
S𝔲𝔟𝔩𝔬𝔫K: Sublinear Prover P𝔩𝔬𝔫K
Arka Rai Choudhuri

NTT Research

arkarai.choudhuri@ntt-research.com

Sanjam Garg

UC Berkeley

sanjamg@berkeley.edu

Aarushi Goel

NTT Research

aarushi.goel@ntt-research.com

Sruthi Sekar
∗

IIT Bombay

sruthi.sekar1@gmail.com

Rohit Sinha

Swirlds Labs.

sinharo@gmail.com

ABSTRACT
We propose S𝔲𝔟𝔩𝔬𝔫K — a new succinct non-interactive argument

of knowledge (SNARK). S𝔲𝔟𝔩𝔬𝔫K builds on P𝔩𝔬𝔫K [EPRINT’19],

a popular state-of-the-art practical zkSNARK. Our new construction

preserves all the great features of P𝔩𝔬𝔫K , i.e., it supports constant
size proofs, constant time proof verification, a circuit-independent

universal setup, and support for custom and lookup gates. Moreover,

S𝔲𝔟𝔩𝔬𝔫K achieves improved prover running time over P𝔩𝔬𝔫K . In

P𝔩𝔬𝔫K , the prover runtime grows with circuit size. Instead, in

S𝔲𝔟𝔩𝔬𝔫K , the prover runtime grows with the size of the “active

part” of the circuit. For instance, consider circuits encoding condi-

tional execution, where only a fraction of the circuit is exercised by

the input. For such circuits, the prover runtime in S𝔲𝔟𝔩𝔬𝔫K grows

only with the exercised execution path.

As an example, consider the zkRollup circuit. This circuit in-

volves executing one of 𝑛 code segments 𝑘 times. For this case,

using P𝔩𝔬𝔫K involves proving a circuit of size 𝑛 · 𝑘 code segments.

In S𝔲𝔟𝔩𝔬𝔫K , the prover costs are close to proving a P𝔩𝔬𝔫K proof

for a circuit of size roughly 𝑘 code segments. Concretely, based

on our implementation, for parameter choices derived from rollup

contracts on Ethereum, 𝑛 = 8, 𝑘 = 128, 𝑠 = 2
16

(where 𝑠 is the size

of each code segment), the S𝔲𝔟𝔩𝔬𝔫K prover is approximately 4.8×
faster than the P𝔩𝔬𝔫K prover. Proofs in S𝔲𝔟𝔩𝔬𝔫K are 2.4KB and

can be verified in under 50ms.

KEYWORDS
table lookups, succinct non-interactive arguments of knowledge

1 INTRODUCTION
Succinct non-interactive arguments of knowledge (SNARK) [11, 53]

are cryptographic primitives that allow a prover to generate a small
certificate of correctness of a potentially expensive computation.

Furthermore, these certificates are cheap to verify and can option-

ally hide secrets that the prover may have used in performing the

computation (zero-knowledge SNARK). Over the past few years,

realizing efficient SNARKs have been a topic of extensive research,

including numerous applications (e.g., see [9, 33, 42, 58, 65, 68]) and

real-world deployments (e.g., see [7, 25, 35]).

∗
Work done while at UC Berkeley.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 314–335
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0080

Constant Proof Size, Universal Setup SNARKs. An influential

line of work on SNARKs [26, 34, 55] has focused on realizing them

with constant proof size and constant time verification. In his semi-

nal paper, Groth [35] gave a SNARK with a 3 group element proof.

These short proof sizes make such SNARKs quite appealing for

several applications, e.g., involving on-chain verification. However,

these first-generation constant-size zkSNARK constructions relied

on a circuit-specific trusted setup — making real-world deploy-

ments challenging. The next generation of constant-size SNARKs

removed this obstacle by realizing universal setup SNARKs [36, 51].

In particular, these SNARKs relied on a circuit-independent trusted

setup that only needed to be done once. Furthermore, following a

circuit-specific pre-processing, these constructions also achieved

constant time verification.

The P𝔩𝔬𝔫K Proof System. Improving upon prior work [51], Gabi-

zon, Williamson, and Ciobotaru [25] introduced a practical uni-

versal setup SNARK with constant proof size (about 400 bytes in

practice) and constant time verification. This construction has found

widespread real-world deployments. A significant reason for the

success of P𝔩𝔬𝔫K is its easy adaptability. For example, P𝔩𝔬𝔫K sup-

ports custom gates — gates other than + and × — that significantly

enhance concrete performance. 𝔭𝔩𝔬𝔬𝔨𝔲𝔭 [24] and P𝔩𝔬𝔫K𝔲𝔭 [56]

augment P𝔩𝔬𝔫K to add support for lookup gates — a gate checking

that its input is from a pre-defined lookup list.

