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ABSTRACT
Transfer learning has become an increasingly popular technique in

machine learning as a way to leverage a pretrained model trained

for one task to assist with building a finetuned model for a related

task. This paradigm has been especially popular for privacy in

machine learning, where the pretrained model is considered public,

and only the data for finetuning is considered sensitive. However,

there are reasons to believe that the data used for pretraining is still

sensitive, making it essential to understand how much information

the finetuned model leaks about the pretraining data. In this work

we propose a new membership-inference threat model where the

adversary only has access to the finetuned model and would like

to infer the membership of the pretraining data. To realize this

threat model, we implement a novel metaclassifier-based attack,

TMI, that leverages the influence of memorized pretraining samples

on predictions in the downstream task. We evaluate TMI on both

vision and natural language tasks across multiple transfer learning

settings, including finetuning with differential privacy. Through

our evaluation, we find that TMI can successfully infer membership

of pretraining examples using query access to the finetuned model.

1 INTRODUCTION
Transfer learning has become an increasingly popular technique

in machine learning as a way to leverage a model trained for one

task to assist with building a model for a related task. Typically, we

begin with a large pretrained model trained with abundant data and

computation, and use it as a starting point for training a finetuned
model to solve a new task where data and computation is scarce.

This paradigm has been especially popular for privacy in machine

learning [1–6], because the data for pretraining is often considered

public and thus the pretrained model provides a good starting point

before we even have to touch sensitive data.

Although the data used to pretrain large models is typically

scraped from the Web and publicly accessible, there are several

reasons to believe that this data is still sensitive [7]. For example,

personal data could have been published without consent by a third
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party who they trusted to keep their data private, and even ubiqui-

tous and thoroughly examined pretraining datasets like ImageNet

contain sensitive content [8, 9]. Beyond the privacy risks associ-

ated with individuals in the pretraining set, companies who utilize

or sell finetuned models may also be at risk for privacy leakage.

Consider the following example:

Example 1.1. Companies have large, web scraped datasets that are

proprietary and remain internal (e.g., Google’s JFT-300 [10]). These

datasets are used to train models that can be finetuned by individual

teams within the company for their specific needs. These pretrained

models are also hosted as a service where smaller companies can

receive a finetuned model without ever seeing the pretrained model

itself. For example, Google’s Vertex AI [11] allows smaller compa-

nies and individuals to upload their data and receive access to query

the finetuned model as an endpoint. When these finetuned models

are hosted publicly, they may leak sensitive information about the

proprietary pretraining datasets on which they were trained.

Thus, a central question we attempt to understand in this work

is: How much sensitive information does a finetuned model reveal
about the data that was used for pretraining? We attempt to an-

swer this question in both the settings where privacy preserving

techniques have and have not been used to finetune the pretrained

model. Examining these two settings leads to another research prob-

lem: Given that pretraining datasets have been shown to contain

sensitive information [8, 9, 12], using the privacy preserving fine-

tuning techniques described in prior work [1–6] may not provide

meaningful privacy guarantees in practice.

Example 1.2. Using the thought experiment from [7], consider

a large, pretrained model, owned by Company A, that contains

an individual’s sensitive data record. Suppose that this pretrained

model is finetuned by Company B using differential privacy [13]

with (𝜀 = 0.5, 𝛿 = 10
−5) on a sensitive downstream task. Consid-

ering that the open-source variants of these models’ pretraining

datasets can exceed 5 TB (over 1 trillion tokens) in size [14], it is

likely that any given individual’s data record can be present in both

the pretraining and finetuning datasets. Thus, because differential

privacy is not necessarily robust to preprocessing, the privacy guar-

antee from finetuning may not hold for individuals whose data

record is present in both datasets.
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To this end, we will also attempt to answer the following ques-

tion: Does using differential privacy during finetuning always provide
its stated privacy guarantee?

We study these questions via membership-inference (MI) attacks.
A MI attack allows an adversary with access to the model to deter-

mine whether or not a given data point was included in the training

data. These privacy attacks were first introduced by Homer et

al. [15] in the context of genomic data, formalized and analyzed

statistically by Sankararaman et al. [16] and Dwork et al. [17], and

later applied in machine learning applications by Shokri et al. [18].

MI attacks have been extensively studied in machine learning ap-

plications, such as computer vision [19], contrastive learning [20],

generative adversarial networks [21], and federated learning [22].

The success of MI attacks makes it clear that the pretrained model

will leak information about the pretraining data. However, the pro-

cess of finetuning the model will obscure information about the

original model, and there are no works that study MI attacks that

use the finetuned model to recover pretraining data.
We create a novel, metaclassifier-based membership-inference at-

tack, TransferMembership Inference (TMI) to circumvent the chal-

lenges that arise when trying to adapt prior attacks to asses privacy

leakage in this new setting where the adversary has query access

only to the finetuned model. The goal of our new membership-

inference adversary is to infer whether or not specific individuals

were included in the pretraining set of the finetuned machine learn-

ing model. This setting stands in contrast to prior membership-

inference attacks, as it restricts the adversary from directly query-

ing the model trained on the specific dataset they wish to perform

membership-inference on. State-of-the-art, black-box MI attacks

rely on a model’s prediction confidence with respect to the ground

truth label, but the finetuned model does not necessarily have the

ground truth label in its range. Thus, our attack leverages how

individual samples from pretraining influence predictions on the

downstream task by observing entire prediction vectors from the

finetuned model. More concretely, TMI constructs a dataset of pre-
diction vectors from queries to finetuned shadow models in order

to train a metaclassifier that can infer membership.

We comprehensively evaluateTMI on pretrained CIFAR-100 [23]
and Tiny ImageNet [24] vision models, transferred to multiple

downstream tasks. In our experiments with Tiny ImageNet, we

evaluate the ability of TMI to infer membership on models fine-

tuned on Caltech 101 [25]. Our pretrained CIFAR-100 models are

finetuned on three downstream datasets of varying similarity to the

pretraining data. In order of similarity to CIFAR-100, we evaluate

TMI on models finetuned on a coarse-labeled version of CIFAR-

100, CIFAR-10 [23], and the Oxford-IIT Pet dataset [26]. We also

evaluate an extension of TMI on finetuned versions of publicly

available large language language models, which are pretrained on

WikiText-103 [27]. To measure the success of our attack we use

several metrics, such as AUC and true positive rates at low false

positive rates. To demonstrate the prevalence of privacy leakage

with respect to pretraining data in finetuned models, we run TMI
on target models with different finetuning strategies and settings

with limited adversarial capabilities. We compare our results to

both a simple adaptation of the likelihood ratio attack [19] to the

transfer learning setting and a membership inference attack that

has direct access to the pretrained model.

Our Contributions. We summarize our main contributions to the

study of membership-inference attacks as follows:

• We investigate privacy leakage in the transfer learning set-

ting, where machine learning models are finetuned on down-

stream tasks with and without differential privacy.

• We introduce a new threat model, where the adversary only

has query access to the finetuned target model.

• We propose a novel membership-inference attack, TMI, that
leverages all of the information available to the black-box

adversary to infer the membership status of individuals in

the pretraining set of a finetuned machine learning model.

• We provide theoretical results for membership-inference

attacks on mean estimation to support and explain our find-

ings.

• We evaluate our attack across four vision datasets of varying

similarity to the two pretraining tasks and several different

transfer learning strategies. We show that there is privacy

leakage even in cases where the pretraining task provides

little benefit to the downstream task or the target model was

finetuned with differential privacy. We also show that mem-

bership in the pretraining dataset can lead to unexpected

privacy leakage when finetuning with differential privacy.

• We study privacy leakage of finetuned models in the natural

language domain by evaluating our attack on two finetuned

versions of a publicly available foundation model.

2 BACKGROUND AND RELATEDWORK
We provide the necessary background on machine learning, privacy

in machine learning, and related work on existing inference attacks.

2.1 Machine Learning Background and Notation
In our attacks, we assume that the target models are classifier neu-

ral networks trained in a supervised manner. A neural network

classifier with parameters 𝜃 is a function, 𝑓𝜃 : X → [0, 1]𝐾 that

maps data points 𝑥 ∈ X to a probability distribution over 𝐾 classes.

In the supervised learning setting, we are given a dataset of labeled

(𝑥,𝑦) pairs 𝐷 drawn from an underlying distribution D and a train-

ing algorithm T . The parameters of the neural network are then

learned by running the training algorithm over the dataset, which

we will denote 𝑓𝜃 ← T (𝐷). A popular choice for the training algo-

rithm is stochastic gradient descent (SGD), which minimizes a loss

function L over the labeled dataset 𝐷 by iteratively updating the

models parameters 𝜃 :

𝜃𝑖+1 ← 𝜃𝑖 −
𝜂

𝑚

∑︁
(𝑥,𝑦) ∈𝐷

∇𝜃L(𝑓𝜃 (𝑥), 𝑦)

where 𝑚 is the dataset size, 𝜂 is a tunable parameter called the

learning rate. In our setting, we define the loss function L to be

the cross-entropy loss:

L(𝑓𝜃 (𝑥) , 𝑦) = −
𝐾∑︁
𝑗=1

1{ 𝑗=𝑦 } log(𝑝 𝑗 )

where 𝑝 𝑗 is the model’s prediction probability for class 𝑗 .
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2.1.1 Scaling Model Confidences.
The classifier models we consider output a vector of probabilities,

®𝑦, where each entry 𝑦𝑖 corresponds to the model’s prediction confi-
dence with respect to label, 𝑖 . This is done by applying the softmax
activation function to themodel’s final layer. Given a vector of logits,

®𝑧 (i.e. themodel’s final layer), we define softmax(®𝑧) : R𝐾 → (0, 1)𝐾

𝑦𝑖 = softmax(®𝑧)𝑖 =
𝑒𝑧𝑖∑𝐾
𝑗=1

𝑒𝑧 𝑗

where 𝐾 is the number of possible classes.

Priorwork [19] has used the logit function, logit(𝑝) = log( 𝑝
1−𝑝 ),

to scale model confidences. This scaling yields an approximately

normally distributed statistic that can be used to perform a variety

of privacy attacks [19, 28, 29]. The logit function is obtained by

inverting the sigmoid activation function, 𝜎 (𝑥) = 1

1+𝑒𝑥 , which is a

specific case of softmax being used for binary classification.

Following the lead of prior work, we use 𝜙 to perform our

model confidence scaling. We define model confidence scaling

𝜙 ( ®𝑦) : R𝐾 → R𝐾 for a prediction vector, ®𝑦, as

𝜙 ( ®𝑦) = (logit(𝑦1), . . . , logit(𝑦𝐾 ))

2.1.2 Transfer Learning.
Feature extraction and updating a model’s pretrained weights

are popular transfer learning techniques used to improve a pre-

trained deep learning model’s performance on a specific task. In the

classification setting, feature extraction involves freezing a model’s

pretrained weights and using them to extract relevant features from

input data, which are then fed into a linear layer for classification.

This technique is useful when working with limited data or when

the pretrained model has learned generalizable features that are

useful for the target task. On the other hand, finetuning a model by

updating its pretrained weights involves taking a pretrained model

and training it on a new dataset, often with a smaller learning rate,

to adapt it to the new task. This kind of finetuning is more suited

for situations where the new task has similar characteristics, but

not a direct correspondence, to the original pretraining task.

2.1.3 Differential Privacy.
Differential Privacy [13] is a mathematical definition of privacy

that bounds the influence that any single individual in the training

data has on the output of the model. Specifically, an algorithm

satisfies differential privacy if for any two datasets that differ on

one individual’s training data, the probability of seeing any set of

potential models is roughly the same regardless of which dataset

was used in training.

