
SoK: Wildest Dreams: Reproducible Research in
Privacy-preserving Neural Network Training

Tanveer Khan
Tampere University
Tampere, Finland

tanveer.khan@tuni.fi

Mindaugas Budzys
Tampere University
Tampere, Finland

mindaugas.budzys@tuni.fi

Khoa Nguyen
Tampere University
Tampere, Finland

khoa.nguyen@tuni.fi

Antonis Michalas∗
Tampere University
Tampere, Finland

antonios.michalas@tuni.fi

ABSTRACT
Machine Learning (ML), addresses a multitude of complex issues in
multiple disciplines, including social sciences, finance, and medical
research. ML models require substantial computing power and are
only as powerful as the data utilized. Due to the high computa-
tional cost of ML methods, data scientists frequently use Machine
Learning-as-a-Service (MLaaS) to outsource computation to exter-
nal servers. However, when working with private information, like
financial data or health records, outsourcing the computation might
result in privacy issues. Recent advances in Privacy-Preserving
Techniques (PPTs) have enabled ML training and inference over
protected data through the use of Privacy-Preserving Machine
Learning (PPML). However, these techniques are still at a prelimi-
nary stage and their application in real-world situations is demand-
ing. In order to comprehend the discrepancy between theoretical
research suggestions and actual applications, this work examines
the past and present of PPML, focusing on Homomorphic Encryp-
tion (HE) and Secure Multi-party Computation (SMPC) applied to
ML. This work primarily focuses on the ML model’s training phase,
where maintaining user data privacy is of utmost importance. We
provide a solid theoretical background that eases the understanding
of current approaches and their limitations. We also provide some
preliminaries of SMPC, HE, and ML. In addition, we present a sys-
temization of knowledge of the most recent PPML frameworks for
model training and provide a comprehensive comparison in terms
of the unique properties and performances on standard benchmarks.
Also, we reproduce the results for some of the surveyed papers and
examine at what level existing works in the field provide support for
open science. We believe our work serves as a valuable contribution
by raising awareness about the current gap between theoretical
advancements and real-world applications in PPML, specifically
regarding open-source availability, reproducibility, and usability.

KEYWORDS
Homomorphic Encryption, Multi-party Computation, Neural Net-
works, Privacy-Preserving Machine Learning

∗Also with RISE Research Institutes of Sweden.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(3), 144–164
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0072

1 INTRODUCTION
Due to scientific advancements, currently Machine Learning (ML)
is widely used in a variety of applications such as image classi-
fication, stock predictions, machine translation, and cancer cell
detection to name but a few. The benefits of ML comes at a cost
of having significant computational overhead, which leads data
scientists to turn to Machine Learning-as-a-Service (MLaaS) in or-
der to outsource computations. However, the use of MLaaS has
raised significant security and privacy concerns. More precisely,
a plethora of works shows how to successfully attack ML algo-
rithms and gain insight into private data. Examples of such attacks
are reconstruction attacks [163], model inversion attacks [71], and
membership inference attacks [134]. As far as privacy is concerned,
ML algorithms are used in fields such as healthcare, personalization
and virtual assistants, as they can easily leak sensitive information
related to the users. In this survey, we focus on covering existing
works, which aim to preserve data privacy in ML algorithms.

Privacy-Preserving Machine Learning (PPML) is a research field
focused on enhancing data privacy in ML using Privacy-Preserving
Techniques (PPTs). These techniques consist of cryptographic, dis-
tributed, hybrid, and data modification approaches (Figure 1). PPML
is a highly active line of research, with a significant amount of
work in literature [15, 35, 36, 70, 103, 140]. The main techniques
used to achieve PPML are: Homomorphic Encryption (HE) [59],
Secure Multi-party Computation (SMPC) [155] , Federated Learning
(FL) [143], Differential Privacy (DP) [51] and Functional Encryption
(FE) [27]. The main aim of this Systemization of Knowledge (SoK)
paper is to survey and compare State-of-the-Art (SotA) works in
the area of HE and SMPC-based PPML in the training phase.

Privacy-Preserving Techniques

Cryptography
Methods

Homomorphic
Encryption

Functional
Encryption

Multiparty
Computation

Secure
Enclave

Data
Modification

Differential
Privacy

K-Anonymity

Condensation

Perturbation

Distributed
Approaches

Federated
Learning

Split Learning

Hybrid
Approaches

Cryptographic methods
& Data Modification

Cryptographic methods
& Distributed Approaches

Homomorphic Encryption
& Multi-party Computation

based on

Figure 1: Privacy-preserving Techniques. This SoK covers the
privacy-preserving techniques marked in red.

HE schemes, allow involved parties (users or service providers)
to perform computations such as addition, multiplication or bitwise
operations on encrypted data. After the computation, the format

144

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0072

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

of the input data remains intact, but its value changes [16]. This
property of “privacy homomorphism” was initially theorized by
Rivest, Adleman, and Dertouzos [124]. The researchers believed
that, if the input data was homomorphic, they would be able to
perform computations on encrypted data, similar to howmultiplica-
tion is performed by the Rivest-Shamir-Adleman (RSA) public-key
cryptosystem. As a result, first generation HE schemes, like Pail-
lier [113] were only able to homomorphically compute a single
type of mathematical operation. This changed in 2009, when C.
Gentry [59] proposed the first fully HE scheme. Said scheme would
allow multiple operations on encrypted data. However, because
of the computational complexity, various researchers, including
Gentry himself, began developing leveled HE schemes [33] or some-
what HE schemes [55, 119] to limit the amount of computations
per system through different means.

These developments of HE have allowed users to store fully en-
crypted data in a cloud, while retaining their ability to perform
computations on the encrypted data. This minimizes the risks of
a malicious service provider or employee eavesdropping on con-
fidential information, that is being stored in their service [76]. A
general example of HE would be, if an encryption scheme would
take two separate encrypted inputs E(a) and E(b), where E(·) is
an encryption function, and by using an addition or multiplication
algorithm it would be able to compute E(a) + E(b) = E(a + b) or
E(a) × E(b) = E(a × b) respectively, without having to decrypt the
inputs [59]. Aside from being used in cloud services [120] to protect
data, HE can be applied to scenarios such as keeping medical and
genome [151] information private in ML applications.

SMPC aims to create methods that enable different parties to
jointly compute a function on their private data, while preserving
privacy [154]. SMPC was introduced as a secure two-party compu-
tation (2PC) by Andrew Yao [155] and was generalized into SMPC
by Goldreich, Micali, and Wigderson [64]. In 2PC settings [154],
the two parties jointly compute a function on their inputs with-
out disclosing the values of their inputs to the other party. The
two-party setting can be extended to three (3PC) [23, 24, 102], four
(4PC) [34, 65, 74], or, more generally, n-party [96, 99, 162] settings,
where these parties collaborate to privately compute a joint func-
tion of their inputs.

Said feature has great potential, as it can be applied in any situa-
tion where sensitive data from two or more parties are computed.
Additionally, it could help with many ML applications, currently
infeasible due to privacy concerns. An application example is the
simplified version of training MLmodels on private datasets held by
different parties and evaluating one party’s private model using an-
other party’s private data. Other applications for SMPC are private
DNA comparison, privacy-preserving auctions, and more. To date,
SMPC has made substantial success in several real-world situations,
with a significant payoff to society. For instance, it has been used to
securely analyze the wage data of 112,600 employees in the greater
Boston area in order to quantify pay disparities by gender and
race [144]. SMPC has also been used to allow satellite operators to
calculate the likelihood of their satellites colliding without having
to share their underlying private orbital information [68].

1.1 Motivation & Contribution
Motivation:MLallows interested parties (e.g. companies, researchers,
etc.) to train models either locally or in an interactive distributed
environment. Privacy is guaranteed in the scenario where a model
is trained on a local machine, as in this case, no models or data are
shared. However, there are concerns regarding the level of security
when deploying ML in a distributed environment. For example, in a
scenario where parties share their data to train a model. To address
privacy concerns, various PPML techniques have been proposed.
These PPML techniques take both ethical and legal concerns into
account. Specifically, in privacy-preserving training, data privacy
is demanded1. In privacy-preserving MLaaS, model privacy is also
necessary besides data privacy so that neither the client nor any
other parties learn anything about the model parameters on cloud
servers, other than what can be learned from the final prediction.

The main motivation behind our study is to better understand
the landscape of MLaaS in a data-sensitive context by employing
PPML techniques. In this study, we focus primarily on the two cryp-
tographic techniques: HE and SMPC – that are employed in PPML
training. The other methods are also employed for PPML in various
ways, but, here, they are not taken into consideration. This deci-
sion is backed by a number of reasons some of which are covered
here. Secure Enclaves (SE) [129] is a hardware security approach
and requires specialized hardware for computation, while HE and
SMPC are pure cryptographic approaches and do not require such
hardware for computation. As our survey exclusively examines ap-
plication and non-hardware-based approaches, SE is not included
in this survey. The second cryptographic method, FE, has a very
constrained range of applications. It has numerous effective con-
structs for evaluating linear and quadratic functions, but only a
few known FE schemes can be used to evaluate generic functions
effectively. Due to the limited number of applications and existing
studies, FE does not fall within the scope of this work. Further-
more, HE and SMPC are explicitly optimized for a specific notion
of privacy while other approaches, such as distributed approaches,
do help enhance privacy, but may not inherently protect privacy
and are known to have privacy vulnerabilities [15, 115]. Hence,
they do not form part of the scope of this work. Accordingly, while
data modification, such as DP, is a common approach of PPML, it
too is beyond the purview of our study, since the techniques we
address utilize cryptography to hide information, while enabling
computations over it. Such techniques also suffer from reducing
model utility and are best used in hybrid settings.

While it is understood that not all research could offer open-
source implementations (OSI) that is easy to install and run due
to various constraints, doing so would tremendously enhance the
value of a published paper. As analyzed in [111] several works in the
secure ML domain do not provide any form of OSI or the provided
code does not reproduce the expected results2. So, another key mo-
tivation for our work is to examine whether existing works in PPML

1Neither the cloud server nor any other involved parties, learn anything about out-
sourced data of clients other than their size.
2[111] covers a wide range of ML papers published in top security venues and studies
the reproducibility of those papers. The article analyses a variety of security related
topics in ML, but does not go in to detail of the techniques covered or the results of
the covered articles. Our paper analyses the reproducibility of the articles using HE
and SMPC in PPML training and analyses their novelty, advantages and limitations.

145

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

provide support for open science by allowing others to successfully
reproduce their results and use the designed models. For this, we
focus on evaluating systems with OSI and compare our results to
those reported in the original papers. Furthermore, we base our
evaluation on another aspect: the threat model. As our study is
centered around two PPTs, namely HE and SMPC, which primarily
operate under semi-honest threat model, this choice provides a
meaningful framework for assessing these works.
Contribution: In this context cover preliminaries for both HE and
SMPC techniques, as well as examine and compare the libraries
used to implement various schemes. We chose 9 SotA papers on HE
and 17 on SMPC implementation in PPML, compared the method-
ologies and evaluated the outcomes. More specifically:

• We introduce the intersection of both ML and privacy fields plac-
ing special emphasis on cryptographic techniques used to protect
the data.
• We lay the basic but substantial theoretical foundation that helps
researchers comprehend current HE and SMPC-based methods to
PPML. We also go through basic ML fundamentals and describe
often-used datasets.
• We thoroughly review of HE and SMPC-based PPML literature,
emphasizing on the strengths and shortcomings of various ap-
proaches and assessing how they supplement one another.
• We analyze various aspects of the implementations such as secu-
rity, computational complexity, and adversarial models to get an
overview of the current SotA implementations. We examine the
limitations that prevent the existing HE and SMPC-based PPML
solutions from being implemented into real-world settings, mostly
due to issues with efficiency and usability.
• We also highlight the importance of OSI. By encouraging re-
searchers to prioritize OSI, we aim to bridge the gap between
theoretical advancements and real-world applications. This pro-
motes improved reproducibility, wider adoption and impact, and
long-term sustainability in the field of PPML.
• We lay out future research directions aimed at improving existing
works in terms of performance and security.

Comparison to related surveys: Although some similarities are
inevitable, our work differs from similar works [35, 92, 108, 114] in
many aspects. In this article, we overview the entire spectrum of
PPML and narrow down our analysis to HE and SMPC describing
their functionality and limitations in depth. We mainly focus on
the training part of DL, where user privacy is of critical concern.
To further differentiate our work, we cover the functionality and
performance of SotA PPML approaches and attempt to reproduce
the results of OSIs. Aside from that, we compare the frameworks
covered in terms of security, availability and performance and pro-
vide insight into available libraries. We believe that these two last
tasks constitute the main contribution of this work. This is because
these tasks aim to support open science and reproducible research
and can give valuable insights to researchers using these libraries
to conduct further research or to build modern privacy-preserving
online services. Since our work is closely related to the work of [35]
and [108], we provide a detailed comparison between our work, [35]
and [108] in Table 1.

1.2 Organization
The rest of paper is organized as follows. In section 2, we define the
scope and methodology. We overview the primary SotA HE and
SMPC implementations of the SoK in section 3, more specifically
we talk about how they are implemented, what datasets and which
schemes are used. This section also compares the documented re-
sults of the research papers with other implementations mentioned
in the original paper and provides an overview of the results to com-
pare each implementation to one another. Then section 4 covers the
experiments we conducted for both HE and SMPC implementations
and the results we received from our tests. This section also covers
various aspects of the HE and SMPC protocols such as the libraries
used and how they differ, as well as the security, computational
complexity and adversarial model of the proposed HE and SMPC
implementations. The main takeaways from the survey are pro-
vided in section 5, followed by challenges and future directions
in section 6, and conclude the paper in section 7. In Appendix A,
we overview the categorization, history and schemes of HE and
SMPC and also the formal definitions for both. We also refer to
some of the libraries used to realize these schemes into various
implementations for secure and private storage and computations.

2 SCOPE AND METHODOLOGY
Cryptographic techniques encounter difficulties when used with
ML. For example, although HE can relieve the client endpoint of
a significant workload, it can only compute a limited number of
operations, when dealing with complex problems (due to perfor-
mance issues). In addition, using HE for ML can be complicated, as
some ML operations, such as non-linear activation functions, are
incompatible with most HE, except TFHE [42], and can be simu-
lated with polynomial approximation. As such, the main concerns
when dealing with PPML using HE, relate to efficiency and usabil-
ity. PPML can also be deployed in a collaborative setting using
SMPC, where different stakeholders contribute with their data to
a common goal. The main concern using SMPC is the possibility
of malicious behavior by an external entity or even by a subset of
participating parties as well as the high communication overhead.