Limitations of P𝔩𝔬𝔫K Proof System.A key limitation of P𝔩𝔬𝔫K ,

and all SNARKs with constant size proofs, is that proof generation

is expensive — especially when compared to SNARKs with larger

proof size, such as STARKs [7]. Thus, improving proof generation

times for P𝔩𝔬𝔫K , or constant size SNARKs, continues to be an

important problem of significant interest. A recent line of work on

lookup arguments [20, 23, 57, 62, 64] improvesP𝔩𝔬𝔫K proof genera-

tion for the special case of lookup gates to (essentially) independent

of the lookup list. Targeting use cases where larger proof sizes

are acceptable, several works [4, 16, 44] accelerate P𝔩𝔬𝔫K proof

generation at the cost of increasing proof size.

Going Sublinear. We observe that P𝔩𝔬𝔫K and other similar

SNARKs can be wasteful. For example, consider the following code

snippet: if 𝑋 then evaluate 𝐶0 else evaluate 𝐶1. When evaluating

this code snippet, only the “active part,” i.e., either 𝐶0 or 𝐶1, de-

pending on the conditional 𝑋 needs to be evaluated. In fact, it is

often the case that in a computation, only a fraction of the circuit

is “active.”

More generally, we consider circuits C that can divided into
¯𝑘

layers, where each layer has the same branch of 𝑛 𝑠-sized circuits

C1, · · · ,C𝑛 . These layers are interleaved in C by activation layers

314

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0080

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

that select a single active circuit to execute in each layer - the

choice of the circuit to be activated in each layer may depend

on the input to C. Thus, for any input to C, the total size of the
executed/active sub-circuit is 𝑂 (¯𝑘𝑠) (independent of 𝑛). We denote

circuits that satisfy the above structure as layered branching circuit.1

In certain scenarios, the input to Cmay determine the total number

of layers 𝑘 ≤ ¯𝑘 that is activated - we handle this by adding a special

identity circuit Cid (that passes input unchanged to the output), and

requiring that for every layer ≥ 𝑘 , Cid is activated. For such inputs,

we say that the effective number of layers is 𝑘 . For the remainder

of the introduction and overview, we will refer to the activated

sub-circuit as effective activated sub-circuit of size 𝑂 (𝑘𝑠).
Rollups, for instance, naturally map to our model of computation,

where at each step, the prover executes one of several transaction

types. For example, in a typical decentralized exchange (DEX) smart

contract (e.g., Loopring [1]), which allows users to create one of

several types of transactions: deposits, spot trades, transfers, with-

drawals, etc.

Naïvely, the prover runtime for SNARKs for the aforementioned

circuits grows with the size of the entire circuit (i.e., grow with

𝑂 (𝑛𝑘𝑠)). However, there has been a line of work [5, 8, 13, 15, 18, 27,

31, 40, 45–47, 49, 50, 52, 61, 67] addressing this issue by additionally

requiring an “a la carte” cost profile from the prover, where the

cost of proving should grow only with the size of the executed sub-

circuit (of size 𝑂 (𝑘𝑠)) rather than the entire circuit. Unfortunately,

prior works either fail to achieve a constant proof size or resort to

using cryptographic hash functions in a non-black-box manner
2
,

which is undesirable given the overhead caused.
3
See Section 1.4

for further discussion on this.

Specifically, our model allows the prover to perform a one-

time pre-processing that depends on the circuit C. The stored pre-

processed material may in fact depend on 𝑂 (𝑛𝑘𝑠), but the online
proof generation cost grows only with the size of the active sub-
circuit (i.e., 𝑂 (𝑘𝑠)). Note that this pre-processing is separate from
the pre-processing required for the verifier to achieve constant time

verification.

1.1 Our Contributions
The current state of affairs thus motivates us to construct SNARKs

for layered branching circuit in the pre-processing model where: (i)

the proof is of constant size; and (ii) the overhead in the prover cost

in selecting the active circuit at each layer is𝑂 (1). Our contributions
are as follows:

(1) We present S𝔲𝔟𝔩𝔬𝔫K , building on a popular SNARK system

P𝔩𝔬𝔫K . Our new construction preserves all the great features of

P𝔩𝔬𝔫K , i.e., it supports constant size proofs, constant time proof

verification, a circuit-independent universal setup, and support

for custom and lookup gates. Additionally, S𝔲𝔟𝔩𝔬𝔫K proof

1
While the applications we consider can naturally be cast into this model, our model

is general enough to handle a larger class of circuits but may require more work

to be viewed in this framework. Such transformations for more general circuits are

orthogonal to our work.

2
I.e., proving a statement about the hash function by representing it as a set of

constraints.

3
Non-black-box use of cryptography inherently induces a non-constant overhead

when selecting the active circuit at each layer. More elaboration can be found in

Section 1.4.

generation time grows only with the size of the active sub-

circuit. Previously, P𝔩𝔬𝔫K proof generation grew with the size

of the entire circuit.

