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ABSTRACT
Wepresent a new framework for defining information leakage in the

setting of US equities trading, and construct methods for deriving

trading schedules that stay within specified information leakage

bounds. Our approach treats the stock market as an interactive

protocol performed in the presence of an adversary, and draws

inspiration from the related disciplines of differential privacy as well

as quantitative information flow. We apply a linear programming

solver using examples from historical trade and quote (TAQ) data

for US equities and describe how this framework can inform actual

algorithmic trading strategies.

KEYWORDS
Differential Privacy, Equities Trading, Quantitative Information

Flow, Optimization, Information Leakage

1 INTRODUCTION
Sometimes failures of science turn out to be failures of imagination.

This is often the case in cryptography and cybersecurity, where

it is crucial to formulate achievable definitions of security that

anticipate all relevant avenues of attack. This is very difficult to

do, and Turing awards have been given for foundational work on

security definitions in this field [1]. Clear and achievable security

definitions typically address questions like: 1. what capabilities

might an adversary have? 2. what specific goals must the adversary

be prevented from accomplishing? Answers to these questions

drive the design of proposed solutions. When failures occur, it can

easily be decided whether the failure is attributable to a “solution”

not achieving the desired definition, or to the definition itself not

addressing an important scenario. In this way, specific and verifiable

definitions are necessary catalysts for further development.
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Without foundational definitions, a scientific discipline can be-

come stuck. The state of public discourse around execution quality

in trading US equities seems to be stuck, as real intellectual progress

is hard to make in an environment where everyone is throwing

around phrases like liquidity, information leakage, and best execution
without committing to any concrete definitions.

Economic theory, in contrast, offers clear definitions, the organiz-

ing concept of the “rational actor,” and a tradeoff analysis framework

for maximizing weighted combinations of potentially conflicting

goals in a single utility function that has been applied to decision

making around trading at many levels. This seemingly formalizes

the informal, however it does not fully capture the competitive

ethos of equities trading or the traders’ human nature.

For example, high level decisions about spreading out a large

trade over multiple days are often attributed to the desire to “mini-

mize price impact,” where price impact refers to prices rising while

a trader is buying or falling while a trader is selling. But this cannot

be the full story, as minimizing impact alone has a simple answer:

never trade! The well-known Almgren-Chriss model [3] attempts

to capture trade urgency by introducing price variance as a counter-

balancing force. At a high level, it suggests that we should choose

mathematical models for price impact (reason to wait) and price

variance (reason to trade) over time, and seek to optimize a single

utility function combining the two, controlling the variance with a

“risk aversion” parameter. From a pure economic theory perspective,

this makes sense: to wait longer to trade is to expose oneself to risk

that the price will change substantially in the meantime. Without

this consideration, the Almgren-Chriss model would devolve into

paralysis, since the only way to be guaranteed to have no impact is

to push off trading indefinitely. In this way, “risk aversion” is the

Almgren-Chriss model’s answer to the apparent mystery of why

people seeking to “minimize impact” ever manage to trade at all.

The instincts of traders, however, do not seem to fit this theoret-

ical framework. On the whole, they may not think of themselves as

“risk averse.” What is stock trading if not the most exulted form of

gambling, where natural born risk takers gather to channel their oth-

erwise potentially destructive tendencies into fueling innovation?

Perhaps the framing of pure rationality and cold utility functions
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is more than a little bit wrong here, as it is in many other contexts.

To anyone who spends time with traders, the mystery isn’t why

they ever trade, the mystery is why they ever wait.
Having made a decision to buy 𝑋 shares of a particular stock 𝑆 ,

a human may innately want this to be implemented quickly, if only

so they can cross it off a list and move on to other things. It seems

wrong to ascribe this fully to fears that the stock price will change

substantially in the meantime. If the price were guaranteed to stay

stagnant, surely the trader would still prefer to get the trade done

today rather than tomorrow. Immediacy feels more like the default.

What psychological force is compelling enough to convince the

trader to hold back? One possibility is the specter of “information

leakage.” Since there is unlikely to be a single counter-party magi-

cally waiting to sell the same number of shares at the same moment

our trader enters the market to buy, it will likely take many trades

to achieve the desired total volume. As these trades are made, vari-

ous market participants may notice and suspect that there is a large

buyer active in the market for stock 𝑆 . If another market participant

can infer this with reasonable confidence, they might exploit this

knowledge to make a profit at the buyer’s expense.

Our context is analogous to well-studied formulations of individ-

ual privacy in aggregate data. The large trader wants to add their

activity into the wider market without causing a noticeable splash,

much like an individual respondent to a survey does not want to

noticeably shape the published results. In individual privacy, the

solution is often to change the aggregation mechanism. Here we as-

sume the trader works within the current framework of continuous

trading as it exists today in the US equities market. In this context,

every trade is immediately reported to the larger market: namely

the price, size, timestamp, and venue information are available,

though the identity of the parties involved is not revealed.

In this paper, we flesh out the concept of “information leakage”

in US equities trading in more scientific and quantitative ways, as

compared to its typical casual usage. We do not claim to arrive at

the “right” definition(s), but we make some progress down what we

think is a promising path. Along theway, we present examples using

historical trade and quote (TAQ) data for US equities, and describe

how this research can inform an algorithmic trading strategy.

Our work here is be driven by the question: if we were the adver-

sary, looking for evidence of a big buyer/seller active in the market,

what would we look for? This perspective can be helpful in the

algorithmic design process: if we want our actions to fly under the

radar, then we can design various forms of radar ourselves and see

to what extent we can avoid our own detection methods. In Figure 1

we give an example of how defining information leakage as a bound

on market activity can help us develop resilient strategies in real

market conditions. Obviously, this perspective on its own is limited

by the fact that we may fail to anticipate some detection methods.

Nonetheless, it’s better to anticipate and avoid some traps than

none. This represents an early stage of scientific development that

we likely must pass through to gain better intuition before being

able to formulate more comprehensive definitions and defenses.

We note that, in general, it is the intent of traders and the design

of market operations to shield the identity of the parties partici-

pating in trades. Identities are excluded from data feeds for this

reason, and some traders avoid using particular trading venues due

to fear of how those particular venue’s operations might expose ex-

ploitable information. A widespread preference for continuity and

immediacy, however, currently makes proposals for a more holistic

“privacy-preserving” overhaul of market structure dead-on-arrival

in practice. With individual trades getting smaller on average over

the years, traders are forced to split big orders into ever more pieces

over time and venues. Thus market forces are shifting from a world

where protecting identity on individual large orders was more satis-

fying as a privacy protection to a world where patterns of behavior

across correlated small orders are an increasing threat to the ability

of large institutions to accomplish sizeable shifts in their portfolios

without paying the exorbitant costs that would follow from them

announcing themselves more nakedly in the market. We strongly

feel that this is a core privacy problem, unique in its presentation

due to the mechanisms of continuous trading, and ultimately af-

fecting everyone whose money is pooled into large institutions,

including pension funds, mutual funds, university endowments,

and retirement accounts.

1.1 The Challenge of Formalizing Information
Leakage in Financial Settings

The phrase “information leakage” may seem intuitive on the surface.

And many might assume that an “I know it when I see it” philoso-

phy is functional enough. But the scientific history of “information”

is much more nuanced. The rigorous science of information theory

that began with Claude Shannon’s seminal paper in 1948 [42] es-

tablished quantitative definitions of information that revealed deep

connections to probability theory and random processes. Shan-

non’s notion of entropy captured the crucial point that constant

(and jointly understood) information need not be communicated

between parties. And hence the true information content of a com-

munication can be reduced to that which was previously uncertain.

This suggested that an inverse relationship between frequency of

events and the means of their communication could lead to more

efficient communication overall. Very likely/frequent occurrences

could be conveyed by short messages, hence reducing the burden of

communication in common cases, while very unlikely/infrequent

occurrences would require longer messages to communicate. This is

the underlying principle of Huffman codes [31], a form of data com-

pression that provides provably minimal average message lengths.

If you explore the state of information theory as a scientific disci-

pline today, you will find many variants of the definition of entropy,

many situationally optimal coding techniques for various contexts

and constraints, and many remaining open questions that various

assortments of bushy-tailed and disgruntled graduate students are

still writing dissertations about. Why? Because, as with any good

science, Shannon’s theory is as much a framework for generating

new questions as it is for generating answers. People and machines

communicate information in many different contexts, for many

different purposes, with many different constraints. As these vari-

ables change, the “right” metrics and the “optimal” solutions tend

to change with them. For this reason, we should perhaps already

be warned that the development of a scientific definition of “in-

formation leakage” is a task that should be approached with some

humility and some deference to the complexity of such topics.
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(a) Strategy 1: Alice minimizes
price impact and information
leakage by not trading at all, i.e.
𝐷𝑋 = 𝐷

�̃�

(b) Strategy 2: Alice prioritizes
immediacy of trade and trades
all 30,000 shares in one time
window.

(c) Strategy 3: Alice follows
a model like Almgen-Chriss,
minimizing a function of im-
pact and variance.

(d) Strategy 4: Alice maximizes
volume traded, constrained by
the information leakage bound.

Figure 1: Let Alice be an equities trader attempting to trade 30,000 shares of MSFT as quickly as possible without competitor
Eve noticing. Let be 𝐷𝑋 the typical market volume distribution for MSFT at 10am on a Monday, and 𝐷

�̃�
the market volume

distribution when trader Alice is acting in the market. We introduce a privacy leakage bound around 𝐷𝑋 such that if Eve gets a
sample 𝑥 from 𝐷𝑋 and a sample 𝑥 from 𝐷

�̃�
within the bound, she will not be able to easily distinguish which distribution each

sample came from. In Strategy 1, Alice does not trade and thus leaks no information, but also makes no progress toward her
goal. In the other extreme, Strategy 2, Alice prioritizes immediacy and trades all 30,000 shares at once, resulting in information
leakage that Eve can use for a competitive advantage. In Strategy 3, Alice considers some mathematical notions of price impact
and variance. This metric has no notion of privacy leakage and may result in “risk-averse” strategies that still give an advantage
to competitor Eve. Defining an information leakage bound allows us to model Strategy 4 that has the same expected value as
the “risk-averse” strategy, but which better captures Alice’s desire to make “risky” moves while not leaking information to Eve.

There is one important over-arching challenge to our task that

differentiates our problem from other information leakage frame-

works. Many foundational definitions in information theory and

cryptography benefit from the imposed unit of communication:

short strings of bits, which have many highly convenient proper-

ties. For one, they can only take on so many values, so reasoning

about the probability of them taking on a particular value is a

meaningful exercise. Stock trading is a different beast entirely. The

record of all trading activity on a given day is likely to be essentially

unique, and reasoning about the “probability” of a particular full

transcript of activity is likely a meaningless exercise. This is tricky

because we don’t believe that all available details are important, so

we typically start analyses by deciding what features of the trading

data to track and what to ignore. This is necessary to group data

and build sample sizes large enough to infer meaningful patterns.

Naturally these subjective feature decisions affect everything we

do. This is a limitation we have to be consistently aware of and

sensitive to, as there are no obvious alternatives at this point.

There are several lessons here to be drawn from related disci-

plines that we should keep in mind in our attempt to define “infor-

mation leakage” in useful ways in the context of stock trading: 1.

We should expect rigorous definitions to be nuanced and context-

dependent, 2. We should expect that rarer events convey more

information than more common events, and 3. it may be helpful to

think hard about who the adversary is, what information they are

likely to already know and observe, and what exactly we want to

prevent them from accomplishing by means of information leakage.

