
Extending the Security of SPDZ with Fairness
Bart Veldhuizen

The Netherlands

bartveldhuizen@outlook.com

Gabriele Spini

TNO

The Hague, The Netherlands

gabriele.spini@tno.nl

Thijs Veugen

TNO

The Hague, The Netherlands

University of Twente

Enschede, The Netherlands

thijs.veugen@tno.nl

Lisa Kohl

CWI, Cryptology Group

Amsterdam, The Netherlands

lisa.kohl@cwi.nl

ABSTRACT

SPDZ refers to a family of protocols for Secure Multi-Party Com-

putation (MPC) that lie at the foundation of very popular soft-

ware frameworks for MPC, such as SCALE-MAMBA and MP-SPDZ.

SPDZ provides good efficiency while guaranteeing security even

when all but one of the participants are corrupted. This seemingly

optimal property comes at a price: the protocol only offers security

with abort, meaning that even a single cheating participant can

force the protocol to abort, leaving honest participants with no clue

on what the correct output is, or who cheated. This is especially

problematic since cheating participants are able to obtain the correct

output of the computation, effectively ‘stealing’ it. We propose a hy-

brid secure adaptation to SPDZ, which retains the existing security

guarantees, but in case the number of cheating players is less than

half of the total, we achieve fairness,meaning that either all players

obtain the correct output of the computation, or no player does. The

‘less than half’ threshold of corrupted players has been proven to be

a tight bound to achieve fairness. Aside from the description of the

protocol and its security proof, we also present a proof-of-concept

implementation, and evaluate its practical performance, thereby

demonstrating that our solution has negligible overhead compared

to standard SPDZ in most application scenarios.

KEYWORDS

Secure Multi-Party Computation, SPDZ, fairness, hybrid security.

1 INTRODUCTION

In Secure Multi-Party Computation, or MPC for short, 𝑛 mutually

distrusting parties 𝑃1, . . . , 𝑃𝑛 , each holding inputs 𝑥1, . . . , 𝑥𝑛 respec-

tively, wish to evaluate a previously determined function 𝑓 on

their inputs, thereby obtaining 𝑓 (𝑥1, . . . , 𝑥𝑛), without revealing
any other information on their input. MPC thus simulates, with

cryptographic means, an ideal model where a trusted third party

receives all inputs 𝑥1, . . . , 𝑥𝑛 , computes 𝑓 (𝑥1, . . . , 𝑥𝑛) and sends the

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(2), 330–350

© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0053

resulting value back to the parties, thus guaranteeing privacy of

the inputs 𝑥1, . . . , 𝑥𝑛 and correctness of the output 𝑓 (𝑥1, . . . , 𝑥𝑛).
Introduced by Yao [42] in the 1980s, MPC only began to be

used in practical scenarios in the last decade, starting from the

seminal work on agricultural-market auctions in Denmark [7], and

subsequently other topics such as financial benchmarking [18],

genome computation [28], and various other applications [43]. This

increasing number of practical deployments of MPC is due, on one

hand, to newMPC frameworks with very high efficiency, and on the

other hand, the increased need for secure data sharing solutions.

Several settings for MPC have been investigated, with different

assumptions regarding the number and behavior of participants,

and with different security guarantees. The highly popular family

of protocols based on SPDZ [19, 21, 32], which led to several widely

used software frameworks [1, 30], supports any number 𝑛 ≥ 2

of participants, and guarantees security even in the presence of

𝑛 − 1 corrupted participants. This, however, has effects on the exact

type of security that is achieved: while privacy of the inputs is

guaranteed (under computational-hardness assumptions), only a

weak form of correctness is ensured, known as security with selective

abort. This means that no honest participant will be led to accept

an incorrect result, even when all other participants cooperate by

actively cheating and deviating from the instructions of the protocol.

However, no ‘positive’ guarantee is given: cheating behavior will

cause the protocol to abort, leaving the honest participants with no

clue as to what the correct result is, or who cheated. This effectively

allows a dishonest participant to perform a denial-of-service attack

on the protocol. On top of this, an attack is described at the end of

Subsection 2.3 that enables a single dishonest participant to obtain

the correct result, while forcing the protocol to abort without any

fear of getting caught, thus effectively ‘stealing’ the result. This

can be highly problematic in various scenarios, such as auctions,

where the inputs 𝑥1, . . . , 𝑥𝑛 are bids and the result is the highest bid

or bidder: in this case, a dishonest party can learn the highest bid,

while leaving the other participants with no clue on its value or who

cheated, thus gaining an unfair advantage and effectively barring

the use of protocols that merely guarantee security-with-abort in

this setting. Similar problems occur in financial benchmarking,

where one cheating party could walk away with exclusive access

to important benchmarking results, and contract signing, where

a single party may obtain a (possibly legally enforceable) signed

contract. At its core one or more of the participants may be enticed

330

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0053

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

to ‘steal’ the output 𝑓 (𝑥1, . . . , 𝑥𝑛) in scenarios where the value of

asymmetrical knowledge between the 𝑃1, . . . , 𝑃𝑛 may be larger than

the value of the output only [13].

A possible mitigation to this problem in the context of SPDZ-

based protocols was introduced in the form of cheater detection [41],

where dishonest parties can still ‘steal’ the result, but will be iden-

tified as cheaters by the other parties (although honest parties will

not necessarily identify the same cheater). More generally, the short-

comings of security with abort has inspired the study of secure

computation protocols with identifiable abort [38]. However, this

only solves part of the problem, since cheating parties are still able

to obtain the result of the computation, and/or prevent other parties

from doing so.

The ideal solution is captured by the notion of fairness: either

all participants obtain the correct output of the computation, or

no participant does. However, fairness cannot, in general, be guar-

anteed when half or more of the participants are corrupted [14],

seemingly conflicting with the existing security guarantee of SPDZ,

which holds in the presence of up to 𝑛 − 1 corrupted participants.

We address this apparent incompatibility with a hybrid-

secure [11, 23] approach. Namely, we propose an adaptation to

the SPDZ-based protocol(s) that guarantees different notions of

security, depending on the number of corrupted participants 𝑡 . If

𝑛/2 ≤ 𝑡 < 𝑛 (dishonest majority), we retain the security guarantees

of SPDZ: no honest party will be led to accept an incorrect result.

However, when 𝑡 < 𝑛/2, we guarantee fairness, thus eliminating

the possibility that cheating parties ‘steal’ the computation result.

Privacy of the inputs is always guaranteed.

The variant of SPDZ we introduce thus has the potential of

considerably increasing the scope of possible application scenarios

of SPDZ-based software suites.

1.1 Contributions

Our work is an enhancement of the SPDZ-2 protocol [19], and

is compatible with improvements that share the same online

phase, such as MASCOT [31], LowGear and HighGear [32], and

TopGear [3].

The modified version we introduce maintains the security guar-

antees of SPDZ, i.e. it ensures privacy of the parties’ inputs and

security with abort, even when all but one parties are corrupted.

When only a minority of the parties is corrupted, our modified

protocol achieves fairness. Guaranteeing fairness extends the use

cases of the aforementioned protocols with those where asymmet-

ric knowledge of the output is valuable and accepting an incorrect

result is undesirable. The requirement that only a minority of par-

ties may be corrupted has been shown to be, in general, a necessary

condition to achieve fairness [14]. Furthermore, it was shown that

the even stronger property of robustness cannot be guaranteed

while also achieving security with abort for up to 𝑛 − 1 corruptions,
for general MPC protocols based on secret sharing, such as the

SPDZ-based protocols [27]. Extending the SPDZ-based protocols

with fairness in the presence of an honest majority is therefore

optimal. We stress the fact that the number of corrupted parties

does not need to be given as input parameter to the protocol.

We describe our solution and formally prove that it satisfies the

two aforementioned notions of security. Moreover, we present a

proof-of-concept implementation and provide benchmarking re-

sults that show that the overhead of our solution, compared to

‘standard’ SPDZ, is negligible in both communication and compu-

tation.

A point of attention is that we only provide a security proof in

the stand-alone model, as opposed to the universal-composability

model [10] where the security of standard SPDZ is proved. This is

due to the fact that, during the last phase of our protocol, parties

need to unanimously agree on whether proceeding to attempt to

reconstruct the output, or aborting; intuitively, this requires syn-

chronous channels, and hence make a security proof in the UC

model (which is inherently asynchronous) extremely complex at

best [29]. We stress the fact that a lack of formal UC proof does not

mean that our solution is inherently insecure when composed in

parallel; for practical applications as those described in the previous

subsection, in particular, we do not foresee this to pose limitations:

for such applications, MPC solutions would arguably be run in a pro-

tected environment, with end-to-end encryption and authenticated

network connections. On the one hand, parties could therefore

agree to run a single execution if they deem attacks on composed

protocols to be realistic; on the other hand, these environment

would typically enforce measures, by e.g. direct cable connections

or traffic control, that would prevent the adversary from arbitrarily

delaying messages and disrupt unanimous agreement.

1.2 Related Work

The SPDZ-2 protocol [19], which forms the basis for our scheme,

was introduced in 2012. The protocol improves upon the original

SPDZ [21] protocol by introducing a (covert-) secure key-generation

protocol, improving the overall efficiency of the preprocessing

phase and introducing a new, efficient online phase. The new on-

line phase uses a simpler MAC scheme, enabling the generation

of shared randomness for multiple function evaluations using the

same MAC-key.

Since the introduction of SPDZ-2, several improvements have

been made with regard to the efficiency of the preprocessing phase.

Keller et al. [31] introduced MASCOT, which improves the through-

put of generating multiplication triples up to two orders of magni-

tude using symmetric key primitives in combination with oblivious

transfer, instead of the previously used public-key schemes. Keller et

al. [32] introduce the LowGear and HighGear protocols in the Over-

drive paper, which improve the efficiency of the Zero-Knowledge

Proof of Knowledge (ZKPoK) for a low and high number of par-

ticipants respectively. Baum et al. [3] introduced TopGear, which

leverages a new proving strategy to improve the efficiency of the

ZKPoKs once more. Since all these protocols, including the SPDZ-

2 protocol, use the same online phase, we refer to them as the

SPDZ-based protocols.

Other work aims to extend the security that SPDZ-based pro-

tocols offer. Spini and Fehr [41] deter participants from cheating

by adding cheater detection. Their scheme retains the original effi-

ciency of the online phase when no cheating occurs. Baum et al. [5]

extend SPDZ with identifiable abort and public verifiability, coming

at the cost of increased complexity. Cunningham et al. [15] extend

the protocol with three separate properties: complete identifiable

abort, complete identifiable auditability and openability.

331

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

A very relevant work in the field of hybrid security is an impossi-

bility result by Ishai et al. [27], proving that there exists no protocol

based on secret sharing (as the SPDZ-based protocols do) that can

guarantee security with abort for 𝑛−1 participants, while also guar-
anteeing robustness. A multitude of hybrid secure protocols have

been proposed, including schemes that are hybrid in the number of

corrupted participants [9], type of corruption (active/passive) [27],

computational capabilities of the adversary [12] and a mix of these

characteristics [26, 27].

Another relevant feasibility result was presented by Cleve [14],

which shows that, in general, it is impossible to achieve fairness

when a majority of the participants is corrupt. To guarantee fair-

ness, a wide variety of techniques has been proposed. These include

the use of trusted dealers [25, 34], stimulating honest behavior by

linking the computation to cryptocurrencies [4, 33] or reputation

systems [2], and using public bulletin boards [13]. An interesting

approach to achieving fairness is that of gradual release, where

sensitive information is released gradually. This gradual release

of information ensures that the advantage of a malicious partici-

pant is bounded by a certain factor [6, 17, 26]. Notice that these

works typically rely on GMW-like constructions [24], and are hence

less efficient than SPDZ-based protocols, due to the use of zero-

knowledge proofs.

A framework that can transform a variety of secret-sharing based

semi-honest minority protocols into malicious minority protocols,

guaranteeing security with abort, was introduced by Lindell and

Nof [35]. They guarantee security with abort by verifying all mul-

tiplications that were performed in the computation stage, before

they continue with the output-reconstruction stage. We note that

they do not achieve fairness, although this is possible in the honest-

majority setting.

Damgård et al. [20] present a general construction, based on

verifiable secret sharing, that constructs a fair protocol from any

protocol satisfying security with abort against a dishonest minority

and having a special structure, called compute-then-open by the

authors. While SPDZ seems to satisfy this condition, the authors do

not make claims on a possible extension to the dishonest-majority

setting.

Finally, Nordholt and Veeningen [37] continue on this work, in-

cluding the addition of fairness. First, they propose a protocol that

guarantees fairness in the malicious minority setting, but is only

secure for a small number of participants. Second, they provide a

SPDZ-based three-party computation protocol that achieves fair-

ness in the malicious minority setting by blinding the output values

with three input masks, one for every participant, before verifying

them.

Table 1 provides an overall comparison of the results discussed

in this section.

1.3 High-level Overview of our Construction

In this section, we provide some intuition on how our scheme

works and provide some insights in its applicability to arbitrary

actively-secure MPC protocols.

We begin with some intuition on the overall idea behind our con-

struction. For simplicity, assume that the functionality 𝑓 that the

parties wish to compute produces a single output. Loosely speak-

ing, our construction makes use of two components: an actively

secure MPC protocol offering security with abort against 𝑛 − 1

corrupted parties, and a fair reconstruction protocol that, on input

of a secret sharing of a given value, allows the parties to reconstruct

that value, while guaranteeing correctness against 𝑛 − 1 corrupted
parties, and fairness against < 𝑛/2 corrupted parties. In our case,

the first protocol is given by SPDZ, while the second one is based on

the conversion of an additive 𝑛-out-of-𝑛 secret sharing to a Shamir

secret sharing with threshold ⌈𝑛/2⌉, and subsequent reconstruction.
The parties then use the MPC protocol to compute 𝑓 (𝑥1, . . . , 𝑥𝑛) +𝑏,
where 𝑏 is a random ‘masking’ value, and to compute a secret shar-

ing of 𝑏 of the format required by the fair-reconstruction protocol.

At this point, the parties simply use the latter protocol to fairly

reconstruct 𝑏, then subtract this value from the output of the MPC

protocol, and finally obtain 𝑓 (𝑥1, . . . , 𝑥𝑛) in a fair way.

Intuitively, the security with abort against 𝑛 − 1 corrupted

parties is guaranteed since both the MPC protocol and the fair-

reconstruction protocol enjoy this property, while fairness is guar-

anteed by the reconstruction protocol: dishonest parties can only

obtain 𝑓 (𝑥1, . . . , 𝑥𝑛) + 𝑏 for an unknown random value 𝑏 through

the (unfair) MPC protocol, and are thus unable to obtain any in-

formation related to the actual output 𝑓 (𝑥1, . . . , 𝑥𝑛). At this point,
reconstructing the actual output is equivalent to reconstructing

the masking value 𝑏, and the fairness property of the reconstruc-

tion protocol assures fairness of the complete secure computation.

This high-level intuition is therefore quite general in nature; in

particular, it is not per se specific to the SPDZ protocol.

However, the actual construction described in this article uses

particular aspects of the SPDZ protocol for improved efficiency.

More precisely, recall that the fair-reconstruction protocol is given

by a share conversion from an additive 𝑛-out-of-𝑛 sharing to a

Shamir sharing. This conversion needs some additional security

mechanisms to guarantee correctness; in our case, this is achieved

by reusing security mechanisms from SPDZ. Therefore, instanti-

ating the MPC protocol and the fair-reconstruction protocol sep-

arately would actually incur in some redundancy, since some op-

erations that are necessary to achieve correctness would need to

be executed twice. In order to gain efficiency, we instead execute

them only once during the execution of SPDZ, and feed the values

produced by them to the fair-reconstruction protocol. Moreover,

we use another important efficiency aspect of SPDZ, namely its

division into a preprocessing phase (independent of the computa-

tion inputs) and a very efficient ‘online’ phase, by executing some

of the operations of the fair-reconstruction protocol during the

preprocessing phase.

These adaptations result in a very efficient construction, which

nicely adheres to the design principles of SPDZ. However, they also

imply that the two components of our construction (an MPC proto-

col offering security with abort, and a fair-reconstruction protocol)

can no longer be seen as two generic black-box components.

1.4 Organization

The paper is organized as follows. In Section 2 the required back-

ground knowledge and notation are described. Section 3 presents

332

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

Table 1: Comparison of most closely related work, excluding results based on trusted set-up assumptions.

Fairness,

𝑡 < 𝑛/2
Identifiable abort,

𝑡 ≥ 𝑛/2
Cheater detection,

𝑡 ≥ 𝑛/2
Security with abort,

𝑡 ≥ 𝑛/2
Any 𝑛 ≥ 2

supported

SPDZ-based

This work ✓ × × ✓ ✓ ✓
SPDZ × × × ✓ ✓ ✓
[41] × × ✓ ✓ ✓ ✓
[5], [15] × ✓ ✓ ✓ ✓ ✓
[20] ✓ × × × ✓ ×
[37] ✓ × × ✓ × ✓
[26] ✓ × × ✓ ✓ ×

the fair SPDZ protocol by introducing a new reveal phase, accom-

panied with a complexity analysis. Section 4 analyses the practical

performance of both the non-fair and fair protocol, by evaluating

their running time and bandwidth usage. Section 5 provides the

formal security statement of our construction, with complete proof

found in Appendix A. Finally, conclusions are drawn in Section 6.