It is important to research and assess various aspects of both
HE and SMPC to better understand their effectiveness and usabil-
ity, as both of the selected approaches have different advantages
and disadvantages. The paper studies various aspects of each of
the proposed approaches, such as the threat model, the supported
layers, the corresponding techniques, and the evaluation datasets.
As for SMPC, we cover the networking type and the NN archi-
tecture adopted in said approaches to better evaluate the testing
environments and results. For HE, we review the HE setting to
gain knowledge on current protocol design trends and the differ-
ences that occur depending on the setting chosen. To approach
these aspects we overview relevant literature and perform exper-
iments on available OSIs of the selected approaches. Each aspect
contains information that helps analyze the proposed approaches
in terms of both applicability and security. Analyzing the threat
model allows us to gain a better understanding of the attacker’s
abilities when faced with the protocol. This in turn describes the
potential security of the protocol. Aspects such as the supported
layers and evaluation datasets show the applicability of the protocol

146

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

Table 1: Comparison between our paper, [35] and [108]

[35] [108] Our Paper
Focus Study the landscape of PPML in data sensitive contexts

through HE, SMPC and Hybrid Techniques
Study 53 papers on privacy-preserving neural network
based on HE and SMPC

Study the landscape of PPML training as a service using HE and
SMPC and Hybrid Techniques

Methodology • Problem addressed, training or inference
• The architecture proposed, i.e., centralized, distributed,
or hybrid
• Privacy goals and adversarial model
• The particular techniques involved, i.e., SMPC, HE
and/or others
• The issues considered regarding efficiency and usability.

There is not a clear framework on how the paper studies
each work, but rather it systematizes notable works based
on their use of cryptographic primitives and tricks, hence
point out the relationships between these works

• Threat model, supported layers and evaluation datasets
• Cryptographic technique used (e.g. HE encryption schemes,
or SMPC cryptographic primitives)
• Explores networking type and NN architecture in SMPC to
better evaluate the testing environments and results
• Reviews HE settings and protocol design trends.
• Perform experiments using OSI of the selected approaches.

PPTs HE, SMPC, DP when it intersects with HE / SMPC Only HE and SMPC Only HE and SMPC
Categorization
of surveyed
works

No categorization for works in privacy-preserving training Categorizing works based on cryptographic primitives
and techniques for both HE and SMPC

• HE: Categorizing works based on HE techniques
• SPMC: Categorizing works based on the number of parties
involved in the privacy-preserving training protocol two, three,
four-party computation

PPML works 2 for HE and 5 for SMPC Study 12 works that support private training 9 for HE and 17 for SMPC
Reproducing
results

No Focus on private inference and 4 private training results
reported

Focus on private training phase

Pros Cover both training and inference phase • Cover both training and inference phase
• Evaluation of many works on the MNIST and CIFAR
dataset in the private inference phase
• Identifying various challenges and open problems in
current cryptographic NN computation

• Cover the private training phase using HE and SMPC
• Contain the evaluation of the datasets and OSI of the surveyed
works in the private training phase
• Identifying various challenges and reproducibility problems
regarding secure NN training

Cons • Quite brief in survey of works in PPML training phase
• No categorizations for PPML training works
• No evaluation of datasets or implementations

Only briefly study the private-training phase Does not cover the inference phase

in real-world applications, as modern solutions require relatively
large datasets for proper training and various layers for different
task applications. Aside from theoretical aspects, we also analyze
various experimental results, which are important for the selected
method, such as the training time and accuracy for both methods,
the communication overhead for SMPC approaches, and the testing
environment specifications and complexity for HE approaches.

To analyse the aforementioned aspects in SMPC and HE PPML
implementations, we aimed to identify literature encapsulating
them in experiments or methodology. The PPML implementations
were identified by analysing works published in ML or informa-
tion security-focused venues and by cross-checking the referenced
works in those papers. Our main focus was to identify and cat-
egorise literature using different libraries trained and tested on
various datasets, and implementing varied techniques, schemes
and settings. As such, we identified 9 HE-based PPML approaches
covering the various schemes and settings in the HE domain and 17
SMPC-based PPML implementations. To the best of our knowledge,
these 26 works show the primary areas of focus in cryptographic
PPML, by encapsulating the different aspects covered previously.

3 STATE-OF-THE-ART APPROACHES
3.1 Secure Training using HE
As covered in the preliminaries, implementation of HE in PPML
models depends on mathematical operations that the HE scheme
can use and on whether the HE technique works on binary [41],
integer [55] or approximate numbers [40] (see Table 23). The overall
performance and cost of the Neural Network (NN) will vary depend-
ing on the HE scheme selected. There is no single HE approach that
outperforms all others; rather, performance varies from applica-
tion to application depending on the HE scheme selected [145]. To
further clarify the implementations covered, we have categorized
them according to the underlined HE scheme (see Figure 2).

3Due to space constraints, all the tables are moved to the appendix section.

FV-based implementations: Bonte and Vercauteren [30] – is
a Logistic Regression (LoR) [80] model based on the SHE imple-
mentation of the FV scheme. The implementation uses the fixed
Hessian method at a low depth to construct an HE algorithm ca-
pable of privacy-preserving logistic training. To accomplish this,
the researchers show that a practical algorithm can be constructed
by using the Simplified Fixed Hessian (SFH) method. When com-
pared to Matlab’s glmfit function [9], the SFH algorithm produces
equivalent accuracy, while providing superior security for the data.
Alongside FV schemes there is BGV, another HE scheme allowing

Homomorphic Encryption (HE)

Partially HE Somewhat HE Leveled HE Fully HE

CKKS FV TFHE BGVPaillier Elgamal RSA

PrivFT
(SEAL)

Mihara et al.
(SEAL)

POSEIDON
(Latigo)

Sphinx
(SEAL)

Bonte &
Vercauteren
(FV-NFLlib)

Glyph
(HElib)

CryptoDL
(HElib)

Nandakumar
et al. (HElib)

Glyph
(HElib)

Figure 2: HE Taxonomy

performing homomorphic operations on integers arithmetic. The
core difference between them is their plaintext encoding. Namely,
BGV encodes the messages starting from the least significant bit,
while FV starts from the most significant bit.
BGV-based implementations: CryptoDL [70] – is an SHE imple-
mentation that uses the BGV scheme to encrypt data. The open-
source library HElib [8] is used for implementing the BGV scheme
and also contains various optimizations for HE. CryptoDL is one
of the first implementations, providing a solution for NN train-
ing using encrypted training data through HE. In their work, the
researchers show how to locate approximations of low-degree poly-
nomials and how to approximate non-linear activation functions,
such as ReLU, sigmoid, and tanh. The proposed implementation
was trained and tested on various datasets, such as CIFAR [85],

147

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

MNIST [88], and UCI [22]. The research is compared to Cryp-
toNets [62] (an HE implementation of NN classification) and Se-
cureML [39]. CryptoDL [70] outperforms the other implementa-
tions both in terms of accuracy, classification throughput, and
communication overhead. However, it only states a training time
of 10476.29 seconds for MNIST implementation and doesn’t provide
further comparisons with other implementations.

Nandakumar et al. [107] – is an FHE implementation of PPML
training. The model is trained in a non-interactive way and utilizes
the BGV scheme through HElib. The research improves on prior
implementations by optimizing the way ciphertext is packed to
reduce bootstrapping and encourage parallel training. The imple-
mentation uses the MNIST dataset for training and classification
and protects the client privacy by encrypting both the training data
and the model parameters. According to the research results, the
implementation reaches 96.4% and 97.8% accuracy on different NN
architectures, when training for 50 epochs on the plaintext, while
the computation time for a single mini-batch of 60 training sam-
ples varies between 40 minutes and 9.4 hours with their optimized
packing and parallelization.

Research on the BGV scheme led to Cheon et al. to propose a
major improvement to the scheme expanding the homomorphic
operation to floating point arithmetic in the CKKS scheme [40].
This scheme has greatly impacted the development of new PPML
works and is used by most SoTA works.
CKKS-based implementations: PrivFT [19] – is an LHE imple-
mentation based on the CKKS LHE scheme. It allows the use of a
GPU for faster training and faster inference. The GPU implementa-
tion is achieved by using the residual number system (variant of the
CKKS scheme) and by using CUDA 10 [1]. The implementation was
tested on various datasets, such as Yelp Dataset [73], AGNews news
topic classification [66], IMDB movie reviews [3, 98] and DBPedia
ontology classification [45], to name but a few. PrivFT compared
the accuracy of the model with XLNet [153], BERT ITPT [138] and
ULMFit [72] on 4 datasets (Yelp, AGNews, IMDB and DBPedia) and
noted that the accuracy of PrivFT was lower than the other models.
The largest accuracy difference noted was on the IMDB dataset,
when compared to the XLNet model (91.49% versus 96.21%). How-
ever, the main advantage of PrivFT is its faster training, boosted by
GPU usage, which accelerates training by approximately 2.2x.

Sphinx [142] – is a CKKS LHE scheme used for online training
and inference on the cloud. The code is implemented with the Mi-
crosoft SEAL library for homomorphic operations and makes use
of KANN4 to implement ML models in C. Sphinx combines various
improvements, such as batch packing, made in HE PPML training
and inference to greatly reduce the communication overhead and
computational complexity of ML operations. The authors improve
HE multiplications by reducing the amount of rescaling and relin-
earization operations. They also use forward propagation caching
and introduce a different encryptionmethod, called zero encryption,
to reduce communication costs. The implementation is tested on
MNIST and CIFAR-10 datasets and shows reduced communication
costs and computational complexity when compared to baseline
HE. It reports higher throughput and lower latency than works
such as SecureNN [146], SecureML [103] and CryptoDL [70].

4https://github.com/attractivechaos/kann

Mihara et al. [100] – is a CKKS-based LHE implementation using
the Microsoft SEAL library. The main optimization of this imple-
mentation is that it provides a novel weight matrix packing method,
increasing the speed of the training phase without losing accuracy
during the inference phase. The packing method in question packs
weights in a matrix diagonally instead of in a row, which keeps the
amount of operations low as the packing does not require multi-
plication. This in turn reduces the complexity of the circuit. The
authors note that their packing method reduces the time of train-
ing for one iteration from 28.47s (row packing) to 9.25s (diagonal
packing). They test and compare their implementation with the
same architecture plaintext NN and receive similar results (98.05%
accuracy) to their ciphertext model (98.47%).

POSEIDON [130] – is a hybrid PPML implementation that makes
use of federated learning and LHE techniques to produce Multi-
party Homomorphic Encryption (MHE). POSEIDON’s MHE im-
plementation uses the CKKS scheme and is an extended version
of the Mouchet et al. [104] implementation. The implementation
provides confidentiality for: (i) Training data, (ii)Model details and
(iii) Evaluation data. POSEIDON’s accuracy and training time is
similar to other SotA SMPC techniques, such as SecureML [103],
SecureNN [146] and Falcon [147]. When compared to other HE
techniques, like Nandakumar et al. [107] and CryptoDL [70], it
outperforms them on a relatively large margin.

The core limitation of FV, BGV and CKKS works is that these
schemes have very expensive and impractical bootstrapping opera-
tions resulting to increased computational complexity. To address
this Chillotti et al. [41] proposed TFHE, a scheme that speeds up
bootstrapping operations.
TFHE-based implementations: Glyph [95] – is a hybrid FHE ap-
proach, using two different cryptosystems, namely TFHE and BGV.
TFHE is used to implement non-linear activation functions and
BGV scheme is used to perform multiply-accumulate operations.
Another benefit, is that switching between the two cryptosystems
results in significantly reduced training times compared to other
PPML techniques. In the results, the researchers showed that the
accuracy of their implementation was comparable to Chimera [31]
– another hybrid HE technique. Chimera is similar to Glyph as it
switches between the TFHE and BFV. An additional benefit of Glyph
is that the training time (8 days) for the MNIST dataset is 2.6× faster
than the Chimera implementation (28.6 days). Furthermore, Glyph
was slightly more accurate than Chimera (98.6% vs 97.8%). The
researchers also compared Glyph with the Nandakumar et al. [107]
implementation and showed that Glyph was significantly faster
during training (8 days compared to 13.4 years).

3.2 Secure Training using SMPC
Over the past years, variousmethods focused on constructing SMPC
protocols with different properties and settings. However, as list-
ing all the relevant techniques exceeds the scope of this work we
recommend a well-written and friendly introduction to SMPC [54].
Nevertheless, we intend to review the most important SMPC ap-
proaches that perform PPML training among multiple parties and
show their relationships in Figure 3. These works are discussed
in detailed below. We categorize SMPC techniques based on the
number of parties involved in the protocol. This categorization can

148

https://github.com/attractivechaos/kann

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

vary from a 2-party protocol, where training is conducted on two
non-colluding parties, to a 4-party protocol, where the protocol
can be carried out by four parties. The main motivation for increas-
ing the number of parties in the SMPC protocols can be twofold:
(i) aiming for more efficient computations and collaborative tasks
with the same amount of corruptions as in lower party variants, or
(ii) improving security through increased resilience against more
potential malicious parties. However, it is important to note that
the specific security guarantees may vary depending on the chosen
protocol and configuration.

Quotient

ABY3

ParSecureML

SecureNN

Trident

Flash

Blaze

Falcon

MPCLeague

Tetrad

Swift Fantastic Four

AdamPriv

CryptGPU Piranha

3

4

44

4

3

3

3 3

3

3

2

2

2

SecureML
2

≥ 2

Malicious
n n-party

GPUGPU

GPU

ABY2
2

Semi-honest

Figure 3: SMPC Taxonomy – illustrates comparative frame-
work employed in our study, showcasing performance evalu-
ations among protocols. For example, Falco against SecureNN
and ABY3, and SecureNN against SecureML.

Two-party Computation: The 2-party computation is a repre-
sentative of SMPC [63]. Many 2-party SMPC based ML models
have been developed among which SecureML [103], proposed by
Mohassel et al., was the first privacy-preserving protocol for effi-
cient NN training. It is based on SS protocol where the data owner
distributes private data among two servers. Compared to previous
SotA frameworks in PPML, SecureML is much faster than the proto-
col implemented in [57, 110], however, it is an order of magnitude
slower than the privacy free counterparts. Though SecureML excels
in certain aspects of PPML, its limitations in WAN settings (high
number of interactions and communication overhead) prompt the
exploration of alternative frameworks. QUOTIENT [17] emerges
as a compelling choice, showcasing superior speed and accuracy
in both WAN and LAN settings. Its core idea lies in ternarizing the
network weights into integer values of {−1, 0, 1} upon which the
SMPC-aware NN training protocols are developed. Compared to
SecureML, training with QUOTIENT is 50× faster in bothWAN and
LAN setting. By implementing ML features like adaptive gradients
and the normalization approach, QUOTIENT reaches the level of
accuracy of SecureML relatively fast – in less than two epochs. Fur-
thermore, for the same network in SecureML, QUOTIENT achieves
an overall accuracy of 99.38%, a 6% improvement over the SecureML
(93.4%). In order to make a 2-party SMPC technique even more
efficient, a different approach is taken by ParSecureML [39]. ParSe-
cureML, leveraging GPU-based parallelization, offers a substantial
speedup, presenting a noteworthy alternative for efficient PPML.
It consists of three major parts: (i) Profiling-guided adaptive GPU
utilization, (ii) double pipeline design for intra-node data trans-
mission between CPU-GPU and (iii) compressed transmission for
inter-node communication between two servers . These three com-
ponents are integrated in order to enable 2PC on GPUs. Compared
to SecureML [103], the authors show that ParSecureML achieves an

average of 32.2× speedup. Another notable work in the field of 2-
party PPML is ABY2.0 [117]. ABY2.0 proposes a mixed-world SMPC
protocol between Arithmetic, Boolean and Yao sharing, based on
which a NN training protocol was built. For NN training, ABY2.0
has 2.7-3.46× and 2.4-2.8× online throughput improvements for
LAN and WAN settings respectively.

