , 𝒄𝑖 + Enc′pk(𝑎) (0, 𝐵)
)}

, 𝑖 ∈ {0, 1},

are computationally indistinguishable.

Secure Key Generation. In contrast to prior works [19, 23, 34, 39]

which assume that HE keys are generated honestly by a trusted

dealer, we construct a secure key generation protocol for our triple

generation. In Section 7, we present how this affects our parameters

and evaluation.

In order to use Theorem 1, our secure key generation has to

ensure that the assumptions of the theorem still hold, namely that

pk = (𝑎, 𝑎 · sk + 2𝑇 𝑒) for 𝑎 $← R𝑞1 and some sk, 𝑒 ∈ R with

∥sk∥∞ ≤ 𝑆 and ∥𝑒 ∥∞ ≤ 2𝜎2𝑆 . Here the slack 𝑆 introduces a trade-
off: increasing 𝑆 relaxes the requirements on the key but at the

same time increases the noise of the drowned ciphertext.

Now in order to prevent cheating, every party 𝑃𝑖 generates her

public key using an interactive protocol that proves to the other

parties that the public key conforms to the above-mentioned re-

quirements. This protocol is defined as follows. First, the component

𝑎 of the public key is sampled using a secure coin-flipping proto-

col over R𝑞1 . Appendix H shows how this (standard) protocol can

be realized. Then 𝑃𝑖 computes and broadcasts the second compo-

nent 𝑏 = 𝑎 · sk + 2𝑇 𝑒 . Finally, 𝑃𝑖 engages with each other party 𝑃 𝑗
(𝑗 ≠ 𝑖) in a zero-knowledge proof of secret key knowledge (ZK-

PoSKK) where 𝑃𝑖 proves to know a witness (sk, 𝑒) ∈ R2 subject to
above-mentioned bounds such that 𝑏 = 𝑎 · sk + 2𝑇 𝑒 .

A description of our ZKPoSKK is included in Appendix G. We

designed our ZKPoSKK with a small slack on (sk, 𝑒). Please note
that more efficient ZKPoSKKs are available (e.g., similar to our

construction of ZKPoPK in Section 6) but generally result in a larger

slack on (sk, 𝑒). This larger slack on the other hand impacts the

noise bounds of every ciphertext. The negative effect of a larger slack
on the overall efficiency is therefore much larger than the a slightly

less efficient ZKPoSKK used only once in the key generation.

4 2
𝑠-ENHANCED CPA SECURITY

Similar to previous LHE-based protocols [34, 41], our triple genera-

tion protocol uses a MAC check to detect misbehavior. However, the

outcome of the MAC check (i.e., pass or fail) might leak information

on certain homomorphically encrypted values.

Previous LHE protocols [34, 41] (in the base field setting) protect

against this type of selective failure leakage by using encryption

schemes, i.e., BGV in the field case, that satisfy an enhanced CPA
security [34]. Unfortunately, enhanced CPA security does no longer

hold over Z
2
𝑇 for our BGV-type scheme. Even more, [16] showed

that an adversary in the enhanced CPA security game can always

deduce the last bit of a plaintext with non-negligible advantage for

any homomorphic encryption scheme with plaintext space Z
2
𝑇 . We

extend this result below (see Remark 1) and show that an adversary

can deduce the 𝑠 least significant bits of a plaintext with success

probability 1/2𝑠 .
9

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

G
2
𝑠 -CPA+

(1) The challenger C generates (pk, sk) ← KeyGen() and sends
pk to the adversary A.

(2) C samples 𝒎
$← Z𝑀

2
𝑡 and sends the ciphertext 𝒄 :=

Encpk (pack(𝒎)) to A. C samples 𝑏
$← {0, 1}.

(3) For 𝑗 ∈ poly(𝑠):
(a) A sends some 𝒄 𝑗 to C.
(b) If unpack(Decsk (𝒄 𝑗)) = 0, C sends OK to A. Otherwise,

C sends abort to A and aborts and sets 𝑏 ′ = 0.

(4) If 𝑏 = 0, C sends 𝒎0 := 𝒎 to A. Otherwise, C samples

�̃�
$← Z𝑀

2
𝑡−𝑠 and sends 𝒎1 := 2

𝑠�̃� + (𝒎 mod 2
𝑠) to A.

(5) A outputs 𝑏 ′ ∈ {0, 1}.
The advantage of A is defined as advA = |Pr[𝑏 ′ = 1 | 𝑏 =

1] − Pr[𝑏 ′ = 1 | 𝑏 = 0] |.

Figure 1: 2𝑠 -enhanced CPA security game.

Fortunately, under the same (classical LHE) assumptions as in

[34], i.e., that an adversary can only successfully apply affine oper-

ations to ciphertext(s), this is the best an adversary can do. Namely,

with a high probability of at least 1 − 2−𝑠 an adversary gains no

information on the 𝑇 − 𝑠 most significant bits. Formally, we cap-

ture this property of BGV ciphertexts with a new security notation

called 2
𝑠 -enhanced CPA security:

Definition 1. Let S = (KeyGen, Enc,Dec) be a CPA-secure asym-

metric encryption scheme with a packing scheme (pack : Z𝑀
2
𝑡 →

R
2
𝑇 , unpack : R

2
𝑇 → Z𝑀

2
𝑡). S has 2

𝑠 -enhanced CPA security if for

each probabilistic and polynomial time (ppt.) adversary A there is

an event 𝐸 such that

(i) if Pr[𝐸] ≠ 0 then the game G
2
𝑠 -CPA+ (Figure 1) aborts with

probability at least 1 − 2
−𝑠

over all runs in 𝐸,

i.e., Pr[abort | 𝐸] ≥ 1 − 2−𝑠 ,
(ii) if Pr[𝐸] ≠ 1 then the advantage over all runs in¬𝐸 is negligible

in the computational security parameter Comp_sec of S, i.e.,
|Pr[𝑏 ′ = 1 | 𝑏 = 1,¬𝐸] − Pr[𝑏 ′ = 1 | 𝑏 = 0,¬𝐸] | is negligible
in Comp_sec.

Intuitively, 𝐸 is the event where the adversary can gain mean-

ingful information on the𝑇 −𝑠 most significant bits from the oracle

queries, i.e., |Pr[𝑏 ′ = 1 | 𝑏 = 1, 𝐸] − Pr[𝑏 ′ = 1 | 𝑏 = 0, 𝐸] | is non-
negligible inComp_sec. In this case, we demand that the challenger

aborts with high probability Pr[abort | 𝐸] ≥ 1 − 2−𝑠 . In the other

case (¬𝐸), we demand that the adversary has negligible advantage.

We remark that part (i) is a statistical security notion which

is independent of the computational power of an adversary. In

particular, an adversary cannot retry to improve his chances. We

therefore choose 𝑠 as in the SPDZ
2
𝑘 MAC scheme (see Section 2.1),

such that we obtain the same statistical security.
6
A selective failure

attack then has the same success probability (≤ 2
−𝑠
) as cheating by

guessing the correct MAC key (cf. [20]).

2
𝑠 -enhanced CPA-security of BGV. We now show that the BGV

scheme satisfies Definition 1. For the proof, we require the estab-

lished assumption that BGV satisfies linear targeted malleability

6
That is, sec := ⌊𝑠 − log

2
(𝑠 + 1) ⌋ (see [20, Theorem 1]).

(cf. Definition 3 or [10]). The argument in the Z
2
𝑇 case is identical

to the field case discussed in [34]. This still holds when combining

BGV with the tweaked interpolation packing where encryption be-

comes Encpk (pack(·)) and decryption becomes unpack(Decsk (·)).
We refer to Appendix A for further details.

Theorem 2. If the BGV scheme over Z
2
𝑇 (cf. Section 3) satisfies

linear targeted malleability, then it also satisfies 2𝑠 -enhanced CPA
security (cf. Definition 1).

Proof. If the adversary’s advantage (over all runs) is negli-

gible in Comp_sec, then we choose 𝐸 = ∅ in order to get 2
𝑠
-

enhanced CPA security. Hence, we focus on adversaries A with

non-negligible advantage (over all runs) and need to find an appro-

priate 𝐸 ≠ ∅ to satisfy Definition 1. Obviously, such an adversary

needs to make queries in G
2
𝑠 -CPA+ (3) or we can directly reduce to

the standard CPA game.

With linear targeted malleability, G2𝑠−CPA+ can be reduced to a

security game where the adversary sends 𝐵 ∈ Z𝐾×𝑀
2
𝑇

and 𝒃 ∈ Z𝐾
2
𝑇

to the challenger C and C returns OK if the corresponding affine

function 𝑓𝐵,𝒃 (𝒎) = 𝐵𝒎 − 𝒃 = 0 or else aborts (cf. Figure 14). Linear
algebra tells us that 𝐵 has a Smith normal form [13], i.e., there

are invertible matrices 𝑆 ∈ Z𝐾×𝐾
2
𝑇

, 𝑅 ∈ Z𝑀×𝑀
2
𝑇

and an 0 ≤ 𝑟 ≤
min{𝐾,𝑀} such that 𝑆−1𝐵𝑅−1 = 𝐷 = (𝛿𝑖 𝑗2𝛽 𝑗 𝛿 𝑗<𝑟)0≤𝑖<𝐾,0≤ 𝑗<𝑀
with 0 ≤ 𝛽1 ≤ · · · ≤ 𝛽𝑟 < 𝑇 and 𝛽𝑖 ∈ N. Thus 𝐵𝒎 − 𝒃 = 0 is

equivalent to 𝐷 (𝑅𝒎) = 𝑆−1𝒃 . We need one further property: if

𝑅𝒎 = 𝒏2𝑗 + 𝒌 for some 1 ≤ 𝑗 ≤ 𝑠 and 𝒏, 𝒌 ∈ Z𝑀
2
𝑇
, then𝒎 mod 2

𝑗 =

𝑅−1𝒌 mod 2
𝑗
, i.e., the least 𝑗 significant bits of 𝒌 and 𝒎 determine

each other completely. On the other hand if 𝒏 is uniformly random

so are the𝑇− 𝑗 most significant bits of𝒎 since𝑅−1𝒏2𝑗 has uniformly

random𝑇 − 𝑗 most significant bits. In summary, if an adversary gets

access to the 𝑗 least significant bits of 𝑅𝒎 he can deduce the least 𝑗

significant bits of 𝒎. However, as long as he learns nothing about

the more significant bits of 𝑅𝒎, he also cannot deduce information

about the more significant bits of 𝒎.

We want to now look at the information an adversary can ac-

tually deduce from a successful query. Consider 1-dimensional

affine functions 𝑓𝛽,𝑏 (𝑚) = 2
𝛽𝑚 − 𝑏 for 𝛽 ∈ N, 𝑏 ∈ Z

2
𝑇 and

𝑚 ∈ Z
2
𝑇 uniformly random, i.e., 𝛽 = 𝛽 𝑗 ,𝑚 = (𝑅𝒎) 𝑗 , 𝑏 = (𝑆−1𝒃) 𝑗

for some 1 ≤ 𝑗 ≤ 𝑟 . Then 𝑓𝛽,𝑏 (𝑚) = 0 only happens if 2
𝛽𝑚 = 𝑏.

If 𝑚 =
∑𝑇−1
𝑖=0 𝑚𝑖2

𝑖
and 𝑏 =

∑𝑇−1
𝑖=0 𝑏𝑖2

𝑖
, this condition amounts to

𝑏𝑖 = 0 for 𝑖 < 𝛽 and 𝑏𝑖 =𝑚𝑖−𝛽 for 𝑇 > 𝑖 ≥ 𝛽 . If𝑚 is sampled ran-

domly this case occurs with probability 2
𝛽−𝑇

.
7
If this case occurs,

the adversary learns the𝑇 − 𝛽 least significant bits of𝑚 but nothing
about the more significant bits, since they do not affect the outcome

of the zero check.

Hence, in order to gain information on the𝑇 − 𝑠 most significant

bits (to improve the winning changes in G
2
𝑠 -CPA+) the adversary

needs to choose 𝑇 − 𝛽 > 𝑠 ⇔ 𝛽 < 𝑇 − 𝑠 . But then the game

aborts with probability 1−2𝛽−𝑇 > 1−2−𝑠 . Please note that sending
several queries does not improve the winning chance. Namely, if the

adversary uses the decryption oracle again with 𝑓
2
𝛽′ ,𝑏′ . Obviously,

he chooses 𝛽 ′ < 𝛽 or else he can gain no new information. He

should also set 𝑏 ′
𝑗
=𝑚 𝑗−𝛽′ for 0 ≤ 𝑗 − 𝛽 ′ < 𝑇 − 𝛽 or else he always

fails (since these𝑚 𝑗−𝛽′ are already determined by the first round). If

7 (𝑅𝒎) 𝑗 is obviously distributed uniformly at random, if𝒎 was sampled randomly.

10

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

he does so, the second round does not abort with probability 2
𝛽′−𝛽

.

He then knows the 𝑡 − 𝛽 ′ least significant bits. If 𝑇 − 𝛽 ′ > 𝑠 then
the overall abort probability is 1 − 2𝛽−𝑇 2𝛽′−𝛽 = 1 − 2𝛽′−𝑇 > 1 − 2𝑠 .

In summary, we see that we can choose 𝐸 as the event where

at least one query of A is of the form 𝑓𝐵,𝒃 with 𝐵 = 𝑆𝐷𝑅, 𝐷 =

(𝛿𝑖 𝑗2𝛽 𝑗 𝛿 𝑗<𝑟)0≤𝑖<𝐾,0≤ 𝑗<𝑀 as before and 𝛽1 < 𝑇 − 𝑠 . Then, for runs
in 𝐸, we get an abort probability Pr[abort | 𝐸] ≥ 1 − 2−𝑠 ; for runs
in ¬𝐸, we have 𝛽 𝑗 ≥ 𝛽1 ≥ 𝑇 − 𝑠 for all 1 ≤ 𝑗 ≤ 𝑟 , so the adversary

cannot deduce any information on the 𝑇 − 𝑠 most significant bits

from querying and it follows that |Pr[𝑏 ′ = 1 | 𝑏 = 1,¬𝐸] − Pr[𝑏 ′ =
1 | 𝑏 = 0,¬𝐸] | is negligible in Comp_sec. These two statements

together mean that BGV satisfies 2
𝑠
-enhanced CPA-security (for

every choice 0 ≤ 𝑠 < 𝑇). □

Remark 1. The previous proof contains an attack against (classical)

enhanced CPA-security similar to the one in [16]. An adversary

that queries 2
𝑇−𝛽Encpk (𝑚) gains the 𝛽 least significant bits with

probability (at least) 2
−𝛽 , 0 < 𝛽 ≤ 𝑇 . As in [16] our attack extends

to every LHE scheme with plaintext space Z
2
𝑇 .

Next we want to explain how 2
𝑠
-enhanced CPA-security can be

used to construct a secure triple generation. We obviously cannot

use the last 𝑠 bits of an encrypted value since these bits are not

protected under 2
𝑠
-enhanced CPA-security. In our triple generation

protocol, this requires us to instantiate the packing scheme over a

slightly larger ring with 𝑡 = 𝑘+2𝑠 (as opposed to 𝑡 = 𝑘+𝑠 in [19, 39]),
and to later “throw away” the 𝑠 least significant bits.

5 LHE-BASED TRIPLE GENERATION
In this section we present our new LHE-based Beaver triple gener-

ation protocol. This is the core of our offline phase and, combined

with the online phase of, e.g., [20], enables secure computation over

Z
2
𝑘 . As in Overdrive LowGear, we first construct a pairwise vector

oblivious linear evaluation (VOLE) subroutine ΠVOLE based on the

linear homomorphic properties of the BGV scheme (cf. Section 3).

In our offline phase, the subroutine is then used in the construction

of 𝑐 = 𝑎 ·𝑏, 𝛼 ·𝑎 and 𝛼 ·𝑐 in a Beaver triple (J𝑎K, J𝑏K, J𝑐K). ΠVOLE not

only combines the state-of-the-art tweaked interpolation packing

with LowGear but also adds a modulus switching step that reduces

the overall communication by about 40%. Moreover, we present our

new authentication subprotocol ΠAuth. Finally, we use ΠVOLE and

ΠAuth in our triple generation protocol ΠTriple. This extends the

recent optimization [41] of LowGear to the Z
2
𝑘 setup and solves

the additional security issues that arise in the Z
2
𝑘 setup.

The protocols make use of three ideal functionalities. FRand is a

(standard) functionality that provides all parties with a (common)

uniformly random value (or vector of values). The other two func-

tionalities FZKPoK and FDiag
ZKPoK ensure correctly encrypted values

are sent to the receiving parties, i.e., FZKPoK ensures a valid en-

cryption of a correctly packed message and FDiag
ZKPoK ensures a valid

encryption of a constant polynomial (i.e., diagonal plaintext). For a

formal definition of these two functionalities, see Appendix A. They

are realized with the respective ZKPoPKs (Section 6). Moreover, the

realization of FZKPoK requires an additional ZKPoMK in order to

guarantee correct packing.

Vector Oblivious Linear Evaluation (VOLE). A central subprotocol in

the triple generation is our VOLE protocol ΠVOLE (Figure 2). This

two-party protocol multiplies the vector input 𝒂 of one party A
component-wise with each of the 𝑛 vector inputs 𝒃0, . . . , 𝒃𝑛−1 of
another party B. The results are shares 𝒅𝑖 at A and shares 𝒆𝑖 at B
such that 𝒅𝑖 + 𝒆𝑖 = 𝒂 ⊙ 𝒃𝑖 for 𝑖 ∈ [𝑛]. As 𝒂 is the same for each 𝒃𝑖 ,
the protocol only needs to provide it once (together with a single

ZKPoPK) for arbitrarily many 𝒃𝑖 .
ΠVOLE is modelled following the LowGear pairwise multiplica-

tion protocol in [34, Figure 7,Multiply, step 2]. However, ΠVOLE
has several novelties: Most notably, the inputs are vectors over Z

2
𝑡

instead of a finite field. In order to pack many elements from Z
2
𝑡

into a single BGV ciphertext, ΠVOLE uses the tweaked interpola-

tion packing with 𝑀 denoting the number of slots. Note that the

tweaked interpolation packing is not surjective onto the plaintext

space. As a consequence, just like in [19], the functionality FZKPoK
needs to guarantee not only that 𝒄𝑎 is a valid ciphertext but also

that the underlying plaintext is a valid packing of some message.

That is, in the realization of FZKPoK, the proverA needs to perform

not only a ZKPoPK but also a ZKPoMK.

So far, what we described applies the techniques from [19] to

the LowGear pairwise multiplication protocol. Furthermore, our

protocol ΠVOLE contains a new optimization: Before returning the

ciphertexts 𝒄𝑑𝑖 to party A, we apply modulus switching in order

to significantly reduce the size of most transmitted ciphertexts, i.e.,

by 54–66% in our setup (cf. Section 7.2). Note that we must start

with a large enough modulus 𝑞1 such that we can apply drowning

with sufficiently large noise, i.e., the noise of Enc′. After the noise is
added, we can switch to a smaller modulus 𝑞0. The only constraint

is that 𝑞0 must still be large enough to ensure correct decryption (cf.

Lemma 1). This optimization reduces the overall communication of

the triple generation, i.e., including those ciphertexts that cannot

be modulus-switched and including other values that need to be

transmitted, by about 40%.