Our framework for studying information leakage treats the mar-

ket as a random process whose distribution can change with the

additional trading activity of a single participant. If this partici-

pant’s activity makes certain outcomes much more likely, then an

adversary observing such outcomes could begin to infer the pres-

ence of the participant and take detrimental action based on such

probabilistic inferences. Our goal will be to prescribe the level of

activity that our wary participant can accomplish while limiting

the probability that the adversary takes a detrimental action. This

is highly reminiscent of differential privacy, however, unlike canon-

ical differential privacy guarantees that cover worst-case scenarios,

we assume/derive particular distributions of market activity and

bound information leakage within these. We also note that our

framework can measure information leakage even before some-

one takes advantage of it in a real trading scenario. We believe

this is a fundamentally more proactive approach than waiting for

exploitation to become apparent in noisy price movements.

1.2 Related Work
Almgren-Chriss and Related FinancialModels. Almgren andChriss

[3] model price evolution as an artihmetic random walk, with a

term for temporary price impact based on linearly on a trader’s

rate of activity. They then suggest taking a weighted average of

expected price impact and price variance as a utility function for

a trading schedule to minimize. Forsyth et. al. [27] model price

evolution a geometric random walk and similarly minimize a joint

function of price impact and variance in this model. Gatheral and

Schied [29] propose a related model, with a different “risk” term in

place of the variance. One can also deviate from the Almgren-Chriss

in modeling how temporary price impact decays, as in [40]. A clas-

sical non-linear model of price impact is the sigma-root-liquidity

model, described in [30]. Empirical evidence for this in given in [45].

Further models of price impact and derivation of optimal strategies

under them can be found in [10, 41, 47], for example, though our

references here are by no means exhaustive.

In contrast, our work does not center on the notion of price, but

rather looks directly at metrics of trading activity that an adversary

might use to infer the presence of a large buyer or seller. Our goal

is to limit an adversary’s ability to leverage such metrics by making

sure that the distribution an adversary observes under general

market activity is “close” to the distribution they observe when
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our trading activity is present. We believe that bypassing price

modeling in this way may lead to more robust models (since price

is notoriously noisy), and more proactive models (since we don’t

have to wait for exploitation to be noticeable in price behavior

before we can measure leakage). We note that a recent empirical

study of price impact [28] gives credence to the relative importance

of optimizing trading behavior at this level.

Differential Privacy. The study of differential privacy (DP) was

launched by Dwork, McSherry, Nissim and Smith [23], and was mo-

tivated by questions like: how can we protect privacy of individuals

while releasing aggregate statistics about a population? Previous

answers to questions like this, such as definitions of Personally

Identifying Information or k-anonymity [44], have proven unsatis-

fying in a modern context where auxiliary information is abundant.

What counts as “personally identifying” in a practical (rather than

legal) sense is too heavily context dependent. To someone who

knows us well (or someone who looks up our public IMDB profile),

even a few movie ratings may be enough to identify a person [39].

Implicitly, many definitions of anonymous, aggregated, or “privacy-

preserving” data assume that an adversary trying to violate privacy

knows basically nothing else except the particular sanitized data at

hand. This is an increasingly false assumption.

Differential privacy, on the other hand, avoids making such

constraining assumptions about the adversary’s knowledge. Instead,

it requires that the effect of a single individual’s data is hidden by

randomness, even from an adversary who knows exactly what to

look for. More specifically, DP promises that the likelihood of any

particular outcome is not too significantly increased by the fact

of any single individual’s participation in the data collection. This

strong property can be achieved, for example, by adding appropriate

amounts of randomness to aggregated statistics before they are

released, hence creating plausible cover for the contribution of an

particular individual to the final result.

Our DP-inspired approach provides guardrails on our trades to

avoid giving an adversary too great an advantage in inferring our

presence. More precisely, we will define a set of metrics that an

adversary could use to try to detect our presence, and wewill ensure

that the joint distributions of those metrics does not change too

drastically when we choose to trade. This will bound an adversary’s

advantage in inferring our presence through these metrics.

In particular, our definition is similar to (𝜀, 𝛿)-Differential Privacy
(also known as approximate DP) [23] in our use of 𝜀 and 𝛿 privacy

parameters. We similarly consider 𝑒𝜀 to be a bound on the ratio

between the probability of an event occurring in two “neighboring”

worlds, and we consider 𝛿 to be a parameter which allows for a

set of very low-probability events to be ignored when evaluating

this ratio. In Section 5 we draw also on theoretical principles from

the proof of the composition theorem [33] and prior work on the

analysis of differentially private streaming queries [16, 24] to prove

our result in the case of of iterating over multiple time steps.

The main difference between our framework and traditional DP

is that we do not consider all pairs of neighboring datasets when

evaluating privacy. Instead, we only consider theworldwith a trader

Alice making trades in the noisy market, and the “neighboring”

world where Alice is not trading at all and an adversary Eve only

sees the market noise. This narrowing of the scope means we can

develop different strategies which are more relevant to the equities

trading scenario, and we have more control over our privacy budget

in the case of iterating over time steps.

Our solution is also different from traditional DP mechanisms in

that we do not add noise to hide our trading activity, but instead

we hide our trades in the “natural” market noise. Some works have

also considered leveraging existing noise in the data [12], however

their analysis is also based on the traditional differential privacy

definitions that compare all neighboring datasets, and therefore is

not directly applicable to our framework.

Quantitative Information Flow (QIF). The beneficial qualities de-
rived from the DP definitions alone do not tell us how we might

trade as much as possible within these guardrails. For this, we draw

inspiration from the field of Quantitative Information Flow (QIF)

[6, 19], which has been developed over the last two decades and

concerns itself with developing mathematical methods to quantify

the leakage of information in systems.

Since the seminal work by Chatzikokolakis et al [18], discrete

memoryless channels have been widely used in QIF to model secu-

rity systems. These channels, which are also commonly used in the

field of information theory [21, Chapter 7], are mathematical ob-

jects which abstract away irrelevant particularities of the problem,

maintaining those that affect the leakage of information. In Section

2.2 we introduce our core framework in more colloquial terms, re-

formulate it using the aforementioned channels, and then present a

broad solution for many practical cases using linear programming.

In QIF literature, it is often the case that a complex system can be

better understood as a collection of smaller, simpler systems which

interact. As a result, much effort in the field has been dedicated to

defining ways of composing channels, and studying their properties

[6, Chapter 8]. These compositionality results have been useful in

studying the leakage of information in anonymity protocols [8, 25,

34], timing attacks against cryptosystems [38], two-player games

[5], and in scenarios where the sensitive data that is correlated to

the input [14]. We adopt this compositional approach in our work,

using the parallel and cascading compositions [6, Chapter 8] to

obtain, from simpler and more intuitive channels, a comprehensive

model of the effect a trader Alice’s actions have in the market.

Despite using some of the same mathematical tools, our problem

is in principle quite different than the ones usually studied in QIF.

In QIF, it is often assumed that a secret input, whose value is of

interest to an adversary, is fed to the system. The system, in turn,

produces an output which is visible to said adversary. By using

the model discussed above, one is able to measure the amount of

information the adversary has before and after the execution of

the system, which are used to quantify the leakage of informa-

tion. This is achieved with information measures, such as Shannon

entropy [18, 20, 37], min-entropy [26, 43] and, more recently, gen-

eralizing frameworks that allow for a more robust analysis, such as

the 𝑔-leakage framework [7] and core-concave entropies [36]. By

comparing these quantities before and after the adversary observes

𝑌 , one can quantify the amount of information leaked.

In our setting, on the other hand, the system is receiving as in-

put the activity of the market, and producing an output that is a

modified version of this activity, depending on our trader Alice’s
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actions. The objective of our model is not quantifying the informa-

tion leakage about the state of the market, but instead minimizing

the probability that the adversary will notice that the system is exe-

cuting — i.e., making the output of the channel behave similarly to

the input. Therefore, while the channel model is quite useful for our

problem, the traditional QIF approach to measuring information

leakage is not directly applicable to the situation at hand.

With this distinction in mind, we note that the problem of de-

signing a channel that minimizes information leakage under certain

constraints — similar to our goal of designing a channel maximiz-

ing Alice’s actions under information leakage constraints — has

recently been object of much research in QIF. Perhaps the approach

most similar to ours is the one of Khouzani and Malacaria [35],

in which they show one may obtain such an optimal channel by

solving a convex optimization problem on leakage under appro-

priate constraints to maintain utility. Two other papers, one from

the same authors [36] and one from Américo et al [9], showed that,

in some particular cases, this optimization problem has a “univer-

sal” solution: a single channel that minimizes leakage for different

information measures commonly used in the literature. Another

channel optimization problem was studied by Alvim et al [5], aris-

ing as solutions for what the authors called “information leakage

games”. These are two-player games in which one player (the user)

is interested in minimizing the leakage of information, whereas the

other player (the adversary) is interested in maximizing it. They are

able to prove the existence a Nash equilibrium for these games, both

under QIF information-theoretic and differential privacy metrics.

Besides the aforementioned result from Alvim et al [5], other

works in the literature have investigated the connection between

QIFmetrics and DP. Barthe and Kopf [11] and Alvim et al [4] derived

min-entropy leakage bounds for differentially private mechanisms,

and Chatzikokolakis et al [17] studied the relationship between

differential privacy guarantees and some channel preorders usually

used in QIF, and showed that a mechanism satisfies 𝜀-differential

privacy if, and only if, its leakage under an appropriately chosen

information measure is upper-bounded by 𝜀.

Distribution Testing. Distribution testing (ormore generally, prop-

erty testing) is a well studied sub-field of computer science. Tradi-

tional distribution testing settings rely on an unknown distribution

from which a fixed number of samples can be drawn to compute or

test for properties. Algorithms are designed to test for properties

with the goal of minimizing queries to the distribution while also

minimizing error/maximizing confidence in the computed prop-

erty. Algorithms are then compared against results for adversarial

models in which a information theoretic adversary bounded only

by the number of independent samples that can be drawn from

the distribution computes the property being tested for [15]. The

goal of these models is primarily to find efficient methods of testing

properties of very large distributions in which only local access to

a fixed number of samples is feasible [15].

On first glance, our problem appears deeply related to distribu-

tion testing. Indeed, we have an information theoretic adversary

looking to detect Alice’s market activity, and the adversary ulti-

mately must distinguish between two discrete probability distri-

butions, one where Alice makes actions and one where she does

not. However our problem setting is differentiated from traditional

distribution testing because we are working in an interactive set-

ting where the distribution being sampled is not fixed, but is rather

allowed to depend in a known way on prior sampled values.

1.3 Contributions
This paper builds upon prior work in the fields of equity trading,

differential privacy, quantitative information flow, and distribution

testing. Our unique contributions are:

• We define a notion of information leakage in equity trading

that does not depend on modeling price. This is beneficial, as

price models are notoriously noisy. Our framework’s separa-

tion from price also allows us to treat information leakage

proactively, rather than waiting for a pattern to be exploited

and reflected in price.

• We define an iterative game for testing a interactively deter-

mined sequence of distributions, and a differential privacy-

inspired criterion for bounding information leakage in this

setting. We believe this reasonably captures the core com-

ponents of our application to continuous equities trading as

practiced in the US markets today.

• We translate our game constraints into a linear program

using the channel framework of QIF, and we solve for trading

strategies that maximize volume within provided bounds

on our notion of information leakage. We provide our code

for this as a publicly available tool. Currently this tool only

applies to the one-shot game, and it is future work to expand

it to the full iterative setting.

1.4 Organization
In section 2, we give the necessary background on DP and QIF.

In section 3, we provide a more technical overview of our basic

definitions and approach. In section 4, we formulate our problem

as a linear program, using the channel structure of QIF. In section 5,

we extend our framework to iterate over consecutive time periods

of trading activity. In section 6, we apply our framework and lin-

ear programming solver to various examples from TAQ historical

market data. In section 8, we discuss directions for future work.

2 PRELIMINARIES
We give background on differential privacy and quantitative infor-

mation flow. A finance glossary can be found in Appendix A.

2.1 (𝜀, 𝛿)-Differential Privacy
While our framework and analysis differ from traditional differ-

ential privacy in key ways, we will refer to differential privacy as

a notion which we draw from for our information leakage frame-

work. It is therefore useful to provide the traditional definition of

(𝜀, 𝛿)-differential privacy for reference.