In a 2-party SMPC protocol, where only two parties are involved,
the threat model considered is a weaker semi-honest threat model
(see Table 3). This model it assumes parties will follow the protocol
and this might not always be the case in the real world. If one
party is malicious, the system may not work effectively. To address
this limitation and take full advantage of the benefits of SMPC,
aimed at facilitating secure collaboration amongmultiple distrustful
parties, researchers are exploring ways to involve more than two
parties. The primary goal of adding more parties is twofold: firstly,
researchers aim to improve the training process by incorporating a
larger dataset — more parties participating implies more data for
training. Secondly, this expansion is intended to address a more
realistic malicious threat model. This widens the applicability and
enhances the security of SMPC in real-world scenarios.
Three-party Computation: In 3-party SMPC, only one protocol,
CryptGPU [140], exclusively considers the weaker semi-honest
threat model. Others take into account both threat models. For
instance: 𝐴𝐵𝑌 3 [101] designs techniques for encrypted training of
DNNs in the 3-party settings with a single corrupted server. This is
a mixed protocol framework for ML, which uses SMPC techniques
and offers efficient support for fixed point arithmetic computation,
improved matrix multiplication (to reduce the amount of communi-
cation) and an efficient piece-wise polynomial evaluation technique.
𝐴𝐵𝑌 3 experiments on both inference and training for LR, LoR and
NN models. For training NNs, 𝐴𝐵𝑌 3 is 55,000× faster than the
2PC solution of SecureML. Another significant contribution in the
3-party SMPC settings is SecureNN [146], designed to ensure pri-
vacy against one malicious corruption and privacy and correctness
against one semi-honest corruption. Prior works to SecureNN use
boolean computation and Yao’s Garbled Circuits (GC) to construct
functions, such as ReLU, Maxpool and their derivatives. This results
in increased communication cost. SecureNN’s proposed protocols
for Boolean computation require much lesser communication over-
head than the cost of converting to a Yao encoding and executing
a GC. Thanks to protocol efficiency, SecureNN is the first work to
privately train a Convolutional Neural Network (CNN) [20] with
an accuracy of higher than 99% on MNIST. Compared to SecureML,
SecureNN is 79× faster in the LAN (latency 0.22 ms, bandwidth 625
MB/s) setting, and 553× faster in the WAN setting (latency 58 ms,
bandwidth 40 MB/s). In the 3-party LAN setting, SecureNN out-
performs SecureML in training time by 7×. Moving forward, Patra
and Suresh proposes a PPML framework named BLAZE [118] in
the 3-party setting, tolerating one malicious corruption over a ring
(𝑍2ℓ). It consists of a data-independent preprocessing phase, used
to perform a relatively expensive computation, and a fast input-
dependent online phase. The authors benchmark the performance
of the framework over 𝐴𝐵𝑌 3 for training LR and LoR models. Over
a dataset with a feature size of 784 and batch size of 128, training in
Blaze gains about 4× more throughput in the preprocessing phase
for both LR and LoR. For the online phase, Blaze gains 145.35×
and 31.89× throughput for LR and LoR respectively compared to

149

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

𝐴𝐵𝑌 3. Shifting focus to Falcon [147], which is an end-to-end 3-party
protocol for efficient private training and the inference of large ML
models. By combining techniques from SecureNN and𝐴𝐵𝑌 3, Falcon
constructs improved protocols for various private ML operations,
such as convolutions, matrix multiplications, private comparison,
ReLU, and its derivative, division, and batch normalization. Com-
pared to other private training frameworks, Falcon is about 4.4×
faster than𝐴𝐵𝑌 3 and 6× faster than SecureNN. Furthermore, Falcon
achieves 2× to 60× less communication overhead than 𝐴𝐵𝑌 3 and
SecureNN. Similarly, SWIFT [83] relies on an efficient, malicious-
secure 3PC framework, that works over rings (Z2ℓ and Z21). SWIFT
provides Guaranteed Output Delivery (GOD) in the honest majority
setting. The protocols work in the preprocessing (offline-online)
model. One highlight contribution is the dot product protocol that
achieves communication cost independent of the input vector sizes.
The authors benchmark their method using LoR (for training and
inference), LeNet [89] and VGG16 [136] NNs (for inference). Au-
thors compare LoR model’s training in a 3-party setup with BLAZE,
finding similar performance and improved security.

Adam in Private [26] addresses specific tasks within a 3-party
setting and specializes in tasks such as integer division, exponen-
tiation, inversion, and square root extraction within the context
of DNNs. To demonstrate the proposed protocol’s scalability, the
authors perform measurements on DNNs architectures, such as a
3-layer fully-connected network introduced in SecureML, AlexNet
and VGG16 on two datasets –MNIST and CIFAR10. The experiments
are carried out in both LAN and WAN and the results are compared
to Falcon. The implementation of the Adam optimization algorithm
allows the framework to converge faster and requires fewer epochs
compared to Falcon. In terms of training time, Adam in Private
is 3.2× to 6.7× faster than Falcon for the 3-layer NN, about 12× to
14× faster for AlexNet and 46× to 48× faster for VGG16.

While the above works demonstrate a CPU-only implementa-
tion, there are a few works that explore GPU assisted computation
within the standard 3-party setting such as CryptGPU [140] and
Piranha [149]. CryptGPU operates, where all inputs are secretly
shared among three non-colluding servers executing the protocol.
It is built on top of PyTorch [116] and Crypten [81]. Experiments
show, that the GPU-based protocol can have a 150× speed up over
the CPU-based protocol for a convolution operation and up to 10×
the speed up for non-linear operations. The increased efficiency of
GPU implementations, enables the framework to privately train
big networks such as LeNet, AlexNet [86], VGG16 over MNIST,
CIFAR-10 and ImageNet datasets. Compared to Falcon, CryptGPU
achieves 6× to 36× improvement for private training. Though show-
ing great progress in terms of GPU adoption, CryptGPU is tailored
for a specific SMPC protocol and can only demonstrate full end-to-
end training on simple networks such as AlexNet. To improve upon
this, Piranha [149] proposed a more general GPU-based framework
that can be used to implement other SMPC protocols. Piranha con-
sists of three layers: On the device layer, Piranha implements a
data abstraction that manages vectorized GPU data and integer
GPU kernels to support acceleration for integer-based computa-
tion needed for SMPC protocols. Piranha’s protocol layer uses the
device layer to implement functionality for different SMPC pro-
tocols, namely SecureML (2-party) [103], Falcon (3-party) [147],

and FantasticFour (4-party) [47]. In the application protocol, Pi-
ranha provides typical privacy-preserving layers for NNs such as
the linear and convolution layers, pooling operations, the ReLU
activation function, and layer normalization. The SMPC protocols
implemented with Piranha exhibit 16-48× training time speed up
compared to their native CPU implementations. Piranha is also the
first PPML framework capable of training a big NN such as VGG16
(with over 100 million parameters) over the CIFAR10 dataset in a
short amount of time (less than a day and a half).
Four-party Computation: As we move forward, the ongoing
evolution of 3-party SMPC protocols not only enhances efficiency,
security, and applicability in collaborative computations but also
lays the foundation for exploring more complex scenarios. This
progress is evident in recent developments within 4-party SMPC
protocols, where innovative solutions address diverse challenges
in secure computation. For example: Trident [38] proposes a frame-
work in the setting of 4-parties with at most one corrupt participant
over the ring Z2ℓ . The sharing protocols follow the offline-online
phase paradigm and are used to construct a mixed-world frame-
work between the binary, arithmetic and GC worlds. Compared to
𝐴𝐵𝑌 3 [101] (for LR), training with Trident is 4.88× to 251.84× faster
in LAN and 2× to 2.83× in WAN. For the LoR model, Trident’s im-
provements range from 5.95× to 67.88× in LAN and 2.71× to 2.96×
in WAN. Training the NNs, Trident is from 3.56× to 62× faster in
LAN, and 2.97× to 3.56× faster in WAN. Building on the foundation
laid by Trident, MPCLeague [139] operates within a 4PC setting
over the ring Z2ℓ , ensuring support for an honest majority with
at most one corrupted party. The framework combines arithmetic,
boolean and garbled worlds with efficient end-to-end conversions
between them. The efficiency of MPCLeague in private NN training
is benchmarked using networks such as LeNet and VGG16. Com-
pared to Trident [38] based on runtime, communication, and cost,
MPCLeague offers better performance overall.

In the same year, Koti et al. introduced Tetrad [84], a 4-party
setting designed to tolerate at most one active corruption over the
ring Z2ℓ . Tetrad proposes a mixed SMPC protocol that supports ro-
bustness and fairness. Similar to MPCLeague, the authors of Tetrad
compared their results with Trident considering training time, com-
munication andmonetary cost, as this captures the effect of the total
runtime and communication of the parties. Experimental results
show that Tetrad is 3-4× faster than Trident and achieves approx-
imately 30% better results in terms of monetary cost. To obtain
security against malicious parties, Dalskov et al, proposed Fantastic
Four [47], an actively secure 4-party protocol for corruption over a
ring Z2𝑘 . The protocol tolerates one active corruption and satisfies
security with abort, however, it also provides GOD with some ex-
tensions. The protocol guarantees to identify a semi-corrupt pair
and remove one party in the pair, then proceeds to an actively
secure 3-party protocol with abort. If the 3PC protocol succeeds,
then the output is produced, and the computation is finished. If the
3PC protocol also aborts, then the protocol knows that it removed
an honest party and will abort the remaining party in the corrupt
pair. It then proceeds to a passively secure 2-party protocol. The
protocol is applied for training fully-connected NNs with 1-3 dense
layers and a LoR model on the MNIST dataset. For the LoR model,
Fantastic Four achieves 172.05× faster training time than SWIFT in
4PC setting, and 84.24× in 3PC setting.

150

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

To summarize, the choice among 2-party, 3-party and 4-party
SMPC depends on the specific requirements and characteristics of
the collaboration at hand. The lower party like the 2-party SMPC
may be favored for simplicity and lower computational overhead,
whereas the more intricate 4-party SMPC offers advantages such
as enhanced collaboration, security, and flexibility in situations
involving more than two parties. Adding more parties may offer
better security and efficiency, though it necessitates more servers,
more communication overhead, more efforts to coordinate and
increased complexities in the algorithms.

4 EVALUATION

Reproducible Research: An Unfulfilled Dream

In this section, we evaluated both the performance and secu-
rity of several PPMLworks. At first, we intended to benchmark
and compare 23 impactful PPML techniques based on HE and
SMPC. As a result, we made an effort to reproduce the results
for all these works. However, this proved challenging because
most of the implementations did not provide open-source code.
We hence tried to reimplement some of the schemes following
the instructions given in the respective papers.
However, implementation of HE and SMPC techniques proved
to be monumental tasks and we were unable to reproduce ac-
curate results, because of difficulties, such as time constraints,
hardware limitations, and library issues. Although a fewworks
have OSIs, they lack proper documentation, making it chal-
lenging to use those works. Also, comparing works that are
exclusively designed for either CPU or GPU can be challeng-
ing because it restricts cross-platform evaluation. Additionally,
given our focus on SMPC-based techniques, variations in the
number of parties involved, such as two-party or three-party
computation, can result in different performance characteris-
tics, making comparisons more complex. While the ideal sce-
nario would involve a universal framework evaluation under
various settings, this would demand substantial engineering ef-
fort and computational resources, which are currently beyond
our capacity. Consequently, we were only able to reproduce
the results of 4 PPML techniques, the details of which are
given in Table 5. Despite the fact that solutions are compara-
ble in terms of metrics -i.e. computational and communication
costs accuracy and memory usage- unfortunately, not all solu-
tions provide said metrics (see Table 5), thus rendering direct
comparisons difficult. Despite the mentioned difficulties, we
hope to give some valuable insights to researchers who wish
to further expand the area by covering the results of SotA in
the field and mentioning some of their existing limitations.

4.1 Experiments
HE Protocols: In this section, we overview results from available
HE frameworks.We also cover aspects relating to their performance
and their availability, while equally focusing on the specifications
used by the researchers during testing.

Testing environments. As covered in the preliminaries section, HE
is computationally expensive to properly implement and test. This
fact can be corroborated by the implementations covered as the
majority used high-performance server processors, such as the Intel
Xeon series and considerable amounts of RAM (i.e. ranging from 48
to 256GB). An exception to the high requirements is the implemen-
tation made by Mihara et al. [100] requiring only consumer-level
hardware, such as the Intel Core i7 and up to 32GB of RAM. All of
the implementations run a Unix-based operating system, such as
Linux, through Ubuntu or ArchLinux. As can be seen in Table 4,
the high computational requirements of HE create an entry barrier
making it impossible for most users to use HE technology outside
commercial companies and academia. However, HE can still be
used in cloud services. In this case, most users can use the services,
while keeping their personal information private.

Reproducible Research: Myth Buster #1

When overviewing the availability of HE frameworks for re-
sult replicability and further testing, it can be noted that most
frameworks do not release an OSI of their code. Hence, the ma-
jority of frameworks extensively cover their implementation
(a) by providing libraries used for the implementation (see Fig-
ure 2 and subsection 4.2) and (b) by defining the functions
and model parameters for others to see. Most works provide
a pseudocode and algorithms for their implementation, how-
ever, none of the surveyedHEworks provided openly available
code. As mentioned before, it is possible to recreate the core
aspects of private implementations with the tools provided in
the papers. However, the main drawback in rewriting the code
is that the resulting code might produce large deviations from
the original results, due to the naturally occurring differences
in algorithms. Another aspect to be taken into account is the
amount of time needed to recreate the code and implement
HE into ML techniques. As such the lack of OSIs creates possible
gaps in reaffirming results and advancing science.

Performance. An important topic when covering ML techniques
is overall performance both in terms of accuracy and training
time. Hence, it is important to overview the performance of HE
techniques introduced into ML and compare their results. Follow-
ing the results listed in Table 4, one can notice that the accuracy
of almost all the frameworks is more than 90%. There are two
exceptions regarding accuracy: (a) the hybrid technique POSEI-
DON [130] and (b) the implementation proposed by Bonte and Ver-
cauteren [30]. For POSEIDON, accuracy is slightly below 90% on
the MNIST dataset (Accuracy: 89.9%), however POSEIDON has been
tested on multiple datasets, including the Breast Cancer Wisconsin
(BCW) (Accuracy: 96.9%), Epileptic Seizure Recognition (ESR) (Ac-
curacy: 90.4%) and default of credit card clients (CREDIT) datasets
(Accuracy: 80.2%) [130]. Bonte and Vercauteren [30] tested their im-
plementation on two datasets: (i) the iDASH genomic dataset [141],
which showed lower accuracy when trained with different parame-
ters (Average accuracy: 64.37%) and (ii) a private financial dataset,
whose accuracy was higher on average when trained with differ-
ent parameters (Average accuracy: 92.38%). Other implementations,
such as CryptoDL [70] show high levels of accuracy – reaching

151

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

up to 99%. This, in turn, shows that HE techniques can provide
the same level of accuracy as their plaintext counterparts, when
compared for the same dataset and NN architecture.