2 PRELIMINARIES

This section provides the background information which is neces-

sary for our construction. Table 2 explains the meaning of the main

variables that we use.

2.1 Security Setting

Several assumptions are made about the security setting in which

our scheme, including the online phase of the SPDZ protocol,

operates. The set of 𝑛 participants P is partitioned in two non-

overlapping sets: the set of ℎ honest participantsH and the set of

𝑡 actively corrupt participants A. The adversary is the central en-

tity that controls the participants in A. Since the proposed design

is hybrid-secure in the number of corrupted participants, differ-

ent corruption thresholds are assumed in different settings. To be

precise, we achieve security with abort for 𝑡 < 𝑛, while we can

guarantee fairness with 𝑡 < 𝑛/2. We therefore assume that 𝑛 > 2,

since otherwise fairness cannot be achieved.

Since our design extends the SPDZ-2 protocol [19], several as-

sumptions are inherited. First, the adversary is computationally

bounded. Second, the adversary is static, i.e. the adversary deter-

mines which parties to corrupt before the protocol starts. Finally, it

is assumed that the participants have access to a complete synchro-

nous point-to-point communication network, i.e. the communication

between participants is private and authenticated, and messages

sent by an honest participant cannot be arbitrarily delayed by the

adversary.

It must be noted that the different preprocessing phases for SPDZ

operate in various security settings (covert/active, . . .). We assume

that the preprocessing phase securely generates all necessary data

for the online phase under the aforementioned assumptions.

2.2 Protocol building blocks

The pseudorandom generatorU𝑠 (𝑝, 𝑡) is a deterministic function

that extends a seed 𝑠 to a list of 𝑡 pseudo-random elements in the

field F𝑝 , as defined in [19]. Furthermore, we assume parties have

Table 2: Notation

𝑛 total number of participants

𝑃𝑖 participant 𝑖

P set of all participants

ℎ number of honest participants

H set of honest participants

𝑡 number of actively corrupted parties

A set of actively corrupted parties

U𝑠 (𝑝, 𝑡) generator on seed 𝑠 of 𝑡 pseudorandom F𝑝 -elements

F𝑝 finite field of prime order 𝑝

𝑆𝐻 (𝑠) Shamir secret-sharing of 𝑠

𝑆𝐻 (𝑠)𝑖 Shamir share of participant 𝑖

𝑘 Shamir reconstruction threshold

𝑤 (𝑖) weight of 𝑖-th share during reconstruction

𝐶 (𝑖) commitment of participant 𝑖

𝑂 (𝑖) opening information of participant 𝑖

𝑚 size of hash output (for broadcasts, commitments)

⟦𝑥⟧ additive secret-sharing of 𝑥

𝑥𝑖 additive share of participant 𝑖

𝛾 (𝑥) MAC-tag of value 𝑥

𝛼 secret MAC-key (𝛾 (𝑥) = 𝑥 · 𝛼)
⟨·⟩ sharing consisting of ⟦·⟧ and ⟦𝛾 (·)⟧
𝑞 number of unverified partially-opened values

𝑎 (𝑖) 𝑖-th unverified partially-opened value

𝑎 random linear combination of the 𝑎 (𝑖) -s
𝜎 difference between MAC-tag of 𝑎 and original 𝛾 (𝑎)

𝑦 (𝑖) 𝑖-th output value

ℓ the number of output values

𝑏 random value masking the output

𝑧 blinded output value (𝑧 = 𝑦 + 𝑏)

access to a cryptographic hash functionH1, which is modeled as a

random oracle [19].

2.2.1 Shamir’s secret-sharing scheme. Shamir’s secret-sharing

scheme [40] is a powerful secret-sharing scheme that operates over

a finite field. We will only discuss this scheme over the finite field

333

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

F𝑝 , where 𝑝 is prime.
1
A (𝑘, 𝑛)-sharing of secret 𝑠 indicates that the

secret 𝑠 is split into 𝑛 shares, of which 𝑘 are needed to reconstruct

the secret 𝑠 again. The complete Shamir sharing of 𝑠 is denoted by

𝑆𝐻 (𝑠), while the Shamir share of participant 𝑃𝑖 ∈ P is denoted by

𝑆𝐻 (𝑠)𝑖 . In order to share a secret value 𝑠 , a random (𝑘 − 1)-degree
polynomial 𝑓 is sampled, such that 𝑠 is the constant term, and 𝑛

unique non-zero points on this polynomial are computed, which

act as the shares. In our scheme, the point (𝑖, 𝑓 (𝑖)) is always given
to participant 𝑃𝑖 .

The secret value 𝑠 can be reconstructed by interpolating the

polynomial 𝑓 . Following Lagrange’s interpolation theory, we know

that it is always possible to interpolate a (𝑘 − 1)-degree poly-

nomial using 𝑘 points. To reconstruct from any set of 𝑘 points

(𝑥1, 𝑓 (𝑥1)), . . . , (𝑥𝑘 , 𝑓 (𝑥𝑘)) we use Lagrange’s interpolation for-

mula, albeit in a different form, which allows us to precisely for-

mulate the required number of operations to reconstruct the poly-

nomial 𝑓 (Section 3.3). The polynomial is calculated as 𝑓 (𝑥) =∑𝑘
𝑗=1 𝑐

(𝑗)
0
· 𝑓 (𝑥 𝑗) · 𝑥0 + . . . + ∑𝑘

𝑗=1 𝑐
(𝑗)
𝑘−1 · 𝑓 (𝑥 𝑗) · 𝑥

𝑘−1
, which is a

linear combination of the Shamir shares and reconstruction coeffi-

cients 𝑐
(1)
0

. . . , 𝑐
(𝑘)
𝑘−1. These coefficients are calculated as follows:

𝑐
(𝑗)
𝑖

= (−1)𝑧 ·𝑤 (𝑗) ·
𝑘∑︁

𝑚1=1
𝑚1≠𝑗

. . .

𝑘∑︁
𝑚𝑧=𝑚𝑧−1+1

𝑚𝑧≠𝑗

(𝑥𝑚1
· . . . · 𝑥𝑚𝑧

),

where 𝑧 = 𝑘 − 𝑖 − 1. The weighting terms 𝑤 (1) , . . . ,𝑤 (𝑘) are
calculated as 𝑤 (𝑗) = (∏𝑖=1...𝑘,𝑖≠𝑗 (𝑥 𝑗 − 𝑥𝑖))−1. Once the poly-

nomial 𝑓 is interpolated, it is verified that the remaining points

(𝑥𝑘+1, 𝑓 (𝑥𝑘+1)), . . . , (𝑥𝑛, 𝑓 (𝑥𝑛)) also lie on 𝑓 . Since 𝑐
(1)
0

, . . . , 𝑐
(𝑘)
𝑘−1

and𝑤 (1) , . . . ,𝑤 (𝑘) are constant for the same 𝑥1, . . . , 𝑥𝑘 , the secret

𝑠 can be efficiently constructed, when these constants have been

precomputed.

We refer to the complete interpolation as Reconstruct, while

only reconstructing the secret value using precomputed weighting

terms and coefficients is referred to as EffReconstruct.

2.2.2 Broadcast. The Broadcast protocol is used to let partici-

pants communicate a message to all other participants, while en-

suring consistency of the received messages. Notice that we only

describe a situation where all participants are required to broad-

cast a message simultaneously, and that a weak form of broad-

cast, offering security with selective abort, will be enough for our

purposes. We formally model the required broadcasting function-

ality in FBroadcast (Funct. 3; a formal definition is provided in

Appendix C). We write Broadcast(𝑚 (1) , . . . ,𝑚 (𝑛)) to denote the

parties jointly running an instance of the broadcast functionality

FBroadcast, where party 𝑃𝑖 broadcasts𝑚 (𝑖) .
In the random-oracle model, this functionality can be imple-

mented as follows: Each participant 𝑃𝑖 ∈ P begins by communi-

cating their message 𝑚 (𝑖) plus a broadcast message to all other

participants. Subsequently, each participant calculates the hash

H1 (𝑚), where 𝑚 = 𝑚 (1) ∥ . . . ∥ 𝑚 (𝑛) , and communicates this

hash to all other participants. Finally, each participant compares

the received hashes to their own, ensuring that each participant

received the same messages (or outputs ⊥).
1
The reason for this will become clear in Protocol 4.

2.2.3 SecureOpen. The SecureOpen protocol simulates the si-

multaneous revealing of elements 𝜉 (1) , . . . , 𝜉 (𝑛) , where each 𝜉 (𝑖) is
held by participant 𝑃𝑖 . We formally model the required selective

opening functionality in FSecureOpen (Funct. 4; a formal definition

is provided in Appendix C). We write SecureOpen(𝜉 (1) , . . . , 𝜉 (𝑛))
to denote the parties jointly running an instance of the secure

opening functionality FSecureOpen, where party 𝑃𝑖 opens 𝜉 (𝑖) .
In the random oracle model, the functionality can be instantiated

as follows. First, each participant 𝑃𝑖 ∈ P runsCommit

(
𝜉 (𝑖)

)
, which

generates an 𝑟 from the output range of hash functionH1, and re-

turns the tuple

(
𝐶 (𝑖) ,𝑂 (𝑖)

)
=

(
H1

(
𝜉 (𝑖) ∥ 𝑟

)
, 𝜉 (𝑖) ∥ 𝑟

)
. The commit-

ments 𝐶 (1) , . . . ,𝐶 (𝑛) are broadcast, preventing anyone from claim-

ing an input
˜𝜉 ≠ 𝜉 . Once all commitments are received, the partici-

pants broadcast the opening information 𝑂 (1) , . . . ,𝑂 (𝑛) . To verify

the correctness of the commitments, the functionOpen

(
𝐶 (𝑖) ,𝑂 (𝑖)

)
is executed for 𝑃𝑖 ∈ P, i.e. it is verified whether 𝐶 (𝑖) = H1

(
𝑂 (𝑖)

)
.

2.2.4 FContinue. We further need a protocol that allows the honest

parties to agree whether to continue with the protocol execution

before opening the blinding values; this functionality has to satisfy

security with unanimous abort in the honest-majority case. We

formalize this notion in FContinue (Funct. 5; a formal definition is

provided in Appendix C). This functionality can be instantiated

with protocols for detectable byzantine agreement (which in fact

satisfies a stronger notion of fairness, both in the honest and dis-

honest majority case). By [22] detectable byzantine agreement can

be achieved unconditionally for any number of corruptions 𝑡 < 𝑛.

2.3 An Overview of SPDZ-2

The protocol introduced in [19], referred to as SPDZ-2, is a general

multi-party computation protocol that guarantees security with

abort against up to 𝑛 − 1 active corrupt participants, while still pro-
viding efficient function evaluation. A key factor for achieving this

efficiency is the separation of the protocol into a preprocessing and

online phase. In the time-consuming preprocessing phase, the par-

ticipants generate shared randomness. Subsequently, in the online

phase, the output of a given function 𝑓 is computed by evaluating a

circuit over the inputs of the participants. In this phase, the shared

randomness is consumed to efficiently perform certain operations,

such as sharing input data, and multiplying and squaring interme-

diate (secret) values. The preprocessing phase can be run before the

function 𝑓 and the inputs are known (only an upper bound on the

number of inputs and on the different types of gates of 𝑓 , expressed

as a circuit, is needed). Other protocols have been proposed to gen-

erate shared randomness more efficiently, such as the MASCOT,

LowGear, HighGear and TopGear protocols [3, 31, 32].

Privacy is achieved by additively secret-sharing each value

throughout the circuit. An additively secret-shared value 𝑥 is de-

noted as ⟦𝑥⟧, where each participant 𝑃𝑖 ∈ P holds share 𝑥𝑖 and

the sum of the shares of the participants

∑𝑛
𝑖=1 𝑥𝑖 is equal to 𝑥 in F𝑝 .

Correctness is guaranteed by adding an additively secret-shared

MAC-tag to each value throughout the circuit. The MAC-tag of

a value 𝑥 , denoted as 𝛾 (𝑥), is equal to 𝑥 · 𝛼 , where 𝛼 is the secret

MAC-key. This MAC-key 𝛼 is additively secret-shared itself. Each

secret-shared value throughout the circuit therefore consists of

334

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

the additive sharings of the value and the corresponding MAC-tag,

referred to as a ⟨·⟩-sharing, where ⟨·⟩ = (⟦·⟧ , ⟦𝛾 (·)⟧). The partic-
ipants can partially open a ⟨·⟩-sharing by opening the shares of

its underlying ⟦·⟧-sharing. This process, known as PartialOpen,

consists of two steps. First, the participants 𝑃1, . . . , 𝑃𝑛 send their

additive shares to a designated participant— say, 𝑃1. Second, 𝑃1
calculates the sum of the respective shares and distributes these to

the participants 𝑃2, . . . , 𝑃𝑛 .

On several occasions the participants receive unverified values;

to make this situation clear, we add a tilde symbol to such a value,

obtaining e.g. 𝑎. The MAC-Check protocol, formalized in Proto-

col 1, is used to determine whether any number of 𝑞 unverified

partially-opened values are correctly ⟨·⟩-shared. Assuming 𝑞 > 1,

the participants start by calculating a random linear combination

over the unverified partially opened values 𝑎 (1) , . . . , 𝑎 (𝑞) to obtain a
single value 𝑎 =

∑𝑞

𝑖=1
𝑟 (𝑖) ·𝑎 (𝑖) , given the jointly generated random

values 𝑟 (1) , . . . , 𝑟 (𝑞) . A similar random linear combination is calcu-

lated over theMAC-tags, resulting in ⟦𝛾 (𝑎)⟧ = ∑𝑞

𝑖=1
𝑟 (𝑖) ·

�
𝛾

(
𝑎 (𝑖)

)�
.

Subsequently, the participants recalculate the MAC-tag over the

value 𝑎 and subtract it from the original MAC-tag 𝛾 (𝑎), resulting
in ⟨𝜎⟩. Afterwards, the participants securely open the ⟦𝜎⟧-sharing,
and verify whether it equals zero. If so, the original MAC-tag and

the recalculated MAC-tag were equal, guaranteeing that the values

𝑎 (1) , . . . , 𝑎 (𝑞) were correctly ⟨·⟩-shared. If not, the protocol returns
the abort message ⊥, resulting in the fact that ⊥ is broadcast to all

participants, who then immediately abort the protocol.

At the end of the online phase, once the circuit is evaluated and

the output sharings

〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (𝑞)

〉
have been calculated, the re-

veal phase is initialized. The standard, ‘non-fair’ reveal phase is for-

malized in Protocol 2. This reveal phase starts by verifying whether

the computation has been performed correctly. This is guaranteed

by verifying whether all earlier 𝑡 partially opened values were cor-

rectly ⟨·⟩-shared, using the MAC-Check protocol. Afterwards, the

participants partially open the ℓ output sharings

〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉
,

which are also verified using theMAC-Check protocol.

It can now be seen that it is quite simple for the adversary

to obtain the correct output(s), while preventing the honest par-

ticipants from doing so. Namely, the adversary can instruct the

dishonest participants to correctly execute the protocol up until

the last step, meaning that all parties do obtain correct sharings〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉
of the output values. At this point, these values

will be partially opened, and hence the values 𝑦 (1) , . . . , 𝑦 (ℓ) become

public, and subsequently, the MAC-Check protocol is executed in

order to confirm their correctness. Now the dishonest participants

can simply cheat during the execution of MAC-Check (e.g., by

sending incorrect values 𝜎 𝑗), hence leading the protocol to fail: this

means that honest participants will not accept 𝑦 (1) , . . . , 𝑦 (ℓ) as the
correct output values, and will therefore be left with no output.

On the other hand, the adversary knows that these values were

actually correctly computed, and that it was only their correctness

check that was improperly executed; the adversary thus obtains

these (correct) values as output.

Protocol 1MAC-Check: Verifying SPDZ sharings.

Inputs:

(1) The partially opened values 𝑎 (1) , . . . , 𝑎 (𝑞) .

(2) The sharings

〈
𝑎 (1)

〉
, . . . ,

〈
𝑎 (𝑞)

〉
.

Output:

(1) Each party either obtains the values 𝑎 (1) , . . . , 𝑎 (𝑞) or an
abort message ⊥.

The protocol:

(1) Sampling random elements

(a) If 𝑞 > 1:

(i) Each participant 𝑃𝑖 ∈ P samples a random element

𝑠𝑖 .

(ii) The participants run SecureOpen(𝑠1, . . . , 𝑠𝑛).
(iii) The participants set seed 𝑠 = 𝑠1 + · · · + 𝑠𝑛 .
(iv) The participants sample 𝑞 random elements

𝑟 (1) , . . . , 𝑟 (𝑞) = U𝑠 (𝑝, 𝑞).
(b) If 𝑞 = 1:

(i) The participants set 𝑟 (1) = 1.

