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ABSTRACT
Private matching for compute (PMC) establishes a match between

two datasets owned by mutually distrusted parties (𝐶 and 𝑃 ) and

allows the parties to input more data for the matched records for

arbitrary downstream secure computation without rerunning the

private matching component. The state-of-the-art PMC protocols

only support two parties and assume that both parties can partici-

pate in computationally intensive secure computation. We observe

that such operational overhead limits the adoption of these pro-

tocols to solely powerful entities as small data owners or devices

with minimal computing power will not be able to participate.

We introduce two protocols to delegate PMC from party 𝑃 to

untrusted cloud servers, called delegates, allowing multiple smaller

𝑃 parties to provide inputs containing identifiers and associated val-

ues. Our Delegated Private Matching for Compute protocols, called
DPMC andD𝑠PMC, establish a join between the datasets of party𝐶

andmultiple delegators 𝑃 based onmultiple identifiers and compute

secret shares of associated values for the identifiers that the parties

have in common. We introduce a rerandomizable encrypted obliv-

ious pseudorandom function (OPRF) primitive, called EO, which

allows two parties to encrypt, mask, and shuffle their data. Note

that EO may be of independent interest. Our D𝑠PMC protocol lim-

its the leakages of DPMC by combining our EO scheme and secure

three-party shuffling. Finally, our implementation demonstrates

the efficiency of our constructions by outperforming related works

by approximately 10× for the total protocol execution and by at

least 20× for the computation on the delegators.

KEYWORDS
Oblivious pseudorandom function, private identity matching, pri-

vate record linkage, secure multiparty computation

1 INTRODUCTION
Cloud computing has become a prominent solution for storage

and analytics since it enables clients to outsource their data and

not have to worry about scalability, data availability, and most

importantly maintaining their own infrastructure. Gathering data

from multiple input providers and computing statistics over all of

their data enables a plethora of useful applications such as gathering
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real-time location data and notifying users of possible exposure to

highly infectious diseases [25, 52]. In certain applications, linking

client data to proprietary information owned by multiple larger

entities may unlock unique insights that are otherwise not possible.

Users should not have to trust that the cloud servers will not store

their sensitive personal data for use for purposes other than it’s

intended. The problem of computing meaningful analytics across

multiple input parties while preserving user privacy from cloud

server providers becomes significantly more challenging.

Secure multi-party computation (MPC) offers prominent cryp-

tographic solutions for jointly computing on private data from

multiple input providers [27, 36, 54]. Although general-purpose

MPC frameworks [6, 21, 29, 32, 53] enable running arbitrary com-

putations over private data (e.g., medical data analytics [26]), they

generally incur significant performance overheads compared to

solutions that are tailored to one application (e.g., machine learning

[33] and statistics [7, 15, 20, 40, 41]). Similarly, specialized private

set intersection (PSI) protocols [12–14, 24, 34, 45, 46, 48–50] intro-

duce significantly more efficient solutions than generic MPC but

focus solely on private matching and disregard associated metadata.

A few recent protocols inspired by [37] that are based on the

hardness of Decisional Diffie–Hellman (DDH) have attempted to

securely link private records and allow general-purpose secure com-

putation on the common data. More specifically, private matching

for compute (PMC) [8, 10, 42] from Meta, private set intersection

(PSI) [4] from Apple, and private join and compute (PJC) [31, 35]

from Google enable computing intersections and unions between

two parties while protecting the privacy of the underlying users.

After the private linkage is computed, these protocols enable down-

stream secure computation based on the matched records. Unfor-

tunately, prior works only focus on two parties and require both

of them to actively participate in the private matching, which re-

stricts the adoption of these protocols to solely powerful entities as

non-crypto-savvy data owners or devices with minimal computing

power will not be able to engage in secure computation protocols.

We motivate our work by focusing on the example of ad attribu-
tion, a crucial business application for tracking the effectiveness of

online advertising campaigns and increasing revenue generated by

ads. An ad conversion refers to the situation where a user interacts

with an online ad for a particular product on the ad publisher’s web-

site (which we call party𝐶) and then goes on to make a purchase on

the advertiser’s website (which we call party 𝑃𝑡 for 𝑡 ∈ {1, . . . ,𝑇 }).
Of course, a large ad publisher may host ads from multiple adver-

tisers, each of which would like to know how their ad campaigns

are performing and which purchases can be attributed to their on-

line ads. However, the data required to compute these statistics are
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split across multiple parties: the ad publisher knows the users who

have seen a particular ad, and each advertiser knows who made a

purchase and what they spent.

Additionally, in the case of multiple advertisers, the secure ad

attribution protocol needs to be repeated for each advertiser, which

can be both inefficient and not allow for elaborate statistics. To

address this, we propose a delegated setting where all advertis-

ers securely delegate the computation to a delegate party, which

computes the ad attribution securely with the ad publisher. This

approach reduces the computational burden from individual adver-

tisers and also allows for computing cross-advertiser connections,

which leads to more advanced applications such as personalization.

Users that appear in multiple advertiser datasets are combined into

the same row of the final join instead of having multiple joins be-

tween the ad publisher and each advertiser. Now the ad publisher

and the delegate party can run a secure downstream computa-

tion over all advertisers’ data. In a real-world instantiation, the

ad publisher (e.g., Google, Meta) can collaborate with non-profits

(e.g., ISRG) or other companies (e.g., Cloudflare, Mozilla) and allow

advertisers to delegate their computation.

Party 𝑃1
User A

Email: alice@email.com

Party 𝑃2
User B

Email: bob@email.com

Phone: 9876543210

Party𝐶

User A

Email: alice@email.com

Phone: 9876543210

Email

matched

Phone

matched

Figure 1: Many to many connections. 𝑃1 and 𝑃2 have different
views about User A and B, whereas Party 𝐶 has listed them
as one user. Notably, 𝑃1 and 𝑃2 might also be the same party.

To improve match rates, our work considers multi-key matching

[8], which involves matching users across multiple identifiers such

as email, phone number, and other personal information. By using

multiple keys, we can achieve a more accurate match and increase

the likelihood of finding a connection between the user who saw

the ad and the user whomade the purchase. As shown in Fig. 1, User

A may be indexed by both an email address and a phone number

in party 𝐶 , whereas, in other data owners, the combination of iden-

tifiers may differ (e.g., name, email). In Section 5, we demonstrate

the applicability of our work in several domains such as private

ad attribution, privacy-preserving analytics, and private machine

learning. Note that our approach is not limited to these specific

applications and can be extended to other use cases as well.

We ask the following motivating question:

How can we design delegated private record linkage protocols that
allow multiple entities to outsource their records and perform secure
computation on the associated metadata of the matched records?

1.1 Previous Works
We now discuss relevant works for private record linkage protocols

that allow for computing over associated data. A comparison of our

protocols with related works can be found in Table 1.

Private Matching for Compute (PMC) introduced DDH-based

constructions for private matching that compute a union of two

datasets held by mutually distrusting parties 𝐶 and 𝑃 without re-

vealing which items belong to the intersection [8, 10]. After the

matching phase, both parties can input associated data for each row

in the union and engage in a downstream secure computation. The

core idea of PMC is to have each party first hash their records and

then exponentiate them to random secret scalars. After exchanging

the hashed and exponentiated records, each party exponentiates

the other party’s records to their secret scalar and they both arrive

at the same random identifiers.

Multi-key PMC [8] assumes that each record may have multiple

identifiers (as shown in Fig. 1) and leverages a ranked deterministic

join logic that collapses many-to-many connections and achieves a

one-to-one mapping. The idea is that each identifier has a prede-

fined weight and the matching is first performed on all the records

based on the first identifier (as the single-key PMC) before con-

tinuing to the other identifiers. PMC leaks the intersection size to

the two parties and in case of multiple keys per row, they learn

the bipartite graph of matches up to an isomorphism. Additionally,

PMC supports computing on the match between two datasets and

requires both parties to actively participate in both the matching

and the downstream secure computation, which significantly limits

the adoption in real-world applications. Contrary to PMC, our work

allows matching between any number of parties and shifts the cost

away from the parties by delegating the computation to a server.

Private secret-shared set intersection (PS
3
I) [10] is a natural

extension of PMC that allows the two parties to input associated

data to the matching protocol. Instead of learning a mapping to

original inputs, the two parties only learn additive secret shares of

those records which they can feed into any general-purpose MPC

framework. PS
3
I is realized using Paillier additive homomorphic

encryption (HE) scheme [44] and incurs significant performance

overheads. Additionally, PS
3
I only works between two parties and

requires both parties to be online for the whole protocol execution.

Private Join and Compute (PJC) [31, 35] computes the intersec-

tion between two datasets and aggregates the associated data for

all the rows in the intersection using additive HE. Contrary to our

work that computes secret shares for all the associated data, PJC

only allows computing a sum of the data in the intersection. Fur-

thermore, as with all the previous related works, PJC only supports

two parties whereas our protocols scale to multiple parties.

Mohassel et al. [39] utilize cuckoo hash tables and perform SQL-

like queries over two secret shared databases in the honest majority

three-party setting. Both the input and output tables are secret

shared between the computing parties. Because the cuckoo hash

tables do not support duplicates, [39] has leakages in the presence

of non-unique identifiers. Additionally, the join protocols focus on

two parties and in order to compute joins between multiple parties

the protocol has to be iterated multiple times. Each party’s database

has to be joined with the output of the previous join or they can be

combined in a binary-tree-like structure. Contrary, our delegated

protocols are designed to support multiple delegators and do not

have to be repeated for each input party.

Circuit-PSI relies on oblivious Pseudorandom Functions (OPRF)

for computing PSI between two parties and then computing a func-

tion over the common data [12, 46, 47, 49]. Both parties learn se-

cret shares of 1 or 0, representing record presence in the inter-

section. These shares are used to input associated data as both

50



Delegated Private Matching for Compute Proceedings on Privacy Enhancing Technologies 2024(2)

Table 1: Comparisons with related works in terms of functionality, number of parties, threat model, and multi-key support.

Protocol Functionality
Input Parties Computing Parties

Delegated Multi-key
No. Model No. Model

PMC [10] Join (Union) 2 Semi-honest Same as Input Parties ✗ ✗

MK-PMC [8] Join (Union) 2 Semi-honest Same as Input Parties ✗ ✓

PS
3
I [10] Join (Union) & Secret Share Associated Data 2 Semi-honest Same as Input Parties ✗ ✗

PJC [31] PSI-Sum (Sum Associated Data in Intersection) 2 Semi-honest Same as Input Parties ✗ ✗

Circuit-PSI [12, 46, 47, 49] PSI & Secret Share Associated Data 2 Semi-honest Same as Input Parties ✗ ✗

Catalic [25] PSI-CA (Count Items in Intersection) 2 Semi-honest ≥ 2 Semi-honest ✓ ✗

DB Joins [39] Join and Select Statements 2 Semi-honest 3 Semi-honest ✓ ✗

DPMC Join (Left-Join) & Secret Share Associated Data 𝑇 + 1 Semi-honest 2 Semi-honest ✓ ✓

D𝑠PMC Join (Left-Join) & Secret Share Associated Data 𝑇 + 1 Semi-honest 3 Semi-honest ✓ ✓

parties actively participate in the protocol. These works focus on

the two-party setting and it is not clear how to extend them to the

delegated setting where multiple parties outsource their data for

matching along with encrypted associated data to a helper party.

One could imagine that the input parties compute hash tables but

then they would need to privately combine these tables which goes

beyond what has been studied in the literature. On the other hand,

Catalic [25] uses OPRFs between two parties but allows one party

to delegate its computation to a powerful server. All the aforemen-

tioned works allow two-party matching which is solely based on

a single key, while our work supports matching based on datasets

of multiple parties where each can have multiple keys (e.g., name,

email). Finally, our protocols enable multiple input parties to del-

egate their computation and then go offline instead of requiring

them to participate in expensive protocols.

Miao et al. [38] introduced a shuffled distributed OPRF (DOPRF)

for computing PSI between two parties and the shuffling is per-

formed in the clear by one of the parties. Similarly, the authors

of [5] propose a DDH-based PRF combined with ElGamal encryp-

tion that allows for shuffling by one of the parties. We introduce

an encrypted oblivious pseudorandom function (OPRF) primitive,

called EO, which allows two parties to encrypt, mask, and shuffle

their data. While [5, 38] seem to be similar to our EO primitive, we

emphasize that they are quite different. First of all, our EO primi-

tive performs shuffling under MPC for security contrary to their

shuffled protocol. Additionally, although EO could be instantiated

with a combination of ElGamal and DH-OPRF, EO is an abstraction
that can fit many possible instantiations (e.g., from codes, lattices,

isogenies). Finally, in this work, we are in the delegated setting to

allow multiple parties to outsource the private matching and go

offline instead of solely focusing on the two-party setting.

1.2 Our Contributions
Delegated Protocols.We propose a new family of Delegated Pri-
vate Matching for Compute protocols, called DPMC and D𝑠PMC,

that build upon PMC [8, 10] and lift the burden of engaging in

secure computation from parties with less computational power.

Our protocols rely on a powerful server (which we call party𝐶) and

on a delegate node (which we refer to as party𝐷) to perform private

record linkage between the records of𝐶 and input parties, which we

call delegators or parties 𝑃 . Contrary to previous works that focus

on linking data only between two parties, our work enables linkage

between 𝐶 and multiple delegators (𝑃1 to 𝑃𝑇 ) and aims to make

the computation in the delegators lightweight to foster wide-scale

adoption. Parties 𝐶 and 𝐷 engage in a two-party computation to

compute a private left join of party’s𝐶 and all the delegators’ data.
1

𝐶’s input is a multi-key dataset where each row contains multiple

identifiers (i.e., keys) that can be matched. The delegators’ inputs

are multi-key datasets with associated data, which comprise both

identifiers and metadata that can be in any form (e.g., numbers,

strings). 𝐶 learns a mapping from its users to the left join but does

not learn which of its users have been matched. For each row in

the left join, both 𝐶 and 𝐷 receive secret shares that correspond

to the delegators’ associated data if that row maps to one of the

delegators’ identifiers or a share of NULL (i.e., zero), otherwise.

Left Join. Our motivation for performing left join compared to

a union or an intersection is that party 𝐶 learns a mapping from

all their users into the join, which allows them to input additional

associated metadata without re-executing the matching protocol

and without learning which users matched or not. These data can

either be labels (in the clear) that could be used to filter the secret

shared values (e.g., in a GROUP BY fashion), or they can be addi-

tional secret shares for the downstream MPC computation. After

the matching process and the secret shares have been established,

parties𝐶 and𝐷 only need to know the relative order of their shares,

which can then be used for any downstream secure computation

such as privacy-preserving analytics and machine learning. Our

goal in this work is to create efficient protocols that can be real-

ized in real-world applications for private left join and allow the

delegators to outsource the computation to delegates.

Threat Model.We assume semi-honest security, which we prove

in the Appendices. Party 𝐶 follows the protocol specification but

tries to exfiltrate information about the delegators’ data. Similarly,

the delegate 𝐷 tries to exfiltrate information about all parties’ data.

Finally, delegators are semi-honest and outsource their real data.

Multi-key Datasets. To increase matching rates, we adopt multi-

key datasets [8] and consider matching between records on more

than one identifier (i.e., key) that inherently generates many-to-

many connections. We use a ranking-based technique to collapse

multiple connections into one-to-many (𝐶-to-𝑃 ) connections. Al-

though we do not claim this contribution, it is an important feature

1
Our core protocol computes the left join between party’s𝐶 data and all delegators’

data. We show in Appendix E how to modify it to compute the inner join.
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that increases match rates and complicates the protocols; note that

it is not straightforward to add this to related works. We operate

over unique keys (e.g., email) to avoid inference attacks [43].

Rerandomizable Encrypted OPRF (EO).We introduce a concept

called EO that captures the tasks of encrypting identifiers, shuffling

ciphertexts, homomorphically evaluating a PRF on the ciphertexts,

and decrypting a homomorphically evaluated ciphertext to the PRF

output with the identifier as input. More specifically, one party

can evaluate the OPRF both on clear data (e.g., 𝑥) and encrypted

data (e.g., Enc(𝑥)), and then delegate the matching to another party

that can decrypt the evaluated OPRF of the encrypted data and

get Dec(PRF(Enc(𝑥))) = PRF(𝑥) (keys are omitted here, see Sec-

tion 3.3). Further, EO allows shuffling encrypted inputs such that the

third party cannot correlate PRF outputs and the initially received

ciphertexts. Notice that EO is more powerful than an OPRF since it

allows encrypting inputs for the PRF and sends the ciphertexts to

a third party (i.e., delegate the evaluation) whereas an OPRF asks

that the input provider directly interacts with the PRF evaluator.

This allows us to reduce the leakage to the third party (i.e., Party

𝐷). Furthermore, the PRF evaluation can be distributed between

Party 𝐶 , who owns the key and homomorphically evaluates the

PRF, and Party 𝐷 , who decrypts the homomorphically evaluated

ciphertext and obtains the PRF output.

In Section 3.3, we define the EO primitive and we provide an

instantiation based on DDH and ElGamal in Appendix B. Note that

EO is an abstraction and can fit various instantiations (possibly

from codes, lattices, etc.). Finally, the EO construction might be of

independent interest and can facilitate other protocols as well.

D𝑠PMC Protocol.We use our EO primitive to extend DPMC to

D𝑠PMC, a protocol that uses two delegates (party 𝐷 and a shuffler

𝑆).D𝑠PMC performs an honest majority shuffling protocol between

parties 𝐶 , 𝐷 , and 𝑆 and achieves stronger security guarantees in

the case of a corruption of Party 𝐷 and multiple delegators.

Applications.We envision multiple applications that may lever-

age our delegated setup of merging multiple private datasets and

securely computing analytics on metadata. A healthcare provider

holding patient records may gain critical insights such as calcu-

lating the risk of a health condition by merging with data stored

on individual smart devices or other healthcare providers, without

needing to access identifiable user data. An ad publisher holding

user-provided information may be able to measure advertising ef-

ficacy and offer personalized ads by merging with data held by

millions of businesses while still preserving user privacy.

Our contributions are summarized as follows:

• We introduce a novel DPMC protocol for securely computing

left join between multiple distrusting parties.

• Design of a new rerandomizable encrypted OPRF (EO) primi-

tive that enables encrypting inputs, shuffling ciphertexts, ho-

momorphically evaluating a PRF on ciphertexts, and decrypt-

ing ciphertexts to PRF outputs. EO is of independent interest.

• We combine EO and secure three-party shuffling to extend

DPMC to D𝑠PMC, a protocol that reduces DPMC’s leakage.

• We detail applications in online advertising such as privacy-

preserving ad attribution, analytics, and personalization.

2 PRELIMINARIES
2.1 Notation
We denote the computational security parameter by 𝜅 . We use [𝑚]
to refer to the set {1, . . . ,𝑚}. We denote the concatenation and

exclusive OR (XOR) of two-bit strings 𝑥 and 𝑦 by 𝑥 ∥ 𝑦 and 𝑥 ⊕ 𝑦,
respectively. We use 𝑟

R← R to refer to a randomly chosen element

𝑟 from set R. We use ppt to denote probabilistic polynomial time.

We use {} for unordered and () for ordered sets.

2.2 Definitions
Definition 1 (Multi-Key Key-Value Store). A multi-key key-

value store KV is a set of key sets c𝑖 , i.e., KV B {c𝑖 }𝑖∈[𝑚] . Each set c𝑖
contains𝑚𝑖 keys, i.e., c𝑖 B {c𝑖, 𝑗 } 𝑗 ∈[𝑚𝑖 ] . When the key set is ordered,
we denote it with c𝑖 B (c𝑖, 𝑗 ) 𝑗 ∈[𝑚𝑖 ] . Further, KV might contain𝑚
values v𝑖 for 𝑖 ∈ [𝑚], one associated with each key set. In this case, we
denote the key sets as KV B {p𝑖 , v𝑖 }𝑖∈[𝑚] = {{p𝑖, 𝑗 } 𝑗 ∈[𝑚𝑖 ] , v𝑖 }𝑖∈[𝑚] .
Note, we use 𝑝𝑖 instead of 𝑐𝑖 when the set includes associated data 𝑣𝑖 .
Furthermore, each key c𝑖, 𝑗 in a set KV is unique, i.e., there does not
exist an (𝑖 ′, 𝑗 ′) ≠ (𝑖, 𝑗) s.t. c𝑖′, 𝑗 ′ = c𝑖, 𝑗 .

Informally, a multi-key left join with associate data between

KV𝐶 and KV𝑃 results in a set of values with as many rows as the

set on the left (i.e., KV𝐶 in our case) and the associated values of

KV𝑃 for the rows that matched and zero, otherwise.

Definition 2 (Multi-Key Left Join With Associated Data

Between Two Key-Value Stores). Let KV𝐶 B {c𝑖 }𝑖∈[𝑚𝐶 ] be a
multi-key set of party 𝐶 that contains ordered key sets, i.e., c𝑖 B
(c𝑖, 𝑗 ) 𝑗 ∈[𝑚𝐶,𝑖 ] . Let KV𝑃 B {p𝑖 , v𝑖 }𝑖∈[𝑚𝑃 ] be a multi-key key-value
set of 𝑃 that contains both key sets, i.e., p𝑖 B {p𝑖, 𝑗 } 𝑗 ∈[𝑚𝑃,𝑖 ] and
associated values v𝑖 . The left join between KV𝐶 and KV𝑃 is defined
by KV𝐶 ⊲⊳ KV𝑃 B (v̂𝑖 )𝑖∈[𝑚𝐶 ] , where v̂𝑖 B v𝑖′ s.t. 𝑗𝑖 is the smallest
element in [𝑚𝐶,𝑖 ] for which there exists an 𝑖 ′ ∈ [𝑚𝑃 ] and 𝑗𝑖′ ∈
[𝑚𝑃,𝑖′] with c𝑖, 𝑗𝑖 = p𝑖′, 𝑗𝑖′ . If there does not exist such an 𝑗𝑖 , 𝑖 ′ and 𝑗𝑖′ ,
we define v̂𝑖 B 0.