Note that, similar to [19], we use a ZKPoMK with slack in the

exponent for a more efficient ZKPoMK. Therefore, the plaintext

modulus of BGV is chosen as 2
𝑇+𝐸

, having 𝐸 bits of additional slack.

To avoid that the (homomorphically evaluated) product 𝒂 ⊙ 𝒃𝑖
leaks information from overflowing into these additional 𝐸 bits, a

masking𝑚𝑖 is added in Figure 2 that hides any information that

could be in these upper bits. Finally, the products 𝒂 ⊙ 𝒃𝑖 are masked

using our uniform distribution on pack′(𝒆) described in Section 2.3.

Authentication. The authentication subprotocol ΠAuth which gen-

erates authenticated shares J𝒃K for a shared vector 𝒃 is presented

in Figure 3. It first computes [𝛼]𝑖 · [𝒃] 𝑗 for each ordered pair of

parties (𝑃𝑖 , 𝑃 𝑗). As the MAC key 𝛼 is fixed, this is a simple scalar

multiplication. In contrast to ΠVOLE this allows us to use the more

efficient coefficient packing for [𝒃] 𝑗 instead of the tweaked interpo-
lation packing in ΠVOLE. This way, we achieve the optimal packing

efficiency for the authentication, which is over a factor of 2 more

efficient than the tweaked interpolation packing.

We briefly describe ΠAuth in more detail. First note that all par-

ties need to obtain encrypted shares of 𝛼 only once during the

offline phase. Thus, ΠAuth performs the first step Init (sending an

encryption of [𝛼]𝑖) only once over all invocations of Auth. In Init
the prover A needs to prove that 𝒄 [𝛼]𝑖 is a valid ciphertext that

11

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

Two-Party Protocol ΠVOLE

A(𝒂 ∈ Z𝑀
2
𝑡): B(𝒃0, . . . , 𝒃𝑛−1 ∈ Z𝑀

2
𝑡):

𝑎 := pack(𝒂) → FZKPoK → 𝒄𝑎

∀𝑖 ∈ [𝑛] :
𝒆𝑖

$← Z𝑀
2
𝑡+𝑠

𝑚𝑖
$← 2

𝑡+𝑠+2𝛿R
2
𝐸

𝒄𝑑𝑖 ← 𝒄𝑎𝑏𝑖 − Enc′pkA
(

pack′(𝒆𝑖) +𝑚𝑖
)

𝒄 ′
𝑑𝑖

:= SwitchMod(𝒄𝑑𝑖)
(𝒄 ′
𝑑𝑖
)𝑖

←−−−−−−
∀𝑖 ∈ [𝑛] :
𝑑𝑖 := DecskA (𝒄 ′𝑑𝑖)
𝒅𝑖 := unpack(𝑑𝑖) (or abort if not a valid packing)

Return (𝒅𝑖)𝑖

Return (𝒆𝑖)𝑖

Figure 2: Protocol for vector oblivious linear evaluation.

encrypts some diagonal element (i.e., constant polynomial). This is

captured by the functionality FDiag
ZKPoK which can be realized using

the diagonal version of our ZKPoPK. It does not require a ZKPoMK.

In ΠAuth we use a modified version of ΠVOLE that is invoked by

each ordered pair of parties (𝑃𝑖 , 𝑃 𝑗) such that they obtain pairwise

shares (𝒅 (𝑖, 𝑗) , 𝒆 (𝑖, 𝑗)) with 𝒅 (𝑖, 𝑗) + 𝒆 (𝑖, 𝑗) = [𝛼]𝑖 [𝒙] 𝑗 . By the linearity
of shares, we can combine all pairwise shares to get shares of 𝛼 · 𝒙 .
More specifically, due to

𝛼 · 𝒙 =
∑︁

𝑖, 𝑗 ∈[𝑁]
[𝛼]𝑖 [𝒙] 𝑗 =

∑︁
𝑖∈[𝑁]

[𝛼]𝑖 [𝒙]𝑖 +
∑︁

𝑖, 𝑗 ∈[𝑁]
𝑗≠𝑖

(𝒅 (𝑖, 𝑗) + 𝒆 (𝑖, 𝑗))

=
∑︁
𝑖∈[𝑁]

[𝛼]𝑖 [𝒙]𝑖 +
∑︁

𝑖, 𝑗 ∈[𝑁]
𝑗≠𝑖

(𝒅 (𝑖, 𝑗) + 𝒆 (𝑗,𝑖)),

we can use [𝛼]𝑖 [𝒙]𝑖 +
∑
𝑗 ∈[𝑁]\{𝑖 } (𝒅 (𝑖, 𝑗) + 𝒆 (𝑗,𝑖)) as 𝑃𝑖 ’s share of

𝛼 · 𝒙 . Note that the summand [𝛼]𝑖 [𝒙]𝑖 is computed locally.

Triple Generation Without Sacrificing. In [41] the authors construct

a LHE-based triple generation protocol without sacrificing for the

prime field setting. Prior Overdrive-based triple generation pro-

tocols [7, 19, 34, 39] need to sacrifice one triple in order to verify

correctness of another triple. Thus, almost half of the computed

triples are thrown away for sacrificing.
8
In contrast, [41] presents

a variation to LowGear, called LowGear 2.0, where sacrificing can

be omitted while maintaining security. Here we show that this

variation can be transferred to the Z
2
𝑘 setting, too.

However, packed plaintexts over Z
2
𝑘 come with a certain struc-

ture that can be exploited by an adversary. E.g., the Overdrive2k

packing [39] when used with [41] is insecure: This packing requires

certain coefficients to be zero. Without any additional ZKPoMK an

adversary can however inject an arbitrary value 𝑎 ∈ Z
2
𝑘 in one

of these zero coefficients such that one coefficient of the product

becomes 𝑎𝑏 + 𝑎𝑏 ′. For example, instead of our previous example

(𝑎𝑋 + 𝑎′) (𝑏𝑋 + 𝑏 ′) = 𝑎𝑏𝑋 2 + (𝑎𝑏 ′ + 𝑎′𝑏)𝑋 + 𝑎′𝑏 ′ (cf. Section 2) the

8
In fact, 2 entries have to be sacrificed in modern protocols starting from [33]. Original

SPDZ still sacrificed all 3 entries; MP-SPDZ [21, 32] uses this non-optimized sacrificing.

𝑁 -Party Protocol ΠAuth
Init: Each party 𝑃𝑖 does the following:

(1) [𝛼]𝑖
$← Z2𝑠

(2) For each party 𝑃 𝑗 with 𝑗 ≠ 𝑖 , use FDiag
ZKPoK to send an encryp-

tion 𝒄 [𝛼]𝑖 of [𝛼]𝑖 to 𝑃 𝑗 .

Auth: Each party 𝑃𝑖 has input [𝒙]𝑖 ∈ Z𝜑 (𝑚)
2
𝑘

and does:

(1) 𝑥𝑖 := coeffPack([𝒙]𝑖)
(2) For each party 𝑃 𝑗 with 𝑗 ≠ 𝑖:

(a) 𝒆 (𝑗,𝑖)
$← Z𝜑 (𝑚)

2
𝑡+𝑠

(b) 𝑒 (𝑗,𝑖) := coeffPack(𝒆 (𝑗,𝑖)), i.e., the coefficient packing.

(c) 𝒄𝑑 (𝑗,𝑖) ← 𝒄 [𝛼] 𝑗 𝑥𝑖 − Enc′pk𝑗 (𝑒
(𝑗,𝑖))

(d) 𝒄 ′
𝑑 (𝑗,𝑖)

:= SwitchMod(𝒄𝑑 (𝑗,𝑖))
(e) Send 𝒄 ′

𝑑 (𝑗,𝑖)
to 𝑃 𝑗 , receive 𝒄 ′

𝑑 (𝑖,𝑗)
.

(f) 𝑑 (𝑖, 𝑗) := Decsk𝑖 (𝒄 ′𝑑 (𝑖,𝑗))
(g) 𝒅 (𝑖, 𝑗) := coeffUnpack(𝑑 (𝑖, 𝑗))

(3) [𝜸𝒙]𝑖 := [𝛼]𝑖 · [𝒙]𝑖 +
∑
𝑗≠𝑖

(
𝒅 (𝑖, 𝑗) + 𝒆 (𝑗,𝑖)

)
(4) Return J𝒙K

Figure 3: Protocol for share authentication.

adversary now forces the computation (𝑎𝑋 2 + 𝑎𝑋 + 𝑎′) (𝑏𝑋 + 𝑏 ′) =
𝑎𝑏𝑋 3 + (𝑎𝑏 + 𝑎𝑏 ′)𝑋 2 + (𝑎𝑏 ′ + 𝑎′𝑏)𝑋 + 𝑎′𝑏 ′ and gets 𝑎𝑏 + 𝑎𝑏 ′ as
2-coefficient instead of 𝑎𝑏. The triple production would then finish

successfully with an authenticated triple (J𝑎 + 𝑎K, J𝑏K, J𝑎𝑏 + 𝑎𝑏 ′K),
i.e., this triple is correctly authenticated and passes the MAC check,

but the multiplicative relation is not fulfilled. By using ZKPoMKs,

we can guarantee that 𝒄𝑎 encodes a correctly packed message, thus

preventing such attacks. For the full security proof see Appendix A.

In Figure 4 we present our triple generation protocol ΠTriple
which is modelled following [41]. Given (vectors of) [𝑎] and [𝑏], it
needs to compute [𝛼𝑎], [𝛼𝑏], [𝑎𝑏], and [𝛼𝑎𝑏]. Observe that all [𝛼𝑎],
[𝑎𝑏], and [𝛼𝑎𝑏] are products with 𝑎. Therefore, we first authen-
ticate [𝑏] to obtain [𝛼𝑏] and then use the VOLE protocol ΠVOLE.

Finally, we combine the pairwise products similarly to what is done

in ΠAuth. Intertwining the authentication and component-wise mul-

tiplication in this special way prevents the attack that required prior

protocols to check triples using the sacrificing technique. We obtain

a protocol that guarantees the multiplicative relation 𝑐 = 𝑎𝑏 without
sacrificing as we prove in Appendix A. This optimization reduces

the communication cost (see Section 7.4) as well as the round com-

plexity of Multipars compared to a sacrificing-based approach. As

mentioned before, this proof is specially designed for the case Z
2
𝑘

since the original proof in [41] does not directly carry over to Z
2
𝑘 .

Truncation. In order to use 2
𝑠
-enhanced CPA security in our triple

generation protocol ΠTriple (cf. Figure 4), we create larger (Beaver)

triples 𝑎, 𝑏, 𝑐 first, where 𝑎, 𝑐 are from the larger domain Z
2
𝑡+𝑠 and

𝑏 from Z
2
𝑡 . We then employ a truncation subprotocol ΠTrunc pre-

sented in Figure 5 to remove the additional 𝑠 bits in the first and

third component of the triple. In ΠTrunc each party publishes the 𝑠

least significant bits of her shares, where commitments ensure that

an adversary cannot choose his shares depending on the honest par-

ties’ shares. Each party can then reconstruct the sum of these 𝑠 bits

12

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

𝑁 -Party Protocol ΠTriple
Init: The parties initialize the ΠAuth subprotocol.

Triple:

(1) Each party 𝑃𝑖 samples [𝒂]𝑖
$← Z𝑀

2
𝑘+𝑠 , [𝒃]𝑖

$← Z𝑀
2
𝑘
, and

[𝑟0]𝑖 , [𝑟1]𝑖 , [𝑟2]𝑖
$← Z

2
𝑘 .

(2) They authenticate [𝒃 | |𝑟0 | |𝑟1 | |𝑟2] over Z2𝑘+𝑠 using a single

invocation of ΠAuth, obtaining J𝒃K, J𝑚K, and J𝑟K.
(3) Let 𝜶 be the vector of length 𝑀 containing 𝛼 in

each entry. Each ordered pair of parties (𝑃𝑖 , 𝑃 𝑗) runs

ΠVOLE ([𝒂]𝑖 , ([𝜶] 𝑗 , [𝒃] 𝑗 , [𝜸𝒃] 𝑗)) where 𝑃𝑖 obtains

(𝒅 (𝑖, 𝑗)
0

, 𝒅 (𝑖, 𝑗)
1

, 𝒅 (𝑖, 𝑗)
2
) and 𝑃 𝑗 obtains (𝒆 (𝑖, 𝑗)

0
, 𝒆 (𝑖, 𝑗)

1
, 𝒆 (𝑖, 𝑗)

2
).

(4) Each party 𝑃𝑖 computes (modulo 2
𝑘+2𝑠

)

[𝜸𝒂]𝑖 := [𝒂]𝑖 · [𝛼]𝑖 +
∑︁

𝑗≠𝑖

(
𝒅 (𝑖, 𝑗)
0
+ 𝒆 (𝑗,𝑖)

0

)
[𝒄]𝑖 := [𝒂]𝑖 ⊙ [𝒃]𝑖 +

∑︁
𝑗≠𝑖

(
𝒅 (𝑖, 𝑗)
1
+ 𝒆 (𝑗,𝑖)

1

)
[𝜸𝒄]𝑖 := [𝒂]𝑖 ⊙ [𝜸𝒃]𝑖 +

∑︁
𝑗≠𝑖

(
𝒅 (𝑖, 𝑗)
2
+ 𝒆 (𝑗,𝑖)

2

)
.

(5) They use FRand to obtain (public) 𝒕
$← Z3𝑀

2
𝑠 .

(6) J𝑦K := ⟨𝒕, J𝒂 | |𝒃 | |𝒄K⟩ + J𝑟0K + 2𝑘J𝑟1K + 2𝑘+𝑠J𝑟2K
(7) They open 𝑦 and run ΠSingleCheck on (𝑦, [𝛾𝑦]). If the check

fails, abort.

(8) (J𝒂K, J𝒄K) ← ΠTrunc (J𝒂K, J𝒃K, J𝒄K)
(9) Return (J𝒂K, J𝒃K, J𝒄K).

Figure 4: Protocol for Beaver triple generation.

of 𝑎 and 𝑐 (and of the corresponding MAC-shares). Please note that

due to the 2
𝑠
-enhanced CPA security of the BGV scheme, these bits

of 𝑎, 𝑐 were constructed independently of the more significant bits,

i.e., they do not leak any information on the more significant bits

(see Appendix A for a formal proof).
9
The parties use the opened

𝑠 bits to locally compute shares of a truncation of 𝑎, 𝑐 . We remark

that due to possible overflow the actual outputs (𝑎, 𝑐) of ΠTrunc can

slightly differ from the truncation of 𝑎, 𝑐 . However, the protocol en-

sures that all relations between (𝑎, 𝑏, 𝑐), namely 𝑎𝑏 ≡𝑘 𝑐 , 𝛾𝑎 ≡𝑡 𝛼𝑎,
𝛾𝑏 ≡𝑡 𝛼𝑏, and 𝛾𝑐 ≡𝑡 𝛼𝑐 , are guaranteed and that (apart from these

relations) the values are uniformly random and no information on

them is leaked. We prove the correctness of ΠTrunc in Appendix A.

Adaptive Packing. In contrast to [41] (aswell as the original LowGear

protocol [34]) where the same packing technique is used for both

authentication and component-wise multiplication, we use our

subprotocols ΠAuth and ΠVOLE which utilize different packing tech-

niques. Please note that we had to adapt the BGV parameters to

fully use the potentials of both packings, i.e., tweaked interpolation

packing in ΠVOLE and coefficient packing in ΠAuth. To be more pre-

cise: ΠAuth can authenticate up to 𝜑 (𝑚) values per invocation (due

to our usage of the coefficient packing), but in ΠTriple it is invoked

with only 𝑀 + 3 values where 𝑀 ≈ 𝜑 (𝑚)/2 is the capacity of the

tweaked interpolation packing. We solve this by using a different

9
Additionally, we show in Appendix A that similar selective failure attacks on ΠAuth
do also not present a security issue.

𝑁 -Party Protocol ΠTrunc
Let J𝒂K, J𝒃K, J𝒄K be vectors of authenticated shares with modulus

2
𝑡+𝑠

.

(1) Each party 𝑃𝑖 reveals [𝒂]𝑖 mod 2
𝑠
.

(2) Each party 𝑃𝑖 computes

𝚺𝒂 :=
∑︁

𝑗

(
[𝒂] 𝑗 mod 2

𝑠)
[𝜸�̂�]𝑖 := [𝜸𝒂]𝑖 − 𝚺𝒂 · [𝛼]𝑖
[𝒄]𝑖 := [𝒄]𝑖 − 𝚺𝒂 ⊙ [𝒃]𝑖
[𝜸�̂�]𝑖 := [𝜸𝒄]𝑖 − 𝚺𝒂 ⊙ [𝜸𝒃]𝑖 .

Formally, set 𝒂 := 𝒂 − 𝚺𝒂 (not known to any party).

(3) Each party 𝑃𝑖 commits to ([𝜸�̂�]𝑖 mod 2
𝑠 , [𝒄]𝑖 mod

2
𝑠 , [𝜸�̂�]𝑖 mod 2

𝑠).
(4) The parties open their commitments and compute

𝚺𝜸�̂� :=
∑︁

𝑗

(
[𝜸�̂�] 𝑗 mod 2

𝑠)
𝚺𝒄 :=

∑︁
𝑗

(
[𝒄] 𝑗 mod 2

𝑠)
𝚺𝜸�̂� :=

∑︁
𝑗

(
[𝜸�̂�] 𝑗 mod 2

𝑠)
.

(5) The parties check that 𝚺𝜸�̂� ≡ 𝚺𝒄 ≡ 𝚺𝜸�̂� ≡ 0 (mod 2
𝑠). If

the check fails, abort.

(6) Each party 𝑃𝑖 computes

[𝒂]𝑖 := ⌊[𝒂]𝑖/2𝑠 ⌋ = ([𝒂]𝑖 − ([𝒂]𝑖 mod 2
𝑠))/2𝑠

[𝜸𝒂]𝑖 := ⌊[𝜸�̂�]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠

[𝒄]𝑖 := ⌊[𝒄]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝒄/2𝑠

[𝜸𝒄]𝑖 := ⌊[𝜸�̂�]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠 ,
where only party 𝑃0 adds the summands on the right.

(7) Return (J𝒂K, J𝒄K).

Figure 5: Protocol for truncation of Beaver triples.

BGV parameter set for ΠAuth (than for ΠVOLE) with prime cyclo-

tomic index �̂� just large enough such that we have 𝜑 (�̂�) ≥ 𝑀 + 3
coefficients.

Batched MAC Check. As mentioned before, we need to perform a

(batched) MAC check in the triple generation protocol, in order to

guarantee that all shares have been authenticated correctly. The

batched MAC check is performed using a standard technique where

a random linear combination ⟨𝒕, J𝒂 | |𝒃 | |𝒄K⟩ ∈ Z
2
𝑘+2𝑠 of the shares is

checked. Additionally, this linear combination is masked, such that

no information gets leaked. While in [41] (i.e., in the prime field

setting) this required only a single mask𝑚, in our setting we need

multiple masks 𝑟0, 𝑟1, 𝑟2 ∈ Z2𝑘 in order to mask the upper 2𝑠 bits of

the random linear combination, too. Note that this requires 𝑠 ≤ 𝑘 ,
which is given for typical values of 𝑠 and 𝑘 [19, 20, 39]. For the

MAC check itself, we invoke the protocol ΠSingleCheck presented in

Figure 6. It is the same as the SingleCheck procedure in [20], except

that in our protocol the input is already masked and opened before

calling ΠSingleCheck. This way, we can produce the authenticated

masks J𝑟0K, J𝑟1K, J𝑟2K within ΠTriple for no extra cost, instead of

invoking ΠAuth once more within the MAC check subprotocol.