Definition 2.1. A randomized algorithmM mapping datasets to

models satisfies (𝜀, 𝛿)-differential privacy if for every pair of datasets
𝑋 and 𝑋 ′ differing on at most one training example and every set

of outputs 𝐸,

Pr[M(𝑋 ) ∈ 𝐸] ≤ 𝑒𝜀 Pr[M(𝑋 ′) ∈ 𝐸] + 𝛿

2.2 Related Work
2.2.1 Privacy Attacks on Machine Learning Models.

Deep learning models have been shown to memorize entire in-

dividual data points, even in settings where the data points have

randomly assigned labels [30]. Prior work has demonstrated the

ability of a wide class of deep learning models to perfectly fit train-

ing data while also achieving low generalization error [31]. In fact,

recent work [32–34] has shown that memorization of training data

may actually be necessary to achieve optimal generalization for

deep learning models. As a result of this memorization, deep learn-

ing models tend to have higher prediction confidence on training

data, which makes them highly susceptible to privacy attacks.

The most glaring violations of privacy in machine learning are

reconstruction and training data extraction attacks. Early work in

data privacy [35] showed that it is possible to reconstruct individu-

als’ data in statistical databases with access to noisy queries. More

recently, training data extraction attacks have been shown to be

successful when mounted on a variety of deep learning models,

including large language models [12] and computer vision mod-

els [36].

Other attacks on machine learning models, such as membership-

inference [18], property inference [37], and attribute inference [38]

attacks are more subtle privacy violations. These attacks exploit

vulnerabilities in machine learning models to learn whether or not

an individual was in the training set, global properties of the train-

ing dataset, and an individual’s sensitive attributes. respectively.

Recent versions of these attacks typically use a test statistic, such

as loss [39] and model prediction confidences [19, 28, 38], to extract

private information.

2.2.2 Membership-Inference Attacks.
Membership-inference attacks [15] aim to determine whether

or not a given individual’s data record was present in a machine

learning model’s training dataset. These attacks represent a funda-

mental privacy violation that has a direct connection to differential

privacy. Mounting these attacks and learning whether or not an

individual was part of a sensitive dataset can serve as the basis for

more powerful attacks. For example, prior work has used MI as a

step in extracting training data [12]. Because of their simplicity, MI

attacks are also a popular way to audit machine learning models

for privacy leakage [39–41].

These attacks been extensively studied with two types of adver-

sarial access: black-box query access and white-box access to the

machine learning model’s parameters [42]. The query access setting

has been more thoroughly studied, with attacks spanning several

different machine learning domains, such as classification [18, 19,

29, 38, 39], natural language generation [19, 29], and federated

learning [22]. Despite there being extensive work on black-box

attacks and prior work on MI attacks on pretrained encoders [20],

continuously updated models [43], and distilled models [44], there

are few works that explore MI in the transfer learning setting where

a pretrained model is finetuned on a new task. Zou et al. [45] study

MI attacks that target individuals in the finetuning dataset, and

Hidano et al. [46] explore ways in which an adversary can leverage

control over the transfer learning process to amplify the success

of MI attacks on the original model. No works have studied black-

box MI attacks on the pretraining dataset of a finetuned machine

learning model.

3 THREAT MODEL
Our problem is to determine how much information a finetuned

model reveals about the data used in the pretraining phase, and
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Pretrained
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Finetuned
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Figure 1: Our New Membership-Inference Threat Model.

whether or not the finetuned model reveals strictly less information

than the pretrained model. For this work we study this question

using the language of MI attacks [15–17]. In the standard MI ex-

periment and in our newly defined experiment, there is a machine

learning model trained on some dataset, and a challenge point

that is drawn from the same distribution as the training data. The

challenge point is either an element of the training data or an inde-

pendent point drawn from the same distribution. The attacker, who

has access to the model and the challenge point, and knowledge of

the distribution, tries to infer which of these two cases holds. In our

experiment we separate the construction of the machine learning

model into a pretraining phase and a finetuning phase, where the

finetuning phase is performed with different data, drawn from a

possibly different distribution. This finetuning phase introduces

another layer of indirection that prevents the attacker from query-

ing the original pretrained model, and thus potentially makes MI

more difficult. Formally, our threat model, visualized in Figure 1,

is described by the following game between a challenger C and an

adversary A:

MI Security Game with a Finetuned Target Model
(1) The challenger receives a dataset 𝐷𝑃𝑇 comprised of points

sampled i.i.d. from some distribution D𝑃𝑇 , and a pretrained

model 𝑔𝜃 ← T𝑃𝑇 (𝐷𝑃𝑇 ).
(2) The challenger draws i.i.d. samples from another distribution

D𝐹𝑇 to create a dataset 𝐷𝐹𝑇 and finetunes the model on

𝐷𝐹𝑇 using its pretrained weights, 𝜃 , to obtain a new model

𝑓𝛽 ← T𝐹𝑇 (𝐷𝐹𝑇 , 𝑔𝜃 ).
(3) The challenger randomly selects 𝑏 ∈ {0, 1}. If 𝑏 = 0, the

challenger samples a point (𝑥,𝑦) from D𝑃𝑇 uniformly at

random, such that (𝑥,𝑦) ∉ 𝐷𝑃𝑇 . Otherwise, the challenger
samples (𝑥,𝑦) from 𝐷𝑃𝑇 uniformly at random.

(4) The challenger sends the point, (𝑥,𝑦) to the adversary.

(5) The adversary, using the challenge point, sampling access

to D𝑃𝑇 and D𝐹𝑇 , and query access to 𝑓𝛽 , produces a bit
ˆ𝑏.

(6) The adversary wins if 𝑏 = ˆ𝑏 and loses otherwise.

In our security game, we assume that the adversary has query

access to the finetuned target model 𝑓𝛽 and knowledge of the pre-

training data distribution D𝑃𝑇 . Because we will be training shadow
models [18] to perform our MI attack, the adversary also requires

knowledge of the underlying distribution from which the finetun-

ing dataset is sampled, D𝐹𝑇 , and knowledge of the target model’s

architecture and training algorithm. MI attacks vary in what they

assume about the distribution and training algorithm [17], and

some degree of knowledge is necessary. The knowledge we assume

is the same as many other works on MI (e.g. [18–20, 29, 38, 44, 47]).

We also assume that the adversary’s queries to the target model

return numerical confidence scores for each label rather than just a

single label, similar to prior privacy attacks [18, 19, 29, 38].

It should be noted that the adversary considered in this work

is, in fact, a stronger adversary than some of these prior works

individually. For example, we require query access to both the

pretraining and finetuning data distributions, while [18] and [19]

only require access to one training distribution. Additionally, our

attack algorithm requires us to train shadow models, which can

be computationally expensive. Because we introduce the first MI

threat model in this setting, we consider this strong adversary as a

reasonable starting point.

4 METHODOLOGY
In this section, we will propose attacks that follow the threat model

defined in Section 3. First, we will motivate our attack with theo-

retical results for membership-inference attacks under distribution

shift. Then, we will provide a simple adaptation of an existing MI

attack and describe issues that arise when trying to incorporate

more information about target model queries into an attack imple-

mentation. Lastly, we will detail our metaclassifier-based approach

to performing black-box MI attacks on finetuned models.

Algorithm 1 train_shadow_models(𝑥, 𝑏)
Our shadow model training procedure considers both the pretrain-

ing and finetuning phases to mimic the behavior of the target model

on a challenge point.

Require: Query access to both D𝑃𝑇 and D𝐹𝑇 and a fixed dataset

size 𝑆 = 1

2
|D𝑃𝑇 |

1: models← {}
2: datasets← {}
3: for 𝑁 times do
4: Draw 𝑆 i.i.d. samples from D𝑃𝑇 to construct �̃�𝑃𝑇
5: datasets← datasets ∪ {�̃�𝑃𝑇 }
6: 𝑔← T (�̃�𝑃𝑇 )
7: Sample �̃�𝐹𝑇 i.i.d. using query access to D𝐹𝑇
8: 𝑓 ← T (𝑔, �̃�𝐹𝑇 ) ⊲ Finetune 𝑔 on �̃�𝐹𝑇
9: models← models ∪ {𝑓 }

return models, datasets

4.1 Membership Inference Under Distribution
Shift

Tomotivate a membership-inference attack on finetuned deep learn-

ing models, we will first consider the simplified setting of mean

estimation. A more detailed explanation, along with the proofs for

the statements in this section, can be found in Appendix A.

Consider two datasets, 𝑋
iid∼ N(𝜇, I𝑑 ) and 𝑌

iid∼ N(𝜇 + 𝜈, I𝑑 )
where |𝑋 | = 𝑛, |𝑌 | =𝑚 such that 𝑛 ≫𝑚, and 𝜈 is a parameter that

controls distribution shift. In this setting, the means of 𝑋 and 𝑌

are related, and we would like to estimate the mean of 𝑌 , which

has limited data, using the additional data from 𝑋 . We define the

estimator of 𝜇 + 𝜈 as a combination of the empirical means of 𝑋

and 𝑌 :
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𝜇 = 𝛼𝑥 + (1 − 𝛼)𝑦

where 𝛼 ∈ [0, 1] and 𝑥, 𝑦 are the empirical means of 𝑋 and 𝑌 ,

respectively. Note that 𝜇 has expected value and covariance

E(𝜇) = 𝜇 + (1 − 𝛼)𝜈

Cov(𝜇) =
(𝛼2

𝑛
+ (1 − 𝛼)

2

𝑚

)
· I𝑑 = 𝛼 · I𝑑

Suppose the challenger from the security game detailed in Sec-

tion 3 releases the statistic 𝜇 and we, as the adversary, would like

to learn samples’ membership statuses with respect to the auxiliary

(pretraining) data, 𝑋 . One possible way to do this would be the fol-

lowing: Assume the adversary knows E(𝜇) and 𝜇. Then, for some

challenge point, 𝑐 the adversary can compute the test statistic

𝑧 = ⟨𝜇 − E(𝜇) , 𝑐 − E(𝑐)⟩

This specific choice of test statistic is motivated by prior work on

membership-inference attacks on published statistics [48]. Subtract-

ing the expectation of each term allows the adversary to observe

whether the noise from computing 𝜇 is correlated with the noise

from sampling 𝑐 . Thus, the test statistic 𝑧 is a real number that mea-

sures the correlation between the challenge point and the published

statistic, 𝜇. The adversary can then choose a threshold 𝜏 such that if

𝑧 > 𝜏 , they will predict that the challenge point was IN (i.e. 𝑐 ∈ 𝑋 ).
Else, the adversary will predict that the challenge point was OUT

(i.e. 𝑐 ∼ N(𝜇, I𝑑 ))
We will now show the ability of our attack to determine the

membership status of the challenge point 𝑐 as a function of the

parameter 𝛼 . To this end, we start by computing the expectation

and variance of the test statistic, 𝑧, when 𝑐 is either OUT or IN.

Lemma 4.1. If 𝑐 is OUT, then

E(𝑧) = 0 and Var(𝑧) = 𝑑𝛼,

and if 𝑐 is IN, then

E(𝑧) = 𝛼𝑑

𝑛
and Var(𝑧) = 𝑑𝛼 + 2𝑑𝛼2

𝑛2

This lemma tells us that as long as the noise scale doesn’t exceed

the difference in means, it is straightforward to determine whether

𝑐 is IN or OUT. When 𝛼 → 0, the published statistic is no longer

encoding any information about 𝑋 . Thus, the noise completely

masks the difference in means, as shown in Figure 2. Conversely,

as 𝛼 → 1, we observe higher separation between the distributions

of IN and OUT test statistics.

Using Lemma 4.1, we can analyze the performance (AUC) of the

adversary’s distinguishing test as a function of the parameter 𝛼 . To

do this, we use the fact that the AUC of a classifier is equal to the

probability that the classifier’s prediction on a randomly chosen

positive (IN) sample is greater than the prediction on a randomly

chosen negative (OUT) sample [49]. Here, we use the assumption

that the test statistic is normal. Because 𝑧 is the inner product of two

high dimensional Gaussian vectors, and thus the sum of many i.i.d.