However, the main concern about HE is the high computational
complexity as mentioned in prior sections. That is why when
overviewing the training times of all of the frameworks we can no-
tice, most implementations can take hours or even days to fully train
on different-sized datasets. When comparing HE techniques, which
used the MNIST dataset for training, we observe that Nandaku-
mar et al. [107] takes the longest to train (approximately 60K-846K
hours) followed by Sphinx [142] (approximately 1560 hours). The
extremely long training time for Nandakumar et al. is theoretically
calculated by combining the reported training time in hours for a
single mini-batch (reported to vary between 0.667h - 9.4h), multiply
by the total amount of mini-batches (reported to be 1,800) and then
multiplying by the amount of epochs required to train a plaintext
model of the same size (reported to be 50) [107]. Similarly, training
time for Sphinx [142] is calculated by taking the training time for a
single batch (reported to be 0.108h) multiply it by the amount of
batches (calculated by dividing the total amount of training samples
by the batch size 60000

500 = 120) and then multiply by the amount of
epochs (reported to be 120 for MNIST). However, it is important
to note that the model used in Nandakumar et al. [107] contains
only 3 fully connected layers with a sigmoid activation function,
while Sphinx contains 2 convolution, 2 average pooling and 2 fully
connected layers with ReLU activation functions. Nandakumar et
al. set a solid baseline for further research into FHE applicability in
PPML environments. Since this was one of the first attempts to train
an NN in a privacy-preserving way using HE, the training time is
the longest of the covered implementations. The performance of
newer implementations, such as POSEIDON and Glyph, increased
together with the knowledge on PPML techniques. Training times
in these implementations are more manageable. The shortest train-
ing time is reported in POSEIDON [130] (approximately 1.47h) and
involves using FL and HE. However, even though the training time
of HE techniques has dropped considerably in the past years, they
are multiple times slower to train, when compared to plaintext
counterparts. This increase in training time may be leading issue
impeding consumers and suppliers moving towards PPML, even
though HE techniques provide SotA privacy for their data.

Reproducible Research: Myth Buster #2

Our initial goal was to replicate the results for all SMPC works
that we surveyed; however, we were able to replicate the
results of a few works for local hosts and did not conduct any
experiments for LAN or WAN. The reason for this is that we
ran into a number of problems, while attempting to reproduce
the results for these works such as lack of availability; only 8
of the 15 works provide OSI. Also, some works, that provide
OSI, lack proper documentation for implementing the code.

SMPC Protocols:We evaluate SMPC frameworks with an open-
sourced code on the MNIST dataset over popular network architec-
tures in PPML domain. The results are reported in Table 5.

Testing Environment. To reproduce the results for SMPC, first we
created four Virtual Machines (VM) on a locally deployed cloud.
The experiments are conducted using four VMs equipped with
Ubuntu 18.04.2: LTS, Intel(R) Xeon(R) Gold 6130 CPU@ 2.10GHz, 16
CPUs, 64 GB RAM and 256 GB Disk. As our VMs are not equipped
with dedicated graphic cards, we cannot experiment with works
such as ParSecureML and CryptGPU.
Performance. Below we will discuss the results as well as the issues
we faced while implementing the surveyed papers.

SecureML: Although SecureML did not provide an OSI of their
work, we did locate one GitHub repository [135] referring to the im-
plementation for SecureML. First and foremost, the author made a
commendable contribution by implementing SecureML and provide
it as open-source is commendable; however, building SecureML
from this repository is not simple. Second, this repository only
contains code for secure two-party LR; there is no implementation
for LoR and NNs, while in the paper, the author proposes a secure
two-party approach to train LR, LoR and NNs. Finally, only one
performance metric (accuracy) is considered, while other perfor-
mance metrics, such as communication cost, and time are ignored.
For this survey, we reproduce the SecureML results only for the
local host, receiving an accuracy of 92.98% for 100 epochs.

SecureNN : The authors provide an OSI of SecureNN that includes
ML training and inference. We only performed experiments for
training where three parties locally trained the LeNet model. The
results reproduced only consist of training time and communication
cost (see Table 5). The training time for LeNet (1 epoch) is 136.533sec,
and the total communication cost is 21058.3MB, which is quite
efficient in terms of time and cost.

Falcon: Falcon produces fast training, however, the code provided
does not produce accuracy information after training and is limited
to training time and communication. The communication overhead
for LeNet may also be erroneous, as running the code shows that
first-party communication is 3346.56MB, hence bigger than the total
communication attributed to the whole protocol as shown in Table 5
(only 1800 Mb). Based on this information, the communication cost
for LeNet can be approximated to around 10,000MB for 3 parties.
We submitted this issue, however, the repository seems to no longer
be under active maintenance.

Reproducible Research: Myth Buster #3

Quotient, Blaze, SWIFT, Adam in Private, Trident, MPCLeague,
Tetrad, do not provide OSIs, and others (Fantastic Four, 𝐴𝐵𝑌 3)
are extremely difficult to implement. Also, the authors of
ParSecureML and CryptGPU ran their experiments on high-
end accelerators such as NVIDIA Tensor Cores and NVIDIA
Tesla V100 GPUs. As our VMs are limited to only CPUs, we
were unable to run and reproduce the results of these papers.

AriaNN :We reproduced the results for AriaNN (Network 1 and 2),
where the accuracywas 97.96% and 97.92%, respectively as in Table 5
compared to 98.0% and 98.3% from [127]. However, for LeNet, we
only got 89.36% compared to 99.2% reported in [127]. We also got
longer training times, most likely due to our less capable machines.
On the other hand, we calculated and reported the communication
for private training of each epoch, which was not reported in [127].

152

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

4.2 Analysis of HE protocols
We analyze and summarize various aspects of HE protocols intro-
duced in subsection 3.1.
Security: One of the most important factors to take into account,
when analyzing and assessing various secure computation proto-
cols. In this context, almost all of the HE protocols show security
strength of approximately more than 80 bits. This is the minimum
required strength for non-federal government information, but does
not provide enough security as documented in the NIST Special
Publication 800-57 [28]. As mentioned in that report, the security
strength defines “a number associated with the amount of work (i.e.,
the number of operations) that is required to break a cryptographic
algorithm or system”. When looking over the works analyzed, the
protocol proposed by Bonte and Vercauteran [30] estimates, that the
security strength is equal to 78 bits, namely below the previously
mentioned minimum threshold. Other protocols such as the one
proposed by Nandakumar et al. [107] and Glyph [95] note a security
strength of 80 bits, while most others [70, 130, 142] approximate a
security strength, that is comparable to AES-128. The largest docu-
mented security strength is produced from the PrivFT [19] protocol,
which estimates a strength of 140 bits.

Unlike the other HE implementations, Sphinx [142] makes use
of DP to increase its resilience to data reconstruction attacks. The
authors test their implementations resilience to a gradient matching
attack, which aims to recover input images and their labels from
the intermediate gradients [142]. From their testing, they show that
Sphinx outperforms an equivalent DP-only defence mechanism
irrespective to the chosen privacy parameters.

Since HE is a relatively new way of implementing PPML, its
security against ML attacks, such as poisoning attacks, model in-
version attacks or reconstruction attacks, has not yet been tested or
documented to the best of our knowledge (aside from the gradient
matching attack covered in Sphinx [142]). However, as mentioned
by researchers, one of the main issues for HE in PPML is finding
a suitable compromise between efficiency, accuracy and privacy
provided by HE algorithms [152], that would enable the HE-based
protocol to provide effective privacy guarantees without compro-
mising the computation times or accuracy of the ML algorithm.
Encryption Schemes and HE libraries: Different HE schemes al-
low for tailored use which increases the accuracy and efficiency of
the selected use cases. Because of this each analysed paper made use
of the common HE schemes discussed in Appendix A. BGV is used
by Nandakumar et al. [107] and CryptoDL [70], while Bonte and
Vercauteran [30] use the FV scheme. PrivFT [19], Sphinx [142], Mi-
hara et al. [100] and POSEIDON [130] use CKKS, while Glyph [95]
uses the TFHE encryption scheme. Each paper made use of HE
libraries to implement operations on encrypted data and developed
their solutions through the use of them.

In terms of HE libraries, the most commonly used is Microsoft
SEAL [7] It supports BFV and CKKS schemes. As can be seen in Fig-
ure 2, SEAL is used in [19, 100]. HElib [8] another popular and
early FHE library represented in this work, supports the BGV and
CKKS schemes. HElib is used in paper [70, 95, 107]. Both HElib and
SEAL are widely used for binary plaintext spaces. They construct
binary circuits to compute the desired functions over encrypted
data. They do, however, provide the option of a larger plaintext

space in situations, where the functions can be evaluated more
efficiently, when represented by a modular arithmetic circuit [18].
The FV-NFlib [6] library only supports BFV scheme. According
to [82], FV-NFLib is faster than SEAL library. However, FV-NFLib
does not support high-level circuits (only up to 6 levels). There-
fore, the use of FV-NFLib is recommended for small circuits, while
SEAL for larger ones. Lattigo [10] also supports BFV and CKKS
schemes and their respective multiparty version. It is written in
Go language and performs similarly to cutting-edge C++ libraries
(HElib, FV-NFLib, SEAL). Other recent and promising FHE libraries
include OpenFHE [11] and the Zama.ai libraries [12]. OpenFHE is a
C++ library and supports most modern FHE schemes, such as BGV,
BFV, CKKS, FHEW, and TFHE, as well as multiparty extensions
for BGV, BFV and CKKS. One of the libraries’ major focuses is
usability. This is achieved by streamlining the parameter selection
process and using the same common API for functions in different
schemes. Zama.ai hosts the libraries’ TFHE-rs [13] and Concrete
ML [14]. Both of the Zama libraries focus on allowing non-experts
of cryptography to implement FHE into their applications.
Computational Complexity: The biggest challenge for HE is the
high computational complexity required to train NNs. This has held
HE back from being included in modern-day use. With current-day
improvements to all HE algorithms and hardware development, the
required computations and the time it takes to compute them have
vastly improved compared to older HE implementations. However,
despite said improvements the computation time is still compar-
atively high and requires high-end machines to implement HE
algorithms. This is noted in the results provided by researchers,
who propose HE implementations: the training time expands from
multiple hours [70, 77, 107, 109, 130] to multiple days [19, 95] for
comparatively simple datasets, such as MNIST requiring little-to-
none preprocessing. Current-day plaintext implementations of NNs
using MNIST can train hundreds of epochs on complex NNs in the
span of a couple of minutes [58], while most HE solutions require
notably more time for ≤10 epochs. As noted by researchers, the
training time vastly increases, when training on more complex
datasets, such as CIFAR-10 or CIFAR-100 [70, 130].
Adversarial Model: The adversarial model for HE-based PPML
works were defined as having a semi-honest adversary. In this case,
the adversary can only passively listen and gather information from
an available source, such as the dataset. This model is plausible for
various real-world applications, where a client would want to store
and classify data in a Cloud Service Providers (CSP). However, new
discoveries could be envisaged regarding security of HE protocols,
if assumption is changed to malicious adversaries, which have more
tools for breaking security of the algorithms.
Scheme Applicability: Given the computational complexity of HE,
it is important to identify use cases where HE can effectively operate
within its limitations. As such, HE provides the needed capabilities
for directly implementing privacy-preserving MLaaS. HE requires
high computational capabilities, which can be provided by a CSP.
A user would be able to design and train their own model, despite
their computational capabilities, by hosting a sever on a CSP and
providing the needed training HE data. The main decision for the
user is choosing the correct HE scheme for each task. Both BGV and
FV are malleable to a variety of applications, but require quantiza-
tion from floating point to integers. This can cause loss of precision

153

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

and reduced accuracy. As a result, these schemes are best suited for
use cases where precise values are unnecessary (i.e. image classifi-
cation). On the other hand, CKKS allows operations to be accurately
performed on floating point values and can be more suited for im-
plementing non-linear activation functions through polynomial
approximation. This allows CKKS to be used in precise tasks in-
volving one-dimensional medical data as well as in object detection.
Lastly, TFHE benefits from having fast bootstrapping operation
and allows simplified implementations of non-linear functions as
they would not require polynomial approximation. Through TFHE
users would be able to construct more complex models, than the
other schemes, but can face issues of scalability because of look-up
table storage costs. This leads TFHE to be more suited for natural
language processing tasks and complex data structures.

4.3 Analysis of SMPC protocols
While considerable progress has been made regarding the efficiency
of SMPC protocols, some of the current approaches remain compu-
tationally expensive and do not scale well with the types of NNs
typically used in modern ML systems. Another significant problem
is the requirement for continuous data transfer between parties
and for their continuous online availability.

In this section, we provide a more in-depth comparison and sys-
tematization of the SMPC protocols summarized in subsection 3.2.
We discuss their strengths and weaknesses with the aim of outlining
current challenges that need to be addressed. We look at the privacy
and security guarantees provided by these protocols as well as the
data type supported and the evaluation parameters. We also check
whether the given SMPC protocols provide an OSI (see Table 6).
GPU Utilization: GPUs are considered one of the most significant
foundations for the resurgence of ML, because their parallel archi-
tecture is well-suited to dense matrix operations. Consequently,
ML frameworks, such as TensorFlow, PyTorch, and Caffe allow
GPU acceleration. As GPUs played an important role in the success
of modern ML techniques, they also became essential for scalable
PPML. However, in the literature, most of the works on PPML are
CPU-based and only two works consider the GPU-based research
for PPML [39, 140]. One thing to remember is that while choosing
and designing PPML protocols for the GPU, one must carefully
calibrate them for the architecture. Protocols like Yao’s GC are less
well suited for taking advantage of GPU parallelism compared to an
SS-based protocol. Similarly, protocols that require extensive finite
field arithmetic will incur more overhead on the GPU compared to
the protocols that only rely on arithmetic modulo of a power of 2.
Security: Currently the fastest SMPC protocols only provide secu-
rity with abort. This means that a malicious service provider will
cause the computation to abort without any output thus rendering
the later appearance of the input provider irrelevant. Some SMPC
techniques provide fairness. Protocols providing security with abort
or fairness will not suffice as in both cases an adversary can cause
the protocol to abort, thus not producing the desired output for
the user. This leads to denial of service and heavy economic losses
for the service provider. Therefore, some SotA SMPC approaches,
as described in Table 6 ensure robustness, guaranteeing that the
correct output is produced, no matter how the adversary behaves.