With multiple delegators, we extend Def. 2 as follows.

Definition 3 (Multi-Key Left Join With Associated Data

Between 𝑇 + 1 Key-Value Stores). Let for all 𝑡 ∈ [𝑇 ], KV𝑡 B
{p𝑡,𝑖 , v𝑡,𝑖 }𝑖∈[𝑚𝑡 ] be amulti-key key-value set of party 𝑃𝑡 that contains
both key sets, i.e., p𝑡,𝑖 B {p𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , and values, i.e., v𝑡,𝑖 . Also,
let KV𝐶 B {c𝑖 }𝑖∈[𝑚𝐶 ] be a multi-key set of party 𝐶 that contains
only ordered key sets, i.e., c𝑖 B {c𝑖, 𝑗 } 𝑗 ∈[𝑚𝐶,𝑖 ] . The left join between
KV𝐶 and {KV𝑡 }𝑡 ∈[𝑇 ] is defined as:

KV𝐶 ⊲⊳ {KV1, . . . ,KV𝑇 } B (𝜋𝑖 (v̂𝑖,1, . . . , v̂𝑖,𝑇 ))𝑖∈[𝑚𝐶 ] ,

where for each 𝑡 ∈ [𝑇 ] and 𝑖 ∈ [𝑚𝐶 ], v̂𝑖,𝑡 is defined as follows. Let
for each 𝑗 ∈ [𝑚𝐶,𝑖 ], S𝑖, 𝑗,𝑡 B {𝑖 ′ ∈ [𝑚𝑡 ] | ∃ 𝑗 ′ ∈ [𝑚𝑡,𝑖′] s.t. 𝑐𝑖, 𝑗 =

𝑝𝑡,𝑖′, 𝑗 ′}. If
⋃

𝑗 S𝑖, 𝑗,𝑡 ≠ ∅, we define 𝑗𝑖,𝑡 B min( 𝑗 ∈ [𝑚𝐶,𝑖 ] s.t. S𝑖, 𝑗,𝑡 ≠
∅), 𝑖 ′ is defined as the unique 𝑖 ′ ∈ S𝑖, 𝑗𝑖,𝑡 ,𝑡 and v̂𝑖,𝑡 B v𝑡,𝑖′ . If

⋃
𝑗 S𝑖, 𝑗,𝑡 =

∅, we define v̂𝑡,𝑖 B 0. Finally, the values v̂𝑖,1, . . . , v̂𝑖,𝑇 are permuted
by a random permutation 𝜋𝑖 for each row 𝑖 ∈ [𝑚𝐶 ].

This definition ensures that value v̂𝑖,𝑡 is associated with delegator

𝑡 such that each row in the join corresponds to 𝑇 values, one for

each delegator. There might be multiple possible matching rows

for each delegator with one of the identifiers in c𝑖 . In that case, we

include the row that matches with c𝑖, 𝑗 with the smallest 𝑗 in the
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join. Since each identifier is unique in each set, there is only one

identifier that matches with c𝑖, 𝑗 .

We adjust Def. 3 in case values cannot be assigned to specific

delegators anymore. Therefore a row might contain multiple values

of the same delegator while other delegators might not be repre-

sented with a value. Changing the definition of the join allows us

to reduce the overall leakage for the D𝑠PMC protocol.

Definition 4 (Multi-Key Left Join With Associated Data

and Minimal Leakage Between𝑇 + 1 Key-Value Stores). Let for
all 𝑡 ∈ [𝑇 ], KV𝑡 B {p𝑡,𝑖 , v𝑡,𝑖 }𝑖∈[𝑚𝑡 ] be a multi-key key-value store
of party 𝑃𝑡 that contains both key sets, i.e., p𝑡,𝑖 B {p𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] ,
and values, i.e., v𝑡,𝑖 . Also, let KV𝐶 B {c𝑖 }𝑖∈[𝑚𝐶 ] be a multi-key set of
party 𝐶 that contains only ordered key sets, i.e., c𝑖 B {c𝑖, 𝑗 } 𝑗 ∈[𝑚𝐶,𝑖 ] .
The left join between KV𝐶 and {KV𝑡 }𝑡 ∈[𝑇 ] is defined as:

KV𝐶 ⊲⊳ {KV1, . . . ,KV𝑇 } B (𝜋𝑖 (v̂𝑖,1, . . . , v̂𝑖,𝑇 ))𝑖∈[𝑚𝐶 ] ,

where for each 𝑖 ∈ [𝑚𝐶 ], v̂𝑖,𝑡 is defined as follows. Let for each
𝑗 ∈ [𝑚𝐶,𝑖 ], S𝑖, 𝑗 B {(𝑡 ′, 𝑖 ′) ∈ ([𝑇 ], [𝑚𝑡 ′]) | ∃ 𝑗 ′ ∈ [𝑚𝑡 ′,𝑖′] s.t. 𝑐𝑖, 𝑗 =
𝑝𝑡 ′,𝑖′, 𝑗 ′}. Further, we define the set of indices that have not been in-
cluded in the join yet as S𝑖, 𝑗,<𝑡 B S𝑖, 𝑗 \ {(𝑡 ′, 𝑖 ′) ∈ ([𝑇 ], [𝑚𝑡 ′]) |
∃𝑡 ′′ < 𝑡 s.t. v̂𝑖,𝑡 ′′ = v𝑡 ′,𝑖′}. If

⋃
𝑗 S𝑖, 𝑗,<𝑡 ≠ ∅, we define 𝑗𝑖,𝑡 B

min( 𝑗 ∈ [𝑚𝐶,𝑖 ] s.t. S𝑖, 𝑗,<𝑡 ≠ ∅), (𝑡 ′, 𝑖 ′) is defined as a random

(𝑡 ′, 𝑖 ′) R← S𝑖, 𝑗𝑖,𝑡 ,<𝑡 and v̂𝑖,𝑡 B v𝑡 ′,𝑖′ . If
⋃

𝑗 S𝑖, 𝑗,<𝑡 = ∅, we define
v̂𝑡,𝑖 B 0. Finally, the values v̂𝑖,1, . . . , v̂𝑖,𝑇 are permuted by a random
permutation 𝜋𝑖 for each row 𝑖 ∈ [𝑚𝐶 ].

Def. 4 defines the join as follows. It defines value v̂𝑖,𝑡 by matching

𝑐𝑖, 𝑗 for the smallest 𝑗 with a match that has not yet been included

in the join and takes the value of a random row 𝑖 ′ of a random

delegator 𝑡 ′ that matches with 𝑐𝑖, 𝑗 . If there is no such a match left,

v̂𝑖,𝑡 is defined as 0.

We provide Algs. 1 and 2 for Defs. 3 and 4 in Appendix A.

Definition 5 (Key Encapsulation Mechanism (KEM)). A key
encapsulation with security parameter 𝜅 is a triplet of algorithms
(KEM.KG,KEM.Enc,KEM.Dec) with the following syntax.
• KEM.KG(1𝜅 ): On input 1𝜅 output a key pair (KEM.pk,KEM.sk).
• KEM.Enc(KEM.pk): On input KEM.pk, KEM.Enc outputs an
encapsulation KEM.cp and key KEM.k.
• KEM.Dec(KEM.sk,KEM.cp): On input (KEM.sk,KEM.cp),
KEM.Dec outputs a key KEM.k.

For correctness, we ask that

Pr[KEM.Dec(KEM.sk,KEM.cp) = KEM.k] ≥ 1 − negl,
where the probability is taken over (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 )
and (KEM.cp,KEM.k) ← KEM.Enc(KEM.pk).

We need simulatable KEMs, which is true for commonly used

KEMs. AKEM is simulatable if there exists a ppt algorithmKEM.Sim

with KEM.cp ← KEM.Sim(KEM.sk,KEM.k), where KEM.cp is

computationally indistinguishable from KEM.cp′ ← KEM.Enc(
KEM.pk) under the constraint that KEM.k = KEM.Dec(KEM.sk,
KEM.cp′). Further, we need standard key indistinguishability.

Definition 6 (Key Indistinguishability). We call a KEM key
indistinguishable if for any ppt algorithm A,��

Pr[A(KEM.pk,KEM.cp,KEM.k) = 1]−
Pr[A(KEM.pk,KEM.cp, 𝑢) = 1]

�� ≤ negl,

where (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 ), (KEM.cp,KEM.k) ←
KEM.Enc(KEM.pk) and 𝑢 ← {0, 1}∗.

Definition 7 (Secret Sharing). We call two values sh1, sh2 ∈
{0, 1}∗ a two-out-of-two XOR secret sharing of a secret value 𝑎 if
sh1 ⊕ sh2 = 𝑎 and for 𝑖 ∈ {0, 1} sh𝑖 is uniform and independent of 𝑎.

Secret sharing schemes allow a dealer to distribute shares of

her data to multiple parties so that each share does not reveal

anything about the original data [2]. In MPC, each party creates

secret shares of their data and shares them with the other parties.

Then, each party computes a function of the shares and combines

them to reconstruct the final output. MPC utilizes secret sharing

to compute arbitrary arithmetic functions as arithmetic circuits

[2, 19, 32, 51]. In this work, we utilize binary (XOR) secret sharing
as in Def. 7, but our protocols can also support arithmetic shares.

To compute arbitrary functions as arithmetic circuits, XOR shares
can be converted to arithmetic as in [16, 33].

Definition 8 (IND-CPA Security). We call an encryption scheme
indistinguishable under chosen plaintext attacks (IND-CPA secure) if
for any ppt algorithm A,��

Pr[A(pk, ct0) = 1] − Pr[A(pk, ct1) = 1]
�� ≤ negl,

where (pk, sk) ← PKE.KG(1𝜅 ), (𝑥0, 𝑥1)A(pk), ∀𝑖 ∈ {0, 1} : ct𝑖 ←
PKE.Enc(pk, 𝑥𝑖 ). In case of a symmetric key encryption, we replace
A’s access to pk with access to an encryption oracle for key sk. We
also replace (PKE.KG, PKE.Enc, PKE.Dec) with (SKE.KG, SKE.Enc,
SKE.Dec).

We include additional definitions such as the DDH assumption,

pseudorandom generator, random oracle, and symmetric and public

key encryption in Appendix A.

2.3 Ideal Functionality for Delegated PMC
We present the ideal functionality FDPMC for Delegated PMC in

Fig. 2. In the ideal world, FDPMC is composed of a functionality for

join FJOIN and a functionality for compute FCMP. FJOIN gets input

from party 𝐶 a multi-key set KV𝐶 and from parties 𝑃1 to 𝑃𝑇 multi-

key key-value sets KV1, . . . ,KV𝑇 with associated values v1, . . . , v𝑇
and computes a left join J with associated data as described in

Def. 3 (or alternatively Def. 4). That is, for each record c𝑖 and for each

party 𝑡 ∈ [𝑇 ], J holds v̂𝑖,𝑡 which represents either the associated

metadata (if there was a match) or a zero (if no match was found

for c𝑖 ) as (v̂𝑖,1, . . . , v̂𝑖,𝑇 )𝑖∈[𝑚𝐶 ] . Next, FJOIN samples secret shares

SH𝐶 and SH𝐷 such that J = SH𝐶 ⊕ SH𝐷 and sends SH𝐶 to party

𝐶 and SH𝐷 to 𝐷 . Later, 𝐶 and 𝐷 can query FCMP with their secret

shares and FCMP first reconstructs J B SH𝐶 ⊕ SH𝐷 and then

computes 𝑦 B 𝑓 (J). Our ideal functionality FDPMC is composed

of the functionality of join FJOIN and compute FCMP.

Parties 𝑃1 to 𝑃𝑇 do not get any output from FJOIN or FCMP,

whereas 𝐶 and 𝐷 learn secret shares of the associated data of

matched values from FJOIN. Finally, 𝐶 learns the output 𝑦 from

FCMP which depends on function 𝑓 . Even in the ideal world, if 𝑓

returns all the associated values without performing any computa-

tion (e.g., aggregation),𝐶 does not learn which value corresponds to

which user, or even which of the users in KV𝐶 have been matched.

53



Proceedings on Privacy Enhancing Technologies 2024(2) D. Mouris et al.

Ideal F
JOIN

J B KV𝐶 ⊲⊳ {KV1, . . . ,KV𝑇 } =
= (v̂𝑖,1, . . . , v̂𝑖,𝑇 )𝑖∈[𝑚𝐶 ]

Sample SH𝐶 , SH𝐷 s.t. SH𝐶 ⊕ SH𝐷 = J
𝐿𝑥,𝑦 for 𝑥, 𝑦 ∈

{
KV𝐶 , {KV𝑡 }𝑡∈[𝑇 ]

}

Ideal F
CMP

J B SH𝐶 ⊕ SH𝐷

𝑦 B 𝑓 (J)

𝐶

𝑃1

𝑃𝑇

𝐷

.

.

.
KV𝐶 B {c𝑖 }𝑖∈[𝑚𝐶 ]

SH𝐶

KV1 B {p1,𝑖 , v1,𝑖 }𝑖∈[𝑚
1
]

KV𝑇 B {p𝑇 ,𝑖 , v𝑇 ,𝑖 }𝑖∈[𝑚𝑇 ]

⊥
𝐿𝑥,𝑦 , SH𝐷

SH𝐶
SH𝐷

𝑦

Figure 2: Ideal functionality FDPMC of private join for compute is composed by FJOIN and FCMP. Parties𝐶 and 𝑃1, . . . , 𝑃𝑇 provide
inputs. FJOIN computes a left join with associated data J B KV𝐶 ⊲⊳ {KV1, . . . ,KV𝑇 } as described in Def. 3 (or alternatively Def. 4).
Later on, 𝐶 and 𝐷 can query FCMP with their secret shares (SH𝐶 and SH𝐷 ) and FCMP will reconstruct J B SH𝐶 ⊕ SH𝐷 and
compute𝑦 B 𝑓 (J) and send it to party𝐶. Party𝐷 gets leakage 𝐿𝑥,𝑦 , where 𝑥 and𝑦 are the sets of any party in {KV𝐶 ,KV1, . . . ,KV𝑇 }.

(345) 678-9012williamfulmore@example.net

(901) 234-5678cindymeiners@example.net

(123) 456-7890lanastasiades@example.com

(890) 123-4567carljohnson44@example.com

. . .

Party𝐶

carljohnson44@example.com - $225

annelopez82@example.net (234) 813-1908 $250

sebastian@example.com (214) 654-1312 $100

. . .

Party 𝑃1

cindymeiners@example.com (901) 234-5678 $20

cpaynter@example.com (567) 605-936 $200

. . .

Party 𝑃2

(a) Input parties multi-key key-value sets containing emails, phone numbers, and dollar amounts.

(345) 678-9012williamfulmore@example.net $0 1011011010110110

cindymeiners@example.com (901) 234-5678(901) 234-5678cindymeiners@example.net $20 0001001100000111

(123) 456-7890lanastasiades@example.com $0 0001001100010011

carljohnson44@example.com -(890) 123-4567carljohnson44@example.com $225 0110101110001010

JoinParty𝐶 Party 𝐷 AD XOR AD ShareXOR AD Share

. . .

(b) Multi-key left join (result of FJOIN). All records of𝐶 are matched. The records of 𝑃1 and 𝑃2 that do not match with𝐶 do not appear in the left join.

Figure 3: Multi-key left-join overview. Parties 𝐶 and 𝐷 compute a left-join of the multi-key sets of 𝐶, 𝑃1, and 𝑃2 and the XOR
secret shares of the associated data (AD) of the delegators (𝑃1 and 𝑃2). In (a), we show an example with three parties (𝐶, 𝑃1, and
𝑃2). 𝑃1 and 𝑃2 have associated data (shown as $ amounts; note that they might have more associated data). In (b), parties𝐶 and 𝐷
have performed the left-join and ended up with secret shares of the associated data of the matched records (shown in blue). For
readability, we show the associated data (AD) in (b) to indicate the value of the XOR shares, note that this remains secret.

Finally, 𝐷 learns a leakage function 𝐿𝑥,𝑦, where 𝑥 and 𝑦 each repre-

sent any of KV𝐶 or KV1, . . . ,KV𝑇 . We extend our FDPMC function-

ality to FD𝑠PMC that limits the aforementioned leakage between

sets KV𝐶 and KV𝑃 , where KV𝑃 B {KV1, . . . ,KV𝑇 }. We provide

a formal definition of the leakage function when introducing the

different protocols. In the case of a single identifier per row, the

leakage corresponds to the cardinality of the intersection.

Note that theMPC functions computed in theFCMP phase should

be carefully considered for privacy reasons. Without making any

assumptions about the inputs, using differential privacy seems to

be the only option to protect individual users being signaled out.

We discuss realistic applications in Section 5.

3 LEFT JOIN DELEGATED PMC PROTOCOLS
3.1 Overview
Our goal is to join records that represent the same entities across

datasets that are held by different parties without revealing any

information about the individual records. We focus on performing

a left join between the datasets of multiple parties and computing

secret shares of the associated data of the matched records so they

can be fed into downstream general-purpose MPC.

We realize FDPMC with two novel protocols that compute left

join with associated data. We introduce a delegate party 𝐷 that

enables multiple delegators (parties 𝑃1, . . . , 𝑃𝑇 ) to securely delegate

their data and go offline, similarly to FJOIN in Fig. 2. Parties 𝐶 and

𝐷 engage in our proposed delegated protocols to privately link
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Setup: All parties agree on a 𝑔 be a generator of a cyclic group G with order 𝑞 where DDH is hard and hash functions 𝐻G ( ·) : {0, 1}∗ → G,
𝐻 ( ·) : {0, 1}∗ → {0, 1} |v𝑡,𝑖 | . All parties 𝑃𝑡 have access to the public key pk𝐷 of party 𝐷 , and party 𝐷 has secret key sk𝐷 .

1 Key-Generation (Party𝐶)
1: (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 )

Send to 𝑃𝑡 and 𝐷 : KEM.pk

2 Identity Match (Party 𝑃𝑡 )
Input: KV𝑡 = {(p𝑡,𝑖 , v𝑡,𝑖 ) }𝑖∈[𝑚𝑡 ] for data set size𝑚𝑡 .

Messages: KEM.pk

1: 𝑎𝑡
R← Z𝑞 , sk𝑡 ← SKE.KG(1𝜅 ) ⊲ Random scalar 𝑎𝑡 and secret key 𝑠𝑘𝑡 .

2: cta𝑡 B PKE.Enc(pk𝐷 , sk𝑡 ) , ctb𝑡 B SKE.Enc(sk𝑡 , 𝑎𝑡 )
3: For 𝑖 ∈ [𝑚𝑡 ]: ⊲ For each row in KV𝑡 .

4: (KEM.cp𝑡,𝑖 ,KEM.k𝑡,𝑖 ) ← KEM.Enc(KEM.pk) ⊲ New encaps.

5: ha𝑡,𝑖 B 𝐻G (p𝑡,𝑖 )𝑎𝑡 ⊲ Hash and exponentiate to 𝑎𝑡 .

6: sh𝐶,𝑡,𝑖 B KEM.k𝑡,𝑖 ⊲ Share of v𝑡,𝑖 for party𝐶 .

7: sh𝐷,𝑡,𝑖 B v𝑡,𝑖 ⊕ sh𝐶,𝑡,𝑖 ⊲ Share of v𝑡,𝑖 for party 𝐷 .

8: ctc𝑡,𝑖 B SKE.Enc(sk𝑡 , (KEM.cp𝑡,𝑖 , sh𝐷,𝑡,𝑖 ))
Send to𝐶: cta𝑡 , ctb𝑡 and {{ha𝑡,𝑖 }, ctc𝑡,𝑖 }𝑖∈[𝑚𝑡 ]

3 Identity Match (Party𝐶)
Input: KV𝐶 = {c𝑖 }𝑖∈[𝑚𝐶 ] for data set size𝑚𝐶 .

Messages: {cta𝑡 , ctb𝑡 , {{ha𝑡,𝑖 }, ctc𝑡,𝑖 }𝑖∈[𝑚𝑡 ] }𝑡∈[𝑇 ]
1: 𝑎𝐶

R← Z𝑞 ⊲ Random scalar 𝑎𝐶 .

2: For 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑚𝑡 ]: ⊲ For each 𝑃𝑡 and each row.

3: hca𝑡,𝑖 B (ha𝑡,𝑖 )𝑎𝐶 ⊲ Hash and exponentiate 𝑃𝑡 ’s data to 𝑎𝐶 .

4: Pick random permutation 𝜋 , 𝑡 B 𝜋 (𝑡 ) .
5: For 𝑖 ∈ [𝑚𝐶 ]: ⊲ For each row in KV𝐶 .

6: h𝐶,𝑖 B 𝐻G (c𝑖 )𝑎𝐶 ⊲ Hash and exponentiate own data to 𝑎𝐶 .

Send to 𝐷 : {h𝐶,𝑖 }𝑖∈[𝑚𝐶 ] and {cta𝑡 , ctb𝑡 , {hca𝑡,𝑖 , ctc𝑡,𝑖 }𝑖∈[𝑚𝑡 ] }𝑡∈[𝑇 ]

4 Identity Match and Recover Shares (Party 𝐷)
Messages: KEM.pk, {h𝐶,𝑖 }𝑖∈[𝑚𝐶 ] , {cta𝑡 , ctb𝑡 , {hca𝑡,𝑖 , ctc𝑡,𝑖 }𝑖∈[𝑚𝑡 ] }𝑡∈[𝑇 ]
1: For 𝑡 ∈ [𝑇 ]: ⊲ For each delegator party 𝑃𝑡 .

2: sk𝑡 B PKE.Dec(sk𝐷 , cta𝑡 )
3: 𝑎𝑡 B SKE.Dec(sk𝑡 , ctb𝑡 )
4: For 𝑖 ∈ [𝑚𝑡 ]: ⊲ For each row in KV𝑡 .

5: (KEM.cp𝑡,𝑖 , sh𝐷,𝑡,𝑖 ) B SKE.Dec(sk𝑡 , ctc𝑡,𝑖 )
6: hc𝑡,𝑖 B hca

1/𝑎𝑡
𝑡,𝑖

⊲ Remove 𝑎𝑡 .