13

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

𝑁 -Party Protocol ΠSingleCheck
The parties have common input 𝑦 ∈ Z

2
𝑡+𝑠 and each party 𝑃𝑖

additionally has [𝛾𝑦]𝑖 .
(1) Each party 𝑃𝑖 commits to 𝑧𝑖 := [𝛾𝑦]𝑖 − 𝑦 · [𝛼]𝑖 mod 2

𝑡+𝑠
.

(2) The parties open their commitments and check that∑
𝑖 𝑧𝑖 ≡𝑡+𝑠 0.

Figure 6: MAC check protocol for a single value.

Theorem 3. For any number of parties 𝑁 ∈ N, ΠTriple realizes
FTriple in the standalone model with rewinding black-box simulator.

We prove the security of ΠTriple, stated here as Theorem 3, in

Appendix A in the standalone model with rewinding black-box sim-

ulator [28, 35]. This is the same security model as in the Overdrive

paper [34].
10

The core idea of the proof is the following. Firstly,

an adversary cannot infer any information from the messages of

honest parties, thus a simulation with (encrypted) dummy values

is sufficient. Secondly, the simulator is in full control of the func-

tionalities used in the simulation and can thus extract data from

corrupted parties. Lastly, a successful MAC check in the simulation

gives us guarantees about the correlation between shared values

(with overwhelming probability) and thus not aborting in the simu-

lation implies that we have correctly correlated shares.

6 ZERO-KNOWLEDGE PROOFS OF
PLAINTEXT KNOWLEDGE

In this section we describe our improved version of the ZKPoPK

from [19], the current state-of-the-art ZKPoPK for BGV ciphertexts

with plaintext modulus 2
𝑇
. Recall that our ZKPoPK is used for

each invocation of ΠVOLE (together with a ZKPoMK) in the triple

generation. It is therefore an essential part of the whole offline

phase, both security- and efficiency-wise.

The ZKPoPK from [19] (in its original form) is not directly ap-

plicable in our setup, since it only allows us to prove statements

about a multiple𝑚 · 𝒄 of a ciphertext 𝒄 and not about 𝒄 itself. This
weaker nature of their ZKPoPK seems to have been overlooked by

the authors of [19]. However, there is a standard solution to these

kind of problems, where the ciphertext 𝒄 is replaced by its multiple

𝑚 · 𝒄 after the ZKPoPK finished successfully.
11

In this paper we follow a different approach that allows us to

circumvent this problem entirely by using a new challenge space

introduced in [1]. In Appendix C we show our instantiation of this

challenge space and prove the necessary properties. In particular,

we do not need to change the ciphertexts (and hence the correspond-

ing protocols they are used in) after the ZKPoPK. Our improved

ZKPoPK presented below reduces the communication by reducing

the number of values that need to be transmitted. Additionally, we

reduce the slack by employing the rejection sampling idea from [36]

in the interactive setting. The reduced slack in turn enables the

usage of smaller BGV parameters, which reduces overall commu-

nication of our triple generation protocol by 3–7% (compared to

80-bit statistical zero-knowledge without rejection sampling
12
) in

10
In [34], the authors call this model a limited version of the UC model [14].

11
This is the approach taken in [7], where the factor is only 2.

12
We compare against 80-bit statistical zero-knowledge as in [7], because using the

statistical security parameter (≈ 𝑠) instead would be too low, as also explained in [7].

the setup used for our evaluation (cf. Section 7). At the same time,

rejection sampling endows our ZKPoPK with perfect instead of

statistical zero-knowledge. Please also note, that our ZKPoPK is

not an 𝑁 -prover zero-knowledge proof of knowledge (ZKPoK), e.g.,

as the ZKPoPK in [7, 19], but a classical (1-prover) ZKPoK.

Our ZKPoPK Protocol. In a ZKPoPK, on common input 𝑥 = (𝒄, pk),
the prover proves to the verifier that the ciphertext 𝒄 was computed

honestly from a plaintext and randomness that meet certain bounds

and additionally that the prover knows such a small plaintext and

randomness (instead of, e.g., reusing a valid ciphertext of another

party). To improve efficiency, the proof is done for a batch of ci-

phertexts. As usual [7, 19, 23, 34], to achieve this amortization, we

use a𝑈 ×2 ciphertext matrix𝐶 where each of its𝑈 rows is a cipher-

text. The proof has a parameter flag ∈ {⊥,Diag} that determines

whether the prover wants to additionally prove that (for each of

the 𝑈 ciphertexts) the plaintext is a so-called diagonal element, i.e.,

a constant polynomial. That is, the plaintext space is defined by

𝜚 (flag) ≔ R
2
𝑇 if flag = ⊥ and 𝜚 (flag) ≔ Z

2
𝑇 if flag = Diag.

Our ZKPoPK and the upcoming proofs make use of deterministic

BGV encryption for given randomness: let Encpk (·, 𝑣, 𝑒0, 𝑒1) denote
deterministic encryption with randomness 𝑣, 𝑒0, 𝑒1. We also use

the natural extension of this to encrypt vectors of plaintexts with

vectors of randomness.

A honest prover that computed all ciphertexts honestly knows a

witness𝑤 such that (𝑥,𝑤) belongs to the relation

L := {((𝐶, pk), (𝒎, 𝒗, 𝒆0, 𝒆1)) :

𝐶 ∈ R𝑈×2𝑞 , pk ∈ R2𝑞,𝒎 ∈ 𝜚 (flag)𝑈 , 𝒗, 𝒆0, 𝒆1 ∈ R𝑈 ,
∥𝒗∥∞ ≤ 1, ∥𝒆0∥∞ , ∥𝒆1∥∞ ≤ 2𝜎2,𝐶 = Encpk (𝒎, 𝒗, 𝒆0, 𝒆1)}.

As our ZKPoPK has some slack, it only guarantees knowledge

soundness for the following relation where the bounds on the

witness are relaxed by a factor of 𝑆ZKPoPK ∈ R≥1:

L𝑆ZKPoPK := {((𝐶, pk), (𝒎, 𝒗, 𝒆0, 𝒆1)) :

𝐶 ∈ R𝑈×2𝑞 , pk ∈ R2𝑞,𝒎 ∈ 𝜚 (flag)𝑈 , 𝒗, 𝒆0, 𝒆1 ∈ R𝑈 ,
∥𝒗∥∞ ≤ 𝑆ZKPoPK, ∥𝒆0∥∞ ≤ 𝑆ZKPoPK · (2𝜎2 + 1),
∥𝒆1∥∞ ≤ 𝑆ZKPoPK · 2𝜎2,𝐶 = Encpk (𝒎, 𝒗, 𝒆0, 𝒆1)}.

Note that, in contrast to prior ZKPoPKs for BGV [7, 19, 23], the

message𝒎 doesn’t have any slack in the dishonest relation L𝑆ZKPoPK .
This is due to the following observation: As the encryption algo-

rithm adds 2
𝑇 𝒆0 +𝒎, we can simply interpret the parts of 𝒎 that

exceed the bound 2
𝑇
as being part of the noise 𝒆0. The formal proof

of this intuition can be found below, where we prove the knowledge
soundness property of our ZKPoPK. We also use the same observa-

tion to combine 2
𝑇 𝒆0 +𝒎 into a single value in the protocol itself

in order to slightly reduce communication.

Diagonal Plaintexts. For parameter flag = Diag, our ZKPoPK ad-

ditionally proves that each entry in the plaintext vector 𝒎 is a

constant polynomial. The challenge space Chal from Appendix C

cannot be used in the flag = Diag case. In this case, we have to

resort to the challenge space {0, 1}, as usual [7, 19]. The usage of
the challenge space {0, 1} decreases efficiency (compared to the

flag = ⊥ case), as one has to choose a much larger number 𝑉 of

14

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

transmitted ciphertexts to achieve the same knowledge error. On

the positive side, flag = Diag decreases the slack by 𝜑 (𝑚)2.

Security. Our ZKPoPK protocol and the security proof can be found

in Appendix E, while the security definitions can be found in Ap-

pendix D. The protocol provides security as stated in the following

theorem. To distinguish the two challenge spaces, we use the no-

tations Chal(Diag) := {0, 1} and Chal(⊥) := {𝑤𝑖 | 0 ≤ 𝑖 < 𝑚}.
Furthermore, we denote by 𝜗 (Diag) := 1 and 𝜗 (⊥) := 𝜑 (𝑚) the
maximum factor by which the norm of a polynomial can grow

when multiplied by a challenge.

Theorem 4. If flag = ⊥, 𝑉 ≥ (Snd_sec + 2)/log
2
|Chal(flag) |, and

𝑍 ≥ 2
ZK_sec then ΠZKPoPK from Figure 15 (in Appendix E) is

• complete (Definition 4) for L with negligible completeness error,
• knowledge sound (Definition 5) for L𝑆ZKPoPK with
𝑆ZKPoPK = 2𝜗 (flag)2𝑈𝑍 and knowledge error 2−Snd_sec,
• special honest verifier zero-knowledge (Definition 6) for L with
statistical distance 2−ZK_sec.

Security Against Malicious Verifiers. Note that Theorem 4 only pro-

vides the zero-knowledge property of our ZKPoPK for honest veri-

fiers. We therefore add (similar to, e.g., [6]) a secure coin-flipping

protocol to sample the challenge𝑊 and therewith make our proto-

cols secure against malicious verifiers, too. Details on the secure

coin-flip protocol are presented in Appendix H.

An alternative standard approach to security against malicious

verifiers is the use of the Fiat-Shamir transform [25] in the ran-

dom oracle model (ROM). However, when using the Fiat-Shamir

transform, the prover can retry the proof many times (within the

prover’s computation budget) until he is successful. When imple-

menting the protocol in practice, this implies that one has to choose

the knowledge error much more conservative than in an interactive

proof where the prover only has a single attempt. Specifically, in a

non-interactive proof one should then set Snd_sec to the compu-

tational security parameter, which would blow up the size of our

proofs by a factor of 2 to 4. For this reason, we decided to stick with

an interactive protocol.

Rejection Sampling. In Appendix F we present how the slack of our

ZKPoPK can be reduced with the rejection sampling from [36]. It re-

duces the size of our BGV parameters and therewith the overall com-

munication of our triple generation protocol by 3–7% (compared to

80-bit statistical zero-knowledge without rejection sampling). More

specifically, we have the following security properties.

Theorem 5. If flag = ⊥ and 𝑉 ≥ (Snd_sec + 2)/log
2
|Chal(flag) |,

then ΠRS
ZKPoPK from Figure 17 (in Appendix F) is

• complete (Definition 4) for L with completeness error 1/𝑃 ,
• knowledge sound (Definition 5) for L𝑆ZKPoPK with
𝑆ZKPoPK = 6𝜑 (𝑚)𝜗 (flag)2𝑈𝑉𝑃 and knowledge error 2−Snd_sec,
• special honest verifier zero-knowledge (Definition 6) for L with
statistical distance 0.

7 EVALUATION
In this section, we present the results of our evaluation of Multipars

and compare them against state-of-the-art SPDZ-like protocols.

We start with determining suitable parameters for our protocol in

Sections 7.1 and 7.2.

7.1 Noise Analysis
In order to choose suitable BGV parameters, we first need to analyze

the maximum noise of a ciphertext that passes the ZKPoPK with

rejection sampling (Appendix F). Let 𝒄 be such a ciphertext. Note

that both the adversary’s key and 𝒄 might be computed maliciously.

Nevertheless, due to our ZKPoSKK (Appendix G) we know that

the key has the correct form for 𝑆ZKPoSKK = 4𝜑 (𝑚) (Snd_sec +
log

2
(rep) + 2)𝑃 . Similarly, our ZKPoPK guarantees that there exist

small 𝑣, 𝑒0, 𝑒1 ∈ R with slack 𝑆ZKPoPK = 6𝜑 (𝑚)3𝑈𝑉𝑃 such that

𝒄 = (𝑏𝑣 + 2𝑇 𝑒0 +𝑚,𝑎𝑣 + 2𝑇 𝑒1). It follows that noise(𝒄) equals

(𝑏 − 𝑎 · sk)𝑣 + 2𝑇 (𝑒0 − 𝑒1 · sk) +𝑚 = 2
𝑇 (𝑒𝑣 + 𝑒0 − 𝑒1 · sk) +𝑚.

Using

∥𝑒𝑣 ∥∞ ≤ 𝜑 (𝑚)𝑆ZKPoSKK𝜎2𝑆ZKPoPK, ∥𝑒0∥∞ ≤ 𝑆ZKPoPK𝜎2,

∥𝑒1 · sk∥∞ ≤ 𝜑 (𝑚)𝑆ZKPoPK𝜎2𝑆ZKPoSKK, ∥𝑚∥∞ < 2
𝑇
,

we obtain

∥noise(𝒄)∥∞ < 2
𝑇 ((2𝜑 (𝑚)𝑆ZKPoSKK + 1)𝑆ZKPoPK𝜎2 + 1)

≈ 2
𝑇+1𝜑 (𝑚)𝑆ZKPoSKK𝑆ZKPoPK𝜎2.

7.2 Parameter Choice
For our ZKPoPKs, we use the variants with rejection sampling

with 𝑃 = 256 as suggested in Appendix F. We limit the number of

attempts to rep = 16 which guarantees completeness error 2
−128

.

In ΠVOLE (Figure 2), when drowning the noise of 𝒄𝑎𝑏𝑖 with Enc′,
we must choose the noise bound 𝐵 at least as large as required by

Theorem 1. That is,

𝐵 ≥ 2
Stat_sec

(⌊noisesk (𝒄𝑎𝑏𝑖)/2𝑇 ⌋∞ + 𝜑 (𝑚)4𝜎2𝑆ZKPoSKK)
where 𝑆ZKPoSKK is an upper bound on the slack of 𝑒 and sk. From
our noise analysis above, we know⌊noisesk (𝒄𝑎𝑏𝑖)/2𝑇 ⌋∞ + 𝜑 (𝑚)4𝜎2𝑆ZKPoSKK

⪅ 2
𝑇+1𝜑 (𝑚)2𝑆ZKPoSKK𝑆ZKPoPK𝜎2.

Therefore we can choose 𝐵 slightly larger than

2
Stat_sec+𝑇+1𝜑 (𝑚)2𝑆ZKPoSKK𝑆ZKPoPK𝜎2 by rounding up to the next

power of two. Choosing 𝐵 as a power of two allows for an efficient

implementation of the uniform distribution over R≤𝐵 .
Next, we describe the choice of ourmodulus chain (𝑞0 = 𝑝0, 𝑞1 =

𝑝0𝑝1). The smaller modulus 𝑞0 = 𝑝0 must be chosen large enough

such that ciphertexts can be correctly decrypted after modulus

Table 1: Our parameter sets assuming trusted key generation.

𝑘 𝑠 sec 𝑚 𝐸
log

2

𝑆ZKPoPK
𝑉

𝑞1
(bit)

𝑞0
(bit)

Comp.

Sec. [2]

32 32 26

43691 9 62.00 3 387 144 ≈ 259

21851 – 30.00 32 220 105 ≈ 238

64 64 57

43691 11 63.47 5 616 242 ≈ 191

21851 – 30.98 63 380 201 ≈ 156

128 64 57

43691 11 63.47 5 744 306 ≈ 158

21851 – 30.98 63 508 265 ≈ 110

15

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

Table 2: Total amortized communication in kbit per triple produced with 𝑁 = 2 parties.

(a) Comparison to prior work

𝑘 𝑠 SPDZ
2
𝑘

[20]

MonZ
2
𝑘a

[16]

Overdrive2k

[39]

MHz2k-TG2k [19] Multipars Multipars (secure KeyGen)

𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉

32 32 79.87 59.07 101.8 26.4 20.1 11.4 9.2 12.1 9.7
64 64 319.49 175.49 171.4 43.3 31.9 18.2 14.9 18.9 15.4
128 64 557.06 176.64 190.4 55.0 40.9 22.3 18.4 23.0 18.9

(b) Comparison of Multipars with certain optimizations disabled or different packing techniques

𝑘 𝑠

Without

modulus switching

Without

rejection sampling

Without

LowGear 2.0

Only Overdrive2k

packing

Only tweaked

interpol. packing

𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉 𝑈 = 2𝑉 𝑈 = 4𝑉

32 32 17.7 15.5 12.3 9.9 12.1 9.9 20.1 16.3 12.1 9.9
64 64 27.9 24.6 19.0 15.5 19.8 16.5 35.2 29.0 19.3 16.0
128 64 33.8 29.9 23.1 19.0 24.5 20.6 44.4 36.9 23.6 19.7

switching. Assuming ∥noisesk (𝒄)∥∞ ≤ 𝑞1/3, we can guarantee cor-

rect decryption of SwitchMod(𝒄) according to Lemma 1 by choos-

ing 𝑝0 > 3 · 2𝑇 · ℓ1 (sk). Since we have ℓ1 (sk) ≤ ℎ for honestly

generated keys we can choose 𝑝0 as a prime with𝑇 + ⌈log
2
(ℎ)⌉ + 2

bits. The larger modulus 𝑞1 must be chosen to satisfy our aforemen-

tioned assumption ∥noisesk (𝒄)∥∞ ≤ 𝑞1/3 for all ciphertexts after
drowning, so we choose 𝑞1 with 𝑇 + log2 (𝐵) + 2 bits.

Our protocol ΠTriple uses two different sets of BGV parame-

ters for the ΠVOLE and ΠAuth subprotocols. The above analysis for

choosing 𝐵, 𝑞0, and 𝑞1 also holds for ΠAuth, except that in 𝐵 we

can replace the factor 2
𝑇
by 2

𝑘
, because ΠAuth uses the coefficient

packing where all coefficients are in Z
2
𝑘 . However, the concrete

values of𝑚, 𝑇 , and 𝑆ZKPoPK differ. From now on, to distinguish the

parameter sets, we use ·̂ notation to refer to parameters for ΠAuth.

Parameters for ΠVOLE. The cyclotomic index𝑚 needs to be chosen

large enough, i.e., in the order of thousands, such that the corre-

sponding R-LWE problem is hard. To work with our challenge

space, we also require𝑚 to be prime (required by Lemma 7). We

remark that this choice also simplifies our software implementation.

We choose 𝑚 = 43691, because it yields a relatively low 𝑑 = 34

(hence 𝛿 = 15) and therefore a relatively low overhead in the plain-

text length of 16–41%, depending on (𝑘, 𝑠). With this𝑚, the tweaked

interpolation packing has capacity𝑀 = 21845.

The plaintext length is 𝑇 = 𝑘 + 2𝑠 + 2𝛿 + 𝐸 so that we can

pack a Z
2
𝑘+2𝑠 message under tweaked interpolation packing and

have additional 𝐸 bits to manage the slackness of the ZKPoMK. 𝐸 is

chosen such that the ZKPoMK achieves the same soundness security

level Snd_sec as the ZKPoPK when using the same parameter 𝑉

for both. We choose 𝑉 according to Equation (7) and we compute

the remaining parameters assuming 𝑈 = 4𝑉 . That is, with our

parameters, the ZKPoPKs can be amortized over up to 4𝑉 parallel

instances of ΠTriple. We say up to, because our parameter sets can

also be used in combination with smaller values of𝑈 , as this does

not degrade security.
13

In our evaluation we consider the cases

𝑈 ∈ {2𝑉 , 4𝑉 } in order to compare against previous work [7, 19].