Secure Machine Learning (SML): SML refers to preventing leak-
age of user information by protecting the process of ML. As can
be seen in Table 6, different ways are used to achieve SML. In pa-
per [17, 39, 103, 127], the authors used two-party computation, in
papers [26, 83, 101, 118, 140, 146, 147], the authors used three-party
computation, while in papers [38, 47, 84, 139] the authors used four-
party computation. In Table 6, we also consider the input/output
or model privacy that the above works aim to protect. As input
privacy is the key feature of PPML, all the above works provide
input privacy. However, only few works incorporate output and
model privacy (broader and active area of research).
Adversarial Model (AM): AM defines the threats and adversary
capabilities on a cryptographic protocol. It can be classified either
based on the adversarial behavior or on the number of corrup-
tions [93]. Based on their behavior, the adversaries are categorized
into semi-honest and malicious. In a semi-honest setting, the adver-
sary follows the protocol, but tries to glean additional information
from the message. Most of the literature usually assumes a semi-
honest adversary as mentioned in Table 3. Said adversary is limited
in its offensive capabilities. This type of adversary model lowers the
performance requirements. In malicious behavior, the adversary
arbitrarily deviates from the protocol. This requires the adversary
to either follow the protocol or do something completely different.
The second one is based on the number of corruptions, which can
be further classified into two categories: honest and dishonest ma-
jority. If 𝑁 parties are taking part in SMPC, then in honest majority
at most (𝑁2 −1) are allowed to be corrupt, ensuring that the number
of honest parties is in the majority. Adversely, in dishonest majority
parties are allowed to be corrupt only as high as 𝑁 − 1.
Data Types: Any computable function can be securely evaluated
in SMPC using two types of secret sharing: Additive Secret Sharing
(ASS) [29] and Boolean Secret Sharing (BSS) [121, 148]. In ASS, the
data is additively shared between the parties. For example, 𝐷 is
the original dataset, which is then shared to two parties: one party
has the share 𝐷1, while another party has the share 𝐷2. 𝐷1 and
𝐷2 can reconstruct 𝐷 by adding their data together. Therefore, as
long as they do not collude, the original dataset 𝐷 is kept private.
ASS uses an arithmetic circuit and supports efficient calculations
over integers and floating-point, that do not involve comparisons.
In these protocols, additions are cheap, whereas multiplications are
expensive. Alternatively, in BSS the data is XORed shared between
the parties (bit by bit). For BSS, the SMPC uses boolean circuits
and supports boolean points [121], as such they are well suited for
comparison, division and multiplication operations. As mentioned
in [21] to date, the majority of techniques (PPML) are implemented
using integers, while there are undeniable limitations to integer
arithmetic. In contrast, as can be seen in Table 6, the papers that
we have surveyed for SMPC mostly use boolean points.

5 TAKEAWAYS
Following the results of our work, we have observed the following
key takeaways, which may instigate further research:

• High computational and communication costs. The main
reason HE has not been adopted for standardized use is related to
the high cost associated with model training. Since the amount of
noise and the size of the ciphertext increase during mathematical

154

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

operations on encrypted values, the training time required for
an encrypted model increases almost exponentially with every
processed batch. Consequently, though accuracy remains high
enough to compare with plaintext models, the training time (while
using HE), is multiple times longer than the plaintext counterpart.
Other contributions rely on SMPC through distributed architec-
tures, trading off the computational performance and communica-
tion overhead. SMPC offers a significantly better level of security
at the expense of costly cryptographic operations, leading to com-
putational and communication cost increases. For example, in
SMPC each party has minimal computational costs. However
communication between parties is required and this can cause in-
creased communication costs. Both HE and SMPC need to modify
the model structure to match the corresponding PPML protocols.
This affects accuracy and hinders efficiency with existing frame-
works. One can see that HE and SMPC have their own pros and
cons in terms of security, effectiveness, efficiency and scalability.
We believe that hybrid approaches to training and inference, such
as the ones proposed by POSEIDON [130] can enjoy the bene-
fits of each component, thus provisioning the optimal trade-off
between ML task performance and privacy-preserving overhead.
• Lack of open-source implementations. While currently there
is a gap between theoretical advances and real-world applica-
tions, there are certain open-source projects and tools dedicated
to PPML [46, 69, 128]. OSI is the foundation of a lot of the modern
scientific research – providing reliability, flexibility, transparency,
and opportunities for collaboration. However, as can be seen in
Table 4, OSI of HE protocols are few and far between as most
implementations are private for various copyright or personal rea-
sons. Also, as shown in Table 6, 8 of the 15 works provide OSIs for
SMPC, while the remaining do not, but as stated in subsection 4.1,
there are some other issues relating to protocol implementation,
such as lack of proper documentation. Because of the sheer diffi-
culty of the implementation task, most researchers only cover the
results documented in the original paper, instead of recreating the
implementations. This in turn causes problems, such as inability
to reproduce the results of the papers and test the implementation
in other environments or on different datasets. One of the main
contributions of this work is to highlight the importance of OSI
in PPML and the need for reproducibility and usability consid-
erations in research. We aim to bridge the gap by encouraging
researchers and practitioners to prioritize open-source practices
and share their implementations as this would provide:
– Reproducibility and Progress: OSI provide opportunity to other
researchers to reproduce and validate the results of a paper. By
sharing the code, researchers contribute to the transparency and
integrity of the scientific process, allowing others to verify and
build upon their work. This leads to increased confidence and
fosters a culture of reproducibility. Additionally, OSI facilitate
collaboration and knowledge sharing.When codes are made pub-
lic, other researchers can build upon the existing work, enhance
it, and develop new techniques more rapidly. This accelerates
the progress in the field of PPML by leveraging the collective
efforts and expertise of the research community.

– Long-term sustainability and wider impact: OSI are often main-
tained and supported by a community of contributors, ensuring

their long-term sustainability. By encouraging researchers, to
share their code, it promotes the continuous development, im-
provement, and maintenance of PPML implementations, thus
addressing issues such as software bugs, compatibility with
new platforms or libraries, and evolving security requirements,
ensuring the longevity and usefulness of the implementations
over time. Additionally, it lowers the barrier to entry for those
interested in utilizing PPML for practical purposes.

• Lack of possible attack analysis on implementations. Every
proposed implementation of HE covered here assumes that the
server is a semi-honest third-party and can only listen and watch
the results of the training and inference without attempting to
gain any additional information through malicious means. As
mentioned previously, the assumption is realistic in most real-
world scenarios involving the use of cloud-based server providers.
It does, however, reveal a lack of analysis when it comes to poten-
tial ML attacks on the protocols. As a result, the lack of analysis
on potential attacks points to a possible gap in the security of
HE, when used in PPML. That is due to the fact that ML tasks
open new vectors of attack for malicious actors. Similarly, most
of the SMPC protocols covered in this study consider the honest,
but curious model, however, some studies also take the malicious
model into account. While the works we investigated assume a
non-colluding server, collusion between the parties must be taken
into account in all of these adversary models. In SMPC, collusion
is unavoidable and poses a severe privacy concern, because it
allows parties to learn each other’s sensitive private input. Typi-
cally, parties in collusion share their data and function parameter
settings with one another. Therefore, it is crucial to weight privacy
against collusion, while creating an effective SMPC protocol.
• Lack of privacy-conscious regulatory frameworks The avail-
able privacy-related regulations may require companies to an-
nounce that they are collecting all data and possibly provide users
with the choice to opt out of said data gathering. However this
appears to be a zero-sum game. Privacy policies can help data
owners determine which data is shared, under what conditions,
with whom, and for what purposes. It is essential to ascertain
whether the policy will be implemented on the client or server
side, which would change it into a format, where the data owner
could allow or restrict access to other users and the server for
certain purposes (such as marketing) or at least remove access
users posing a possible privacy threat.

6 CHALLENGES AND FUTURE DIRECTIONS
Despite the aforementioned techniques for protecting private data,
while performing ML training, non-privacy ML algorithms are still
frequently employed, and private data is still transferred to the
cloud. To date, there is no silver-bullet technique, when it comes
to achieving privacy in ML. The privacy degree offered by the
techniques we presented varies a lot depending on many factors
such as the ML algorithm used, the adversary’s capabilities and
resources etc. Below we will discuss in detail the challenges of
existing PPML techniques and their possible solutions.

While ML advancements are frequently offered, the PPML tech-
niques covered in this article are linked to specific ML algorithms.
Therefore, PPML techniques are required to cope with the most

155

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

recent advancements in ML. This creates a challenge, where both
HE and SMPC need to modify the model structure to match the cor-
responding PPML protocols. This affects the training and inference
accuracy and hinders compatibility with existing ML frameworks.

HE and SMPC allow work on encrypted data, thereby preserving
the utility of the original datasets. However, their domain is quite
limited, and scalability can be a major issue due to high costs. Both
methods have differing advantages and disadvantages and as can
be seen in the covered papers, contributions, relying on SMPC
through distributed architectures, trade off lower computational
costs with higher communication overhead. SMPC offers a better
level of security at the expense of costly networking operations,
e.g., in SMPC each party has less computational cost compared to
HE but requires a lot of communication between parties. This can,
lead to high communication costs. On the other hand, in HE, the
server incurs a substantial computational cost, as it has to train the
entire model on its own, at almost no communication cost, as all of
the data needed for training is sent to the server once. A possible
way to combat the high costs of both techniques and achieve a
higher degree of privacy may require the combination of multiple
PPML techniques. Recent literature has proposed combinations of
FL with HE [43, 130], or DP with HE [75, 112] or SMPC [105, 157],
aiming for higher privacy guarantees and lower costs.

This work also addresses the scarcity of OSI in PPML and makes
concerted efforts to understand and overcome the underlying chal-
lenges. We investigate the reason behind this scarcity, including
concerns related to security, compatibility, maintenance, and sup-
port. By raising awareness and emphasizing the benefits of OSI,
we aim to encourage researchers to prioritize the sharing of PPML
implementation. Additionally, we explore potential solutions and
discuss the importance of collaboration, community building, and
knowledge sharing to foster a culture of OSI in PPML.

In light of this, we conclude that these PPTs are still in a de-
velopmental phase and that, in the years to come, they will have
developed to become an essential component of ML and cryptog-
raphy. We conclude by summarizing our thoughts on potential
future research directions involving PPTs that leverage and benefit
multiple research communities such as ML, security, and privacy.

• As covered in the sections above, performing computation on
encrypted data using HE is computationally expensive. More
specifically, training ML models requires a lot of mathematical
operations and performing them on encrypted data, when training
ML models, raises the computation costs to an impractical level.
One possible solution is to use a hybrid approach – HE and FE.
The idea is to first encrypt the message using HE and then re-
encrypt using symmetric FE. FE is used instead of HE for inner
products and sum. This is comparatively faster and more efficient.
After training, the message is first decrypted, following the same
steps, with the FE symmetric key. It acquires the form of a HE
ciphertext, and is further decrypted by use of the HE secret key
with the aim of recovering the original plaintext.
• DNN have millions of parameters. This is the main reason, why
they are computationally expensive. Additionally, training a DNN
on HE data increases the computing cost even more, sometimes
to an unacceptable level. One possible approach for PPML is to
use split learning (SL) [67], as it divides a DNN model so that

part of the model is trained on the client side using plaintext
data, and the remaining part is trained on the server side using
encrypted data [78]. As part of the model is trained on plaintext,
the DNN model’s overall computation costs are lowered. Also,
the privacy of user data is preserved as a) SL itself is believed
to be a promising approach for raw data protection, and b) the
computation on the server side is performed on top of encrypted
data, hence not revealing information about client data.
• FL and SL have offered solutions to the privacy problems in ML,
however, they are not complete and present various security prob-
lems and privacy leakages [15, 91, 156]. HE can be used to solve
the privacy leakage in SL and FL. Currently, there are two popular
HE schemes that can be employed in ML, namely CKKS and TFHE,
each with advantages and disadvantages. In the future, we would
like to research the applications of these HE schemes in FL and
SL and how they can be used in combination with each other as
well as other privacy technologies in different scenarios.
• A great deal of work has recently been put into developing a
reliable and secure protocol for ML tasks including SMPC. In
SMPC, the parties constantly communicate to jointly compute
a function, thus adding overhead. An alternative to SMPC is to
employ a hybrid strategy that combines SL and Function Secret
Sharing (FSS) [32]. The model’s initial layers are trained using
SL on the client side, while its remaining layers are trained using
FSS on the server side. Sending the data to the layers is all that is
required to execute the layers on the client side. However, FSS is
used to construct the secret shares, for each layer on the server.

7 CONCLUSION
As PPML has recently gained attention from both industry and
academic researchers, in this work we provide a thorough analysis
of SotA PPML based on HE and SMPC. First, we provide a general
overview of the techniques used to implement privacy-preserving
computation techniques on ML.We also describe various properties
and settings pertaining to the privacy of ML models and data. This
makes it possible to comprehend the entire range of PPML as well
as the benefits and constraints of various sub-areas depending on
the goals and settings. Second, we summarize the current SotA of
PPML techniques and provide an analysis based on factors including
the privacy goal, architecture, efficiency, and usability. With this
method, we extracted recurring insights and flaws from the existing
solutions. Third, we benchmarked and compared different PPML
techniques, concerning privacy goals, communication, accuracy,
and runtime to assess the viability of various PPML approaches
for use in practical applications. Fourth, we list the key takeaways
from our work, emphasizing the lessons learned and areas in need
of further research effort. As such, this will help future researchers
and practitioners apply PPML more effectively and have a better
understanding of current limitations. Finally, we conclude that there
are still many hurdles to overcome for HE and SMPC-based PPML
to become practical. We outline the current challenges, that need
to be addressed by the community, and discuss potential directions
and approaches.

156

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

ACKNOWLEDGMENTS
We wish to thank the reviewers of the paper for their invaluable
comments, which helped shape and improve our work.

This work was funded by the HARPOCRATES EU research
project (No. 101069535).

REFERENCES
[1] 2007. NVidia CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit.
[2] 2010. ImageNet Large Scale Visual Recognition Challenge (ILSVRC). https:

//image-net.org/challenges/LSVRC/.
[3] 2011. Large Movie Review Dataset. http://ai.stanford.edu/~amaas/data/

sentiment/.
[4] 2012. ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012).

https://image-net.org/challenges/LSVRC/2012/index.php.
[5] 2014. ImageNet Large Scale Visual Recognition Challenge 2014 (ILSVRC2014).

https://image-net.org/challenges/LSVRC/2014/index.php.
[6] 2015. FV-NFLlib library. https://github.com/CryptoExperts/FV-NFLlib.
[7] 2018. Microsoft SEAL Library. Online: https://www.microsoft.com/en-us/

research/project/microsoft-seal/.
[8] 2021. HElib Open-Source. https://github.com/homenc/HElib.
[9] 2022. glmfit - Fit generalized linear regression model. https://se.mathworks.

com/help/stats/glmfit.html
[10] 2022. Lattigo v4: lattice-based multiparty homomorphic encryption library in

Go. https://github.com/tuneinsight/lattigo.
[11] 2022. OpenFHE. Online: https://www.openfhe.org.
[12] 2022. Zama. Online: https://www.zama.ai.
[13] 2022. Zama Concrete Framework. Online: https://docs.zama.ai/tfhe-rs.
[14] 2022. Zama Concrete Framework. Online: https://www.zama.ai/concrete-ml.
[15] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A Camtepe,

Yansong Gao, Hyoungshick Kim, and Surya Nepal. 2020. Can we use split
learning on 1d cnn models for privacy preserving training?. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security.