Gaussian random variables, as 𝑑 →∞, 𝑧 is normally distributed.

20 0 20

= 0.1

20 0 20

= 0.3

20 0 20

= 0.5

20 0 20

= 0.9
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Figure 2: Distribution of the Test Statistic, 𝑧, for Multiple
Values of 𝛼

Lemma 4.2. Assume that the test statistic, 𝑧, is normally distributed.
Then, for a fixed 𝛼 , the AUC of our membership-inference attack can
be written as

𝐴𝑈𝐶 =
1

2

(
1 + erf

(
𝛼𝑑

2

√︁
𝑑 (𝛼𝑛2 + 𝛼2)

))
While it seems as if the attack’s success is independent of the

magnitude of the distribution shift, ∥𝜈 ∥2, it is important to note that

𝛼 should be set by the challenger such that the error on the new task

(namely, estimating the mean of the new dataset, 𝑌 ) is minimized.

In this particular setting, 𝛼 would be chosen to minimize the mean

squared error between 𝜇 and the mean of 𝑌 , 𝜇 + 𝜈 . The proof for
the optimal setting of 𝛼 can be found in Appendix A.3.
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Figure 3: AUC of our Membership-Inference Attack on Mean
Estimation as a Function of 𝛼 .

Figure 3 visualizes the attack’s AUC from Lemma 4 as a function

of the parameter 𝛼 . Here, the parameters 𝑛,𝑚, and 𝑑 are fixed. Our

choices of the data’s dimension, 𝑑 , are motivated by the dimension

206



TMI! Finetuned Models Leak Private Information from their Pretraining Data Proceedings on Privacy Enhancing Technologies 2024(3)

of the data in our evaluation on vision models (Section 5.3). We

observe that there is a rapid increase in AUC as more information

about𝑋 is preserved in the public statistic (i.e. as𝛼 increases). In this

figure, the value for 𝛼 when𝑑 = 12, 000 and ∥𝜈 ∥2 = 5 that minimizes

the error on the new task, 𝑌 , is roughly 0.77. This 𝛼 corresponds

to an AUC of 0.96. If we make the distribution shift larger, say

∥𝜈 ∥2 = 10, the optimal value of 𝛼 is 0.51, which corresponds to an

AUC of 0.78. This shows that the success of our attack on mean

estimation depends on the extent to which we combine the means

of 𝑋 and 𝑌 using the parameter 𝛼 , which is based on the similarity

of the "pretraining" data 𝑋 and the "finetuning" data 𝑌 .

4.2 Adapting an Existing Attack
As a first attempt to create an effective membership-inference at-

tack on finetuned machine learning models, we can consider an

adaptation of the likelihood ratio attack (LiRA) proposed by Carlini

et al. [19]. In this attack (Algorithm 2), the adversary observes the

target model’s prediction confidence on a challenge point with

respect to the true label of the challenge point. Because the model’s

confidence with respect to a given label is approximately normally

distributed, Carlini et al. perform a likelihood ratio test to infer the

challenge point’s membership status, using a set of shadow models

to parameterize the IN and OUT distributions.

In our setting, these shadow models are first trained on datasets

drawn from D𝑃𝑇 , then finetuned on a dataset drawn from D𝐹𝑇
(Algorithm 1). Because the ground truth label of the challenge point

drawn from D𝑃𝑇 is not necessarily in the range of our finetuned

target model we cannot perform the likelihood ratio test with re-

spect to the observed confidence on the point’s true label. Instead,

we can adapt the attack to use the label predicted by the target

model with the highest confidence, 𝑦. To do this, we store the en-

tire prediction vector for each query to our shadow models, and

only use the scaled model confidences at index 𝑦, denoted 𝑓 (𝑥)�̂� ,
of the prediction vectors. We follow the lead of Carlini et al. [19]

and query each shadow and target model on𝑀 random augmen-

tations of the challenge point and fit𝑀-dimensional multivariate

normal distributions to the scaled model confidences we aggregate

to improve attack success.

4.3 Issues with Adapting LiRA
While this adaptation of LiRA is somewhat effective at inferring

membership (Figures 5 and 6), it only captures how the pretraining

dataset influences model’s predictions with respect to a single label

in the downstream dataset. Because the purpose of pretraining is to

extract and learn general features that can be used in several down-

stream tasks, one would expect that the weights of a pretrained

model have some impact on all of a finetuned model’s prediction

confidences. For example, Figure 4 shows that the presence of a

specific image labeled as "dugong" in the training set makes fine-

tuned models, which cannot themselves predict the label "dugong",

more confident on their downstream prediction of "elephant" and

"platypus". Meanwhile, the presence of this image in the training

dataset has little to no impact on the downstream label "scissors".

Furthermore, if we observe the distribution of scaled model con-

fidences over our shadow models, we see that it is approximately

normal regardless of the choice of label. This may lead one to believe

Algorithm 2 Adapted LiRA
We adapt the MI attack shown in [19] by using the label which

the target model predicted most confidently instead of the ground

truth label.

Require: A finetuned target model 𝑓𝛽 , a challenge point

𝑥 ← D𝑃𝑇 , and models and datasets (i.e. the output of

train_shadow_models() )
1: preds

in
← {}, preds

out
← {}

2: ®𝑣
obs
← 𝑓𝛽 (𝑥) ⊲ Query the target model on 𝑥

3: conf
obs
← logit(max𝑖 ®𝑣obs,𝑖 ) ⊲ Store max confidence score

4: 𝑦 ← arg max𝑖 ®𝑣obs,𝑖 ⊲ Store most confident predicted label

5: 𝑖 ← 1 ⊲ Index for saved shadow models and datasets

6: for 𝑁 times do
7: if 𝑥 ∈ datasets𝑖 then ⊲ If 𝑥 is IN w.r.t. shadow model 𝑖

8: 𝑓in ← models𝑖

9: confin ← logit(𝑓in (𝑥)�̂�) ⊲ Query 𝑓in on 𝑥

10: preds
in
← preds

in
∪ {confin} ⊲ Aggregate confidences

11: else if 𝑥 ∉ datasets𝑖 then
12: 𝑓out ← models𝑖

13: confout ← logit(𝑓out (𝑥)�̂�)
14: preds

out
← preds

out
∪ {confout}

15: 𝜇in ← mean(preds
in
), 𝜇out ← mean(preds

out
)

16: 𝜎2

in
← var(preds

in
), 𝜎2

out
← var(preds

out
)

17: return
𝑝 (conf

obs
|N (𝜇in, 𝜎2

in
))

𝑝 (conf
obs
|N (𝜇out, 𝜎2

out
))

that the correct adaptation of LiRA to our setting would be to fit

a multivariate normal distribution to the entire prediction vectors

output by our shadow models. The assumption that the adversary

only receives model confidences interferes with this seemingly bet-

ter adaptation because of the softmax activation function. When

softmax is applied, it converts the logit vector ®𝑧 into a probability

distribution, ®𝑦, over the labels. Thus, the entries of ®𝑦 can be written

as

®𝑦 = (𝑝1, 𝑝2, . . . , 𝑝𝐾 ) ∈ (0, 1)𝐾

where 𝐾 is the number of classes and each 𝑝𝑖 denotes the model’s

confidence on class 𝑖 . Because the entries of ®𝑦 necessarily sum up

to 1, any entry 𝑝𝑖 can be written as 1 − ∑
𝑗≠𝑖 𝑝 𝑗 . When we scale

model confidences to compute the individual logits, 𝑧𝑖 , any given

computed logit can be written as a combination of the others. This

means that our computed logits actually lie on a (𝐾−1)-dimensional

subspace of the 𝐾-dimensional space where the model’s actual

logits lie, and we cannot fit a 𝐾-dimensional multivariate normal

distribution to all of our models’ logit scaled prediction vectors

without arbitrarily removing one of the entries in ®𝑦.

4.4 Our TMI Attack
Our Transfer Membership Inference (TMI) attack (Algorithm 3)

starts with the same shadow model training procedure as Algo-

rithm 2, where the adversary trains shadowmodels on datasets sam-

pled from D𝑃𝑇 and finetunes them on datasets sampled from D𝐹𝑇 .
The adversary then queries the challenge point on these shadow

models to construct a dataset, 𝐷meta, comprised of logits attained
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Queried Image: Dugong
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Figure 4: Scaled Model Confidences of Shadow Models Fine-
tuned on Caltech 101 at Multiple Labels when Queried on a
Sample from the "Dugong" Class in Tiny Imagenet

from scaling the prediction vectors as described in Section 2.1.1.

To construct a distinguishing test that circumvents the issues that

arise when attempting to parameterize the distribution of predic-

tion vectors, the adversary trains a metaclassifier on a collection

of labeled prediction vectors 𝐷meta, queries the target model on

the challenge point, and scales the target model’s prediction vector.

Lastly, the adversary queries this observed prediction vector on

their metaclassifier, which outputs a score in the interval [0, 1]
that indicates the predicted membership status of the challenge

point. Using a metaclassifier attack, TMI, is still able to leverage

the influence of memorized pretraining samples on predictions in

the downstream task while not having to arbitrarily discarding one

of the entries from the prediction vector.

In our implementation of TMI for computer vision models, we

train a metaclassifier per challenge point. Because we use a rela-

tively small number of shadow models (64 IN and 64 OUT in total),

we leverage random augmentations to construct a larger metaclas-

sifier dataset. Each time we query the target model or our local

shadow models, we query𝑀 times with different random augmen-

tations of the challenge point, including random horizontal flips

and random crops with padding. This yields𝑀 × 2 × 64 prediction

vectors for each challenge point. In total, our metaclassifiers are

trained on 1024 labeled prediction vectors, 512 labeled 0 to denote

"non-member" or OUT and 512 labeled 1 to denote "member" or IN.

Due to computational limitations, we do not pretrain any shadow

models for our attacks in the language domain. Rather, we use a

publicly hosted pretrained model and finetune it on a downstream

task. Without control over pretraining, we cannot produce a meta-

classifier dataset with prediction vectors from both IN and OUT

shadow models with respect to a single challenge point. This sce-

nario can be represented in Algorithm 1 by ommiting lines 4, 5 and

Algorithm 3 TMI Metaclassifier Attack
We pretrain shadow models with and without the challenge point

and finetune them using query access to D𝐹𝑇 to estimate the target

model’s prediction behavior. Using the prediction vectors of our

shadow models on the challenge point, we generate a dataset to

train a metaclassifier to determine the challenge point’s member-

ship status.

Require: A finetuned target model 𝑓𝛽 , a challenge point

𝑥 ← D𝑃𝑇 , and models and datasets (i.e. the output of

train_shadow_models() )
1: preds

in
← {}, preds

out
← {}

2: 𝑖 ← 1 ⊲ Index for saved shadow models

3: for 𝑁 times do
4: if 𝑥 ∈ datasets𝑖 then ⊲ If 𝑥 is IN w.r.t. shadow model 𝑖

5: 𝑓in ← models𝑖

6: ®𝑣in ← 𝜙 (𝑓in (𝑥)) ⊲ Query IN model on x

7: preds
in
← preds

in
∪ {(®𝑣in, 1)} ⊲ Store and label the

prediction vector

8: else if 𝑥 ∉ datasets𝑖 then
9: 𝑓out ← models𝑖

10: ®𝑣out ← 𝜙 (𝑓out (𝑥))
11: preds

out
← preds

out
∪ {(®𝑣out, 0)}

12: 𝑖 ← 𝑖 + 1

13: 𝐷meta = preds
in
∪ preds

out
⊲ Construct the metaclassifier

dataset

14: M ← T (𝐷meta) ⊲ Train a binary metaclassifier

15: ®𝑣
obs

= 𝜙 (𝑓𝛽 (𝑥)) ⊲ Query the target model on 𝑥

16: OutputM(®𝑣
obs
)

6, where 𝑔 refers to the publicly hosted pretrained language model.