Definition 1. A randomized algorithm M defined over datasets
in D is considered to be (𝜀, 𝛿)-differentially private for 𝛿 ∈ [0, 1],
𝜀 > 0 if for all adjacent (also referred to as neighboring) datasets
𝐷,𝐷 ′ ∈ D and ∀𝑆 ∈ range(𝑀),

𝑃 (𝑀 (𝐷) ∈ 𝑆) ≤ 𝑒𝜀𝑃 (𝑀 (𝐷 ′) ∈ 𝑆) + 𝛿 (1)

where 𝜀 and 𝛿 are privacy parameters.
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Intuitively, 𝑒𝜀 bounds the ratio between probabilities of an out-

come of the algorithm on adjacent datasets, and 𝛿 provides slack

that allows for low-probability events to be ignored (this slack pa-

rameter allows meaningful trading volume when the 𝑒𝜀 bounds are

too limiting, as discussed in Section 6). Our framework will draw

inspiration from these notions of privacy ratios and parameters,

however in our context we will define adjacent random variables

determined by a turn-based game, rather than considering a ran-

domized algorithm quantified over all possible neighboring inputs.

2.2 The Channel Framework
As discussed in Section 1.2, discrete memoryless channels [21, Chap-

ter 7] (referred henceforth as channels) have been successfully ap-

plied in the field of Quantitative Information Flow (QIF) to model

diverse scenarios. In this section, we introduce the basic notions of

this framework necessary for modeling our problem, which will be

done in Section 4. For a throughout treatment of QIF, we refer to the

recent book by Alvim et al [6]. Despite their simplicity, channels

are incredibly powerful tools for modeling even complex systems.

Given a random variable (r.v.) 𝑋 , we represent its probability

mass function (p.m.f.) by 𝑃𝑋 , writing 𝑃𝑋 (𝑥) to denote the proba-

bility of 𝑋 = 𝑥 . Similarly, we write 𝑃
𝑋,�̃�

for the p.m.f. of the joint

r.v. (𝑋, �̃� ) and, given 𝑥 ∈ X with 𝑃𝑋 (𝑥) > 0, we write 𝑃
�̃� |𝑥 for the

conditional distribution over
˜X given 𝑥 , 𝑃

�̃� |𝑥 (𝑥) = 𝑃
𝑋,�̃�

(𝑥,�̃�)/𝑃𝑋 (𝑥) .
A channel is a mathematical representation of a system who

receives as input a discrete random variable (r.v.) 𝑋 , producing an

output �̃� , whose realization may depend on that of 𝑋 . It is given

by a triple (X, ˜X, 𝐾), where X and
˜X are nonempty, finite sets

(called input and output sets, respectively) and 𝐾 is a nonnegative

real-valued function (𝑥, 𝑥) ↦→ 𝐾 (𝑥 |𝑥) such that, for all 𝑥 ∈ X,∑
�̃� ∈ ˜X 𝐾 (𝑥 |𝑥) = 1. We often use 𝐾 to refer to a channel instead of

the triple (X, ˜X, 𝐾), and write 𝐾 : X → ˜X to signify that 𝐾 is a

channel with X and
˜X as input and output sets. A distribution 𝑃𝑋

and a channel 𝐾 : X → ˜X define a joint distribution 𝑃
𝑋,�̃�

(𝑥, 𝑥) =
𝑃𝑋 (𝑥)𝐾 (𝑥 |𝑥), which yields 𝑃

�̃�
(𝑥) = ∑

𝑥 ∈X 𝑃𝑋,�̃�
(𝑥, 𝑥) and, when-

ever 𝑃
�̃�
(𝑥) > 0, 𝑃𝑋 |�̃� (𝑥) = 𝑃

𝑋,�̃�
(𝑥,�̃�)/𝑃

�̃�
(�̃�).

Channels can be represented as a matrix, with rows and columns

indexed by the elements of the input and output sets, as in Figure 2.

𝐾 𝑥1 𝑥2 𝑥3 𝑥4

𝑥1 1/3 1/3 1/6 1/6
𝑥2 1/5 1/10 1/5 1/2
𝑥3 1/6 0 1/2 1/3

Figure 2: A channel 𝐾 : X → ˜X

Channels are often useful for modeling situations in which an

agent is interested in knowing some information related to 𝑋 , but

only has access to the realization of �̃� . In QIF, 𝑋 usually models

some secret or sensitive information that an adversary has some

interest in. This adversary knows the distribution 𝑃𝑋 , the transi-

tion matrix 𝐾 , and is able to observe the realization �̃� = 𝑥 . With

this information, he is able to perform a Bayesian updating on his

knowledge of 𝑋 , substituting 𝑃𝑋 with 𝑃𝑋 |�̃� . On the other hand,

information theory [21, 42] commonly uses the model discussed

above to reason about communication systems, in which a party

wants to send a message 𝑋 to a destinatary that has access to the

channel output �̃� .

3 A PROPOSED FRAMEWORK FOR DEFINING
INFORMATION LEAKAGE

With these preliminaries in place, let’s get to the problem at hand.

We’ll consider a trader, Alice, who wants to accomplish a certain

activity (e.g. buying 1 million shares of “MSFT”, the ticker symbol

for Microsoft stock on the US equity market) without being noticed.

Let’s suppose there is an adversary, Eve, who may act in a way that

is detrimental to Alice (e.g. she acts to raise the price of MSFT). We

assume here that Eve does not have direct knowledge of what Alice

is doing, but is instead reacting to observable data feeds. We avoid

making too many assumptions on how Eve determines her actions,

but some amount of imposed structure is necessary to make the

problem tractable. In fact, any specific action Alice takes creates a

specific addition to the full transcript of available data feeds, and a

hypothetical Eve could have a hard-coded reaction to this. This is

the kind of hypothetical that seems silly to worry about in practice,

but can frustratingly scuttle attempts at systemic understanding.

Let’s start with a warm-up where we limit Eve’s observations

to a single measurement at a set time during the trading day. For

example, Eve might look at the sum of volume that traded on the

NBO for MSFT over the regular day. If Alice does nothing at all,

there is some ambient distribution to Eve’s measurement that arises

from general market activity. Since trends in such measurements

over historical data can be modeled by anyone who purchases

market data, we will assume that the ambient distribution is known

(to Alice, to Eve, to everyone). We’ll let 𝑋 denote the ambient

distribution for Eve’s measurement (in an Alice-less world), and let

�̃� denote Eve’s actual measurement (in an Alice-full world).

If Alice does nothing, the distribution of Eve’s measurement will

be 𝑋 (i.e. �̃� = 𝑋 ), where the randomness is over external market

forces. A simple model of Alice’s actions and their affect on Eve’s

measurement could be �̃� = 𝑋 + 𝐴, where 𝐴 is a random variable

sampled independently from 𝑋 . This models a case where Alice

decides what to do before learning anything about the sampled

value of 𝑋 . The randomness of 𝐴 here is over the market’s reaction

to Alice’s decision. For example, if Alice decides she wants to buy

10,000 shares of MSFT in the first 10 minutes, the randomness in

𝐴 reflects the variation in how much she will have to cross the

spread to accomplish this. It could potentially also model additional

market activity that is a response to Alice’s activity. The additive

structure of the model here seems reasonable for measurements like

volume, but may be inappropriate for other kinds of measurements

that Eve could make. A more general model in this sense would be

�̃� = 𝑓 (𝑋,𝐴) where 𝑓 is allowed to be from some larger function

class. Non-linear functions 𝑓 could encompass more complicated

interactions between Alice’s activity and the wider market.

We might imagine, however, that Alice has some auxiliary infor-

mation about the sampled value of 𝑋 available to her before she

commits to her actions in this time period. Perhaps she is observ-

ing contemporaneous qualities of the market while inserting her

own volume, and hence knows something about the sampled value
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of 𝑋 while deciding how much to trade herself. For example, we

might imagine Alice as having a last-mover advantage: she sees the

sampled value of 𝑋 and then decides how much volume to insert

herself just before the time is up. A more general model is to allow

𝐴 to depend on 𝑎𝑢𝑥 (𝑋 ), a value that represent Alice’s auxiliary

information at the time of her choice. In this context, we could set

�̃� = 𝑓 (𝑋,𝐴𝑎𝑢𝑥 (𝑋 ) ).
Let’s summarize our framework so far by viewing this as a game

presented to Alice in the following steps where a value being “pub-

lished,” means that it is revealed to both Alice and Eve.

(1) The distribution of 𝑋 is published −→ 𝐷𝑋 ;

(2) 𝑋 is sampled from 𝐷𝑋 with randomness 𝑟𝑋 −→ 𝑥 ;

(3) Alice gets auxiliary information about sample 𝑥 −→ 𝑎𝑢𝑥 (𝑥);
(4) Alice selects a distribution from 𝐷𝐴 from a family {𝐷𝐴𝑖

}𝑖∈𝐼
of allowable distributions;

(5) 𝐴 is sampled from 𝐷𝐴 with randomness 𝑟𝐴 −→ 𝑎;

(6) Alice is given 𝑎. The value of 𝑥 + 𝑎 is published.
Steps 2 through 6 above consist of a sampling procedure that

defines a new distribution 𝐷
�̃�
, observable by the adversary Eve.

The randomness values 𝑟𝑋 and 𝑟𝐴 are assumed to be independent.

This sequence of events defines a continuum of possibilities with

respect to the amount of information at Alice’s disposal as well as

the family of possible distributions for𝐴. If no auxiliary information

is available to Alice, then she must choose one distribution blindly.

If she has full information (i.e. 𝑎𝑢𝑥 (𝑥) = 𝑥), she can potentially

choose a different distribution for 𝐴 for each value of 𝑥 .

If Alice can exert full control over the value of 𝑎, then the family

𝐷𝐴𝑖
includes point distributions. However, since Alice’s trading

activity is an interaction with a non-deterministic market, there are

many situations where it is more plausible to limit Alice’s choices

to distributions that all have some minimal entropy.

Alice’s goal is to maximize her own trading goals in this game,

subject to some limitation on Eve’s ability to distinguish between

𝑋 and �̃� based on the published information. Alice’s trading goals

may include maximizing her expected volume, as well as reducing

her variance or otherwise concentrating her activity around the

expectation for a smoother trading experience.

In terms of information leakage, what Alice may want to avoid

is the ability of Eve to take action based on the �̃� value that she

would not have taken based on the original 𝑋 value with a similar

probability. To express this formally, we’ll let 𝑃𝑋 (𝐸) denote the

probability of an event 𝐸 under the distribution 𝐷𝑋 , and we’ll let

𝑃
�̃�
(𝐸) denote the probability of 𝐸 under the distribution 𝐷

�̃�
. Then

Alice can impose a criterion like

𝑃
�̃�
(𝐸) ≤ 𝑒𝜀𝑃𝑋 (𝐸)

for all events 𝐸, where 𝜀 is some small positive value. Thus 𝑒𝜀 is

some multiplicative factor that is a bit larger than 1. This definition

is very closely inspired by differential privacy (e.g. compare to

the typical DP definition as given in the Preliminaries). We could

symmetrically require a lower bound,

𝑃
�̃�
(𝐸) ≥ 𝑒−𝜀𝑃𝑋 (𝐸),

if we are similarly concerned about favorable events becoming less

likely due to Alice’s actions.

There are many extensions and modifications we may want

to make to this basic framework as we apply it to real trading

situations. First, wemay consider repeated rounds where Evemakes

measurements at the end of every round and Alice makes iterative

choices. Second, Evemaymake several simultaneous measurements

in each round, meaning that𝑋 will become vector-valued instead of

scalar-valued. In such cases, we will want to analyze the differential

privacy-style guarantee over the joint probability space of all rounds

and coordinates of the measurement vector.