[16] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. 2018. A survey
on homomorphic encryption schemes: Theory and implementation. ACM
Computing Surveys (Csur) 51, 4 (2018), 1–35.

[17] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón. 2019.
QUOTIENT: two-party secure neural network training and prediction. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1231–1247.

[18] Carlos Aguilar Melchor, Marc-Olivier Kilijian, Cédric Lefebvre, and Thomas
Ricosset. 2018. A comparison of the homomorphic encryption libraries helib, seal
and fv-nfllib. In International Conference on Security for Information Technology
and Communications. Springer, 425–442.

[19] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi
Aung. 2020. Privft: Private and fast text classification with homomorphic en-
cryption. IEEE Access 8 (2020), 226544–226556.

[20] Saad Albawi, Tareq AbedMohammed, and Saad Al-Zawi. 2017. Understanding of
a convolutional neural network. In 2017 international conference on engineering
and technology (ICET). Ieee, 1–6.

[21] MehrdadAliasgari, Marina Blanton, Yihua Zhang, andAaron Steele. 2013. Secure
Computation on Floating Point Numbers. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA, February
24-27, 2013. The Internet Society. https://www.ndss-symposium.org/ndss2013/
secure-computation-floating-point-numbers

[22] Tiago Almeida, Tiago Silva, Igor Santos, and Jose Maria Gomez Hidalgo. 2017.
YouTube Spam Collection Data Set. https://archive.ics.uci.edu/ml/datasets/
YouTube+Spam+Collection

[23] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized honest-
majority MPC for malicious adversaries—breaking the 1 billion-gate per second
barrier. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE.

[24] Toshinori Araki, Assaf Barak, Jun Furukawa, Yehuda Lindell, Ariel Nof, and
Kazuma Ohara. 2016. High-throughput secure three-party computation of
kerberos ticket generation. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 1841–1843.

[25] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela
Jäschke, Christian A Reuter, and Martin Strand. 2015. A guide to fully homo-
morphic encryption. Cryptology ePrint Archive (2015).

[26] Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Takahiro
Matsuda, Ibuki Mishina, Hiraku Morita, and Jacob CN Schuldt. 2022. Adam
in Private: Secure and Fast Training of Deep Neural Networks with Adaptive
Moment Estimation. Proceedings on Privacy Enhancing Technologies 4 (2022),
746–767.

[27] Alexandros Bakas, Antonis Michalas, and Tassos Dimitriou. 2022. Private lives
matter: a differential private functional encryption scheme. In Proceedings of the

Twelfth ACM Conference on Data and Application Security and Privacy. 300–311.
[28] Elaine Barker, Elaine Barker, William Burr, William Polk, Miles Smid, et al. 2006.

Recommendation for key management: Part 1: General. National Institute of
Standards and Technology, Technology Administration

[29] George Robert Blakley. 1979. Safeguarding cryptographic keys. In Managing
Requirements Knowledge, International Workshop on. IEEE Computer Society.

[30] Charlotte Bonte and Frederik Vercauteren. 2018. Privacy-preserving logistic
regression training. BMC medical genomics 11, 4 (2018), 13–21.

[31] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. 2020.
Chimera: Combining ring-lwe-based fully homomorphic encryption schemes.
Journal of Mathematical Cryptology 14, 1 (2020), 316–338.

[32] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Im-
provements and extensions. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 1292–1303.

[33] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1–36.

[34] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. 2018. Fast secure
computation for small population over the internet. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 677–694.

[35] José Cabrero-Holgueras and Sergio Pastrana. 2021. SoK: Privacy-preserving
computation techniques for deep learning. Proceedings on Privacy Enhancing
Technologies 2021, 4 (2021), 139–162.

[36] Mahawaga Arachchige PathumChamikara, Peter Bertok, IbrahimKhalil, Dongxi
Liu, and Seyit Camtepe. 2021. Privacy preserving distributed machine learning
with federated learning. Computer Communications 171 (2021).

[37] Konstantinos Chatzilygeroudis, Ioannis Hatzilygeroudis, and Isidoros Perikos.
2021. Machine learning basics. In Intelligent Computing for Interactive System
Design: Statistics, Digital Signal Processing, and Machine Learning in Practice.

[38] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4pc
framework for privacy preserving machine learning. In 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society.

[39] Zheng Chen, Feng Zhang, Amelie Chi Zhou, Jidong Zhai, Chenyang Zhang, and
Xiaoyong Du. 2020. ParSecureML: An efficient parallel secure machine learning
framework on GPUs. In 49th International Conference on Parallel Processing.

[40] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 409–437.

[41] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. 2016.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In international conference on the theory and application of cryptology and infor-
mation security. Springer, 3–33.

[42] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryptology
33, 1 (2020), 34–91.

[43] Christopher A Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang
Zhang, Somesh Jha, Nicolas Papernot, and Xiao Wang. 2021. Capc learning:
Confidential and private collaborative learning. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=h2EbJ4_wMVq

[44] Josh D Cohen and Michael J Fischer. 1985. A robust and verifiable cryptographi-
cally secure election scheme. Yale University. Department of Computer Science.

[45] DBpedia Community. 2021. Ontology (DBO). https://www.dbpedia.org/
resources/ontology/

[46] Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian
Livingstone, Justin Patriquin, and Gavin Uhma. 2018. Private machine learning
in tensorflow using secure computation. (2018).

[47] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2021. Fantastic
Four:{Honest-Majority}{Four-Party} Secure Computation With Malicious Se-
curity. In 30th USENIX Security Symposium (USENIX Security 21). 2183–2200.

[48] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010.
Fully homomorphic encryption over the integers. In Annual international con-
ference on the theory and applications of cryptographic techniques. Springer.

[49] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[50] Léo Ducas and Daniele Micciancio. 2015. FHEW: bootstrapping homomorphic
encryption in less than a second. In Annual international conference on the theory
and applications of cryptographic techniques. Springer, 617–640.

[51] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptography:
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006. Proceedings 3. Springer, 265–284.

[52] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory 31, 4 (1985).

[53] Saroja Erabelli. 2020. pyFHE-a Python library for fully homomorphic encryption.
Ph. D. Dissertation. Massachusetts Institute of Technology.

157

https://developer.nvidia.com/cuda-toolkit
https://image-net.org/challenges/LSVRC/
https://image-net.org/challenges/LSVRC/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
https://image-net.org/challenges/LSVRC/2012/index.php
https://image-net.org/challenges/LSVRC/2014/index.php
https://github.com/CryptoExperts/FV-NFLlib
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://github.com/homenc/HElib
https://se.mathworks.com/help/stats/glmfit.html
https://se.mathworks.com/help/stats/glmfit.html
https://github.com/tuneinsight/lattigo
https://www.openfhe.org
https://www.zama.ai
https://docs.zama.ai/tfhe-rs
https://www.zama.ai/concrete-ml
https://www.ndss-symposium.org/ndss2013/secure-computation-floating-point-numbers
https://www.ndss-symposium.org/ndss2013/secure-computation-floating-point-numbers
https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection
https://archive.ics.uci.edu/ml/datasets/YouTube+Spam+Collection
https://openreview.net/forum?id=h2EbJ4_wMVq
https://www.dbpedia.org/resources/ontology/
https://www.dbpedia.org/resources/ontology/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

[54] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. 2018. A pragmatic
introduction to secure multi-party computation. Foundations and Trends® in
Privacy and Security 2, 2-3 (2018), 70–246.

[55] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive (2012).

[56] Ronald Aylmer Fisher. 1988. Iris Data Set. https://archive.ics.uci.edu/ml/
datasets/Iris

[57] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Do-
erner, Samee Zahur, and David Evans. 2016. Secure Linear Regression on
Vertically Partitioned Datasets. IACR Cryptol. ePrint Arch. 2016 (2016), 892.

[58] Dong-yuan Ge, Xi-fan Yao, Wen-jiang Xiang, Xue-jun Wen, and En-chen Liu.
2019. Design of High Accuracy Detector for MNIST Handwritten Digit Recog-
nition Based on Convolutional Neural Network. In 2019 12th International Con-
ference on Intelligent Computation Technology and Automation (ICICTA).

[59] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[60] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In

Proceedings of the forty-first annual ACM symposium on Theory of computing.
169–178.

[61] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption
from learningwith errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Annual Cryptology Conference. Springer, 75–92.

[62] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[63] Oded Goldreich. 1998. Secure multi-party computation. Manuscript. Preliminary
version 78, 110 (1998).

[64] O Goldreich, S Micali, and A Wigderson. 1987. A Completeness Theorem for
Protocols with Honest Majority. In STOC 87.

[65] S Dov Gordon, Samuel Ranellucci, and Xiao Wang. 2018. Secure computation
with low communication from cross-checking. In International Conference on
the Theory and Application of Cryptology and Information Security. Springer.

[66] Antonio Gulli and Paolo Ferragina. 2005. http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

[67] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications
116 (2018), 1–8.

[68] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and WilliamWelser Iv. 2016. High-
precision secure computation of satellite collision probabilities. In International
Conference on Security and Cryptography for Networks. Springer, 169–187.

[69] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and
ImmoWehrenberg. 2010. TASTY: tool for automating secure two-party computa-
tions. In Proceedings of the 17th ACM conference on Computer and communications
security. 451–462.

[70] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and Rebecca N Wright.
2018. Privacy-preserving machine learning as a service. Proceedings on Privacy
Enhancing Technologies 2018, 3 (2018), 123–142.

[71] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models
under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603–618.

[72] Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-
tuning for text classification. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers. Association for Computational Linguistics,
328–339. https://doi.org/10.18653/v1/P18-1031

[73] Yelp Inc. 2018. Yelp dataset. https://www.kaggle.com/datasets/yelp-dataset/
yelp-dataset

[74] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky.
2015. Secure computation with minimal interaction, revisited. In Annual Cryp-
tology Conference. Springer, 359–378.

[75] Bin Jia, Xiaosong Zhang, Jiewen Liu, Yang Zhang, Ke Huang, and Yongquan
Liang. 2022. Blockchain-Enabled Federated Learning Data Protection Ag-
gregation Scheme With Differential Privacy and Homomorphic Encryption
in IIoT. IEEE Transactions on Industrial Informatics 18, 6 (2022), 4049–4058.
https://doi.org/10.1109/TII.2021.3085960

[76] Tanveer Khan, Alexandros Bakas, and Antonis Michalas. 2021. Blind faith:
Privacy-preserving machine learning using function approximation. In 2021
IEEE Symposium on Computers and Communications (ISCC). IEEE, 1–7.

[77] Tanveer Khan, Khoa Nguyen, and Antonis Michalas. 2023. A More Secure
Split: Enhancing the Security of Privacy-Preserving Split Learning. In Nordic
Conference on Secure IT Systems. Springer, 307–329.

[78] Tanveer Khan, Khoa Nguyen, and Antonis Michalas. 2023. Split Ways: Privacy-
Preserving Training of Encrypted Data Using Split Learning. In 2023 Workshops
of the EDBT/ICDT Joint Conference, EDBT/ICDT-WS 2023, 28 March 2023. CEUR-
WS.

[79] Memoona Khanum, Tahira Mahboob, Warda Imtiaz, Humaraia Abdul Ghafoor,
and Rabeea Sehar. 2015. A survey on unsupervised machine learning algo-
rithms for automation, classification and maintenance. International Journal of
Computer Applications 119, 13 (2015).

[80] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. 2002.
Logistic regression. Springer.

[81] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-
putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021).

[82] Amina Bel Korchi and Nadia El Mrabet. 2019. A practical use case of homo-
morphic encryption. In 2019 International Conference on Cyberworlds (CW).
IEEE.

[83] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. {SWIFT}:
Super-fast and Robust {Privacy-Preserving} Machine Learning. In 30th USENIX
Security Symposium (USENIX Security 21). 2651–2668.

[84] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2022. Tetrad: Actively
Secure 4PC for Secure Training and Inference. InNetwork and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA, 24 - 28 April, 2022.
The Internet Society.

[85] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of
features from tiny images. (2009).

[86] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[87] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS
231N 7, 7 (2015), 3.

[88] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann.
lecun. com/exdb/mnist/ (1998).

[89] Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet 20, 5 (2015), 14.

[90] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998).

[91] Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Vir-
ginia Smith, and Chong Wang. 2022. Label leakage and protection in two-party
split learning. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.

[92] Yehida Lindell. 2005. Secure multiparty computation for privacy preserving
data mining. In Encyclopedia of Data Warehousing and Mining. IGI global.

[93] Yehuda Lindell. 2020. Secure multiparty computation. Commun. ACM 64, 1
(2020), 86–96.

[94] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security. 619–631.

[95] Qian Lou, Bo Feng, Geoffrey Charles Fox, and Lei Jiang. 2020. Glyph: Fast and
accurately training deep neural networks on encrypted data. Advances in Neural
Information Processing Systems 33 (2020), 9193–9202.

[96] Donghang Lu, Albert Yu, Aniket Kate, and Hemanta Maji. 2022. Polymath:
Low-Latency MPC via Secure Polynomial Evaluations and Its Applications.
Proceedings on Privacy Enhancing Technologies 1 (2022), 396–416.

[97] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices
and learning with errors over rings. In Annual international conference on the
theory and applications of cryptographic techniques. Springer, 1–23.

[98] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA. http://www.aclweb.org/anthology/P11-1015

[99] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.
Rabbit: Efficient comparison for secure multi-party computation. In International
Conference on Financial Cryptography and Data Security. Springer, 249–270.

[100] Kentaro Mihara, Ryohei Yamaguchi, Miguel Mitsuishi, and Yusuke Maruyama.
2020. Neural Network Training With Homomorphic Encryption. CoRR
abs/2012.13552 (2020). arXiv:2012.13552 https://arxiv.org/abs/2012.13552

[101] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 35–52.

[102] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and secure three-
party computation: The garbled circuit approach. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. 591–602.

[103] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19–38.

[104] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. 2021. Multiparty Homomorphic Encryption from Ring-Learning-
with-Errors. Proceedings on Privacy Enhancing Technologies 2021, 4 (2021), 291–
311. https://doi.org/doi:10.2478/popets-2021-0071

158

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/10.18653/v1/P18-1031
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://doi.org/10.1109/TII.2021.3085960
http://www.aclweb.org/anthology/P11-1015
https://arxiv.org/abs/2012.13552
https://arxiv.org/abs/2012.13552
https://doi.org/doi:10.2478/popets-2021-0071

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

[105] Vaikkunth Mugunthan, Antigoni Polychroniadou, David Byrd, and Tucker Hybi-
nette Balch. 2019. Smpai: Secure multi-party computation for federated learning.
In Proceedings of the NeurIPS 2019 Workshop on Robust AI in Financial Services.