As a result, we use a global metaclassifier, trained on a dataset con-

taining the prediction vectors of all challenge points, to produce

membership scores.

5 TMI EVALUATION
We evaluate the performance of our TMI attack on image mod-

els with two pretraining tasks and four downstream tasks and

public, pretrained language models with one pretraining task and

two downstream tasks. We evaluate the success of our attack as

a function of the number of updated parameters, and we choose

downstream tasks with differing similarity to the pretraining task

to show how attack success depends on the relevance of the pre-

training task to the downstream task. Additionally, we observe the

success of our attack when differential privacy [13] is used in the

finetuning process, which is an increasingly popular technique to

maintain utility while preserving the privacy of individuals in the

dataset of downstream task [2–6, 50].

This section presents the results of our evaluation of TMI and
addresses the following research questions with respect to the

datasets in our experiments:

Q1: Can finetuned models leak private information about their

pretraining datasets via black-box queries?

Q2: Does updating a model’s pretrained parameters instead of

freezing them prevent privacy leakage?
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Q3: Does the similarity between the pretraining and downstream

task affect the privacy risk of the pretraining set?

Q4: Can the attack be generalized to domains other than vision?

Q5: Is it feasible to mount our attack on finetuned models that

are based on publicly hosted foundation models?

Q6: Is privacy leakage present even when a model is finetuned

using differential privacy?

5.1 Datasets and Models
In this section we will discuss the datasets used in our evaluation

of TMI. We will also discuss our choices of pretraining and down-

stream tasks used in our evaluation.

5.1.1 Datasets. We pretrain our small vision models on CIFAR-

100 [23] and finetune them on a coarse-labeled version of CIFAR-

100, CIFAR-10 [23], and Oxford-IIIT Pet [26]. Our larger vision

models are pretrained on Tiny ImageNet [24] and finetuned on

Caltech 101 [25]. For our language tasks, we use publicly available

pretrained WikiText-103 [27] models and finetune them on DBpe-

dia [51] and Yahoo Answers [52] topic classification datasets. A

detailed description of the datasets used in our evaluation can be

found in Appendix C.1.

5.1.2 Models. For our vision tasks, we use the ResNet-34 [53] and

Wide ResNet-101 [54] architectures. The ResNet architecture has

been widely used in various computer vision applications due to

its superior performance and efficiency. ResNet is a convolutional

neural network architecture that uses residual blocks, allowing it

to effectively handle the complex features of images and perform

well on large-scale datasets.

For our language tasks, we use the Transformer-XL [55] model

architecture. In particular, we use the pretrained Transformer-XL

model from Hugging Face, which is trained on WikiText-103 [27],

as our initialization for the downstream tasks. We finetune our

pretrained language model architectures on the DBpedia ontology

classification and Yahoo Answers topic classification datasets.

5.1.3 Shadow Model Training.
Here, we describe the shadow model training procedure for our

vision tasks, which comprise the majority of our experiments. The

details for how we train shadow models for our language task

can be found in Section 5.3.3. A full description can be found in

Appendix C.2

Our shadow model training involves two phases: pretraining

and finetuning. In the pretraining phase, we train 129 models are

trained on random 50% splits of CIFAR-100 and Tiny ImageNet

using SGD with weight decay and cosine annealing for 100 epochs

(ResNet-34) or 200 epochs (Wide ResNet-101). Standard data aug-

mentations are applied during training and querying. In the second

phase, the shadow models have a subset of their weights frozen

and their classification layer swapped to match new task. Then,

they are finetuned on random subsets of downstream task datasets.

During pretraining, we designate a random set of challenge points

to evaluate the TMI attack. Because we train on 50% splits of the

pretraining data, approximately half of the challenge points are IN

and OUT for each shadow model. In each experiment, we select a

shadow model to be the target and use the remaining 128 to mount

our attack, yielding a total of 128 trials.

5.2 Metrics
To evaluate the performance of TMI, we use a set of metrics that are

commonly used in the literature. The first metric is balanced attack
accuracy, which measures the percentage of samples for which our

attack correctly identifies membership status. Although balanced

accuracy is a common metric used to evaluate MI attacks [18, 38,

47, 56], prior work [19] argues that it is not sufficient by itself to

measure the performance of MI attacks as privacy is not an average

case metric [57]. Therefore, we also evaluate our attack using the

receiver operating characteristic (ROC) curve.
The ROC curve provides us with several additional metrics that

we can use to evaluate the performance of TMI. In our evaluation,

we plot the ROC curve on a log-log scale to highlight the true

positive rate (TPR) at low false positive rates (FPR), and we measure

the area under the curve (AUC) as a summary statistic. Additionally,

we report the TPR at low, fixed FPR of 0.1% and 1%. These metrics

give us a more complete picture of how well TMI performs in

different scenarios.

5.3 Experimental Results
In this section, we will discuss the performance of our attack on

a variety of target models with different finetuning streategies.

We consider models finetuned using feature extraction, models

finetuned by updating pretrained weights, models finetuned with

differential privacy, and publicly hosted pretrained models.

During training, we designate 1000 and 2000 samples to be chal-

lenge points for CIFAR-100 and Tiny ImageNet, respectively, and

we run our attack for each of these challenge points on 128 different

target models. We compare our results to performing LiRA [19]

directly on the pretrained model (i.e., the adversary has access to

the model before it was finetuned) to provide an upper bound on

our attack’s performance.

5.3.1 Feature Extraction.
Q1: Can finetuned models leak private information about
their pretraining datasets via black-box queries?

To answer this research question, we evaluate the success of

our TMI attack on models finetuned without updating any of the

pretrained parameters (i.e. feature extraction). We consider three

tasks in our experiments where feature extraction is used to finetune

our target model: Coarse CIFAR-100, CIFAR-10, and Caltech 101.

Because feature extraction relies on the pretrained model being

relevant to the downstream task, we choose the two most similar

downstream tasks to pretraining. Our attack’s success depends

on the target model having high utility on its respective task, so

it is important to ensure that we choose downstream tasks that

are similar or relevant to the pretraining task when using feature

extraction to finetune models. To transfer the pretrained CIFAR-100

models to Coarse CIFAR-100 and CIFAR-10 and the pretrained Tiny

ImageNet models to Caltech 101, we remove the final classification

layer, and replace it with a randomly initialized classification layer

which has proper number of classes for the new downstream task.

The remaining weights are kept frozen throughout training.

As shown in Figure 5, we observe thatTMI is able to achieveAUC
and balanced accuracy (0.78 and 69%) within 0.06 of the adversary

which has access to the pretrained model (0.83 and 75%) on the

Coarse CIFAR-100 downstream task. On this task, TMI also has a
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TPR of 5.7% and 16.1% at 0.1% and 1% FPR, respectively. Despite

being constrained to only having query access to the finetuned

model, Figure 5 shows that the TPR of TMI is approximately equal

at higher FPR (about 5%) to that of running LiRA directly on the

pretrained model.

Furthermore, Table 1 also shows the performance of TMI on
target models finetuned on the CIFAR-10 and Caltech 101 down-

stream tasks. When we run TMI on the Tiny ImageNet models

which are finetuned on Caltech 101, our attack achieves an AUC

of 0.914, which is within 6% of the AUC achieved by LiRA directly

on the pretrained model. As shown in Table 1, TMI has a 207×
and 41× higher TPR than FPR when the FPR is fixed at 0.1% and

1%, respectively. On the CIFAR-10 finetuned models we observe

that TMI achieves a TPR of 2.0% and 8.0% at 0.1% and 1% FPR, re-

spectively. Figure 5 shows that TMI also achieves an AUC of 0.684

and a balanced accuracy of 62.4% when the downstream task is

CIFAR-10. The lower attack success may be due to the relevance of

the features learned during pretraining to the downstream task. For

all three tasks, using our adaptation of LiRA and not incorporating

information about all of the downstream labels yields significantly
lower performance by all of our metrics than TMI. For example,

at 0.1% FPR, our attack has a TPR 14.7×, 8.1×, 6.7× higher than

adapted LiRA on Caltech 101, Coarse CIFAR-100 and CIFAR-10,

respectively. TMI also achieves an AUC about 1.3× higher than

adapted LiRA on the Coarse CIFAR-100 and CIFAR-10 tasks and an

AUC 1.7× higher on Caltech 101.

Q1 Answer: Yes, it is possible to infer the membership status of an

individual in a machine learning model’s pretraining set via query

access to the finetuned model.

Table 1: TPR at Fixed FPR of TMI and Our Adaptation of
LiRA when Pretrained Target Models are Finetuned Using
Feature Extraction (Figures 5 and 6 )

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (CIFAR100→ Coarse CIFAR-100) 5.7% 16.1%

TMI (CIFAR100→ CIFAR-10) 2.0% 8.0%

TMI (Tiny ImageNet→ Caltech 101) 20.7% 41.5%

Adapted LiRA (CIFAR100→ Coarse CIFAR-100) 0.7% 3.1%

Adapted LiRA (CIFAR100→ CIFAR-10) 0.3% 1.5%

Adapted LiRA (Tiny ImageNet→ Caltech 101) 1.4% 0.25%

LiRA Directly on Pretrained Model (CIFAR-100) 15.6% 22.9%

LiRA Directly on Pretrained Model (Tiny ImageNet) 37.2% 60.1%

5.3.2 Updating Model Parameters.
Q2: Does updating a model’s pretrained parameters instead
of freezing them prevent privacy leakage?

CIFAR-10. The ResNet models we pretrain on CIFAR-100 are

divided into ResNet blocks or layers, which each contain multiple

sub-layers. When finetuning pretrained ResNet models on CIFAR-

10, we unfreeze the weights in different subsets of these ResNet

layers. More concretely, we observe the performance of our attack

on ResNet models which have had their classification layer (feature

extraction), last 2 layers (62% of total parameters), and last 3 layers

(90% of parameters) finetuned on the downstream task.

In Figure 7, we observe that the AUC and accuracy of TMI
slightly decrease as we update an increasing number of parameters.

We also observe a very slight decrease the TPR at a 1% FPR when

the number of finetuned parameters is increased from 2 layers to 3

layers, but TPR decreases at the FPR we consider when comparing

to the TPR of TMI on models finetuned with feature extraction.

Table 2 shows that updating the model’s parameters induces a

decrease in up to 0.8% at a 0.1% FPR and up to 3.3% at a 1% FPR.

Caltech 101. The Wide ResNet models we pretrain on Tiny Im-

ageNet have a similar architecure to the ResNets in the previous

experiments, where each block contains sub-layers. For this ar-

chitecture, we run our attack on models which have had their

classification layer (feature extraction), last 2 layers (34% of total

parameters), and last 3 layers (96% of parameters) finetuned on

Caltech 101. Figure 15, which corresponds to this experiment, can

be found in Appendix D. We observe a similar trend to the previ-

ous experiments on CIFAR-10 models, where the attack’s success

decreases as we increase the number of finetuned parameters. In

Table 2 we see that for a fixed FPR of 0.1%, TMI has a 20.7%, 11%,
and 7.7% TPR when the final, last two, and last three layers are

finetuned, respectively. At a 1% FPR, TMI has a 41.5%, 26.5% and

20.6% TPR for these three settings. Nevertheless, TMI achieves com-

parable AUC and balanced accuracy metrics to feature extraction

when we finetune the majority of model parameters in both the

CIFAR-10 and Caltech 101 experiments.