13
A larger𝑈 slightly increases the slack of the ZKPoPK and hence slightly increases

the minimum required ciphertext modulus. But using a smaller 𝑈 with otherwise

identical parameters is not a problem.

Parameters for ΠAuth. For the cyclotomic index �̂� we use the small-

est prime that fulfills our requirement 𝜑 (�̂�) ≥ 𝑀 +3, i.e., �̂� = 21851.

The plaintext length is𝑇 = 𝑘+2𝑠 , because ΠAuth uses the coefficient

packing instead of the tweaked interpolation packing. Contrary to

ΠVOLE, the ZKPoPK in ΠAuth runs with flag = Diag and hence has

to transmit a larger number𝑉 of ciphertexts. However, this instanti-

ation of the ZKPoPK runs only once (per pair of parties) during the

one-time initialization of ΠAuth and therefore has a minor impact

on the overall runtime. For the same reason we can choose𝑈 = 1.

In Table 1 we present the resulting parameter sets for different

combinations of 𝑘 and 𝑠 . To allow for a fair comparison with prior

works [19, 23, 34, 39], those parameter sets are constructed under

the assumption that HE keys are generated honestly by a trusted

dealer, i.e., 𝑆ZKPoSKK = 1/(64+Stat_sec). We also refer to Table 3 in

Appendix G, where we show how certain parameters (namely 𝐵 and

𝑞1) need to change when using our secure key generation (which

introduces some slack) instead. For each combination, the top and

bottom rows display the parameters for ΠVOLE and ΠAuth, respec-

tively. The security parameters Snd_sec for ZKPs and Stat_sec for
drowning are set to be consistent with the statistical security of

SPDZ
2
𝑘 MACs, i.e., sec := ⌊𝑠 − log

2
(𝑠 + 1)⌋ (see [20, Theorem 1]).

All of our parameter sets provide at least 103 bits of computational

security with 𝜎2 = 10 according to the LWE estimator [2].

7.3 Implementation
We implemented our LHE-based triple generation protocol as an

open source software in the Rust programming language [4]. Our

implementation covers connection establishment, secure key gen-

eration, and the triple generation itself, i.e., we provide a full im-

plementation. Almost all optimizations presented in this work are

incorporated in the software with the exception of modulus switch-

ing. Adding modulus switching will reduce our communication cost

by 40%. In order to multiplex concurrent subprotocols and even

multiple parallel sessions of the triple generation protocol over

the same connection, we use the (TLS-secured) QUIC transport

protocol [30] which allows us to multiplex multiple concurrent

streams over UDP. For constant-time arithmetic with big integers,

we employ the crypto-bigint Rust library [5].

16

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

7.4 Comparison
We compare our work to prior protocols for Beaver triple gen-

eration over Z
2
𝑘 [16, 19, 20, 39]. Note that these works provide

numbers in the two-party setting only. Our comparison covers

the communication cost of the protocols as well as experimental

runtime benchmarks (in the same two-party setup).

Communication Cost. In Table 2a we show the communication cost

per triple. For Overdrive2k, as also noted and explained in [19],

we include the numbers from [19] since the communication costs

originally given in [39] were hard to reproduce. For our protocol

Multipars, we give numbers based on both of our parameter sets,

i.e., with trusted and with secure key generation. Table 2a shows

that Multipars outperforms MHz2k [19] by around 2.2×, Over-
drive2k [39] by around 11×, and SPDZ

2
𝑘 [20] by 8–30×, where the

exact factor depends on the parameters (𝑘, 𝑠). Moreover, the usage

of secure key generation only accounts for an overhead of around

0.5 kbit per triple produced. In setups with 𝑁 > 2 parties, the

communication costs of SPDZ
2
𝑘 and Multipars given in Table 2a

need to be multiplied by 𝑁 (𝑁 − 1)/2. MonZ
2
𝑘a only works for two

parties. In contrast, Overdrive2k and MHz2k scale linearly with 𝑁 ,

so they are better suited for large numbers of parties.

Table 2b describes the effect of the different optimizations and

packings on the communication per produced triple. The values of

Table 2b should be compared to Multipars (without secure KeyGen)
in Table 2a. We see that disabling modulus switching leads to a

significant increase in communication due to the transmission of

larger ciphertexts. Namely, our modulus switching optimization

is responsible for a 40% reduction in communication. In contrast,

the rejection sampling and LowGear 2.0 optimizations account

for a relatively small reduction. We remark that the advantage of

LowGear 2.0 (i.e., avoiding sacrificing) is not as significant as in

the field case since our other optimizations (modulus switching

and adaptive packing) strongly improve the authentication step

which is used more often in classical LowGear than in LowGear

2.0. Still, LowGear 2.0 reduces the round complexity (and therewith

improves runtime performance) and software complexity, as we

did not need to implement sacrificing. Finally, Table 2b shows that

Multipars’s adaptive packing (i.e., tweaked interpolation packing

in ΠVOLE and coefficient packing in ΠAuth) is superior to using a

single packing technique.

Runtime Performance. Figure 7 illustrates how our protocol (imple-

mented for 𝑠 = 64) performs in practice. For this, we have measured

the throughput of the triple generation for Multipars and SPDZ
2
𝑘

(implemented in MP-SPDZ [21]) in two common [33, 34] network

settings. The other Z
2
𝑘 protocols Overdrive2k andMHz2k currently

do not provide an implementation. Available numbers for MonZ
2
𝑘a

indicate a substantially slower runtime, e.g., only 19.14 triples per

second in the LAN setting for 𝑘 = 𝑠 = 64. We used the Multipars

variant with trusted key generation for our benchmarks. Our pro-

tocol does not employ primitives that are computationally more

costly than what is used in the (not implemented) Z
2
𝑘 SHE-based

protocols, while our parameters and communication cost are lower

(as shown above). Thus, we expect our protocol to outperform

MonZ
2
𝑘a, Overdrive2k, and MHz2k w.r.t. runtime performance.

The results show that we can outperform SPDZ
2
𝑘 with our proto-

type implementation by up to 15.2×. Once modulus switching and

(runtime) performance oriented optimization are added, our advan-

tage will only increase. Our low communication overhead allows us

to perform multiple parallel triple generations when the required

computational resources (number of threads) are available. That is,

we can utilize the computational resources better than protocols

with higher communication cost, allowing us to generate more

triples per second. This is apparent in the WAN setting (50 Mbps

bandwidth, 100 ms RTT) where, using 16 threads, we achieve an ad-

vantage of 13.7× (𝑘 = 𝑠 = 32), 10.5× (𝑘 = 𝑠 = 64), or 10.6× (𝑘 = 128,

𝑠 = 64), respectively. When increasing the WAN bandwidth to 500

Mbps, we have an advantage of 15.2× (𝑘 = 𝑠 = 32), 7.2× (𝑘 = 𝑠 = 64),

or 5.5× (𝑘 = 128, 𝑠 = 64). In this setting, SPDZ
2
𝑘 can neither fully

utilize the CPU nor the network bandwidth, which shows that it is

bottlenecked by the network round trip time. In the LAN setting

(1 Gbps, 0.2 ms RTT), Multipars is at a disadvantage due to CPU

bottleneck, while SPDZ
2
𝑘 is bandwidth-bottlenecked. In this setting

and using 16 threads, Multipars runs at 0.55× (𝑘 = 𝑠 = 32), 1.18×
(𝑘 = 𝑠 = 64), or 0.94× (𝑘 = 128, 𝑠 = 64) the speed of SPDZ

2
𝑘 .

Scaling the computational resources (increasing the number of

available threads or using faster CPUs) is rather straightforward and

relatively cheap compared to improving the network, especially in

the cloud where exhausting a Gbit link (between parties running on

different cloud providers) is more than an order of magnitude more

costly than both parties running an on-demand compute instance

with 16 vCPUs. Our protocol is therefore not only faster but also

more suited for real-world deployment.

Overall, our new protocol Multipars has a clear runtime and

bandwidth advantage against the most efficient MPC protocols

[16, 39] over base rings Z
2
𝑘 , as well as [21], which is the best known

implementation of a SPDZ-like protocol over Z
2
𝑘 .

1 2 4 8 16

100

200

500

1k

2k

5k

Number of threads

(a) WAN (50 Mbps, 100 ms RTT)

1 2 4 8 16

100

200

500

1k

2k

5k

Number of threads

(b) WAN (500 Mbps, 100 ms RTT)

𝑘 = 𝑠 = 32

𝑘 = 𝑠 = 64

𝑘 = 128, 𝑠 = 64

Multipars

SPDZ
2
𝑘 1 2 4 8 16

100

200

500

1k

2k

5k

Number of threads

(c) LAN (1 Gbps, 0.2 ms RTT)

Figure 7: Throughput in triples per second with 𝑁 = 2 parties,
each on a virtual server (Intel Xeon Gold 6130 CPU, 2.1 GHz)
emulating the network settings between them.

17

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

ACKNOWLEDGMENTS
This research was supported by Advantest as part of the Graduate

School “Intelligent Methods for Test and Reliability” (GS-IMTR) at

the University of Stuttgart and by the CRYPTECS project founded

by the German Federal Ministry of Education and Research un-

der Grant Agreement No. 16KIS1441 and by the French National

Research Agency under Grant Agreement No. ANR-20-CYAL-0006.

REFERENCES
[1] Martin R. Albrecht and Russell W. F. Lai. 2021. Subtractive Sets over Cyclotomic

Rings - Limits of Schnorr-Like Arguments over Lattices. InAdvances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 12826), Tal Malkin and Chris Peikert (Eds.). Springer, 519–548. https:

//doi.org/10.1007/978-3-030-84245-1_18

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. J. Math. Cryptol. 9, 3 (2015), 169–203.
[3] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-

quantum Key Exchange - A New Hope. In USENIX Security 2016. USENIX Associ-

ation, 327–343.

[4] The Multipars Authors. 2023. Supplementary Material. http://51.75.151.144/

multipars.zip.

[5] The RustCrypto Authors. 2022. Cryptographic Big Integers. https://github.com/

RustCrypto/crypto-bigint.

[6] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth, and

Vadim Lyubashevsky. 2018. Sub-linear Lattice-Based Zero-Knowledge Arguments

for Arithmetic Circuits. In CRYPTO 2018. Springer, 669–699.
[7] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. 2019. Using TopGear in

Overdrive: A More Efficient ZKPoK for SPDZ. In SAC 2019. Springer, 274–302.
[8] Carsten Baum, Ivan Damgård, Kasper Green Larsen, and Michael Nielsen. 2016.

How to Prove Knowledge of Small Secrets. In CRYPTO 2016. Springer, 478–498.
[9] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.

In CRYPTO ’91. Springer, 420–432.
[10] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky.

2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In

Theory of Cryptography, Amit Sahai (Ed.). Springer, 315–333.

[11] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In ESORICS 2008. Springer, 192–206.
[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS 2012. ACM, 309–325.

[13] W. Brown. 1992. Matrices over Commutative Rings. Taylor & Francis.

[14] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In FOCS 2001. IEEE, 136–145.
[15] Ran Canetti and Marc Fischlin. 2001. Universally Composable Commitments.

In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2139), Joe Kilian (Ed.). Springer, 19–40.

https://doi.org/10.1007/3-540-44647-8_2

[16] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Irene Giacomelli. 2020.

MonZ
2
𝑘 a: Fast Maliciously Secure Two Party Computation on Z

2
𝑘 . In PKC 2020.

Springer, 357–386.

[17] Octavian Catrina and Amitabh Saxena. 2010. Secure Computation with Fixed-

Point Numbers. In FC 2010. Springer, 35–50.
[18] Hao Chen, Miran Kim, Ilya P. Razenshteyn, Dragos Rotaru, Yongsoo Song, and

Sameer Wagh. 2020. Maliciously Secure Matrix Multiplication with Applications

to Private Deep Learning. In ASIACRYPT 2020. Springer, 31–59.
[19] Jung Hee Cheon, Dongwoo Kim, and Keewoo Lee. 2021. MHz2k: MPC from HE

over Z
2
𝑘 with New Packing, Simpler Reshare, and Better ZKP. In CRYPTO 2021.

Springer, 426–456.

[20] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping

Xing. 2018. SPDZ
2
k
: Efficient MPC mod 2

k
for Dishonest Majority. In CRYPTO

2018. Springer, 769–798.
[21] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter

Scholl, and Nikolaj Volgushev. 2019. New Primitives for Actively-Secure MPC

over Rings with Applications to Private Machine Learning. In SP 2019. IEEE,
1102–1120.

[22] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS 2013. Springer, 1–18.
[23] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012.
Springer, 643–662.

[24] Ivan Damgård and Alessandra Scafuro. 2013. Unconditionally Secure and Uni-

versally Composable Commitments from Physical Assumptions. In Advances in
Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December
1-5, 2013, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8270), Kazue
Sako and Palash Sarkar (Eds.). Springer, 100–119. https://doi.org/10.1007/978-3-

642-42045-0_6

[25] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO ’86. Springer, 186–194.
[26] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Fully Homomorphic Encryp-

tion with Polylog Overhead. In EUROCRYPT 2012. Springer, 465–482.
[27] Craig Gentry, Shai Halevi, and Nigel P. Smart. 2012. Homomorphic Evaluation

of the AES Circuit. In CRYPTO 2012. Springer, 850–867.
[28] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2: Basic Appli-

cations. Cambridge University Press.

[29] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:

Lean and Fast Secure Two-Party Deep Neural Network Inference. In USENIX
Security 2022. USENIX Association, 809–826.

[30] Jana Iyengar (ed.) and Martin Thomson (ed.). 2021. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. RFC Editor.

[31] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

USENIX Security 2018. USENIX Association, 1651–1669.

[32] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-

tion. In CCS 2020. ACM, 1575–1590.

[33] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster

Malicious Arithmetic Secure Computation with Oblivious Transfer. In CCS 2016.
ACM, 830–842.

[34] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In EUROCRYPT 2018. Springer, 158–189.
[35] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography. Springer, 277–346.
[36] Vadim Lyubashevsky. 2009. Fiat-Shamir with Aborts: Applications to Lattice and

Factoring-Based Signatures. In ASIACRYPT 2009. Springer, 598–616.
[37] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. A Toolkit for Ring-

LWE Cryptography. In EUROCRYPT 2013. Springer, 35–54.
[38] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable

Privacy-Preserving Machine Learning. In SP 2017. IEEE, 19–38.
[39] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. 2020. Overdrive2k:

Efficient Secure MPC over Z
2
𝑘 from Somewhat Homomorphic Encryption. In

CT-RSA 2020. Springer, 254–283.
[40] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-Party

Secure Inference. In CCS 2020. ACM, 325–342.

[41] Pascal Reisert, Marc Rivinius, Toomas Krips, and Ralf Küsters. 2023. Overdrive

LowGear 2.0: Reduced-Bandwidth MPC without Sacrifice. In ACM ASIA Confer-
ence on Computer and Communications Security (ASIA CCS ’23), July 10–14, 2023,
Melbourne, VIC, Australia. https://ia.cr/2023/462

[42] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. 2021. CryptGPU: Fast

Privacy-Preserving Machine Learning on the GPU. In SP 2021. IEEE.

A SECURITY OF OUR TRIPLE GENERATION
In this section, we prove the security of our truncation protocol

ΠTrunc (Figure 5) and our triple generation protocol ΠTriple (Fig-

ure 4) in the standalone model with rewinding black-box simula-

tor [28, 35]. We assume that each party 𝑃𝑖 has her own LHE key

pair (sk𝑖 , pk𝑖) and additionally the public keys of all other parties

pk𝑗 for 𝑗 ≠ 𝑖 .
14

The standalonemodel assumes that there is only a single instance

of the protocol and no other protocol running concurrently. In this

case, it ensures that a protocol provides the same guarantees as

an ideal functionality F that models the exact security properties

that we want. For instance, FTriple models that correct shares of

authenticated Beaver triples are produced and corrupted parties

learn nothing about the shares of honest parties; or the protocol

aborts.

14
We assume the same security guarantees on (sk𝑖 , pk𝑖) as in [34, 41], e.g., that the

public key is sufficiently random for all parties.

18

https://doi.org/10.1007/978-3-030-84245-1_18
https://doi.org/10.1007/978-3-030-84245-1_18
http://51.75.151.144/multipars.zip
http://51.75.151.144/multipars.zip
https://github.com/RustCrypto/crypto-bigint
https://github.com/RustCrypto/crypto-bigint
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/978-3-642-42045-0_6
https://doi.org/10.1007/978-3-642-42045-0_6
https://ia.cr/2023/462

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

We consider a ppt. adversaryA that corrupts some static subset

𝐴 ⊊ [𝑁] of parties and fully controls all corrupted parties. In

particular,A can abort the protocol (or functionalities) at any time.

To keep the functionalities and protocols concise, we usually avoid

to state this abort option explicitly.

Our security proofs follow the standard real-ideal (world) par-

adigm. Namely, we construct for each adversary A a simulator

S. Then the output of an ideal execution between S and the func-

tionality F should be (computationally) indistinguishable from the

output of a real execution betweenA and the honest parties. More

formally, we use the following setup:

Ideal Execution. In the ideal model, we consider an execution be-

tween a simulator S on auxiliary input 𝑧 and an ideal functionality

F where S provides the corrupted parties’ inputs and obtains the

corrupted parties’ outputs. For security parameter _, we denote

by IDEALF,S(𝑧),𝐴 (_) the tuple consisting of the simulator’s output

and the honest parties’ outputs as specified by F . Note that the
simulator’s output doesn’t need to match the corrupted parties’

outputs, which the simulator obtained from F . Instead, the simula-

tor can output anything computable in polynomial time from the

information obtained.

Real Execution. In the real model, we consider an execution be-

tween the adversary A on auxiliary input 𝑧 and the honest parties

following a protocol Π. HereA acts on behalf of the corrupted par-

ties. For security parameter _, we denote by REALΠ,A(𝑧),𝐴 (_) the
tuple consisting of the adversary’s output and the honest parties’

outputs.

Definition 2 (Standalone Security). A protocol Π realizes a func-

tionality F in the standalone model if, for every ppt. adversary

A corrupting 𝐴 ⊊ [𝑁], there exists a ppt. simulator S such that

{IDEALF,S(𝑧),𝐴 (_)}𝑧,_ is computationally indistinguishable from

{REALΠ,A(𝑧),𝐴 (_)}𝑧,_ where 𝑧 ∈ {0, 1}∗ and _ ∈ N. In case where

a fixed simulator S satisfies the definition for all ppt. adversaries

A (given that S has rewinding black-box access to A) we call S a

rewinding black-box simulator.

Security of ΠTrunc. In Figure 8 we present the functionality FTrunc
for the truncation of Beaver triples. We will show that ΠTrunc is

a realization of FTrunc and later use this fact in order to replace

ΠTrunc by FTrunc in our analysis of ΠTriple.

We admit that the functionality FTrunc is relatively low level, i.e.,

it closely resembles the steps of ΠTrunc. The sole difference is that

in ΠTrunc commitments ensure that the adversary has to choose

([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
without knowing the honest parties’ re-

spective values. FTrunc has this property by definition.