(2) We provide an implementation of S𝔲𝔟𝔩𝔬𝔫K in Rust and evalu-

ate it on circuits modeling a popular rollup application.

(3) We demonstrate the practical improvements with S𝔲𝔟𝔩𝔬𝔫K .
For instance, in our rollup application, we demonstrate improve-

ments in the prover time of up to 4.8× over the P𝔩𝔬𝔫K prover,

and we also show potential far greater speedups for general-

purpose programs that only exercise a small fraction of the

entire logic in any execution. Proofs are 2.4KB in size, and ver-

ification requires 50 ms on a commodity machine or 716.6K

EVM gas units to verify on-chain.

1.2 Our Techniques
We now discuss the key technical ideas underlying S𝔲𝔟𝔩𝔬𝔫K . As
discussed earlier, our goal is to design pre-processing SNARKs for

layered branching circuit, where the online cost to prove computa-

tion grows only with the active sub-circuit.

Recall that the pre-processing phase for the verifier in pre-

processing SNARKs outputs a short summary - typically a com-

mitment - to all the constraints in the circuit. These SNARKs then

allow for the verifier to determine whether to accept the proof

based on the commitment, thereby allowing the verifier to run in

time sub-linear in the size of the circuit (i.e., the verifier no longer

has to parse the entire circuit).

Core Idea: Note that once the prover executes the layered branch-

ing circuit C on input 𝑥 , it induces the active sub-circuit C̃𝑥 of

size 𝑂 (𝑘𝑠) (with the non-active circuits from each layer removed).

Thus, with the induced sub-circuit C̃𝑥 , the prover can generate the

proof in time proportional to𝑂 (𝑘𝑠) as desired. Unfortunately, such
a proof is not useful to the verifier since it cannot verify the proof

without a commitment to the constraints specified only by C̃𝑥 ,

whereas the verifier has a commitment to the constraints specified

only by C. The first main idea is to enable the verifier to derive the

commitment to C̃𝑥 only given the commitment to C.
As a starting point, note that this is not something that can be

addressed in the pre-processing phase since C̃𝑥 depends on the

input 𝑥 . Further, having the prover simply send over the claimed

commitment to C̃𝑥 will not work either since the verifier needs

to be convinced that the commitment was correctly generated.

Thus we will require the prover to additionally prove that the new

commitment is indeed a commitment to a valid induced sub-circuit

of C, which the verifier can check given the commitment to C. But
note that since the prover is now proving validity with respect

to the original circuit of size 𝑂 (𝑛𝑘𝑠), care must be taken that the

prover cost for this does not become proportional to 𝑂 (𝑛𝑘𝑠).
A natural approach for implementing this idea is to compute a

Merkle hash of all the constraints in the pre-processing phase. Later

in the online phase, the prover can generate a proof to convince

the verifier that the new claimed commitment to C̃𝑥 is a commit-

ment to a subset of the leaf nodes (constraints) in this Merkle tree.

This simple approach requires making a non-black-box use of hash
functions, which adds significant computational overheads. The

inefficiency of this type of approach is well established - in fact, a re-

cent relevant line of work moved away from the non-black-box use

315

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

of hash functions for breakthrough results on efficient sub-linear

time lookup arguments [20, 23, 57, 62, 64].

Lookup Arguments. As we shall see shortly, lookup arguments

will, in fact, be central to our work, and here we provide an informal

description of the requirements in such works. Specifically, given

a table 𝑇 of size 𝑁 to which the verifier only has access via a pre-

processed commitment
4
, lookup arguments allow one to prove in

time proportional to �̃� (𝑚) (independent of 𝑁) that the values of a

committed polynomial of size𝑚 are contained within the table 𝑇 .

This is achieved by allowing a one-time prover pre-processing on

the table𝑇 , taking time proportional to �̃� (𝑁), and re-usable across

multiple proofs. The online proof generation time grows only with

�̃� (𝑚). In fact, the𝑚 values allow for repeated elements from the

table𝑇 , a propertywewill crucially leverage. Finally, the verification

for the lookup arguments we consider is, in fact, 𝑂 (1) time. The

specific lookup protocol that we build on is cached quotients (or 𝔠𝔮),
introduced by Eagen, Fiore and Gabizon [20], which fits well with

the P𝔩𝔬𝔫K proof system that we will use.