Depending on the interplay of 𝐷𝑋 , Alice’s choices, and the aux-

iliary information, we could find ourselves in situations where the

𝑒𝜀 multiplier on probabilities does not allow us sufficient room to

make trading progress. For example, if there is no auxiliary infor-

mation (i.e. 𝑎𝑢𝑥 is a constant function) and 𝐷𝑋 has a vanishing tail,

then Alice cannot know when it is “safe” to add any fixed amount

of trading activity and will be stuck doing nothing.

This problem can be overcome in a few differentways. Oneway is

to introduce a small additive error parameter 𝛿 (a typical extension

of differential privacy), and require that 𝑃
�̃�
(𝐸) ≤ 𝑒𝜀𝑃𝑋 (𝐸) only

hold for events 𝐸 contained in a subset 𝑆 of outcomes such that

𝑃
�̃�
(𝑆) ≥ 1 − 𝛿 . A similar but perhaps more empirical approach is

to group all values in the tail together beyond a certain point into a

single outcome that +𝑎 does not affect.
Alice’s functional goals (e.g. buying 1 million shares of MSFT)

will be in tension with her goal of avoiding information leakage.

If she picks small values of 𝜀 and 𝛿 and demands a high value of

information leakage protection, there may be no way to accomplish

her functional goals. To study this tradeoff, we will be interested

in questions like: given values of 𝜀 and 𝛿 , what is the most trading

volume that Alice can accomplish while staying inside the 𝑒𝜀 con-

straint on Eve’s actions with probability 1 − 𝛿 , and how should she

go about doing it? Conversely, given a trading volume that Alice

wants to accomplish, what’s the lowest 𝜀,𝛿 she can achieve? We

will focus in this paper on the first formulation of the question,

but our framework can be rearranged to answer questions of the

second formulation as well.

The set of distributions that Alice chooses from in step (4) of the

game represent the market’s responses to her underlying choices,

as measured by whatever metrics are being measured in the game. If

volume is being measured, for example, then Alice’s choice to trade

𝑛 shares may result in a distribution the is heavily concentrated

on 𝑛, but will account for some probability that < 𝑛 shares are

available for Alice to trade. Some metrics will result in even more

diffuse distributions in response to Alice’s actions. In the real world,

Alice can’t guarantee a deterministic footprint on the metric she’s

working with. In practice, it is more likely that the final impression

of Alice’s action stems from a distribution that models the random

interactions between Alice and the market. For modeling these

distributions, we would assume that Alice has been an active trader

in the market and that she has empirical data giving her insight

about her behavior in the market. Having access to her historical

market activity data, Alice can approximate the distributions of

the market’s interactions with her common actions, which will

comprise her possible action set.

Alice may also be interested in more than just her expected

trading volume and her information leakage. She may want to

control the variance of her trading strategy, for example, so that

she isn’t left trying to trade very heavily in some conditions while

trading virtually nothing in others.
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The answers to such questions will depend heavily on the nature

of the distributions for 𝐴 and 𝑋 , the functions 𝑓 (additive for now),

and the auxiliary information. In this paper, we will begin to flesh

out the study of these questions by solving a few basic cases. We

will also work through some examples using historical trade and

quote (TAQ) data for US equities.

3.1 Eve’s Classification Error
We can imagine an extension to our game where Eve must guess

whether the final value was drawn from the distribution 𝐷𝑋 or the

distribution 𝐷
�̃�
. We will suppose that there is an even chance of

each, so Eve can guess correctly with probability 1/2 by guessing

uniformly. Naturally, Eve will try to improve upon this by varying

her strategy as a function of the published value 𝑥 + 𝑎. Let Eve’s
strategy be that for each element 𝑥𝑖 in the outcome space, Eve

guesses the distribution 𝐷𝑋 with probability 𝑒𝑖 . The probability

that Eve wins the game is given by

1

2

∑︁
𝑖

𝑒𝑖 Pr(𝐷𝑋 = 𝑥𝑖 ) + (1 − 𝑒𝑖 ) Pr(𝐷�̃�
= 𝑥𝑖 ) . (2)

This is maximized when Eve puts all the weight on the bigger

quantity, which is at mostmax{Pr(𝐷𝑋 = 𝑥𝑖 ), Pr(𝐷�̃�
= 𝑥𝑖 )}. So, the

above is at most

1

2

∑︁
𝑖

max{Pr(𝐷𝑋 = 𝑥𝑖 ), Pr(𝐷�̃�
= 𝑥𝑖 )}. (3)

The proof of following lemma can be found in Appendix B.

Lemma 3.1. Let 𝐷 and 𝐷 ′ be two distributions over space Ω. Then∑︁
𝑖

max{Pr(𝐷 = 𝑥𝑖 ), Pr(𝐷 ′ = 𝑥𝑖 )} = 1 + ℎ(𝐷, 𝐷 ′),

where ℎ(𝐷,𝐷 ′) := 1

2

∑
𝑖 | Pr(𝐷 = 𝑥𝑖 ) − Pr(𝐷 ′ = 𝑥𝑖 ) | is the Total

Variation Distance between the two distributions.

Let Pr(𝐷𝑋 = 𝑥𝑖 ) = 𝑝𝑖 and Pr(𝐷
�̃�
= 𝑥𝑖 ) = 𝑝𝑖 . Since by construc-

tion 𝑝𝑖 ≤ 𝑒𝜀𝑝𝑖 and conversely 𝑝𝑖 ≤ 𝑒𝜀𝑝𝑖 for all 𝑖 , we have that

|𝑝𝑖 − 𝑝𝑖 | ≤ (𝑒𝜀 − 1)𝑝𝑖 . So,∑︁
𝑖

|𝑝𝑖 − 𝑝𝑖 | ≤
∑︁
𝑖

(𝑒𝜀 − 1)min(𝑝𝑖 , 𝑝𝑖 ) ≤ 𝑒𝜀 − 1. (4)

Therefore, by the above lemma and bound on the sum of the differ-

ence between the probabilities in (4), the probability that Eve wins

is at most
1

2
+ 1

4
(𝑒𝜀 − 1), which converges to random guessing as 𝜀

approaches 0.

4 MODELLING OUR PROBLEMWITH THE
CHANNEL FRAMEWORK

We are now ready to model our problem with the channel frame-

work introduced in Section 2.2. Let𝑋 , taking values onX = {𝑥1, . . . , 𝑥𝑛}
be the ambient distribution, and recall that 𝑃𝑋 is known to all.

We start by considering Alice’s point of view. First, she ob-

serves the realization of some (perhaps probabilistic) function of 𝑋 ,

𝑎𝑢𝑥 (𝑋 ). This 𝑎𝑢𝑥 (𝑋 ) can be a estimation of the realization of 𝑋 , a

subset, or nothing at all. Generally, we denote the observables that

Alice has access to by O = {𝑜1, . . . , 𝑜𝑚}, and model this process by

a channel 𝐴𝑢𝑥 : X → O, which implements the function 𝑎𝑢𝑥 (𝑋 ).

If Alice has access to the exact value of 𝑋 (i.e., if she has knowl-

edge of 𝑋 ), then O = X and 𝐴𝑢𝑥 ’s matrix is the identity:

𝐴𝑢𝑥 𝑥1 · · · 𝑥𝑛
𝑥1 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

𝑥𝑛 0 · · · 1

(5)

On the other hand, if Alice has absolutely no information about

𝑋 , we take O to be a singleton and

𝐴𝑢𝑥 𝑜

𝑥1 1

.

.

.
.
.
.

𝑥𝑛 1

(6)

Depending on the observable value, Alice decides on a distri-

bution over a set of possible values A = {𝑎1, . . . , 𝑎𝑛}. This can be

modeled by a channel 𝐴𝑙𝑖𝑐𝑒 : O → A, which associates to each O
the distribution over A chosen by Alice.

For example, suppose that O = {𝑜1, 𝑜2, 𝑜3}, where the observable
𝑜1 means that the realization of𝑋 is on the lower end, the observable

𝑜2 that it is on the middle, and 𝑜3 that it is in the higher end of the

range of 𝑋 . And let 𝑎1 and 𝑎2 be actions representing “buy a lot of”

or “buy a few” shares. In that case, one of the possible strategies of

Alice, could be to select 𝑎1 if she observes 𝑜1, 𝑎2 if she observes 𝑜3,

and choose randomly between the two if she observes 𝑜2. That can

be modeled by the following channel.

𝐴𝑙𝑖𝑐𝑒 𝑎1 𝑎2
𝑜1 1 0

𝑜2 1/2 1/2
𝑜3 0 1

Finally, Alice action interacts with the realization of 𝑋 , and the

result �̃� is made public to everyone. This can be modeled simply

by a channel 𝑃𝑢𝑏𝑙𝑖𝑐 : (𝑋,𝐴) → �̃� , which takes 𝑋 and 𝐴 as input

and outputs the corresponding result. As an example, supposing

that 𝐴 is Alice’s volume and the public output is �̃� = 𝑋 + 𝐴, the
channel can be defined as

𝑃𝑢𝑏𝑙𝑖𝑐 (𝑥 |𝑥, 𝑎) =
{
1, if 𝑥 = 𝑥 + 𝑎,
0, otherwise.

(7)

4.1 Deriving the Composed Channel
Now that we have defined all parts of the system, we can derive

the composed channel. This is done using the cascading and par-
allel composition operators [6, Chapter 8], which are defined in

Appendix C. An schematic view of our system is given in Figure 3.

X

AliceAux

Public X̃

Figure 3: A schematic illustration of our problem.

In order to obtain a single channel, we use a small “trick” by

adding a channel 𝐼 : X → X, whose matrix is the identity matrix,

on the upper path (i.e., 𝐼 (𝑥 |𝑥 ′) = 1 if 𝑥 = 𝑥 ′, and 0 otherwise).
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Aux

X

I

Alice

Public X̃

Figure 4: The result of adding channel 𝐼 .

Adding 𝐼 does not change the value of the upper input to 𝑃𝑢𝑏𝑙𝑖𝑐 .

Then, we cascade the channels 𝐴𝑢𝑥 and 𝐴𝑙𝑖𝑐𝑒 , combine the result-

ing channel with 𝐼 using parallel composition, and finally cascade

the result of this parallel composition with 𝑃𝑢𝑏𝑙𝑖𝑐 , we obtain the

following channel modeling the entire system from 𝑋 to �̃� .

𝑆𝑦𝑠𝑡𝑒𝑚 = (𝐼 ∥ (𝐴𝑢𝑥𝐴𝑙𝑖𝑐𝑒))𝑃𝑢𝑏𝑙𝑖𝑐 . (8)

4.2 A Solution via Linear Programming
In the framework introduced in this section, Alice only controls

the entries of the channel matrix 𝐴𝑙𝑖𝑐𝑒 . Here we formulate a linear

program that solves the following problem: supposing that the set

A are real numbers representing Alice’s market activity, what is

the choice of matrix 𝐴𝑙𝑖𝑐𝑒 that maximizes Alice’s actions while

satisfying the privacy guarantees of Section 3? For illustrative toy

experiments of our solution, refer to Appendix D. Our first step

towards this goal is to obtain the distribution 𝑃
�̃�
from 𝑃𝑋 and (8).

Recall that 𝑃
𝑋,�̃�

(𝑥, 𝑥) = 𝑃𝑋 (𝑥)𝑆𝑦𝑠𝑡𝑒𝑚(𝑥 |𝑥). The matrix of this

joint distribution can be obtained by 𝑃
𝑋,�̃�

= Π𝑋𝑆𝑦𝑠𝑡𝑒𝑚, where

Π𝑋 =
©­­«
𝑃𝑋 (𝑥1) · · · 0

.

.

.
. . .

.

.

.

0 · · · 𝑃𝑋 (𝑥𝑛)

ª®®¬
The row vector representing 𝑃

�̃�
can then be obtained bymarginal-

izing 𝑃
𝑋,�̃�

, i.e., 𝑃
�̃�
= ®1𝑃

𝑋,�̃�
, where ®1 = (1, 1, . . . , 1).