7: Join J B (h𝐶,𝑖 )𝑖∈[𝑚𝐶 ] ⊲⊳ (hc𝑡,𝑖 )𝑡∈[𝑇 ],𝑖∈[𝑚𝑡 ] ⊲ Details in Alg. 1.

8: For each row 𝑖 and delegator 𝑡 in J: ⊲ For each row in the join.

9: If record matched:

10:
�KEM.cp𝑖,𝑡 B KEM.cp𝑡,𝑖′ ⊲ Use encaps. from 𝑃𝑡 .

11: ŝh𝐷,𝑖,𝑡 B sh𝐷,𝑡,𝑖′ ⊲ Use share of v𝑡,𝑖 generated by 𝑃𝑡 .

12: Else: ⊲ no match found

13: (�KEM.cp𝑖,𝑡 ,KEM.k𝑖,𝑡 ) ← KEM.Enc(KEM.pk) ⊲ New encaps.

14: ŝh𝐷,𝑖,𝑡 B KEM.k𝑖,𝑡 ⊲ Use share of 0.

15: Pick𝑚𝐶 random permutations {𝜋𝑖 }𝑖∈[𝑚𝐶 ] .

16: J𝐷 B (𝜋𝑖 ( {ŝh𝐷,𝑖,𝑡 }𝑡∈[𝑇 ] ))𝑖∈[𝑚𝐶 ] ⊲ 𝐷’s permuted XOR shares.

Send to𝐶: {𝜋𝑖 ( {�KEM.cp𝑖,𝑡 }𝑡∈[𝑇 ] ) }𝑖∈[𝑚𝐶 ]

5 Recover Shares (Party𝐶)
Input: KEM.sk

Messages: {�KEM.cp𝑖,𝑡 }𝑖∈[𝑚𝐶 ],𝑡∈[𝑇 ]
1: For 𝑖 ∈ [𝑚𝐶 ], 𝑡 ∈ [𝑇 ]: ⊲ For each row and each delegator.

2: ŝh𝐶,𝑖,𝑡 B KEM.Dec(KEM.sk, �KEM.cp𝑖,𝑡 ) ⊲ Get KEM.k𝑖,𝑡 .

3: J𝐶 B (ŝh𝐶,𝑖,𝑡 )𝑖∈[𝑚𝐶 ],𝑡∈[𝑇 ] ⊲ Aligned with (c𝑖 )𝑖∈[𝑚𝐶 ]

Figure 4: Single-key DPMC. Party𝐶 and the delegators 𝑃1 to 𝑃𝑇 compute the left-join of their records with the help of 𝐷 . Parties
𝐶 and 𝐷 receive J𝐶 and J𝐷 , respectively. These sets contain XOR secret shares for each row in the join. For each delegator 𝑃𝑡 , if a
row is in the intersection, the parties hold XOR shares of the delegator’s associated data, otherwise, XOR shares zero. Party 𝐶
additionally learns a mapping from its users into the join a but does not learn which of its users have been matched.

𝐶’s and all the delegators’ records and compute secret shares of

the associated data for the matched records. Both 𝐶 and 𝐷 learn 𝑇

secret shares for each row in the left join that corresponds to either

the delegators’ associated data (i.e., v𝑡 ) if that row maps to a record

in KV𝑡 or a secret share of zero (if that row is only in KV𝐶 ). 𝐶 also

receives a mapping from its users into the join but does not learn

which of its users have been matched.

Having the secret shares as the protocol output allows parties

𝐶 and 𝐷 to realize FCMP and jointly compute a function 𝑓 on

the secret shared associated data. An intuition of our delegated

protocols is shown in Fig. 3. In Fig. 3 (a), we show the multi-key

datasets of party 𝐶 and two delegators 𝑃1 and 𝑃2. In Fig. 3 (b), we

show the matching performed on both e-mail addresses and phone

numbers (Def. 3), as well as the generated XOR shares. Interestingly,

our protocols are compatible with both XOR and arithmetic secret

shares. To keep things simple, we use XOR shares exclusively. Note

that in Fig. 3 (b) we show the AD for readability – Party 𝐷 does not

learn the associated data (only the secret shares of them).

3.2 Delegated PMC (DPMC)
For simplicity, we start with a strawman DPMC protocol that does

not operate over multi-key databases (e.g., has only email addresses).

Our first variant for left join between 𝑇 + 1 databases is shown

in Fig. 4 and consists of three stages: “key generation”, “identify

match”, and “recover shares”. Both parties 𝐶 and 𝐷 learn a left join

size (𝑚𝐶 ) set of XOR shares (J𝐶 and J𝐷 , respectively) for each row

in the join that corresponds to the delegators’ associated data if

that row maps one of parties’ 𝑃1 to 𝑃𝑇 records or a secret share of

zero (if that row is only present in KV𝐶 ). Additionally, 𝐶 receives

a mapping from its users into J𝐶 but does not learn which of its

users are in the intersection. The two parties can use the secret

shares J𝐶 and J𝐷 for any general-purpose MPC computation.

Intuitively, the protocol works as follows. Each party 𝑃𝑡 hashes

its identifiers p𝑡,𝑖 (for each row 𝑖) using 𝐻G and masks them with a

random 𝑎𝑡 . The associated values v𝑡,𝑖 are secret shared where the

share for𝐶 (i.e., sh𝐶,𝑡,𝑖 ) is the key of a KEM. Each party encrypts the

shares for Party 𝐷 , the mask 𝑎𝑡 and the key encapsulation towards

party 𝐷 using pk𝐷 , and sends it to 𝐶 . It also sends the masked

hashes of the identifiers (i.e., 𝐻G (p𝑡,𝑖 )𝑎𝑡 ) to 𝐶 . Note that this does
not leak any information to 𝐶 since 𝐻G (p𝑡,𝑖 )𝑎𝑡 could be seen as a

PRF evaluation and is therefore pseudorandom based on DDH.

Party 𝐶 permutes the messages and uses a random 𝑎𝐶
R← Z𝑞 to

compute hca𝑡,𝑖 B 𝐻G (p𝑡,𝑖 )𝑎𝑡 ·𝑎𝐶 . 𝑎𝐶 can be seen as a PRF key. It

forwards the permuted messages including hca𝑡,𝑖 and sends the

PRF evaluation of its own identifiers, i.e., hc𝑖 B 𝐻G (c𝑖 )𝑎𝐶 to 𝐷 .
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Party 𝐷 decrypts all the ciphertexts and unmasks 𝐻G (p𝑡,𝑖 )𝑎𝑡 ·𝑎𝐶
to 𝐻G (p𝑡,𝑖 )𝑎𝐶 using 𝑎𝑡 . It then matches the results with the hc𝑖 ’s

sent by Party 𝐶 . If there is a match, it just forwards the key encap-

sulation KEM.cp𝑡,𝑖′ from delegator 𝑃𝑡 and uses the decrypted share

sh𝐷,𝑡,𝑖 as its own share. Otherwise, it generates a new encapsula-

tion and uses the generated key KEM.k𝑖,𝑡 as its own share. In this

step, we do not leak 𝐶’s share and therefore value v𝑡,𝑖 to Party 𝐷 ,

due to the key indistinguishability of the key encapsulation.

In the final step, 𝐶 uses the secret key of the key encapsula-

tion received by 𝐷 to recover its own shares. Observe that for the

unmatched records, we get secret shares of zero as J𝐶 ⊕ J𝐷 =

ŝh𝐶,𝑖,𝑡 ⊕ ŝh𝐷,𝑖,𝑡 = KEM.k𝑖,𝑡 ⊕ KEM.k𝑖,𝑡 = 0, while for the matched

records we get secret shares of the delegators associated data as

J𝐶 ⊕J𝐷 = ŝh𝐶,𝑖,𝑡 ⊕ ŝh𝐷,𝑖,𝑡 = KEM.k𝑖,𝑡 ⊕ sh𝐷,𝑡,𝑖 = KEM.k𝑖,𝑡 ⊕v𝑡,𝑖 ⊕
sh𝐶,𝑡,𝑖 = v𝑡,𝑖 . Party 𝐷 cannot distinguish shares of v𝑡,𝑖 from shares

of 0 since the encapsulations generated by parties 𝑃1 to 𝑃𝑇 have

the same distribution as the ones generated by 𝐷 .

Leakage.We defineDPMC’s leakage in Def. 9, where𝐷 learns the

sizes of the intersection between each two parties. For instance, for

parties𝐶 , 𝑃1, and 𝑃2, party 𝐷 will learn |KV𝐶 ∩KV1 |, |KV𝐶 ∩KV2 |,
and |KV1 ∩KV2 | but without knowing which party is 𝑃1 and which

is 𝑃2 due to the permutation performed by𝐶 . With multiple keys, 𝐷

will also learn a graph of matches as defined by 𝐿𝑥,𝑦 next. We give a

formal security theorem (Theorem 10) and prove it in Appendix D.1.

Definition 9 (DPMC Leakage). Given KV𝐶 and KV1, . . . ,KV𝑇 ,
the leakage 𝐿𝑥,𝑦 of the ideal functionality in Fig. 2 for the DPMC
protocol in Fig. 4 is defined as follows. DefineKV𝑢,𝐶 by replacing c𝑖, 𝑗 ∈
KV𝐶 with𝑢𝑖, 𝑗

R← {0, 1}𝜅 . DefineKV𝑢,𝑡 by replacing p𝑡,𝑖, 𝑗 ∈ KV𝑡 with
𝑢𝑖′, 𝑗 ′ if there exist 𝑡 ′, 𝑖 ′, 𝑗 ′ with p𝑡,𝑖, 𝑗 = c𝑖′, 𝑗 ′ or an already replaced

p𝑡 ′,𝑖′, 𝑗 ′ with p𝑡,𝑖, 𝑗 = p𝑡 ′,𝑖′, 𝑗 ′ , otherwise replace it with𝑢 ′𝑡,𝑖, 𝑗
R← {0, 1}𝜅 .

𝐿𝑥,𝑦 B {(𝐶,KV𝑢,𝐶 ), 𝜋 (𝑡,KV𝑢,𝑡 )𝑡 ∈[𝑇 ] }.

Theorem 10. Let the secret key encryption and the PKE scheme
be IND-CPA secure, the KEM simulatable and key indistinguishable,
and the DDH assumption hold.

Then, the protocol in Fig. 4 securely realizes ideal functionality in
Fig. 2 for the join defined in Def. 3 for semi-honest corruption of one
of the two parties𝐶 , 𝐷 and any amount of parties 𝑃1 to 𝑃𝑇 . In case of
a corruption of 𝐷 , the leakage graph of Def. 9 is leaked.

3.3 Rerandomizable Encrypted OPRF (EO)
OPRFs allow a client to obliviously evaluate a function PRF on

their private input 𝑥 with the server’s secret key 𝑠𝑘 (i.e., PRF𝑠𝑘 (𝑥))
[11]. We introduce a new rerandomizable encrypted OPRF (EO)

primitive with more powerful functionality that allows: (a) multiple

input providers to encrypt their inputs, (b) an output receiver to

shuffle and rerandomize the ciphertexts, (c) a server to obliviously

evaluate a PRF on encrypted as well as plaintext identifiers, and (d)

the output receiver to decrypt the encrypted PRF evaluations. Our

EO primitive consists of a collection of seven algorithms:

Definition 11 (EO). A rerandomizable encrypted OPRF (EO)
parameterized with security parameter 𝜅 is a collection of algorithms
(KG, EKG, Eval, Enc,Rnd, OEval,Dec) with the following syntax.

• KG(1𝜅 ): On input 1𝜅 output a public key, secret key pair (pk,sk).

• EKG(1𝜅 ): On input 1𝜅 output a public function key, evaluation
key pair (pf, ek).
• Eval(ek, 𝑥): On input (ek, 𝑥), output a PRF output 𝑦.
• Enc(pk, pf, 𝑥): On input (pk, pf, 𝑥), output a ciphertext ct.
• Rnd(pk, pf, ct): On input (pk, pf,ct), output a ciphertext ct′.
• OEval(ek, ct): On input (ek, ct), output evaluated ciphertext ect.
• Dec(sk, ect): On input (sk, ect), output 𝑦.

For correctness, we ask that for any𝑥 ∈ {0, 1}∗, Pr[Dec(sk,OEval(ek,
Rnd(pk, pf, Enc(pk, pf, 𝑥))) = Eval(ek, 𝑥)] ≥ 1−negl,where (pk, sk)
← KG(1𝜅 ) and (pf, ek) ← EKG(1𝜅 ).

(pf, ek) ← EKG(1𝜅 )

Publish pf

(pk, sk) ← KG(1𝜅 )

Publish pk

ct← Enc(pk, pf, 𝑥𝑡 )

ct
′ ← Rnd(pk, pf, ct)

ect← OEval(ek, ct′)

𝑦 ← Dec(sk, ect)
𝑦 ← Eval(ek, 𝑥)

𝑐𝑡

𝑐𝑡′

𝑒𝑐𝑡

Server Output Receiver Input Provider 𝑡

Figure 5: Rerandomizable Encrypted OPRF (EO).

We use EO as shown in Fig. 5. Each Input Provider 𝑡 invokes
EO.Enc to encrypt identifier 𝑥𝑡 . Afterward, an Output Receiver
rerandomizes and shuffles the ciphertexts using EO.Rnd. We re-

mark that for security, we require that neither possession of EO.sk

nor EO.ek is sufficient to distinguish encryptions of two different

messages. After the shuffle, the Server uses EO.OEval to homomor-

phically evaluate a PRF on the encrypted identifier. The Server also

evaluates the PRF on plaintext identifiers without knowledge of

EO.sk by using EO.Eval and knowledge of EO.ek. Finally, the Out-

put Receiver uses EO.Dec to decrypt the PRF evaluation. Observe

that both the Server and the Output Receiver end up with the same

PRF evaluation 𝑦 for the same input 𝑥 (or 𝑥𝑡 ). In order to have a

PRF, we require that the EO.Eval outputs are pseudorandom given

EO.pk, EO.sk, and EO.pf. In Appendix B, we define several security

notions and show how to construct this primitive from DDH.

3.4 DPMC with Secure Shuffling (D𝑠PMC)
In DPMC, party 𝐷 performs the left join on the hashed and expo-

nentiated data between 𝐶 and multiple delegators denoted as 𝑃𝑡 .

This process enables 𝐷 to learn the full bipartite graph of correla-

tions of matches up to an isomorphism due to shared identifiers.

We address this issue with an enhanced version called D𝑠PMC that

utilizes our novel EO scheme and employs two delegates: party 𝐷

and a new shuffler party 𝑆 .D𝑠PMC relies on EO to perform a secure

three-party shuffling protocol between 𝐶 , 𝐷 , and 𝑆 that combines

and shuffles the data from all delegator parties 𝑃𝑡 . In the process of

secure shuffling, the data from the delegators are reordered in a way

that no single party knows the applied permutation. Additionally,

the delegators’ data undergo two forms of rerandomization. First,

the encrypted identifiers are refreshed with new ciphertexts using

the EO.Rnd algorithm, generating new ciphertexts that correspond

to the same plaintexts. Second, the secret shares of the associated

data are reshared, creating new secret shares of the same plaintext
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Setup: All parties 𝑃𝑡 have access to the public key pk𝐷 of party 𝐷 , party 𝐷 has secret key sk𝐷 .𝑀 B
∑𝑇

𝑡=1𝑚𝑡 .

1 Key-Generation (Party𝐶)
1: (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 )
2: (EO.pf, EO.ek) ← EO.EKG(1𝜅 )

Send to 𝑃𝑡 , 𝑆 , 𝐷 : KEM.pk, EO.pf

2 Key-Generation (Party 𝐷)
1: (EO.pk, EO.sk) ← EO.KG(1𝜅 )

Send to 𝑃𝑡 : EO.pk

3 Identity Match (Party 𝑃𝑡 )
Input: KV𝑡 = {{p𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ]v𝑡,𝑖 }𝑖∈[𝑚𝑡 ] for data set size𝑚𝑡 .

Messages: EO.pk, EO.pf

1: seed𝑡
R← {0, 1}𝜅 ⊲ Random seed𝑡 .

2: cta𝑡 B PKE.Enc(pk𝐷 , seed𝑡 )
3: (sh𝐷,𝑡,1, . . . sh𝐷,𝑡,𝑚𝑡 )

R← PRG(seed𝑡 ) ⊲ Share of v𝑡,𝑖 for party 𝐷 .

4: For 𝑖 ∈ [𝑚𝑡 ]: ⊲ For each row in KV𝑡 .

5: For 𝑗 ∈ [𝑚𝑡,𝑖 ]: ⊲ For each column.

6: EO.ct𝑡,𝑖,𝑗 ← EO.Enc(EO.pk, EO.pf, p𝑡,𝑖,𝑗 ) ⊲ Encrypt data using EO.
7: sh𝐶,𝑡,𝑖 B v𝑡,𝑖 ⊕ sh𝐷,𝑡,𝑖 ⊲ Share of v𝑡,𝑖 for party𝐶 .

Send to𝐶: cta𝑡 , {{EO.ct𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ]

4 Forward Shares to D (Party𝐶)
Messages: {{{EO.ct𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ] , cta𝑡 , }𝑡∈[𝑇 ]
Send to 𝐷 : {cta𝑡 }𝑡∈[𝑇 ]

5 Reconstruct Shares (Party 𝐷)
Messages: {cta𝑡 } for all𝑇 parties 𝑃

1: For 𝑡 ∈ [𝑇 ]: ⊲ For each delegator 𝑃𝑡

2: seed𝑡 B PKE.Dec(sk𝐷 , cta𝑡 ) ⊲ Get seed seed𝑡 .

3: sh𝐷,𝑡,1, . . . , sh𝐷,𝑡,𝑚𝑡 B PRG(seed𝑡 ) ⊲ Share of v𝑡,𝑖 for party 𝐷 .

6 Shuffling – Appendix C (Parties𝐶, 𝑆, 𝐷)
Note: The EO.ct ciphertexts as well as the sh𝐶 and sh𝐷 secret shares are: a)

reordered such that no party knows the permutation, and b) rerandomized

to �EO.ct, s̃h𝐶 , and s̃h𝐷 . These rerandomizations correspond to fresh

encryptions and fresh secret shares of the same underlying data.

𝐶 Input: {{EO.ct𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]
𝑆 Input: −
𝐷 Input: {sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]
𝐶 receives output: {�EO.ct𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚

𝑖
] ⊲ Rerandomized ciphertexts.

𝑆 receives output: {s̃h𝐶,𝑖 }𝑖∈[𝑀 ] ⊲ Rerandomized shares for party𝐶 .

𝐷 receives output: {s̃h𝐷,𝑖 }𝑖∈[𝑀 ] ⊲ Rerandomized shares for party 𝐷 .

7 Mask Shares (Party 𝑆)
Input: {s̃h𝐶,𝑖 }𝑖∈[𝑀 ]
Messages: KEM.pk

1: For 𝑖 in [𝑀 ]: ⊲ For all delegators rows.

2: (KEM.cp𝑖 ,KEM.k𝑖 ) ← KEM.Enc(KEM.pk) ⊲ New encaps.

3: sh𝐷,𝑖 B s̃h𝐶,𝑖 ⊕ KEM.k𝑖 ⊲ Updated shares for party 𝐷 .

Send to 𝐷 : {KEM.cp𝑖 , sh𝐷,𝑖 }𝑖∈[𝑀 ]

8 Prepare Match Keys (Party𝐶)
Input: KV𝐶 = {(c𝑖,𝑗 ) 𝑗∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ] , EO.ek and {�EO.ct𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚

𝑖
] .

1: For 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑚𝑖 ]: ⊲ For all delegators rows and columns.

2: EO.ect𝑖,𝑗 B EO.OEval(EO.ek, �EO.ct𝑖,𝑗 )
3: For 𝑖 ∈ [𝑚𝐶 ], 𝑗 ∈ [𝑚𝐶,𝑖 ]: ⊲ For all rows and columns in KV𝐶 .

4: h𝐶,𝑖,𝑗 B EO.Eval(EO.ek, c𝑖,𝑗 )
5: Use c𝑖 B (c𝑖,𝑗 ) 𝑗∈[𝑚𝐶,𝑖 ] to order (h𝐶,𝑖,𝑗 ) 𝑗∈[𝑚𝐶,𝑖 ] .

Send to 𝐷 : (h𝐶,𝑖,𝑗 )𝑖∈[𝑚𝐶 ], 𝑗∈[𝑚𝐶,𝑖 ] , {EO.ect𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚
𝑖
]

9 Identity Match and Recover Shares (Party 𝐷)
Input: EO.sk and {s̃h𝐷,𝑖 }𝑖∈[𝑀 ]
Messages: KEM.pk, {KEM.cp𝑖 , sh𝐷,𝑖 }𝑖∈[𝑀 ] , {h𝐶,𝑖,𝑗 }𝑖∈[𝑚𝐶 ], 𝑗∈[𝑚𝐶,𝑖 ] ,
{EO.ect𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚

𝑖
]

1: For 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑚𝑖 ]: ⊲ For all delegators rows and columns.

2: h𝑖,𝑗 B EO.Dec(EO.sk, EO.ect𝑖,𝑗 )
3: J B (h𝐶,𝑖,𝑗 )𝑖∈[𝑚𝐶 ], 𝑗∈[𝑚𝐶,𝑖 ] ⊲⊳ (hc𝑖,𝑗 )𝑖∈[𝑀 ], 𝑗∈[𝑀𝑖 ] ⊲ Details in Alg. 2.

4: For each row 𝑖 in J, repeat for 𝑡 ∈ [𝑇 ]: ⊲ For each row in the join.

5: If record matched:

6:
�KEM.cp𝑖 B KEM.cp𝑖′ ⊲ Use encaps. from 𝑃𝑡 .

7: ŝh𝐷,𝑖,𝑡 B s̃h𝐷,𝑖′ ⊕ sh𝐷,𝑖′ ⊲ Final shares for party 𝐷 .