S𝔲𝔟𝔩𝔬𝔫K Template: Recall, that in the P𝔩𝔬𝔫K proof system[25],

to achieve 𝑂 (1)-time verification for a circuit C, there is an un-

trusted verifier pre-processing phase that outputs 𝑂 (1) sized com-

mitment on input C. We refer to the pre-processed verifier commit-

ment as a P𝔩𝔬𝔫K commitment to C. Tying in with our previous

discussion on lookup arguments, we have the following high-level

template for S𝔲𝔟𝔩𝔬𝔫K for layered branching circuit C: (i) generate
a lookup table that appropriately encodes information about the

layered branching circuit C - this will also require prover to com-

pute a one-time prover pre-processing of the lookup table; (ii) once

the induced circuit C̃𝑥 is fixed, use the lookup arguments to derive

the P𝔩𝔬𝔫K commitment to C on-the-fly in time proportional to

�̃� (𝑘𝑠) and prove that the derivation was done correctly. While this

is indeed the template we follow in this work, there are several

challenges in implementing its details that necessitate new ideas,

as we illustrate below.

We begin by describing how we populate the initial table 𝑇

given the layered branching circuit C in the context of 𝔠𝔮. We

use the implicit representation of C and store in 𝑇 the P𝔩𝔬𝔫K
constraints for each circuit branch C1, · · · ,C𝑛

5
the exact nature of

the P𝔩𝔬𝔫K constraints are not important for this discussion. Since

the P𝔩𝔬𝔫K constraints for an 𝑠 sized circuit can be represented in

𝑂 (𝑠) constraints, the table consists of 𝑂 (𝑛𝑠) entries, where each
entry is only a single field element (from an appropriate field).

In the online phase, once the induced circuit C̃𝑥 is fixed, the

prover can compute the polynomial commitment com to the

P𝔩𝔬𝔫K constraints for C̃𝑥 as a concatenation of the P𝔩𝔬𝔫K con-

straints for each active circuit in the 𝑘 layers (since C̃𝑥 itself is

a concatenation of 𝑘 circuits)
6
. Since each of these constraints is

4
We do not need to make any trust assumptions about this pre-processing step since

it can be recomputed and verified by anyone.

5
We handle the activation layer constraints by embedding it within each circuit branch,

such that the circuit branch activated in the 𝑗 -th layer also outputs the circuit branch

to be activated in the 𝑗 + 1-th layer, and thus the activation layer can be ignored for

the purposes of our discussion.

6
It should be noted that this description of a concatenation of P𝔩𝔬𝔫K constraints is

not fully accurate and written here as such for simplicity, and we handle this in our

technical sections.

present in the table 𝑇 , the prover can simply run the lookup argu-

ment protocol in time proportional to �̃� (𝑘𝑠) to generate proof that

the constraints are contained in 𝑇 . Unfortunately, the only guaran-

tee provided by 𝔠𝔮, or any lookup argument, is that each element in

the committed polynomial com is contained in the table 𝑇 . While

this is necessary, it is not a sufficient condition in our setting. For

instance, the relative ordering of the P𝔩𝔬𝔫K constraints is crucial

for us to rely on the P𝔩𝔬𝔫K argument system since the P𝔩𝔬𝔫K
security analysis assumes that the pre-processing is done correctly.

This motivates us to extend the notion of lookup arguments to

segment lookup arguments that we detail next.

Segment Lookup. To address our application’s specific needs,

we extend the 𝔠𝔮 protocol to achieve a notion of segment lookup.
The initial table 𝑇 of size 𝑂 (𝑛𝑠) in a segment lookup protocol is

sub-divided into 𝑛 segments, each consisting of 𝑂 (𝑠) contiguous
elements in𝑇 (starting with the first element). The prover provides

a commitment to a polynomial that encodes values in𝑇 and proves

that the committed values additionally satisfy segment granularity.
Specifically, for𝑂 (𝑘𝑠) values committed to via the polynomial, each

of the 𝑘 segments of size𝑂 (𝑠) (starting with the first element) must

correspond exactly to a segment in𝑇 , maintaining relative ordering

with the segment. It is easy to see that if each segment corresponds

to a P𝔩𝔬𝔫K constraint, a segment lookup protocol will indeed

provide the necessary guarantees to ensure that the polynomial

commitment sent by the prover is, in fact, a P𝔩𝔬𝔫K commitment

to C̃𝑥 (for some 𝑥), where the validity of the choice of the segments

will be checked separately by the P𝔩𝔬𝔫K proof system.

Unfortunately, we cannot use existing lookup protocols in a

black-box manner to achieve segment lookup. We extend the ideas

present in the 𝔠𝔮 protocol to construct a new segment lookup argu-

ment, where the prover costs grow with the size of the polynomial

that is committed.
7

Putting It Together. The table 𝑇 containing the P𝔩𝔬𝔫K con-

straints for the circuit branches in C is pre-processed and provided

to the verifier. Once the input 𝑥 is fixed, the prover uses the induced

circuit C̃𝑥 to compute the P𝔩𝔬𝔫K verifier pre-processing for C̃𝑥 ,

and subsequently, the corresponding segment lookup proof for it,

in time �̃� (𝑘𝑠). Thus, the S𝔲𝔟𝔩𝔬𝔫K proof consists of (i) the P𝔩𝔬𝔫K
verifier pre-processing for C̃𝑥 ; (ii) a segment lookup proof that

the verifier pre-processing was correctly derived from 𝑇 ; and (iii)

P𝔩𝔬𝔫K proof for C̃𝑥 to be verifier using the verifier pre-processing

sent by the prover. All the communication and verification can be

done in 𝑂 (1), thus satisfying our efficiency requirements.