Notice that all operations above, and the cascading and parallel

operations in (8), are linear operations w.r.t. the entries of 𝐴𝑙𝑖𝑐𝑒

Similarly, letting 𝐴 be the r.v. of Alice’s actions, we may derive

the vector 𝑃𝐴 by 𝑃𝐴 = ®1Π𝑋𝐴𝑢𝑥𝐴𝑙𝑖𝑐𝑒. Assuming that
˜X = X, we

may obtain the optimal values for 𝐴𝑙𝑖𝑐𝑒 by solving the following

linear programming problem, which has its entries as variables.

• maximize: E[𝐴] = ∑
𝑎∈A 𝑎𝑃𝐴 (𝑎)

• subject to:
–

∑
𝑎∈A 𝐴𝑙𝑖𝑐𝑒 (𝑎 |𝑜) = 1 ∀𝑜 ∈ O

– 𝐴𝑙𝑖𝑐𝑒 (𝑎 |𝑜) ≥ 0 ∀𝑎 ∈ A, 𝑜 ∈ O
– 𝑒−𝜀𝑃𝑋 (𝑥) ≤ 𝑃

�̃�
(𝑥) ≤ 𝑒𝜀𝑃𝑋 (𝑥) ∀𝑥 ∈ X;𝑥 < 𝑥ℎ

–
∑
𝑥≥𝑥ℎ 𝑃�̃� (𝑥) ≤ 𝑚𝛿

Where the value of𝑚 ≥ 1 is parameter limiting the probability

mass of the tail in terms of 𝛿 , and 𝑥ℎ = min{𝑥 | ∑𝑥 ′≥𝑥 𝑃𝑋 (𝑥 ′) ≤ 𝛿}.
The first two constraints guarantee that 𝐴𝑙𝑖𝑐𝑒 is indeed a channel,

the third is the differential privacy condition, and the last is a limit

on the cumulative distribution of the right tail for which the privacy

bounds are ignored. An analogous condition on the left tail can be

added with its own parameter 𝛿 .

4.2.1 Minimizing the Variance of Alice’s Actions. In addition to

maximizing the expected value of her actions, a Alice may also want

to minimize variance to establish a more consistent trading strategy

which, while not necessarily better from a privacy standpoint, might

be preferred. In fact, there might even be an argument to forego

some gain in E[𝐴] to diminish the variance of Alice’s results.

Given the discussion above, this can be achieved as follows.

Recall that the variance of 𝐴 can be calculated as

𝑉𝑎𝑟 (𝐴) = E[(𝐴 − E[𝐴])2] (9)

Sadly,𝑉𝑎𝑟 (𝐴) is concave w.r.t. the entries of 𝐴𝑙𝑖𝑐𝑒 . However, let-
ting 𝐸𝑚𝑎𝑥 be the solution of the linear program above, we may use

a proxy of 𝑉𝑎𝑟 (𝐴) by substituting 𝐸𝑚𝑎𝑥 for E[𝐴] in (9), obtaining

E[(𝐴 − 𝐸𝑚𝑎𝑥 )2] =
∑︁
𝑎

𝑃𝐴 (𝑎) (𝑎 − 𝐸𝑚𝑎𝑥 )2, (10)

which is linear w.r.t. 𝐴𝑙𝑖𝑐𝑒 .

Therefore, we may obtain the solution of the first linear program-

ming problem and then minimize (10) in a second one. In order to

do so, we add another constraint, guaranteeing that the value of

E[𝐴] is at least 𝑡𝐸𝑚𝑎𝑥 , for some 𝑡 ∈ [0, 1]. Notice that in the case

𝑡 = 1, this constraint becomes E[𝐴] ≥ 𝐸𝑚𝑎𝑥 , and the LP below

minimizes the actual variance 𝑉𝑎𝑟 (𝐴).
• minimize:

∑
𝑎 𝑃𝐴 (𝑎) (𝑎 − 𝐸𝑚𝑎𝑥 )2

• subject to:
–

∑
𝑎∈A 𝐴𝑙𝑖𝑐𝑒 (𝑎 |𝑜) = 1 ∀𝑜 ∈ O

– 𝐴𝑙𝑖𝑐𝑒 (𝑎 |𝑜) ≥ 0 ∀𝑎 ∈ A, 𝑜 ∈ O
– 𝑒−𝜀𝑃𝑋 (𝑥) ≤ 𝑃

�̃�
(𝑥) ≤ 𝑒𝜀𝑃𝑋 (𝑥) ∀𝑥 ∈ X;𝑥 < 𝑥ℎ

–
∑
𝑥≥𝑥ℎ 𝑃�̃� (𝑥) ≤ 𝑚𝛿

– E[𝐴] ≥ 𝑡𝐸𝑚𝑎𝑥

5 ITERATING OVER TIME PERIODS
The linear programming solutionwe presented in section 4.2 applies

to a single time period of market interaction, viewed holistically.

Now let’s imagine our six step game repeats in a sequence of 𝑛

rounds, where the random sampling performed in steps 2 and 5 of

every round is independent. In this case, we can let 𝑋1, 𝑋2, . . ., 𝑋𝑛
denote the sequence of random variables in a scenario without Alice,

and let �̃�1, �̃�2, . . ., �̃�𝑛 denote the sequence of random variables in

a scenario with Alice present. In either scenario, the distribution of

𝑋𝑖 announced in the first step of round 𝑖 can be a function only of

the history of the published values 𝑥1 + 𝑎1, . . ., 𝑥𝑖−1 + 𝑎𝑖−1 so far.

Alice’s leakage minimization goal over these 𝑛 rounds may be

formulated relative to the joint distribution of the full series of

random variables. For example, she may want

𝑃{�̃�𝑖 } (𝐸) ≤ 𝑒
𝜀𝑃{𝑋𝑖 } (𝐸)

to hold for a certain set of events 𝐸 in the joint probability space.

For simplicity, let’s assume for now that 𝛿 = 0 and she wants this

to hold for the entire probability space.

To achieve this, Alice could choose some values 𝜀1, . . . , 𝜀𝑛 such

that 𝜀1 + · · · + 𝜀𝑛 = 𝜀. She could then treat each round 𝑖 as a fresh

occurrence of the one round game with 𝜀𝑖 as her bound. In this

case, we would like to decompose the joint probability of any set

of published values 𝑦1, . . ., 𝑦𝑛 as follows:

𝑃{�̃�𝑖 } (𝑦1, . . . , 𝑦𝑛)
?

=
∏
𝑖

𝑃
�̃�𝑖
(𝑦𝑖 |𝑦1, . . . 𝑦𝑖−1) .

We may think this should hold due to the independent sampling of

𝑋𝑖 and𝐴𝑖 in steps 2. and 5. of our game, once𝑦1, . . . , 𝑦𝑖−1 determine

the distribution of 𝑋𝑖 . However, there is an important subtlety here,
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since �̃�𝑖 is also influenced by Alice’s selection in step 4. of the game,

and she could make this selection in a way that depends on her

prior knowledge of 𝑥1, . . . , 𝑥𝑖−1 and 𝑎1, . . . , 𝑎𝑖−1 individually, for

example. So we’re going to make a stipulation here that Alice does

not do this, but rather the entirety of her strategy in round 𝑖 is a

function only of the prior published values 𝑦1, . . . , 𝑦𝑖−1, and does

not depend upon any private knowledge of the earlier history. (Note

that the published distributions 𝑋1, . . . , 𝑋𝑖 are themselves assumed

to be known functions of 𝑦1, . . . , 𝑦𝑖−1.)
This certainly holds if Alice plays the new round 𝑖 with no

dependence on the prior history, other than that implicit in the

definition of 𝑋𝑖 . In this case, we have:

𝑃{�̃�𝑖 } (𝑦1, . . . , 𝑦𝑛) =
∏
𝑖

𝑃
�̃�𝑖
(𝑦𝑖 |𝑦1, . . . 𝑦𝑖−1) ≤∏

𝑖

𝑒𝜀𝑖𝑃𝑋𝑖
(𝑦𝑖 |𝑦1, . . . , 𝑦𝑖−1) ≤ 𝑒𝜀𝑃{𝑋𝑖 } (𝑦1, . . . , 𝑦𝑛) .

Here we have used the fact that Alice stays within the 𝜀𝑖 bound in

round 𝑖 , and we have similarly leveraged the independence of each

𝑋𝑖 once we condition on the prior published values.

We assumed here that the 𝜀𝑖 values were chosen ahead of time

to sum to 𝜀, but Alice can also choose her 𝜀𝑖 values more adaptively,

hence stretching her total 𝜀 budget further. For example, let’s sup-

pose that 𝜀𝑖 can be chosen as a function of 𝜀, 𝑖 , and the previous

history of published values 𝑦1, . . . , 𝑦𝑖−1 from the prior rounds.

At the conclusion of each round 𝑖 − 1 once 𝑦𝑖−1 has been deter-

mined, Alice can define:

𝜀𝑖−1 := ln

(
𝑃
�̃�𝑖−1

(𝑦𝑖−1)
𝑃𝑋𝑖−1 (𝑦𝑖−1)

)
.

Crucially, we can assert by induction here that Alice’s strategy in

round 𝑖 − 1 depends only on 𝑦1, . . . , 𝑦𝑖−2, so 𝑃�̃�𝑖
(𝑦𝑖−1) here only

depends on 𝑦1, . . . , 𝑦𝑖−1. Hence this value of 𝜀𝑖−1 also depends only

on 𝑦1, . . . , 𝑦𝑖−1.
Alice can then choose her parameter 𝜀𝑖 for round 𝑖 in any way

that maintains the invariant:

𝜀1 + · · · + 𝜀𝑖−1 + 𝜀𝑖 ≤ 𝜀,
as long as her method of choice depends only 𝑖 , 𝜀, and the public

history. We note that 𝜀𝑖 (which is determined at the end of round

𝑖) will always turns out to be ≤ 𝜀𝑖 (which is determined at the

beginning of round 𝑖), as long as Alice behaves to ensure her desired

bound in round 𝑖 .

Now, if we let 𝑦1, . . . , 𝑦𝑛 denote any possible series of output

values for 𝑥1 + 𝑎1, . . ., 𝑥𝑛 + 𝑎𝑛 , we then have:

𝑃{�̃�𝑖 } (𝑦1, . . . , 𝑦𝑛) =
∏
𝑖

𝑃
�̃�𝑖
(𝑦𝑖 |𝑦1, . . . , 𝑦𝑖−1) ≤∏

𝑖

𝑒𝜀𝑖𝑃𝑋𝑖
(𝑦𝑖 |𝑦1, . . . , 𝑦𝑖−1) ≤ 𝑒𝜀𝑃{𝑋𝑖 } (𝑦1, . . . , 𝑦𝑛) .

We note that if Alice applies our linear programming solution in

an iterative fashion, setting her 𝜀𝑖 values dynamically in this way,

her linear programs will still be functions solely of the published

history, and hence this tighter analyses of the joint probability space

of outcomes 𝑦1, . . . , 𝑦𝑛 applies. This will allow her to stretch her

overall privacy budget of 𝜀 much further than a methodology that

determines each 𝜀𝑖 statically before the repeated game is played.

6 EXAMPLES WITH TAQ DATA
Naturally, we want to see how this framework behaves when we

apply it to real historical stock market data. There are many differ-

ent ways we could go about doing this, and we’ll start with a few

concrete examples that are narrow in scope but relevant to the way

that large institutional orders may be traded.

There are several metrics our adversary might measure as vari-

able 𝑋 . A basic metric is total trading volume, while a slightly more

nuanced one is volume pressure as defined in [13]. Volume pres-

sure is correlated with contemporaneous price movement and is

computed by looking only at volume that when a trader crosses

the spread. In particular, we can sum all trades at the prevailing

NBB and NBO over a specified time period and compute the differ-

ence between these sums. To contextualize, we then divide by the

average daily volume (ADV) over a trailing 20-day period in that

symbol. When volume pressure is positive, more shares are being

traded at the NBB compared to the NBO, which is correlated with

prices going down as it represents more sellers crossing the spread

and revealing urgency, though the relationship is very noisy. When

volume pressure is negative, more shares are being traded at the

NBO compared to the NBB, which is correlated with prices going

up as it represents more buyers crossing the spread and revealing

urgency. For financial terminology, see Appendix A.