8: Else: ⊲ no match found

9: (�KEM.cp𝑖 ,KEM.k𝑖 ) ← KEM.Enc(KEM.pk) ⊲ New encaps.

10: ŝh𝐷,𝑖,𝑡 B KEM.k𝑖 ⊲ Use share of 0.

11: Pick𝑚𝐶 random permutations {𝜋𝑖 }𝑖∈[𝑚𝐶 ] .

12: J𝐷 B (𝜋𝑖 ( {ŝh𝐷,𝑖,𝑡 }𝑡∈[𝑇 ] ))𝑖∈[𝑚𝐶 ] ⊲ 𝐷’s permuted XOR shares.

Send to𝐶: {𝜋𝑖 ( {�KEM.cp𝑖,𝑡 }𝑡∈[𝑇 ] ) }𝑖∈[𝑚𝐶 ]

10 Recover Shares (Party𝐶)
Input: KEM.sk

Messages: {�KEM.cp𝑖,𝑡 }𝑖∈[𝑚𝐶 ],𝑡∈[𝑇 ]
1: For 𝑖 ∈ [𝑚𝐶 ], 𝑡 ∈ [𝑇 ]
2: ŝh𝐶,𝑖,𝑡 B KEM.Dec(KEM.sk, �KEM.cp𝑖,𝑡 ) ⊲ (KEM.k𝑖,𝑡 ) Shares for𝐶 .

3: J𝐶 B (ŝh𝐶,𝑖,𝑡 )𝑖∈[𝑚𝐶 ],𝑡∈[𝑇 ] ⊲ Aligned with (c𝑖 )𝑖∈[𝑚𝐶 ]

Figure 6: Multi-key D𝑠PMC. This protocol uses two delegate parties (𝑆 and 𝐷) and is based on secure shuffling and EO.

values. Notably, these rerandomization steps do not reveal the un-

derlying data and are meant to break any link between the data

that the delegators provide and the data that are used for the join

and the secret sharing. This way, the leakage to party 𝐷 is only be-

tween 𝐶’s data and the combined data of parties 𝑃1 to 𝑃𝑇 , contrary

to the pairwise leakages of DPMC. Since 𝐶 combines the inputs

of all delegators, party 𝐷 (who performs the join) only sees two

encrypted datasets (i.e., encrypted KV𝐶 and encrypted KV𝑃 ).

Due to our shuffling and rerandomization steps, in a potential

corruption of the delegators and one of 𝐶, 𝐷, 𝑆 , the corrupted par-

ties cannot infer any information as the data have been permuted

and rerandomized. Our shuffling scheme is secure in the honest-

majority setting, which is the case with multiple applications from

both academia [1, 15, 39] and industry. For instance,Mozilla recently

deployed a service that relies on the Prio protocol to collect teleme-

try data about Firefox [30], while Crypten [33] and TF Encrypted

[17] build privacy-preserving machine learning frameworks for

PyTorch and TensorFlow, respectively. We delve into the details of

the security of D𝑠PMC in Appendix D.2.

D𝑠PMC follows a similar approach asDPMC, with the difference

that it leverages our EO primitive. We formally present our D𝑠PMC

protocol in Fig. 6; intuitively, it works as follows. The delegator

parties use EO to encrypt their identifiers and generate XOR shares

as in the DPMC protocol. Then, the delegators encrypt the shares

for party 𝐷 using pk𝐷 and send them to Party 𝐶 along with 𝐶’s

shares and all of the ciphertexts. 𝐶 then forwards 𝐷’s encrypted
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shares to Party 𝐷 who decrypts them. Then parties𝐶 , 𝐷 , and 𝑆 run

a secure shuffling protocol in which 𝐶 receives rerandomized EO

ciphertexts (�EO.ct), 𝑆 obtains the rerandomized shares for 𝐶 (s̃h𝐶 ),

and 𝐷 receives its randomized shares (s̃h𝐷 ).

Next, 𝑆 generates new key encapsulations and uses 𝐶’s shares

to generate new shares for 𝐷 . It sends the updated sh𝐷,𝑖 to party 𝐷

that allows 𝐷 to adjust their shares to be consistent with the new

shares of 𝐶 . 𝑆 also sends the encapsulations (KEM.cp) to 𝐷 .

Party𝐶 proceeds by homomorphically evaluating the PRF on the

EO ciphertexts and the PRF on its own identifiers c𝑖, 𝑗 and sends the

outcomes to 𝐷 . Recall from Fig. 5 that all the output receiver (𝐷 in

this case) needs to do now is to decrypt the evaluated EO ciphertexts

and compute the matches. 𝐷 computes the left join with associated

data, where for each matched record it ends up with 𝑇 shares of

either the delegators’ associated data or zero. Note that 𝐷 does not

know which decrypted PRF identifier belongs to which delegator.

The matching logic is described in more detail in Def. 4 in the

Appendix A. Similar to DPMC, 𝐷 it replaces the encapsulation with

a fresh encapsulation when no match is found and keeps KEM.k

as its share ŝh𝐷 . It then forwards the encapsulations �KEM.cp to 𝐶 .

Party 𝐶 finalizes the protocol by recovering the encapsulated keys

and using them as its shares ŝh𝐶 . Observe that for the unmatched

records, 𝐶 and 𝐷 end up with secret shares of zero as J𝐶 ⊕ J𝐷 =

ŝh𝐶,𝑖,𝑡 ⊕ ŝh𝐷,𝑖,𝑡 = KEM.k𝑖,𝑡 ⊕ KEM.k𝑖,𝑡 = 0, while for the matched

records we get secret shares of the delegators’ associated data as

J𝐶 ⊕ J𝐷 = ŝh𝐶,𝑖,𝑡 ⊕ ŝh𝐷,𝑖,𝑡 = KEM.k𝑖 ⊕ s̃h𝐷,𝑖 ⊕ sh𝐷,𝑖 = KEM.k𝑖 ⊕
(sh𝐷,𝑖 ⊕ s̃h𝐶,𝑖 ) ⊕ KEM.k𝑖 = sh𝐷,𝑖 ⊕ sh𝐶,𝑖 ) = v𝑖 .

We describe our protocol’s leakage in Def. 12. D𝑠PMC limits the

leakage of DPMC from pairwise intersection sizes between each

party to one intersection size between party 𝐶 and the union of all

delegators. For instance, for parties𝐶 , 𝑃1, and 𝑃2, party 𝐷 will learn

|KV𝐶 ∩KV𝑃 |, where KV𝑃 B {KV1 ∪KV2}. Notably, these intersec-
tion sizes also contain the number of times that keys are matched

(i.e., 1 to𝑇 ). In case multiple keys are used, 𝐷 will additionally learn

a graph of matches as defined by 𝐿𝑥,𝑦 in Def. 12. We provide the

security of D𝑠PMC in Theorem 13 and prove it in Appendix D.2.

Note that we do not need ciphertext indistinguishability for the

secret key owner (Lemma 30) since 𝐷 does not handle any EO ci-

phertexts, only evaluated ciphertext. This might change when a

different shuffle protocol is used.

Definition 12 (D𝑠PMC Leakage). GivenKV𝐶 andKV1, . . . ,KV𝑇 ,
the leakage 𝐿𝑥,𝑦 of the ideal functionality in Fig. 2 for the D𝑠PMC pro-
tocol in Fig. 6 is defined as follows. Merge KV1, . . . ,KV𝑇 to KV𝑃 B⋃

𝑡 ∈[𝑇 ] KV𝑡 . Define KV𝑢,𝐶 by replacing c𝑖, 𝑗 ∈ KV𝐶 with 𝑢𝑖, 𝑗
R←

{0, 1}𝜅 . Define KV𝑢,𝑃 by replacing p𝑖, 𝑗 ∈ KV𝑃 with 𝑢𝑖′, 𝑗 ′ if there
exists an 𝑖 ′, 𝑗 ′ pair with p𝑖, 𝑗 = c𝑖′, 𝑗 ′ or an already replaced p𝑖′, 𝑗 ′

with p𝑖, 𝑗 = p𝑖′, 𝑗 ′ , otherwise replace it with 𝑢 ′𝑖, 𝑗
R← {0, 1}𝜅 . 𝐿𝑥,𝑦 B

{(𝐶,KV𝑢,𝐶 ), (𝐷,KV𝑢,𝑃 )}.

Theorem 13. Let PKE be an IND-CPA secure and correct PKE
scheme, KEM a correct and key-indistinguishable key encapsula-
tion mechanism, PRG as secure pseudorandom generator, and EO

be a correct and satisfy statistical rerandomized ciphertext indistin-
guishability, the (semi-honest) ciphertext indistinguishability for the
evaluation key and secret key owner and ciphertext well-formedness.

Then, the protocol in Fig. 6 securely realizes ideal functionality in
Fig. 2 for the join defined in Def. 4 for semi-honest corruption of one
of the three parties 𝐶 , 𝐷 , 𝑆 , and any amount of parties 𝑃1 to 𝑃𝑇 . In
case of a corruption of 𝐷 , the leakage graph of Def. 12 is leaked.

4 MATCHING STRATEGY
Recall from Fig. 1 that the view of each party for a specific record

may be different and a record may have multiple identifiers (e.g.,

email address, phone). When combining datasets from multiple

delegators, the uniqueness of the identifiers cannot be guaranteed

as the same record might appear in more than one dataset. Thus,

potential matches for each row can occur based on different identi-

fiers across different delegators. For instance, a match on the 𝑗th

identifier of record c𝑖 may occur for keys in different positions

between different parties (e.g., with p𝑡,𝑖′, 𝑗 ′ with 𝑖 ≠ 𝑖
′
and 𝑗 ≠ 𝑗 ′).

Parties 𝐶 and 𝐷 in our protocols compute the left join as described

in Def. 3 and acquire J𝐶 and J𝐷 , respectively. To capture all the

aforementioned matches, for 𝑇 delegators, J𝐶 and J𝐷 have 𝑇 per-

muted columns of secret shares which either correspond to shares

of the associated metadata of one of the input parties (if a match

was found) or to shares of NULL (in case no match was found).

As the number of delegators 𝑃1 to 𝑃𝑇 grows, it is natural for

our resulting J𝐶 and J𝐷 tables to contain multiple secret shares

of NULL. This becomes more evident if each individual dataset KV𝑡

is relatively small compared to KV𝐶 ; even if all the records of KV𝑡

match with records inKV𝐶 , there would still be multiple unmatched

records in KV𝐶 which will get secret shares of NULL. To optimize

both our matching and our downstream computation, we now delve

into a matching strategy to generate one-to-many connections that

do not depend on𝑇 and minimize the number of NULL secret shares.
First, 𝐶 and 𝐷 agree on a maximum number of connections

𝐾 to capture. 𝐷 performs a ranked left join by starting from the

identifier with the highest priority in KV𝐶 and checking whether

it appears in each KV𝑡 before moving to the next record in KV𝐶 .

After searching by the first key of each record in KV𝐶 , 𝐷 continues

with the next identifier, and so on. If a record from 𝑃𝑡 is matched,

we mark that record as done and continue to the next record in

order to avoid counting the same associated values more than once.

For each record c𝑖 , if 𝐾 or more matches are found, 𝐷 creates secret

shares of the associated data of the first 𝐾 records, otherwise (if less

than𝐾 matches are found),𝐷 pads the remaining columns (up to𝐾 )

with secret shares of NULL. We note that this is an implementation-

specific detail that can be trivially extended to different matching

strategies. Each of the resulting tables J𝐶 and J𝐷 has 𝐾 columns

and captures a one-to-𝐾 matches for each record in the left join.

5 REAL-WORLD APPLICATIONS
Recall that our ideal functionality FDPMC (and FDPMC) consists of

FJOIN and FCMP. Our delegated protocols realize FJOIN and output

secret shares to parties 𝐶 and 𝐷 for the left join of parties 𝐶 and

𝑃1, . . . , 𝑃𝑇 . Next, FCMP can be realized by running any general-

purpose MPC between 𝐶 and 𝐷 . We foresee multiple real-world

applications for FCMP that may leverage our architecture merging

multiple private datasets across distrusting parties with a central-

ized entity (party 𝐶) to securely compute analytics. For instance,

DPMC enables calculating the risk of a health condition by merging
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information held by a larger healthcare provider with data stored

on millions of individual smart devices. In another example, an

ad publisher holding user-provided information can measure ad-

vertising efficacy and offer personalization by merging with data

held by multiple advertisers while still preserving user privacy. In

this section, we focus on the latter and outline how DPMC enables

privacy-preserving ad measurement and delivery of personalized

advertising leveraging privacy-preserving machine learning. The

former provides advertisers useful insights about how their ad

campaigns are performing, while the latter enables delivering per-

sonalized ads while preserving user privacy.

5.1 Privacy-Preserving Ad Attribution
Inputs.We assume the following input data held by an ad publisher,

denoted by 𝐶 and 𝑇 advertisers, denoted by 𝑃1, . . . , 𝑃𝑇 .

• Party 𝐶 is a company that holds a dataset of ad actions (i.e.,

clicks) performed by individuals on product-related advertise-

ments. These ads were shown to users after they expressed an

intent via an online search engine. Users may be shown ads

related to multiple products owned by hundreds of advertisers.

• Advertisers 𝑃1 to 𝑃𝑇 , hold conversion information for their

customers, such as purchase amount and time of the purchase.

• All parties (𝐶 , 𝑃1, . . . , 𝑃𝑇 ) also hold annotated sets of common

identifiers (e.g., email addresses and phone numbers).

FJOIN phase. Executing the DPMC protocol for FJOIN with the

above input data from𝐶 andmultiple 𝑃 parties, the following output

is available at the ad publisher 𝐶 and the delegate servers.

• Party𝐶 holds a mapping of secret shares of conversion data to

a dataset of ad actions. This mapping does not reveal any new

information to 𝐶 apart from random-looking secret shares. In

the case of no matches, party 𝐶 receives secret shares of zero.

• Party 𝐷 receives a set of secret shares of the conversion data

or a dummy value (e.g., zero) that is also aligned to party’s

𝐶 records (i.e., left join). 𝐷 gains insights into pairwise in-

tersection sizes (in DPMC) or the intersection size of 𝐶 with

the union of all advertisers’ sets (in D𝑠PMC). For example,

when users have unique phone numbers and email addresses,

in D𝑠PMC 𝐷 learns the intersection sizes of records where

at least phone number, email address, or both matched be-

tween the company and the union of all advertisers’ data. In a

real-world scenario where 𝐷 is a privacy-conscious non-profit

organization, this level of leakage has fairly low privacy im-

plications. If the uniqueness of identifiers cannot be assumed,

the sizes of groups with the same identifiers are leaked.

• Parties 𝑃1 to 𝑃𝑇 , receive nothing.

FCMP phase. Parties𝐶 and 𝐷 now hold secret shares of conversion

metadata such as conversion time and values. 𝐶 can then further

input metadata of ad actions, such as click timestamp, as secret

shares using the link to the original records that were established

by the DPMC protocol. Now, parties𝐶 and 𝐷 engage in multi-party

computation to compute the attribution function that flags when a

conversion (product was bought) occurred within a pre-specified

time window from the ad action. Note that the MPC computation

is embarrassingly parallel given the row-wise output structure of

DPMC. The output of the privacy-preserving ad attribution remains

at the ad action level, hence remains secret shared between parties𝐶

and𝐷 and is used as an input into further downstream computations

such as private measurement or personalization, described next.

5.2 Privacy-Preserving Analytics
Measuring the efficacy of advertising first requires computing aggre-

gated conversion outcomes such as the total number of attributed

conversions per campaign. Note that DPMC maintains the left join

of the ad actions without revealing any user-level information to

party𝐶 at any stage. Party𝐶 may attach campaign-level identifiers

with limited entropy ensuring sufficient K-anonymity guarantees.

At this point, parties 𝐶 and 𝐷 engage in another round of MPC

(i.e., a new FCMP phase) to compute aggregated conversion out-

comes per campaign. Finally, differentially private noise can be

added to the aggregated outcomes within MPC before revealing

the results to party 𝐶 , so that 𝐶 only learns noisy aggregates for

each ad campaign.

5.3 Privacy-Preserving Personalization
Privacy-preserving personalization typically entails training amodel

to be able to estimate the relevance of potential ads for users.

Note that privacy-preserving ad attribution during the data pre-

processing phase generates secret shares of ad attribution outcomes

for both parties 𝐶 and 𝐷 . Leveraging the mapping produced by

DPMC from secret shares to original ad actions, party𝐶 may attach

any private features to the private attribution outcomes without

revealing any individually identifiable information. At this stage,

parties 𝐶 and 𝐷 can run a new FCMP in multi-party computation

for model training with privately input features (from party 𝐶)

and secret shared labels (from both parties 𝐶 and 𝐷). For example,

CrypTen [33], a multi-party computation framework for machine

learning, may be leveraged between the parties 𝐶 and 𝐷 down-

stream to the DPMC protocol. Similarly to the aforementioned

analytics example, privacy-preserving personalization would also

include differential privacy guarantees and we point avid readers

to one such implementation [55].

6 EVALUATIONS
Implementation & Setup.We implemented our protocols in Rust

(1.62) and used the Dalek library for Elliptic Curve Cryptography

with Ristretto for Curve25519 [18, 28].
2
This enables the use of a fast

curve while avoiding high-cofactor vulnerabilities. For symmetric

encryption, we use the Fernet library with AES-128 in CBC mode,

for public key encryption we use ElGamal with elliptic curves, and

for the key encapsulation mechanism, we use ElGamal KEM.

We created artificial datasets where each record has one 128-

bit identifier and two 64-bit associated values. The performance

measurements were carried out on AWS m5.12xlarge EC2 instances

(Intel Xeon at 3.1GHz, 48 vCPU, 192GB RAM). To simulate 𝐶 , 𝐷 ,

and multiple 𝑃 parties we leverage three separate EC2 instances

in the same region, where 𝐶 and 𝐷 are hosted by two separate

instances, and the third instance hosts all parties 𝑃1 to 𝑃𝑇 . For our

WAN experiments, we used three m5.12xlarge EC2 instances in N.

Virginia, Ohio, and N. California. All parties communicate via RPC

over TLS v1.3 using Protocol Buffers.

2
Our protocols are open-source at https://github.com/facebookresearch/Private-ID.
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Figure 7: Measured execution time of delegator for DPMC
and D𝑠PMC with 𝑚𝐶 = 10

6 and and increasing KV𝑃 with
intersection sizes of 50% of KV𝑃 .

Varying number of delegators. In Fig. 7, we fixed the size of

KV𝐶 to 1 million and varied both the number of delegators and

their dataset sizes. In the orange and red trends, we used a single

delegator for DPMC and D𝑠PMC with dataset sizes indicated by

the x-axis. In the blue and green trends, we split the dataset into

ten delegators, where each party has 1/10 of the input size shown
on the x-axis. Although the combined size of the dataset of the

ten parties is the same, the local computation for each delegator

is significantly less. In this case, the performance time for each

delegator is about ten times faster than having a single 𝑃1 party

with a bigger dataset.
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Figure 8: Measured time of 𝑃 for DPMC, D𝑠PMC, PJC, PS3I,
and Circuit-PSI with𝑚𝐶 = 10

6 and intersection sizes of 50%
of𝑚𝑡 . All protocols are evaluated with a single delegator.

Protocol time for delegator. Next, we fixed the input of party 𝐶

to 1 million with a single identifier per record and varied the size of

the dataset of the delegator. In Fig. 8 we show the execution times

for party 𝑃 for DPMC, D𝑠PMC, PJC, PS
3
I, and Circuit-PSI. We use

the PS
3
I [10] and PJC [31] implementations from [9], which both

use Paillier with a 2048-bit public key. Similarly to our protocols,

both these protocols assume that party 𝑃 has associated metadata:

PS
3
I generates additive secret shares, whereas PJC aggregates the

associated values of the items in the intersection. Additionally,

for fair comparisons, we implemented over-the-network commu-

nication between the sender and the receiver on the Circuit-PSI

implementation of [49] (the implementation of [12] crashes with

different dataset sizes). The blue and orange trends in Fig. 8 show

the execution time of a single delegator running the DPMC and the

D𝑠PMC protocols, respectively, which are approximately the same.

We observe that the execution time for both is approximately 10×
faster than party 𝑃 in PJC and multiple orders of magnitude faster

than PS
3
I. The runtime in PJC scales linearly with 𝑃 ’s dataset size,

however, this is not the case with PS
3
I as 𝑃 ’s execution time is also

affected by 𝐶’s dataset. The runtime for Circuit-PSI is linear in the

input of both parties, so it incurs high overheads when𝑚𝐶 ≫𝑚𝑃 .

Both this and the previous experiments (Figs. 7 and 8) demonstrate

the benefits of our delegated protocols for the delegator parties

compared to the two-party protocols.

Varying intersection size. In our next experiment, we fixed the

input size at 1 million records for both parties and the number of

identifiers at 2 per record and varied the intersection size (1%, 25%,

50%, and 100%). We observed negligible performance variations

(i.e., less than a second) for the different intersection sizes since our

protocol always outputs the left join and depends on KV𝐶 size.
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Figure 9: Wall clock time for DPMC and D𝑠PMC. DPMC net-
work traffic for each party 𝐶, 𝐷 , and 𝑃𝑡 with an increasing
number of keys per row for𝑚𝐶 = 𝑚𝑡 = 10

5 and an intersec-
tion size of 50% of𝑚𝐶 .

Varying number of identifiers.We now show how the number

of keys affects the performance of our protocols. We fixed the input

size to 10
5
records for both parties and the intersection size to

50%. Fig. 9 shows the total time for DPMC (light green trend) and

D𝑠PMC (light blue trend) as well as the input and output traffic

for each party for DPMC. Notably, the communication of D𝑠PMC

is similar for an increasing number of identifiers as the matching

strategy is very similar for the two protocols.

Table 2: Communication cost & number of exponentiation.
𝑇 is the number of delegators; 𝑚𝐶 and 𝑚𝑡 are the set sizes
of 𝐶 and each delegator 𝑃𝑡 , respectively, and 𝑀 B

∑𝑇
𝑡=1𝑚𝑡 .