(2) Recalculating MAC values

(a) The participants compute the linear combination 𝑎 =∑𝑞

𝑖=1
𝑟 (𝑖) · 𝑎 (𝑖) .

(b) The participants calculate ⟦𝛾 (𝑎)⟧ =
∑𝑞

𝑖=1
𝑟 (𝑖) ·�

𝛾

(
𝑎 (𝑖)

)�
.

(c) The participants calculate ⟦𝜎⟧ = ⟦𝛾 (𝑎)⟧ − ⟦𝛼⟧ · 𝑎.
(3) Verifying recalculated MAC values

(a) The participants run SecureOpen(𝜎1, . . . , 𝜎𝑛).
(b) The participants calculate 𝜎 =

∑𝑛
𝑖=1 𝜎𝑖 . If 𝜎 ≠ 0, the

overall protocol is aborted.

3 PROPOSED SCHEME

3.1 Overview

Our scheme extends all SPDZ-based protocols with the fairness

security guarantee in the presence of an honest majority. This is

achieved by the introduction of a novel reveal phase, which is

consistent between SPDZ-based protocols, and fairly opens the

output values.

To guarantee fairness, our scheme transforms the (𝑛, 𝑛)-sharings
of the output values into (⌈𝑛/2⌉, 𝑛)-sharings. Such (⌈𝑛/2⌉, 𝑛)-
sharings guarantee fairness in an honest majority setting (where

the number of honest participants is equal to, or larger than, the

reconstruction threshold).

The (⌈𝑛/2⌉, 𝑛)-sharings use Shamir’s secret-sharing scheme,

since this scheme has a variable reconstruction threshold, oper-

ates on prime fields, and allows for linear operations. The latter

two characteristics are needed to efficiently transform the SPDZ-

sharings to Shamir sharings (Section 3.2.1) and to prove consistency

between these sharings (Section 3.2.2), respectively.

Consistency between the (⌈𝑛/2⌉, 𝑛)-Shamir sharings and the

(𝑛, 𝑛)-additive sharings from which they originate, is guaranteed

by generating validation data. These (⌈𝑛/2⌉, 𝑛)-Shamir sharings

and their validation data are independent from the actual values

335

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

Protocol 2 StandardReveal: Standard Reveal Protocol.

Inputs:

(1) The partially opened values 𝑎 (1) , . . . , 𝑎 (𝑡) .

(2) The sharings

〈
𝑎 (1)

〉
, . . . ,

〈
𝑎 (𝑡)

〉
.

(3) The sharings

〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉
.

Output:

(1) Each party either obtains the values 𝑦 (1) , . . . , 𝑦 (ℓ) or an
abort message ⊥.

The protocol:

(1) Verifying computation

(a) The participants run

MAC-Check

((
𝑎 (1) , . . . , 𝑎 (𝑡)

)
,

(〈
𝑎 (1)

〉
, . . . ,

〈
𝑎 (𝑡)

〉))
.

(2) Verifying output values

(a) The participants obtain 𝑦 (1) , . . . , 𝑦 (ℓ) by executing

PartialOpen

(〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉)
.

(b) The participants run

MAC-Check

((
𝑦 (1) , . . . , 𝑦 (ℓ)

)
,

(〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉))
.

of the output, and only depend on the number of output values.

As a result, these data do not reveal any information on the recon-

structed output values, except its count. Once the Shamir shares

are opened, the validation data enable a participant to determine

whether a Shamir sharing is correct and consistent, without requir-

ing additional communication.

To optimize the practical performance of the scheme, the trans-

formation from additive sharings to Shamir sharings, and the gener-

ation of validation data, are moved to the preprocessing phase. This

approach minimizes the increase in running time of the low-latency

online phase, whose efficiency is one of the main advantages of

SPDZ-based protocols.

The resulting reveal phase, formalized in Protocol 3, operates

as follows. First, all partially opened values are verified (Step 1a),

just as in the non-fair reveal phase (Protocol 2). Second, blinding

sharings, i.e. random SPDZ sharings, are added to the output SPDZ

sharings (Step 2a). These blinded output SPDZ-sharings are then

opened and verified to be correct (Steps 2b-2c); notice that this check

remains secure even in the presence of a dishonest majority, i.e.,

it will fail if the value is incorrect. After this step, the MAC-check

plays no further role: once the hidden output SPDZ-sharings are

verified, the actual output values can be calculated by subtracting

the aforementioned random SPDZ-sharings from the hidden out-

put SPDZ-sharings. Since these random SPDZ-sharings have been

transformed in the preprocessing phase to Shamir sharings, these

values can be reconstructed by publishing the Shamir sharings;

since the (⌈𝑛/2⌉, 𝑛) Shamir sharings can be fairly opened in the

presence of an honest majority, the output values are fairly opened

in this setting. Therefore, the protocol ends by reconstructing the

random secrets from the Shamir sharings (Step 3a) and subtracting

these from the verified hidden output values (Step 3b). The results

are the output values, given that the reconstructed random secrets

from the Shamir sharings are consistent with the secrets in the

random SPDZ-sharings.

Protocol 3 FairOutputs: Fair opening of output values.

Inputs:

(1) The partially opened values 𝑎 (1) , . . . , 𝑎 (𝑡) .

(2) The sharings

〈
𝑎 (1)

〉
, . . . ,

〈
𝑎 (𝑡)

〉
.

(3) The sharings

〈
𝑦 (1)

〉
, . . . ,

〈
𝑦 (ℓ)

〉
.

(4) The blinding sharings

〈
𝑏 (1)

〉
, . . . ,

〈
𝑏 (ℓ)

〉
.

(5) The validation data ValData.

Output:

(1) The values 𝑦 (1) , . . . , 𝑦 (ℓ) , or an abort message ⊥.
The protocol:

(1) Verifying Computation

(a) The participants run MAC-Check((
𝑎 (1) , . . . , 𝑎 (𝑡)

)
,

(〈
𝑎 (1)

〉
, . . . ,

〈
𝑎 (𝑡)

〉))
.

(2) Blinding outputs

(a) The participants calculate

〈
𝑧 (1)

〉
, . . . ,

〈
𝑧 (ℓ)

〉
, where〈

𝑧 (𝑖)
〉
=

〈
𝑦 (𝑖)

〉
+
〈
𝑏 (𝑖)

〉
, for all 1 ≤ 𝑖 ≤ ℓ .

(b) The participants obtain 𝑧 (1) , . . . , 𝑧 (ℓ) by running

PartialOpen

(〈
𝑧 (1)

〉
, . . . ,

〈
𝑧 (ℓ)

〉)
.

(c) The participants run

MAC-Check

((
𝑧 (1) , . . . , 𝑧 (ℓ)

)
,

(〈
𝑧 (1)

〉
, . . . ,

〈
𝑧 (ℓ)

〉))
.

(3) Fair output reveal

(a) The participants fairly obtain the blinding values

𝑏 (1) , . . . , 𝑏 (ℓ) by running FairBlinds(ValData).
(b) The participants calculate 𝑦 (1) , . . . , 𝑦 (ℓ) , where 𝑦 (𝑖) =

𝑧 (𝑖) − 𝑏 (𝑖) , for all 1 ≤ 𝑖 ≤ ℓ .

3.2 Design of the Proposed Scheme

This section formalizes the protocols that transform SPDZ-sharings

into Shamir sharings, generate the corresponding validation data,

and verify opened Shamir shares based on the validation data.

3.2.1 Transformation of Sharings. SPDZ-sharings can efficiently

be transformed to Shamir sharings by leveraging the linearity of

Shamir’s secret-sharing scheme. Protocol 4 formalizes the trans-

formation of ℓ + 1 sharings.2 Transforming a single SPDZ-sharing

consists of two major operations. First, each participant creates

a (⌈𝑛/2⌉, 𝑛) Shamir sharing of their additive SPDZ-share and dis-

tributes this among the participants (Step 1). Second, each partic-

ipant sums their 𝑛 received Shamir shares (Step 2). The resulting

Shamir shares can be used to reconstruct the same secret as their

corresponding SPDZ-shares when all participants follow the proto-

col.

2
One additional sharing is generated to be sacrificed further in the Protocol. This

process is discussed later.

336

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

Protocol 4 ShareShamir: Transforming SPDZ-sharings to

Shamir sharings.

Inputs:

(1) The blinding sharings

〈
𝑏 (1)

〉
, . . . ,

〈
𝑏 (ℓ+1)

〉
.

Output:

(1) The blinding sharings 𝑆𝐻

(
˜𝑏 (1)

)
, . . . , 𝑆𝐻

(
˜𝑏 (ℓ+1)

)
.//In the

honest case 𝑆𝐻 (˜𝑏 (𝑖)) corresponds to a Shamir sharing of

𝑏 (𝑖) .

The protocol:

For ⟨𝑏⟩ ∈
(〈
𝑏 (1)

〉
, . . . ,

〈
𝑏 (ℓ+1)

〉)
:

(1) Shamir sharing:

Each participant 𝑃𝑖 ∈ P generates a

(
⌈𝑛
2
⌉, 𝑛

)
Shamir

sharing of
˜𝑏𝑖 , and distributes the shares.

(2) Combining Shamir shares

The participants calculate the Shamir sharing 𝑆𝐻

(
˜𝑏

)
=∑𝑛

𝑖=1 𝑆𝐻

(
˜𝑏𝑖

)
.

3.2.2 Generating Validation Data. The validation data are gener-

ated using a Commit-Challenge-Response approach. The complete

process is formalized in Protocol 5. First, each participant commits

to their unverified Shamir shares by broadcasting a commitment

(Step 1a-1b). Second, the participants securely generate a random

seed, using the SecureOpen protocol (Step 2a-2c). This seed is used

to generate the challenge (Step 2d), i.e. a list of random elements,

from the pseudo-random generatorU𝑠 (𝑝, ℓ + 1) (Section 2.2). Third,

each participant calculates their response, which equals the random

linear combination of their Shamir shares, where the coefficients are

the aforementioned list of random elements (Step 3a). Subsequently,

the resulting Shamir sharing of the secret value 𝑐 is securely opened

and 𝑐 is reconstructed (Step 3b-3c).

TheMAC-Check protocol is used to verify that 𝑐 is consistent

between the Shamir sharing and the SPDZ-sharing (Step 3d-3f).
3

The validation data consist of the commitments to the Shamir

shares, the list of random elements, and the published Shamir shar-

ing of 𝑐 . Intuitively, the commitments and random elements reveal

no information about the random secret values, which is impor-

tant as they are used to hide the output values in the reveal phase.

Moreover, one of the ℓ + 1 secret values, used to calculated 𝑐 , is

‘sacrificed’, i.e. unused. This is necessary to prevent information on

the blinding values to be prematurely leaked, while checking the

consistency of the SPDZ- and Shamir-shares.

3.2.3 Verifying Shamir sharings. The opening of the Shamir shar-

ings is formalized in Protocol 6. Once the sharings are opened, the

generated validation data are used to determine whether they are

consistent with the SPDZ-sharings they originate from. Whenever

published Shamir shares of a participant are inconsistent with the

validation data, the participant is identified as a cheater and their

3
This trick enables us to verify a Shamir sharing with the MAC-data of a SPDZ-sharing.

Protocol 5 GenValData: Generating Validation Data.

Inputs:

(1) The blinding sharings

〈
𝑏 (1)

〉
, . . . ,

〈
𝑏 (ℓ+1)

〉
.

(2) The blinding sharings 𝑆𝐻

(
˜𝑏 (1)

)
, . . . , 𝑆𝐻

(
˜𝑏 (ℓ+1)

)
.

Outputs:

Each party either receives the validation data ValData, con-

sisting of the following public data:

(1) The commitments over the Shamir shares 𝐶 (1) , . . . ,𝐶 (𝑛) .
//In the honest case, 𝐶 (𝑖) corresponds to a commitment

to the 𝑖-th share of 𝑆𝐻 (𝑏 (1))∥ . . . ∥𝑆𝐻 (𝑏 (ℓ+1))
(2) The opening data 𝑂 (1) , . . . ,𝑂 (𝑛) for the above commit-

ments.

(3) The random values 𝑟 (1) , . . . , 𝑟 (ℓ+1) .
(4) The Shamir sharing of the linear combination of blinding

values 𝑆𝐻 (𝑐). //In the honest case, 𝑆𝐻 (𝑐) = ∑ℓ+1
𝑖=1 𝑟

(𝑖) ·
𝑆𝐻 (𝑏 (𝑖)).

or an abort message ⊥.

The protocol:

(1) Commit phase

(a) Each participant 𝑃𝑖 ∈ P generates the commit-

ment data over their Shamir shares

(
𝐶 (𝑖) ,𝑂 (𝑖)

)
=

Commit

(
𝑆𝐻

(
˜𝑏 (1)

)
𝑖
∥ . . . ∥ 𝑆𝐻

(
˜𝑏 (ℓ+1)

)
𝑖

)
.

(b) The participants obtain 𝐶 (1) , . . . ,𝐶 (𝑛) by running

Broadcast

(
𝐶 (1) , . . . ,𝐶 (𝑛)

)
.

(2) Challenge phase

(a) Each participant 𝑃𝑖 ∈ P generates a random seed value

𝑠𝑖 .

(b) The participants run SecureOpen (𝑠1, . . . , 𝑠𝑛).
(c) The participants set seed 𝑠 =

∑𝑛
𝑖=1 𝑠𝑖 .

(d) The participants obtain the random values

𝑟 (1) , . . . , 𝑟 (ℓ+1) = U𝑠 (𝑝, ℓ + 1).
(3) Response phase

(a) The participants calculate the random linear combi-

nation of their Shamir shares 𝑆𝐻 (𝑐) =
∑ℓ+1
𝑖=1 𝑟

(𝑖) ·
𝑆𝐻

(
˜𝑏 (𝑖)

)
.

(b) The participants run

SecureOpen (𝑆𝐻 (𝑐)1, . . . , 𝑆𝐻 (𝑐)𝑛).
(c) Each party locally calculates

𝑐 = Reconstruct (𝑆𝐻 (𝑐)1, . . . , 𝑆𝐻 (𝑐)𝑛).
(d) The participants calculate the random linear combina-

tion of blinding values ⟨𝑐⟩ = ∑ℓ+1
𝑖=1 𝑟

(𝑖) ·
〈
𝑏 (𝑖)

〉
.

(e) The participants run MAC-Check (𝑐, ⟨𝑐⟩).
(f) If any of theMAC-Check (𝑐, ⟨𝑐⟩) fails, the correspond-

ing party broadcasts ⊥ and the protocol execution is

aborted.

shares are discarded. This process repeats until the protocol is ei-

ther finished, or until there are insufficient ‘non-cheating’ shares

remaining.
337

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

The verification process consists of two steps. First, the par-

ticipants open and verify the commitments to the Shamir shares

(Step 1-2b). Second, the participants recalculate the linear combina-

tion of the opened Shamir shares, and compare these to the earlier

published Shamir shares (Step 2c). If these checks succeed, and

there are sufficient ‘non-cheating’ Shamir shares, the remaining

Shamir shares are used to reconstruct the secret values (Step 3).

Protocol 6 FairBlinds: Fair Opening of Blinding Values.

Inputs:

(1) The commitments over the Shamir shares 𝐶 (1) , . . . ,𝐶 (𝑛) .
(2) The opening data 𝑂 (1) , . . . ,𝑂 (𝑛) .
(3) The random values 𝑟 (1) , . . . , 𝑟 (ℓ+1) .
(4) The Shamir sharing of the random linear combination of

blinding values 𝑆𝐻 (𝑐).
Output:

(1) Each party obtains the blinding values 𝑏 (1) , . . . , 𝑏 (ℓ) , or
an abort message ⊥.

The protocol

(1) Opening Shamir sharings

Party 𝑃𝑖 sends opening 𝑂
(𝑖)

to all other parties 𝑃 𝑗 ≠ 𝑃𝑖 .

(2) Verifying Shamir shares

(a) Each party initializes an empty local set of cheating

participants Ω𝑖 = {}.
(b) Each party locally verifies whether the opening data is

correct by running Open

(
𝐶 (𝑖) ,𝑂 (𝑖)

)
, for all 1 ≤ 𝑖 ≤ 𝑛.

If not, participant 𝑃𝑖 is added to the set of cheating

participants Ω𝑖 .

(c) Each party locally determines whether 𝑆𝐻 (𝑐)𝑖 =∑ℓ+1
𝑗=1 𝑟

(𝑗) · 𝑆𝐻
(
𝑏 (𝑗)

)
𝑖
, for all participants 1 ≤ 𝑖 ≤ 𝑛. If

not, participant 𝑃𝑖 is added to the local set of cheating

participants Ω𝑖 .

(d) If |Ω𝑖 | ≥ 𝑛/2 for party 𝑃𝑖 , party 𝑃𝑖 outputs ⊥.
(3) Opening blinding values

If |Ω𝑖 | < 𝑛/2, 𝑃𝑖 reconstructs the blind-

ing values 𝑏 (1) , . . . , 𝑏 (ℓ) using 𝑏 (𝜄) =

EffReconstruct

(
𝑆𝐻

(
𝑏 (𝜄)

)
𝑗

)
, 𝑗 ∉ Ω𝑖 , for all 1 ≤ 𝜄 ≤ ℓ .