For small to mid-sized trades, it is reasonable to assume that

Alice’s contributions to volume pressure will be proportional to the

overall volume she trades. Under this assumption, we can interpret

the relative increases in volume pressure that she can sustain before

violating specified information leakage bounds as the same as the
relative increases in trading volume that she can achieve.

All of the examples below were produced using our linear pro-

gramming implementation presented in Section 4.2 using CVXPY

[2, 22]. CVXPY supports many different solvers. We use the linear

optimization solver from SciPy [46]. We will make our implemen-

tation code, accompanied by a user guide, publicly available. For

more implementation details, see Appendix D. In Section 6.1, we

explore a few examples of empirically observed volume pressure

distributions and see how the settings of leakage parameters like 𝜀

affect Alice’s results. For a robustness evaluation, see Appendix F.

6.1 Volume Pressure Distributions Over Ten
Minutes

Let’s suppose that our adversary Eve measures volume pressure

in aggregate over ten minute intervals. We let 𝑋 denote the mea-

sured volume pressure in a single time interval. In this case, Alice’s

trading activity will affect the volume pressure when she crosses

the spread, and she would like to do so only in a way that stays

under a particular budget for leakage. Alice’s choices for various

parameters and the underlying volume pressure distribution for

the symbol she is trading affect her constraints and strategy.

We can observe an empirical distribution for this 𝑋 for vari-

ous stocks over various time periods to get a sense of what kinds

of behavior we might expect. In Figure 5, we plot volume pres-

sure measurements as a probability distribution by viewing each

measurement as representing an amount of probability mass pro-

portional to the notional value traded in that time interval for SPY

(a popular ETF that is intended to track the S&P 500) collected over

360



Controlling Information Leakage Proceedings on Privacy Enhancing Technologies 2024(2)

Figure 5: SPY volume pressure distribution for Q1 2023.

Figure 6: SPY volume pressure distributionwith Alice trading
(𝑝
�̃�
) with perfect knowledge (channel noise 0). SPY volume

pressure distributionwithoutAlice (𝑝𝑋 ), information leakage
upper (𝑒𝜀𝑝𝑋 ) and lower bound (𝑒−𝜀𝑝𝑋 ) for 𝑒𝜀 = 2 and 𝛿 = 0.

Figure 7: SPY volume pressure distributionwith Alice trading
(𝑝
�̃�
) with no knowledge (channel noise 1) and 𝑒𝜀 = 2 and 𝛿 = 0.

10-minute intervals in Q1 2023. We round volume pressure to the

nearest multiple of 0.0001, and cap the values at 0.01 in absolute

value, which means the 𝑦-axis for probability mass at each tail dis-

plays the full mass of the tail on the endpoint of our capped range

in our plots. In other words, the probability mass plotted for the

value of +0.01 represents the total probability mass associated to

values ≥ +0.01, and likewise on the left tail. For compatability with

the later graphs that come as output from our linear programming

tool, we index the rounded volume pressure values in our range as

0,1,.., 200, rather than −0.01, −0.0099, −0.0098, ..., etc. Due to this,

the value of 100 in the center of the graph represents a balance of

trading at the NBB and NBO. We can see that the distribution of

market behavior is generally concentrated near this balance point.

As we might expect from empirical data, the raw distribution

looks a bit wiggly and doesn’t reflect what we really believe about

Figure 8: SPY volume pressure distributionwith Alice trading
(𝑝
�̃�
). Alice has no knowledge (channel noise set to 1) but high

budget to violate the 𝑒𝜀 = 2 bounds.

Figure 9: Smoothed SPY volume pressure distribution with
Alice trading (𝑝

�̃�
) and without Alice (𝑝𝑋 ) for 𝑒𝜀 = 2.

the underlying distribution. For example, we suspect spikes in

the tails are artifacts of our sample size and outliers rather than

true spikes in the underlying probabilities. We first look at our

framework in the raw setting, and later evaluate the effect of fitting

or smoothing the distribution before applying our framework.

In Figure 6, we plot Alice’s strategy with the linear programming

solver for real Q1 2023 SPY data. We model Alice maximal control

over the value of 𝐴 and maximal visibility of sample 𝑥 by setting

channel noise to 0. We set 𝑒𝜀 = 2 for visual clarity, 𝛿 = 0, and

maximize Alice’s expected value. We assume the sign of volume

pressure and Alice’s trading desire (buying or selling) are aligned

so Alice’s activity should add quantity to the volume pressure.

Intuitively, the shape of this plot makes sense, as Alice should want

to move probability mass to the right to accomplish more trading,

subject to the bounds she imposes by the choice of 𝜀.

Figure 10: Alice’s expected volume pressure over 𝑒𝜀 for SPY.

The expected volume pressure in the market without Alice is

E[𝑋 ] = 100.92 and with Alice is E[�̃� ] = 111.56. Alice’s expected
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value is E[𝐴] = 10.64. Therefore, Alice can contribute a bit more

than 10% of the overall volume pressure on average before violating

her 𝜀-based bounds here. Assuming proportionality as discussed,

this means she can trade a bit more than 10% of the overall trading

volume before violating this (very generous) 𝜀 leakage bound.

We might wonder, how much of this is due to her perfect knowl-

edge of 𝑥? In Figure 7 we plot the same scenario, but with the chan-

nel noise turned up to 1 (which corresponds to Alice getting no aux-
iliary information about the sampled value of 𝑥 ). Here E[𝑋 ] < 0.01,

and the distribution of �̃� is basically hugging the distribution of 𝑋 .

Unsurprisingly, Alice’s blindness to the sampled value of 𝑋 , com-

bined with the presence of small probabilities in the tails leaves

her unable to meaningfully trade inside the bounds. Intuitively, she

can’t make good use of the space inside the orange upper bound as

it converges too close to the blue distribution of 𝑋 in the tails. Her

blindness means that whatever strategy she pursues needs to be

“safe” even the sampled value 𝑥 lands in the right tail, for example.

This issue could bemitigated in a fewways. Smoothing of the raw

empirical distribution before plugging into the linear programming

solver would help (we discuss this more below), but only to the

extent that the smoothed probabilities didn’t dip to be too tiny.

Allowing 𝛿 > 0 can also help considerably here.

In Figure 8 we plot a somewhat extreme example and see what

happens when we set 𝛿 higher and allow Alice to violate the 𝜀

bounds for up to 15% of the probability mass on each tail. We

bound the total mass in these “bad” tail regions to be at most 1.5

times what it was originally. Here, we have E[𝐴] = 6.33. Even just

examining this visually, we see that smoothing the distributions

before applying our linear programming techniques likely gives

Alice better outcomes. In fact, in Figure 9 smoothing the distribution

𝑋 with splines first allows Alice to get slightly more expected value

(E[𝐴] = 6.97) while only violating the 𝜀 bounds for up to 5% of the

probability mass on each tail.

In Figure 10 we can see how Alice can achieve higher values of

E[𝐴] as 𝑒𝜀 grows in the noiseless regime as we vary the value of 𝜀.

We provide similar analysis on additional stocks in Appendix E.

7 HOW OUR FRAMEWORK COMPLEMENTS
EXISTING ALMGREN-CHRISS PARADIGM

Standard approaches in quantitative finance literature to evaluate

and prescribe trading strategies usually rely on modeling price.

Since price is very noisy and difficult tomodel well, such approaches

often a) make very strong assumptions about the price dynamics

of interest, constraining the predictions and limiting the ability to

extrapolate or b) require complex, high-dimensional models with

too many parameters to feasibly calibrate with the available data.

When using the foundational framework of Algren-Chriss [3],

for example, one often makes strong price assumptions. In particu-

lar, [3] provides an example where prices are assumed to follow an

arithmetic random walk. This may be reasonable when market con-

ditions are “typical," but there is a potential catch. A framework like

[3] allows us to derive trading strategies that optimize for our goals

when such assumptions are true, but in the process of trading, we

may generate atypical market behaviors, potentially invalidating

the assumptions we are operating under! Our information-leakage

framework could be used to further vet derived trading strategies,

giving us a novel way to detect and mitigate such risks.

Figure 11: Strategies given by the linear Almgren-Chris
model using the parameters of Table 1 in [3], for different
values of 𝜆. The volume to be liquidated is 1million shares,
each time period corresponding to one day.

To show how this might work, we put the Almgren-Chriss exam-

ple in context: assume a Portfolio Manager (PM) wants to delegate

a mandate to liquidate a long position of 𝑋 shares to one of her

traders with a risk-tolerance parameter of 𝜆 that is outside the PM’s

influence. This parameter measures how unwilling the trader is

to risk future losses due to future price variations: larger 𝜆 means

more shares the trader liquidates in the first few days.

We will treat the time horizon for execution as having five peri-

ods. The Algmren-Chriss framework provides a solution (i.e., how

many shares of stock should be liquidated in each time period) that

is optimal return-wise given 𝜆. The resulting trading strategies for

various values of 𝜆 are plotted in Figure 11.

The PM, however, has lately observed trading costs higher than

would be consistent with the price impact model’s predictions. She

is worried that this execution implementation might be leaving

too much of a detectable footprint in the market, leading to ex-

ploitation by other traders. She decides to evaluate the information

leakage arising through volume pressure for these derived trading

schedules. In particular, she looks at the 𝜀 and 𝛿 bounds that would

be satisfied/unsatisfied by the first day of trading (which is the

heaviest day). Those are depicted in Figure 12.

The PM finds the associated 𝜀 must be high to allow these sched-

ules, and she decides that the footprint being left in terms of volume

pressure is too big for her comfort. This leads her to explore allow-

ing longer time horizons for trading mandates of this size.

8 FUTUREWORK
In the previous section, we provided examples applying our frame-

work to historical market data for US equities. A fuller exploration

of the parameter space would likely yield greater insight into the

behavior of our solutions’ general applications and limitations. We

also expect our linear programming software could be made more

efficient and robust, though it currently suffices for our initial study.

There are a few other large categories of further work here

that we expect to be crucial for developing this line of thinking in

impactful ways. The first is feature selection for the random variable

𝑋 . Our python code for solving the linear programs assumes a single

scalar measurement for 𝑋 , this limitation is artificial. Visualization

of a distribution𝑋 over a higher dimensional space of simultaneous
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Figure 12: Upper privacy bound for of the first day of the strategies for 𝜆 = 5 × 10
−7(left), 𝜆 = 1 × 10

−7 (middle) and 𝜆 = 1 × 10
−8

(right), where 𝛿 = 0.01. The corresponding values for (𝜀,𝑚) are (1.30, 4.81), (0.88, 2.85) and (0.78, 2.51), respectively. We took 𝑝𝑋 to
be a discretized beta distribution stretched to the interval [0, 107], with parameters 𝛼 = 𝛽 = 40.

measurements is clunkier, but conceptually our framework extends

seamlessly to a vector-valued 𝑋 . This gives us a lot of freedom to

choose a suite of metrics across market data that an adversary may

jointly monitor to try to sniff out activity from a large trader.

Naturally, it can be hard to collect precise information from trad-

ing professionals about what metrics an adversary may realistically

use here, as traders do not want to reveal their strategies. Addition-

ally, some data sources that an adversary may use, like exchange

proprietary depth-of-book feeds, are fairly expensive to obtain even

on a historical basis, and hence costly to study. Nonetheless, we

think an exploratory study of TAQ data (and other sources) could

reveal some very interesting potential patterns of leakage. Such

studies could inspire new features to include as a components of 𝑋 .

We should be wary that we will never anticipate everything that

an adversary might measure, and adding too many spurious metrics

to 𝑋 will result in untenable constraints. But an important feature

of this problem space is that we don’t need to be perfect to do better:

certainly rigorously controlling some forms of leakage is preferable

to controlling none, and making a decision to trade despite potential

leakage is preferable to not knowing anything.