I B |KV𝐶 ∩ KV𝑃 |, where KV𝑃 B {KV1 ∪ KV2 ∪ . . . ∪ KV𝑇 }.

Party 𝐶 𝐷 𝑆 𝑃𝑡

D
P
M
C Communication 𝒪(𝑚𝐶 +𝑀) 𝒪(𝑚𝐶 +𝑀) - 𝒪(𝑚𝑡 )

Num. of Exp. 2𝑚𝐶 +𝑀 𝑀 +𝑚𝐶 − I - 2𝑚𝑡 + 1

D
𝑠
P
M
C Communication 𝒪(𝑚𝐶 +𝑀) 𝒪(𝑚𝐶 +𝑀) 𝒪(𝑀) 𝒪(𝑚𝑡 )

Num. of Exp. 2𝑚𝐶 + 3𝑀 𝑀 +𝑚𝐶 − I 4𝑀 2𝑚𝑡

Communication. In Table 2 we present the asymptotic costs (com-

munication and number of exponentiations) of each protocol for

each party. 𝐶 and 𝐷 incur similar communication overhead which
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scales with the size of KV𝐶 and the delegators’ datasets. The com-

munication cost for each delegator 𝑃𝑡 is linear to their dataset. In

D𝑠PMC, party 𝑆 incurs a linear communication to the size of all

the delegators’ datasets. Finally, we observe that the number of

exponentiations of DPMC and D𝑠PMC are similar.

Table 3 shows each party’s incoming and outgoing traffic in MBs.

We observe a linear increase in the communication for each party

as we increase the input sizes. Interestingly, we see that although

D𝑠PMC performs more rounds than DPMC, the communication

for each party is lower than DPMC. This happens because each

𝑃𝑡 encrypts their XOR shares in order to prevent 𝐶 from accessing

them during the fourth step of the protocol. Finally, our protocols

have similar communication as Circuit-PSI, which showed a linear

increase with the dataset sizes. For reference, the outgoing commu-

nication for datasets of 10
6
elements was 424 MBs (344 from the

sender and 80 from the receiver).

Table 3: For each party 𝐶, 𝑃, 𝐷, 𝑆 we show In/Out in MB with
𝑚𝐶 =𝑚𝑃 and intersection size I = 50% of𝑚𝐶 .

Size 𝐶 [In/Out] 𝐷 [In/Out] 𝑆 [In/Out] 𝑃𝑡 [In/Out]

D
P
M
C

10
3

0.3/0.3 0.3/0.1 - 0.1/0.3
10

4
3.7/3.7 3.4/2.8 - 0.1/2.8

10
5

33/33 33/4.8 - 0.1/28
10

6
312/312 320/44 - 0.1/279

D
𝑠
P
M
C

10
3

0.2/0.2 0.1/0.1 0.1/0.1 0.1/0.1
10

4
2.3/2.5 1.5/0.4 1/1 0.1/0.8

10
5

22/24 14/4.3 9.5/9.5 0.1/8.5
10

6
220/241 145/42 94/94 0.1/84.7

Two-party related works.We also compare our protocols with

two-party works and vary the input size of each party from 10
3
to

10
6
while fixing the intersection size to 50%. As a baseline, we com-

pare with multi-key Private-ID [8] which only focuses on private

matching and does not consider associated data. To be in a similar

setting, we run our protocols with a single party 𝑃 . Fig. 10 shows

how our delegated protocols significantly outperform both PS
3
I

and PJC by more than a factor of 10𝑥 . On the other hand, our dele-

gated protocols are only ≈ 1.8𝑥 slower than Private-ID although

the latter does not include associated values and is only between

two parties. This means that our protocols process approximately

twice the amount of data that Private-ID processes since for each

row of KV𝑃 , DPMC and D𝑠PMC also create secret shares of the

associated data. Circuit-PSI is 3-4𝑥 times faster than our protocols

but, as the other related works, only considers two parties who are

both assumed to be online throughout the entire protocol execution

and do not take into account any delegation methods.

In Fig. 11, we repeated the same experiments over WAN and

observed a similar scaling for all the protocols. Interestingly, the

margin between Circuit-PSI and our protocols became smaller as

Circuit-PSI requires significantly more communication. Finally,

note that these experiments do not offer a balanced assessment

of our protocols as the benefits of the delegated setting are shown

in Figs. 7 and 8. In the former, we observe that each delegator per-

forms work proportional to their dataset size, while in the latter,

the delegators have smaller datasets than𝐶 and they go offline after

they outsource their datasets.
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Figure 10: Comparisons of DPMC andD𝑠PMCwith two-party
protocols: PJC, Private-ID (PMC), PJC, PS3I, and Circuit-PSI
with an increasing number of dataset sizes (𝑚𝐶 =𝑚𝑃 ) and an
intersection of 50%𝑚𝐶 . We use PMC as a baseline as it only
performs matching and does not consider associated values.
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Figure 11: Comparisons as in Fig. 10 over WAN.

7 CONCLUDING REMARKS
We presented two delegated protocols that establish relations be-

tween datasets that are held by multiple distrusting parties and

enable them to run any arbitrary secure computation. Our protocols

allow the input parties to submit their records along with associated

values and generate secret shares of the associated values for the

matched records and secret shares of NULL otherwise. Notably, they
facilitate the delegation of both the matching process and down-

stream secure computation to delegate parties. In contrast with

prior works that only support two parties, our work is designed to

scale to multiple input parties.

In addition, our delegated protocols enable one of the input

parties to provide more data after the matching has been estab-

lished which can be used for the downstream computation without

requiring rerunning the private matching process. We further in-

troduced a rerandomizable encrypted OPRF (EO) primitive that

extends beyond the classic two-party OPRF setting and allows

multiple input providers to interact with an output receiver and a

server and perform oblivious PRF evaluations. While prior works

mostly focused on intersection and union, we focused on left-join

matching and we demonstrated its benefits in privacy-preserving

online advertising by performing private ad attribution measure-

ment, privacy-preserving analytics, and personalization. Finally,

our implementation demonstrates the efficiency of our construc-

tions by outperforming related works.
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APPENDIX
A ADDITIONAL DEFINITIONS
Below, we provide Algs. 1 and 2 for Defs. 3 and 4. For simplicity, our

DPMC protocol in Fig. 4 uses single keys. Alg. 1 computes the join

as outlined in Def. 3 for multiple keys but it can be easily adjusted

for single keys. Alg. 2 computes the join as outlined in Def. 4.

Algorithm 1 Join for DPMC (Fig. 4 and Def. 3).

Match on: {hc𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ],𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]
} and {(h𝐶,𝑖,𝑗 ) 𝑗∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ]

1: J B ∅ ⊲ Initialize join.

2: For 𝑖 ∈ [𝑚𝐶 ], 𝑡 ∈ [𝑇 ]: ⊲ Perform the join.

3: For 𝑗 ∈ [𝑚𝐶,𝑖 ]: ⊲ Set of matched indices.

4: S𝑖,𝑗,𝑡 B {𝑖′ ∈ [𝑚𝑡 ] | ∃ 𝑗 ′ ∈ [𝑚𝑡,𝑖′ ] s.t. hc𝑡,𝑖′, 𝑗′ = h𝐶,𝑖,𝑗 }
5: If

⋃
𝑗 S𝑖,𝑗,𝑡 ≠ ∅: ⊲ If a match was found.

6: 𝑗𝑖,𝑡 B min( 𝑗 ∈ [𝑚𝐶,𝑖 ] s.t. S𝑖,𝑗,𝑡 ≠ ∅)
7: Pick 𝑖′ ∈ S𝑖,𝑗𝑖,𝑡 ,𝑡 ⊲ 𝑖′ is unique for each 𝑖 .

8: Add (𝑖′, 𝑡 ) to J.

Algorithm 2 Join for D𝑠PMC (Fig. 6 and Def. 4).

Match on: {h𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚𝑖 ] } and {h𝐶,𝑖,𝑗 }𝑖∈[𝑚𝐶 ], 𝑗∈[𝑚𝐶,𝑖 ]
1: J B ∅ ⊲ Initialize join.

2: For 𝑖 ∈ [𝑚𝐶 ] : ⊲ Perform the join.

3: For 𝑗 ∈ [𝑚𝐶,𝑖 ]: ⊲ For each column.

4: S𝑖,𝑗 B {𝑖′ ∈ [𝑀 ] | ∃ 𝑗 ′ ∈ [𝑚𝑖′ ] s.t. h𝑖′, 𝑗′ = h𝐶,𝑖,𝑗 }
5: 𝑡𝑖 B 1 ⊲ Keep track of number of matches for row 𝑖 .

6: S𝑇 B ∅
7: For 𝑗 ∈ [𝑚𝐶,𝑖 ]: ⊲ For each column.

8: If
⋃

𝑗∈[𝑚𝐶,𝑖 ] S𝑖,𝑗 \ S𝑇 ≠ ∅ and 𝑡𝑖 < 𝑇 : ⊲ If a match was found.

9: 𝑖′
R← S𝑖,𝑗 \ S𝑇

10: S𝑇 B S𝑇 ∪ {𝑖′ }
11: 𝑡𝑖 B 𝑡𝑖 + 1 ⊲ 𝑡𝑖 matches for row 𝑖 .

12: Add (𝑖′, 𝑡𝑖 ) to J.

Definition 14 (DDH Assumption). [22] Let G(𝜅) be a group
parameterized by security parameter 𝜅 and 𝑔 be a generator. We say
that the Decisional Diffie–Hellman (DDH) assumption holds in group
G(𝜅) if for every ppt adversary A:��

Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) = 1] − Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ) = 1]
�� ≤ negl,

where the probability is taken over 𝑎
R← Z𝑞 , 𝑏

R← Z𝑞 , 𝑐
R← Z𝑞 and

the random coins of A.

Definition 15 (Pseudorandom Generator). We call a deter-
ministic polynomial time algorithm PRG a pseudorandom generator
if for any ppt adversary A,��

Pr[A(𝑥) = 1] − Pr[A(𝑢) = 1]
�� ≤ negl,

where ℓ > 𝜅, 𝑢
R← {0, 1}ℓ , seed R← {0, 1}𝜅 and 𝑥 = PRG(seed).

Definition 16 (Random Oracle). [3] A random oracle RO is a
family of functions that maps an input from {0, 1}∗ to an ℓ-bit image
{0, 1}ℓ s.t. each output is selected uniformly and independently.

Definition 17 (Symmetric Key Encryption). A symmetric en-
cryption scheme parameterized with security parameter 𝜅 is a triplet
of algorithms (SKE.KG, SKE.Enc, SKE.Dec) with the following syn-
tax.
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• SKE.KG(1𝜅 ): On input 1𝜅 output secret key sk.
• SKE.Enc(sk, 𝑥): On input (sk, 𝑥), SKE.Enc outputs a ciphertext
ct.
• SKE.Dec(sk, ct): On input (sk, ct), SKE.Dec outputs a message
x.

For correctness, we ask that for any message 𝑥 ∈ {0, 1}∗,

Pr

sk←SKE.KG(1𝜅 )
[SKE.Dec(sk, SKE.Enc(sk, 𝑥)) = 𝑥] ≥ 1 − negl.

Definition 18 (Public Key Encryption). A public encryption
scheme parameterized with security parameter 𝜅 is a triplet of algo-
rithms (PKE.KG, PKE.Enc, PKE.Dec) with the following syntax:
• PKE.KG(1𝜅 ): On input 1𝜅 output a key pair (pk, sk).
• PKE.Enc(pk, 𝑥): On input (pk, 𝑥), PKE.Enc outputs a ciphertext
ct.
• PKE.Dec(sk, ct): On input (sk, ct), PKE.Dec outputs a message
x.

For correctness, we ask that for any message 𝑥 ∈ {0, 1}∗,

Pr

(pk,sk)←PKE.KG(1𝜅 )
[PKE.Dec(sk, PKE.Enc(pk, 𝑥)) = 𝑥] ≥ 1 − negl.

B RERANDOMIZABLE ENCRYPTED OPRF (EO)
B.1 EO Definition
In Def. 11, we introduce a new construction called rerandomizable

encrypted OPRF (EO) that allows two parties to encrypt, mask, and

shuffle their data.

Definition 19 (Pseudorandomness of the Evaluation). We
say that the evaluation is pseudorandom if for any ppt adversary A
with query access to 𝒪

Eval(sk, ·) (𝒪𝑢 (·)),��
Pr[A𝒪

Eval(sk,·) (pk, pf) = 1] − Pr[A𝒪𝑢 ( ·) (pk, pf) = 1]
�� ≤ negl,

where (pk, sk) ← KG(1𝜅 ), (pf, ek) ← EKG(1𝜅 ), and for 𝑥 ∈ {0, 1}𝜅 ,
𝒪𝑢 outputs a uniform 𝑦 whereas 𝒪

Eval(sk, ·) outputs 𝑦 = Eval(sk, 𝑥).

A stronger definition of pseudorandomness of the evaluation is

malicious pseudorandomness of the oblivious evaluation. We add

the definition for completeness even though our construction only

satisfies the pseudorandomness of the evaluation.

Definition 20 (Malicious Pseudorandomness of the Oblivi-

ous Evaluation). We say that the oblivious evaluation is pseudoran-
dom if for any ppt adversaryA with query access to𝒪

Dec(sk,OEval(ek, ·))
(𝒪𝑢 (·)),��
Pr[A𝒪

Dec(sk,OEval(ek,·) ) (pk, pf) = 1]−Pr[A𝒪𝑢 ( ·) (pk, pf) = 1]
�� ≤ negl,

where (pk, sk) ← KG(1𝜅 ), (pf, ek) ← EKG(1𝜅 ), and for ct ←
A𝒪 (pk, pf) withDec(sk,OEval(ek, ct)) ≠ ⊥,𝒪𝑢 outputs a uniform
𝑦 whereas 𝒪

Dec(sk,OEval(ek, ·)) outputs 𝑦 = Dec(sk,OEval( ek, ct)).

Definition 21 (Ciphertext Indistinguishability for Eval-

uation Key (ek) Owner). We call EO ciphertext indistinguishable
for the evaluation key owner if for any ppt algorithm A,��

Pr[A(pk, ct0) = 1] − Pr[A(pk, ct1) = 1]
�� ≤ negl,

where (pk, sk) ← KG(1𝜅 ). In the adaptive malicious setting (𝑚0,𝑚1,

pf) ← A(pk) whereas in the semi-honest setting (pf, ek) ← EKG(1𝜅 )
and (𝑚0,𝑚1) ← A(pk, pf, ek). ∀𝑖 ∈ {0, 1} : ct𝑖 ← Enc(pk, pf, 𝑥𝑖 ).

Definition 22 (Ciphertext Indistinguishability for Secret

Key Owner). We call EO ciphertext indistinguishable for the secret
key owner if for any ppt algorithm A,��

Pr[A(pk, ct0) = 1] − Pr[A(pk, ct1) = 1]
�� ≤ negl,

where (pf, ek) ← KG(1𝜅 ). In the adaptive malicious setting (𝑚0,𝑚1,

pk) ← A(pf) whereas in the semi-honest setting (pk, sk) ← KG(1𝜅 )
and (𝑚0,𝑚1) ← A(pk, pf, sk). ∀𝑖 ∈ {0, 1} : ct𝑖 ← Enc(pk, pf,𝑚𝑖 ).

Definition 23 (Rerandomized Ciphertext Indistinguisha-

bility). We call EO rerandomized ciphertext indistinguishable if for
any ppt algorithm A,��

Pr[A(pk, ct0) = 1] − Pr[A(pk, ct1) = 1]
�� ≤ negl,

(𝑥, pk, pf) ← A(1𝜅 ), ct0 ← Rnd(pk, pf, Enc( pk, pf, 𝑥)) and ct1 ←
Enc( pk, pf, 𝑥).

Definition 24 (Ciphertext Well-Formedness). We call an EO
scheme ciphertext well-formed if for any 𝑥0, 𝑥1 with OEval(ek, 𝑥0) =
OEval(ek, 𝑥1)

Δ𝑠 (ct0, ct1) ≤ negl,

where (pk, sk) ← KG(1𝜅 ), (pf, ek) ← EKG(1𝜅 ) and Δ𝑠 is the statis-
tical distance.

Definition 25 (Evaluated Ciphertext Simulatability). We
call an EO scheme evaluated ciphertext simulatable if there exists an
ppt algorithm EO.Sim such that for any 𝑥 ,

Δ𝑠 (ect0, ect1) ≤ negl,

where (pk, sk) ← KG(1𝜅 ), (pf, ek) ← EKG(1𝜅 ), ect0 ← OEval(ek,
Enc(pk, pf, 𝑥)), ect1 ← EO.Sim(pk, pf, sk, Eval(ek, 𝑥)) andΔ𝑠 is the
statistical distance.

B.2 EO Construction and Security Analysis
In this section, we instantiate our EO construction in cyclic groups

and prove its security against semi-honest adversaries.

Definition 26 (EO Construction in Cyclic Groups). Let 𝑔 be
a generator of a cyclic group G with order 𝑞 and 𝐻G (·) : {0, 1}∗ → G
a hash function. Then the EO collection of algorithms is constructed
as follows.

• KG(1𝜅 ): Sample 𝑎
R← Z𝑞 and output (pk B 𝑔𝑎, sk B 𝑎).

• EKG(1𝜅 ): Sample 𝑏
R← Z𝑞 and output (pf B 𝑔𝑏 , ek B 𝑏).

• Eval(ek, 𝑥): Output 𝑦 = 𝐻G (𝑥)ek.
• Enc(pk, pf, 𝑥): Sample 𝑟

R← Z𝑞 and define ct1 B pf
𝑟 , ct2 B

pk
𝑟 · 𝐻G (𝑥). If pk ≠ pf output ciphertext ct B (ct1, ct2) other-

wise output ⊥.
• Rnd(pk, pf, ct): Let ct = (ct1, ct2). Sample 𝑟

R← Z𝑞 and define
ct
′
1
B ct1 ·pf𝑟 , ct′

2
B ct2 ·pk𝑟 and output ciphertext ct′ B (ct′

1
,

ct
′
2
).

• OEval(ek, ct): Let ct = (ct1, ct2). Define ect2 B ct
ek

2
and output

ect B (ct1, ect2).
• Dec(sk, ect): Let ect = (ect1, ect2). Output 𝑦 B ect2/ectsk

1
.

For correctness, we ask that for any 𝑥 ∈ {0, 1}∗,
Pr[Dec(sk,OEval(ek,Rnd(pk, pf, Enc(pk, pf, 𝑥))) = Eval(ek, 𝑥)]

≥ 1 − negl,
where (pk, sk) ← KG(1𝜅 ) and (pf, ek) ← EKG(1𝜅 ).
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Lemma 27. Def. 26 defines a correct EO scheme.

Proof. Let (𝑔𝑎, 𝑎) ← KG(1𝜅 ) and (𝑔𝑏 , 𝑏) ← EKG(1𝜅 ). The
correctness of the EO construction is satisfied as shown below:

Dec(𝑎,OEval(𝑏,Rnd(𝑔𝑎, 𝑔𝑏 , Enc(𝑔𝑎, 𝑔𝑏 , 𝑥)))) = Eval(𝑏, 𝑥) ⇔

Dec(𝑎,OEval(𝑏,Rnd(𝑔𝑎, 𝑔𝑏 , (𝑔𝑏𝑟 , 𝑔𝑎𝑟 · 𝐻G (𝑥))))) = 𝐻G (𝑥)𝑏 ⇔

Dec(𝑎,OEval(𝑏, (𝑔𝑏𝑟 · 𝑔𝑏𝑟
′
, 𝑔𝑎𝑟 · 𝑔𝑎𝑟

′
· 𝐻G (𝑥)))) = 𝐻G (𝑥)𝑏 ⇔

Dec(𝑎,OEval(𝑏, (𝑔𝑏 (𝑟+𝑟
′) , 𝑔𝑎 (𝑟+𝑟

′) · 𝐻G (𝑥)))) = 𝐻G (𝑥)𝑏 ⇔

Dec(𝑎, (𝑔𝑏 (𝑟+𝑟
′) , (𝑔𝑎 (𝑟+𝑟

′) · 𝐻G (𝑥))𝑏 )) = 𝐻G (𝑥)𝑏 ⇔

Dec(𝑎, (𝑔𝑏 (𝑟+𝑟
′) , 𝑔𝑎𝑏 (𝑟+𝑟

′) · 𝐻G (𝑥)𝑏 )) = 𝐻G (𝑥)𝑏 ⇔

𝑔𝑎𝑏 (𝑟+𝑟
′) · 𝐻G (𝑥)𝑏/(𝑔𝑏 (𝑟+𝑟

′) )𝑎 = 𝐻G (𝑥)𝑏 .

□

The construction is secure against semi-honest adversaries un-

der the DDH assumption. The bottleneck that prevents malicious

security is the OPRF 𝐻 (𝑥)𝑘 . This OPRF only provides semi-honest

security since a malicious delegator might send an arbitrary group

element 𝑋 instead of 𝐻 (𝑥). In that case, it does not result in an

OPRF since it satisfies linear relations, e.g., 𝑋𝑘 · 𝑌𝑘 = (𝑋 · 𝑌 )𝑘 .
We have outlined what is needed from the EO for malicious

security in Defs. 20-22. The main bottleneck for our 𝐻 (𝑥)𝑘 based

construction is Def. 20 (Defs. 21 and 22 seem to hold when mak-

ing stronger assumptions than DDH). Other PRF candidates seem

significantly less efficient (i.e., lowMC) or require stronger assump-

tions (e.g., Dodis-Yampolskiy PRF [23]). In Appendix C, we show

that our EO primitive is compatible with the MPC shuffle protocol

of [39] by relying on the EO rerandomization procedure.

Lemma 28. Def. 26 satisfies pseudorandomness of the evaluation
under the DDH assumption in the Random Oracle Model.