We get the following security result:

Theorem 6. We assume that ΠTrunc is initiated with a computa-
tionally hiding, computationally binding, extractable, and equivocal
commitment scheme. Then for any number of parties 𝑁 ∈ N, ΠTrunc
realizes FTrunc in the standalone model with black-box simulator.

The theorem assumes a commitment scheme that is computa-

tionally hiding, computationally binding, extractable, and equivocal.

The extractability property means that the simulator is able to ex-

tract the value from any commitment sent by the adversary, even if

Functionality FTrunc
Let 𝐴 be the set of corrupted parties.

(1) For 𝑖 ∉ 𝐴, receive [𝛼]𝑖 , J𝒂K𝑖 , J𝒃K𝑖 , J𝒄K𝑖 from 𝑃𝑖 .

(2) For 𝑖 ∉ 𝐴, send [𝒂]𝑖 mod 2
𝑠
to the adversary.

(3) For 𝑖 ∈ 𝐴, receive ([𝒂]𝑖 , [𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
from

the adversary.

(4) For 𝑖 ∉ 𝐴, define ([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
as in an honest

execution of ΠTrunc and send it to the adversary.

(5) Define 𝚺𝜸�̂� , 𝚺𝒄 , and 𝚺𝜸�̂� as in an honest execution of

ΠTrunc and check that

𝚺𝜸�̂� ≡ 𝚺𝒄 ≡ 𝚺𝜸�̂� ≡ 0 (mod 2
𝑠)

If any check fails, abort.

(6) For 𝑖 ∉ 𝐴, compute J𝒂K𝑖 and J𝒄K𝑖 as in an honest execution

of ΠTrunc.

(7) Output (J𝒂K𝑖 , J𝒄K)𝑖 to each honest party 𝑃𝑖 , 𝑖 ∉ 𝐴.

Figure 8: Functionality for truncation of Beaver triples

the adversary has not (yet) opened the commitment. The equivocal-
ity property means that the simulator can create fake-commitments

which are indistinguishable from “real” commitments and can be

opened by the simulator to any value. The computational hiding

and binding properties provide the security guarantees, i.e., that

an adversary cannot reconstruct a value from its commitment and

that he cannot construct two values with the same commitment (in

polynomial time). We remark that commitment schemes with all

four properties exist [24] and that these assumptions are regularly

used in simulation-based security proofs [15].

Proof. In Figure 9 we present our simulator STrunc (with black-

box access to the real adversary A) who acts on behalf of the

corrupted parties towards FTrunc. We need to prove that the output

tuple of STrunc and the honest parties (as specified by FTrunc) in
the ideal execution is computationally indistinguishable from the

output tuple of A and the honest parties in the real execution.

With STrunc, the ideal execution constitutes an exact simulation

of the real execution, except for the use of fake-commitments. How-

ever, the fake-commitments are indistinguishable from the “real”

commitments in the real execution by the choice of our commit-

ment scheme. More precisely, binding and extractability ensure

that the adversary cannot change the values in the commitments

after the commitments were exchanged (up to negligible probabil-

ity) and that the simulator extracts exactly these values. Hiding

ensures that all commitments look random. Finally, equivocality en-

sures that the simulator can match the values in the honest parties’

commitments to be consistent with the output of the functionality.

Hence, the output tuples are computationally indistinguishable, as

required. □

Security of ΠTriple. In Figure 10 we present the functionality FTriple
for Beaver triple generation. In our security analysis, we only con-

sider a single invocation of Init followed by a single invocation of

Triple. Though, the analysis can easily be extended to a polynomial

number of parallel or sequential invocations of Triple (using only a
single initialization in the beginning of the protocol). As above, we

19

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

Simulator STrunc (𝑧)
For 𝑖 ∉ 𝐴, the simulator receives [𝒂]𝑖 mod 2

𝑠
from FTrunc. The

simulator then starts the adversary A on auxiliary input 𝑧 and

emulates ΠTrunc between the honest parties and A:

(1) In step (1) of the emulation, the simulator reveals the val-

ues [𝒂]𝑖 mod 2
𝑠
for 𝑖 ∉ 𝐴 (which were received from

FTrunc) and A reveals [𝒂]𝑖 mod 2
𝑠
for 𝑖 ∈ 𝐴. Define

𝚺𝒂 :=
∑
𝑗

(
[𝒂] 𝑗 mod 2

𝑠
)
.

(2-3) The simulator skips step (2) and proceeds with step (3)

where the simulator (on behalf of the honest parties) sends

fake-commitments to A and in return receives commit-

ments from A. The simulator extracts the received com-

mitments, obtaining ([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
for 𝑖 ∈ 𝐴.

For 𝑖 ∈ 𝐴, the simulator sends ([𝒂]𝑖 , [𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
to

FTrunc. For 𝑖 ∉ 𝐴, the simulator receives ([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod

2
𝑠
from FTrunc.
(4) The simulator opens the honest parties’ fake-commitments

to the values received from FTrunc.
(5) The simulator continues the emulation until after step (5),

where it stops the emulation.

If the emulation aborted, the simulator sends abort to FTrunc.
In any case, the simulator runs A to completion and outputs

whatever A outputs.

Figure 9: Simulator for ΠTrunc realizing FTrunc

Functionality FTriple
This functionality generates shares of the global MAC key and

then provides an interface to generate 𝑀 authenticated Beaver

triples. Let 𝐴 be the set of corrupted parties.

Init:
(1) Receive [𝛼]𝑖 ∈ Z2𝑘+𝑠 for 𝑖 ∈ 𝐴 from the adversary.

(2) Sample [𝛼]𝑖
$← Z2𝑠 for 𝑖 ∉ 𝐴.

(3) Store 𝛼 :=
∑
𝑖∈[𝑁] [𝛼]𝑖 mod 2

𝑘+𝑠
.

Triple:
(1) Receive ([𝒂]𝑖 , [𝒃]𝑖 , [𝒄]𝑖) ∈ Z𝑀

2
𝑘+𝑠 and

([𝜸𝒂]𝑖 , [𝜸𝒃]𝑖 , [𝜸𝒄]𝑖) ∈ Z𝑀
2
𝑘+𝑠 for 𝑖 ∈ 𝐴 from the ad-

versary.

(2) Sample honest shares [𝒂]𝑖 , [𝒃]𝑖
$← Z𝑀

2
𝑘
for 𝑖 ∉ 𝐴.

(3) For 𝑖 ∉ 𝐴, sample [𝒄]𝑖 ∈ Z𝑀
2
𝑘+𝑠 uniformly at random subject

to 𝒄 ≡𝑘 𝒂 ⊙ 𝒃 , and [𝜸𝒂]𝑖 , [𝜸𝒃]𝑖 , [𝜸𝒄]𝑖 ∈ Z𝑀
2
𝑘+𝑠 uniformly at

random subject to, for each 𝒙 ∈ {𝒂, 𝒃, 𝒄}, 𝜸𝒙 ≡𝑘+𝑠 𝛼𝒙 .
(4) Output J𝒂K, J𝒃K, J𝒄K.

Figure 10: Functionality for Beaver triple generation

avoid to note explicitly in each step of Figure 10 that the adversary

can abort any time.

Now we proceed with the theorem for the security of ΠTriple and

its formal proof.

Functionality FZKPoK
(1) Let A be the sender and B be the receiver. Receive 𝒙 ∈
Z𝑀
2
𝑘+2𝑠 from A or from the adversary if A is corrupted.

(2) Send EncpkB (pack(𝒙)) to B where the encryption ran-

domness is chosen with additional slack 𝑆ZKPoPK if A is

corrupted.

Figure 11: Functionality for ZKPoPK and ZKPoMK

Functionality FDiag
ZKPoK

(1) LetA be the sender and B be the receiver. Receive 𝑥 ∈ Z
2
𝑘

from A or from the adversary if A is corrupted.

(2) Send EncpkB (coeffPack((𝑥, 0, . . .))) to B where the en-

cryption randomness is chosen with additional slack

𝑆ZKPoPK if A is corrupted.

Figure 12: Functionality for ZKPoPK of diagonal plaintexts

Simulator STriple (𝑧)
Init: The simulator starts the adversaryA on auxiliary input 𝑧. It

then emulates the Init subprotocol of ΠTriple between the honest

parties, FDiag
ZKPoK, and A. Since the simulator emulates FDiag

ZKPoK, it

obtains all plaintexts [𝛼]𝑖 and can compute 𝛼 :=
∑
𝑖∈[𝑁] [𝛼]𝑖 mod

2
𝑘+𝑠

. The simulator sends [𝛼]𝑖 for 𝑖 ∈ 𝐴 to FTriple.

Triple: The simulator emulates the Triple subprotocol of ΠTriple
between the honest parties, FRand, FZKPoK, FTrunc, and A. If the

protocol aborts, the simulator sends abort to FTriple, runs A to

completion and outputs whatever A outputs. Otherwise: For

𝑖 ∉ 𝐴, let J𝒂K𝑖 , J𝒃K𝑖 , and J𝒄K𝑖 denote the shares computed on

behalf of the honest parties in the emulation. By rewinding the

adversary until before step (5), the simulator obtains enough pairs

(𝒕, [𝑦]𝑖) in order to reconstruct [𝒂 | |𝒃 | |𝒄]𝑖 for 𝑖 ∈ 𝐴. The simulator

chooses arbitrary MACs [𝜸𝒂]𝑖 , [𝜸𝒃]𝑖 , [𝜸𝒄]𝑖 for 𝑖 ∈ 𝐴 such that,

for each 𝒙 ∈ {𝒂, 𝒃, 𝒄}, ∑𝑖 [𝜸𝒙]𝑖 = 𝛼 · 𝒙 . The simulator sends

([𝒂]𝑖 , [𝒃]𝑖 , [𝒄]𝑖) and ([𝜸𝒂]𝑖 , [𝜸𝒃]𝑖 , [𝜸𝒄]𝑖) for 𝑖 ∈ 𝐴 to FTriple. The
simulator then runs A to completion and outputs whatever A
outputs.

Figure 13: Simulator for ΠTriple realizing FTriple

Theorem 3. For any number of parties 𝑁 ∈ N, ΠTriple realizes
FTriple in the standalone model with rewinding black-box simulator.

Proof. As ΠTrunc is a realization of FTrunc, we replace the sub-
protocol ΠTrunc by an invocation of FTrunc in the following anal-

ysis of ΠTriple. In Figure 13 we present our simulator STriple (with
rewinding black-box access to the real adversary A) who acts on

behalf of the corrupted parties towards FTriple. We need to prove

that the output tuple of STriple and the honest parties (as specified

by FTriple) in the ideal execution is computationally indistinguish-

able from the output tuple of A and the honest parties in the real

execution. In both executions, A runs on auxiliary input 𝑧.

20

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

Note that the ideal execution aborts with the same probability as

the real execution and, in this case, the ideal execution constitutes

an exact simulation of the real execution, because there are no

inputs and outputs. Thus, it remains to prove that above-mentioned

output tuples are indistinguishable conditioned on the event that

the protocol does not abort.

Let A’s shares of 𝒂, 𝒃 , and 𝒄 used in the MAC check be fixed.

Under this condition, we first show that in both the ideal and real

execution, the honest parties’ outputs are distributed (computation-

ally close to) uniformly at random subject to 𝒄 ≡𝑘 𝒂 ⊙ 𝒃 and, for

each 𝒙 ∈ {𝒂, 𝒃, 𝒄}, 𝜸𝒙 ≡𝑡 𝛼𝒙 where 𝑡 := 𝑘 + 𝑠 . In the ideal execu-

tion, this statement is obvious from the way the honest parties’

outputs are sampled by FTriple. Now we turn to the real execution:

According to our assumption, the MAC check passes, so we have

𝒄 ≡𝑘 𝒂 ⊙ 𝒃 and ∀𝒙 ∈ {𝒂, 𝒃, 𝒄} : 𝛼𝒙 ≡𝑡 𝜸𝒙 with high probability by

Lemma 4 below. We also require that the honest parties’ outputs

in the real execution are distributed uniformly at random subject

to these conditions. Note that, in ΠTriple, the honest parties sam-

ple their shares of 𝒂 and 𝒃 uniformly at random, but this uniform

distribution is not necessarily preserved as we condition on the

event that the protocol doesn’t abort. Indeed, a selective failure

attack is possible where some information about 𝒂 (i.e., the value

before truncation) is leaked. Nonetheless, we can show that 𝒂 is still
distributed uniformly at random: By Lemma 5 below, there exists

an event 𝐸 with Pr[abort | 𝐸] ≥ 1 − 2
−𝑠

such that, conditioned

on ¬𝐸, 𝒂 is distributed uniformly at random. We ignore the event

“𝐸∧¬abort” as it happens with statistically small probability. In the

remaining cases, either the protocol aborts (event “abort”) or 𝒂 is

distributed uniformly at random (event “¬𝐸 ∧ ¬abort”).
As the simulator emulates the protocol, we know thatA’s shares

of 𝒂, 𝒃 , and 𝒄 are distributed identically between the ideal and real

execution. It follows that the honest parties’ outputs are compu-

tationally indistinguishable between the ideal and real execution,

even without fixing A’s shares.

Next, we inductively show that, when adding A’s view-so-far

(i.e., A’s view of the transcript up to a certain step in the protocol

ΠTriple) to the output tuple, that tuple is computationally indis-

tinguishable between the ideal and real execution. After the last

step, this concludes our proof, as we can assume without loss of

generality that A outputs its own view.

Init In the initialization step, the received ciphertexts 𝒄 [𝛼]𝑖 are
computationally indistinguishable by the semantic security

of the encryption scheme.

(2) During authentication (step (2) of Triple), the received ci-

phertexts 𝒄 ′
𝑑 (𝑖,𝑗)

have been drowned and decrypt to a uni-

formly random plaintext (as the plaintexts have been masked

by uniformly random 𝑒 (𝑗,𝑖) ∈ R
2
𝑘+𝑠). It follows by Theorem 1

that they are computationally indistinguishable between the

ideal and real execution.

(3) In ΠVOLE (step (3) of Triple), ciphertexts 𝒄𝑎 and (𝒄 ′𝑑𝑖)𝑖 get
exchanged. For 𝒄𝑎 , we can argue again with the semantic

security of the encryption scheme. The returned ciphertexts

(𝒄 ′
𝑑𝑖
)𝑖 have been drowned, but they do not decrypt to a uni-

formly random plaintext: Only the upper 𝐸 bits, which have

been masked by 𝑚𝑖 , are distributed uniformly at random.

However, the ZKPoMK (modelled as FZKPoK, cf. Figure 11)

guarantees that 𝒄𝑎 encodes some correct packing of a mes-

sage from Z𝑀
2
𝑘+2𝑠 . The addition of pack′(𝒆𝑖) ensures that the

plaintext of (𝒄 ′
𝑑𝑖
)𝑖 is distributed uniformly at random over

the set of all correct packings.

(5) Recall that in our analysis we replace ΠTrunc (in step (5) of

Triple) by FTrunc. Here, the adversary receives the values

[𝒂]𝑖 mod 2
𝑠
and ([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2

𝑠
for 𝑖 ∉ 𝐴 from

FTrunc. The value [𝒂]𝑖 mod 2
𝑠
is distributed uniformly at

random as it was sampled in step (1) of Triple. The values
([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2

𝑠
are distributed uniformly at ran-

dom subject to having a certain sum (mod 2
𝑠
) over 𝑖 ∉ 𝐴,

and that sum is indistinguishable between the ideal and real

execution, as we show below.

(6) In step (6), the vector 𝒕 obtained from FRand is distributed

uniformly at random.

(8) In step (8), each received share [𝑦]𝑖 is distributed uniformly

at random over Z
2
𝑘+𝑠 (as it has been masked with [𝑚]𝑖 +

2
𝑘 [𝑟]𝑖). In ΠSingleCheck the opened values are distributed

uniformly at random over Z
2
𝑘+𝑠 subject to their sum being

0.

Hence, the view ofA is computationally indistinguishable between

both executions. It follows that the output of STriple in the ideal

execution is computationally indistinguishable from the output of

A in the real execution.

As mentioned above, for this implication to hold, we still need

to show that the values ([𝜸�̂�]𝑖 , [𝒄]𝑖 , [𝜸�̂�]𝑖) mod 2
𝑠
are distributed

uniformly at random subject to having a certain sum (mod 2
𝑠
)

over 𝑖 ∉ 𝐴. We explicitly show this fact only for ([𝒄]𝑖 mod 2
𝑠)𝑖∉𝐴

and the same argument can be applied to [𝜸�̂�]𝑖 and [𝜸�̂�]𝑖 , too. We

conditioned on the event that the protocol does not abort, so we

have

∑
𝑖 [𝒄]𝑖 ≡𝑠 𝚺𝒄 ≡𝑠 0. It follows that �̂� :=

∑
𝑖∉𝐴 [𝒄]𝑖 mod 2

𝑠 ≡𝑠
−∑𝑖∈𝐴 [𝒄]𝑖 , where we observe that the right-hand side only de-

pends onA’s view-so-far at the point where FTrunc did not yet send
honest parties’ shares of 𝒄 (mod 2

𝑠
) toA.

15
We already showed that

the view-so-far up to that point is computationally indistinguish-

able between the ideal and real execution, so the same holds for �̂� .
We need to show that the individual summands ([𝒄]𝑖 mod 2

𝑠)𝑖∉𝐴
are distributed uniformly at random subject to having the sum �̂�
(mod 2

𝑠
). Let 𝑃ℎ be an arbitrary honest party. Then it suffices to

show that ([𝒄]𝑖 mod 2
𝑠)𝑖∉𝐴∪{ℎ} is distributed uniformly at random,

because (given �̂�) these values uniquely determine [𝒄]ℎ mod 2
𝑠
.

Consider the masks 𝒆𝑖,ℎ
1

(notation from ΠTriple, cf. Figure 4) which

𝑃ℎ sampled in theΠVOLE subprotocol. Thesemasks affect the honest

parties’ shares [𝒄]𝑖 , but they do not affect the overall sum
∑
𝑖∉𝐴 [𝒄]𝑖 ,

so these masks are also independent of �̂� . It follows that, under
our condition that the protocol doesn’t abort, these masks are still

distributed uniformly at random. Therefore, these masks induce a

uniform distribution of ([𝒄]𝑖 mod 2
𝑠)𝑖∉𝐴∪{ℎ} , as required. □

Proof of Correct Multiplication. Here we show that the adversary

cannot tamper with its shares in any way inducing 𝒄 .𝑘 𝒂 ⊙ 𝒃 . This
is similar to the “Proof of Correct Multiplication” in [41], but here

15
This is the place in the proof where it’s important that ΠTrunc uses commitments,

which we modelled in FTrunc by A needing to send its shares of �̂� (mod 2
𝑠
) before

receiving the honest parties’ shares. Without this, a rushing adversary could choose

its shares of �̂� (mod 2
𝑠
) dependent on honest parties’ shares, so we would not be able

to deduce that �̂� depends only on A’s previous view-so-far.

21

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

we need to additionally handle the truncation subprotocol ΠTrunc.

As we perform the MAC check before the truncation, we initially

only have a guarantee about the shares J𝒂K, J𝒄K. This guarantee is
captured by the following lemma (cf. [20, Claim 1]).