3.3 Complexity of the Proposed Scheme

In this section the communication and computational complexities

of the proposed scheme are analyzed. The difference in complexity

compared to ‘standard’, non-fair SPDZ is discussed, in order to

provide a thorough understanding of the overhead associated with

guaranteeing fairness. Furthermore, a distinction is made between

the complexities of the online phase and the preprocessing phase.

The complexities are formalized for the number of participants

𝑛, the reconstruction threshold 𝑘 = ⌈𝑛/2⌉, the number of output

values ℓ , the prime 𝑝 (recall that operations are performed on F𝑝),
the hash size𝑚 and the number of partially opened values 𝑞. The

additional complexity introduced by our scheme does not depend

on the depth of the circuit, number of inputs, nor the amount of

consumed randomness. All complexities are formalized for a single

participant.

Throughout this section, it is assumed that the participants have

access to sufficiently many random SPDZ-sharings.
4

3.3.1 Communication Complexity. The communication complexity

is analyzed in terms of the number of communication rounds and

the average number of bits that are sent by a participant. To simplify

this analysis, only the case where the number of output values is

larger than one will be discussed; furthermore, we also exclude the

cost of the functionality FContinue for simplicity.

The communication complexity of the ‘standard’, non-fair reveal

phase is formalized in Table 3. The majority of the communica-

tion rounds are the result of performing the MAC-Check protocol

(Step 1a and Step 2b). The majority of the number of sent bits is a

result of partially opening the output values (Step 2a), when the

number of output values ℓ is large.

Table 3: Communication complexity of the non-fair reveal

phase (excluding FContinue).

Step Rounds Sent bits

Online:

Protocol 2

Step 1a 4 2 · (𝑛 − 1) · (⌈log
2
(𝑝)⌉ + 2 ·𝑚)

Step 2a 2
1

𝑛 · (2 · (𝑛 − 1) · ℓ · ⌈log2 (𝑝)⌉)
Step 2b 4 2 · (𝑛 − 1) · (⌈log

2
(𝑝)⌉ + 2 ·𝑚)

Total 10 (𝑛 − 1) ((2ℓ/𝑛 + 4) ⌈log
2
(𝑝)⌉ + 8𝑚)

The communication complexity of the fair design is formalized

in Table 4. The total increase in the number of communication

rounds, compared to the ‘standard’, non-fair reveal phase, is primar-

ily due to generating the validation data (Protocol 5). This protocol

performs Broadcast once (Step 1b) and SecureOpen three times

(Steps 2b, 3b and 3f), either directly or indirectly, all requiring two

communication rounds. Besides this, our design only adds one com-

munication round in Protocol 4, and two communication rounds

in Protocol 6. The majority of the increase in sent bits originates

from broadcasting ℓ + 1 elements (Protocol 4, Step 1 and Protocol 6,

Step 1), for a large number of output values.

When focusing on the online phase, the increase in communi-

cation complexity is relatively modest. The number of commu-

nication rounds increases from 10 to 12, while the number of

sent bits increases from roughly 2/𝑛 · 𝜃 to (1 + 2/𝑛) · 𝜃 , where
𝜃 = (𝑛 − 1) · ℓ · ⌈log

2
(𝑝)⌉, for a large number of output values.

3.3.2 Computational Complexity. The computational complexity

is analyzed in terms of the number of values to be hashed, random

elements to be generated, and field operations to be performed. The

different input and/or output sizes of such hashes and random ele-

ments are ignored, effectively assuming a constant cost. Moreover,

for simplicity sake, only the case where the number of partially

opened values and output values are larger than one is discussed,

and we exclude the cost of the functionality FContinue.
4
The complexities of generating random SPDZ-sharings are not analyzed, since they

depend on the underlying preprocessing phase.

338

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

Table 4: Communication complexity of the proposed design

(excluding FContinue).

Step Rounds Sent bits

Preprocessing:

Protocol 4

Step 1 1 (𝑛 − 1) · (ℓ + 1) · ⌈log
2
(𝑝)⌉

Protocol 5

Step 1b 2 2 · (𝑛 − 1) ·𝑚
Step 2b 2 (𝑛 − 1) · (⌈log

2
(𝑝)⌉ + 2 ·𝑚)

Step 3b 2 (𝑛 − 1) · (⌈log
2
(𝑝)⌉ + 2 ·𝑚)

Step 3f 2 (𝑛 − 1) · (⌈log
2
(𝑝)⌉ + 2 ·𝑚)

Total 9 (𝑛 − 1) · ((ℓ + 4) · ⌈log
2
(𝑝)⌉ + 8𝑚)

Online:

Protocol 3

Step 1a 4 2 · (𝑛 − 1) · (⌈log
2
(𝑝)⌉ + 2 ·𝑚)

Step 2b 2
1

𝑛 · (2 · (𝑛 − 1) · ℓ · ⌈log2 (𝑝)⌉)
Step 2c 4 2 · (𝑛 − 1) · (⌈log

2
(𝑝)⌉ + 2 ·𝑚)

Protocol 6

Step 1 2 (𝑛 − 1) · ((ℓ + 1) · ⌈log
2
(𝑝)⌉ + 2 ·𝑚)

Total 12 (𝑛 − 1) ((2ℓ/𝑛 + 5) ⌈log
2
(𝑝)⌉ + 10𝑚)

The computational complexity of the non-fair reveal phase is

shown in Table 5. Since both Step 1a and Step 2b are calls to the

MAC-Check protocol, they result in a similar complexity. Within

each call to the MAC-Check protocol, the SecureOpen protocol

is run twice, requiring 2𝑛 hashes. The generated random values

in these steps are used to calculate linear combinations over the

partially opened values. The number of additions in Step 2a is

multiplied by 1/𝑛, since only one of the 𝑛 participants sums the

opened output values, which are then redistributed.

In Table 6 the computational complexity of our scheme is for-

malized. The hashes in Protocol 5, Steps 2b, 3b, 3f, and Protocol 3,

Steps 1a and 2c, are computed during calls to the SecureOpen pro-

tocol, either directly or indirectly. The hashes computed in Steps 1

and 2b are used in the Broadcast and Open functions respectively.

The additional random elements are primarily generated for the ran-

dom coefficients when transforming the SPDZ-sharings to Shamir

sharings (Protocol 4, Step 1) and the random elements for calcu-

lating the random linear combinations of the secret values. When

focusing on the online phase, the number of hashes increases from

4𝑛 to 5𝑛, while the number of random values remains the same.

The transformation of SPDZ-sharings to Shamir sharings is an

intensive operation with regard to the number of field operations

(Protocol 4, Step 1). Each of the 𝑛 · (ℓ + 1) generated shares requires
𝑘−1 additions and multiplications. Moreover, the values 𝑖2, . . . , 𝑖𝑘−1

need to be computed for 2 ≤ 𝑖 ≤ 𝑛, requiring (𝑛 − 1) · (𝑘 − 2)
multiplications. Later, in Step 2, each participant must sum 𝑛 shares

for each of the ℓ +1 secret values, requiring (𝑛−1) · (ℓ +1) additions.
Another noteworthy operation is the Reconstruct function

(Protocol 5, Step 3c). First, the 𝑘 weighting terms𝑤 (1) , . . . ,𝑤 (𝑘) are
calculated, each requiring 𝑘 − 1 subtractions, 𝑘 − 2 multiplications

and one division. Second, the 𝑘2 base coefficients 𝑐
(𝑗)
𝑖

, 0 ≤ 𝑖 < 𝑘 ,

1 ≤ 𝑗 ≤ 𝑘 , are calculated. To calculate all 𝑘 possible values of

𝑧, 𝑘 + 1 subtractions are required. The first term requires 𝑘 − 1

multiplications, since 𝑧 has 𝑘 possible values. The last term can be

efficiently computed by pre-computing the 2
𝑘 − 𝑘 − 1 (singletons

and empty set excluded) multiplicative subsets of 𝑥1, . . . , 𝑥𝑘 , which

can be realized in 2
𝑘 − 𝑘 − 1 multiplications. Adding the respective

multiplicative subsets requires an additional 2
𝑘 − 𝑘 − 1 additions.

To combine the three terms, each base coefficient requires two

multiplications for a total of 2𝑘2 multiplications.

Once the base coefficients have been calculated, any polynomial

can be efficiently reconstructed from a Shamir sharing with (𝑘 +
1) · (𝑘 − 1) additions and 𝑘2 multiplications. After the polynomial is

interpolated, it is determinedwhether the other ⌊𝑛/2⌋ points also lie
on this polynomial, requiring 𝑘 − 1 additions and 𝑘 multiplications

each, assuming that 𝑖2, . . . , 𝑖𝑘−1, for 2 ≤ 𝑖 ≤ 𝑛, have been stored.

In the online phase, each reconstruction only costs 𝑘 multipli-

cations and 𝑘 − 1 additions (Protocol 6, Step 3), since only the

constant term needs to be reconstructed, and the base coefficients

have already been pre-computed.

When 𝑞 ≫ ℓ and 𝑞 ≫ 𝑛, i.e., the number of operations that

consume shared randomness is much greater than the number

of outputs values and the number of participants,
5
both the fair

and the non-fair reveal phase require roughly 𝑞 random values, 2𝑞

additions and 2𝑞 multiplications.

4 PERFORMANCE AND IMPLEMENTATION

In this section we aim to analyze the overhead of guaranteeing fair-

ness for SPDZ-based protocols by benchmarking, and comparing

the fair and non-fair reveal phase. To provide an honest comparison

between the two, both are implemented in Python.
6
Moreover, a

practical function is evaluated using the SPDZ protocol, provid-

ing insight in the total overhead introduced by our scheme. The

benchmarks are based on the existing MobileNet V1 0.25_128 neu-

ral network implementation [16], where one participant inputs an

image and another participant inputs the trained network. Our im-

plementation uses the MP-SPDZ framework [30] with the LowGear

preprocessing phase and TopGear zero-knowledge proof of knowl-

edge.
7
Due to space constraints, only the results on the total perfor-

mance overhead are presented here; for an in-depth analysis of the

overhead of the reveal phase, the reader can refer to Appendix D.

All benchmarks are performed on a 6-core AMD Ryzen 5 3600

with 12 threads. Each participant is run in a separate docker con-

tainer with access to two threads, providing consistent computing

power for varying numbers of participants.
8
We define a LAN set-

ting, where the traffic between the participants is unhindered, and

the WAN setting, where all traffic is delayed by 50 ms and the band-

width of the participants is restricted to 50 Mbit/s, as used before

in [31, 32]. Finally, we differentiate between the running data of

the offline phase, i.e. preprocessing phase, and the online phase. All

data are the result of averaging a hundred protocol runs, unless

stated otherwise.

To analyze the total overhead introduced by guaranteeing fair-

ness, the MobileNet V1 0.25_128 neural network is evaluated using

5
Intuitively, most non-trivial function evaluations follow this expectation.

6
https://gitlab.com/Bart.V/fairness-benchmarking

7
https://gitlab.com/Bart.V/mp-spdz-container

8
https://www.docker.com

339

https://gitlab.com/Bart.V/fairness-benchmarking
https://gitlab.com/Bart.V/mp-spdz-container
https://www.docker.com

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

Table 5: Required additional field operations for the original reveal phase (excluding FContinue).

Position Hashes Random Value Addition Subtraction Multiplication Division

Online:

Protocol 2

Step 1a 2 · 𝑛 𝑞 + 3 2 · ((𝑞 − 1) + (𝑛 − 1)) 1 2 · 𝑡 + 1 -

Step 2a - - 1/𝑛 · ℓ · (𝑛 − 1) - - -

Step 2b 2 · 𝑛 ℓ + 3 2 · ((ℓ − 1) + (𝑛 − 1)) 1 2 · ℓ + 1 -

Total 4 · 𝑛 𝑞 + ℓ + 6 2 · 𝑞 + 2 · ℓ − 4 + (2 + 1/𝑛 + ℓ) · (𝑛 − 1) 2 2 · (𝑞 + ℓ + 1) -

Table 6: Required additional field operations for the proposed design (excluding FContinue).

Position Hashes Random Value Addition Subtraction Multiplication Division

Preprocessing:

Protocol 4 - - - - - -

Step 1 - (𝑘 − 1) · (ℓ + 1) 𝑛 · (ℓ + 1) · (𝑘 − 1) - 𝑛 · (ℓ + 1) · (𝑘 − 1)
+(𝑛 − 1) · (𝑘 − 2) -

Step 2 - - (𝑛 − 1) · (ℓ + 1) - - -

Protocol 5

Step 1a 1 1 - - - -

Step 1b 1 - - - - -

Step 2a - 1 - - - -

Step 2b 𝑛 1 - - - -

Step 2c - - 𝑛 − 1 - - -

Step 2d - ℓ + 1 - - - -

Step 3a - - ℓ - ℓ + 1 -

Step 3b 𝑛 1 - - - -

Step 3c - - 2
𝑘 + 𝑛 · 𝑘 − 𝑛 − 2 𝑘 · 𝑘 + 1 2

𝑘 + 3𝑘2 − (𝑛 − 2)𝑘 − 2 𝑘

Step 3d - - 2 · ℓ - 2 · (ℓ + 1) -

Step 3f 𝑛 1 𝑛 − 1 1 1 -

Total 3 · 𝑛 + 2 𝑘 · (ℓ + 1) + 5 (𝑛 · 𝑘 − 1) · (ℓ + 1) + 2𝑘
+3 · ℓ + (𝑘 + 1) · 𝑛 − 4 𝑘 · 𝑘 + 2 (𝑛 · 𝑘 − 𝑛 + 3) · (ℓ + 1)

+2𝑘 + 3𝑘2 + 𝑘 − 2𝑛 + 1 𝑘

Online:

Protocol 3

Step 1a 2 · 𝑛 𝑞 + 3 2 · ((𝑞 − 1) + (𝑛 − 1)) 1 2 · 𝑞 + 1 -

Step 2a - - 2 · ℓ - - -

Step 2b - - 1/𝑛 · ℓ · (𝑛 − 1) - - -

Step 2c 2 · 𝑛 ℓ + 3 2 · ((ℓ − 1) + (𝑛 − 1)) 1 2 · ℓ + 1 -

Step 3b - - - ℓ - -

Protocol 6

Step 1 1 - - - - -

Step 2b 𝑛 − 1 - - - - -

Step 2c - - (𝑛 − 1) · ℓ - (𝑛 − 1) · (ℓ + 1) -

Step 3 - - ℓ · (𝑘 − 1) - ℓ · 𝑘 -

Total 5 · 𝑛 𝑞 + ℓ + 6 ℓ (𝑘 + 𝑛 − 1/𝑛 + 3) + 4𝑛 + 2𝑞 − 8 ℓ + 2 (𝑛 + 𝑘 − 1)ℓ + 2(𝑞 + ℓ) + 𝑛 + 1 -

both the standard and fair reveal phase, presented in Table 7. The

standard run-time data are obtained by evaluating the neural net-

work using the MP-SPDZ framework. The fair run-time data are

equal to the standard run-time data, increased with the cost of

generating the required number of random SPDZ-sharings for our

scheme and the overhead introduced by fairly opening the output

values. The run-time data of the offline phase are obtained from

one function evaluation, due to its long running time.

Table 7 clearly indicates that the amount of sent data increases

at a negligible rate (< 0.005%), for both the offline and online phase

and for varying numbers of participants. Moreover, the running

time of the offline phase only increases marginally (< 1%), primarily

due to the cost of generating additional random SPDZ-sharings.

340

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

Table 7: Run-time data of evaluating the MobileNet V1

0.25_128 neural network, using the MP-SPDZ framework.

Offline Online

n Standard Fair Inc. Standard Fair Inc.

Sec

3 21163 21187 0.12% 35.76 35.77 0.02%

4 29881 30157 0.92% 40.90 40.91 0.02%

Mb

3 364386 364400 0.00% 2389.91 2389.99 0.00%

4 541103 541105 0.00% 2688.69 2688.81 0.00%

Most importantly, the latency of the online phase, which is one of

the main advantages of SPDZ-based protocols, only increases at a

negligible rate (0.025%).

5 FULL PROTOCOL AND SIMULATION-BASED

SECURITY

In this section we provide the full protocol description (Protocol 7)

and give the outline of the formal security guarantees that our

protocol satisfies: security with selective abort against up to 𝑛 − 1
malicious participants, and fairness against < 𝑛/2 malicious par-

ticipants. We provide a stand-alone simulation-based proof in the

synchronous model, namely we show that our scheme is indistin-

guishable from the ideal functionality provided by FOnline (Func-
tionality 1) assuming synchronous point-to-point communication

channels.