While this overview captures the main ideas, we refer the reader

to the relevant technical sections for details. Specifically, we present

our segment lookup protocol in Section 3 and show how it can be

combined with P𝔩𝔬𝔫K to get S𝔲𝔟𝔩𝔬𝔫K in Section 4.

Remark 1. As noted, our notion of segment lookup adds additional
constraints to lookup arguments. These natural extension to lookup
arguments are interesting in and of itself, and several extensions such
as tuple lookup [19], matrix lookup [14] and index lookup [59] have
already been considered in concurrent and subsequent works with

7
One could choose an appropriately large field to encode an entire segment into a

single field element to use 𝔠𝔮 in a black-box manner, but the overhead would be too

large for this approach to be meaningful in our setting.

316

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

various applications (see Section 1.4 for details). One of our main
insights is to identify that the segment lookup constructed extending
𝔠𝔮 suffices to obtain a sublinear proof system for P𝔩𝔬𝔫K . In fact this
observation was also made by a concurrent work [19] for the Marlin
proof system. Refining this template to work for other (constrained)
lookup arguments and proof systems is an exciting future direction.

1.3 Example Applications
S𝔲𝔟𝔩𝔬𝔫K has the potential to improve prover run-time in nearly

all applications of SNARKs, where the active part of the circuit

during execution is not the entire circuit. This section explores some

examples of applications where S𝔲𝔟𝔩𝔬𝔫K could be particularly

beneficial and yield substantial computational savings.

(1) Rollups: Rollups are becoming increasingly popular due to

their potential to address the scaling issue of modern layer 1

blockchains. Consider a typical decentralized exchange (DEX)

smart contract (e.g. Loopring [1]), which allows users to cre-

ate one of several types of transactions: deposits, spot trades,

transfers, withdrawals, etc. The logic within these transaction

types can be encoded as a circuit (typically under 60K arith-

metic gates for each transaction). A single instance of a rollup

transaction that is submitted to a layer 1 blockchain can batch

together over hundreds of these DEX transactions, along with a

single proof attesting to the validity of the state transition (from

having applied all of the above DEX transactions on the state

prior to the rollup transaction). Rollups naturally map to our

model of computation, where at each step, the prover executes

one of several transaction types (which map to segments in

S𝔲𝔟𝔩𝔬𝔫K). Specifically, if there are 𝑛 different DEX transaction

types, and a rollup batches together 𝑘 such DEX transactions

(each of size 𝑠), then we expect S𝔲𝔟𝔩𝔬𝔫K to operate in roughly

𝑂 (𝑘𝑠 log(𝑘𝑠)) time, whereas the P𝔩𝔬𝔫K prover would operate

in 𝑂 (𝑛𝑘𝑠 log(𝑛𝑘𝑠)) time. Our experiments in section 5 show

significant speedups for rollups, for parameter values inspired

by Loopring [1].

(2) Smart Contracts: Smart contracts support general computa-

tion (beyond rollups discussed above), but these can include

arbitrary conditional statements, thereby often resulting in the

active circuit only comprising a small fraction of the entire logic.

For instance, consider a program that is a nested sequence of

conditional statements - which can be represented as a complete

tree in our graph-based model of computation. In such a setting,

if each code segment is roughly the same size, the fraction of

the executed path is exponentially smaller than the total size of

the program.

Specifically in the above example, if the nested conditional state-

ments resulted in𝑂 (𝑛) segments each of size 𝑠 , the run time of a

P𝔩𝔬𝔫K prover on any input would grow with 𝑂 (𝑛𝑠). However,
since the execution path along the tree would only execute

𝑂 (log(𝑛)) code segments, the S𝔲𝔟𝔩𝔬𝔫K prover running time

would only grow with𝑂 (log(𝑛)𝑠). In section 5, we provide data

points indicating significant concrete speedups for the above.

(3) Proving Existence of Bugs in Large Codebase: Exploitation
attacks pose a significant risk to large and critical software

systems, leading to the emergence of bug bounty programs.

These programs involve independent research teams auditing

deployed software and revealing vulnerabilities in exchange for

monetary incentives.

Recent works [33, 38, 39] have explored the idea of using zero-

knowledge proof systems as a means for vulnerability research

teams to substantiate to bug bounty programmanagers that they

have successfully detected a critical exploit. This guarantees

that they obtain their reward without disclosing the exploit

prematurely.