The second category of future work is to flesh out the applica-

tions of this in trading products and other areas. There are several

different forms this could take:

Pretrade Analytics. Pretrademodels are usually intended tomodel

the expected price of a proposed trading activity, based on parame-

ters like order size relative to average daily volume in a symbol and

the typical symbol volatility. However, price models are notoriously

noisy, and pretrade estimates can become unusably inaccurate very

quickly as the size of the trading activity or the time horizon of

trading increases. One could view our information leakage frame-

work as a complement to such approaches, since it doesn’t have to

rely on price. Instead, one could model the trade’s expected con-

tribution to metrics like volume pressure, and then quantify the

anticipated information leakage by looking at what values of 𝜀, 𝛿

would be compatible with this amount of activity for these metrics.

If pretrade models are being used to decide, for example, how to

break up a large trade over more days to avoid large anticipated

costs, it may be useful to additionally consider how the accumu-

lated leakage over days can be controlled in terms of overall 𝜀, 𝛿

parameters. Especially if we are modeling leakage through features

that are less noisy than price, there is reason to believe that such

multi-day calculations could be more stable and meaningful than

extending price-based models across days.

Algo Scheduler Design. It is also plausible that this framework

could be used to derive a scheduler for orders intended to trade as a

much possible while staying within certain bounds on information

leakage as reflected in a vector-valued set of metrics comprising

𝑋 . Real-time market conditions and resulting quantitative models

could be incorporated into the successive definitions of each 𝑋𝑖
and 𝑎𝑢𝑥 as time periods progressed, and Alice could solve linear

programs on the fly to decide what to do in the next time interval.

Trading Simultaneously Across Symbols. The measurements com-

prising 𝑋 could also cross symbols, giving us a framework for

measuring joint leakage across several orders at once. Such a frame-

work could be used to monitor accumulating 𝜀 values in real time,

and we could re-budget across symbols dynamically as they trade.

This could operate, for example, as an overlay over trading algo-

rithms that operate within each symbol. The overlay could adjust

the parameters of the underlying individual orders to stay within

overall leakage goals. One could imagine similar overlays based

on price impact models rather than leakage, but the noise in such

models makes them rather precarious to extend in this way. Our

hope is that a leakage-inspired overlay could be more robust.

Applications beyond Equities Trading. Lastly, although designed

with the particular constraints of US Equities trading in mind, the

information leakage model we present is defined for arbitrary dis-

crete probability distributions. It can be applied as a framework

to any scenario in which an agent has the ability to modify a dis-

crete probability distribution via some set of actions constrained

by a boundary distribution, and there may be rich applications

of variants of our interactive distributional information leakage

game. Additionally, while the constraints given by the boundary

distribution in our setting have been interpreted as being a privacy

bound, there’s no reason in other settings to not think of it as just

a very general limitation imposed on an agent.
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A U.S. EQUITIES TRADING GLOSSARY
Our work relies on the following definitions and terminology re-

lated to U.S. Equities trading.

U.S. Equities Market. The U.S. Equities Market is an umbrella

term for the many venues where one can trade public stocks and

stock-like securities, such as ETFs. The collection of these public

stocks and stock-like objects is known as “equities.” The composi-

tion and structure of this decentralized market changes over time,

but it currently consists of 16 stock exchanges and over 30 Alterna-

tive Trading Systems (often colloquially called dark pools). Largely,

the same set of equities can be traded at one of these venues on

any given trading day.

Symbol. We will refer to the equities to be traded as symbols.

A symbol can be specified in any of several different naming con-

ventions. We will use tickers, which are the short letter combina-

tions typically displayed on websites where people look at finan-

cial data. For example, Microsoft shares are referred to under the

ticker/symbol “MSFT.”

Trade. A trade occurs when a trading venue (e.g. an exchange

or dark pool) matches a buyer and seller of the same equity at

terms acceptable to both. A trade has a size, which is the number of

shares being traded, and a price, which is the amount in dollars paid

per share. When a trade happens, it is quickly reported and basic

parameters like time of trade, size, and price are made available to

all market participants through various data feeds. The identities

of the parties trading, however, are not publicly reported.

Quote. A quote is an expression of interest to buy or sell a symbol.

It specifies a price as well as a size, and is considered binding until

it is canceled or results in a trade. Quotes submitted to exchanges

are disseminated to market participants through various data feeds.

Ask/Offer. An ask (also known as an offer) is a quote issued by a

seller.

Bid. A bid is a quote issued by a buyer.

NBO/NBB/NBBO. The National Best Offer (NBO) is the lowest
price currently being advertised in a quote by a seller across the

exchanges. The calculation of this is nuanced, as quote updates do

not reach all market participants simultaneously. This means that

one’s view of the current “best” quote depends on one’s geographic

location relative to the exchanges, as well the mechanisms used

to transmit the relevant data from point to point. The Securities

Information Processors (SIPs) are tasked with collecting real-time

quote updates from exchanges and consolidating them into NBBOs

that are then disseminated. It is these NBBOs that appear in our

historical market data set. There are currently two SIPs that cover

disjoint sets of symbols.

TAQ data. A common source of historical market data is Trade

and Quote (TAQ) data as provided by the New York Stock Exchange

(NYSE). Somewhat confusingly, this is a data product offered by

NYSE, containing data from the SIPs (one of which is operated

by NYSE), and that data includes trades and quotes across all ex-

changes, of which NYSE is one. The trade data includes the date,

time, symbol, size, and price of every trade, as well as a code that

indicates which exchange (if any) the trade occurred on. Trades

occurring on dark pools are reported under a single code for all such

venues. The quote data similarly includes the date, time, symbol,

size, price, and exchange code for each consolidated “top-of-book”

quote at an exchange. In the case of an offer, a top-of-book quote is

one that is at the current lowest price being offered at that exchange.

In the case of a bid, a top-of-book quote is one that is at the current

highest price being bid at that exchange. The consolidation means

that we get a record in the data for each time the total size or price

at the top-of-book changes. Our data also includes NBBOs (date,

time, symbol, price, total size) as computed by the SIPs.

Crossing the Spread. At any given moment, the NBB is typically

lower than the NBO. If not, the potential buyer willing to pay up to

the NBB price could simply trade with the potential seller willing

to accept as low as the NBO price. [Aside: this is not perfectly true,

as there are complex fee structures at various exchanges that can

affect the “all in” prices for potential buyers and sellers in ways

that break symmetry here.]

B PROOF OF LEMMA 3.1
Theorem B.1. Let𝐷 and𝐷 ′ be two distributions over some sample

space Ω. Then∑︁
𝑖

max{Pr(𝐷 = 𝑥𝑖 ), Pr(𝐷 ′ = 𝑥𝑖 )} = 1 + ℎ(𝐷, 𝐷 ′),

where ℎ(𝐷, 𝐷 ′) = 1

2

∑
𝑖 | Pr(𝐷 = 𝑥𝑖 ) − Pr(𝐷 ′ = 𝑥𝑖 ) | is the Total

Variation Distance between the two distributions.

Proof. Let 𝐷 and 𝐷 ′
be distributions over some sample space

Ω, let ℎ(𝐷,𝐷 ′) = 1

2

∑
𝑖 | Pr(𝐷 = 𝑥𝑖 ) − Pr(𝐷 ′ = 𝑥𝑖 ) | be the total

variation distance between 𝐷 and 𝐷 ′
, and let 𝑝𝑖 = Pr(𝐷 = 𝑥𝑖 ) and

𝑝𝑖 = Pr(𝐷 ′ = 𝑥𝑖 ) . First note that for all 𝑎, 𝑏 ∈ R

𝑎 + 𝑏 + |𝑎 − 𝑏 | = 2max(𝑎, 𝑏) .

So taking 𝑎 = 𝑝𝑖 and 𝑏 = 𝑝𝑖 , we get

ℎ(𝐷, 𝐷 ′) = 1

2

∑︁
𝑖

(2max{𝑝𝑖 , 𝑝𝑖 } − 𝑝𝑖 − 𝑝𝑖 )∑︁
𝑖

max{𝑝𝑖 , 𝑝𝑖 } =
1

2

∑︁
𝑖

(𝑝𝑖 + 𝑝𝑖 ) + ℎ(𝐷, 𝐷 ′)

Since

∑
𝑖 𝑝𝑖 =

∑
𝑖 𝑝𝑖 = 1, this implies:∑︁
𝑖

max{𝑝𝑖 , 𝑝𝑖 } = ℎ(𝐷,𝐷 ′) + 1.

□
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C COMPOSITION OF CHANNELS
In real-life systems, we often have multiple interacting parts that

are better understood on their own. These can be, for example,

different functions in a program, or different wires on a large com-

munication network. In many of these scenarios, it is possible to

obtain a channel that models the larger system by first obtaining

the channels modeling its parts, and then composing them in some

manner.

In this section, we introduce two different ways to compose chan-

nels which have been used in the QIF literature [26], [6, Chapter

8]. These compositions will be useful when modeling our problem

using channels in Section 4.

C.1 Cascading
The most straightforward composition of channels can be achieved

by using the output of a first channel as input of a second channel,

as illustrated in Figure 13.

K3

X Z
Y

K1 K2

Figure 13: A channel 𝐾3 obtained by cascading 𝐾1 and 𝐾2

Definition 2. Let 𝐾1 : X → Y and 𝐾2 : Y → Z. We say that
𝐾3 : X → Z is the cascading of 𝐾1 and 𝐾2, and write 𝐾3 = 𝐾1𝐾2, if

𝐾3 (𝑧 |𝑥) =
∑︁
𝑦∈Y

𝐾1 (𝑦 |𝑥)𝐾2 (𝑧 |𝑦). (11)

Notice that equation (11) is just regular matrix multiplication —

that is, 𝐾3 is simply the result of multiplying the matrix of 𝐾1 by

the matrix of 𝐾2.

C.2 Parallel Composition
When two channels share the same input and the execution of one

does not interfere with the other, we can combine them using the

parallel composition operator, as depicted in Figure 14.

K3

((X1,X (Y1, Y2)

K1

K2

Figure 14: A channel𝐾3 obtained by the parallel composition
of 𝐾1 and 𝐾2

Definition 3. Let 𝐾1 : X → Y1 and 𝐾2 : X → Y2. We say
that 𝐾3 : X → (Y1,Y2) is their parallel composition, and write
𝐾3 = 𝐾1 ∥ 𝐾2, if

𝐾3 (𝑦1, 𝑦2 |𝑥) = 𝐾1 (𝑦1 |𝑥)𝐾2 (𝑦2 |𝑥) .

The intuition behind this definition is straightforward: notice

that, as their execution is independent of each other, we will have

that the joint conditional probability 𝑟𝑌1,𝑌2 |𝑥 , for each 𝑥 ∈ X, will

be given by

𝑃𝑌1,𝑌2 |𝑥 (𝑦1, 𝑦2) = 𝑃𝑌1 |𝑥 (𝑦1)𝑃𝑌2 |𝑥 (𝑦2) = 𝐾1 (𝑦1 |𝑥)𝐾2 (𝑦2 |𝑥),
which is precisely the transition matrix of 𝐾1 ∥ 𝐾2 in Definition 3.

C.3 Using Channel Composition to Model a
Communication Protocol

We finish this section with a toy example, illustrating how the

operations defined above can be helpful in modeling a simple com-

munication protocol.

In most practical applications, channels used for communication

are not error-free. For example, if one transfers data using an Ether-

net cable, each bit has a (very) small probability of flipping during

transmission. In this case, an appropriate channel would be what is

known in the information theory literature as the binary symmetric
channel 𝐵𝑆𝐶 (𝛼) [21, Chapter 7], which is defined in terms of a

probability of error 𝛼 ∈ [0, 1].