[106] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. 2011. Can homo-
morphic encryption be practical?. In Proceedings of the 3rd ACM workshop on
Cloud computing security workshop. 113–124.

[107] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. 2019.
Towards deep neural network training on encrypted data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

[108] Lucien KL Ng and Sherman SM Chow. 2023. SoK: Cryptographic Neural-
Network Computation. In 2023 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 497–514.

[109] KNguyen, T Khan, and AMichalas. 2023. SplitWithout a Leak: Reducing Privacy
Leakage in Split Learning. In 19th EAI International Conference on Security and
Privacy in Communication Networks (SecureComm’23). Springer.

[110] Valeria Nikolaenko, UdiWeinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. 2013. Privacy-preserving ridge regression on hundreds of millions of
records. In 2013 IEEE symposium on security and privacy. IEEE, 334–348.

[111] Daniel Olszewski, Allison Lu, Carson Stillman, Kevin Warren, Cole Kitroser,
Alejandro Pascual, Divyajyoti Ukirde, Kevin Butler, and Patrick Traynor. 2023. "
Get in Researchers; We’re Measuring Reproducibility": A Reproducibility Study
of Machine Learning Papers in Tier 1 Security Conferences. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security.
3433–3459.

[112] Kwabena Owusu-Agyemeng, Zhen Qin, Hu Xiong, Yao Liu, Tianming Zhuang,
and Zhiguang Qin. 2021. MSDP: multi-scheme privacy-preserving deep learning
via differential privacy. Personal and Ubiquitous Computing (2021), 1–13.

[113] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree
residuosity classes. In International conference on the theory and applications of
cryptographic techniques. Springer, 223–238.

[114] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.
2018. Sok: Security and privacy in machine learning. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 399–414.

[115] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. 2021. Unleashing
the tiger: Inference attacks on split learning. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. 2113–2129.

[116] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

[117] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). 2165–2182.

[118] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. In 27th Annual Network and Distributed System Security
Symposium, NDSS2020, San Diego, California, USA, February 23-26, 2020. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/blaze-blazing-
fast-privacy-preserving-machine-learning/

[119] Pedro Silveira Pisa, Michel Abdalla, and Otto Carlos Muniz Bandeira Duarte.
2012. Somewhat homomorphic encryption scheme for arithmetic operations
on large integers. In 2012 Global Information Infrastructure and Networking
Symposium (GIIS). IEEE, 1–8.

[120] Manish M. Potey, C.A. Dhote, and Deepak H. Sharma. 2016. Homomorphic
Encryption for Security of Cloud Data. Procedia Computer Science 79 (2016), 175–
181. https://doi.org/10.1016/j.procs.2016.03.023 Proceedings of International
Conference on Communication, Computing and Virtualization (ICCCV) 2016.

[121] Pille Pullonen and Sander Siim. 2015. Combining secret sharing and garbled cir-
cuits for efficient private IEEE 754 floating-point computations. In International
Conference on Financial Cryptography and Data Security. Springer, 172–183.

[122] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM) 56, 6 (2009), 1–40.

[123] Oded Regev. 2010. The learning with errors problem. Invited survey in CCC 7,
30 (2010), 11.

[124] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. 1978. On data banks
and privacy homomorphisms. Foundations of secure computation 4, 11 (1978).

[125] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. 1983. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM 26,
1 (1983), 96–99.

[126] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepse-
cure: Scalable provably-secure deep learning. In Proceedings of the 55th annual
design automation conference. 1–6.

[127] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach. 2020. Ariann:
Low-interaction privacy-preserving deep learning via function secret sharing.
Proceedings on Privacy Enhancing Technologies 2022, 1 (2020), 291–316.

[128] Theo Ryffel, Andrew Trask, Morten Dahl, BobbyWagner, JasonMancuso, Daniel
Rueckert, and Jonathan Passerat-Palmbach. 2018. A generic framework for pri-
vacy preserving deep learning. In Privacy Preserving Machine Learning, NeurIPS
2018 Workshop. NeurIPS.

[129] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57–64.

[130] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. 2021. POSEIDON:
privacy-preserving federated neural network learning. In 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February 21-25,
2021. The Internet Society.

[131] George AF Seber and Alan J Lee. 2012. Linear regression analysis. John Wiley &
Sons.

[132] G Shafi and M Silvio. 1982. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing. 365–77.

[133] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[134] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017.

Membership inference attacks against machine learning models. In 2017 IEEE
symposium on security and privacy (SP). IEEE, 3–18.

[135] Sharma Shreya. 2019. Secure-ML Implementation. Online: https://github.com/
shreya-28/Secure-ML.

[136] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional net-
works for large-scale image recognition. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.

[137] Amanpreet Singh, Narina Thakur, and Aakanksha Sharma. 2016. A review of
supervised machine learning algorithms. In 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom). Ieee, 1310–1315.

[138] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert
for text classification?. In China national conference on Chinese computational
linguistics. Springer, 194–206.

[139] Ajith Suresh. 2021. MPCLeague: Robust MPC Platform for Privacy-Preserving
Machine Learning. In Distributed and Private Machine Learning (DPML) ICLR
Workshop. International Conference on Learning Representations (ICLR).

[140] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. 2021. CryptGPU: Fast
privacy-preserving machine learning on the GPU. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 1021–1038.

[141] Haixu Tang, XiaoFeng Wang, Shuang Wang, and Xiaoqian Jiang. 2018. Ge-
nomic data privacy and security protection competition. http://www.
humangenomeprivacy.org/2017

[142] Han Tian, Chaoliang Zeng, Zhenghang Ren, Di Chai, Junxue Zhang, Kai Chen,
and Qiang Yang. 2022. Sphinx: Enabling privacy-preserving online learning
over the cloud. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2487–2501.

[143] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig,
Rui Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving feder-
ated learning. In Proceedings of the 12th ACM workshop on artificial intelligence
and security. 1–11.

[144] Mayank Varia. 2018. Cryptographically Secure Data Analysis for Social Good.
In Enigma 2018 (Enigma 2018). USENIX Association, Santa Clara, CA. https:
//www.usenix.org/node/208174

[145] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. 2021. SoK: Fully homo-
morphic encryption compilers. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 1092–1108.

[146] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26–49.

[147] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2021. Falcon: Honest-Majority Maliciously Secure Frame-
work for Private Deep Learning. Proceedings on Privacy Enhancing Technologies
2021, 1 (2021), 188–208.

[148] Daoshun Wang, Lei Zhang, Ning Ma, and Xiaobo Li. 2007. Two secret sharing
schemes based on Boolean operations. Pattern Recognition 40, 10 (2007).

[149] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A {GPU}
platform for secure computation. In 31st USENIX Security Symposium (USENIX
Security 22). 827–844.

[150] Marco A Wiering and Martijn Van Otterlo. 2012. Reinforcement learning.
Adaptation, learning, and optimization 12, 3 (2012), 729.

[151] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. 2020. Homomor-
phic encryption for machine learning in medicine and bioinformatics. ACM
Computing Surveys (CSUR) 53, 4 (2020), 1–35.

[152] Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021. Privacy-preserving
machine learning: Methods, challenges and directions. CoRR abs/2108.04417
(2021). arXiv:2108.04417 https://arxiv.org/abs/2108.04417

[153] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[154] Andrew Chi-Chih Yao. 1982. Protocols for secure computations. 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982) (1982), 160–164.

159

https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://www.ndss-symposium.org/ndss-paper/blaze-blazing-fast-privacy-preserving-machine-learning/
https://doi.org/10.1016/j.procs.2016.03.023
https://github.com/shreya-28/Secure-ML
https://github.com/shreya-28/Secure-ML
http://www.humangenomeprivacy.org/2017
http://www.humangenomeprivacy.org/2017
https://www.usenix.org/node/208174
https://www.usenix.org/node/208174
https://arxiv.org/abs/2108.04417
https://arxiv.org/abs/2108.04417

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

[155] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE.

[156] Xuefei Yin, Yanming Zhu, and Jiankun Hu. 2021. A Comprehensive Survey
of Privacy-Preserving Federated Learning: A Taxonomy, Review, and Future
Directions. Comput. Surveys 54, 6, Article 131 (jul 2021), 36 pages.

[157] Sen Yuan, Milan Shen, Ilya Mironov, and Anderson Nascimento. 2021. Label
Private Deep Learning Training based on Secure Multiparty Computation and
Differential Privacy. In NeurIPS 2021 Workshop Privacy in Machine Learning.

[158] Xiang Zhang. 2015. https://huggingface.co/datasets/dbpedia_14
[159] Xiang Zhang. 2020. AG News Classification Dataset. https://www.kaggle.com/

datasets/amananandrai/ag-news-classification-dataset
[160] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional

networks for text classification. Advances in neural information processing
systems 28 (2015).

[161] Chuan Zhao, Shengnan Zhao, Minghao Zhao, Zhenxiang Chen, Chong-Zhi Gao,
Hongwei Li, and Yu-an Tan. 2019. Secure multi-party computation: theory,
practice and applications. Information Sciences 476 (2019), 357–372.

[162] Wenting Zheng, Ryan Deng, Weikeng Chen, Raluca Ada Popa, Aurojit Panda,
and Ion Stoica. 2021. Cerebro: A Platform for {Multi-Party} Cryptographic
Collaborative Learning. In 30th USENIX Security Symposium (USENIX’21).

[163] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
Advances in neural information processing systems 32 (2019).

A PRELIMINARIES
In this section, we discuss the categorization, construction, and
schemes of HE. Additionally, we present the basic primitives de-
veloped for constructing SMPC protocols with different properties,
security notations, and dimensions. We conclude this section by dis-
cussing the various ML models and datasets that PPML employs5.

A.1 Homomorphic Encryption
There are four main categories of HE based on the scheme’s ability
to perform various mathematical calculations. The main categories
are: Partially Homomorphic Encryption (PHE) [44, 52, 113, 125, 132],
Fully Homomorphic Encryption (FHE) [41, 42, 53, 59, 145], Somewhat
Homomorphic Encryption (SHE) [25, 48] and Leveled Homomorphic
Encryption (LHE) [25, 33, 40, 61].

FHE schemes have the highest potential in various applications.
However, their use and implementation is heavily stunted by the
complex mathematics required to implement them [16]. FHE’s
mathematics require a different approach to encryption and de-
cryption compared to the ones provided in prior PHE schemes,
such as RSA or Elgamal. The major breakthrough that was in order
in the field of HE occurred when Gentry proved that ciphertext
homomorphism can be achieved through the use of lattices [59].
The lattice-based cryptography in Gentry’s work used the security
provided in the Learning with Error (LWE) problem described by
Oded Regev [123]. Future schemes of HE continued to rely on the
high security provided by the LWE assumption and its variations
(DLWE [122], ring LWE [97], etc). However, because of some major
drawbacks in FHE, researchers, including Gentry himself, focused
on alternative solutions. This led to the SHE and LHE schemes
mentioned above, which, though based on the same concept, low-
ered the complexity of the algorithms by limiting the depth of the
circuit through scheme parameters or a predefined value to avoid
bootstrapping [16, 33, 35, 106].

Generally, a HE scheme can be defined as [60]:

Definition A.1 (Homomorphic Encryption). Let HE be a (public-
key) homomorphic encryption scheme with a quadruple of PPT
algorithms HE = (KeyGen,Enc,Dec, Eval) such that:

5Due to space constraints, “Machine Learning and Datasets” are in appendix section.

• HE.KeyGen : The key generation algorithm (pk, evk, sk) ←
HE.KeyGen(1𝜆) takes as input a unary representation of
the security parameter 𝜆, and outputs a public key pk, an
evaluation key evk and a private key sk.
• HE.Enc :The encryption algorithm 𝑐 ← HE.Enc(pk, 𝑥) takes
as input the public key pk and a message 𝑥 and outputs a
ciphertext 𝑐 .
• HE.Eval : The evaluation algorithm 𝑐 𝑓 ← HE.Eval(evk, 𝑓 ,
𝑐1, . . . , 𝑐𝑛) takes as input the evaluation key evk, a function
𝑓 , and a set of 𝑛 ciphertexts, and outputs a ciphertext 𝑐 𝑓 .
• HE.Dec : The decryption algorithm HE.Dec(sk, 𝑐) → 𝑥 ,
takes as input the secret key sk and a ciphertext 𝑐 , and out-
puts a plaintext 𝑥 .

Limitation: Despite advancements over time, all HE techniques
still require high-end machines to properly implement bootstrap-
ping and are significantly more computationally expensive when
compared to other privacy-preserving alternatives. Furthermore,
SHE and LHE schemes limit the number of operations performed
on a ciphertext, which might result in lower accuracy and reduced
functionality in certain applications.
HE schemes: HE includes a variety of encryption schemes that
can perform various types of computations over encrypted data.
These encryption schemes define, which operations are available
and the type of activation and architectures that can be used. The
common encryption schemes BGV [33], and FV [55] (see Figure 2)
share many similarities such as Single Instruction Multiple Data
(SIMD) operations with an integer-only message space and support
bootstrapping [145]. The two other popular schemes, CKKS [40]
and TFHE [41], support bootstrapping (which is faster in TFHE).
The CKKS scheme uses real numbers as the message space and
TFHE only supports single bits in the message space. However, the
fact that TFHE does not support SIMD operations, makes it less
attractive for matrix multiplication. Another major HE scheme, not
used by any of the papers, is FHEW [50]. FHEW is an FHE scheme,
which allows homomorphic NAND operations on two encrypted
bits E(b1) and E(b2) to get the resulting bit E(b1 ⊼ b2). As the
scheme is primarily built for only NAND operations, it has limited
uses in more complex applications. However, the main benefit of
FHEW is that it allows much faster bootstrapping, when compared
to other HE schemes.

A.2 Secure Multi-party Computation
To properly apply SMPC techniques to ML, it is important to man-
age the costs of the SMPC frameworks, as ML requires numerous
rounds of communication between the participant and the server.
This may lead to significant communication costs. As such, various
techniques have been developed over the years to help construct
cost-effective SMPC frameworks, such as:
Secret Sharing (SS): Splitting a secret into multiple shares and
distributing each share to a different party. The secret can only be
recovered when all parties join shares [133].
Limitation: In SS, multiple parties use a protocol to jointly compute
a function on their inputs. As SS requires communication between
parties, it can lead to high communication cost.

160

https://huggingface.co/datasets/dbpedia_14
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

Table 2: Comparison among privacy-preserving training methods using HE. All of the listed works assume a semi-honest threat
model and do not take into account a potentially malicious server or client.