Although the relation circuit for these proofs grows with the

size of the software system, the execution path needed to prove

the existence of a bug is expected to be much smaller than

the entire software system. Having the proof generation time

depend on the size of the entire software system could be very

costly, particularly for complex systems. For programs cast

as layered branching circuit, S𝔲𝔟𝔩𝔬𝔫K is well-suited for such

scenarios.

(4) Combating Disinformation. Naveh and Tromer [54] recently

demonstrated that zero-knowledge proofs can be used to verify

that images featured in media have undergone a pre-approved

set of modifications since their creation. This capability is espe-

cially valuable as it helps journalists to hide sensitive content

while simultaneously establishing the image’s authenticity.

The complete list of pre-approved edits determines the size of

the relation circuit for generating proofs. At the same time,

the execution path only considers the edits that are applied to

the image. S𝔲𝔟𝔩𝔬𝔫K could help significantly improve proof

generation times in this application.

1.4 Related Works
Several prior works focus on building SNARKs where the prover

cost grows only with the size of the program execution. However,

all prior schemes (in the circuit-independent pre-processing model)

either resort to non-black-box use of cryptography or do not achieve

a constant proof size. We summarize the most relevant works in

Figure 1 and give a detailed description below.

zkSNARKs for Disjunctions. Disjunctive statements are a special

class of NP statements that comprise of a logical OR of a set of

clauses. Building on the template introduced in Stacking-Sigmas

[29], a recent work called Speed-Stacking [30] demonstrates how

a large class of existing zkSNARKs can be modified to obtain zk-

SNARKs for disjunctive statements, where the prover work pri-

marily grows with the size of the largest clause (with an additive

overhead dependent on the total number of clauses). In particu-

lar, for a disjunctive statement consisting of ℓ clauses, each of size

|C|, the prover runtime in Speed-Stacking is �̃� (|C| + ℓ). The proof
size has an additive overhead of log ℓ over the proof size of the

underlying zkSNARK. Thus, while fully black-box in the use of

cryptography, Speed-Stacking leads to a non-constant proof size

even if the underlying zkSNARK has a constant proof size.

A La Carte Cost Profile. There is a sequence of works including
Buffet [61], vRAM [67] and Mirage [45] that consider an “a la carte”

cost profile for the provers where the prover cost for proving a step

of computation (akin to layers in our setting) grow only with the

size of the circuit representing the instruction invoked on that step,

i.e. independent of the number of branches. Mirage [45] achieves a

constant proof size using the universal circuit approach, where the

317

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

trusted setup is run for the universal circuit (setup is indicated by

a ∗ in Figure 1) and the executed circuit is passed as input to this

universal circuit. Since the prover knows the executed sub-circuit,

it can provide this input to the universal circuit. But to achieve

constant verification time, one must pre-process the circuit passed

to the universal circuit. Since the sub-circuit is input-dependent,

it results in an input-dependent pre-processing to achieve an “a la

carte” cost profile. vRAM [67] handles the issue of conveying the ex-

ecuted sub-circuit/instructions by only conveying the multiplicity

of each instruction and appropriately encoding the constraints into

the proof system, while fully black-box in the use of cryptography

vRAM does not achieve a constant proof size. The proof genera-

tion in these works requires the entire transcript of the program

execution in order to compute the proof, making them inherently

non-incremental (see below).

Incremental Proofs.A recent line of work; Sangria [5], SuperNova

[46], HyperNova [47], ProtoStar [13] address the lack of incremental

property in the aforementioned works - incremental proof systems

allow the prover to compute the proof alongside the computation,

by simply performing a small update to the proof with each step of

the computation. These works build on the novel folding technique

introduced by Nova [48] for designing IVCs (incrementally verifi-

able computation). Sangria, SuperNova, HyperNova, and ProtoStar

generalize the notion of IVCs to non-uniform IVCs, where at each

step of the computation one out of a pre-determined set of instruc-

tions is executed. While the prover cost in these works only grows

with the size of executed instructions at each step, they inherently

rely on making non-black-box use of cryptography. This is because

all these works follow the same high-level approach of designing an

efficient folding argument and then efficiently compiling it into a

non-uniform IVC using proof recursion. The proof size of the result-

ing non-uniform IVC depends on the underlying SNARK used in

this compilation. In figure 1, we quote the proof sizes mentioned in

the respective papers. However, we note that most of these schemes

are compatible with and, hence can be adapted to work with various

existing SNARKs (to reduce their proof size further).

Transparent Setup. The works on building zkSTARKs [8, 27, 31,

40, 49, 52] use a transparent (i.e. untrusted) setup. All these schemes

use the algebraic intermediate representation (AIR), which only

encodes the step-by-step trace of the program execution. This in-

herently leads to the a la carte prover cost since it will only grow

with the AIR size, which grows only with the number of executed

steps of the program. However, all these constructions have two

shortcomings - non-constant proof size and non-black-box use of

cryptographic hash functions. To ensure scalability while keep-

ing the verifier pre-processing input independent, it is crucial that

a hash of the computation trace is given along with proof that

the hash computations were done correctly (uses AIR for “STARK-

friendly" hashes). We summarize these properties for the most

recent STARK [52] in figure 1.