Proof. We use a sequence of hybrids in which we replace step

by step (based on the order of random oracle queries) Eval(ek, 𝑥)
with a uniform group element. If there is a distinguisher against the

pseudorandomness of Eval with probability 𝜖 then there is a distin-

guisher against at least two consecutive intermediate hybrids with

probability
𝜖/𝑄, where 𝑄 is the maximum between the amount of

random oracle and Eval oracle queries. Given such a distinguisher,

we build a distinguisher against DDH as follows. The DDH dis-

tinguisher receives challenge 𝐴, 𝐵,𝐶 and sets pf B 𝐴. Once the

random oracle query is made that differentiates the two hybrids (let

that be the 𝑖∗th query), it programs 𝐻G (𝑥) B 𝐵. For all following

queries 𝑖 > 𝑖∗ program 𝐻G (𝑥) B 𝑔𝑟𝑖 , where 𝑟𝑖
R← Z𝑞 . When a

query for 𝑥 to the Eval oracle is made, query 𝑥 to the random oracle

if it has not been made yet. If 𝑥 matches the query 𝑖∗, respond with

𝐶 . If 𝑥 corresponds to a query 𝑖 < 𝑖∗, respond with a uniform group

element. Otherwise respond with 𝐵𝑟𝑖 .

If 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶 = 𝑔𝑐 then the DDH distinguisher simulates

the first of the two hybrids. In case of uniform 𝐴, 𝐵,𝐶 it simulates

the second of the two hybrids where the output of the Eval oracle

that corresponds to the 𝑖∗th message is uniform.

Since 𝑄 is polynomial and the distinguishing probability against

DDH is negligible, the probability to break the pseudorandomness

of Eval is also negligible. □

Lemma 29. Def. 26 is ciphertext indistinguishable for the evalua-
tion key owner in the semi-honest setting under the DDH assumption.

Proof. We use three hybrids, the first hybrid uses 𝑥0 for the

challenge ciphertext. In the second hybrid, the ciphertext is inde-

pendent of the message. The third hybrid uses 𝑥1 for the challenge

ciphertext. We show now that these three hybrids cannot be distin-

guished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and

three) as follows. It receives DDH challenge 𝐴, 𝐵,𝐶 and samples

(pf, ek) ← EKG(1𝜅 ). It defines pk B 𝐴 and sends (pk, ek, pf) to the
distinguisher against the ciphertext indistinguishability. It receives

𝑥0 and 𝑥1. Return challenge ciphertext ct1 B 𝐵ek, ct2 B 𝐶 · 𝑥0
(ct2 B 𝐶 · 𝑥1). Output the output of the ciphertext indistinguisha-
bility distinguisher.

If 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶 = 𝑔𝑐 then the challenge ciphertext follows

the output distribution of Enc for 𝑥0 as in the first hybrid (and𝑚1

in the third hybrid). Otherwise, the challenge ciphertext is indepen-

dent of the message as in the second hybrid. □

Lemma 30. Def. 26 is ciphertext indistinguishable for the secret
key owner in the semi-honest setting under the DDH assumption for
prime groups (every element is a generator).

Proof. We use three hybrids, the first hybrid uses 𝑥0 for the

challenge ciphertext. In the second hybrid, the ciphertext is inde-

pendent of the message. The third hybrid uses 𝑥1 for the challenge

ciphertext. We show now that these three hybrids cannot be distin-

guished based on the DDH assumption.

We build a DDH distinguisher for hybrid one and two (two and

three) as follows. It receives DDH challenge 𝐴, 𝐵,𝐶 and samples

(pk, sk) ← KG(1𝜅 ). It defines pf B 𝐴 and sends (pk, sk, pf) to the

distinguisher against the ciphertext indistinguishability. It receives

𝑥0 and 𝑥1. Return challenge ciphertext ct1 B 𝐶 , ct2 B 𝐵sk · 𝑥0
(ct2 B 𝐵sk · 𝑥1). Output the output of the ciphertext indistinguisha-
bility distinguisher.

If 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶 = 𝑔𝑐 then the challenge ciphertext follows

the output distribution of Enc for 𝑥0 (𝑥1) as in the first hybrid (third

hybrid). Otherwise, the challenge ciphertext is independent of the

message as in the second hybrid as long as 𝐵 is a generator of the

group and thus 𝐵sk is uniform for a uniform 𝐵. □

Lemma 31. Def. 26 is statistically randomized ciphertext indistin-
guishable.

Proof. Let ct B (𝑔𝑏𝑟 , 𝑔𝑎𝑟 · 𝐻G (𝑥)) be an encryption of 𝑥 for

some random 𝑟 ∈ Z𝑞 . Then the randomized ciphertext Rnd(𝑔𝑎,
𝑔𝑏 , ct) is defined as (𝑔𝑏𝑟 · 𝑔𝑏𝑟 ′, 𝑔𝑎𝑟 · 𝑔𝑎𝑟 ′ · 𝐻G (𝑥)) = (𝑔𝑏 (𝑟+𝑟 ′) ,
𝑔𝑎 (𝑟+𝑟

′) · 𝐻G (𝑥)) for random 𝑟 ′ ∈ Z𝑞 . Since both 𝑟 and 𝑟 ′ are
random elements in Z𝑞 , 𝑟 + 𝑟 ′ is also a random element in Z𝑞 and

the ciphertext is statistically randomized ciphertext indistinguish-

able. □

Lemma 32. Let sk and 𝑞 be coprime. Then Def. 26 is ciphertext well
formed.

Proof. Ciphertext well-formedness demands that messages that

result in the same PRF evaluation have an identical ciphertext distri-

bution. In the construction of Def. 26 the ciphertext only depends on
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𝐻G (𝑥) and the output of Eval is 𝐻G (𝑥)ek. Now, let there be 𝑥0 and
𝑥1 with 𝐻G (𝑥0)ek = 𝐻G (𝑥1)ek and let for 𝑏 ∈ {0, 1}, 𝐻G (𝑥𝑏 ) = 𝑔𝑟𝑏 .
Then (𝑟 − 𝑟 ′) · ek = 0 mod 𝑞 and therefore (𝑟 − 𝑟 ′) = 0 such that

𝐻G (𝑥0) = 𝐻G (𝑥1) and the ciphertexts have the same distribution or

ekwould divide the group order𝑞 and therefore not be coprime. □

Lemma 33. Def. 26 is evaluated ciphertext simulatable.

Proof. EO.Sim takes as input pk = 𝑔𝑎 , pf = 𝑔𝑏 , sk = 𝑎 and 𝑦 =

𝐻G (𝑥)𝑏 . It outputs ect = (ect0, ect1) where ect0 = pf
𝑟
, ect1 = pf

𝑎𝑟 ·
𝑦. This identically distributed as ect = OEval(ek, Enc(pk, pf, 𝑥)) =
(𝑔𝑟 ′𝑏 , 𝑔𝑟 ′𝑎𝑏 · 𝐻G (𝑥)). □

Theorem 34. Def. 26 is a secure and correct EO scheme. More
precisely, it is correct, satisfies pseudorandomness of the evaluation
and ciphertext well-formedness, evaluated ciphertext simulatability,
is randomized ciphertext indistinguishable as well as ciphertext indis-
tinguishable for the evaluation and secret key owner. The latter two
are semi-honest secure under the DDH assumption.

Proof. Follows from Lemma 27, 28, 29, 30, 31, 32, and 33. □

C THREE-PARTY SECURE SHUFFLING FOR
D𝑆PMC

C.1 Ideal Shuffle Functionality
The ideal shuffle functionality from Fig. 12 gets inputs from parties

𝐶 and 𝐷 secret shares and generates fresh shuffled shares and sends

them back to parties 𝑆 and 𝐷 . Additionally, F
Shuffle

gets multiple

EO ciphertexts from 𝐶 , generates fresh shuffled ciphertexts, and

sends them back to 𝐶 . Parties 𝑃1 to 𝑃𝑇 do not participate in the

protocol but do have information about the encrypted and secret

shared information and might be corrupted.

C.2 Shuffle Protocol
We define a permutation of size 𝑚𝐶 as an injective function 𝜋 :

[𝑁 ] → [𝑁 ]. We denote as 𝜋𝐴𝐵 a permutation generated from party

𝐴 and sent to 𝐵. Fig. 13 demonstrates the honest majority shuffling

protocol utilized by D𝑠PMC. Our shuffling protocol performs two

iterations of a permutation network and reshares𝐶’s and𝐷’s inputs

(sh𝐶 and sh𝐷 , respectively). Parties 𝐶 and 𝐷 have 𝑇 sh𝐶 and sh𝐷

vectors (indicated as sh𝐶,𝑡 , sh𝐷,𝑡 for 𝑡 ∈ [𝑇 ]), each of which has

𝑚𝑡 elements. Additionally, the shuffling protocol reshares EO.ct

to prevent leakage of honest parties’ data in the presence of an

adversary that has corrupted 𝐷 and multiple parties 𝑃 .

The first iteration of the permutation network is demonstrated

in steps 1-3 in Fig. 13 and reshares sh𝐶 , sh𝐷 to SH𝐶 , SH𝑆 and EO.ct

to EO.CT. Party 𝐶 generates two permutations (𝜋𝐶𝑆 and 𝜋𝐶𝐷 ) as

well as two vectors of scalars (𝑉𝐶𝑆 and 𝑉𝐶𝐷 ) to rerandomize sh𝐶

and sh𝐷 . 𝐶 locally applies the two permutations and XORs with the

vectors of scalars. 𝐶 then sends one permutation and one vector

of scalars to each of 𝐷 and 𝑆 . 𝐷 first permutes and XORs sh𝐷 with

𝑉𝐶𝐷 and sends the result to 𝑆 who, in turn, permutes it with 𝜋𝐶𝑆

and XORs it with 𝑉𝐶𝑆 to compute SH𝑆 .

In the second iteration, party 𝑆 generates two more permutations

(𝜋𝑆𝐶 and 𝜋𝑆𝐷 ) as well as two vectors of scalars (𝑉𝑆𝐶 and 𝑉𝑆𝐷 ) to

rerandomize the outputs of the first iteration (i.e., SH𝐶 and SH𝑆 ).

Next, 𝑆 applies both permutations on SH𝑆 and XORs it with both

vectors 𝑉𝑆𝐶 and 𝑉𝑆𝐷 , while parties 𝐶 and 𝐷 communicate to apply

the same operations on SH𝐶 . At the end of the protocol, 𝑆 gets S̃H𝐶

and 𝐷 gets S̃H𝐷 such that S̃H𝐶 ⊕ S̃H𝐷 = sh𝐶 ⊕ sh𝐷 . Finally, party

𝐶 gets �EO.CT, which is the blinded and rerandomized EO.ct.

Observe that the communication in the aforementioned protocol

is only linear to the size of EO.CT. We can further optimize the

communication by having each two parties (𝐶 with 𝐷 , 𝐶 with 𝑆 ,

and 𝑆 with 𝐷) pre-share some randomness and use it as a PRF key.

These PRF keys can then be used to generate both the random

permutations and the random vectors of scalars which will be

consistent between the parties.

C.3 Security Analysis of Secure Shuffling
Theorem 35. Let EO be a correct Rerandomizable Encrypted OPRF

scheme that satisfies statistical rerandomized ciphertext indistin-
guishability, ciphertext indistinguishability (for evaluation key or
secret key owner) and ciphertext well-formedness. Then, the shuffling
protocol in Fig. 13 realizes the ideal shuffling functionality in Fig. 12
when at most one of the parties 𝐶 , 𝐷 and 𝑆 and any amount of the
parties 𝑃1 to 𝑃𝑡 are corrupted and semi-honest.

Proof. We prove the theorem by showing that for each party,

there exists a simulator that produces a view that is indistinguish-

able from the view of the corrupted party in the real shuffle protocol.

Claim 36. Let EO be correct, satisfy statistical randomized cipher-
text indistinguishability and ciphertext well-formedness. Then, there
is a simulator that produces a view of Party𝐶 that is indistinguishable
from the real view of Party 𝐶 for any amount of corrupted parties 𝑃1
to 𝑃𝑇 . We emphasize that the distinguisher also receives the in and
outputs to and from the ideal functionality (which is identical to the
real output) of the honest parties.

Proof. We first show the simulator in case none of the parties

𝑃1 to 𝑃𝑇 is corrupted. The view of Party𝐶 can be generated from its

input {{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] , output �EO.CT and

the message 𝜋𝑆𝐶 ,𝑉𝑆𝐶 , �EO.CT from Party 𝑆 . Our simulator emu-

lates these messages and otherwise follows the description of the

computation of Party 𝐶 .

Our simulator receives input {{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],

𝑡 ∈[𝑇 ] , �EO.CT and generates Party 𝑆’s message as follows. It uses�EO.CT that was part of the input and samples 𝜋𝑆𝐶
R← Perm(𝑀)

and 𝑉𝑆𝐶
R← {0, 1}𝑀 · |𝑣 | .

We now show that this simulator emulates the correct distribu-

tion. Let �EO.CT = 𝜋 ({{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] ) = 𝜋 ′
𝑆𝐷
(

𝜋 ′
𝑆𝐶
(𝜋 ′

𝐶𝑆
(𝜋 ′

𝐶𝐷
({{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] )))), where 𝜋 ′𝑆𝐷 ,

𝜋 ′
𝑆𝐶
, 𝜋 ′

𝐶𝑆
, 𝜋 ′

𝐶𝐷
are defined as in the original protocol and 𝜋 ′

𝑆𝐶
, 𝜋 ′

𝐶𝑆
,

𝜋 ′
𝐶𝐷

are part of party 𝐶’s view. Sampling 𝜋 ′
𝑆𝐷
, 𝜋 ′

𝑆𝐶
, 𝜋 ′

𝐶𝑆
, 𝜋 ′

𝐶𝐷

R←
Perm(𝑀) and defining 𝜋 as their composition results in the same

distribution as when sampling 𝜋, 𝜋 ′
𝑆𝐶
, 𝜋 ′

𝐶𝑆
, 𝜋 ′

𝐶𝐷

R← Perm(𝑀) and
defining 𝜋 ′

𝑆𝐷
such that it is consistent with the protocol specifi-

cation. The former is the distribution during a real protocol exe-

cution while the later is the distribution during the simulated run

where the ideal functionality samples 𝜋 and the simulator samples

𝜋 ′
𝑆𝐶
, 𝜋 ′

𝐶𝑆
, 𝜋 ′

𝐶𝐷
. 𝜋 and 𝜋 ′

𝑆𝐷
remain hidden from the view of Party 𝐶 .
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Ideal F
Shuffle

{EO.ct𝑖,𝑗 }𝑖∈[𝑀 ], 𝑗∈[𝑚𝑖 ] B {EO.ct𝑡,𝑖,𝑗 }𝑡∈[𝑇 ],𝑖∈[𝑚𝑡 ], 𝑗∈[𝑚𝑡,𝑖 ]

{sh𝐶,𝑖 }𝑖∈[𝑀 ] B {sh𝐶,𝑡,𝑖 }𝑡∈[𝑇 ],𝑖∈[𝑚𝑡 ]
{sh𝐷,𝑖 }𝑖∈[𝑀 ] B {sh𝐷,𝑡,𝑖 }𝑡∈[𝑇 ],𝑖∈[𝑚𝑡 ]

•Recover inputs:
Brute force {EO.ct𝑖,𝑗 } 𝑗∈[𝑚𝑖 ],𝑖∈[𝑀 ] to {p𝑖,𝑗 } 𝑗∈[𝑚𝑖 ], 𝑗∈[𝑀 ] s.t.

EO.Eval(EO.ek, p𝑖,𝑗 ) = EO.Dec(EO.sk, EO.OEval(EO.ek, EO.ct𝑖,𝑗 ))
Recover {v𝑖 }𝑖∈[𝑀 ] s.t. v𝑖 = sh𝐶,𝑖 ⊕ sh𝐷,𝑖

•Generate new shares:

∀𝑖 ∈ [𝑀 ] : sample sh
′
𝐶,𝑖

, sh′
𝐷,𝑖

R← {0, 1}∗ s.t. sh′
𝐶,𝑖
⊕ sh

′
𝐷,𝑖

= v𝑖

∀𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑚𝑖 ] : EO.ct′
𝑖,𝑗
B EO.Enc(EO.pk, EO.pf, p𝑖,𝑗 )

•Permute:

𝜋
R← Perm(𝑀)�EO.CT B 𝜋 ( {EO.ct′

1, 𝑗
} 𝑗∈[𝑚

1
] , . . . , {EO.ct′

𝑀,𝑗
} 𝑗∈[𝑚𝑀 ] )

S̃H𝐶 B 𝜋 (sh′
𝐶,1

, . . . , sh′
𝐶,𝑀
)

S̃H𝐷 B 𝜋 (sh′
𝐷,1

, . . . , sh′
𝐷,𝑀
) .

𝐶

𝑃1

𝑃𝑇

𝑆 𝐷

.

.

.

{{EO.ct𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ] ,

sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]

�EO.CT

⊥

S̃H𝐶

⊥

⊥

⊥

⊥

{sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]

S̃H𝐷

Figure 12: The figure shows the ideal F
Shuffle

functionality. We define𝑀 B
∑𝑇
𝑡=1𝑚𝑡 . We treat EO.pk and EO.pf as publicly known

to all parties. Party 𝐶 has access to EO.ek and Party 𝐷 to EO.sk. Further, any amount of Parties 𝑃1 to 𝑃𝑇 can be corrupted who
have access to {EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , {sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] and {sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] .

We follow this argument for the distribution of𝑉𝑆𝐶 . There exists

a unique 𝑉 ∈ {0, 1}𝑀 · |𝑣 | such that SH𝐷 = SH
′
𝐷
⊕ 𝑉 , where SH𝐷

denotes the original shares sent by Party𝐷 to the ideal functionality

and SH
′
𝐷
are the shares generated and output by the ideal function-

ality. The same holds for SH𝐶 and SH
′
𝐶
. Further, as specified by the

protocol 𝑉 can also be defined as 𝑉 B 𝑉𝑆𝐷 ⊕ 𝑉𝑆𝐶 ⊕ 𝑉𝐶𝑆 ⊕ 𝑉𝐶𝐷 .
Here we ignore the fact that 𝑉 is actually impacted by the permu-

tations 𝜋𝑆𝐷 , 𝜋𝑆𝐶 , 𝜋𝐶𝑆 , 𝜋𝐶𝐷 since it can simply be accounted for by

permuting 𝑉𝑆𝐷 ,𝑉𝑆𝐶 ,𝑉𝐶𝑆 ,𝑉𝐶𝐷 . Both definitions of 𝑉 are consistent

since any two two out of two secret shares result in the same shares

up to an offset vector in {0, 1}𝑀 · |𝑣 | . As previously sampling first

𝑉𝑆𝐷 ,𝑉𝑆𝐶 ,𝑉𝐶𝑆 ,𝑉𝐶𝐷 results in the same distribution as sampling first

𝑉 ,𝑉𝑆𝐶 ,𝑉𝐶𝑆 ,𝑉𝐶𝐷 .

The last part to show is that the output �EO.CT of the ideal func-

tionality is identically distributed as the Party 𝐶’s output in the

real execution. From the statistical randomized ciphertext indis-

tinguishability of EO follows that any rerandomized ciphertext

for input p𝑖, 𝑗 is indistinguishable from a fresh encryption of p𝑖, 𝑗

even when given EO.ek (and EO.sk). Using a hybrid argument

over all 𝑁 =
∑𝑀
𝑖=1 (𝑚𝑖 ) (i.e., 𝑀 total rows and each row 𝑖 has𝑚𝑖

identifiers) distinguishing the real from the simulated view with

advantage 𝜖 results in a
𝜖/𝑁 distinguishing advantage in the ran-

domized ciphertext indistinguishability game. Now, we show that

brute forcing a p
′
𝑖, 𝑗

from a ciphertext and encrypting it is except

negligible probability identically distributed as a ciphertext of p𝑖, 𝑗 .

By the correctness property it follows that except negligible proba-

bility, both ciphertexts evaluate to the same OPRF evaluation, i.e.,

EO.Eval(EO.ek, p𝑖, 𝑗 ) = EO.Eval(EO.ek, p′
𝑖, 𝑗
). Now, we can invoke

the ciphertext well-formedness which ensures that the rerandom-

ized �EO.CT is with overwhelming probability identically distributed

as the fresh �EO.CT generated by the ideal functionality.

In case some of the parties 𝑃1 to 𝑃𝑇 are corrupted we actually do

not need to adapt our simulator. The difference is that when adding

the views of the corrupted parties among 𝑃1 to 𝑃𝑇 to the view of

𝐶 , Party 𝐶 has access to some of the shares {SH𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] .
However, knowing these shares do not have impact on the distri-

bution of the view generated by our simulator and can therefore

simply added to the view. □

Claim 37. There exists a simulator that produces a view of Party
𝐷 that is indistinguishable from the real view of Party 𝐷 for any
amount of corrupted parties 𝑃1 to 𝑃𝑇 .

Proof. We start with the case where there is no corruption

among parties 𝑃1 to 𝑃𝑇 . Party𝐷’s view can be generated from its in-

put {sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ]𝑡 ∈[𝑇 ] , output S̃H𝐷 and themessages (𝜋𝐶𝐷 ,𝑉𝐶𝐷 ),
ŜH𝐶 from Party 𝐶 and 𝜋𝑆𝐷 ,𝑉𝑆𝐷 from Party 𝑆 . Therefore it suffices

for our simulator to emulate these messages and generate the view

from these messages according to the protocol description.

Our simulator on input {sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ]𝑡 ∈[𝑇 ] , S̃H𝐷 samples 𝜋𝐶𝐷 ,

𝜋𝑆𝐷
R← Perm(𝑀), 𝑉𝐶𝐷 ,𝑉𝑆𝐷 ,

R← {0, 1}𝑀 · |𝑣 | . ŜH𝐶 is picked such

that S̃H𝐷 = 𝜋𝑆𝐷 (ŜH𝐶 ) ⊕𝑉𝑆𝐷 . We define 𝜋 as in the previous claim.