In order to abstract out the underlying functionality provided

by SPDZ, we introduce the functionality FBlindOnline (Function-
ality 2). This functionality is a straightforward extension of the

functionality implemented by SPDZ, which in the preprocess-

ing phase provides parties with an additive secret sharing of the

MAC value 𝛼 , together with authenticated additive shares of ran-

dom blinding values 𝑏 (1) , . . . , 𝑏 (ℓ) (where malicious parties can

determine their own shares). In the computation phase, the pro-

tocol then proceeds as SPDZ, but instead of outputting the out-

put values (𝑦 (1) , . . . , 𝑦 (ℓ)) directly, it outputs the blinded values

(𝑧 (1) , . . . , 𝑧 (ℓ)), where 𝑧 (𝑗) = 𝑦 (𝑗) + 𝑏 (𝑗) , offering security with

abort. Note that it is straightforward to obtain a secure imple-

mentation of this functionality with SPDZ, since the blinding val-

ues 𝑏 (1) , . . . , 𝑏 (ℓ) can simply be viewed as additional (random) in-

put to the circuit 𝐶 ′(𝑥1, . . . , 𝑥𝑚 ;𝑏 (1) , . . . , 𝑏 (ℓ)) = 𝐶 (𝑥1, . . . , 𝑥𝑚) +
(𝑏 (1) , . . . , 𝑏 (ℓ)).

With this, the major part of the online protocol (Protocol 7) is

a procedure to fairly open the blinding values 𝑏 (1) , . . . , 𝑏 (ℓ) , given
authenticated blinding values 𝑏 (1) , . . . , 𝑏 (ℓ+1) (where the additional
value 𝑏 (ℓ+1) is sacrificed in Protocol 5 to ensure that the conversion

to Shamir shares was performed correctly).

In Appendix A.4 we prove the main security theorem.

Theorem 5.1. If COM = (Setup,Com,Open, TCom1, TCom2) is
a trapdoor commitment scheme, F = F𝑝 is a super-polynomially

sized field, and U𝑠 (𝑝, ℓ + 1) is a secure pseudorandom generator

and assuming pairwise authenticated synchronous point-to-point

channels between all parties, then ΠOnline (Prot. 7) implements

Protocol 7 ΠOnline.

Parameters. Let 𝑝 be a super-polynomial prime and F = F𝑝 be

the finite field of size 𝑝 . Let C be an arithmetic circuit over F
with𝑚 input gates id1, . . . , id𝑚 and ℓ output gates. Let further

each input gate be uniquely associated with a participant.

Preprocessing phase:

• Each party 𝑃𝑖 inputs Preprocess to FBlindOnline, which
outputs (

𝛼𝑖 ,

(
𝑏
(𝑗)
𝑖

, 𝛾 (𝑏 (𝑗))𝑖
)ℓ+1
𝑗=1

)
to 𝑃𝑖 for 𝑖 = 1, . . . , 𝑛.

• The parties run the protocol ShareShamir (Prot. 4)

with input ⟨𝑏 (1) ⟩, . . . , ⟨𝑏 (ℓ+1) ⟩ to obtain shares

𝑆𝐻 (˜𝑏 (1)), . . . , 𝑆𝐻 (˜𝑏 (ℓ+1)). //In the honest case 𝑆𝐻 (˜𝑏 (𝑖))
corresponds to a Shamir sharing of 𝑏 (𝑖) .
• The parties run the protocol GenValData (Prot. 5) to

obtain the following public values: the commitments

𝐶 (1) , . . . ,𝐶 (𝑛) , the opening data 𝑂 (1) , . . . ,𝑂 (𝑛) , the ran-
dom values 𝑟 (1) , . . . , 𝑟 (ℓ+1) , and a Shamir sharing 𝑆𝐻 (𝑐).
//In the honest case𝐶 (𝑖) corresponds to a commitment to

the 𝑖-th share of 𝑆𝐻 (𝑏 (1))∥ . . . ∥𝑆𝐻 (𝑏 (ℓ+1)) with opening

information 𝑂 (𝑖) , and 𝑆𝐻 (𝑐) = ∑ℓ+1
𝑖=1 𝑟

(𝑖) · 𝑆𝐻 (𝑏 (𝑖)).
Input phase:

• For each input 𝑥 for input gate id𝑗 hold by 𝑃𝑖 , the party

inputs (Input, 𝑃𝑖 , id𝑗 , 𝑥) to FBlindOnline.
Computation phase:

• Each party inputs Compute to FBlindOnline and receives
output 𝑧 =

(
𝑧 (1) , . . . , 𝑧 (ℓ)

)
or ⊥. //In the honest case

it holds 𝑧 (𝑖) = 𝑦 (𝑖) + 𝑏 (𝑖) , where
(
𝑦 (1) , . . . , 𝑦 (ℓ)

)
=

𝐶 (𝑥1, . . . , 𝑥𝑚).
• The parties call functionality FContinue, where 𝑃𝑖 inputs
ok if it received the output in the previous step, and

abort otherwise. If party 𝑃𝑖 received⊥ in the last step or

FContinue outputs ⊥ to 𝑃𝑖 , the party aborts the protocol

execution and outputs ⊥. Otherwise, it continues to the

next step.

• The parties run protocol FairBlinds (Prot. 6) with com-

mitments 𝐶 (1) , . . . ,𝐶 (𝑛) , opening data 𝑂 (1) , . . . ,𝑂 (𝑛) ,
random values 𝑟 (1) , . . . , 𝑟 (ℓ+1) and the Shamir sharing

of linear combination of blinding values 𝑆𝐻 (𝑐) as input,
and obtain blinding values

˜𝑏 (1) , . . . , ˜𝑏 (ℓ) or⊥ as output. If

the parties obtain ⊥, the protocol aborts. //In the honest

case the parties obtain
˜𝑏 (𝑖) = 𝑏 (𝑖) for all 𝑖 ∈ [ℓ].

• Each party sets 𝑦 (𝑗) = 𝑧 (𝑗) − ˜𝑏 (𝑗) for all 𝑗 = 1, . . . , ℓ and

outputs

(
𝑦 (1) , . . . , 𝑦 (ℓ)

)
.

FOnline (Funct. 1) in the (FBroadcast, FSecureOpen, FBlindOnline)-
hybrid model with computational security against any static ma-

licious adversary corrupting up to 𝑛 − 1 parties.
341

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

Functionality 1 FOnline.
Parameters. Let 𝑝 be a super-polynomial prime and F = F𝑝 be

the finite field of size 𝑝 . Let C be an arithmetic circuit over F
with𝑚 input gates id1, . . . , id𝑚 and ℓ output gates. Let further

each input gate id𝑗 be uniquely associated with a party 𝑃𝑖 .

Corrupted parties. Let A denote the set of parties corrupted

by the adversary.

Input phase: On input

(
Input, 𝑃𝑖 , id𝑗 , 𝑥

)
from party 𝑃𝑖 (poten-

tially controlled by the adversary) proceed as follows:

(1) If 𝑃𝑖 is not associated with input gate id𝑗 , if a value 𝑥 for

input gate id𝑗 has already been registered, if 𝑥 ∉ F, or if
the query has the wrong format, ignore the input.

(2) Else, register 𝑥 (𝑗) = 𝑥 as the input value corresponding

to gate id𝑗 .

Computation phase: Initialize 𝑆 := ∅. On input Compute from
party 𝑃𝑖 , set 𝑆 := 𝑆∪{𝑃𝑖 }. If 𝑆 = {𝑃1, . . . , 𝑃𝑛}, proceed as follows:

(1) If no input has been registered for an input gate of C,
return ⊥ to all parties and to the adversary and exit.

(2) Else, compute

(
𝑦 (1) , . . . , 𝑦 (ℓ)

)
= C

(
𝑥 (1) , . . . , 𝑥 (𝑚)

)
,

where the inputs 𝑥 (1) , . . . , 𝑥 (𝑚) are the values registered
(i.e., associated to the input gates) during the input phase.

(3) If |A| < 𝑛/2 send DeliverMessage to the adversary

and receive ToAll or ToNone message. If ToAll, com-

municate 𝑦 (1) , . . . , 𝑦 (ℓ) to all honest parties and to the

adversary. If ToNone, communicate ⊥ to all honest par-

ties and to the adversary.

(4) If |A| ≥ 𝑛/2 send (DeliverMessage, 𝑦 (1) , . . . , 𝑦 (ℓ)) to
the adversary and receive a set (ToSet, 𝑆) for 𝑆 ⊆
{𝑃1, . . . , 𝑃𝑛}\A. Communicate 𝑦 (1) , . . . , 𝑦 (ℓ) to all par-

ties in 𝑆 and ⊥ to all other parties.

By default, the functionality ignores any unexpected input, and

aborts sending ⊥ to all parties if the adversary fails to respond

on any of the queries.

6 CONCLUSION AND FUTUREWORK

We introduced an adaptation of SPDZ and similar MPC platforms

to overcome the lack of fairness, where we additionally blinded the

MPC outputs, and fairly revealed the blinding values.

We implemented the adaptation and benchmarked practical per-

formance, to find that the run-time for guaranteeing fairness takes

less than one percent in the preprocessing phase, and roughly

0.02% in the online phase. W.r.t. communication, the increase in the

amount of sent data is less than 0.005% for both the preprocessing

and online phase. Furthermore, the additional work is less than

linear in the number of parties and in the number of output values.

To conclude, we found a way to make SPDZ, and implemen-

tations thereof, such as MP-SPDZ and SCALE-MAMBA, fair at a

negligible cost. For future work, other MPC platforms building on

authenticated secret sharing could similarly be made fair, and the

scheme might be extended with cheater detection by leveraging

the formalized method to detect invalid Shamir shares. Moreover,

although we only provide a security proof in the stand-alone model,

this does not directly imply that our solution becomes insecure

Functionality 2 FBlindOnline.
Parameters. Let 𝑝 be a super-polynomial prime and F = F𝑝 be

the finite field of size 𝑝 . Let C be an arithmetic circuit over F
with𝑚 input gates id1, . . . , id𝑚 and ℓ output gates. Let further

each input gate id𝑗 be uniquely associated with a party 𝑃𝑖 .

Corrupted parties. Let A denote the set of parties corrupted

by the adversary.

Preprocessing phase: Initialize 𝑆 := ∅. On input Preprocess

from party 𝑃𝑖 , set 𝑆 := 𝑆 ∪ {𝑃𝑖 }. If 𝑆 = {𝑃1, . . . , 𝑃𝑛}, proceed as

follows: The functionality sets up a MAC key 𝛼 and blinding

values 𝑏 (1) , . . . , 𝑏 (ℓ+1) as follows:

(1) for each 𝑃𝑖 ∈ A, send (Mac, 𝑃𝑖) to the adversary and

receive input 𝛼𝑖 ∈ F;
(2) for each 𝑃𝑖 ∉ A, sample 𝛼𝑖 ∈ F uniformly at random;

(3) for each 𝑃𝑖 ∈ A, send (BlindingShares, 𝑃𝑖) to the ad-

versary to receive 𝑏
(1)
𝑖

, . . . , 𝑏
(ℓ+1)
𝑖

∈ F;
(4) for each 𝑃𝑖 ∉ A, sample 𝑏

(1)
𝑖

, . . . , 𝑏
(ℓ+1)
𝑖

∈ F uniformly

at random;

(5) define the MAC key 𝛼 as 𝛼 =
∑𝑛
𝑖=1 𝛼𝑖 ;

(6) define the blinding value 𝑏 (𝑗) as 𝑏 (𝑗) =
∑𝑛
𝑖=1 𝑏

(𝑗)
𝑖

for

𝑗 = 1, . . . , ℓ + 1;
(7) generate random shares 𝛾 (𝑏 (𝑗))1, . . . , 𝛾 (𝑏 (𝑗))𝑛 condi-

tioned on

∑𝑛
𝑖=1 𝛾 (𝑏 (𝑗))𝑖 = 𝛼 · 𝑏 (𝑗) for 𝑗 = 1, . . . , ℓ + 1;

(8) output

(
𝛼𝑖 ,

(
𝑏
(𝑗)
𝑖

, 𝛾 (𝑏 (𝑗))𝑖
)ℓ+1
𝑗=1

)
to 𝑃𝑖 for 𝑖 = 1, . . . , 𝑛.

Input phase: On input

(
Input, 𝑃𝑖 , id𝑗 , 𝑥

)
from party 𝑃𝑖 (poten-

tially controlled by the adversary) proceed as follows:

(1) If 𝑃𝑖 is not associated with input gate id𝑗 , if a value 𝑥 for

input gate id𝑗 has already been registered, if 𝑥 ∉ F, or if
the query has the wrong format, ignore the input.

(2) Else, register 𝑥 (𝑗) = 𝑥 .

Computation phase: Initialize 𝑆 := ∅. On input Compute from
party 𝑃𝑖 , set 𝑆 := 𝑆∪{𝑃𝑖 }. If 𝑆 = {𝑃1, . . . , 𝑃𝑛}, proceed as follows:

(1) If no input has been registered for an input gate of C,
return ⊥ to all parties and to the adversary and exit.

(2) Else, compute:

•
(
𝑦 (1) , . . . , 𝑦 (ℓ)

)
= C

(
𝑥 (1) , . . . , 𝑥 (𝑚)

)
, where the inputs

𝑥 (𝑖) are the values registered during the input phase;

• 𝑧 (𝑗) = 𝑦 (𝑗) + 𝑏 (𝑗) for all 𝑗 = 1, . . . , ℓ .

(3) Send (DeliverMessage, 𝑧 (1) , . . . , 𝑧 (ℓ)) to the adversary
and receive amessage (ToSet, 𝑆) for 𝑆 ⊆ {𝑃1, . . . , 𝑃𝑛}\A.

Communicate 𝑧 (1) , . . . , 𝑧 (ℓ) to all parties in 𝑆 and ⊥ to all

other parties.

By default, the functionality ignores any unexpected input, and

aborts sending ⊥ to all parties if the adversary fails to respond

on any of the queries.

when concurrently executed: we actually expect the resulting pro-

tocol to be secure, although a dedicated security proof would be

needed. An interesting direction for future workwould be providing

such a proof.

342

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

ACKNOWLEDGMENTS

This paper is based on the Master Thesis “Making SPDZ Fair” by

Bart Veldhuizen (2020) as a requirement for the master Computing

Science at the Radboud University, Nijmegen, NL. All research

related to this thesis was performed at the Cyber Security and

Robustness department, TNO, The Hague, NL.

This work was further supported by the TNO Early Research

Programme “Next Generation Cryptography”.

The work of L. Kohl was carried out in the CWI Cryptology

group, Amsterdam, supported by the NWO Talent Programme Veni

(VI.Veni.222.348) and the NWO Gravitation Project QSC.

REFERENCES

[1] Abdelrahaman Aly, Karl Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini,

Dragos Rotaru, Oliver Scherer, Peter Scholl, Nigel P Smart, Titouan Tanguy, et al.

2021. SCALE–MAMBA v1. 14: Documentation. https://homes.esat.kuleuven.be/

~nsmart/SCALE/.

[2] Gilad Asharov, Yehuda Lindell, and Hila Zarosim. 2013. Fair and Efficient Secure

Multiparty Computation with Reputation Systems. In Advances in Cryptology -

ASIACRYPT 2013 - 19th International Conference on the Theory and Application

of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,

Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8270), Kazue Sako

and Palash Sarkar (Eds.). Springer, 201–220. https://doi.org/10.1007/978-3-642-

42045-0_11

[3] Carsten Baum, Daniele Cozzo, and Nigel P. Smart. 2019. Using TopGear in

Overdrive: A More Efficient ZKPoK for SPDZ. In Selected Areas in Cryptography

- SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-

16, 2019, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 11959),

Kenneth G. Paterson and Douglas Stebila (Eds.). Springer, 274–302. https://doi.

org/10.1007/978-3-030-38471-5_12

[4] Carsten Baum, Bernardo David, and Rafael Dowsley. 2018. Insured MPC: Efficient

Secure Multiparty Computation with Punishable Abort. IACR Cryptology ePrint

Archive 2018 (2018), 942. https://eprint.iacr.org/2018/942

[5] Carsten Baum, Emmanuela Orsini, and Peter Scholl. 2016. Efficient Secure

Multiparty Computation with Identifiable Abort. In Theory of Cryptography - 14th

International Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,

Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9985), Martin Hirt and

Adam D. Smith (Eds.). 461–490. https://doi.org/10.1007/978-3-662-53641-4_18

[6] Donald Beaver and Shafi Goldwasser. 1989. Multiparty Computation with Faulty

Majority, See [8], 589–590. https://doi.org/10.1007/0-387-34805-0_51

[7] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P.

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt

Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. 2009. Secure

Multiparty Computation Goes Live. In Financial Cryptography and Data Security,

13th International Conference, FC 2009, Accra Beach, Barbados, February 23-26, 2009.

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 5628), Roger Din-

gledine and Philippe Golle (Eds.). Springer, 325–343. https://doi.org/10.1007/978-

3-642-03549-4_20

[8] Gilles Brassard (Ed.). 1990. Advances in Cryptology - CRYPTO ’89, 9th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 20-

24, 1989, Proceedings. Lecture Notes in Computer Science, Vol. 435. Springer.

https://doi.org/10.1007/0-387-34805-0

[9] Anne Broadbent, Stacey Jeffery, Samuel Ranellucci, and Alain Tapp. 2012. Trading

Robustness for Correctness and Privacy in Certain Multiparty Computations,

beyond an Honest Majority. In Information Theoretic Security - 6th International

Conference, ICITS 2012, Montreal, QC, Canada, August 15-17, 2012. Proceedings

(Lecture Notes in Computer Science, Vol. 7412), Adam D. Smith (Ed.). Springer,

14–36. https://doi.org/10.1007/978-3-642-32284-6_2

[10] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of

Computer Science. IEEE, 136–145.