Prior work [58] has shown that samples used earlier in train-

ing are more robust to privacy attacks. Our theoretical results in

Section 4.1 substantiate this work and help provide an explanation

for the decrease in attack success. In our results, 𝛼 corresponds to

the fraction of training epochs spent on finetuning, but our anal-

ysis lacks a critical parameter from our experiments: the number

or fraction of tunable parameters in the published statistic. Our

analysis considers a vector (namely, the empirical mean) where all

of the parameters are being updated, thus providing a worst-case
situation for the adversary. In the feature extraction setting, the

information learned by the model during pretraining is essentially

frozen. Unlike feature extraction, we are updating the model’s pa-

rameters with information about the downstream samples when

finetuning.

Q2 Answer: Updating larger subsets of model parameters slightly

decreases the success of our TMI attack when compared to models

finetuned on downstream tasks using feature extraction, but we are

still able to infer the membership status of the majority of samples

in the pretraining dataset.

Table 2: TPR at Fixed FPR of TMI when Pretrained Target
Models are Finetuned on by Updating the PretrainedWeights
(Figures 7 and 15)

Task TPR @ 0.1% FPR TPR @ 1% FPR

Feature Extraction (CIFAR-100→ CIFAR-10) 2.0% 8.0%

Last 2 Layers (CIFAR-100→ CIFAR-10) 1.1% 5.6%

Last 3 Layers (CIFAR-100→ CIFAR-10) 1.1% 4.7%

Feature Extraction (Tiny ImageNet→ Caltech 101) 20.7% 41.5%

Last 2 Layers (CIFAR-100→ CIFAR-10) 11.0% 26.5%

Last 3 Layers (CIFAR-100→ CIFAR-10) 7.7% 20.6%

Q3: Does the similarity between the pretraining and down-
stream task affect the privacy risk of the pretraining set?
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Figure 5: TMI Attack Performance on Downstream Tasks When Preterained CIFAR-100 Target Models are Finetuned Using
Feature Extraction
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Figure 6: TMI Attack Performance When Preterained Tiny
ImageNet Target Models are Finetuned Using Feature Extrac-
tion

Oxford-IIIT Pet. The Oxford-IIIT Pet dataset presents a unique

challenge for finetuning our pretrained ResNet models. To finetune

these models on the pet breeds classification task, it is necessary to

unfreeze all of the layers. Otherwise, the model would have little

to no utility with respect to the downstream task. Because the 37

pet breeds that appear in this dataset do not appear in and are not

similar to any of the classes in the pretraining data, freezing any

of the model’s weights is an innefective strategy for this task. In

this evaluation of TMI on models transferred from CIFAR-100 to

Oxford-IIIT Pet, we finetune for the same number of epochs with

the same hyperparameters as the models in our experiments with

CIFAR-10.

We observe in Figure 8 that the accuracy and AUC of our adap-

tation of LiRA becomes effectively as good as randomly guessing

membership status. In contrast, TMI is still able to achieve some

amount of success, with an AUC of 0.55 and a balanced accuracy

of 53.4% over 128 target models with 1000 challenge points each.

10 4 10 3 10 2 10 1 100

False Positive Rate

10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Feature Extraction, auc=0.684, acc=0.624
Last 2 Layers, auc=0.641, acc=0.595
Last 3 Layers, auc=0.624, acc=0.583
Direct Access to Pretrained Model, auc=0.832, acc=0.745

Figure 7: TMI Performance when Finetuning Different
Amounts of Parameters on CIFAR-10

Table 3: TPR at Fixed FPR of TMI when Target Models are
Finetuned on Oxford-IIIT Pet by Finetuning All Layers

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (Oxford-IIIT Pet) 0.5% 2.6%

Adapted LiRA (Oxford-IIIT Pet) 0.08% 1.0%

Additionally, our attack demonstrates a 2.6% true positive rate at a

1% false positive rate.

Q3 Answer: Even though the downstream task of pet breed classifi-

cation is dissimilar from the pretraining task and all of the model’s

parameters are finetuned for 20 epochs, TMI is able to achieve

non-trivial success metrics when inferring the membership status

of samples in the pretraining dataset.

5.3.3 Finetuning Pretrained Language Models.
Q4: Can the attack be generalized to domains other than
vision?
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Figure 8: TMI Performance when Finetuning All Parameters
on the Oxford-IIIT Pet Dataset

To answer this research question, we evaluate the success of our

TMI attack in the natural language domain. In particular, we focus

on publicly available pretrained large language models (LLMs), or

foundationmodels [59], whichwe finetune on two text classification

tasks.

Due to computational limitations, we do not train LLMs from

scratch. As an alternative, we evaluate our attack on a widely used

pretrained foundation model, Transformer-XL [55], along with its

corresponding tokenizer, which are hosted by Hugging Face [60].

Only a limited number of organizations with sufficient computa-

tional resources possess the capability to train foundation models,

which are typically fine-tuned on specific tasks by smaller orga-

nizations [61–63]. Through our evaluation of TMI on finetuned

foundation models, we will additionally answer the following re-

search question:

Q5: Is it feasible to mount our attack on finetuned models
that are based on publicly hosted foundation models?

We chose this foundation model in particular because it uses

known training, validation, and testing splits from the WikiText-

103 [27] dataset, providing us with the exact partitions necessary

to evaluate TMI without having to train our own LLMs. Addition-

ally, although modest in comparison to contemporary foundation

models, the Transformer-XL architecture contains 283 million train-

able parameters. This makes it a powerful and expressive language

model that may be prone to memorizing individual data points.

We finetune Transformer-XL on DBpedia [51], modifying the

pretrained tokenizer to use a max length of 450, including both

truncation and padding. Using a training set of 10,000 randomly

sampled datapoints from DBpedia, we finetune the last third of the

parameters in our Tranformer-XL models for 1 epoch. We use the

AdamW [64] optimizer with a learning rate of 10
−5

and weight

decay with 𝜆 = 10
−5
. With these hyperparameters, we are able to

achieve test accuracies of 97% and 60% on the 14 classes of DBpedia

and 10 classes of Yahoo Answers, respectively.

To prepare our membership-inference evaluation dataset, the

WikiText-103 is partitioned into contiguous blocks, separated each

by Wikipedia subsections. We then perform the same tokeniza-

tion process as we do in finetuning before collecting their pre-

diction vectors. Because we do not pretrain our own LLMs, we

adapt TMI to train a single, global metaclassifier over the predic-

tion vectors of all challenge points rather than train a metaclas-

sifier per challenge point. In total, we use 2650 challenge points,

which corresponds to a metaclassifier dataset with size |𝐷meta | =
2560 ∗ (number of shadow models).

We are unable to compare TMI to our adaptation of LiRA be-

cause we cannot pretrain our own LLMs. Our adaptation of LiRA

requires additional shadow models to be trained from scratch with

respect to every challenge point as detailed in Algorithm 2. In our

evaluation, we also find that k-nearest neighbors (KNN) signifi-

cantly outperforms a neural network as a global metaclassifier. We

believe this to be the case due to the additional variance incurred

in a (global) metaclassifier dataset containing prediction vectors

from all challenge points. In contrast, the metaclassifier datasets

used in our vision tasks only contained labeled prediction vectors

with respect to a single challenge point.
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64 Shadow Models, k = |Dmeta| ; auc=0.645, acc=0.596
64 Shadow Models, k = 64; auc=0.673, acc=0.613

Figure 9: TMI Performance on a Publicly Available
Transformer-XL Model Finetuned on DBpedia-14 Topic Clas-
sification

We present the results of our evaluation on LLMs in Figures 9

and 16 and Tables 4 and 5. Figure 16 can be found in Appendix D.

Although it is common practice to use 𝑘 =
√
𝑛 neighbors in a KNN,

we also report results using𝑘 equal to the number of shadowmodels

as it appears to increase attack success. As shown in Table 4, we

observe that TMI using the highest number of shadow models

(64), is able to achieve a TPR of 3.4% and 8.8% at 0.1% and 1%

FPR, respectively. These results are comparable to our findings

on CIFAR-10 from Table 2 in the vision domain. Surprisingly, we

do not observe a notable difference in our summary statistics as

we increase the number of shadow models from 16 to 64, with an

increase of only 0.652 to 0.673 in AUC, and 60% to 61.3% in accuracy

as shown in Figure 9.

The results shown in Figure 16 and Table 5 are consistent with

our finding in Section 5.3.2 for similarity between the pretraining

and downstream task. We see a slight decrease in TMI’s success
when Transformer-XL is finetuned on a completely new task, Yahoo
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Answers, versus when it is finetuned on data from a similar distri-

bution to its pretraining, DBpedia-14. When the Transformer-XL

model is finetuned on the Yahoo Answers topic classification task,

TMI achieves a TPR of 2.6% and 4.2% at 0.1% and 1% FPR, respec-

tively. Compared to our previous language model experiments, the

TMI sees a decrease in AUC from 0.67 to 0.59 and a slight decrease

in accuracy from 61% to 56%.

Table 4: TPR at Fixed FPR of TMI on Pretrained WikiText-
103 Transformer-XL Finetuned on DBpedia-14 (Figure 9)

Task TPR @ 0.1% FPR TPR @ 1% FPR

16 Shadow Models (𝑘 =
√︁
|𝐷meta |) 1.6% 5.2%

16 Shadow Models (𝑘 = 16) 2.6% 7.0%

32 Shadow Models (𝑘 =
√︁
|𝐷meta |) 2.0% 5.5%

32 Shadow Models (𝑘 = 32) 3.1% 8.1%

64 Shadow Models (𝑘 =
√︁
|𝐷meta |) 2.2% 6.0%

64 Shadow Models (𝑘 = 64) 3.4% 8.8%

Q4 Answer: Yes, we are able to generalize TMI to domains other

than vision. In particular, we are able to show that our attack is ef-

fective against pretrained language models, and present our results

on the publicly hosted Transformer-XL foundation model without

the need to pretrain any additional large language models.

Q5 Answer: Yes, TMI continues to be effective in this situation

where we finetuned public foundation models. This reinforces the

need for understanding privacy leakage in the transfer learning

setting used for foundation models.

Table 5: TPR at Fixed FPR of TMI on PretrainedWikiText-103
Transformer-XL Finetuned on Yahoo Answers (Figure 16)

Task TPR @ 0.1% FPR TPR @ 1% FPR

16 Shadow Models (𝑘 =
√︁
|𝐷meta |) 1.4% 3.8%

16 Shadow Models (𝑘 = 16) 1.1% 4.0%

32 Shadow Models (𝑘 =
√︁
|𝐷meta |) 1.9% 3.7%

32 Shadow Models (𝑘 = 32) 2.0% 4.4%

64 Shadow Models (𝑘 =
√︁
|𝐷meta |) 2.1% 3.8%

64 Shadow Models (𝑘 = 64) 2.6% 4.2%

5.3.4 Transfer Learning with Differential Privacy.
Q6: Is privacy leakage present evenwhen amodel is finetuned
using differential privacy?

We also discuss the performance of our attack on target models

that were finetuned with differential privacy. Because prior work

on transfer learning with differential privacy considers strategies

where an especially small percentage of parameters are trained on

the downstream task [1, 2, 4, 50], we freeze the pretrained model’s

weights and train only the final layer on the downstream task. In

our experiments, we perform feature extraction to finetune our

pretrained CIFAR-100 models on Coarse CIFAR-100 and CIFAR-10.

We train the final classification layer using DP-SGD [50] with target

privacy parameters 𝜀 = {0.5, 1} and 𝛿 = 10
−5
. As these are strict

privacy parameters, we set the clipping norm equal to 5 to achieve

reasonable utility on the downstream tasks.

Figure 17 in Appendix D shows that the success of our attack

only decreases slightly when differential privacy is used to train the

final classification layer on a downstream task. We believe that the

slight decrease in attack accuracy can be attributed to loss in utility

with respect to the downstream task from training with DP-SGD.