Commit and Prove SNARKs (CP-SNARKs). Several works [15,
18, 50] build CP-SNARKs, which rely on proving statements of the

form “𝐶𝑐𝑘 (𝑤) contains 𝑤 such that 𝑅(𝑥,𝑤)", where 𝐶𝑐𝑘 (𝑤) is a
commitment. Such CP-SNARKs are shown to be useful [15] in prov-

ing the correctness of different parts of computation using different

representations and proof systems (e.g., a QAP-based scheme may

be used to prove one component, while a GKR [32]-based scheme

may be used for another). LegoSNARK [15] builds a general frame-

work for CP-SNARKs that would help in linking such different

components and also build CP-SNARKs for some existing SNARKs

(Groth [35], Pinnochio [60] and zk-vSQL [66]). This framework

requires the prover to prove the knowledge of a valid opening for

the commitment corresponding to the component used. Moreover,

the only methods shown [18] to combine the proofs of different

components involve a bounded bootstrapping (giving proof of a

proof), making them non-black-box. We summarize these proper-

ties corresponding to the a la carte CP-SNARK, Geppetto [18], in

figure 1.

Other Related Works. In a recent work [56], Pearson et al. also

consider the idea of integrating P𝔩𝔬𝔫K with a lookup argument

[23]. However, their goal was very different from ours. They pro-

pose an extension of P𝔩𝔬𝔫K that enables faster proof generation

for relation circuits that include lookup gates without having to

encode the lookup relation as an arithmetic circuit.

Concurrent Work. [19] In a concurrent work, Di et al. [19] build

Mux-Marlin, which achieves similar efficiency parameters as our

work (c.f. Figure 1) and follows a similar high-level technique as our

work. While Mux-Marlin’s segment lookup protocol (called “tuple

lookup" in their paper) relies on the Plookup lookup argument [24]

and combines it with the Marlin proof system [17], our S𝔲𝔟𝔩𝔬𝔫K’s

segment lookup uses cq lookup argument [21] and combines it

with the Plonk proof system [25]. Since Mux-Marlin’s segment

lookup uses the Plookup lookup argument, its prover computation

is �̃� ((𝑛+𝑘)𝑠). On the other hand, our use of 𝔠𝔮 helps us get a prover

computation of �̃� (𝑘𝑠). We remark that when the number of choices

(𝑛) is smaller than the number of execution steps (𝑘), i.e., 𝑛 ≤ 𝑘 ,

the prover time is asymptotically the same for both Mux-Marlin

and S𝔲𝔟𝔩𝔬𝔫K . On the other hand, for applications where 𝑛 ≫ 𝑘 ,

S𝔲𝔟𝔩𝔬𝔫K would give a better prover time.

Subsequent Works. In a subsequent work, Campanelli et al. [14]

aims to generalize the kind of structure imposed by our segment

lookup protocol on 𝔠𝔮. In particular their generalization, which

they call matrix lookup, is also able to improve upon the efficiency

of the segment lookup protocol.

In a separate subsequent work, Setty, Thaler and Wahby [59]

construct a new family of lookup arguments called Lasso. Of partic-
ular interest is their notion of an “indexed lookup argument” where

a prover commits to two vectors of 𝑎 and 𝑏, and proves that the 𝑖-th

component of 𝑎 is equal to 𝑏𝑖 -th location of 𝑇 , i.e. 𝑎𝑖 = 𝑇𝑏𝑖 . While

similar to the notion of segment lookup, indexed lookup arguments

do not suffice for our applications since we require additional (seg-

ment) structure on the “index vector” 𝑏, which is not enforced in

Lasso. Further, from an efficiency perspective, the proof size of

the indexed lookup arguments is not of constant size even if the

underlying commitment used in their scheme supports constant

size proofs of opening.

However, it should be noted that segment lookup arguments do

not imply indexed lookup arguments since we leverage specific

properties of the segment structure in our construction of the seg-

ment lookup argument. Thus, a natural open question is to extend

318

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

Constant Proof Size

Input Independent

Verifier

Preprocessing

Black-Box in

Cryptography

Incremental Proof Setup

vRAM [67] % ! ! % urs
Mirage [45] ! % ! % urs∗

Sangria [5] ! ! % ! urs
SuperNova [46] % ! % ! trans
HyperNova [47] % ! % ! trans
ProtoStar [13] % ! % ! trans
eSTARK [52] % ! % % trans
Geppetto [18] % % % ! srs
Mux-Marlin [19] (C) ! ! ! % urs
Our Work ! ! ! % urs

Figure 1: Here, (C) refers to concurrent work. We use!to denote that a certain property is satisfied and%to denote that it is
not. When we say that a scheme does not have constant proof size (by constant, we mean that the proof is a constant number
of group or field elements), they have a size that depends on the program execution size. In the Setup column, we refer to a
circuit-dependent setup by srs, the circuit-independent universal setup by urs, and the untrusted transparent setup by trans. By
urs∗, we mean that while the setup is circuit-dependent, the particular scheme is defined for universal circuits.

the ideas in this work to construct indexed lookup arguments, while

still guaranteeing a constant proof size.