Lemma 2. Let 𝑡 = 𝑘 + 𝑠 and let A be a ppt. adversary attacking
ΠTriple. Given rewinding black box access to A, one can extract mali-
cious parties’ shares of [𝛼], J𝒂K, J𝒃K, J𝒄K such that, with probability
≥ 1 − 2−𝑠 , either the MAC check fails or

𝜸𝒂 ≡𝑡+𝑠 𝛼𝒂 (2)

𝜸𝒃 ≡𝑡+𝑠 𝛼𝒃 (3)

𝜸𝒄 ≡𝑡+𝑠 𝛼𝒄 . (4)

Now we proceed with the proof of correct multiplication, first

for the shares before truncation (Lemma 3) and then for the shares

after truncation (Lemma 4).

Lemma 3. Let 𝑡, [𝛼], J𝒂K, J𝒃K, J𝒄K as in Lemma 2. Then, with prob-
ability ≥ 1 − 2−𝑠 , either the MAC check fails or 𝒂 ⊙ 𝒃 ≡𝑡 𝒄 .

Proof. For simplicity, we only consider a single malicious party

and identify it by A, but the argument can easily be extended to

an arbitrary number of malicious parties.

Let 𝛼 and �̃� be the accumulated values supplied to ΠAuth and let

�̃� be the accumulated “𝒂”-value supplied to ΠVOLE. Let �̃� be the

vector of length𝑀 containing 𝛼 in each entry. A can tamper with

the shares of (�̃� , �̃�,𝜸�̃�) supplied to ΠVOLE, namely by effectively

supplying shares of (�̃� + 𝜹𝜶 , �̃� + 𝜹𝒃 , 𝛼�̃� + 𝜹𝜸𝒃) instead (for some

𝜹-values chosen by A). Afterwards, the parties have shares of [𝛼]
and

J�̃�K = ([�̃�], [�̃� ⊙ (�̃� + 𝜹𝜶)])

J�̃�K = ([�̃�], [𝛼�̃�])

J�̃�K = ([�̃� ⊙ (�̃� + 𝜹𝒃)], [�̃� ⊙ (𝛼�̃� + 𝜹𝜸𝒃)]).
By Lemma 2, with probability ≥ 1 − 2−𝑠 and assuming the MAC

check passes, we can extract A’s shares of [𝛼], J𝒂K, J𝒃K, J𝒄K con-
forming to Equations (2) to (4), with honest parties’ shares given by

[𝛼]𝑖 = [𝛼]𝑖 , J𝒂K𝑖 = J�̃�K𝑖 , J𝒃K𝑖 = J�̃�K𝑖 , and J𝒄K𝑖 = J�̃�K𝑖 for 𝑖 ∉ 𝐴. Let

Δ𝛼 := [𝛼]𝐴 − [𝛼]𝐴
𝚫𝒂 := [𝒂]𝐴 − [�̃�]𝐴 𝚫𝜸𝒂 := [𝜸𝒂]𝐴 − [𝜸�̃�]𝐴
𝚫𝒃 := [𝒃]𝐴 − [�̃�]𝐴 𝚫𝜸𝒃 := [𝜸𝒃]𝐴 − [𝜸�̃�]𝐴
𝚫𝒄 := [𝒄]𝑎 − [�̃�]𝐴 𝚫𝜸𝒄 := [𝜸𝒄]𝐴 − [𝜸�̃�]𝐴 .

Substitute this into Equation (2) and rearrange, so we obtain

𝛼𝚫𝒂 ≡𝑡+𝑠 𝚫𝜸𝒂 − (Δ𝛼 − 𝜹𝜶) ⊙ �̃�.

As the adversary has no information on 𝛼 , it follows that 𝚫𝒂 ≡𝑡 0
with overwhelming probability. Therefore �̃� ≡𝑡 �̃� + 𝚫𝒂 = 𝒂. By
doing the same with Equation (3), we obtain

𝛼𝚫𝒃 ≡𝑡+𝑠 𝚫𝜸𝒃 − Δ𝛼 �̃� ,

so it follows that 𝚫𝒃 ≡𝑡 0 with overwhelming probability. By doing

the same with Equation (4), we obtain

𝛼 (�̃� ⊙ 𝜹𝒃 + 𝚫𝒄) ≡𝑡+𝑠
�̃� ⊙ 𝜹𝜸𝒃 + 𝚫𝜸𝒄 − Δ𝛼 �̃� ⊙ �̃�)

so it follows that �̃� ⊙ 𝜹𝒃 + 𝚫𝒄 ≡𝑡 0 with overwhelming probability.

We conclude that

𝒄 = �̃� + 𝚫𝒄 = �̃� ⊙ (�̃� + 𝜹𝒃) + 𝚫𝒄 ≡𝑡 �̃� ⊙ �̃� ≡𝑡 𝒂 ⊙ 𝒃 .
□

Lemma 4. Let 𝑡 = 𝑘 + 𝑠 and let A be a ppt. adversary attack-
ing ΠTriple. Given rewinding black box access to A, one can extract
malicious parties’ shares of [𝛼], J𝒂K, J𝒃K, J𝒄K such that, with prob-
ability ≥ 1 − 2

−𝑠 , either the MAC check fails or 𝒂 ⊙ 𝒃 ≡𝑘 𝒄 and
∀𝒙 ∈ {𝒂, 𝒃, 𝒄} : 𝛼𝒙 ≡𝑡 𝜸𝒙 .

Proof. Let [𝛼], J𝒂K, J𝒃K, J𝒄K as in Lemma 2. Assumewe are in the

case where the MAC check in ΠTriple passes and (with probability

> 1 − 2−𝑠) above-mentioned shares satisfy Equations (2) to (4) and,

by Lemma 3, 𝒂 ⊙ 𝒃 ≡𝑡 𝒄 . For honest parties’ shares (i.e., 𝑖 ∉ 𝐴) we
have

[𝒂]𝑖 = ⌊[𝒂]𝑖/2𝑠 ⌋
[𝜸𝒂]𝑖 = ⌊[𝜸�̂�]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠

= ⌊[(𝜸𝒂]𝑖 − 𝚺𝒂 · [𝛼]𝑖)/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠

[𝒄]𝑖 = ⌊[𝒄]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝒄/2𝑠

= ⌊[(𝒄]𝑖 − 𝚺𝒂 ⊙ [𝒃]𝑖)/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝒄/2𝑠

[𝜸𝒄]𝑖 = ⌊[𝜸�̂�]𝑖/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠

= ⌊[(𝜸𝒄]𝑖 − 𝚺𝒂 ⊙ [𝜸𝒃]𝑖)/2𝑠 ⌋ + 1𝑖=0 · 𝚺𝜸�̂�/2𝑠 .
We can compute the corrupted parties’ shares in the same way,

taking [𝒂]𝑖 mod 2
𝑠
, [𝜸�̂�]𝑖 mod 2

𝑠
, [𝒄]𝑖 mod 2

𝑠
and [𝜸�̂�]𝑖 mod 2

𝑠

from the transcript and computing all 𝚺-values based on those.

Then we have

𝒂 = (𝒂 − 𝚺𝒂)/2𝑠

𝜸𝒂 = (𝜸𝒂 − 𝚺𝒂 · 𝛼)/2𝑠 ≡𝑡 (𝛼𝒂 − 𝚺𝒂 · 𝛼)/2𝑠 = 𝛼𝒂
𝒄 = (𝒄 − 𝚺𝒂 ⊙ 𝒃)/2𝑠 ≡𝑘 (𝒂 ⊙ 𝒃 − 𝚺𝒂 ⊙ 𝒃)/2𝑠 = 𝒂 ⊙ 𝒃

𝜸𝒄 = (𝜸𝒄 − 𝚺𝒂 ⊙ 𝜸𝒃)/2𝑠 ≡𝑡 (𝛼𝒄 − 𝚺𝒂 ⊙ 𝛼𝒃)/2𝑠 = 𝛼𝒄 .
□

Selective Failure Attacks. In LHE-based protocols, selective failure

attacks might be possible whenever an adversary can manipulate a

ciphertext in a certain way such that the fact that the manipulated

ciphertext decrypts to zero reveals something about the original

plaintext. In our protocol, this can happen in two places:

(1) In ΠVOLE there is a ciphertext 𝒄𝑎 and a malicious party could

add some derived ciphertext 𝒄 ′ to the returned ciphertexts.

(2) In ΠAuth there is a ciphertext 𝒄 [𝛼]𝑖 and a malicious party

could add some derived ciphertext 𝒄 ′ to the ciphertext re-

turned to 𝑃𝑖 .

In both cases, shares will be altered only if unpack(Decsk (𝒄 ′)) ≠ 0,
leading to aMAC check failure. Hence, a passingMAC check reveals

to the adversary that unpack(Decsk (𝒄 ′)) = 0, which could reveal

something about the original plaintext, i.e., [𝒂]𝑖 or [𝛼]𝑖 .
Herewe show that such selective failure attacks onΠVOLE cannot

reveal anything about the truncated shares [𝒂]𝑖 , which is what we

care about.

Lemma 5. LetA be a ppt. adversary attacking ΠTriple. There exists
an event 𝐸 such that (i) if Pr[𝐸] ≠ 0, then Pr[abort | 𝐸] ≥ 1 − 2−𝑠
and (ii) if Pr[𝐸] ≠ 1, then, conditioned on ¬𝐸, honest parties’ shares

22

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

([𝒂]𝑖)𝑖∉𝐴 are distributed computationally indistinguishable from the
uniform distribution and independent of ([𝒂]𝑖 mod 2

𝑠)𝑖∉𝐴 .

Proof. In this proof we ignore the modulus switching which is

performed in ΠVOLE as an optimization. Adding modulus switch-

ing cannot degrade the security of the protocol, as the modulus-

switched ciphertext cannot reveal more information than the origi-

nal ciphertext.

Observe that in ΠTriple we have∑︁
𝑗≠𝑖

𝒅 (𝑖, 𝑗)
0

= [𝜸𝒂]𝑖 − [𝒂]𝑖 · [𝛼]𝑖 −
∑︁

𝑗≠𝑖
𝒆 (𝑗,𝑖)
0∑︁

𝑗≠𝑖
𝒅 (𝑖, 𝑗)
1

= [𝒄]𝑖 − [𝒂]𝑖 ⊙ [𝒃]𝑖 −
∑︁

𝑗≠𝑖
𝒆 (𝑗,𝑖)
1∑︁

𝑗≠𝑖
𝒅 (𝑖, 𝑗)
2

= [𝜸𝒄]𝑖 − [𝒂]𝑖 ⊙ [𝜸𝒃]𝑖 −
∑︁

𝑗≠𝑖
𝒆 (𝑗,𝑖)
2

.

Hence, given (a ciphertext of) all shares, we can compute a cipher-

text 𝒄𝑙 of
∑
𝑗≠𝑖 𝒅

(𝑖, 𝑗)
𝑙

for 𝑙 ∈ {0, 1, 2}.
Let 𝑃ℎ (ℎ ∉ 𝐴) be an arbitrary honest party and, for any ppt. dis-

tinguisher 𝐷 , let A𝐷 be the following attacker on the 2
𝑠
-enhanced

CPA security game (cf. Figure 1):

(1) Receive pk and 𝒄 from the challenger.

(2) Emulate ΠTriple betweenA and the honest parties until after

step (7). Replace 𝑃ℎ ’s public key used in ΠVOLE by pk and

replace 𝑃ℎ ’s ciphertext 𝒄𝑎 by 𝒄𝑎 := 𝒄 . Use Lemma 2 to extract

malicious parties’ shares of [𝛼], J𝒂K, J𝒃K, J𝒄K.
(3) Note that 𝒄𝑎 is a ciphertext of [𝒂]ℎ . Based on the extracted

shares, honest parties’ shares, and 𝒄𝑎 , compute ciphertexts

𝒄𝑙 for 𝑙 ∈ {0, 1, 2} as described above.

(4) Let �̃�𝑙 for 𝑙 ∈ {0, 1, 2} be the actual accumulated ciphertexts

returned to 𝑃ℎ in the emulation.

(5) Send 𝒄𝑙 := �̃�𝑙 − 𝒄𝑙 for 𝑙 ∈ {0, 1, 2} to the challenger for zero-

checking. If the challenger aborts on any of those queries,

then abort.

(6) Receive 𝒎𝑏 from the challenger.

(7) Output 𝐷 (𝒎𝑏).
We assume linear targeted malleability of BGV, so Theorem 2 states

that there exists an event𝐸 such that, (i) ifPr[𝐸] ≠ 0, thenPr[abort |
𝐸] ≥ 1− 2−𝑠 and (ii) if Pr[𝐸] ≠ 1, then, conditioned on ¬𝐸,A𝐷 has

a negligible advantage in the security game. As this holds for all

ppt. distinguishers 𝐷 , it follows that 𝒎0 (= 𝒂) is computationally

indistinguishable from 𝒎1. Therefore, conditioned on ¬𝐸, [𝒂]ℎ =

⌊[𝒂]ℎ/2𝑠 ⌋ = ⌊𝒎0/2𝑠 ⌋ is computationally indistinguishable from

�̃�, which is uniformly distributed and independent of [𝒂]ℎ mod

2
𝑠 = 𝒎0 mod 2

𝑠
. Furthermore, observe that the MAC check in the

emulation passes only if ∀𝑙 ∈ {0, 1, 2} : unpack(Decsk (𝒄𝑙)) = 0, i.e.,
only if the challenger does not abort in the security game. Hence

the property Pr[abort | 𝐸] ≥ 1 − 2−𝑠 carries over from the security

game to the emulation.

The same argument can be repeated independently for each

honest party 𝑃ℎ (ℎ ∉ 𝐴). □

A similar selective failure attack on ΠAuth might reveal infor-

mation about [𝛼]𝑖 and hence about the secret MAC key 𝛼 . In the

following section about 2
𝑠
-enhanced CPA security, we argue that

the success probability of learning ℓ bits of [𝛼]𝑖 is only 2
−ℓ
. With

the same probability, an adversary can learn ℓ bits of 𝛼 during

the MPC online phase, and nonetheless, the online phase is secure

(since an adversary needs to predict all bits of 𝛼 in order to success-

fully cheat). As it doesn’t matter whether an adversary learns this

information in the offline phase or online phase, it follows that this

selective failure attack does not break security.

B PROPERTIES OF BGV
This appendix contains technical definitions and proofs related to

BGV.

Theorem 1. Let 𝑆 ∈ R≥1, let sk, 𝑒 ∈ R with ∥sk∥∞ ≤ 𝑆 and ∥𝑒 ∥∞ ≤
2𝜎2𝑆 , and let 𝒄0, 𝒄1 ∈ R2𝑞0 be ciphertexts with Decsk (𝒄0) = Decsk (𝒄1).
For any 𝑎 ∈ R𝑞1 , define pk(𝑎) := (𝑎, 𝑎 · sk + 2𝑇 𝑒). For statistical
security parameter Stat_sec and

𝐵 ≥ 2
Stat_sec (∥⌊noisesk (𝒄𝑖)/2𝑇 ⌋∥∞ + 𝜑 (𝑚)4𝜎2𝑆) ∀𝑖 ∈ {0, 1},

the two distributions{(
𝑎

$← R𝑞1 , 𝒄𝑖 + Enc′pk(𝑎) (0, 𝐵)
)}

, 𝑖 ∈ {0, 1},

are computationally indistinguishable.

Proof. Let 𝒄 := 𝒄𝑖 for any 𝑖 ∈ {0, 1}. We show that the distribu-

tion for 𝑖 is computationally indistinguishable from{(
𝑎

$← R𝑞1 ,
(
sk · 𝑢 + 2𝑇 𝑒0 +𝑚,𝑢

))
: 𝑒0

$← R [−𝐵,𝐵) , 𝑢
$← R𝑞1

}
.

Then the theorem follows by transitivity.

Let 𝒙 = (𝑥0, 𝑥1) := 𝒄 + Enc′pk(𝑎) (0, 𝐵). By definition and linearity

of noise, we have

𝑥0 = sk · 𝑥1 + noisesk (𝒙)

= sk · 𝑥1 + noisesk (𝒄) + noisesk
(
Enc′pk(𝑎) (0, 𝐵)

)
= sk · 𝑥1 + noisesk (𝒄) + 2𝑇 (𝑒𝑣 + 𝑒0 − sk · 𝑒1)

= sk · 𝑥1 +𝑚 + 2𝑇 (𝑒0 + 𝑒)

where 𝑣, 𝑒0, 𝑒1 are sampled as in the definition of Enc′ and 𝑒 :=

⌊noisesk (𝒄)/2𝑇 ⌋ +𝑒𝑣 − sk ·𝑒1. In Theorem 1, we chose 𝐵 specifically

such that 𝐵 ≥ 2
Stat_sec ∥𝑒 ∥∞. As 𝑒0 is sampled uniformly at random

from R [−𝐵,𝐵) , it follows that 𝑒0 ≈𝛿 𝑒0 + 𝑒 for 𝛿 := 2
−Stat_sec

. Hence

(𝑎, 𝒙) ≈𝛿
(
𝑎,

(
sk · 𝑥1 + 2𝑇 𝑒0 +𝑚, 𝑥1

))
. (5)

By definition of Enc′, we have 𝑥1 = 𝑐1 + 𝑎𝑣 + 2𝑇 𝑒1. By a standard

hybrid argument using the R-LWE assumption, it follows that we

can replace 𝑥1 by a uniformly random element𝑢
$← R𝑞1 . That is, the

right-hand side of Equation (5) is computationally indistinguishable

from (𝑎, (sk · 𝑢 + 2𝑇 𝑒0 +𝑚, 𝑢)). □

Linear Targeted Malleability of BGV. As in [34] the BGV scheme

over Z
2
𝑡 comes with linear targeted malleability:

Definition 3. An encryption scheme has the linear targeted mal-

leability property if for any polynomial-size adversary A and any

plaintext generatorM there is a polynomial-size simulator S such

that, for any sufficiently large _ ∈ N, and any auxiliary input

23

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

˜G
2
𝑠 -CPA+

(1) C samples 𝒎
$← Z𝑀

2
𝑡 . C samples 𝑏

$← {0, 1}.
(2) For 𝑗 ∈ poly(𝑠):
(a) A sends some 𝐵 ∈ Z𝐾×𝑀

2
𝑡 to C and 𝒃 ∈ Z𝐾

2
𝑡 for some

𝐾 ∈ N.
(b) If 𝐵𝒎 +𝑏 = 0, C sends OK toA. Otherwise, C sends abort

to A and aborts and sets 𝑏 ′ = 0.

(3) If 𝑏 = 0, C sends 𝒎0 := 𝒎 to A. Otherwise, C samples

�̃�
$← Z𝑀

2
𝑡−𝑠 and sends 𝒎1 := 2

𝑠�̃� + (𝒎 mod 2
𝑠) to A.

(4) A outputs 𝑏 ′ ∈ {0, 1}.
The advantage of A is defined as in Figure 1.

Figure 14: Transformed 2
𝑠 -enhanced CPA security game.