As previously, sampling first 𝜋𝑆𝐷 , 𝜋𝑆𝐶 , 𝜋𝐶𝑆 , 𝜋𝐶𝐷 and defining 𝜋 as

their composition as done in the real protocol execution results

in the same distribution as when sampling 𝜋, 𝜋𝑆𝐷 , 𝜋𝐶𝐷 first and

then defining and sampling 𝜋𝑆𝐶 , 𝜋𝐶𝑆 (not part of the view) such

that they are consistent with the real protocol distribution. Using
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We define𝑀 B
∑𝑇
𝑡=1𝑚𝑡 .

1 First Shuffling (Party𝐶)
Input: {{EO.ct𝑡,𝑖,𝑗 } 𝑗∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]

1: 𝑉𝐶𝐷 ,𝑉𝐶𝑆
R← {0, 1}𝑀 ·|𝑣 |

2: 𝜋𝐶𝐷 , 𝜋𝐶𝑆
R← Perm(𝑀)

3: For 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑚𝑡 ], 𝑗 ∈ [𝑚𝑡,𝑖 ]: ⊲ Randomize

4: EO.ct′
𝑡,𝑖,𝑗
B EO.Rnd(EO.pk, EO.pf, EO.ct𝑡,𝑖,𝑗 )

5: SH𝐶 B (sh𝐶,1,1, . . . , sh𝐶,𝑚𝑇 ,𝑇 )
6: EO.CT B ( {EO.ct′

1,1, 𝑗
} 𝑗 , . . . , {EO.ct′

𝑇 ,𝑚𝑇 , 𝑗
} 𝑗 )

7: SH𝐶 B 𝜋𝐶𝑆 (𝜋𝐶𝐷 (SH𝐶 ) ⊕𝑉𝐶𝐷 ) ⊕𝑉𝐶𝑆 ⊲ Perm. & Rand.

8: EO.CT B 𝜋𝐶𝑆 (𝜋𝐶𝐷 (EO.CT)) ⊲ Permute

Send to 𝑆 : 𝜋𝐶𝑆 ,𝑉𝐶𝑆 , EO.CT

Send to 𝐷 : 𝜋𝐶𝐷 ,𝑉𝐶𝐷

Output of first shuffle: SH𝐶

2 First Shuffling (Party 𝐷)
Input: {sh𝐷,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡∈[𝑇 ]
Messages: 𝑉𝐶𝐷 , 𝜋𝐶𝐷

1: SH𝐷 B (sh𝐷,1,1, . . . , sh𝐷,𝑇 ,𝑚𝑇
)

2: SH𝐷 B 𝜋𝐶𝐷 (SH𝐷 ) ⊕𝑉𝐶𝐷 ⊲ Permute and Randomize

Send to 𝑆 : SH𝐷

Output of first shuffle: –

3 First Shuffling (Party 𝑆)
Input: –

Messages: 𝜋𝐶𝑆 ,𝑉𝐶𝑆 , SH𝐷 , EO.CT

1: SH𝑆 B 𝜋𝐶𝑆 (SH𝐷 ) ⊕𝑉𝐶𝑆 ⊲ Permute and Randomize

Output of first shuffle: SH𝑆 , EO.CT

4 Second Shuffling (Party 𝑆)
Input: SH𝑆 , EO.CT

1: ( {EO.ct1, 𝑗 } 𝑗 , . . . , {EO.ct𝑀,𝑗 } 𝑗 ) B EO.CT

2: 𝑉𝑆𝐶 ,𝑉𝑆𝐷
R← {0, 1}𝑀 ·|𝑣 |

3: 𝜋𝑆𝐶 , 𝜋𝑆𝐷
R← Perm(𝑀)

4: For 𝑖 ∈ [𝑀 ], 𝑗 ∈ [𝑚𝑖 ]: ⊲ Randomize

5: EO.ct
′
𝑖,𝑗 B EO.Rnd(EO.pk, EO.pf, EO.ct𝑖,𝑗 )

6: EO.CT
′
B ( {EO.ct1, 𝑗 } 𝑗 , . . . , {EO.ct𝑀,𝑗 } 𝑗 )

7: S̃H𝐶 = 𝜋𝑆𝐷 (𝜋𝑆𝐶 (SH𝑆 ) ⊕𝑉𝑆𝐶 ) ⊕𝑉𝑆𝐷 ⊲ Perm. & Rand.

8:
�EO.CT B 𝜋𝑆𝐷 (𝜋𝑆𝐶 (EO.CT)) ⊲ Permute

Send to𝐶: 𝜋𝑆𝐶 ,𝑉𝑆𝐶 , �EO.CT

Send to 𝐷 : 𝜋𝑆𝐷 ,𝑉𝑆𝐷

Output: S̃H𝐶

5 Second Shuffling (Party𝐶)
Input: SH𝐶

Messages: 𝜋𝑆𝐶 ,𝑉𝑆𝐶 , �EO.CT

1: ŜH𝐶 B 𝜋𝑆𝐶 (SH𝐶 ) ⊕𝑉𝑆𝐶 ⊲ Permute and Randomize.

Send to 𝐷 : ŜH𝐶

Output: �EO.CT

6 Second Shuffling (Party 𝐷)
Input: –

Messages: 𝜋𝑆𝐷 ,𝑉𝑆𝐷 , ŜH𝐶

1: S̃H𝐷 B 𝜋𝑆𝐷 (ŜH𝐶 ) ⊕𝑉𝑆𝐷 ⊲ Permute and Randomize

Output: S̃H𝐷

Figure 13: Three-Party Shuffling. Parties 𝐶 and 𝐷 get secret shares sh𝐶 and sh𝐷 of a vector 𝑣 as inputs such that 𝑣 = sh𝐶 ⊕ sh𝐷 .
Party 𝐶 additionally inputs a Rerandomizable Encrypted OPRF ciphertext vector EO.ct of same length as sh𝐶 and sh𝐷 . The
protocol reshares (sh𝐶 , sh𝐷 ) to (S̃H𝐶 , S̃H𝐷 ) and carries along EO.ct and reshares it to �EO.CT.
the same approach, we can show that 𝑉𝐶𝐷 ,𝑉𝑆𝐷 are also correctly

distributed.

Similar to the previous claim, corrupting any amount of parties

𝑃1 to 𝑃𝑇 and adding them to the view of Party 𝐷 does not impact

the distribution of the view generated by the simulator. Again,

we can simply add {{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] of the
corrupted parties to the view generated by our simulator. □

Claim 38. Let EO satisfy statistical rerandomized ciphertext in-
distinguishability and ciphertext indistinguishability (for evaluation
key or secret key owner). Then, there is a simulator that produces a
view of Party 𝑆 that is indistinguishable from the real view of Party 𝑆
for any amount of corrupted parties 𝑃1 to 𝑃𝑇 .

Proof. Let {{EO.ct′
𝑡,𝑖, 𝑗
} 𝑗 ∈[𝑚𝑡,𝑖 ] , sh

′
𝐶,𝑡,𝑖

, sh′
𝐷,𝑡,𝑖
}𝑖∈[𝑚𝑡 ],𝑡 ∈C⊆[𝑇 ] be

the views of the corrupted parties among 𝑃1 to 𝑃𝑇 . The view of

Party 𝑆 and the corrupted parties among 𝑃1 and 𝑃𝑇 can be gener-

ated from {{EO.ct′
𝑡,𝑖, 𝑗
} 𝑗 ∈[𝑚𝑡,𝑖 ] , sh

′
𝐶,𝑡,𝑖

, sh′
𝐷,𝑡,𝑖
}𝑖∈[𝑚𝑡 ],𝑡 ∈C⊆[𝑇 ] , 𝑆’s

output S̃H𝐶 , the messages 𝜋𝐶𝑆 ,𝑉𝐶𝑆 , EO.CT from Party 𝐷 and SH𝐷

from Party 𝐷 .

Our simulator has inputs {{EO.ct′
𝑡,𝑖, 𝑗
} 𝑗 ∈[𝑚𝑡,𝑖 ] , sh

′
𝐶,𝑡,𝑖

, sh′
𝐷,𝑡,𝑖

}𝑖∈[𝑚𝑡 ],𝑡 ∈C⊆[𝑇 ] and S̃H𝐶 . It samples 𝜋𝐶𝑆
R← Perm(𝑀), 𝑉𝐶𝑆

R←
{0, 1}𝑀 · |𝑣 | and generates EO.CT as encryptions of 0.

We now show that the simulator generates the correct distri-

bution. We define 𝜋 as in the previous claims. 𝜋𝑆𝐷 , 𝜋𝑆𝐶 , 𝜋𝐶𝑆 , 𝜋𝐶𝐷
are part of the simulated view except 𝜋 and 𝜋𝐶𝐷 . By using the

same sampling argument as before, 𝜋𝐶𝑆 and𝑉𝐶𝑆 follow the correct

distribution.

It remains to show that EO.CT are distributed correctly. We use

a hybrid argument to show this.

Hybrid
0
: The first hybrid defines EO.CT according to the real exe-

cution. In the real execution, Party𝐶 uses the EO.Rnd proce-

dure to rerandomize {EO.ct′
𝑡,𝑖, 𝑗
} 𝑗 ∈[𝑚𝑡,𝑖 ],𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] and ap-

plies the permutations 𝜋𝐶𝐷 and 𝜋𝐶𝑆 the outcome is EO.CT.

Hybrid
1
This hybrid generates EO.CT as a fresh encryption of p𝑡,𝑖, 𝑗

using EO.Enc(EO.pk, EO.pf, p𝑡,𝑖, 𝑗 ).
Hybrid

2
: The last hybrid generates EO.CT as an encryption of 0

using EO.Enc(EO.pk, EO.pf, 0).

Based on the statistical ciphertext indistinguishability of EO,Hybrid
0

andHybrid
1
generate up to negligible probability the same distribu-

tion. We can use a standard hybrid argument to show this. Let 𝜖 be

the distinguishing probability between Hybrid
0
and Hybrid

1
and

let 𝑁 =
∑𝑀
𝑖=1𝑚𝑖 be the amount of ciphertexts, then the statistical

ciphertext indistinguishability can be broken with probability
𝜖
𝑁
.
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We show now that Hybrid
1
and Hybrid

2
are computationally

indistinguishable based on the ciphertext indistinguishability (for

secret key or evaluation key owner). The two notions give the

adversary access to either EO.sk or EO.ek. Since the corrupted

parties among 𝑃1 to 𝑃𝑇 as well as Party 𝑆 do not have access to

either of the keys, a weaker notion suffices in which no access to

EO.sk, EO.ek is given. This weaker notion is implied by both of the

ciphertext indistinguishability notions of an EO scheme.

We use a standard hybrid in which we replace step by step one

of the 𝑁 ciphertexts with an encryption with 0. The last hybrid

matchesHybrid
2
and the first hybridHybrid

1
. For each step we use

a reduction to the ciphertext indistinguishability game in which

given EO.pk, EO.pf, we need to construct a distinguisher D
′
that

distinguishes between an encryption of 𝑥0 = p𝑡,𝑖, 𝑗 and 𝑥1 = 0.

We construct this distinguisher by invoking the distinguisher D

between two intermediate hybrids. D
′
forwards EO.pk and EO.pf,

it generates the view of the corrupted parties as specified by the

hybrids with the exception of the one ciphertext that is different

in the hybrids. D
′
uses the challenge ciphertext for this ciphertext.

Finally D
′
outputs the output of D.

If D successfully distinguishes two intermediate hybrids, D
′

breaks the ciphertext indistinguishability for the secret key and

evaluation key owner of the EO scheme. Let 𝜖 be an upper bound on

the distinguishing probability in the ciphertext indistinguishability

game. Then the distinguishing probability between Hybrid
1
and

Hybrid
2
is upper bounded by

𝜖/𝑁 .
The indistinguishability betweenHybrid

0
,Hybrid

1
, andHybrid

2

concludes our claim. □

□

D SECURITY ANALYSIS
D.1 Security Analysis of DPMC

Proof. We prove Theorem 10 by proving the following two

claims.

Claim 39. Let the secret key encryption and the PKE scheme be
IND-CPA secure, the KEM simulatable and the DDH assumption hold.

Then there exists a simulator that generates the joint view of Party
𝐶 and any subset of parties 𝑃1 to 𝑃𝑇 that is computationally indistin-
guishable from the real view.

Proof. The joint view of Party 𝐶 and the subset of corrupted

parties among 𝑃1 to 𝑃𝑇 , identified by C ⊆ [𝑇 ] can be generated

from their inputs KV𝐶 , KV𝑡 𝑡 ∈C, the outputs SH𝐶 , and the messages

{cta𝑡 , ctb𝑡 , {{ha𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] ,

ctc𝑡,𝑖 }𝑖∈[𝑚𝑡 ] }𝑡 ∈[𝑇 ] , {�KEM.cp𝑖,𝑡 }𝑖∈[𝑚𝐶 ],𝑡 ∈[𝑇 ] .
The simulator on input KV𝐶 , {KV𝑡 }𝑡 ∈C, and SH𝐶 simulates the

messages as follows. It samples (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 )
and uses KEM.Sim on input KEM.sk, SH𝐶 to compute message

{�KEM.cp𝑖,𝑡 }𝑖∈[𝑚𝐶 ],𝑡 ∈[𝑇 ] . For all 𝑡 ∉ C, it samples sk𝑡 ← SKE.KG(1𝜅 ),
cta𝑡 ← PKE.Enc(pk𝐷 , 0), ctb𝑡 ← SKE.Enc(sk𝑡 , 0), ctc𝑡,𝑖 ← SKE.Enc(
sk𝑡 , 0), 𝑟𝑡,𝑖, 𝑗

R← Z𝑞 and defines ha𝑡,𝑖, 𝑗 B 𝑔𝑟𝑡,𝑖,𝑗 .

We use the following sequence of hybrids to show that the joint

view during the real execution is indistinguishable from the view

generated by the simulator.

Hybrid
1
: Identical to the view during the real protocol execution.

Hybrid
2
: Computes (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 ) as output

of KEM.Sim on input KEM.sk, SH𝐶 .

Hybrid
3
: For all 𝑡 ∈ C, compute cta𝑡 as cta𝑡 ← PKE.Enc(pk𝐷 , 0).

Hybrid
4
: For all 𝑡 ∈ C, compute ctb𝑡 , ctc𝑡,𝑖 as ctb𝑡 ← SKE.Enc(sk𝑡 ,

0), ctc𝑡,𝑖 ← SKE.Enc(sk𝑡 , 0).
Hybrid

5
: For all 𝑡 ∈ C, compute ha𝑡,𝑖, 𝑗 as ha𝑡,𝑖, 𝑗 B 𝑔𝑟𝑡,𝑖,𝑗 where

𝑟𝑡,𝑖, 𝑗
R← Z𝑞 .

Hybrid
1
and Hybrid

2
are indistinguishable except with negligi-

ble probability based on the simulatability of the key encapsulation

scheme.

Hybrid
2
and Hybrid

3
are indistinguishable based on the IND-

CPA security of the PKE scheme. Notice that only party 𝐷 has

access to sk𝐷 . The reduction works as follows. Let there be a distin-

guisher against Hybrid
2
and Hybrid

3
with probability 𝜖 . Then, we

define a sequence of𝑇 + 1 hybrids in which we step by step replace

cta𝑡 with encryptions of 0. The distinguisher can distinguish at

least one of the hybrids with at least probability
𝜖/𝑇 . We can use it

to construct a distinguisher against the IND-CPA game as follows.

The distinguisher receives pk from the IND-CPA game and defines

pk𝐷 B pk. It sets 𝑥0 B sk𝑡 and 𝑥1 B 0 and receives back a chal-

lenge ciphertext ct. It defines cta𝑡 B ct. It outputs whatever the

distinguisher between Hybrid
2
and Hybrid

3
outputs. This distin-

guisher breaks the IND-CPA security with probability
𝜖/𝑇 . By the

security of the PKE scheme, this must be negligible and therefore

Hybrid
2
and Hybrid

3
can be distinguished with at most negligible

probability as well.

Since cta is independent of the symmetric key, we can now use

the IND-CPA security of the symmetric key encryption to replace

ctb and ctc with encryptions of 0. Again, we define a sequence

of hybrids in which we replace step by step the ciphertexts by

encryptions of 0. The distinguisher against Hybrid
3
and Hybrid

4

can distinguish at least two consecutive intermediate hybrids with

at least probability
𝜖/(𝑇 +∑𝑡∈C𝑚𝑡 ). The distinguisher against the IND-

CPA game can use 𝑥0 B 𝑎𝑡 (𝑥0 B sh𝐷,𝑡,𝑖 ) and 𝑥1 in the IND-

CPA game for the challenge ciphertext. Then, the distinguisher

can use the challenge ciphertext to either simulate the first or

second consecutive intermediate hybrid and output whatever the

distinguisher against the hybrids outputs. Therefore, Hybrid
3
and

Hybrid
4
can be distinguished at most with negligible probability.

Notice that the ciphertexts are now independent of scalar 𝑎𝑡 .

We can use the DDH assumption (Def. 14) to argue that Hybrid
4

and Hybrid
5
are indistinguishable. Again, we use a sequence of

hybrids in which we replace step by step ha𝑡,𝑖, 𝑗 with a uniform

group element, i.e., ha𝑡,𝑖, 𝑗 B 𝑔𝑟𝑡,𝑖,𝑗 where 𝑟𝑡,𝑖, 𝑗
R← Z𝑞 . There are∑

𝑡 ∈C,𝑖∈[𝑚𝑡 ]𝑚𝑡,𝑖 hybrids. Let there be a distinguisher between

Hybrid
4
and Hybrid

5
with probability 𝜖 . Then, there are two con-

secutive intermediate hybrids that this distinguisher distinguishes

with at least probability
𝜖/(∑𝑡∈C,𝑖∈[𝑚𝑡 ]𝑚𝑡,𝑖 ). The reduction to DDHworks

as follows. The DDH distinguisher receives challenge 𝐴, 𝐵,𝐶 . Be-

fore invoking the hybrid distinguisher, it programs 𝐻G (p𝑡,𝑖, 𝑗 ) B 𝐵

and defines h𝑡,𝑖, 𝑗 B 𝐶 . For all other h𝑡,𝑖, 𝑗 that are not uniform yet,

it programs 𝐻G (p𝑡,𝑖, 𝑗 ) B 𝑔𝑥𝑡,𝑖,𝑗 , where 𝑥𝑡,𝑖, 𝑗
R← Z𝑞 and defines

h𝑡,𝑖, 𝑗 B 𝐴𝑥𝑡,𝑖,𝑗 . The DDH distinguisher outputs the output of the

hybrid distinguisher. When 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶 = 𝑔𝑎𝑏 , all h𝑡,𝑖, 𝑗 are

correctly defined as in the first consecutive hybrid. When𝐴, 𝐵,𝐶 are
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uniform group elements, h𝑡,𝑖, 𝑗 = 𝐶 is uniform while all other h𝑡,𝑖, 𝑗

are distributed according to the second (and first) of the consecutive

hybrids. Therefore, Hybrid
4
and Hybrid

5
can be distinguished with

at most negligible probability which concludes the proof of our

claim. □

Claim 40. Let the KEM scheme be key indistinguishable and the
DDH assumption hold.

Then there exists a simulator with access to the leakage defined
in Def. 9 that generates the joint view of Party 𝐶 and any subset of
parties 𝑃1 to 𝑃𝑇 that is computationally indistinguishable from the
real view.

Proof. The joint view of Party 𝐷 and the subset of corrupted

parties among 𝑃1 to 𝑃𝑇 , i.e., defined by C ⊆ [𝑇 ] can be generated

by the inputs sk𝐷 , {KV𝑡 }𝑡 ∈C, output SH𝐷 and messages KEM.pk,

{(h𝐶,𝑖, 𝑗 ) 𝑗 ∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ] and {cta𝑡 , ctb𝑡 , {{hca𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , ctc𝑡,𝑖
}𝑖∈[𝑚𝑡 ] }𝑡 ∈[𝑇 ] .

Given the leakage defined in Def. 9 and inputs sk𝐷 , {KV𝑡 }𝑡 ∈C,
SH𝐷 , the simulator works as follows. The simulator uses the leakage

to define {(h𝐶,𝑖, 𝑗 ) 𝑗 ∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ] and {hc𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ],𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] .

For all 𝑡 ∉ C, it samples𝑎𝑡
R← Z𝑞 (for all other 𝑡 ,𝑎𝑡 is already defined

when generating the view for 𝑃𝑡 ). hca𝑡,𝑖, 𝑗 B hc
𝑎𝑡
𝑡,𝑖, 𝑗

. For all 𝑡 ∉ C,

sample sk𝑡 ← SKE.KG(1𝜅 ) and use sk𝑡 and pk𝐷 to define cta,

ctb and ctc according to the protocol description, where sh𝐷,𝑡,𝑖 is

defined s.t. it is consistent with SH𝐷 and (KEM.cp𝑡,𝑖 ,KEM.k𝑡,𝑖 ) ←
KEM.Enc(KEM.pk).

We prove that the view generated by the simulator is indistin-

guishable from the real view using the following hybrids.

Hybrid
1
: Is identical to the view during the protocol.

Hybrid
2
: For all 𝑡 ∉ C, generate (KEM.cp𝑡,𝑖 ,KEM.k𝑡,𝑖 ) ← KEM.Enc(

KEM.pk). (Now KEM.k𝑡,𝑖 is independent of sh𝐶 ).

Hybrid
3
: Use the leakage to define {(h𝐶,𝑖, 𝑗 ) 𝑗 ∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ] and
{hc𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ],𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] .