Framework Year

Co
nv
ol
ut
io
na
l

N
on

-li
ne
ar

Po
ol
in
g

CK
KS

FV TF
H
E

BG
V

SH
E

LH
E

FH
E

M
H
E

M
N
IS
T

CI
FA

R

UC
I

iD
A
SH

Supported Layers Techniques Used HE Setting Evaluation Dataset
Theoretical Metrics Evaluation Metrics

HE

Bonte & Vercauteren 2018 ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

CryptoDL 2019 ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗

Nandakumar et al. 2019 ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

PrivFT 2019 ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

Mihara et al. 2020 ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗

Sphinx 2022 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗

Hybrid Glyph 2020 ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗

POSEIDON 2021 ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Table 3: Comparison between privacy-preserving training methods using SMPC

Framework Year

Se
m
i-h

on
es
t

M
al
ic
io
us

Co
nv
ol
ut
io
na
l

Re
LU

M
ax
po

ol

Li
ne
ar

O
T

G
C

Se
cr
et
Sh
ar
in
g

FS
S

LA
N

W
A
N

M
N
IS
T

CI
FA

R

Ti
ny

Im
ag
eN

et

Im
ag
eN

et

Fr
om

Se
cu
re
M
L

Fr
om

M
in
iO
N
N

Le
N
et

A
le
xN

et

VG
G
16

Threat Model Supported Layers Techniques Used LAN/WAN Evaluation Dataset Neural Network Architectures
Theoretical Metrics Evaluation Metrics

2PC

SecureML 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Quotient 2019 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

ParSecureML 2020 ✓ ✓ – ✓ – – – ✗ – ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

ABY2 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

AriaNN 2022 ✓ ✓ ✓ ✓ – ✓ – ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

3PC

ABY3 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗

SecureNN 2019 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

BLAZE 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Falcon 2020 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ – ✓ ✓ ✓ ✓ ✓

SWIFT 2021 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓

Adam in Private 2021 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓

CryptGPU 2021 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Piranha 2022 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓

4PC

Trident 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Fantastic Four 2021 ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ – ✗ ✗ ✗ ✗ ✗

MPCLeague 2021 ✓ ✓ ✓ ✓ – ✓ ✓ ✗ – – – – – – ✓ ✓

Tetrad 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✓

Table 4: Comparison of training time, accuracy and details for privacy-preserving training methods using HE. * – None of the
listed papers provide open-source code for their implementation.

Framework Year

Tr
ai
ni
ng

tim
e(
h)

Tr
ai
ni
ng

ac
cu
ra
cy
(%
)

CP
U

G
PU

RA
M
(G
B)

En
vi
ro
nm

en
t

A
lg
or
ith

m
s

Performance Specifications Availability*

HE

Bonte & Vercauteren 2018 0.367-0.75 62.98-94.16 - - - - ✓

CryptoDL 2019 2.91 99.0 12-core CPU - 48 Ubuntu 14.04 (VM) ✓

Nandakumar et al. 2019 60K-846K 96.4-97.8 Intel Xeon E5-2698 v3 - 250 Linux ✗

PrivFT 2019 120.96 91.49-98.80 Intel Xeon E5-2620 DGX-1 V100 180 ArchLinux (CPU) ✓

Mihara et al. 2020 29.8 98.47 Intel Core i7-8700K - 32 - ✓

Sphinx 2022 1560 72.0-96.0 Intel Xeon E5-2683 v4 - 128 Ubuntu 18.04.5 LTS ✓

Hybrid Glyph 2020 192 98.6 Intel Xeon E7-8890 v4 - 256 - ✗

POSEIDON 2021 1.47 80.2-96.9 Intel Xeon E5-2680 v3 - 256 Linux ✓

161

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

Table 5: Comparison of training time and communication overhead, while training various frameworks over popular bench-
marking network architectures in the PPML domain on the MNIST dataset. All networks and frameworks are exposed to a 15
epoch-training. Network 1 is a 3-layered fully-connected network from SecureML [103], Network 2 is a 4-layered network from
MiniONN [94] that contains 2 convolution layers and 2 fully connected layers. Network 3 is LeNet [90] with 2 convolution
layers and 2 fully connected layers.

Number of parties Framework
Network 1 (SecureML) Network 2 (MiniONN) LeNet

Local host Local host Local host
Time (sec) Comm (MB) Accuracy Time (sec) Comm (MB) Accuracy Time (sec) Comm (MB) Accuracy

2PC SecureML – – 92.98 – – – – – –
3PC SecureNN – – – – – – 136.553 21058.3 –
3PC Falcon 2.38 256.57 – 67.75 6944.4 – 173.9 1800 –
2PC AriaNN 5.38 (h) 38757.89 97.96 12.81 (h) 868308.48 97.92 14.15 (h) 1324597.248 89.36

Table 6: Comparison among privacy-preserving training methods using SMPC

Framework

In
pu

t/O
ut
pu

t

M
od
el

G
O
D

Fa
irn

es
s

A
bo
rt

In
te
ge
r

Bo
ol
ea
n

Fl
oa
tin

g
Po

in
t

Pu
bl
ic

Pr
iv
at
e

A
cc
ur
ac
y

Co
m
pl
ex
ity

Co
m
m
un

ic
at
io
n

Ti
m
e

Privacy Security Data types Implementation Parameters for Comparison
Theoretical Metrics Implementation

2PC

SecureML – – – – ✓ ✓ ✓ ✓ ✓ ✓

Quotient – – – ✗ ✓ ✗ ✓ ✓ ✓ ✓

ParSecureML – – – – – – – ✓ ✓ ✓

ABY2 – – – ✓ ✓ – – ✓ ✓ ✓

AriaNN – – – – ✓ – ✓ ✓ ✓ ✓

3PC

SecureNN ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓

ABY3 ✗ ✗ ✓ ✗ ✓ ✗ ✓ – ✓ ✓

BLAZE ✗ ✓ ✗ ✓ ✓ – ✗ ✓ ✓ ✗

Falcon ✗ ✗ ✓ ✓ – – ✓ ✓ ✓ ✓

SWIFT ✓ ✗ ✗ – ✓ – ✗ ✓ ✓ ✓

Adam in Private ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CryptGPU – – – – ✗ ✓ ✓ ✓ ✓ ✓

Piranha – – – – – – ✓ ✓ ✓ ✓

4PC

Trident ✗ ✓ ✗ ✗ ✓ – ✗ ✓ ✓ ✓

Fantastic Four ✓ ✗ ✗ ✓ ✓ – ✓ ✓ ✓ ✓

MPCLeague ✓ ✗ ✗ ✓ ✓ – – ✓ ✓ ✓

Tetrad ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Oblivious Transfer (OT): OT is a protocol where a sender sends
one of several possible pieces of information to a receiver without
knowing which piece of information the receiver obtained.
Limitation: In OT protocols, the amount of data transmitted is pro-
portional to the bit length of the input data. This implies a consid-
erable amount of communication complexity. The communication
overhead can cause significant WAN delays.
Garbled Circuits (GC): In 1986, Andrew Yao proposed GC [154] –
a cryptographic protocol that enables two parties to jointly evaluate
a function over their private inputs without the presence of a trusted
party. Yao’s GC transforms any function into a securely-evaluated
function by modeling it as a Boolean circuit. The inputs and outputs
of each gate are masked so that the party executing the function
cannot discern any information about the inputs or intermediate
values of the function.
Limitation: The computation and communication overhead of ML
execution utilizing the GC protocol is controlled by the number
of neurons in each ML layer [126]. Each ML model layer contains
thousands of values, which may result in large computing and
communication overheads.

Security Notions: In SMPC, a set of mutually distrusting parties
wish to jointly and securely compute a function of their inputs. This
computation should be performed in such a way that each party
obtain the proper result, and none of the parties learn anything
beyond their prescribed output. A precise definition of security is
required in order to prove that the SMPC protocol provides secure
computation. A number of definitions have been proposed to ensure
several security parameters that encompass most SMPC tasks. Here,
we discuss this set of security parameters [93, 161].

• Privacy – No party should learn more than its prescribed output.
More specifically, only what can be inferred from the output itself
should be known about other parties’ inputs.
• Correctness – Each party is guaranteed that the output it receives
is correct.
• Independence of input – The corrupt parties must choose their
inputs independently of the honest parties’ inputs.
• Robustness – Regardless of the adversary’s actions, all parties
can compute the protocol’s output. There are various levels of
robustness:

162

SoK: Wildest Dreams: Reproducible Research in Privacy-preserving Neural Network Training Proceedings on Privacy Enhancing Technologies 2024(3)

– Guaranteed Output Delivery (GOD) – The strongest level is
GOD, where honest parties are always certain to receive the
output regardless of the adversary’s behaviors.

– Fairness – It is a weaker variant compared to GOD. It states
that the adversary receives the output if and only if the honest
parties receive the output.

– Security with Selective Abort – It is the weakest security notion,
where the adversary can selectively deprive the honest parties
from the output. In selective abort, at the end of computation,
the adversary receives the output for certain values, but can
prevent honest parties from receiving their outputs.

Using these security concepts, we later discuss the privacy and
security guarantees offered by the current PPML protocols.

B MACHINE LEARNING AND DATASETS
ML automates the analysis of datasets, producingmodels that reflect
general relationships as found in the data. The two fundamental
phases of ML are the training where the model is trained on input
data, and the inference stage, where the trained model is put to use.
ML techniques are divided into three classes, characterized by the
nature of data available for analysis [37].
• Supervised learning – In this type, each input training example
has a corresponding output that is also referred to as label. The
objective is to train a model that can map the input examples
to their outputs as accurately as possible. Examples of applica-
tions using supervised learning include: Image classification, text
classification, spam filtering, machine translation, etc [137].
• Unsupervised learning – Uses ML algorithms to analyze and
cluster unlabelled datasets. These algorithms discover hidden pat-
terns in data without the need for human intervention. Examples
of applications using unsupervised learning include: Recommen-
dation system, anomaly detection, etc [79].
• Reinforcement learning – It is neither based on supervised
nor unsupervised learning. The algorithm learns by exploring
the environment and taking actions, thus maximizing cumulative
rewards. It works with data in sequences of actions, observations,
and rewards. Examples of reinforcement learning applications can
be found in a plethora of areas such as self-driving cars, gaming
and healthcare [150].
Following, we present a list of popularMLmodels that are trained

in a privacy-preserving manner.
• Linear Regression (LR) – This ML approach models the rela-
tionship between two variables: a dependent variable 𝑦 and an
independent variable 𝑥 . If a model only features an independent
variable, then it is called a simple LR model; if it features more
than one, then it is called multi-linear regression [131].
• Convolutional Neural Network (CNN) – It is a Deep Neural
Network (DNN) often used in matrix-based applications like im-
age recognition. As the name indicates, CNN uses convolution
operations performed on the input data with a filter or kernel to
produce feature maps [20].
• Logistic Regression (LoR) – A generalized regression model
modeling the probability of a discrete outcome given an input
variable. It makes use of a logistic function and can be used to
describe certain nonlinear relations [80]. The most common LoR
models produce a binary outcome, that is a result that can assume

two values (yes/no, true/false etc.). Multinomial LoR can be used
to model scenarios with more than two discrete outcomes.
• LeNet [89] – It is a CNN architecture that was first proposed by
LeCun et al. and was used in the automatic detection of zip codes
and digit recognition. The network contains 2 convolutional and 2
fully connected layers. LeNet is the first architecture that shows
the application of CNNs on a real-world dataset.
• AlexNet [86] – This network is the winner of the ImageNet
ILSVRC-2012 competition [4]. It consists of 5 convolutional layers
and 3 fully connected layers, uses a batch normalization layer (for
stability and efficient training), and has about 60 million parame-
ters. Achieved an impressive result of about 10.8% lower than the
runner up for a top-5 error. This was accomplished by training the
deep CNN using graphics processing units (GPUs). AlexNet made
a big impact in computer vision and artificial intelligence, and
the original paper has accumulated more than 110,000 citations
according to google scholar at the time of writing this paper.
• VGG16 [136] – Won the first place in the localisation task and
second place in the classification task of the ILSVRC-2014 com-
petition [5]. It consists of 16 layers and has about 130 million
parameters. VGG16 shows we can build very DNNs, e.g. 16-19
weight layers, by utilizing very small convolution filters (size
3 × 3). VGG16 shows that very DNNs can generalize well to vari-
ous datasets and reproduce SotA results.

Data is an essential component of the ML model. Below, we
discuss popular datasets used for training the PPML techniques:

• MNIST – A collection of hand-written digits. Consists of 60,000
images in the training set and 10,000 in the test set. Each image is
a 28 × 28 pixel image, the element in the matrix ranges from zero
to 255 along with a label between 0 and 9 [88].
• CIFAR – It consists of 60,000 colored images out of which 50,000
are used for training and the remaining 10,000 are used for testing.
These images are grouped into 10 mutually exclusive classes: air-
planes, automobile, bird, cat, deer, dog, frog, horse, ship, truck [85].
• Tiny ImageNet – It is a subset of the ImageNet dataset in the
ILSVRC [2].Tiny ImageNet dataset consists of 100,000 training
samples and 10,000 test samples with 200 different classes. Each
sample is cropped to a size of 64 × 64 × 3 [87].
• UCI –TheUniversity of California, Irvine (UCI)ML repository [49]
is a collection of more than 600 datasets of varying sizes used in
ML tasks to evaluate the effectiveness of an ML algorithm. Some
of the more well-known datasets in this repository are the Iris
dataset [56] and YouTube Spam Collection [22].
• iDASH – iDASH Privacy & Security Workshop holds an annual
secure genome analysis competition, which uses a customized
genetic dataset every year to create PPML algorithms that classify
sensitive genome data [141].
• Yelp Dataset – It contains 6,990,280 reviews of 150,346 businesses
from the website Yelp, which publishes crowd-sourced reviews of
various establishments [73].
• AG News Classification Dataset – The dataset is constructed
from 4 of the largest classes in AG’s corpus of news articles [66].
The original corpus contains over a million news articles from
more than 2,000 news sources and wasmade by the prior academic
news search engine ComeToMyHead. The classification dataset
contains 120,000 training samples and 7,600 testing samples [159].

163

Proceedings on Privacy Enhancing Technologies 2024(3) Khan et al.

• IMDB Dataset of Movie Reviews – Also known as the Large
Movie Review Dataset [3, 98] is a dataset for binary sentiment
classification containing an equal amount ofmovie review samples
for training and testing (50,000 samples).
• DBPedia Ontology Classification Dataset – A crowd-sourced
collection of themost commonly used infoboxeswithinWikipedia [45].
Dataset consists of 14 ontology classes and each class has 40,000
training samples and 5,000 testing samples [158]. As such, the total
size of the training dataset is 560,000, plus 70,000 testing [160].

164

	Abstract
	1 Introduction
	1.1 Motivation & Contribution
	1.2 Organization

	2 Scope and Methodology
	3 State-of-the-Art Approaches
	3.1 Secure Training using HE
	3.2 Secure Training using SMPC

	4 Evaluation
	4.1 Experiments
	4.2 Analysis of HE protocols
	4.3 Analysis of SMPC protocols

	5 TakeAways
	6 Challenges and Future Directions
	7 Conclusion
	Acknowledgments
	References
	A Preliminaries
	A.1 Homomorphic Encryption
	A.2 Secure Multi-party Computation

	B Machine Learning and Datasets