𝑧 ∈ {0, 1}poly(_) , the following two distributions are computation-

ally indistinguishable:

pk, (pk, sk) ← Gen(1_)
𝑠, 𝑎1, . . . , 𝑎𝑚 𝑠, 𝑎1, . . . , 𝑎𝑚 ←M(pk)

𝑐𝑖 ← Encpk (𝑎𝑖),∀1 ≤ 𝑖 ≤ 𝑚
Decsk (𝑐 ′𝑗),∀1 ≤ 𝑗 ≤ 𝑘 (𝑐 ′

1
, . . . , 𝑐 ′

𝑘
) ← A(pk, 𝑐1, . . . , 𝑐𝑚, 𝑧)

with 𝑐 ′
1
, . . . , 𝑐 ′

𝑘
in the domain

of the decryption algorithm

and

pk, (pk, sk) ← Gen(1_)
𝑠, 𝑎1, . . . , 𝑎𝑚 𝑠, 𝑎1, . . . , 𝑎𝑚 ←M(pk)

(𝐵, 𝒃) ← S(pk, 𝑧)
𝑎′
𝑗
,∀1 ≤ 𝑗 ≤ 𝑘 (𝑎′

1
, . . . , 𝑎′

𝑘
)𝑇 ← 𝐵(𝑎1, . . . , 𝑎𝑚)𝑇 + 𝒃

for a 𝑘 ×𝑚 matrix 𝐵, a 𝑘-dimensional vector 𝒃 , and 𝑠 some arbitrary

string (possibly correlated with the plaintexts).

The argument in the Z
2
𝑇 case is identical (without any non-

notational adaptions). Namely, for non-affine operations on Encpk (𝑚),
e.g., for higher order polynomial evaluations, the necessary key

switching material (e.g., as in [22]) is not available in a purely LHE-

scheme. Additionally, ifA himself encrypts any self-chosen values,

S can do the same. Finally, if A uses elements of the ciphertext

space not derived by encryption, e.g., (0, 1) or (0, 2ℓ) for some ℓ ∈ N,
S can sample a (dummy) secret key sk′ uniformly at random and

decrypt using sk′. As in [34] we then have to increase the entropy

of the secret key by Stat_sec bits to account for the leakage of up

to Stat_sec bits of information about sk with probability 2
−Stat_sec

.

For further details we refer to [34].

As a result of linear targeted malleability, we may assume (as

in [34]) that an adversary against our security game in Figure 1

can only query whether an affine function 𝑓𝐵,𝒃 (𝒎) = 𝐵𝒎 − 𝒃 for

some 𝑎, 𝑏 ∈ Z𝑇 is 0 or not (in which case the protocol aborts). The

resulting game is included as Figure 14.

Composition of AffineQueries. We further add a technical lemma

that shows that replacing multiple affine queries in the proof of

2
𝑠
-enhanced security of BGV by their composition generally leads

to lower leakage, i.e., the elementary divisor exponent 𝛽1 is larger

for the composition. Of course the composition then also has a

lower abort probability.

Lemma 6. Let 𝐵 ∈ Z𝐾×𝑀
2
𝑘

be a matrix with Smith normal form
𝐵 = 𝑆𝐷𝑅 for invertible matrices 𝑆, 𝑅, 0 ≤ 𝑟 ≤ min{𝐾,𝑀}, and 𝐷 =

(𝛿𝑖 𝑗2𝛽 𝑗 𝛿 𝑗<𝑟)0≤𝑖<𝐾,0≤ 𝑗<𝑀 with 𝛽1 ≤ · · · ≤ 𝛽𝑟 . Analogously let 𝐵′ ∈
Z𝑀×𝐿
2
𝑘

with Smith normal form 𝐵′ = 𝑆 ′𝐷 ′𝑅′ for invertible matrices

𝑆 ′, 𝑅′, 0 ≤ 𝑟 ′ ≤ min{𝑀, 𝐿}, and 𝐷 ′ = (𝛿 𝑗𝑘2𝛽
′
𝑘𝛿𝑘<𝑟 ′)0≤ 𝑗<𝑀,0≤𝑘<𝐿

with 𝛽 ′
1
≤ · · · ≤ 𝛽 ′

𝑟 ′ for 1 ≤ 𝑗 < 𝑟
′. Then there are invertible matrices

𝑆 ′′, 𝑅′′, and 0 ≤ 𝑟 ′′ ≤ min{𝐾, 𝐿} such that 𝐵′′ ≔ 𝐵𝐵′ = 𝑆 ′′𝐷 ′′𝑅′′

for 𝐷 = (𝛿𝑖𝑘2𝛽
′′
𝑘 𝛿𝑘<𝑟 ′′)0≤𝑖<𝐾,0≤𝑘<𝐿 and 𝛽 ′′

1
≤ · · · ≤ 𝛽 ′′

𝑟 ′′ for 1 ≤
𝑗 < 𝑟 ′′. We then have 𝛽1 + 𝛽 ′

1
≤ 𝛽 ′′

1
.

Proof. By definition the 2
𝛽1

are the first elementary divisors

defined as the gcd over all matrix entries, i.e. 2
𝛽1 = gcd(𝑏𝑖 𝑗 : 0 ≤

𝑖 < 𝐾, 0 ≤ 𝑗 < 𝑀) for 𝐵 = (𝑏𝑖 𝑗)0≤𝑖<𝐾,0≤ 𝑗<𝑀 . Analogously for

𝐵′ = (𝑏 ′
𝑗𝑘
)
0≤ 𝑗<𝑀,0≤𝑘<𝐿 and 2

𝛽′
1 . But obviously gcd(𝑏𝑖 𝑗 : 0 ≤ 𝑖 <

𝐾, 0 ≤ 𝑗 < 𝑀) gcd(𝑏 ′
𝑖 𝑗

: 0 ≤ 𝑖 < 𝐾, 0 ≤ 𝑗 < 𝑀) divides each∑𝑀−1
𝑗=0 𝑏𝑖 𝑗𝑏

′
𝑗𝑘
, i.e., each entry of 𝐵′′. Thus we also have gcd(𝑏𝑖 𝑗 :

0 ≤ 𝑖 < 𝐾, 0 ≤ 𝑗 < 𝑀) gcd(𝑏 ′
𝑖 𝑗

: 0 ≤ 𝑖 < 𝐾, 0 ≤ 𝑗 < 𝑀) | gcd(𝑏 ′′
𝑖𝑘

:

0 ≤ 𝑖 < 𝐾, 0 ≤ 𝑘 < 𝐿) for 𝐵𝐵′ = 𝐵′′ = (𝑏 ′′
𝑖𝑘
)
0≤𝑖<𝐾,0≤𝑘<𝐿 . This

implies 2
𝛽1
2
𝛽′
1 | 2𝛽′′1 and thus 𝛽1 + 𝛽 ′

1
≤ 𝛽 ′′

2
as claimed. □

C THE CHALLENGE SPACE
In our zero-knowledge proof we have to show the knowledge sound-
ness property (cf. Definition 5). This proof requires us to extract

a witness, which can be reduced to the task of finding a short in-

verse of𝑤 −𝑤 ′ for any two distinct challenges𝑤,𝑤 ′ ∈ Chal. We

therefore choose the challenge space Chal := {𝑤𝑖 | 0 ≤ 𝑖 < 𝑚} for

𝑤𝑖 (𝑋) ≔
𝑖−1∑︁
𝑘=0

𝑋𝑘 ∈ R (6)

from [1]. Lemma 7 shows that Chal comes in fact with the two

necessary properties, i.e., invertibility of𝑤 −𝑤 ′ and a sufficiently

small norm bound.

Remark. The challenge space from [7, 19] contained elements𝑤,𝑤 ′

such that𝑤 −𝑤 ′ was not invertible, but only had a scaled inverse,

i.e., an element 𝑟 with 𝑟 (𝑤 − 𝑤 ′) = 𝑚. As a result this original

ZKPoPK could only prove a statement about a multiple of the

original ciphertext.

Lemma 7. Let R = Z[𝑋]/Φ𝑚 (𝑋) with𝑚 prime. For all 𝑖 ≠ 𝑗 it
holds true that𝑤 𝑗 −𝑤𝑖 ∈ R is invertible and

(𝑤 𝑗 −𝑤𝑖)−1∞ = 1.

Proof. Below, we prove the statement for 0 ≤ 𝑖 < 𝑗 < 𝑚, while

the remaining cases follow from 𝑤𝑖 −𝑤 𝑗 = (−1) · (𝑤 𝑗 −𝑤𝑖). Let
𝑙 be the multiplicative inverse of 𝑗 − 𝑖 mod𝑚. Hence there exists

𝑛 ∈ N such that (𝑗−𝑖)𝑙 = 𝑛𝑚+1. Letℎ(𝑋) := 𝑋𝑚−𝑖𝑤𝑙 (𝑋 𝑗−𝑖). Using,
𝑤𝑎 (𝑋)𝑤𝑏 (𝑋𝑎) = 𝑤𝑎𝑏 (𝑋), 𝑋𝑚 = 1, and 𝑤𝑚 (𝑋) = Φ𝑚 (𝑋) = 0, we

obtain

(𝑤 𝑗 (𝑋) −𝑤𝑖 (𝑋))ℎ(𝑋) =
𝑗−1∑︁
𝑘=𝑖

𝑋𝑘𝑋𝑚−𝑖𝑤𝑙 (𝑋 𝑗−𝑖)

= 𝑤 𝑗−𝑖 (𝑋)𝑤𝑙 (𝑋 𝑗−𝑖) = 𝑤 (𝑗−𝑖)𝑙 (𝑋)
= 𝑋𝑛𝑚 +𝑤𝑛𝑚 (𝑋) = 1 +𝑤𝑛 (𝑋𝑚)𝑤𝑚 (𝑋) = 1,

hence (𝑤 𝑗 −𝑤𝑖)−1 = ℎ. For computing the norm of ℎ, first observe

that𝑤𝑙 (𝑋) in power basis only has coefficients in {0, 1}. Therefore,
24

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

the same holds for𝑤𝑙 (𝑋 𝑗−𝑖), as𝑚 doesn’t divide 𝑗 − 𝑖 . By Lemma 8

(see below) it follows that ∥ℎ∥∞ ≤ 1. As ℎ ≠ 0, it must be that

∥ℎ∥∞ = 1. □

The proof of Lemma 7 relies on the following Lemma 8:

Lemma 8. Let 𝑙 ≤ 0 ≤ 𝑢 ∈ Z and let 𝑓 (𝑋) = ∑𝑚−1
𝑘=1

𝑎𝑘𝑋
𝑘 for

some coefficients 𝑎𝑘 ∈ [𝑙, 𝑢]. Then, for all 𝑖 ∈ N, it holds true that
𝑋 𝑖 𝑓 (𝑋) in the power basis has coefficients in [𝑙 − 𝑢,𝑢].

Proof. As 𝑋 𝑖 = 𝑋 𝑖 mod𝑚
, assume without loss of generality

that 0 < 𝑖 ≤ 𝑚. Define 𝑎0 := 0. We conclude that

𝑋 𝑖 𝑓 (𝑋) =
𝑚−1∑︁
𝑘=0

𝑎𝑘𝑋
𝑘+𝑖 mod𝑚 =

𝑚−1∑︁
𝑘=0

𝑎𝑘−𝑖 mod𝑚𝑋
𝑘

= 𝑎𝑚−𝑖 +
𝑚−1∑︁
𝑘=1

𝑎𝑘−𝑖 mod𝑚𝑋
𝑘 (∗)=

𝑚−1∑︁
𝑘=1

(𝑎𝑘−𝑖 mod𝑚 − 𝑎𝑚−𝑖)𝑋𝑘

where (∗) follows by subtracting 𝑎𝑚−𝑖Φ𝑚 (𝑋) = 0 ∈ R. □

In [7, 19], the multiplication of a polynomial with a challenge is

an operation linear in𝑚, since their challenges are simple mono-

mials 𝑋 𝑗 . While our challenges𝑤𝑖 ∈ Chal are more complex, mul-

tiplication with a challenge however stays similarly efficient. In

fact, in Algorithm 1 we present a simple algorithm that multiplies

a polynomial by𝑤𝑖 ∈ Chal and requires only𝑚 − 1 additions and
subtractions, independent of 𝑖 .

Algorithm 1Multiplication by a challenge.

Input: 𝑓 ∈ R in power basis, challenge index 0 ≤ 𝑖 < 𝑚
Output: res = 𝑓 𝑤𝑖 in power basis

res := 0 ∈ R
sum := 0 ∈ Z
for 𝑗 = 1, . . . ,𝑚 − 1 do
sum := sum + 𝑓 .coeff[𝑋 𝑗] − 𝑓 .coeff[𝑋 𝑗−𝑖 mod𝑚]
res.coeff[𝑋 𝑗] := sum

end for
return res

Note that we can also run Algorithm 1 on 𝑓 ∈ R𝑞 . In that case,

all arithmetic in the algorithm is modulo 𝑞.

Lemma 9. On input 𝑓 ∈ R and 0 ≤ 𝑖 < 𝑚, Algorithm 1 correctly
outputs 𝑓 𝑤𝑖 .

Proof. Let 𝑓 (𝑋) = ∑𝑚−1
𝑗=1 𝑎 𝑗𝑋

𝑗
for some coefficients 𝑎𝑖 ∈ Z.

Define 𝑎0 := 0. We obtain

𝑓 (𝑋)𝑤𝑖 (𝑋) =
𝑖−1∑︁
𝑘=0

𝑚−1∑︁
𝑗=0

𝑎 𝑗𝑋
𝑗+𝑘 mod𝑚 =

𝑖−1∑︁
𝑘=0

𝑚−1∑︁
𝑗=0

𝑎 𝑗−𝑘 mod𝑚𝑋
𝑗
.

Define
ˆ𝑏 𝑗 :=

∑𝑖−1
𝑘=0

𝑎 𝑗−𝑘 mod𝑚 and 𝑏 𝑗 := ˆ𝑏 𝑗 − ˆ𝑏0. Using Φ𝑚 (𝑋) = 0,

we obtain

𝑓 (𝑋)𝑤𝑖 (𝑋) =
𝑚−1∑︁
𝑗=0

ˆ𝑏 𝑗𝑋
𝑗 =

©«
𝑚−1∑︁
𝑗=0

ˆ𝑏 𝑗𝑋
𝑗 ª®¬ − ˆ𝑏0Φ𝑚 (𝑋) =

𝑚−1∑︁
𝑗=0

𝑏 𝑗𝑋
𝑗
.

Observe that 𝑏0 = 0 and, for 1 ≤ 𝑗 < 𝑚,

𝑏 𝑗 =

𝑖−1∑︁
𝑘=0

𝑎 𝑗−𝑘 mod𝑚 − ˆ𝑏0

=

𝑖−1∑︁
𝑘=0

𝑎 𝑗−1−𝑘 mod𝑚 − ˆ𝑏0 + 𝑎 𝑗 − 𝑎 𝑗−𝑖 mod𝑚

= 𝑏 𝑗−1 + 𝑎 𝑗 − 𝑎 𝑗−𝑖 mod𝑚 .

Inductively it follows that each res.coeff[𝑋 𝑗] in Algorithm 1 is

computed correctly. □

D SECURITY OF ZERO-KNOWLEDGE PROOFS
We analyze the security of our proof system based on the following

security definitions.

Definition 4 (Completeness). A proof system (P,V) is complete
for the relation 𝑅 with completeness error 𝜌 ∈ [0, 1] if for all (𝑥,𝑤) ∈
𝑅 it holds true that Pr[⟨P(𝑥,𝑤),V(𝑥)⟩ = 0] ≤ 𝜌 .

Definition 5 (Knowledge Soundness). A proof system (P,V) is
knowledge sound for the relation 𝑅 with soundness error ^ ∈ [0, 1]
if there exists a polynomial 𝑞(·) and probabilistic extractor E such

that for all deterministic adversaries P∗ and 𝑥 ∈ {0, 1}∗ with

Y := Pr[⟨P∗ (𝑥),V(𝑥)⟩ = 1] > ^

it holds true that EP∗ (𝑥) (𝑥) outputs a witness𝑤 ∈ 𝑅(𝑥) in expected
time ≤ 𝑞(|𝑥 |)/(Y − ^).

Definition 6 (Special Honest-Verifier Zero-Knowledge). A proof

system (P,V) is special honest-verifier zero-knowledge for the re-
lation 𝑅 with statistical distance 𝛿 if there exists a probabilistic

simulator S such that for all (𝑥,𝑤) ∈ 𝑅 and randomness 𝛼 it holds

true that S(𝑥, 𝛼) ≈𝛿 Transcr⟨P(𝑥,𝑤),V𝛼 (𝑥)⟩.
Here Transcr⟨P(𝑥,𝑤),V𝛼 (𝑥)⟩ is the random variable over the

random coins of P that outputs the transcript of ⟨P(𝑥,𝑤),V𝛼 (𝑥)⟩.

E ZERO-KNOWLEDGE PROOF OF PLAINTEXT
KNOWLEDGE

In Figure 15 we present our ZKPoK for (L,L𝑆ZKPoPK). Then, in the

following subsections, we prove Theorem 4 for the case flag = ⊥.
The other case flag = Diag can be proven analogously.

Completeness. For proving completeness, both parties are assumed

to behave honestly. We show that, with overwhelming probability,

all checks by the verifier pass when running ΠZKPoPK on input

((𝐶, pk), (𝒎, 𝒗, 𝒆0, 𝒆1)) ∈ L.
As the rows of𝑊 consist of 𝑈 elements from Chal(⊥) = {𝑤𝑖 |

0 ≤ 𝑖 < 𝑚}, it follows that

∥𝑊 · 𝒗∥∞ ≤ 𝜑 (𝑚)𝑈 ∥𝒗∥∞ = 𝜑 (𝑚)𝑈 .

As �̃� is sampled uniformly at random with an exponentially larger

bound 𝜑 (𝑚)𝑈𝑍 , it follows that 𝒗 = �̃� +𝑊 · 𝒗 exceeds this bound

onlywith negligible probability. Hence, the verifier’s check on ∥𝒗∥∞
passes with overwhelming probability. The same can similarly be

shown for ∥�̂�∥∞ and ∥𝒆1∥∞.
25

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

Protocol ΠZKPoPK, parameterized by

𝑈 ,𝑉 , 𝑍 ∈ N, 𝜎2 ∈ R, flag ∈ {⊥,Diag}

For 𝐶 ∈ R𝑈×2𝑞 , pk ∈ R2,𝒎 ∈ R𝑈
2
𝑇
, 𝒗, 𝒆0, 𝒆1 ∈ R𝑈

P ((𝐶, pk) , (𝒎, 𝒗, 𝒆0, 𝒆1)) : V ((𝐶, pk)) :

Let 𝑆 := 𝜗 (flag)𝑈𝑍 .
�̃�

$← 𝜚 (flag)𝑉

�̃� ← R𝑉≤𝑆
�̃�0 ← R𝑉≤𝑆 · (2𝜎2+1)

�̃�1 ← R𝑉≤𝑆 ·2𝜎2

𝐴 := Encpk (�̃�, �̃�, �̃�0, �̃�1)

𝑊
$← Chal(flag)𝑉×𝑈

𝐴−→
𝑊←−−

𝒗 := �̃� +𝑊 · 𝒗
�̂� := 2

𝑇 �̃�0 + �̃�
+𝑊 · (2𝑇 𝒆0 +𝒎)

𝒆1 := �̃�1 +𝑊 · 𝒆1
𝒗, �̂�, 𝒆1−−−−−−−→

𝐷 := Encpk (�̂�, 𝒗, 0, 𝒆1)

Check whether:

∥𝒗∥∞ ≤ 𝑆

∥�̂�∥∞ ≤ 𝑆 · 2𝑇 (2𝜎2 + 1)
∥𝒆1∥∞ ≤ 𝑆 · 2𝜎2

𝐷 = 𝐴 +𝑊 ·𝐶
If flag = Diag, check

whether each entry of

�̂� mod 2
𝑇

contains a con-

stant polynomial.