Hybrid
1
and Hybrid

2
are indistinguishable based on the key in-

distinguishability of the key encapsulation. To show this, we use a

sequence of hybrids in which we replace KEM.cp𝑡,𝑖 generated by

𝑃𝑡 for 𝑡 ∉ C and related to sh𝐶,𝑡,𝑖 with (KEM.cp′𝑡,𝑖 ,KEM.k
′
𝑡,𝑖 ) ←

KEM.Enc(KEM.pk). We use the triangular inequality which implies

that if KEM.cp,KEM.k cannot be distinguished with more than

probability 𝜖 from KEM.cp, 𝑢 for a uniform 𝑢, KEM.cp,KEM.k can-

not be distinguished from KEM.cp′,KEM.k with more than prob-

ability 2𝜖 . Let there be a distinguisher that distinguishes Hybrid
1

and Hybrid
2
with probability 𝜖 . Then it distinguishes at least two

consecutive intermediate hybrids with probability
𝜖/(∑𝑡∈C𝑚𝑡 ). Given

this distinguisher, we build a distinguisher against the key in-

distinguishability which receives challenge KEM.cp,KEM.k and

sets sh𝐶,𝑡,𝑖 B KEM.k. The distinguisher outputs the output of

the hybrid distinguisher. When KEM.k is consistent with KEM.cp,

the distinguisher simulates Hybrid
1
and otherwise Hybrid

2
. This

distinguisher breaks the key indistinguishability with probability

𝜖/(2∑𝑡∈C𝑚𝑡 ). Since this is negligible, Hybrid1 and Hybrid
2
cannot be

distinguished except negligible probability.

Hybrid
2
and Hybrid

3
are indistinguishable based on the DDH

assumption. We show this by using a sequence of intermediate

hybrids in which we replace {(h𝐶,𝑖, 𝑗 ) 𝑗 ∈[𝑚𝐶,𝑖 ] }𝑖∈[𝑚𝐶 ] and {hc𝑡,𝑖, 𝑗

} 𝑗 ∈[𝑚𝑡,𝑖 ],𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] with uniform group elements. If there is a

distinguisher that distinguishes Hybrid
2
and Hybrid

3
with prob-

ability 𝜖 , then it distinguishes at least two consecutive interme-

diate hybrids with probability
𝜖/(∑𝑖∈[𝑚𝐶 ]𝑚𝐶,𝑖 +

∑
𝑡∈[𝑇 ],𝑖∈[𝑚𝑡 ]𝑚𝑡,𝑖 ). The dis-

tinguisher against DDH receives 𝐴, 𝐵,𝐶 and defines hca
1/𝑎𝑡
𝑡,𝑖, 𝑗
B 𝐶

(h𝐶,𝑖, 𝑗 B 𝐶), programs 𝐻G (p𝑡,𝑖, 𝑗 ) B 𝐵 (𝐻G (𝑐𝑖, 𝑗 ) B 𝐵). For all

hca𝑡,𝑖, 𝑗 , h𝐶,𝑖, 𝑗 that are not uniform yet, program𝐻G (p𝑡,𝑖, 𝑗 ) B 𝑔𝑥𝑡,𝑖,𝑗 ,

𝐻G (c𝑖, 𝑗 ) B 𝑔𝑥𝑖,𝑗 and define hca
1/𝑎𝑡
𝑡,𝑖, 𝑗
B 𝐴𝑥𝑡,𝑖,𝑗 , h𝐶,𝑖, 𝑗 B 𝐴𝑥𝑖,𝑗 . When

𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ,𝐶 = 𝑔𝑎𝑏 , the DDH distinguisher simulates the first

of the intermediate hybrids otherwise the second one. Notice that in

the latter case, hc𝑡,𝑖, 𝑗 B hca
1/𝑎𝑡
𝑡,𝑖, 𝑗

(h𝐶,𝑖, 𝑗 ) is uniform. This concludes

the proof of our claim. □

□

D.2 Security Analysis of D𝑠PMC
Proof. We prove Theorem 13 by constructing a simulator that

can generate a view of the corrupted parties from their inputs and

outputs that is indistinguishable from their view during a real exe-

cution. We emphasize that the distinguisher has access to the inputs

and outputs of the honest parties specified by the ideal functionality

in Fig. 2, which matches the outputs of the real protocol. We show

this in the following three claims.

Claim 41. Let PKE be an IND-CPA secure and correct PKE scheme,
PRG a secure pseudorandom generator and EO be a correct and satisfy
statistical rerandomized ciphertext indistinguishability, the (semi-
honest) ciphertext indistinguishability for the evaluation key owner
and ciphertext well-formedness.

Then, there exists a simulator that generates the joint view of Party
𝐶 and any subset of parties 𝑃1 to 𝑃𝑇 that is indistinguishable from
the joint view during the protocol execution.

Proof. The joint view can be generated from the input and

messages received by party 𝐶 and the subset of parties 𝑃1 to 𝑃𝑇 .

Let this subset be C ⊆ [𝑇 ]. Notice that the parties do not have any

outputs as specified in the ideal functionality in Fig. 2.

The inputs are KV𝐶 and {KV𝑡 }𝑡 ∈C and the output is SH𝐶 . The

parties 𝑃1 to 𝑃𝑇 receive messages EO.pk, EO.pf and have access

to pk𝐷 , where EO.pf is generated by Party 𝐶 . Party 𝐶 receives

the messages {{{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] , sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ] , cta𝑡 }𝑡 ∈[𝑇 ] and
{�KEM.cp𝑖,𝑡 }𝑖∈[𝑚𝑐 ],𝑡 ∈[𝑇 ] .

The simulator receives input KV𝐶 , {KV𝑡 }𝑡 ∈C, SH𝐶 and emulates

the view as follows. It samples (KEM.pk,KEM.sk) ← KEM.KG(1𝜅 ),
(EO.pk, EO.sk) ← EO.KG(1𝜅 ) and (pk𝐷 , sk𝐷 ) ← PKE.KG(1𝜅 ). It
samples cta𝑡 ← PKE.Enc(pk, 0) for all 𝑡 ∉ [𝑇 ]. It samples sh𝐶,𝑡,𝑖

R←
{0, 1} |v | for all 𝑡 ∉ C. It defines ŝh𝐶,𝑖,𝑡 consistently with SH𝐶 for

all 𝑡 ∈ [𝑇 ] and defines �KEM.cp𝑖,𝑡 ← KEM.Sim(KEM.sk, ŝh𝐶,𝑖,𝑡 ).
Further, it defines EO.ct𝑡,𝑖, 𝑗 ← EO.Enc(EO.pk, EO.pf, 0) for all 𝑡 ∉
C. For 𝑡 ∈ C, EO.ct𝑡,𝑖, 𝑗 ← EO.Enc(EO.pk, EO.pf, p𝑡,𝑖, 𝑗 ), where
p𝑡,𝑖, 𝑗 ∈ KV𝑡 .

We use the following sequence of hybrids to show that the sim-

ulated view is indistinguishable from the view during the real pro-

tocol execution.

Hybrid
0
: Identical to the view during the real protocol execution.

Hybrid
1
: Samples cta𝑡

PKE.Enc←−−−−−−− (pk, 0) for all 𝑡 ∉ C.
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Hybrid
2
: Samples sh𝐷,𝑡,𝑖

R← {0, 1} |v | for all 𝑡 ∉ C (instead of using

PRG).

Hybrid
3
: Invoke the simulator of the shuffling protocol to simulate

the view during the shuffling. The input {{EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] ,

sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ] , {�EO.ct𝑖, 𝑗 }𝑖∈[𝑀 ], 𝑗 ∈[𝑚𝑖 ] of the simulator is dis-

tributed as inHybrid
2
. Notice that the simulator also receives

EO.pk, EO.pf and EO.ek.

Hybrid
4
: Replaces {EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] for all 𝑡 ∉ C and all {�EO.ct𝑖, 𝑗
}𝑖∈[𝑀 ], 𝑗 ∈[𝑚𝑖 ] with independent encryptions of 0. More pre-

cisely, EO.ct𝑡,𝑖, 𝑗 ← EO.Enc(EO.pk, EO.pf, 0) and �EO.ct𝑖, 𝑗
← EO.Enc(EO.pk, EO.pf, 0).

Hybrid
5
: Samples sh𝐶,𝑡,𝑖

R← {0, 1} |v | for all 𝑡 ∉ C. Further, defines
ŝh𝐶,𝑖,𝑡 consistently with SH𝐶 and samples �KEM.cp𝑖,𝑡 ←
KEM.Sim(KEM.sk, ŝh𝐶,𝑖,𝑡 ).

Notice that the view in Hybrid
5
is identically distributed as the

view generated by the simulator.

We now show that the hybrids are indistinguishable. LetHybrid
0

and Hybrid
1
be distinguishable with probability 𝜖 . We define a

sequence of intermediate hybrids that replaces the ciphertexts

cta𝑡 ← PKE.Enc(pk, seed𝑡 ) with cta𝑡
PKE.Enc←−−−−−−− (pk, 0). Then there

is a distinguisher that distinguishes one of the intermediate hybrids

with at least probability
𝜖/𝑇 . Such a distinguisher would directly

distinguish challenge ciphertexts for 𝑥0 B seed𝑡 from 𝑥1 B 0 in

the IND-CPA game of the PKE scheme. Therefore the distinguishing

probability between Hybrid
0
and Hybrid

1
is upper bounded by the

IND-CPA security of PKE.

Let Hybrid
1
and Hybrid

2
be distinguishable with probability

𝜖 . We define a sequence of intermediate hybrids in which we

step by step replace (sh𝐷,𝑡,1, . . . , sh𝐷,𝑡,𝑚𝑡
) = PRG(seed𝑡 ) with

(sh𝐷,𝑡,1, . . . , sh𝐷,𝑡,𝑚𝑡
) ← {0, 1}𝑚𝑡 · |v |

. Then, there would be a dis-

tinguisher that distinguishes two consecutive intermediate hybrids

with at least probability
𝜖/𝑇 . This would imply a distinguisher that

breaks the security of the PRG with the same probability. Since the

PRG is indistinguishable except negligible probability, Hybrid
0
and

Hybrid
1
cannot be distinguished except negligible probability.

Let Hybrid
2
and Hybrid

3
be distinguishable with probability

𝜖 . Then, this would allow to distinguish the simulated view dur-

ing the shuffle protocol from the real view. However, as shown in

Theorem 35 this probability is upper bounded the correctness, the

statistical rerandomized ciphertext indistinguishability, the (semi-

honest) ciphertext indistinguishability (for evaluation key or se-

cret key owner) and ciphertext well-formedness of the EO scheme.

Therefore Hybrid
2
and Hybrid

3
cannot be distinguished beyond

the bound given in the proof of Theorem 35.

We use the (semi-honest) ciphertext indistinguishability for the

evaluation key owner to argue that Hybrid
3
and Hybrid

4
are in-

distinguishable. Notice that in the ideal shuffle functionality (see

Fig. 12), the ciphertext sets {EO.ct𝑡,𝑖, 𝑗 } 𝑗 ∈[𝑚𝑡,𝑖 ] and {�EO.ct𝑖, 𝑗 }𝑖∈[𝑀 ]
𝑗 ∈[𝑚𝑖 ] are independent encryptions. Therefore, we can replace

them independently with encryptions of 0. We need to use the ci-

phertext indistinguishability for the evaluation key owner since the

simulator need access to EO.ek which is also used by the simulator

of the shuffling protocol. The indistinguishability between Hybrid
3

and Hybrid
4
follows from a straightforward reduction to the ci-

phertext indistinguishability using a hybrid argument in which we

replace step by step each ciphertext with an encryption of 0 until

all ciphertexts are encryptions of 0. If there exists a distinguisher

between Hybrid
3
and Hybrid

4
that distinguishes them with prob-

ability 𝜖 , then there is a distinguisher that distinguishes one of

the intermediate hybrids with at least probability
𝜖/2𝑁 , where 𝑁

is the size of {KV𝑡 }𝑡 ∈[𝑇 ] . The distinguisher for the intermediate

hybrids would then lead to a distinguisher against the ciphertext

indistinguishability for the evaluation key owner of the EO scheme.

We finalize the claim by showing the indistinguishability of

Hybrid
4
and Hybrid

5
. Similar as in case of the ciphertexts, the

ideal shuffle functionality samples the shares sh𝐶,𝑡,𝑖 and ŝh𝐶,𝑖,𝑡 in-

dependently. Therefore, we can also sample them independently.

Hybrid
5
generates statistically the same view as Hybrid

4
for the

following reason. Sampling sh𝐶
R← {0, 1} |v | and sh𝐷

R← {0, 1} |v |
under the constraint that sh𝐶 ⊕ sh𝐷 = v (Hybrid

4
) results in the

same distribution as when sampling sh𝐶
R← {0, 1} |v | and defin-

ing sh𝐷 B v ⊕ sh𝐶 (Hybrid
5
), where sh𝐷 and v are not known

to the simulator. Thus, sh𝐶 can be sampled independently of sh𝐷

and v by sampling sh𝐶
R← {0, 1} |v | . Further, by the property of

KEM.Sim, �KEM.cp𝑖,𝑡 has the same distribution when being an out-

put of KEM.Enc and KEM.Sim. This concludes our claim. □

Claim 42. Let PKE be a correct PKE scheme, KEM a secure and
correct key encapsulation scheme and EO secure, correct and evaluated
ciphertext simulatable.

Then, there exists a simulator with access to the leakage graph of
Def. 12 that generates the joint view of Party 𝐷 and any subset of
parties 𝑃1 to 𝑃𝑇 that is indistinguishable from the joint view during
the protocol execution.

Proof. The joint view of Party 𝐷 and the subset of parties 𝑃1 to

𝑃𝑇 (defined by C ⊆ [𝑇 ]) can be generated from inputs (pk𝐷 , sk𝐷 ),
{KV𝑡 }𝑡 ∈C, output SH𝐷 and messages KEM.pk, EO.pf, {cta𝑡 }𝑡∉C
and {KEM.cp𝑖 , sh𝐷,𝑖 }𝑖∈[𝑀 ] , {h𝐶,𝑖, 𝑗 }𝑖∈[𝑚𝐶 ], 𝑗 ∈[𝑚𝐶,𝑖 ] , {EO.ect𝑖, 𝑗 }
𝑖∈[𝑀 ], 𝑗 ∈[𝑚𝑖 ] . Further, the view depends on the leakage graph de-

fined in Def. 12.

The simulator emulates the joint views as follows. It samples

(KEM.pk,KEM.sk) ← KEM.KG(1𝜅 ) and (EO.pf, EO.ek) ← EO.EKG.

The simulator defines {h𝐶,𝑖, 𝑗 }𝑖∈[𝑚𝐶 ], 𝑗 ∈[𝑚𝐶,𝑖 ] and {h𝑖, 𝑗 }𝑖∈[𝑀 ], 𝑗 ∈[𝑚𝑖 ]
such that they are consistent with the leakage graph. It then de-

fines EO.ect𝑖, 𝑗 ← EO.Sim(EO.pk, EO.sk, h𝑖, 𝑗 ). It samples sh𝐷,𝑖
R←

{0, 1} |v | and (KEM.cp𝑖 ,KEM.k𝑖 ) ← KEM.Enc(KEM.pk). Define
s̃h𝐷,𝑖 s.t. that it is consistent with SH𝐷 and sh𝐷,𝑖 . For all s̃h𝐷,𝑖

that are not defined yet, sample s̃h𝐷,𝑖
R← {0, 1} |v | . For 𝑡 ∉ C, it

samples seed𝑡
R← {0, 1}𝜅 and cta𝑡 ← PKE.Enc(pk, seed𝑡 ), which

is identical to the protocol description.

We prove the claim by using the following sequence of hybrids.

Hybrid
0
: Is identical to the views during the real execution of the

protocol.

Hybrid
1
: Simulates the view during the shuffling by using the sim-

ulator of the shuffle protocol.

Hybrid
2
: Sample EO.ect𝑖, 𝑗 ← EO.Sim(EO.pk, EO.sk, h𝑖, 𝑗 ), where

h𝑖, 𝑗 B EO.Eval(EO.ek, p𝑖, 𝑗 ) and p𝑖, 𝑗 is the reshuffled p𝑡,𝑖, 𝑗 ,

which can be computed from the shuffle permutation 𝜋 and

{KV𝑡 }𝑡 ∈[𝑇 ] .
71



Proceedings on Privacy Enhancing Technologies 2024(2) D. Mouris et al.

Hybrid
3
: It defines {h𝐶,𝑖, 𝑗 }𝑖∈[𝑚𝐶 ], 𝑗 ∈[𝑚𝐶,𝑖 ] and {h𝑖, 𝑗 }𝑖∈[𝑀 ], 𝑗 ∈[𝑚𝑖 ]

such that they are consistent with the leakage graph.

Hybrid
4
: Samples (KEM.cp𝑖 ,KEM.k𝑖 ) ← KEM.Enc(KEM.pk) s.t.

it is independent of sh𝐷,𝑖 , s̃h𝐷,𝑖 and SH𝐷 .

Hybrid
5
: Samples sh𝐷,𝑖

R← {0, 1} |v | and defines s̃h𝐷,𝑖 s.t. that it is

consistent with SHJ,𝐷 and sh𝐷,𝑖 . For all s̃h𝐷,𝑖 that are not

defined yet, sample s̃h𝐷,𝑖
R← {0, 1} |v | .

If Hybrid
0
and Hybrid

1
can be distinguished with probability 𝜖 ,

then there is a distinguisher against the simulator of the shuffle

protocol with probability 𝜖 . Since such a distinguishing probabil-

ity is negligible (based on the security of EO, see Theorem 35),

distinguishing Hybrid
0
from Hybrid

1
is also negligible.

If Hybrid
1
and Hybrid

2
can be distinguished with probability

𝜖 , we can define a sequence of hybrids that step by step replaces

EO.ect𝑖, 𝑗 with outputs of EO.Sim. Now, there are at least two con-

secutive intermediate hybrids that can be distinguished with proba-

bility
𝜖/(∑𝑀

𝑖=1𝑚𝑖 ). Since this probability is negligible due to the evalu-

ated ciphertext simulatability of EO, Hybrid
1
and Hybrid

2
can also

only be distinguished with negligible probability.

In Hybrid
2
h𝑖, 𝑗 and h𝐶,𝑖, 𝑗 are the outputs of EO.Eval whereas in

Hybrid
3
they are uniform in {0, 1}𝜅 . We prove that Hybrid

2
and

Hybrid
3
are indistinguishable except with negligible probability by

a reduction to the pseudorandomness of EO.Eval. Let there be a

distinguisher distinguishing Hybrid
2
and Hybrid

3
with probability

𝜖 , then we can build a distinguisher against the pseudorandomness

of EO.Eval with probability 𝜖 . The latter requests all h𝑖, 𝑗 and h𝐶,𝑖, 𝑗

from the EO.Eval oracle, uses them to simulate Hybrid
2
, Hybrid

3

and outputs the output of the former distinguisher. When they are

actual EO.Eval outputs, it simulates Hybrid
2
and when they are

uniform, it simulates Hybrid
3
.

If Hybrid
3
and Hybrid

4
can be distinguished with probability

𝜖 , we can define a sequence of hybrids that step by step replaces

(KEM.cp𝑖 ,KEM.k𝑖 ) with (KEM.cp𝑖 , KEM.k′𝑖 ) where (KEM.cp𝑖 ,
KEM.k𝑖 ) ← KEM.Enc(pk). Now there exist two consecutive in-

termediate hybrids that can be distinguished which implies a dis-

tinguisher for (KEM.cp,KEM.k) and KEM.cp,KEM.k′ with prob-

ability
𝜖/𝑀. By the triangular inequality, we can then build a dis-

tinguisher for (KEM.cp,KEM.k) and (KEM.cp, 𝑢) with probability

𝜖/2, where 𝑢 R← {0, 1} |v | . Such a distinguisher breaks the key indis-

tinguishability for the KEM. Since this is negligible, Hybrid
3
and

Hybrid
4
cannot be distinguished except with negligible probability.

Hybrid
4
andHybrid

5
produce identically distributed views. Note

that s̃h𝐷,𝑖 , s̃h𝐷,𝑖 and SHJ,𝐷 are independent of (KEM.cp𝑖 ,KEM.k𝑖 ).

Further, due to the simulator of the shuffling, they are independent

of sh𝐶,𝑡,𝑖 and sh𝐷,𝑡,𝑖 . Therefore, they can be sampled independently

which concludes the proof of our claim. □

Claim 43. Let EO be a secure and correct randomizable encrypted
OPRF scheme. Then, there exists a simulator that generates the joint
view of Party 𝑆 and any subset of parties 𝑃1 to 𝑃𝑇 that is indistin-
guishable from the joint view during the protocol execution.

Proof. The joint view of Party 𝑆 and the corrupted subset of

parties 𝑃1 to 𝑃𝑇 (defined by set C ⊆ [𝑇 ]) can be generated from

their input {KV𝑡 }𝑡 ∈C and the received messages {s̃h𝐶,𝑖 }𝑖∈[𝑀 ] and
KEM.pk.

The simulator samples s̃h𝐶,𝑖
R← {0, 1} and uses the simulator of

the shuffle protocol to simulate the view during the shuffling.

The view generated by the simulator is indistinguishable from

the view during the real protocols by the indistinguishability of

the simulated view of shuffling from the real view of the shuffling.

Notice that in case of using the simulated view of the shuffling,

{s̃h𝐶,𝑖 }𝑖∈[𝑀 ] are independent of {sh𝐶,𝑡,𝑖 }𝑖∈[𝑚𝑡 ],𝑡 ∈[𝑇 ] . Therefore,

s̃h𝐶,𝑖 can be sampled independently when using the simulated view

during the shuffling. □

□

E EXTENDING LEFT JOIN TO INNER JOIN
DPMC and D𝑠PMC can be extended to support other types of joins

such as an inner join instead of a left join. In both protocols, party

𝐷 performs the join based on the encrypted datasets of 𝐶 and all

delegators (i.e., in DPMC in step 4 and in D𝑠PMC in step 9 ).

Performing the left join in party 𝐷 hides from party 𝐶 which of its

rows have beenmatchedwith one of the delegators’ rows andwhich

have not. It is straightforward to extend our delegated protocols to

compute the inner join (i.e., intersection) between KV𝐶 and KV𝑃

and secret share the associated metadata for these rows. This can

be performed very efficiently using hash join over the encrypted

identifiers and sending the �KEM.cp value to 𝐶 only for the records

present in both datasets. Notably, computing the inner join leaks

the intersection size to party 𝐶 but also renders the downstream

MPC computation more efficient since it does not have to process

secret shares of NULL.
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