𝐵𝑆𝐶 (𝛼) 0 1

0 1 − 𝛼 𝛼

1 𝛼 1 − 𝛼

(12)

One way to mitigate the errors caused by those channels is to

add redundancy — that is using more than one execution of the

channel for each symbol to be transmitted. Suppose someone is

transmitting a message using a 𝐵𝑆𝐶 (𝛼), and consider the following
communication protocol: each bit is transmitted not once but twice,

and the bits are compared by the receiver. If they are equal, the

transmission is considered successful. Otherwise, an error symbol

⊥ is generated. A schematic depiction of the protocol is depicted in

Figure 15.

X Comparison X̃

BSC(p)

BSC(p)

Figure 15: A diagram for the communication protocol de-
scribed

Where the channel 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 is defined as follows.

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 0 1 ⊥
(0, 0) 1 0 0

(0, 1) 0 0 1

(1, 0) 0 0 1

(1, 1) 0 1 0

We will now use the cascading and parallel composition opera-

tions to obtain a channel describing the whole protocol. First, notice

that the two executions of the 𝐵𝑆𝐶 (𝛼) channel occur under the
same input (that is, the transmitted bit is the same) and are indepen-

dent of each other. Thus, they can be combined using the parallel
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operator, obtaining the channel 𝐵𝑆𝐶 (𝛼) ∥ 𝐵𝑆𝐶 (𝛼) . The output of
this channel is then fed to 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛, and thus the whole system

can be modelled by the channel

𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = (𝐵𝑆𝐶 (𝛼) ∥ 𝐵𝑆𝐶 (𝛼))𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛,

which is depicted in Figure 16. Notice that, by using this protocol,

the probability that a bit will be flipped without the knowledge of

the receiver is only 𝛼2, instead of 𝛼 in a straightforward execution

of 𝐵𝑆𝐶 (𝛼).

𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 0 1 ⊥
0 1 − 2𝛼 + 𝛼2 𝛼2 2𝛼 − 2𝛼2

1 𝛼2 1 − 2𝛼 + 𝛼2 2𝛼 − 2𝛼2

Figure 16: Protocol Channel

D IMPLEMENTATION AND SOME TOY
EXPERIMENTS

In this section, we explore some basic behavior of the linear pro-

gramming solutions generated by our implementation. Our main

objective in doing so is to provide some intuition in a simplified

setting, to provide context to the results obtained with real-life

stock market data presented in Section 6.

The software can take in a probability distribution for 𝑋 , as well

as parameter settings like a value of 𝑒𝜀 and a desired level of channel

noise. It then follows the steps detailed in prior sections to express

our problem in terms of channels, and ultimately in terms of linear

programs. It outputs a strategy for Alice that maximizes her trading

activity subject to the specified constraints, as well as summary

information like the expected values of 𝑋 , 𝐴, and �̃� . [Technical

note: the software enforces a lower probability bound in terms of

𝑒−𝜀 in addition to the 𝑒𝜀 upper bound.]

For these experiments, we take X = ˜X = {0, 1, . . . , 50}, A =

{0, 1, . . . , 20}. We generate 𝑃𝑋 by sampling 10
7
times a normal dis-

tribution with mean 25 and standard deviation 8, rounding the

results to the nearest integer, ignoring the values that fall outside of

X and normalizing the frequencies to obtain a probability distribu-

tion. The channel 𝑃𝑢𝑏𝑙𝑖𝑐 used is similar to (7), with the difference

that we truncate the results that fall outside of X, that is

𝑃𝑢𝑏𝑙𝑖𝑐 (𝑥 |𝑥, 𝑎) =
{
1, if 𝑥 = 𝑥 + 𝑎 or (𝑥 + 𝑎 > 50 and 𝑥 = 50)
0, otherwise.

(13)

Finally, we define the 𝐴𝑢𝑥 channel in terms of a parameter

𝑞 ∈ [0, 1] which we call noise. [Note: this is channel noise, not
to be confused with the market “noise” that will be reflected in the

distribution 𝑋 in trading scenarios.] When 𝑞 = 0, the channel used

is (5), and when 𝑞 = 1, (6).

For values between 0 and 1, we let O = X and make the 𝐴𝑢𝑥

channel increasingly noisier by using a truncated two-sided geo-

metric distribution:

𝐴𝑢𝑥 ( 𝑗 |𝑖) = 𝛼𝑖 (1 − 𝑞) (𝑞) |𝑖−𝑗 |,

where 𝛼𝑖 is a normalizing factor, so that each row of 𝐴𝑢𝑥 sums to

one. The behavior of this channel tends to the two channels given

above, when 𝑞 goes to 0 or 1, respectively.

As an example, if the range of 𝑋 is {0, 1, 2, 3}, the channel ob-
tained by setting 𝑞 = 0.5 is

𝐴𝑢𝑥 0 1 2 3

0 8/15 4/15 2/15 1/15
1 2/9 4/9 2/9 1/9
2 1/9 2/9 4/9 2/9
3 1/15 2/15 4/15 8/15

First, we take 𝛿 = 0 and 𝑒𝜀 = 1.3, varying the values for the noise

parameter 𝑞. The results can be seen in Figure 17
1
. Unsurprisingly,

the expected value of Alice’s actions decreases as the 𝐴𝑢𝑥 channel

becomes less informative.

As can be seen in Figure 17, there is very little that Alice can

do in the scenario where she has no information about 𝑋 . This

is because the lack of information forces her to adopt the same

strategy independent of the realization of 𝑋 , and the small gap

between 𝑃𝑋 and 𝑒𝜀𝑃𝑋 at the right-hand tail of the distribution

forces Alice to choose𝐴 = 0most of the time in order not to violate

the privacy constraints.

To mitigate this effect, we can use the parameters 𝛿 and𝑚 of

the linear programming problem. In Figure 18 we can see that by

setting 𝛿 = 0.01 and𝑚 = 1.3, we are able to significantly increase

Alice’s performance on the high-noise scenarios. Notice that, when

the noise is very low, our implementation allows Alice to take ad-

vantage of these parameters by maximizing the entire distribution

after the cutoff point 𝑥ℎ .

E VOLUME PRESSURE OVER 𝜀 FOR
ADDITIONAL STOCKS

In Figure 19 we extend our analysis of expected volume pressure

over 𝜀 to other symbols. To make it more meaningful to compare

across symbols, we plot the ratio E[𝐴]/E[𝑋 ]. These symbols were

chosen somewhat arbitrarily among symbols that relatively highly

traded, so this is merely a spot check rather than a comprehensive

or particularly representative sample.

F ROBUSTNESS CHECKS
We view the examples above as a proof of concept that our frame-

work can produce reasonable and actionable results in the context

of US equities data. But there are many additional checks we would

do before using such a framework to inform real trading decision-

making. For one, we would like to more broadly check: how fragile

are these results? In other words, how much do they depend on out-

liers and idiosyncrasies in the underlying data or our exact choices

of parameters?

F.0.1 Smoothing Distributions. We already saw above that smooth-

ing distributions can give Alice more favorable results in the ab-

sence of auxiliary information. Arguably, smoothed distributions

1
All graphs in this section and subsequent sections were produced using matplotlib

[32].
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Figure 17: The solution of our implementation for varying values of the noise parameter, and the corresponding value of E[𝐴].

Figure 18: The solution of our implementation for varying values of the noise parameter, and the corresponding value of E[𝐴],
with 𝛿 = 0.01 and𝑚 = 1.3.

are a better representation of our real beliefs about the underly-

ing distributions than the raw empirical distributions, and we will

probably want to perform this kind of step generally in applications.

In the setting of high auxiliary information (a.k.a. low or no

channel noise), we might expect that smoothing should not have a

dramatic effect on Alice’s results, and we can test this expectation

as a robustness check. More precisely, we will smooth the empirical

distributions using splines before defining and solving our linear

program, and we can then observe how much this changes our

results when the channel noise is set to 0.

Let’s see this in action by returning to our example of SPY trading

over the first quarter of 2023. In Figure 20 we see the same volume

pressure distribution we observed above, but now with a spline fit.

We should note, when we fit a spline to a distribution in this way,

the result is not exactly a distribution (there is no constraint that

the spline fit values must sum to 1). However, we can still throw

the spline fit into our linear programming solver, as it normalizes

its input to ensure that it is working with a valid distribution. In

Figure 21 we define and solve the linear program based on the

spline fit instead of the raw distribution, with the same parameters

𝑒𝜀 = 2, 𝛿 = 0, and noise = 0 that we used before. Here, we have

E[𝐴] = 10.41, while before the smoothing we had E[𝐴] = 10.64.

This is pretty close.

F.0.2 Perturbing Distributions. We can also perturb the empiri-

cal distributions to get a sense of how much such perturbations

can affect the output. Here we will perform two types of pertur-

bation checks: first we randomly perturb the 𝑋 distribution by

uniformly adding weight to it. The total amount of added weight

is 𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 𝑟𝑎𝑡𝑖𝑜 . We first solve the problem for the

existing 𝑋 distribution to get a baseline for Alice’s market activity.
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(a) SPY (b) TSLA

(c) BAC (d) ADP

Figure 19: Alice’s expected volume pressure across symbols for Q1 2023 as a ratio as 𝜀 increases.

Figure 20: Spline fit of volume pressure for SPY Q1 2023.

In Figure 22 we perturb the market distribution by adding uni-

form noise to see how the solver’s output reacts to it in different

noisy conditions. We gather the empirical distribution for SPY and

perturb it by four different values(ratios), 0.01, 0.05, 0.10, and 0.20.

In all our experiments, all parameters are kept fixed, except for noise

and perturb ratio. Noise 0 represents the case where the perturbed

𝑋 distribution is known to Alice, and noise 1 represents the fully

blind case where Alice is blind to the underlying 𝑋 distribution.

The top left plot is showing and upward trend in expected Alice

activity by increasing the perturb ratio which is expected since we

are adding more weight to the underlying distribution. The top

Figure 21: Smoothed SPY volume pressure distribution with
Alice trading (𝑝

�̃�
). Smoothed SPY volume pressure distribu-

tion without Alice is 𝑝𝑋 , information leakage upper bound is
𝑒𝜀𝑝𝑋 and lower bound is 𝑒−𝜀𝑝𝑋 for 𝑒𝜀 = 2, 𝛿 = 0, and channel
noise 0.

right plot however, isn’t indicating of any specific trend in Alice

activity.

Second, instead of randomly adding weight to 𝑋 , in Figure 23

we perturb the 𝑋 distribution by uniformly deducting weight from

it. Analogously to the first scenario, the weight deducted is equal

to 𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑝𝑒𝑟𝑡𝑢𝑟𝑏 𝑟𝑎𝑡𝑖𝑜 . Our experiments in this section

are done with 𝜀 = 1.5 and 𝛿 = 0.95. The top left plot depicts a

downward trend in expected Alice activity as we might expect due
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(a) Channel Noise 0 (b) Channel Noise 1

Figure 22: Adding Market Noise. The blue lines represent the baseline experiment and the other colored lines are separate
independent experiments. Noise 0 (left column) indicates Alice has perfect knowledge. Noise 1 (right column) correspond to
the fully blind case where Alice has no auxiliary information. The rows from top to bottom show Alice’s expected trade volume
pressure, Alice’s expected variance, and expected market volume pressure with Alice trading.

to deducting weight from the underlying distribution. There’s no

visible trend in the top right plot.

These few robustness checks give us some confidence that there

is some relatively stable meaning in our results in useful param-

eter ranges, but admittedly we have only scratched the surface

of what a full battery of robustness tests should look like for real

applications.
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(a) Channel Noise 0 (b) Channel Noise 1

Figure 23: Deducting Market Noise. The blue lines represent the baseline experiment and the other colored lines are separate
independent experiments. Noise 0 (left column) indicates Alice has perfect knowledge. Noise 1 (right column) correspond to
the fully blind case where Alice has no auxiliary information. The rows from top to bottom show Alice’s expected trade volume
pressure, Alice’s expected variance, and expected market volume pressure with Alice trading.
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