If all checks passed, then ac-

cept. Otherwise, reject.

Figure 15: Our ZKPoPK for BGV ciphertexts over prime cy-
clotomics and plaintext space R

2
𝑇 .

It remains to show that the verifier’s last check 𝐷 = 𝐴 +𝑊 ·𝐶
passes. Using (𝑎, 𝑏) := pk, we obtain

𝐷 = Encpk (�̂�, 𝒗, 0, 𝒆1) = (𝑏𝒗 + 2𝑇 · 0 + �̂�, 𝑎𝒗 + 2𝑇 𝒆1)

= (𝑏 (�̃� +𝑊 · 𝒗) + 2𝑇 �̃�0 + �̃� +𝑊 · (2𝑇 𝒆0 +𝒎),

𝑎(�̃� +𝑊 · 𝒗) + 2𝑇 (�̃�1 +𝑊 · 𝒆1))

= (𝑏�̃� + 2𝑇 �̃�0 + �̃�, 𝑎�̃� + 2𝑇 �̃�1) +𝑊 · (𝑏𝒗 + 2𝑇 𝒆0 +𝒎, 𝑎𝒗 + 2𝑇 𝒆1)
= Encpk (�̃�, �̃�, �̃�0, �̃�1) +𝑊 · Encpk (𝒎, 𝒗, 𝒆0, 𝒆1)
= 𝐴 +𝑊 ·𝐶 .

Knowledge Soundness. On input 𝑥 = (𝐶, pk) and given oracle access
to a deterministic prover P∗ that succeeds on 𝑥 with probability Y >
2
−Snd_sec

, the extractor has to output a witness𝑤 ∈ L𝑆ZKPoPK (𝑥).

Simulator SZKPoPK
Input: 𝑥 = (𝐶, pk),𝑊 ∈ Chal(⊥)𝑉×𝑈
Output: 𝐴,𝑊 , (𝒗, �̂�, 𝒆1)

Sample (𝒗, �̂�, 𝒆1) ← R𝑉×3 uniformly at random subject to:

∥𝒗∥∞ ≤ 𝜑 (𝑚)𝑈𝑍

∥�̂�∥∞ ≤ 𝜑 (𝑚)𝑈𝑍 · 2𝑇 (2𝜎2 + 1)
∥𝒆1∥∞ ≤ 𝜑 (𝑚)𝑈𝑍 · 2𝜎2

𝐷 := Encpk (�̂�, 𝒗, 0, 𝒆1)
𝐴 := 𝐷 −𝑊 ·𝐶 mod 𝑞

return 𝐴,𝑊 , (𝒗, �̂�, 𝒆1)

Figure 16: Simulator for ΠZKPoPK

Let 𝑗 ∈ [𝑈]. Because 𝑉 ≥ (Snd_sec + 2)/log
2
|Chal|, we can

follow the method from [6, Lemma 3], to extract two accepting

transcripts (𝐴,𝑊 , (𝒗, �̂�, 𝒆1)) and (𝐴,𝑊 ′, (𝒗 ′, �̂�′, 𝒆′
1
)) where𝑊 and

𝑊 ′ are equal except for the 𝑗-th column. This takes expected time

poly(|𝑥 |)/Y.
As the transcripts are accepting, we have

𝐷 := Encpk (�̂�, 𝒗, 0, 𝒆1) = 𝐴 +𝑊 ·𝐶
𝐷 ′ := Encpk (�̂�′, 𝒗 ′, 0, 𝒆′1) = 𝐴 +𝑊

′ ·𝐶 .
Subtracting both equations, we obtain

𝐷 (𝑖, ·) − 𝐷 ′(𝑖, ·) = (𝑊 (𝑖, 𝑗) −𝑊 ′(𝑖, 𝑗)) ·𝐶 (𝑗, ·)

for 𝑖 ∈ [𝑉]. Now choose the row index 𝑖 such that𝑊 (𝑖, 𝑗) ≠𝑊 ′(𝑖, 𝑗)

and let ℎ be the inverse of𝑊 (𝑖, 𝑗) −𝑊 ′(𝑖, 𝑗) ∈ R. By Lemma 7, ℎ

exists and ∥ℎ∥∞ = 1. It follows that

𝐶 𝑗, · = ℎ · (𝐷 (𝑖, ·) − 𝐷 ′(𝑖, ·))

= ℎ ·
(
Encpk (�̂� (𝑖) , 𝒗 (𝑖) , 0, 𝒆

(𝑖)
1
) − Encpk (�̂�′(𝑖) , 𝒗 ′(𝑖) , 0, 𝒆

′(𝑖)
1
)
)

= Encpk
(
ℎ · (�̂� (𝑖) − �̂�′(𝑖)), ℎ · (𝒗 (𝑖) − 𝒗 ′(𝑖)), 0, ℎ · (𝒆 (𝑖)

1
− 𝒆′(𝑖)

1
)
)

= Encpk (𝑚, 𝑣, 𝑒0, 𝑒1)
where

𝑚 := ℎ · (�̂� (𝑖) − �̂�′(𝑖)) mod 2
𝑇
, 𝑣 := ℎ · (𝒗 (𝑖) − 𝒗 ′(𝑖)),

𝑒0 := ℎ · (�̂� (𝑖) − �̂�′(𝑖)) div 2
𝑇
, 𝑒1 := ℎ · (𝒆 (𝑖)

1
− 𝒆′(𝑖)

1
).

Recall that 𝑆ZKPoPK = 2𝜑 (𝑚)2𝑈𝑍 . Since the extracted transcripts

are accepting, we have

𝒗 (𝑖) − 𝒗 ′(𝑖)
∞
≤ 2𝜑 (𝑚)𝑈𝑍 . Using ∥ℎ∥∞ =

1, we conclude that ∥𝑣 ∥∞ ≤ 𝑆ZKPoPK. Similarly, it can easily be

shown that ∥𝑒0∥∞ ≤ 𝑆ZKPoPK · (2𝜎2+1) and ∥𝑒1∥∞ ≤ 𝑆ZKPoPK ·2𝜎2.
By repeating this procedure to compute (𝑚, 𝑣, 𝑒0, 𝑒1) for each 𝑗 ∈

[𝑈], we can extract a valid witness𝑤 ∈ L𝑆ZKPoPK (𝑥). The expected
runtime of the extractor is still poly(|𝑥 |)/Y < poly(|𝑥 |)/(Y − ^),
meeting the required bound.

Special Honest-Verifier Zero-Knowledge. In Figure 16 we present

our simulator SZKPoPK. Let 𝑥 ∈ 𝐿L be a common input and let𝑊 ∈
Chal(⊥) be the verifier’s randomness.We show thatSZKPoPK (𝑥,𝑊)
is distributed statistically close to the transcript of ⟨P(𝑥),V𝑊 (𝑥)⟩.

First, observe that we can ignore the component 𝐴 in the tran-

script, as in both worlds 𝐴 is uniquely determined by (𝑊, 𝒗, �̂�, 𝒆1).
26

Multipars: Reduced-Communication MPC over Z
2
𝑘 Proceedings on Privacy Enhancing Technologies 2024(2)

As already argued in the completeness proof, we have ∥𝑊 · 𝒗∥∞ ≤
𝜑 (𝑚)𝑈 . It follows that the coefficients of 𝒗 = �̃� +𝑊 · 𝒗 in the real

execution are distributed within statistical distance ≤ 1/𝑍 from the

coefficients of 𝒗 in the simulation. Similarly this can be shown for

�̂� and 𝒆1. Clearly,𝑊 is distributed identically in both worlds. □

F ZKPOPKWITH REJECTION SAMPLING
In Figure 17 we present our ZKPoPK with rejection sampling which

we use in our Multipars implementation. Using rejection sampling

in this context is an idea from [36] which was already used in

SPDZ [23]. However, we apply the idea to interactive proofs (similar

to what is done in [8]) instead of non-interactive ones and we thus

need to take certain precautions to maintain security. ΠRS
ZKPoPK

has a new parameter 𝑃 that introduces a trade-off between failure

probability (i.e., completeness error) and slack. Again, for flag =

Diag, ΠRS
ZKPoPK falls back to Chal(Diag) = {0, 1} which increases

the requirement on the parameter 𝑉 .

In practice, we choose a small 𝑃 in order to keep the slack low,

which, on its own, leads to an unacceptable failure probability. To

reduce the failure probability, the verifier allows the prover to repeat

the proof rep times and accepts as soon as an attempt succeeds.

There still needs to be a limit on the number of attempts, in order

to bound the knowledge error. In particular, when allowing the

prover rep attempts, ΠRS
ZKPoPK achieves completeness error 1/𝑃 rep

and knowledge error 2
−Snd_sec · rep. By using

𝑉 =

⌈
Snd_sec + log

2
(rep) + 2

log
2
|Chal(flag) |

⌉
, (7)

we reestablish knowledge error 2
−Snd_sec

. In our setup, concretely

with 𝑃 = 256, this construction increases the expected runtime

of the ZKPoPK only by 0.4% while it reduces the size of our BGV

parameters such that the overall communication of our triple gen-

eration protocol is reduced by 3–7% (compared to 80-bit statistical

zero-knowledge without rejection sampling as shown in Table 2b).

In the following we restate and prove the corresponding security

theorem.

Theorem 5. If flag = ⊥ and 𝑉 ≥ (Snd_sec + 2)/log
2
|Chal(flag) |,

then ΠRS
ZKPoPK from Figure 17 (in Appendix F) is

• complete (Definition 4) for L with completeness error 1/𝑃 ,
• knowledge sound (Definition 5) for L𝑆ZKPoPK with
𝑆ZKPoPK = 6𝜑 (𝑚)𝜗 (flag)2𝑈𝑉𝑃 and knowledge error 2−Snd_sec,
• special honest verifier zero-knowledge (Definition 6) for L with
statistical distance 0.

Proof. Again, we prove the theorem for the case flag = ⊥. The
other case flag = Diag can be proven analogously.

Completeness: For any bound 𝐵 ∈ N, define I(𝐵) := [−𝐵, 𝐵). The
coefficients of �̃� are distributed uniformly at random inI((3𝜑 (𝑚)𝑉𝑃+
1) · 𝜑 (𝑚)𝑈). From ∥𝑊 · 𝒗∥∞ ≤ 𝜑 (𝑚)𝑈 , it follows for fixed𝑊 that

each coefficient of 𝒗 is distributed uniformly at random in some

superset of I𝑣 := I(3𝜑 (𝑚)2𝑈𝑉𝑃). For each coefficient of 𝒗, the

Protocol ΠRS
ZKPoPK, parameterized by

𝑈 ,𝑉 , 𝑃 ∈ N, 𝜎2 ∈ R, flag ∈ {⊥,Diag}

For 𝐶 ∈ R𝑈×2𝑞 , pk ∈ R2,𝒎 ∈ R𝑈
2
𝑇
, 𝒗, 𝒆0, 𝒆1 ∈ R𝑈

P ((𝐶, pk) , (𝒎, 𝒗, 𝒆0, 𝒆1)) : V ((𝐶, pk)) :

Let 𝑆 := 3𝜑 (𝑚)𝜗 (flag)𝑈𝑉𝑃, 𝑆 ′ := (3𝜑 (𝑚)𝑉𝑃 + 1) · 𝜗 (flag)𝑈 .

�̃�
$← 𝜚 (flag)𝑉

�̃� ← R𝑉≤𝑆′
�̃�0 ← R𝑉≤𝑆′ · (2𝜎2+1)

�̃�1 ← R𝑉≤𝑆′ ·2𝜎2

𝐴 := Encpk (�̃�, �̃�, �̃�0, �̃�1)

𝑟
$← {0, 1}Comp_sec

𝑐 := Commit𝑟 (𝐴)

𝑊
$← Chal(flag)𝑉×𝑈

𝑐−→
𝑊←−−

𝒗 := �̃� +𝑊 · 𝒗
�̂� := 2

𝑇 �̃�0 + �̃�
+𝑊 · (2𝑇 𝒆0 +𝒎)

𝒆1 := �̃�1 +𝑊 · 𝒆1
Abort if one of the following

checks fails:

𝒗 ∈ R𝑉≤𝑆 , 𝒆1 ∈ R𝑉≤𝑆 ·2𝜎2

�̂� ∈ R𝑉≤𝑆 ·2𝑇 (2𝜎2+1) .

𝑟, 𝐴, 𝒗, �̂�, 𝒆1−−−−−−−−−−−→
𝐷 := Encpk (�̂�, 𝒗, 0, 𝒆1)

Check whether:

𝑐 = Commit𝑟 (𝐴)
∥𝒗∥∞ ≤ 𝑆

∥�̂�∥∞ ≤ 𝑆 · 2𝑇 (2𝜎2 + 1)
∥𝒆1∥∞ ≤ 𝑆 · 2𝜎2

𝐷 = 𝐴 +𝑊 ·𝐶
If flag = Diag, check

whether each entry of

�̂� mod 2
𝑇

contains a con-

stant polynomial.

If all checks passed, then ac-

cept. Otherwise, reject.

Figure 17: Our ZKPoPK with rejection sampling

probability that it passes the prover’s check, i.e., lies within I𝑣 , is
3𝜑 (𝑚)2𝑈𝑉𝑃

(3𝜑 (𝑚)𝑉𝑃 + 1) · 𝜑 (𝑚)𝑈 =
3𝜑 (𝑚)𝑉𝑃

3𝜑 (𝑚)𝑉𝑃 + 1

>
3𝜑 (𝑚)𝑉𝑃 − 1
3𝜑 (𝑚)𝑉𝑃

= 1 − 1/(3𝜑 (𝑚)𝑉𝑃).
27

Proceedings on Privacy Enhancing Technologies 2024(2) Sebastian Hasler, Pascal Reisert, Marc Rivinius, and Ralf Küsters

The same probability can be shown for the coefficients of �̂� and

𝒆1 and respective intervals I𝑚 and I𝑒1 . By a union bound over all

3𝜑 (𝑚)𝑉 coefficients, it follows that the prover aborts with proba-

bility less than 1/𝑃 .
For the zero-knowledge property, observe that the abort prob-

ability does not depend on the inputs and challenge𝑊 . Hence,

a simulator can proceed as follows: First determine whether the

run should abort or not. If not, sample 𝒗, �̂�, and 𝒆1 uniformly at

random from I𝑣 , I𝑚 , and I𝑒1 , respectively, and compute 𝐴 just like

SZKPoPK (Figure 16). In the abort case, output an aborting tran-

script instead. The usage of a computationally hiding commitment

scheme makes sure that the aborting transcript is computationally

indistinguishable from an aborting transcript in the real world.

Knowledge soundness follows analogously to the proof of Theo-

rem 4. □

G ZERO-KNOWLEDGE PROOF OF SECRET
KEY KNOWLEDGE

The ZKPoSKK works very similar to our ZKPoPK. Recall that the

ZKPoPK proves𝐶 = Encpk (𝒎, 𝒗, 𝒆0, 𝒆1) = (𝑏𝒗+2𝑇 𝒆0+𝑚,𝑎𝒗+2𝑇 𝒆1)
where (𝒗, 2𝑇 𝒆0+𝒎, 𝒆1) is the witness. The ZKPoSKK instead proves

𝑏 = 𝑎sk + 2𝑇 𝑒 where (sk, 𝑒) is the witness. In both cases we have a

linear equation that must be solved by the witness and the witness

needs to have small coefficients. Therefore, the construction of the

ZKPoSKK works analogously to the ZKPoPK. In the ZKPoSKK, the

witness only consists of 2 (instead of 3𝑈) ring elements. Hence, the

slack of the ZKPoSKK is better by a factor of 2/(3𝑈).
In our triple generation, the performance of the ZKPoSKK is

not as important as achieving a small slack, because the ZKPoSKK

is only used during initial setup while the slack affects parameter

choices for the entire protocol. For this reason, we use the challenge

space {0, 1} for the ZKPoSKK, as this eliminates another factor of

𝜑 (𝑚)2 from the slack (identically to what happens when instantiat-

ing our ZKPoPK with flag = Diag).
We instantiate the ZKPoSKK with rejection sampling and hence

achieve a slack of 𝑆ZKPoSKK = 4𝜑 (𝑚)𝑉𝑃 (by taking Theorem 5 and

factoring in the two above-mentioned slack improvements).

In Table 3 we present how certain parameters (namely 𝐵 and 𝑞1)

need to change when using the ZKPoSKK to achieve a secure key

generation.

Table 3: Updates to our parameter sets when employing se-
cure key generation.

𝑘 𝑠 sec 𝑚
log

2

𝑆ZKPoSKK

𝐵

(bit)

𝑞1
(bit)

Comp.

Sec. [2]

32 32 26

43691 30.42 289 426 ≈ 273

21851 29.42 215 249 ≈ 214

64 64 57

43691 31.39 421 656 ≈ 178

21851 30.39 344 410 ≈ 142

128 64 57

43691 31.39 485 784 ≈ 148

21851 30.39 408 538 ≈ 103

Protocol Πcoin-flip

P : V :

𝑖P
$← Z |C |

𝑟
$← {0, 1}Comp_sec

𝑐 := 𝐻 (𝑟, 𝑖P)

𝑖V
$← Z |C |

𝐴, 𝑐−−−→
𝑖V←−−−
𝑟, 𝑖P−−−−→

𝑊 := C[𝑖P + 𝑖V] Reject if

𝑐 ≠ 𝐻 (𝑟, 𝑖P).

𝑊 := C[𝑖P + 𝑖V]

Figure 18: Our secure coin-flipping protocol

H SECURE COIN-FLIP FOR PUBLIC-COIN
ZERO-KNOWLEDGE PROOFS

One way to perform a secure coin-flip over some challenge space

C is the following: First the prover commits to a random challenge

index 𝑖P and sends the commitment to the verifier. Afterwards the

verifier samples a random challenge index 𝑖V , too, and sends it

to the prover. Finally, the prover opens the commitment and both

parties compute the challenge by indexing with 𝑖P + 𝑖V mod |C|
into the challenge space.

Figure 18 displays our protocol Πcoin-flip that implements this

approach in the ROM. It uses a random oracle 𝐻 : {0, 1}∗ →
{0, 1}Comp_sec

which the prover uses to commit to 𝑖P .
By using Πcoin-flip to sample the challenges in a public-coin

honest-verifier zero-knowledge proof, we obtain a zero-knowledge

proof that is secure against malicious verifiers. This transform also

preserves the completeness and knowledge soundness properties,

except that the knowledge soundness property now only holds for

computationally bounded provers that run in polynomial time.

28

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Secret Sharing Scheme
	2.2 Cyclotomic Ring of Integers
	2.3 Tweaked Interpolation Packing

	3 BGV over Z2k
	4 2s-Enhanced CPA Security
	5 LHE-based Triple Generation
	6 Zero-Knowledge Proofs of Plaintext Knowledge
	7 Evaluation
	7.1 Noise Analysis
	7.2 Parameter Choice
	7.3 Implementation
	7.4 Comparison

	Acknowledgments
	References
	A Security of our Triple Generation
	B Properties of BGV
	C The Challenge Space
	D Security of Zero-Knowledge Proofs
	E Zero-Knowledge Proof of Plaintext Knowledge
	F ZKPoPK with Rejection Sampling
	G Zero-Knowledge Proof of Secret Key Knowledge
	H Secure Coin-Flip for Public-Coin Zero-Knowledge Proofs