[11] David Chaum. 1989. The Spymasters Double-Agent Problem: Multiparty Com-

putations Secure Unconditionally from Minorities and Cryptographically from

Majorities. In Advances in Cryptology - CRYPTO ’89, 9th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceed-

ings (Lecture Notes in Computer Science, Vol. 435), Gilles Brassard (Ed.). Springer,

591–602. https://doi.org/10.1007/0-387-34805-0_52

[12] David Chaum. 1989. The Spymasters Double-Agent Problem: Multiparty Com-

putations Secure Unconditionally from Minorities and Cryptographically from

Majorities, See [8], 591–602. https://doi.org/10.1007/0-387-34805-0_52

[13] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian

Miers. 2017. Fairness in an Unfair World: Fair Multiparty Computation from

Public Bulletin Boards. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -

November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu (Eds.). ACM, 719–728. https://doi.org/10.1145/3133956.3134092

[14] Richard Cleve. 1986. Limits on the Security of Coin Flips when Half the Pro-

cessors Are Faulty (Extended Abstract). In Proceedings of the 18th Annual ACM

Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,

Juris Hartmanis (Ed.). ACM, 364–369. https://doi.org/10.1145/12130.12168

[15] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. 2017. Catching

MPC Cheaters: Identification and Openability. In Information Theoretic Security

- 10th International Conference, ICITS 2017, Hong Kong, China, November 29 -

December 2, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10681), Junji

Shikata (Ed.). Springer, 110–134. https://doi.org/10.1007/978-3-319-72089-0_7

[16] Anders P. K. Dalskov, Daniel Escudero, andMarcel Keller. 2020. Secure Evaluation

of Quantized Neural Networks. Proc. Priv. Enhancing Technol. 2020, 4 (2020), 355–

375. https://doi.org/10.2478/POPETS-2020-0077

[17] Ivan Damgård. 1995. Practical and Provably Secure Release of a Secret and

Exchange of Signatures. J. Cryptology 8, 4 (1995), 201–222. https://doi.org/10.

1007/BF00191356

[18] Ivan Damgård, Kasper Damgård, Kurt Nielsen, Peter Sebastian Nordholt, and

Tomas Toft. 2016. Confidential Benchmarking Based on Multiparty Computation.

In Financial Cryptography and Data Security - 20th International Conference,

FC 2016, Christ Church, Barbados, February 22-26, 2016, Revised Selected Papers

(Lecture Notes in Computer Science, Vol. 9603), Jens Grossklags and Bart Preneel

(Eds.). Springer, 169–187. https://doi.org/10.1007/978-3-662-54970-4_10

[19] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In Computer Security - ESORICS 2013 - 18th European

Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013.

Proceedings (Lecture Notes in Computer Science, Vol. 8134), Jason Crampton, Sushil

Jajodia, and Keith Mayes (Eds.). Springer, 1–18. https://doi.org/10.1007/978-3-

642-40203-6_1

[20] Ivan Damgård, Claudio Orlandi, andMark Simkin. 2018. Yet Another Compiler for

Active Security or: Efficient MPCOver Arbitrary Rings. InAdvances in Cryptology

- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,

CA, USA, August 19-23, 2018, Proceedings, Part II (Lecture Notes in Computer

Science, Vol. 10992), Hovav Shacham and Alexandra Boldyreva (Eds.). Springer,

799–829. https://doi.org/10.1007/978-3-319-96881-0_27

[21] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In Advances in

Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 19-23, 2012. Proceedings (Lecture Notes in Computer Science,

Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, 643–662.

https://doi.org/10.1007/978-3-642-32009-5_38

[22] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam

Smith. 2002. Detectable Byzantine agreement secure against faulty majorities.

In Proceedings of the twenty-first annual symposium on Principles of distributed

computing. 118–126.

[23] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. 2004. Multi-party

Computation with Hybrid Security. In Advances in Cryptology - EUROCRYPT

2004, International Conference on the Theory and Applications of Cryptographic

Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings (Lecture Notes in

Computer Science, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer,

419–438. https://doi.org/10.1007/978-3-540-24676-3_25

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,

1987, New York, New York, USA, Alfred V. Aho (Ed.). ACM, 218–229. https:

//doi.org/10.1145/28395.28420

[25] Lein Harn, Changlu Lin, and Yong Li. 2015. Fair secret reconstruction in (t, n)

secret sharing. J. Inf. Sec. Appl. 23 (2015), 1–7. https://doi.org/10.1016/j.jisa.2015.

07.001

[26] Martin Hirt, Christoph Lucas, and Ueli Maurer. 2013. A Dynamic Tradeoff

between Active and Passive Corruptions in Secure Multi-Party Computation.

In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,

Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II (Lecture Notes

in Computer Science, Vol. 8043), Ran Canetti and Juan A. Garay (Eds.). Springer,

203–219. https://doi.org/10.1007/978-3-642-40084-1_12

[27] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. 2006. On Combin-

ing Privacy with Guaranteed Output Delivery in Secure Multiparty Computation.

In Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings (Lec-

ture Notes in Computer Science, Vol. 4117), Cynthia Dwork (Ed.). Springer, 483–500.

https://doi.org/10.1007/11818175_29

[28] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards Practical Privacy

for Genomic Computation. In 2008 IEEE Symposium on Security and Privacy (S&P

2008), 18-21 May 2008, Oakland, California, USA. IEEE Computer Society, 216–230.

https://doi.org/10.1109/SP.2008.34

343

https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1007/978-3-642-42045-0_11
https://doi.org/10.1007/978-3-642-42045-0_11
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://eprint.iacr.org/2018/942
https://doi.org/10.1007/978-3-662-53641-4_18
https://doi.org/10.1007/0-387-34805-0_51
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/0-387-34805-0
https://doi.org/10.1007/978-3-642-32284-6_2
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1007/0-387-34805-0_52
https://doi.org/10.1145/3133956.3134092
https://doi.org/10.1145/12130.12168
https://doi.org/10.1007/978-3-319-72089-0_7
https://doi.org/10.2478/POPETS-2020-0077
https://doi.org/10.1007/BF00191356
https://doi.org/10.1007/BF00191356
https://doi.org/10.1007/978-3-662-54970-4_10
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-540-24676-3_25
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1016/j.jisa.2015.07.001
https://doi.org/10.1016/j.jisa.2015.07.001
https://doi.org/10.1007/978-3-642-40084-1_12
https://doi.org/10.1007/11818175_29
https://doi.org/10.1109/SP.2008.34

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

[29] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Universally

Composable Synchronous Computation. In Theory of Cryptography - 10th Theory

of Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings

(Lecture Notes in Computer Science, Vol. 7785), Amit Sahai (Ed.). Springer, 477–498.

https://doi.org/10.1007/978-3-642-36594-2_27

[30] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Commu-

nications Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xin-

ming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM, 1575–1590. https:

//doi.org/10.1145/3372297.3417872

[31] Marcel Keller, Emmanuela Orsini, and Peter Scholl. 2016. MASCOT: Faster Mali-

cious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-

rity, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM, 830–842.

https://doi.org/10.1145/2976749.2978357

[32] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making SPDZ

Great Again. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Tel

Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III (Lecture Notes in Computer

Science, Vol. 10822), Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer,

158–189. https://doi.org/10.1007/978-3-319-78372-7_6

[33] Ranjit Kumaresan and Iddo Bentov. 2014. How to Use Bitcoin to Incentivize

Correct Computations. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014,

Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM, 30–41. https://doi.org/

10.1145/2660267.2660380

[34] Hung-Yu Lin and Lein Harn. 1995. Fair Reconstruction of a Secret. Inf. Process.

Lett. 55, 1 (1995), 45–47. https://doi.org/10.1016/0020-0190(95)00045-E

[35] Yehuda Lindell and Ariel Nof. 2017. A Framework for Constructing Fast MPC

over Arithmetic Circuits with Malicious Adversaries and an Honest-Majority. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’17). Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/3133956.3133999

[36] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 1996. Handbook of

Applied Cryptography. CRC Press. https://doi.org/10.1201/9781439821916

[37] Peter Sebastian Nordholt and Meilof Veeningen. 2018. Minimising Communi-

cation in Honest-Majority MPC by Batchwise Multiplication Verification. In

Applied Cryptography and Network Security - 16th International Conference, ACNS

2018, Leuven, Belgium, July 2-4, 2018, Proceedings (Lecture Notes in Computer Sci-

ence, Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer, 321–339.

https://doi.org/10.1007/978-3-319-93387-0_17

[38] Emmanuela Orsini. 2021. Efficient, Actively Secure MPC with a Dishonest

Majority: A Survey. In Arithmetic of Finite Fields, Jean Claude Bajard and Alev

Topuzoğlu (Eds.). Springer International Publishing, Cham, 42–71.

[39] Torben Pryds Pedersen. 1992. Non-Interactive and Information-Theoretic Se-

cure Verifiable Secret Sharing. In Advances in Cryptology — CRYPTO ’91, Joan

Feigenbaum (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 129–140.

[40] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

https://doi.org/10.1145/359168.359176

[41] Gabriele Spini and Serge Fehr. 2016. Cheater Detection in SPDZ Multiparty

Computation. In Information Theoretic Security - 9th International Conference,

ICITS 2016, Tacoma, WA, USA, August 9-12, 2016, Revised Selected Papers (Lecture

Notes in Computer Science, Vol. 10015), Anderson C. A. Nascimento and Paulo S.

L. M. Barreto (Eds.). 151–176. https://doi.org/10.1007/978-3-319-49175-2_8

[42] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,

Illinois, USA, 3-5 November 1982. IEEE Computer Society, 160–164. https://doi.

org/10.1109/SFCS.1982.38

[43] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,

Hongwei Li, and Yu-an Tan. 2019. Secure Multi-Party Computation: Theory,

practice and applications. Inf. Sci. 476 (2019), 357–372. https://doi.org/10.1016/j.

ins.2018.10.024

A SECURITY PROOF

In this section we provide the simulators and formal proofs of secu-

rity. The proof that ΠOnline correctly implements FOnline in the

(FBroadcast, FSecureOpen, FBlindOnline)-hybrid model is obtained

by constructing two simulators: one for the honest-majority setting

(Simulator SOnline-HonestMaj, Section A.1), where fairness can be

achieved, and one for the dishonest-majority setting (Simulator

SOnline-General, Section A.2), where no such guarantee can be

given. The simulators follow a relatively standard approach, where

a simulated version of the protocol is run with the input of dishon-

est parties and with dummy inputs for honest parties (in this case,

0) in order to obtain values with the same format as an execution

of the real protocol.

In the honest-majority case, the simulator makes use of the trap-

door commitment scheme, which essentially allows the simulator to

produce ‘generic’ commitments, and only later on decide on which

values they will open. This is necessary, since the simulator has to

commit to the blinding shares of the honest parties before knowing

the real output provided by the functionality. The trapdoor commit-

ment scheme together with the fact that the simulator has control

over the majority of the Shamir shares in the honest-majority case

allows the simulator to adapt shares and commitments to explain

the real output before opening. For a formal definition and on a

discussion on how to realize such a trapdoor commitment scheme,

we refer to Section B.1 in the appendix.

In the dishonest majority case, on the other hand, the simula-

tor obtains the real output of the functionality before having to

commit to its own inputs, and can thus form Shamir shares and

commitments using the correct output values.We start by giving the

simulator SOnline-HonestMaj (Section A.1) for the honest-majority

case and the simulatorSOnline-General Section A.2 for the case that
there is no honest majority. We then show that the MAC Check

provides some consistence guarantee of the inputs of the adver-

sary (Section A.3). Finally, we give the full proof of our protocol

(Section A.4).

A.1 Simulator SOnline-HonestMaj

Simulator 1 SOnline-HonestMaj

We assume that the setA of corrupted parties has cardinality < 𝑛/2.
In order to simplify the notation, in the following we describe

the simulator for ℓ = 1, and write 𝑦, 𝑧 instead of 𝑦 (1) , 𝑧 (1) , as well
as 𝑏, ˆ𝑏 and 𝑟, 𝑟 instead of 𝑏 (1) , 𝑏 (2) and 𝑟 (1) , 𝑟 (2) in the following. It

is straightforward to extend the simulator to arbitrary ℓ .

Preprocessing phase:

(1) The simulator runs a copy of the preprocessing phase of

the functionality Func. 2 (FBlindOnline) as a subroutine: for
each 𝑃𝑖 ∈ A it sends (Mac, 𝑃𝑖) and (BlindingShares, 𝑃𝑖)
to the adversary to receive MAC share 𝛼𝑖 ∈ F and shares of

blinding values 𝑏𝑖 , ˆ𝑏𝑖 ∈ F; and randomly samples the values

𝛼 𝑗 , 𝑏 𝑗 , 𝑏
′
𝑗
∈ F for the simulated honest parties 𝑃 𝑗 ∉ A; next,

it samples 𝛾 (𝑏)𝑖 , 𝛾 (ˆ𝑏)𝑖 at random for all 𝑖 ∈ A and outputs(
𝛼𝑖 , (𝑏𝑖 , 𝛾 (𝑏)𝑖) ,

(
ˆ𝑏𝑖 , 𝛾 (ˆ𝑏)𝑖

))
to each 𝑃𝑖 ∈ A.

(2) The next step consists of the conversion of SPDZ-sharings to

Shamir sharings, executed through Prot. 4 (ShareShamir).

Once again, the simulator runs a copy of this protocol:

It computes random Shamir sharings 𝑆𝐻 (𝑏 𝑗), 𝑆𝐻 (ˆ𝑏 𝑗) for
each 𝑃 𝑗 ∉ A and sends the shares corresponding to dishonest

parties to the adversary, and it waits for the Shamir shares

for honest parties of some value
˜𝑏𝑖 from the adversary for

every 𝑃𝑖 ∈ A.

(3) Subsequently, we move to Prot. 5 (GenValData). The simu-

lator runs a copy of this protocol as well:

344

https://doi.org/10.1007/978-3-642-36594-2_27
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1016/0020-0190(95)00045-E
https://doi.org/10.1145/3133956.3133999
https://doi.org/10.1201/9781439821916
https://doi.org/10.1007/978-3-319-93387-0_17
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-319-49175-2_8
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1016/j.ins.2018.10.024
https://doi.org/10.1016/j.ins.2018.10.024

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

Recall that Prot. 5 takes as input the SPDZ and Shamir shar-

ings of the blinding values 𝑏 :=
∑𝑛
𝑖=1 𝑏𝑖 ,

ˆ𝑏 :=
∑𝑚
𝑖=1

ˆ𝑏𝑖 , pro-

duces commitments to the Shamir shares of these value,

computes a random linear combination 𝑆𝐻 (𝑐) of the Shamir

sharings, and checks that this value 𝑐 satisfies the MAC-

check with tags provided by the SPDZ-sharings of the values

𝑏, ˆ𝑏.

For the commitment-creation phase, instead of properly sim-

ulating the commitments of honest parties, the simulator

calls TCom1 (td) to produce a commitment 𝐶 (𝑖) and corre-

sponding opening key ok
(𝑖)

for each honest party 𝑃𝑖 . No

opening information is produced for the honest parties at

this point.

The other steps are the commit and challenge phase are exe-

cuted by simulating the behavior of honest parties and by

waiting for the inputs of dishonest parties from the adver-

sary.

We then focus on step 3, where the linear combination 𝑆𝐻 (𝑐)
of the Shamir sharings is computed and checked for consis-

tency with the SPDZ-sharings.

If at 3b the adversary submits invalid Shamir shares (i.e. such

that the 𝑛 shares of both honest and dishonest parties do not

lie on a polynomial of degree at most ⌊𝑛/2⌋), then the simu-

lator executes 3c, sends ToNone to the ideal functionality

and quits.

If the adversary submits valid, but incorrect shares that cor-

respond to a value
˜𝑏 ≠ 𝑏 for any 𝑃𝑖 ∈ A (which would

be detected by a failed MAC check in step 3f in an honest

execution), the simulator proceeds until conclusion of the

simulated Prot. 5, then sends ToNone to the ideal function-

ality and quits.

Input phase:

(1) The simulator runs a local copy of the Input phase of

Functionality FBlindOnline: for each input gate with input

identifier id𝑗 associated with a party 𝑃𝑖 ∈ A, on input

(Input, 𝑃𝑖 , id𝑗 , 𝑥) from 𝑃𝑖 ∈ A, it forwards (Input, 𝑃𝑖 , id𝑗 , 𝑥)
to FOnline.

Computation phase:

(1) The simulator locally invokes the computation phase of Func-

tionality FBlindOnline: on input Compute by party 𝑃𝑖 ∈ A,

it forwards Compute to FOnline. If the functionality sends

⊥, forward ⊥ to the adversary and exit.