When we finetune our models on Coarse CIFAR-100 with privacy

parameters 𝜀 = 0.5 and 𝛿 = 10
−5
, TMI has a TPR of 3.3% at a FPR

of 0.1% and a TPR of 10.7% at a FPR 1%. Additionally, our attack

maintains about 95% of the accuracy and AUC compared to the

setting where no privacy preserving techniques are used to finetune

models on Coarse CIFAR-100.

Prior work [19] has shown that state-of-the-art MI attacks, which

directly query the pretrained model, completely fail when the target

models are trained with a small amount of additive noise. For ex-

ample, when training target models using DP-SGD with a clipping

norm equal to 5 and privacy parameter 𝜀 = 8, LiRA has an AUC of

0.5. Through this evaluation, we reinforce the fact that transferring

pretrained models to downstream tasks with differential privacy

does not provide a privacy guarantee for the pretraining data.

While it may seem expected that finetuning on a disjoint dataset

with DP-SGD provides no privacy guarantee for individuals in

the pretraining set, the authors of [7] pose the following question:

What privacy guarantee should an individual expect if their data
was present in both pretraining and finetuning? This scenario is not

unlikely, as large models are trained on terabytes of data scraped

from the Web [10, 65]. Because manually inspecting these datasets

is infeasible, it is likely that an individual’s datapoint which was

included in private finetuning is also present in non-private pre-
training. Thus, their data does not enjoy the (𝜀, 𝛿) − 𝐷𝑃 guarantee

promised by finetuning, as the corresponding pretraining gradients

are unbounded in magnitude and exact in direction. Misusing DP-

SGD in this manner can leave these individuals at risk of privacy

attacks.

To support our claim that finetuning with DP-SGD is blatantly

non-private when 𝐷𝑃𝑇 ∩ 𝐷𝐹𝑇 ≠ ∅, we run experiments on the

CIFAR-100 dataset. Similar to our prior experiments, we finetune

the final layer of ResNet-34 shadow models on the Coarse CIFAR-

100 dataset using DP-SGD [50] with target privacy parameters

𝜀 ∈ {0.5, 1} and 𝛿 = 10
−5

and clipping norm equal to 5. The only

difference in this experiment is the fact that the finetuning set

contains some (∼1000) individuals who were also present in the

pretraining task. We run our TMI attack on these individuals and

report the results in Figure 10 and Table 7. When we finetune with

DP-SGD and the challenge points are included in the finetuning set,

we see true positive rates that are comparable to our experiments

on models finetuned using feature extraction (Table 1). At a fixed

FPR of 0.1% and target privacy guarantees of 𝜀 = 0.5 and 𝜀 = 1, TMI
achieves a TPR 15.6× higher than the upper bound (end-to-end)

training with DP-SGD should provide.

Q6Answer: Finetuning a pretrained model using DP-SGD provides

a privacy guarantee only for the downstream dataset. Therefore,

DP-SGD has little to no impact on privacy risk of the pretraining

dataset, and these downstream models leak the membership status

of individuals in the pretraining dataset.

In settings where the pretraining and finetuning data overlap,

the guarantee that differential privacy typically provides does not

hold. This happens because any given individual’s influence in the
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Figure 10: TMI Performance on Samples Present in Both 𝐷𝑃𝑇 and 𝐷𝐹𝑇 when Finetuning Models with DP-SGD

pretraining process is unbounded and deterministic. Thus, pretrain-

ing can induce leakage of individuals in the finetuning set, even

when DP-SGD is used to finetune the model.

Table 6: TPR at Fixed FPR of TMI when Target Models are
Finetuned with DP-SGD (Figure 17)

Task TPR @ 0.1% FPR TPR @ 1% FPR

Coarse CIFAR-100 (𝜀 = ∞) 5.7% 16.1%

Coarse CIFAR-100 (𝜀 = 1.0, 𝛿 = 10
−5
) 3.2% 10.6%

Coarse CIFAR-100 (𝜀 = 0.5, 𝛿 = 10
−5
) 3.3% 10.7%

CIFAR-10 (𝜀 = ∞) 2.0% 8.0%

CIFAR-10 (𝜀 = 1.0, 𝛿 = 10
−5
) 1.6% 6.6%

CIFAR-10 (𝜀 = 0.5, 𝛿 = 10
−5
) 2.1% 6.6%

Table 7: TPR at Fixed FPR of TMI Performance on Samples
Present in Both 𝐷𝑃𝑇 and 𝐷𝐹𝑇 when Finetuning Models with
DP-SGD (Figure 10)

Task TPR @ 0.1% FPR TPR @ 1% FPR

TMI (𝜀 = 0.5, 𝛿 = 10
−5
) 2.5% 8.5%

TMI (𝜀 = 1.0, 𝛿 = 10
−5
) 4.2% 12.6%

Theoretical Upper Bound (𝜀 = 0.5, 𝛿 = 10
−5
) 0.16% 1.7%

Theoretical Upper Bound (𝜀 = 1.0, 𝛿 = 10
−5
) 0.27% 2.7%

6 DISCUSSION AND CONCLUSION
We study the critical issue of privacy leakage in the transfer learning

setting by proposing a novel threat model and introducing TMI, a
metaclassifier-based membership-inference attack. In particular, we

explore how finetuned models can leak the membership status of

individuals in the pretraining dataset without an adversary having

direct access to the pretrained model. Instead, we rely on queries

to the finetuned model to extract private information about the

pretraining dataset.

Through our evaluation of TMI, we demonstrate privacy leak-

age in a variety of transfer learning settings. We demonstrate the

effectiveness of our attack against a variety of models in both the

vision and natural language domains, highlighting the susceptibil-

ity of finetuned models to leaking private information about their

pretraining datasets. In the vision domain, we show that TMI is ef-
fective at inferring membership when the target model is finetuned

using various strategies, including differentially private finetuning

with stringent privacy parameters. We also demonstrate the success

of our attack on publicly hosted foundation models by adapting

TMI to use a global metaclassifier.

Other Privacy Attacks on Finetuned Models. We introduce the first

threat model that uses query access to a finetuned model to mount

a privacy attack on pretraining data. It remains an open question

as to whether other privacy attacks, such as property inference,

attribute inference, and training data extraction attacks can also see

success in this transfer learning setting. Given that MI attacks are

used as practical tools to measure or audit the privacy of machine

learning models [39–41], future work should consider efficiency

and simplicity when designing new privacy attacks in the transfer

learning setting.

Considerations for Private Machine Learning. Our evaluation

shows that the pretraining dataset of machine learning models

finetuned with differential privacy are still susceptible to privacy

leakage. This supports the argument made in [7] that "privacy-

preserving" models derived from large, pretrained models don’t

necessarily provide the privacy guarantees that consumers of ser-

vices backed by these finetuned models would expect. Prior works

that utilize public data to improve the utility of differentially private

machine learning models have made strides towards making dif-

ferential privacy practical for several deep learning tasks [1–6, 66],

but they do not address privacy risks external to model training

itself.

Using TMI as a measurement of privacy leakage in this setting,

we reinforce the fact that maintaining privacy depends on taking

a holistic approach to the way that training data is handled. As

stated in [7], privacy is not binary (i.e. not all data is either strictly

"private" or "public") and privacy in machine learning is not only

dependent on the model’s training procedure. To grapple with

214



TMI! Finetuned Models Leak Private Information from their Pretraining Data Proceedings on Privacy Enhancing Technologies 2024(3)

privacy risk in this increasingly popular transfer learning setting,

researchers and practitioners should explore new ways to sanitize

sensitive information from training datasets of machine learning

models, create ways to collect potentially sensitive Web data with

informed consent from individuals, and work towards end-to-end

privacy-preserving machine learning with high utility and privacy

guarantees.
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A MEMBERSHIP INFERENCE UNDER
DISTRIBUTION SHIFT

We analyze the success of membership inference attacks on Gauss-

ian mean estimation under distribution shift. While this setting is

simple compared to the finetuned deep learning models, it helps us

understand how repurposing one estimator for a new problem can

leak information about the original dataset.

A.1 Introduction
In this setting, the challenger has access to two datasets, 𝑋 and

𝑌 , where |𝑋 | ≫ |𝑌 |. The challenger uses these datasets to publish

a statistic that is a combination of the empirical means of each

dataset. This can be thought of as leveraging the the larger dataset,

𝑋 , to estimate a statistic that comes from a similar distribution.

The adversary’s goal is the following: Given a challenge point 𝑐 ,

determine the membership status of 𝑐 with respect to the dataset

𝑋 .

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1, . . . , 𝑦𝑚} be datasets where

each 𝑥𝑖 ∼ N(𝜇, I𝑑 ) and 𝑦𝑖 ∼ N(𝜇 + 𝜈, I𝑑 ), and let 𝜇 = 𝛼𝑥 + (1−𝛼)𝑦
be the statistic released by the challenger.

Then,

E(𝜇) = 𝜇 + (1 − 𝛼)𝜈

and

Cov(𝜇) = 𝛼2
Var(𝑥) + (1 − 𝛼)2Cov(𝑦)

=
𝛼2

𝑛
· I𝑑 +

(1 − 𝛼)2
𝑚

· I𝑑

=

(𝛼2

𝑛
+ (1 − 𝛼)

2

𝑚

)
· I𝑑

= 𝛼 · I𝑑
In this mean estimation setting, ∥𝜈 ∥2 can be thought of as the

inversely proportional to the similarity between the pretraining

and finetuning tasks. If 𝜇 is similar to the mean of the new data,

𝑌 , ∥𝜈 ∥2 is small. The term, 𝛼 , is analagous to the fraction of pre-

training epochs (i.e. number of pretraining epochs divided by the

total number of pretraining and finetuning epochs). For example if

there are 80 pretraining epochs and 20 finetuning epochs, the corre-

sponding 𝛼 value would be 0.8. Note that as 𝛼 → 0, the information

from the empirical mean of 𝑋 is completely overshadowed by the

empirical mean of 𝑌 . Prior work on membership-inference attacks

on machine learning models has suggested that gradient updates (a

special case of mean estimation) that do not contain an individual

make membership-inference success decrease with respect to that

individual [58]. This is consistent with the results we present in this

section for the simplified setting of membership-inference attacks

on Gaussian mean estimation.