(2) On inputDeliverMessage from FOnline, the simulator sam-

ples 𝑧 ← F at random and forwards (DeliverMessage, 𝑧)
to the adversary to receive (ToSet, 𝑆).

(3) Next, the simulator runs a local copy of FContinue and sets

𝑚 𝑗 = ok for all honest parties 𝑃 𝑗 ∈ 𝑆 and𝑚 𝑗 = abort for

all honest parties 𝑃 𝑗 ∉ 𝑆 . If the adversary sends ToNone in

FContinue, or any of the broadcast messages by the honest

parties is abort, the simulator forwards ToNoneto the ideal

functionality FOnline and quits.

(4) Else, the simulator sends ToAll to the ideal functionality

and receives the output value 𝑦. The simulator then runs

a local copy of Prot. 6 (FairBlinds), taking care to ensure

that the simulated values are consistent with 𝑦 and with the

values previously sent to the adversary:

The first step consists in broadcasting the opening informa-

tion for the commitments produced during the simulation

of Prot. 5. Now the simulator cannot just broadcast the cor-

rect opening information, because the adversary would then

reconstruct the masking value 𝑏 and, therefore, obtain as

output a random value 𝑧 − 𝑏 instead of 𝑦. Instead, the sim-

ulator adjusts the shares of the honest players of 𝑏 so that

they instead reconstruct to a different value, and makes use

of the trapdoor-functionality of the commitment scheme to

produce valid opening information for these adjusted shares.

More precisely, let 𝑏 ′ := 𝑧 − 𝑦. The simulator computes

a Shamir sharing 𝑆𝐻 (𝑏 ′) such that 𝑆𝐻 (𝑏 ′)𝑖 = 𝑆𝐻 (𝑏)𝑖 for
all 𝑃𝑖 ∈ A, i.e., such that the shares corresponding to cor-

rupt players are the same as before; since there are at most

⌈𝑛/2⌉ − 1 corrupted players and since the Shamir sharing is

done with polynomials of degree up to ⌈𝑛/2⌉, this is always
possible. The simulator then sets the share of each honest

player 𝑃 𝑗 ∉ A to 𝑆𝐻 (𝑏 ′) 𝑗 ; combined with the shares 𝑆𝐻 (𝑏)𝑖
of corrupted players, this forms a valid Shamir sharing of

𝑆𝐻 (𝑏 ′).
Moreover, the adversary also saw a linear combination

𝑆𝐻 (𝑐) 𝑗 = 𝑟 · 𝑆𝐻 (𝑏) 𝑗 + 𝑟 · 𝑆𝐻 (ˆ𝑏) 𝑗 for every honest

party 𝑃 𝑗 , where 𝑟 and 𝑟 are random values and
ˆ𝑏 has

been produced by Functionality 2 (FBlindOnline) together
with 𝑏. The simulator then adjust each share 𝑆𝐻 (ˆ𝑏) 𝑗 to

𝑆𝐻 (ˆ𝑏 ′) 𝑗 := 𝑆𝐻 (ˆ𝑏) 𝑗 − 𝑟/𝑟 · 𝑆𝐻 (𝑏 ′ − 𝑏) 𝑗 ; once again, to-

gether with the shares of dishonest players of 𝑆𝐻 (ˆ𝑏),
this forms a valid Shamir sharing, and we have that

𝑟 · 𝑆𝐻 (𝑏 ′) 𝑗 + 𝑟 · (𝑆𝐻 (ˆ𝑏 ′) 𝑗)
=𝑟 ·

(
𝑆𝐻 (𝑏) 𝑗 + 𝑆𝐻 (𝑏 ′ − 𝑏) 𝑗

)
+ 𝑟 ·

(
𝑆𝐻 (ˆ𝑏) 𝑗 − 𝑟/𝑟 · 𝑆𝐻 (𝑏 ′ − 𝑏) 𝑗

)
=𝑟 · 𝑆𝐻 (𝑏) 𝑗 + 𝑟 · 𝑆𝐻 (ˆ𝑏) 𝑗 = 𝑆𝐻 (𝑐) 𝑗 .

As recalled above, the adversary also got a commitment

𝐶 (𝑗) to both 𝑆𝐻 (𝑏) 𝑗 and 𝑆𝐻 (ˆ𝑏) 𝑗 for each honest player 𝑃 𝑗 .

Since this commitment was created by using the trapdoor-

functionality of the commitment scheme, the simulator can

call TCom2

(
𝐶 (𝑗) , ok(𝑗) , 𝑆𝐻 (𝑏 ′) 𝑗 ∥𝑆𝐻 (ˆ𝑏 ′) 𝑗

)
to obtain valid

opening information 𝑂 (𝑘) for 𝐶 (𝑘) , 𝑆𝐻 (𝑏 ′) 𝑗 ∥𝑆𝐻 (ˆ𝑏 ′) 𝑗 . The
simulator hence runs the commitment-opening phase with

these adjusted values for each 𝑃 𝑗 ; the adversary submits the

opening values of corrupted parties.

If the opening information of any (dishonest) player is incor-

rect, that player is added to the list Ω of cheating participants.

The same happens if values 𝑆𝐻 (𝑏)𝑖 of some dishonest player

𝑃𝑖 do not match their linear combination 𝑆𝐻 (𝑐)𝑖 . Finally, the
simulator sends Ω to the adversary and quits.

A.2 Simulator SOnline-General
Simulator 2 SOnline-General

345

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

We now assume that the set A of corrupted parties has cardinality

≥ 𝑛/2.
In order to simplify the notation, in the following we describe

the simulator for ℓ = 1, and write 𝑦, 𝑧 instead of 𝑦 (1) , 𝑧 (1) , as well
as 𝑏, ˆ𝑏 and 𝑟, 𝑟 instead of 𝑏 (1) , 𝑏 (2) and 𝑟 (1) , 𝑟 (2) in the following. It

is straightforward to extend the simulator to arbitrary ℓ .

Preprocessing phase: The simulator proceeds as in the honest ma-

jority case, but generates honest commitments duringGenValData

instead of trapdoor commitments:

(1) The simulator runs a copy of the preprocessing phase of the

functionality Func. 2 (FBlindOnline) as a subroutine, where
it follows the description of the functionality (i.e., waits for

the inputs of the adversary, and adversary samples all values

uniformly at random).

(2) The simulator simulates the behavior of the honest parties

in ShareShamir (Prot. 4) by following the real protocol in-

structions.

(3) The simulator simulates the behavior of the honest parties

in GenValData (Prot. 5) by following the real protocol in-

structions.

Again, if at 3b the adversary submits invalid Shamir shares

(i.e. such that the 𝑛 shares of both honest and dishonest

parties do not lie on a polynomial of degree at most ⌊𝑛/2⌋),
then the simulator executes 3c, sends ToNone to the ideal

functionality and quits.

If the adversary submits valid, but incorrect shares that cor-

respond to a value
˜𝑏 ≠ 𝑏 for any 𝑃𝑖 ∈ A (which would

be detected by a failed MAC check in step 3f in an honest

execution), the simulator proceeds until conclusion of the

simulated Prot. 5, then sends ToNone to the ideal function-

ality and quits.

Input phase:

(1) The simulator runs a local copy of the Input phase of

Functionality FBlindOnline: for each input gate with input

identifier id𝑗 associated with a party 𝑃𝑖 ∈ A, on input

(Input, 𝑃𝑖 , id𝑗 , 𝑥) from 𝑃𝑖 ∈ A, it forwards (Input, 𝑃𝑖 , id𝑗 , 𝑥)
to FOnline.

Computation phase:

(1) The simulator locally invokes the computation phase of Func-

tionality FBlindOnline: on input Compute by party 𝑃𝑖 ∈ A,

it forwards Compute to FOnline. If the functionality sends

⊥, forward ⊥ to the adversary and exit.

(2) On input (DeliverMessage, 𝑦) from FOnline, the simulator

forwards (DeliverMessage, 𝑦 + 𝑏) to the adversary, and

waits for message (ToSet, 𝑆) by the adversary.

(3) Next, the simulator runs a local copy of FContinue and sets

𝑚 𝑗 = ok for all honest parties 𝑃 𝑗 ∈ 𝑆 and 𝑚 𝑗 = abort

for all honest parties 𝑃 𝑗 ∉ 𝑆 . It forwards (𝑃𝑖 ,𝑚𝑖)𝑖∉A to the

adversary and receives (ToSet, 𝑆). If 𝑆 ∩𝑆 = ∅, the simulator

sends (ToSet, ∅) to the ideal functionality FOnline and quits.
(4) Else, the simulator then invokes the protocol FairBlinds

(Prot. 6), where it follows the protocol for the honest parties

𝑃𝑖 ∈ 𝑆 ∩ 𝑆 . It sets 𝑆 ′ := {𝑃𝑖 | 𝑃𝑖 ∈ 𝑆 ∩ 𝑆 ∧ |Ω𝑖 | < 𝑛/2}, sends
(ToSet, 𝑆 ′) to the functionality FOnline and quits.

A.3 Security of the MAC Check

Before we proceed with stating and proving the security of our

scheme, we need to address one last point: proving the security of

the MAC-Check protocol in an explicit way.

Note that for the purpose of the proof we assume thatU𝑠 (𝑝, ℓ+1)
as used in GenValData (Protocol 5) returns perfect randomness.

We further assume that the trapdoor commitment scheme is im-

plemented using a random oracle as described in Section B. Note

that it is straightforward to generalize the following lemma to the

more general case by adapting the upper bound on the success

probability of the adversary accordingly.

Before stating the main lemma recall that if H1 is modeled

as a random oracle with 𝑅 possible outputs, then the probabil-

ity that the adversary can find two distinct values 𝑥, 𝑥 ′ such that

H1 (𝑥) = H1 (𝑥 ′) (and therefore break the binding property of the

commitment scheme) by querying the oracle 𝜔 times, is denoted

by 𝑃𝑐𝑜𝑙 (𝜔) and is equal to 1 − 𝑅!
(𝑅−𝜔)!·𝑅𝜔 [36].

We now prove that the MAC-Check protocol is sound, i.e., that

it rejects all incorrectly authenticated values. Notice that a similar

proof can be found in the original SPDZ articles; however, we

require an explicit formulation of the error probability, and thus

state it here in a slightly different form that better matches our

purposes.

Lemma A.1 (Soundness of MAC-Check). Let COM be instanti-

ated using a (programmable) random oracle (as outlined in Section B)

and letU𝑠 (𝑝, ℓ + 1) be modelled as a perfect randomness generator.

Then, the MAC-Check protocol (Prot. 1) is sound, i.e. it rejects values

(𝑎 (1) , . . . , 𝑎 (ℓ)) ≠ (𝑎 (1) , . . . , 𝑎 (ℓ)), except with a maximum probabil-

ity of 2 ·max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)), where 𝑝 is the field size and 𝑃𝑐𝑜𝑙 (𝜔) is
as defined above.

Proof. For simplicity, we focus on the case where ℓ > 1.

The goal of the adversary is to force the honest participants

into accepting incorrect values (𝑎 (1) , . . . , 𝑎 (ℓ)) ≠ (𝑎 (1) , . . . , 𝑎 (ℓ)). To
accomplish this, the adversary must ensure that the corresponding

linear combination 𝑎 of the incorrect values (Step 2a) is accepted.

This only occurs when 𝜎 is equal to 0, where 𝜎 = 𝛾 (𝑎) − 𝛼 · 𝑎
(Step 3b). The adversary must thus add a correcting value 𝛿 to 𝜎 ,

resulting in 𝜎 + 𝛿 = 𝛾 (𝑎) − 𝛼 · 𝑎 + 𝛿 = 𝛼 · (𝑎 − 𝑎) + 𝛿 , such that

𝜎 + 𝛿 = 0. This only holds if 𝛿 = −𝛼 · (𝑎 − 𝑎); notice that the value
𝑎 − 𝑎 is known to the adversary, but the value 𝛼 is not.

By inspecting the protocol, it can be seen that the adversary has

three possibilities to achieve this.

(1) The linear combination 𝑎 =
∑ℓ
𝑖=1 𝑟

(𝑖) ·𝑎 (𝑖) of incorrect values
is equal to the linear combination 𝑎 =

∑ℓ
𝑖=1 𝑟

(𝑖) · 𝑎 (𝑖) of
correct values. In this case, since 𝑎 = 𝑎, the adversary can

simply set 𝛿 = 0.

(2) The adversary guesses the MAC-key 𝛼 and calculates 𝛿 =

−𝛼 · (𝑎 − 𝑎) accordingly.
(3) In the SecureOpen protocol (Step 3a), the adversary com-

mits to its shares of 𝜎 , but opens a commitment to different

shares such that

∑𝑛
𝑖=1 𝜎 = 0 after the honest participants

have published their shares of 𝜎 . In this case, there is no

need for the adversary to calculate a 𝛿 as described above.

The success probability of the second attack is determined by the

knowledge of the MAC-key 𝛼 . Since it is assumed that 𝛼 is secret,

346

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

the adversary can only guess the MAC-key. The probability that

this guess is correct is equal to 1/𝑝 .9 The success probability of the

third attack is upper bounded by the probability 𝑃𝑐𝑜𝑙 (𝜔) of finding a
collision that breaks the security of the commitment scheme. Notice

that these attacks are mutually exclusive, since the adversary must

choose between committing to a collision, or introducing a specific

𝛿 .

For what concerns the first attack, since both 𝑎 =
∑ℓ
𝑖=1 𝑟

(𝑖) · 𝑎 (𝑖)
and 𝑎 =

∑ℓ
𝑖=1 𝑟

(𝑖) · 𝑎 (𝑖) are random elements, they have a 1/𝑝-
probability of being equal. When 𝑎 = 𝑎, the participants verify

𝑎 to be correct and incorrectly conclude that (𝑎 (1) , . . . , 𝑎 (ℓ)) are
correct. The adversary can influence whether 𝑎 = 𝑎 with the seed

he presents (Step 1(a)ii). The adversary can increase the probability

of opening a seed such that 𝑎 = 𝑎, by committing to a collision,

which he finds with a probability of 𝑃𝑐𝑜𝑙 (𝜔). Since the adversary
can either commit to a random seed or to a collision, the success

probability of this attack is upper bounded by max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)).
As the adversary can first try forcing 𝑎 = 𝑎 before trying to force

𝜎 = 0, theMAC-Check protocol is sound, except with a probability

of 2 ·max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)). □

A.4 Main security theorem

We are now ready to restate and prove the main theorem that

describes the security of our scheme. Again, note that it is straight-

forward to adapt the below proof for arbitrary trapdoor commit-

ment schemes and standard pseudorandom generators, by replacing

𝑃𝑐𝑜𝑙 (𝜔) by the collision probability and adding an additional term

neglU (𝜆), corresponding to the advantage of an adversary in dis-

tinguishing the PRG from random.

Theorem A.2. If COM = (Setup,Com,Open, TCom1, TCom2) is
a trapdoor commitment scheme, F = F𝑝 is a super-polynomially

sized field, and U𝑠 (𝑝, ℓ + 1) is a secure pseudorandom generator

and assuming pairwise authenticated synchronous point-to-point

channels between all parties, then ΠOnline (Prot. 7) implements

FOnline (Funct. 1) in the (FBroadcast, FSecureOpen, FBlindOnline)-
hybridmodel with computational security against any static malicious

adversary corrupting up to 𝑛 − 1 parties, except with probability at

most 3/𝑝 + 𝑃𝑐𝑜𝑙 (𝜔) + 𝑛/2 · negl(𝜆).

Proof. In the following we give the proof for ℓ = 1 to simplify

notation. It is straightforward to adapt the simulators and proof to

arbitrary ℓ .

First, note that it is straightforward to see that the real protocol

execution yields the correct output if no cheating occurs, as in this

case all parties first receive 𝑧 = 𝑦 + 𝑏, where 𝑏 is the blinding value

generated in the preprocessing phase from FBlindOnline. During
the execution of FairBlinds (Prot. 6), the parties then recover

˜𝑏 = 𝑏

(in the honest case), and thus output 𝑧 − ˜𝑏 = 𝑧 − 𝑏 = 𝑦 as required.

We divide the remaining proof in two cases: the honest-majority

case and the general one. We provide two simulators, namely

SOnline-HonestMaj (Simulator 1) andSOnline-General (Simulator 2),

for these two cases.

9
Should the adversary guess the correct MAC-key 𝛼 , soundness would then be broken

for all subsequent calls to the MAC-Check protocol.

Honest-majority case. We run through and analyze the steps of

Prot. 7 (ΠOnline).

Preprocessing phase:

(1) First, both the ideal functionality and the ideal one

with simulator invoke the preprocessing phase of

Func. 2 (FBlindOnline). Since the simulator follows the func-

tionality, both executions are perfectly indistinguishable.

(2) Subsequently, Prot. 4 (ShareShamir) is invoked. Since the

adversary obtains less than ⌈𝑛/2⌉ Shamir shares of 𝑏 𝑗 , ˆ𝑏 𝑗 ,

the two executions are perfectly indistinguishable from the

values received by the adversary; hence the simulation is

immediately seen to be perfectly indistinguishable in case

no cheating takes place. Notice that the adversary has two

possibilities of cheating here: it can produce valid, but in-

correct shares (i.e. not reconstructing to the SPDZ shares),

or it can produce invalid Shamir shares (i.e. not lying on a

polynomial of degree ⌈𝑛/2⌉ − 1).
Both cases will be detected in Prot. 5 (GenValData), as ar-

gued below.

(3) Subsequently, both the real execution and the ideal func-

tionality with simulator invoke Prot. 5 (GenValData).

If the adversary produced valid, but incorrect shares in

Prot. 4 (ShareShamir), these will reconstruct to a value

different from 𝑐 in step 3c, except with probability 1/𝑝 over

the sampling of the random coefficients 𝑟 (𝑖) . The two values
being different, the MAC-check of step 3f will fail except

with probability max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)) (cf. Theorem A.1).

If it produced invalid shares, the reconstruction will fail at

step 3c and the overall protocol will abort.

Input phase.

(1) Both the real execution and the ideal functionality with simu-

lator invoke the input phase of Func. 2 (FBlindOnline). Since
this phase communicates no information on the input of

honest parties to the adversary, the two executions remain

indistinguishable.

Computation phase.

(1) The next step consists in invoking the computation phase

of Func. 2 (FBlindOnline). The behavior of the two in case

of missing input is exactly the same; if no abort occurs, the

difference is that the simulator samples the output value 𝑧

uniformly at random, instead of returning 𝑧 = 𝑦+𝑏 (as it does
not know 𝑦 at this point). However, only 𝑧 is communicated

at this point to the adversary, and since 𝑏 is a uniformly

random value, this version of 𝑧 is indistinguishable from the

one obtained in a real execution.

(2) Since the simulator perfectly simulates the behavior of

FContinue, both steps are indistinguishable. It is crucial for

the last step that at this point either all honest parties re-

ceived the output 𝑧 in the previous step, or unanimously

aborted the protocol execution.

(3) The last step consists in the execution/simulation of

Prot. 6 (FairBlinds). The crucial point here is that the ad-

versary gets to see the real output 𝑦 of the computation and

the blinding value 𝑏 ′, while it was given a random value 𝑧

at the previous step; these three values therefore must be

consistent with each other. This is realized by the simulator

347

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

adjusting the shares of 𝑏 of honest players, and using the

trapdoor-functionality of the commitment scheme to ensure

that this is not detected by the adversary. Notice that the ad-

versary also got to see a linear combination 𝑐 of the blinding

value 𝑏 and of another random value
ˆ𝑏, which is “sacrificed”

(i.e., not used to blind output values), namely 𝑐 = 𝑟 · 𝑏 + 𝑟 · ˆ𝑏.
The simulator also accounts for this, but cannot do that in

case 𝑟 = 0; this, however, only happens with probability 1/𝑝 .
The onlyway inwhich the adversary can cheat at this stage is

by submitting incorrect opening information for the commit-

ments to the shares of𝑏. The real and the simulated execution

handle this case in the same way, unless the adversary is

able to provide valid opening information for a value which

is not the one it had committed to; by the binding property

of the commitment scheme, and given that the adversary

can attempt this on the commitment of each dishonest party,

this happens with probability at most 𝑛/2 · negl(𝜆).
Summarizing the above, we have that the two executions are

indistinguishable, except with the following probability:

1/𝑝 +max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)) + 1/𝑝 + 𝑛/2 · negl(𝜆)

≤ 3/𝑝 + 𝑃𝑐𝑜𝑙 (𝜔) + 𝑛/2 · negl(𝜆) .

General (dishonest-majority) case. Again, we run through and

analyze the steps of ΠOnline.

Preprocessing phase.

(1) First, both the ideal functionality and the ideal one with

simulator invoke the initialize and preprocessing phase of

Func. 2 (FBlindOnline). Just as in the honest-majority case,

since only random values are used as input in this phase, the

two executions are indistinguishable.

(2) Subsequently, Prot. 4 (ShareShamir) is invoked. Once again,

only random values are used in this phase; hence the simu-

lation is immediately seen to be correct in case no cheating

takes place. Similar to the honest-majority case, cheating

by the adversary in the ideal and in the simulated world

are indistinguishable (except with negligible probability—

see below), since they are handled in the same way in the

subsequent step.

(3) Subsequently, both the real execution and the ideal function-

ality with simulator invoke Prot. 5 (GenValData). Similar

to the honest-majority case, cheating by the adversary in

the ideal and in the simulated world are indistinguishable,

except with probability 1/𝑝 +max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)).
Input phase.

(1) Both the real execution and the ideal functionality with simu-

lator invoke the input phase of Func. 2 (FBlindOnline). Again,
since this phase communicates no information on the input

of honest parties to the adversary, the two executions remain

indistinguishable.

Computation phase.

(1) The next step consists of invoking the computation phase

of Func. 2 (FBlindOnline). Both in the simulated and

in the real protocol execution, the adversary receives

(DeliverMessage, 𝑧 = 𝑦 + 𝑏). The simulation is thus per-

fectly indistinguishable from the real protocol execution.

(2) The last step consists of the execution/ simulation of

Prot. 6 (FairBlinds). As argued for the honest-majority case,

the simulator is able to provide consistent values to the adver-

sary; in this case, the simulator doesn’t even need to adjust

the committed values, since it can directly correct themasked

value 𝑧. Note that the set 𝑆 ′ := {𝑃𝑖 | 𝑃𝑖 ∈ 𝑆 ∩𝑆 ∧ |Ω𝑖 | < 𝑛/2}
corresponds exactly to the honest parties which receive the

output 𝑦, as all other parties abort at some previous step

of the protocol. Since the simulator simulates the real pro-

tocol execution perfectly otherwise, we obtain the desired

behavior, except with probability 𝑛/2 · negl(𝜆) given by the

possibility of the adversary providing valid opening infor-

mation for a value which is not the one it had committed

to.

Summarizing the above, we have that the two executions are indis-

tinguishable, except with the following probability:

1/𝑝 +max(1/𝑝, 𝑃𝑐𝑜𝑙 (𝜔)) + 𝑛/2 · negl(𝜆)

≤ 2/𝑝 + 𝑃𝑐𝑜𝑙 (𝜔) + 𝑛/2 · negl(𝜆).

□

B ADDITIONS

B.1 Trapdoor Commitment Scheme

In order to be able to prove simulation-based security in the honest

majority case, the simulator must be able to correct the blinding

values of the honest parties after committing to them. This is en-

abled by building on a trapdoor commitment scheme, as defined in

the following.

Definition B.1 (Trapdoor commitment scheme). Let 𝑀 be a set

and COM = (Setup,Com,Open,TCom1,TCom2) be a tuple of PPT
algorithms of the following form:

• Setup on input 1
𝜆
outputs public parameters pp and a trap-

door td.

• Com on input of public parameters pp and a message 𝑚

outputs a commitment𝐶 together with opening information

𝑂 .

• Open is a deterministic algorithm that on input of public

parameters pp, a commitment𝐶 , opening information𝑂 and

message𝑚 ∈ 𝑀 outputs a bit 𝑏 ∈ {0, 1}.
• TCom1 on input of the trapdoor td outputs a commitment

𝐶 and an opening key ok.

• TCom2 on input of a commitment𝐶 , an opening key ok and

a message𝑚 ∈ 𝑀 outputs opening information 𝑂 .

We say COM is a trapdoor commitment scheme for message space

𝑀 , if the following properties hold:

• Correctness: For all 𝜆 ∈ N, for all𝑚 ∈ 𝑀 , for all (pp, td) ←
Setup(1𝜆), for all (𝐶,𝑂) ← Compp (𝑚) it holds

Openpp (𝐶,𝑂,𝑚) = 1.

348

Extending the Security of SPDZ with Fairness Proceedings on Privacy Enhancing Technologies 2024(2)

• Perfect hiding: For all 𝜆 ∈ N and for all adversaries A, it

holds:

Pr

A(state,𝐶) = 𝑏

���������
(pp, td) ← Setup(1𝜆)
(𝑚0,𝑚1, state) ← A(pp)

𝑏
$← {0, 1}

(𝐶,𝑂) ← Compp (𝑚𝑏)

=

1

2

,

where we require thatA returns valid messages𝑚0,𝑚1 ∈ 𝑀 .

• Computational binding: For all PPT adversaries A, there

exists a negligible function negl : N → R≥0, such that for

all 𝜆 ∈ N:

Pr

𝑚0 ≠𝑚1

∧Openpp (𝐶,𝑂0,𝑚0) = 1

∧Openpp (𝐶,𝑂1,𝑚1) = 1

������ (pp, td) ← Setup(1𝜆)
(𝐶, {𝑂𝑏 }, {𝑚𝑏 }) ← A(pp)

≤ negl(𝜆),

where we require thatA returns valid messages𝑚0,𝑚1 ∈ 𝑀 .

• Perfect trapdoor: For all 𝜆 ∈ N and for all adversaries A it

holds:

Pr

A(state,𝐶𝑏 ,𝑂𝑏) = 𝑏

�������������

(pp, td) ← Setup(1𝜆)
(𝑚, state) ← A(pp)
(𝐶0,𝑂0) ← Compp (𝑚)
(𝐶1, ok) ← TCom1 (td)
𝑂1 ← TCom2 (𝐶1, ok,𝑚)

𝑏
$← {0, 1}

=

1

2

,

where we require thatA returns valid messages𝑚0,𝑚1 ∈ 𝑀 .

Note that one can instantiate the above trapdoor commitment

schemes via Pedersen commitments [39]. Alternatively, one can

obtain the required trapdoor commitment schemes in the (pro-

grammable) random oracle model: Let 𝐻 : {0, 1}∗ → {0, 1}𝜆 be

modeled as a random oracle. Then, a commitment scheme can be

defined as follows:

• Com on input of a message𝑚 ∈ {0, 1}∗ draws 𝑟 $← {0, 1}𝜆 ,
and outputs 𝐶 = 𝐻 (𝑚∥𝑟) and 𝑂 = 𝑟 .

• Open on input of a message 𝑚 ∈ {0, 1}, a commitment 𝐶

and opening information 𝑂 , outputs 𝑏 = 1 if and only if

𝐶 = 𝐻 (𝑚∥𝑂).
Instead of a trapdoor, the trapdoor algorithm TCom2 gets the ability

to program the random oracle:

• To generate a commitment, TCom1 chooses 𝐶
$← {0, 1}𝜆 at

random.

• To produce opening information of the commitment 𝐶 to

a message 𝑚 ∈ {0, 1}∗, TCom2 chooses 𝑂
$← {0, 1}𝜆 at

random, programs 𝐻 (𝑚∥𝑂) := 𝐶 and outputs the opening

information 𝑂10

C IDEAL FUNCTIONALITIES USED IN OUR

CONSTRUCTION

This section provides a formal description of some of the building

blocks of our construction: namely, the (weak) broadcast function-

ality, the simultaneous revealing of elements held by participants,

10
Note that 𝐻 is undefined on𝑚 ∥𝑂 except with negligible probability. If 𝐻 (𝑚 ∥𝑂)

happens to be already defined, TCom2 can resample𝑂 until the random oracle is yet

undefined.

and the agreement functionality used by participants in order to

decide whether to open the blinding values or not.

We begin with the broadcast functionality (Funct. 3), which

provides consistency, but with selective abort.

Functionality 3 FBroadcast.
Corrupted parties. Let A denote the set of parties corrupted

by the adversary.

Broadcast phase:

(1) For all 𝑃𝑖 ∉ A receive (Broadcast,𝑚 (𝑖)) from party 𝑃𝑖 .

(2) Send (Broadcast, (𝑃𝑖 ,𝑚 (𝑖))𝑖∉A) to the adversary and

receive (ToSet, 𝑆, (𝑚 (𝑖))𝑖∈A) for 𝑆 ⊆ {𝑃1, . . . , 𝑃𝑛}\A.

Communicate𝑚 (1) , . . . ,𝑚 (ℓ) to all parties in 𝑆 and ⊥ to

all other parties.

We then present the secure-opening functionality (Funct. 4), that

allows participants to simultaneously reveal given values, hence

preventing the adversary from adjusting their values based on the

ones communicated by honest participants.

Functionality 4 FSecureOpen.
Corrupted parties. Let A denote the set of parties corrupted

by the adversary.

Input phase:

(1) For 𝑖 = 1, . . . , 𝑛, receive (SecureOpen, 𝜉 (𝑖)) from party

𝑃𝑖 .

(2) Send (SecureOpen, 𝜉 (1) , . . . , 𝜉 (𝑛)) to the adversary and

receive (ToSet, 𝑆) for 𝑆 ⊆ {𝑃1, . . . , 𝑃𝑛}\A. Communi-

cate 𝜉 (1) , . . . , 𝜉 (𝑛) to all parties in 𝑆 and ⊥ to all other

parties.

Finally, we present the functionality (Funct. 5) that allows (hon-

est) participants to agree on whether to proceed with a given step

of the protocol (in our case, revealing the blinding values) or not.

This functionality has to satisfy security with unanimous abort

in the honest majority case, as otherwise the adversary can force

some honest parties to abort, while it can use the information from

the remaining parties to reconstruct the result, thereby violating

fairness.

D IN-DEPTH ANALYSIS OF THE

IMPLEMENTATION PERFORMANCE OF

THE REVEAL PHASE

In Table 8 the running times for both the standard and fair reveal

phases are presented in the LAN andWAN setting, where applicable.

To more accurately analyze the overhead introduced by our scheme

the computation verification is excluded from the online phase, as

it is the same for both protocols.

The increase in running time is less than one-to-one with respect

to the number of output values, since e.g. the run times for 1000

349

Proceedings on Privacy Enhancing Technologies 2024(2) Veldhuizen et al.

Functionality 5 FContinue.
Corrupted parties. Let A denote the set of parties corrupted

by the adversary.

Input phase:

(1) For all 𝑃𝑖 ∉ A receive (Continue,𝑚𝑖) for

𝑚𝑖 ∈ {ok, abort} from party 𝑃𝑖 and send

(Continue, (𝑃𝑖 ,𝑚𝑖)𝑖∉A) to the adversary.

(2) If 𝑡 < 𝑛/2: Receive ToAll or ToNone from the adversary.

If ToAll, and all messages are ok, send ok to all parties.

Else, send ⊥ to all parties.

(3) If 𝑡 ≥ 𝑛/2: Receive (ToSet, 𝑆) for 𝑆 ⊆ {𝑃1, . . . , 𝑃𝑛}\A.

Communicate ok to all parties in 𝑆 and ⊥ to all other

parties.

output values are less than double of the respective times for 500

output values.

The offline times are roughly equal to the corresponding online

times for our fair design. This shows that the separation between the

preprocessing and online phase significantly reduces the running

time of the online phase. As a result, the online phase only requires

a couple of milliseconds of overhead when fairly opening a low

number of output values.

Our design is significantly faster in the LAN setting than the

WAN setting, as expected. Since the offline and online phase require

9 and 8 rounds, excluding the computation verification, respectively,

their running times increase with around 450ms and 400ms, respec-

tively. The additional increase in run-time is due to the bandwidth

restriction in the WAN setting. This additional delay increases for

both a larger number of output values and participants, as both

increase the required amount of sent data.

Table 8: Running times of the different reveal phases exclud-

ing the computation verification in milliseconds.

LAN WAN

𝑛 ℓ Offline Online Offline Online

Fair

3

1 4.6 3.9 454.3 403.8

500 11.2 11.8 466.7 425.0

1000 15.8 18.5 478.7 447.2

4

1 5.8 5.2 455.5 404.7

500 12.9 13.7 471.6 433.2

1000 19.2 21.7 487.5 462.7

5

1 7.5 6.6 456.9 406.0

500 17.0 16.2 478.5 441.5

1000 25.4 26.5 498.9 479.1

Non-Fair

3

1 - 2.8 - 302.8

500 - 6.7 - 317.1

1000 - 10.5 - 330.1

4

1 - 3.8 - 303.5

500 - 8.0 - 321.2

1000 - 12.1 - 338.0

5

1 - 4.9 - 304.3

500 - 9.2 - 325.6

1000 - 14.0 - 345.9

350

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 High-level Overview of our Construction
	1.4 Organization

	2 Preliminaries
	2.1 Security Setting
	2.2 Protocol building blocks
	2.3 An Overview of SPDZ-2

	3 Proposed Scheme
	3.1 Overview
	3.2 Design of the Proposed Scheme
	3.3 Complexity of the Proposed Scheme

	4 Performance and Implementation
	5 Full Protocol and Simulation-Based Security
	6 Conclusion and future work
	Acknowledgments
	References
	A Security proof
	A.1 Simulator SOnline-HonestMaj
	A.2 Simulator SOnline-General
	A.3 Security of the MAC Check
	A.4 Main security theorem

	B Additions
	B.1 Trapdoor Commitment Scheme

	C Ideal functionalities used in our construction
	D In-depth analysis of the implementation performance of the reveal phase