A.2 Threat Model and Attack Algorithm
Similar to prior work on membership inference-attacks on mean

estimation, we assume that the adversary has query access to the

aggregate statistic, 𝜇, along with the true mean of this statistic, E(𝜇).
The membership-inference security game between the challenger

and the adversary is defined as the following:

(1) Pick 𝑏 ∼ U({0, 1})

(2) If 𝑏 = 0, sample the challenge point, 𝑐 ∼ N(𝜇, I𝑑 ), else
sample 𝑐 uniformly from 𝑋

(3) Compute 𝑧 = ⟨𝜇−E(𝜇) , 𝑐−E(𝑐)⟩ = ⟨𝜇−(𝜇+(1−𝛼)𝜈) , 𝑐−𝜇⟩
(4) If 𝑧 > 𝜏 , output 1. Else, output 0

A.3 Results
Lemma A.1. If 𝑐 is OUT (𝑏 = 0), then

E(𝑧) = 0 and Var(𝑧) = 𝑑𝛼,

and if 𝑐 is IN (𝑏 = 1), then

E(𝑧) = 𝛼𝑑

𝑛
and Var(𝑧) = 𝑑𝛼 + 2𝑑𝛼2

𝑛2

Proof. We will begin by analyzing the OUT case, where 𝑐 ∼
N(𝜇, I𝑑 )

E(𝑧) = E(⟨𝜇 − (𝜇 + (1 − 𝛼)𝜈) , 𝑐 − 𝜇⟩)
= ⟨E(𝜇 − (𝜇 + (1 − 𝛼)𝜈)) , E(𝑐 − 𝜇)⟩

= ⟨®0 , ®0⟩
= 0

Next, we compute the variance in the OUT case:

Var(𝑧) = Var(⟨𝜇 − (𝜇 + (1 − 𝛼)𝜈) , 𝑐 − 𝜇⟩)

=

𝑑∑︁
𝑖=1

Var(⟨𝜇 − (𝜇 + (1 − 𝛼)𝜈) , 𝑐 − 𝜇⟩)

=

𝑑∑︁
𝑖=1

E
(
(𝜇 − (𝜇 + (1 − 𝛼)𝜈))2𝑖 · (𝑐 − 𝜇)

2

𝑖

)
=

𝑑∑︁
𝑖=1

E
(
(𝜇 − (𝜇 + (1 − 𝛼)𝜈))2𝑖

)
· E

(
(𝑐 − 𝜇)2𝑖

)
=

𝑑∑︁
𝑖=1

𝛼 · 1

= 𝑑𝛼

Now, we will analyze the IN case, where 𝑐 is sampled uniformly

at random from the dataset, 𝑋 . In this case, the published statistic,

𝜇 and the challenge point 𝑐 are not independent. For succinctness,
let 𝑡 = (𝜇 + (1 − 𝛼)𝜈).
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(a) ROC of the membership inference attack on mean esti-
mation for various values of 𝛼 (𝑑 = 10, 000, 𝑛 = 1000, 𝑚 =

100)
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(b) ROC of the membership inference attack on mean
estimation for varying amounts of distribution shift, ∥𝜈 ∥2.
In each of these simulations, 𝛼 is set optimally according
to Lemma A.3

Figure 11: Performance of the Membership Inference Attack on Mean Estimation

E(𝑧) = E(⟨𝜇 − 𝑡 , 𝑐 − 𝜇⟩)

=

𝑑∑︁
𝑖=1

E((𝜇 − 𝑡)𝑖 · (𝑐 − 𝜇)𝑖 )

=

𝑑∑︁
𝑖=1

E(𝜇𝑖 · 𝑐𝑖 ) − 𝜇𝑖 · E(𝜇𝑖 ) − 𝑡𝑖 · E(𝑐𝑖 ) + 𝜇𝑖𝑡𝑖

=

𝑑∑︁
𝑖=1

E(𝜇𝑖 · 𝑐𝑖 ) − 𝜇𝑖 · E(𝜇𝑖 )

=

𝑑∑︁
𝑖=1

E(𝜇𝑖 · 𝑐𝑖 ) − 𝜇𝑖𝑡𝑖

Since 𝑐 = 𝑥𝑖 ∈ 𝑋 for some 𝑖 , without loss of generality suppose

𝑐𝑖 = 𝑥𝑖,1 for all 𝑖 . Then, E(𝜇𝑖 · 𝑐𝑖 ) becomes

E(𝜇𝑖 · 𝑐𝑖 ) = E
©«𝑐𝑖 · 𝛼𝑛

𝑛∑︁
𝑗=1

𝑥𝑖, 𝑗 + 𝑐𝑖 · (1 − 𝛼)𝑦𝑖
ª®¬

= E
©«𝛼𝑛 · 𝑥𝑖,1 · 𝑐𝑖 + 𝛼𝑛

𝑛∑︁
𝑗=2

𝑐𝑖 · 𝑥𝑖, 𝑗 + 𝑐𝑖 · (1 − 𝛼)𝑦𝑖
ª®¬

= E
(𝛼
𝑛
· 𝑥𝑖,1 · 𝑐𝑖

)
+ E©«𝛼𝑛

𝑛∑︁
𝑗=2

𝑐𝑖 · 𝑥𝑖, 𝑗 + 𝑐𝑖 · (1 − 𝛼)𝑦𝑖
ª®¬

= E
(𝛼
𝑛
· 𝑥2

𝑖,1

)
+ E©«𝛼𝑛

𝑛∑︁
𝑗=2

𝑐𝑖 · 𝑥𝑖, 𝑗 + 𝑐𝑖 · (1 − 𝛼)𝑦𝑖
ª®¬

=
𝛼

𝑛
E
(
𝑥2

𝑖,1

)
+ 𝛼
𝑛

𝑛∑︁
𝑗=2

E(𝑐𝑖 ) · E
(
𝑥𝑖, 𝑗

)
+ E(𝑐𝑖 ) · (1 − 𝛼)E(𝑦𝑖 )

=
𝛼

𝑛
(𝜇2

𝑖 + 1) + 𝛼
𝑛

𝑛∑︁
𝑗=2

𝜇2

𝑖 + 𝜇 · (1 − 𝛼) (𝜇 + 𝜈)𝑖

=
𝛼

𝑛
(𝜇2

𝑖 + 1) + 𝛼 (𝑛 − 1)
𝑛

𝜇2

𝑖 + 𝜇 · (1 − 𝛼) (𝜇 + 𝜈)𝑖

Plugging the above terms into the original expression for the ex-

pectation of E(𝑧) and simplifying yields

𝑑∑︁
𝑖=1

E(𝜇𝑖 · 𝑐𝑖 ) − 𝜇𝑖𝑡𝑖 =
𝑑∑︁
𝑖=1

𝛼

𝑛

=
𝛼𝑑

𝑛

Lastly, we compute the variance in the IN case:
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Var(𝑧) = Var(⟨𝜇 − 𝑡 , 𝑐 − 𝜇⟩)

=

𝑑∑︁
𝑖=1

Var((𝜇 − 𝑡)𝑖 · (𝑐 − 𝜇)𝑖 )

=

𝑑∑︁
𝑖=1

Var(𝜇𝑖 · 𝑐𝑖 − 𝜇 · 𝜇𝑖 − 𝑡 · 𝑐𝑖 )

Since 𝑐 = 𝑥𝑖 ∈ 𝑋 for some 𝑖 , without loss of generality suppose

𝑐𝑖 = 𝑥𝑖,1 for all 𝑖 . For succinctness, we drop the summation and

indices, 𝑖 , since all of the dimensions are i.i.d. Expanding 𝜇, we get

Var

©«𝑥1 ·
(𝛼
𝑛

𝑛∑︁
𝑗=1

𝑥 𝑗 + (1 − 𝛼)𝑦𝑖
)
− 𝜇 ·

(𝛼
𝑛

𝑛∑︁
𝑗=1

𝑥 𝑗 + (1 − 𝛼)𝑦
)
− 𝑡 · 𝑥1

ª®¬
We will also use the shorthand 𝛽 = 𝛼

𝑛

∑𝑛
𝑗=2

𝑥 𝑗 + (1− 𝛼)𝑦. Note that
𝛽 is normally distributed with mean 𝜇 + (1 − 𝛼)𝜈 = 𝑡 and variance

𝛼2 (𝑛−1)
𝑛2

+ (1−𝛼)
2

𝑚 . Pulling 𝑥1 out of the summations yields

= Var

(𝛼
𝑛
𝑥2

1
+ 𝑥1𝛽 −

𝛼𝜇

𝑛
· 𝑥1 − 𝜇𝛽 − 𝑡 · 𝑥1

)
= Var

(𝛼
𝑛
𝑥2

1
+ 𝑥1 (𝛽 −

𝛼𝜇

𝑛
− 𝑡) − 𝜇𝛽

)
= E

(
(𝛼
𝑛
𝑥2

1
+ 𝑥1 (𝛽 −

𝛼𝜇

𝑛
− 𝑡) − 𝜇𝛽)2

)
− E

(
(𝛼
𝑛
𝑥2

1
+ 𝑥1 (𝛽 −

𝛼𝜇

𝑛
− 𝑡) − 𝜇𝛽)

)
2

After algebraic manipulation and computing the individual ex-

pectations as in the OUT case, we arrive at

=

𝑑∑︁
𝑖=1

𝛼 + 2𝛼2

𝑛2

= 𝑑𝛼 + 2𝑑𝛼2

𝑛2

□

Lemma A.2. The mean squared error of 𝜇 (as an estimator of the
mean of the finetuning data, 𝜇 + 𝜈) is the following:

E
(
∥𝜇 − (𝜇 + 𝜈)∥2

)
= 𝛼𝑑 + 𝛼2∥𝜈 ∥2

2

The choice of 𝛼 that minimizes the mean-squared-error is

𝛼∗ =
𝑑

𝑚(∥𝜈 ∥2
2
+ 𝑑𝑛 ) + 𝑑

Proof. Consider the mean squared error of 𝜇 as an estimator of

the mean of the finetuning data , 𝜇 + 𝜈 .

E
(
∥𝜇 − (𝜇 + 𝜈)∥2

)
Note that𝑍 = 𝜇−(𝜇+𝜈) ∼ N (−𝛼𝜈, 𝛼I𝑑 ) and for any multivariate

Gaussian random variable, 𝑋 ∼ N(𝜇, Σ), we have

E
(
∥𝑋 ∥2

)
= 𝑇𝑟 (Σ) + ∥𝜇∥2

Thus, the mean squared error is

E
(
∥𝜇 − (𝜇 + 𝜈)∥2

)
= 𝛼𝑑 + 𝛼2∥𝜈 ∥2

2

Suppose the challenger who is releasing 𝜇 wants to choose 𝛼 (i.e. the

pretraining-to-finetuning split) such that the error on the finetuning

data,𝑌 , is minimized. Computing the derivative of themean squared

error with respect to 𝛼 yields

𝑀𝑆𝐸 ′(𝛼) = 2𝑑

(𝛼
𝑛
− 1 − 𝛼

𝑚

)
+ 2𝛼 ∥𝜈 ∥

Setting𝑀𝑆𝐸 ′(𝛼) = 0 and solving for 𝛼 , we find that the optimal

parameter, 𝛼∗, is

𝛼∗ =
𝑑

𝑚(∥𝜈 ∥2
2
+ 𝑑𝑛 ) + 𝑑

□

Lemma A.3. Assume the test statistic, 𝑧, is normally distributed.
The AUC of our membership-inference attack can be written as the
probability the test statistic, 𝑧, for an IN sample exceeds 𝑧 for an OUT
sample:

𝐴𝑈𝐶 =
1

2

(
1 + erf

(
𝛼𝑑

2

√︁
𝑑 (𝛼𝑛2 + 𝛼2)

))
Proof. The AUC of a classifier can be thought of as the probabil-

ity that the prediction value on a random positive example exceeds

the prediction value on a random negative example.

𝐴𝑈𝐶 = P(𝑧𝐼𝑁 > 𝑧𝑂𝑈𝑇 )

where 𝑧𝐼𝑁 ∼ N( 𝛼𝑑𝑛 , 𝑑𝛼 +
2𝑑𝛼2

𝑛2
) and 𝑧𝑂𝑈𝑇 ∼ N(0, 𝑑𝛼). Subtracting

the the two random variables, we get

𝐴𝑈𝐶 = P(𝑧𝐼𝑁 > 𝑧𝑂𝑈𝑇 )
= P(𝑧𝑂𝑈𝑇 − 𝑧𝐼𝑁 < 0)

= P

(
N

(
− 𝛼𝑑
𝑛
, 2𝑑𝛼 + 2𝑑𝛼2

𝑛2

)
< 0

)
=

1

2

(
1 + erf

( −𝛼𝑑
𝑛

√
2 ·

√︃
(2𝑑𝛼 + 2𝑑𝛼2

𝑛2
)

))

=
1

2

(
1 + erf

(
𝛼𝑑

2

√︁
𝑑 (𝛼𝑛2 + 𝛼2)

))
□
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B ABLATIONS
In this section, we evaluate variations of TMI. We limit the ad-

versary’s access to the target model’s prediction outputs, consider

different choices of metaclassifier architecture, and study how the

number of challenge point queries affects the effectiveness of our

attack.
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All Labels, auc=0.777 acc=0.689
Top 5 Labels, auc=0.709 acc=0.638
Top 1 Label, auc=0.764 acc=0.678
Direct Access to Pretrained Model, auc=0.832 acc=0.745

Figure 12: TMI Performance with Access to Prediction Confi-
dence on the Top-K Labels

B.1 Access to Top-k Predictions

In many realistic settings, an adversary who has query access to a

computer vision model may only receive predictions for top-k most

probable labels. Because our attack relies the information from a

combination of labels, we evaluate TMIwith access to the top 1, top
5, and all labels in the downstream task. For this experiment, we use

the same pretrained and finetuned models as in our experiments

with Coarse CIFAR-100. This time, when we query the shadow

models and target model, we mask the prediction confidences on

all but the top-k labels. Because the prediction confidences always

sum up to 1, we take the remaining probability mass and divide

it amongst the remaining labels to construct the vectors for the

metaclassifier (e.g. if the top 5 predictions make up 0.90 of the total

probability mass, we divide 0.10 across the remaining 15 labels).

In Figure 12, we show the performance of TMI when the adver-

sary has access to the top 1, 5, and 20 labels in our Coarse CIFAR-100

task. Interestingly, TMI with access to a single label has higher

attack success than our adaptation of LiRA (Figures 5 and 6) even

though both adversaries are given the same amount of informa-

tion. This may be due to the fact that we create some additional

information about the other classes by constructing a prediction

vector using the labels that the adversary has access to, which is

only possible if the adversary knows all of the possible class labels

a priori.

B.2 Different Metaclassifier Architectures

Throughout our evaluation, we primarily use a neural network

as our metaclassifier to perform our membership-inference attack.

In this ablation, we study how the choice of metaclassifier affects

the success of our attack. We use the following architectures: neural

network multilayer perceptron, support vector machine, logistic

regression, and k-nearest-neighbor (𝑘 =
√
𝐷meta). When using the

k-nearest-neighbor metaclassifier, we receive hard-label (binary)

predictions for membership status. This stands in contrast ot the

continuous scores that we receive from the three other metaclas-

sifier architectures. To obtain a membership score in the interval

[0, 1], we average the labels from the k-nearest-neighbor models

across the prediction vectors obtained from several different aug-

mented queries to the target model. Although we receive a continu-

ous score from each of the other metaclassifiers, we also average the

scores across all of the prediction vectors from augmented queries.
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Neural Network, auc=0.778 acc=0.690
Support Vector Machine, auc=0.767 acc=0.688
Logistic Regression, auc=0.764 acc=0.683
K-Nearest Neighbors, auc=0.717 acc=0.650

Figure 13: TMI Performance with Different Metaclassifier
Architectures

We observe that the overall impact on the effectiveness of our

attack is minimal, which indicates that TMI is relatively robust

to the choice of metaclassifier architecture. Figure 13 shows that

the AUC and accuracy slightly decrease when using metaclassifiers

other than a neural network. This suggests that an adversary could

potentially use faster metaclassifiers than neural networks, such as

logistic regression and k-nearest neighbors, without significantly

compromising the effectiveness of the attack.

B.3 Number of Augmented Queries

Our attack relies on several augmented queries of a single chal-

lenge point on a handful of local shadowmodels to construct a suffi-

ciently sized metaclassifier dataset. We also query the target model

on these augmentations and average the metaclassifier predictions.

In this experiment, we explore how the number of augmentations

of a challenge point affects the success of TMI.
Figure 14 shows that using more augmentations increases the

FPR, AUC, and balanced accuracy of our attack. Although TMI is
more effective with a higher number of augmented queries, training

metaclassifiers becomes increasingly computationally expensive

as 𝐷meta becomes large. For example, TMI runs 6× slower on our

hardware when using 16 augmentations of the challenge point

instead of 8. In all of our prior experiments, we use 8 augmentations

to strike a balance between attack effectiveness and efficiency.
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16 Augmented Queries, auc=0.784, acc=0.696
8 Augmented Queries, auc=0.777, acc=0.689
4 Augmented Queries, auc=0.757, acc=0.672
Direct Access to Pretrained Model, auc=0.832, acc=0.745

Figure 14: TMI Performance with Different Numbers of Aug-
mented Queries

C DATASETS AND MODELS
In this section, we discuss each of the datasets and the training

procedures used in our evaluation of TMI.

C.1 Datasets
• CIFAR-100: The CIFAR-100 [23] dataset is a subset of the

Tiny Images dataset [67], provided by the Canadian Insti-

tute for Advanced Research. It is comprised of 60,000 32x32

color images from 100 classes, where each class contains 600

images (500 for training and 100 for testing). CIFAR-100 is

used as one of our pretraining tasks because it is a challeng-

ing dataset with a wide variety of classes, which allows our

models to learn very general features and patterns that can

be applied to several downstream tasks.

• Tiny ImageNet: Tiny ImageNet [24] is an image classifica-

tion dataset designed to be a smaller scale alternative to the

popular ImageNet [68] dataset. This dataset contains 110,000

64x64 color images from 200 classes, where each class con-

tains 550 images (500 for training and 50 for testing). We

use Tiny ImagenNet to pretrain the larger Wide ResNet ar-

chitecture because it provides a similarly general task to

CIFAR-100 at a larger scale. Additionally, the full-sized ver-

sion of ImageNet is a widely used dataset for pretraining

large image models, thus reinforcing the need to evaluate

our attack on a dataset like Tiny ImageNet.

• Coarse CIFAR-100: The classes in CIFAR-100 can be divided

into 20 superclasses. Each image in the dataset has a "fine"

label to indicate its class and a "coarse" label to indicate its

superclass. We construct this coarse dataset using the su-

perclass labels and use it as our downstream task with the

highest similarity to the pretraining task. In our experimen-

tation, we ensure that this downstream task does not contain

any of the pretraining samples from the standard CIFAR-100

dataset.

• Caltech 101:Caltech 101 [25] is an image classification dataset

comprised of about 9000 color images from 101 classes, where

each class contains 40 to 800 images. Because the images

in this dataset vary in size and tend to be high resolution,

we downscale them to be 64x64 to reduce computational

complexity. We use the Caltech 101 dataset to finetune our

pretrained Tiny ImageNet models as it provides a difficult

task with many categories that can be solved by leveraging

the generic features learned during pretraining.

• Oxford-IIIT Pet: The Oxford-IIIT Pet Dataset [26] is made

up of about 7400 color images of cats and dogs. This dataset

contains 37 classes with roughly 200 images per class. In

our evaluation, this downstream task is the least similar

to CIFAR-100 because it focuses on a specific category of

images that are mutually exclusive to the pretraining set

classes. For this task, we do not use feature extraction be-

cause the finetuned model have low utility. Rather, we use

the pretrained model as an initialization and update all of its

weights.

• Caltech 101: In a similar fashion to CIFAR-100, the CIFAR-

10 [23] is comprised of 60,000 32x32 color images selected

from the Tiny Images dataset. This dataset includes 10 classes,

each containing 6000 points (5000 for training and 1000 for

testing) which are mutually exclusive to those seen in CIFAR-

100. In our evaluation, this downstream task is the second

most similar to CIFAR-100 because they are both derived

from the same distribution of web-scraped images, but they

are disjoint in their classes. Although the classes do not over-

lap, the features learned from pretraining on CIFAR-100 may

be useful in performing this task.

• WikiText-103: WikiText-103 [27] is a large-scale language

dataset that is widely used for benchmarking language mod-

els. It contains over 100 million tokens and is derived from

several Wikipedia articles and contains a vast amount of

textual data. The language models we consider in this paper

have been pretrained on the train partition of WikiText-103

and are hosted on Hugging Face.

• DBpedia: TheDBpedia ontology (or topic) classification dataset [51]
is composed of 630,000 samples with 14 non-overlapping

classes from DBpedia, which is a project aiming to extract

structured content from the information on Wikipedia. For

each of the 14 topics, there are 40,000 training samples and

5000 testing samples. In our experiments with language mod-

els, we update a subset of the model’s weights on random

subsets of this dataset.

• Yahoo Answers: The Yahoo Answers topic classification

dataset [52] is composed of 1.4 million training samples

and 60,000 testing samples with 10 classes. The training and

testing sets are divided evenly amongst the topics, such that

there are 140,000 training samples and 6000 testing samples

per class. Each sample contains both the title and content

of a question asked on Yahoo Answers. In our experiments

with language models, we update a subset of the model’s

weights on random subsets of this dataset, where the content

of each question is appended to the question title.

C.2 Shadow Model Training
Our shadow model training procedure for vision models is split

into two phases: pretraining and finetuning. In the first phase, we

train 129 randomly initialized ResNet models on random subsets of
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Tiny ImageNet and CIFAR-100, each containing half of the dataset

(50k and 25k points, respectively). The remaining samples are held

out for evaluation. We train each of the ResNet-34 models for 100

epochs (to 75-80% top-5 accuracy) using SGD with weight decay

(𝜆 = 10
−5
) and cosine annealing [69] as our learning rate scheduler.

Using the same hyperparameters, we train the Wide ResNet-101

architecture for 200 epochs to 60% top-5 accuracy. When training

and querying any of our shadow models, we use standard data

augmentations, such as random crops and horizontal flips.

In the second phase, we finetune our shadow models on ran-

domly sampled subsets of our downstream task datasets. Before

we finetune each shadow model, we swap the classification layer

out with a randomly initialized one that has the proper dimension

for the downstream task. We then freeze a subset of the model’s

pretrained weights. When we use feature extraction to finetune

our pretrained models, we freeze all weights except for those in the

final classification layer. The weights that aren’t frozen are trained

using the same process as pretraining, but for 20% of the epochs.

When pretraining our shadow models, we designate a randomly

selected set of points to be the challenge points for our TMI attack.
Because each shadow model is trained on half of the dataset, all

of the points (including the challenge points) will be IN and OUT

for approximately half of the shadow models. In our experiments,

we select one shadow model to be the target model and run our

attack using the remaining 128 shadow models. Each time we run

our attack, we select the a different shadow model to be the target

model, yielding a total of 128 trials.

D ADDITIONAL FIGURES
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Feature Extraction, auc=0.914, acc=0.816
Last 2 Layers, auc=0.855, acc=0.757
Last 3 Layers, auc=0.823, acc=0.729
Direct Access to Pretrained Model, auc=0.975, acc=0.934

Figure 15: TMI Performance when Finetuning Different
Amounts of Parameters on Caltech 101
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16 Shadow Models, k= |Dmeta| , auc=0.595, acc=0.566
16 Shadow Models, k=16, auc=0.595, acc=0.563
32 Shadow Models, k= |Dmeta| , auc=0.597, acc=0.565
32 Shadow Models, k=32, auc=0.592, acc=0.560
64 Shadow Models, k= |Dmeta| , auc=0.598, acc=0.565
64 Shadow Models, k=64, auc=0.593, acc=0.562

Figure 16: TMI Performance on a Publicly Available
Transformer-XL Model Finetuned on Yahoo Answers Topic
Classification.

222



TMI! Finetuned Models Leak Private Information from their Pretraining Data Proceedings on Privacy Enhancing Technologies 2024(3)

10 4 10 3 10 2 10 1 100

False Positive Rate

10 4

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

No Privacy ( = ), auc=0.777 acc=0.689
( =1.0, =10^-5), auc=0.723, acc=0.650
( =0.5, =10^-5), auc=0.722, acc=0.649
Direct Access to Pretrained Model, auc=0.832, acc=0.745

(a) Coarse CIFAR-100
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No Privacy ( = ), auc=0.684 acc=0.624
( =1.0, =10^-5), auc=0.658, acc=0.607
( =0.5, =10^-5), auc=0.662, acc=0.609
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Figure 17: TMI Performance when Finetuning Models with Differential Privacy (DP-SGD)
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