2 PRELIMINARIES
In this section, we present our model, establish notation and present

an overview of P𝔩𝔬𝔫K . Due to space constraints, we defer addi-

tional preliminaries to Section A.

Notation. We denote our field by F. We use F<𝑑 [𝑋] to denote

the ring of univariate polynomials over F with a degree smaller

than 𝑑 . We denote our security parameter by 𝜆. For a polynomial

𝑃 ∈ F[𝑋], and a subgroup H ⊂ F, we denote the evaluations of 𝑃
at H by 𝑃 |H. We use the additive notations for groups G1 and G2,

and denote their corresponding group elements by [𝑥]1 := 𝑥 .𝑔1

and [𝑥]2 := 𝑥 .𝑔2, where 𝑔1 and 𝑔2 are the generators of G1 and G2,

respectively. [𝑛] and [𝑘, 𝑛] are used to denote the sets of integers

{1, · · · , 𝑛} and {𝑘, · · · , 𝑛}, respectively.
Lagrange, and Vanishing Polynomials. For a subgroup contain-

ing 𝑛-th roots of unity, i.e., H = {1, 𝜔, · · · , 𝜔𝑛−1} ⊂ F, we denote
the vanishing polynomial corresponding to H by 𝑍H (𝑋) ∈ F[𝑋],
defined as 𝑍H (𝑋) :=

∏𝑛
𝑖=1
(𝑋 − 𝜔𝑖). Furthermore, for each 𝑖 ∈ [𝑛],

we denote the 𝑖-th Lagrange polynomial corresponding to H by

𝜓H
𝑖
(𝑋) :=

𝑍H (𝑋)
𝑍 ′H (𝑋−𝜔𝑖) , where 𝑍

′
H is the derivative of the polynomial

𝑍H.

Bilinear Groups. Let (G1,G2,G𝑇) be cyclic groups of prime order

𝑞 with generators 𝑔1 ∈ G1, 𝑔2 ∈ G2. 𝑒 : G1 × G2 → G𝑇 be

an efficiently computable and non-degenerate pairing, such that

𝑒 (ℎ𝛼
1
, ℎ

𝛽

2
) = 𝑒 (ℎ1, ℎ2)𝛼𝛽 , for all 𝛼, 𝛽 ∈ F𝑞 , and all ℎ1 ∈ G1 and

ℎ2 ∈ G2.

2.1 Our Model
We discuss below the model of computation used in this work. At a

high level, we will consider layered circuits C with
¯𝑘 layers, where

each layer supports a branch of𝑛 circuits {C1, · · · ,C𝑛}. The circuits
are connected via interleaving activation layers where the 𝑗 − 1-th

activation layer specifies the circuit C𝑖 that will be the active branch
in the 𝑗-th layer. We allow the output of each activation layer to

depend on the input to the circuit.

For simplicity, in our discussion we will “absorb” the aforemen-

tioned activation layer into the circuits such that the circuits can

now be “concatenated”. In particular, each circuit C𝑖 now (i) also

outputs the index of the next circuit to be activated; and (ii) has

hardcoded the index 𝑖 to check if it is indeed the circuit to be acti-

vated by a simple equality check of the hardcoded value and the

incoming wires corresponding to the activated circuit. Thus, the

concatenation of any two circuits C𝑖 | |C𝑗 simply states that the

output wires of C𝑖 contains the same values as the input wires of

C𝑗 .

Further, we note that our definition follows closely to that of

works that consider (i) incremental verifiable computation (IVC)

with non-uniform circuits at every step [13]; (ii) the “a la carte” cost

profile of program execution [46, 61, 67].

We formally define the model below by specifying an efficiently

computable function 𝜉 that on circuit input specifies a vector 𝐼 ∈
[1, 𝑛] ¯𝑘 . For notational simplicity, we denote by 𝜉𝑥 the vector 𝜉 (𝑥),
which is indexed at the 𝑗-th location by 𝜉𝑥 [𝑗].

Definition 1. Let 𝑠, ¯𝑘, 𝑛,𝑚 ∈ N, and for every 𝑖 ∈ [𝑛], C𝑖 is
an arithmetic circuit of size 𝑠 . Then, C is a (𝑠, ¯𝑘, 𝑛, {C𝑖 }𝑛𝑖=1

)-layered
branching circuit ifC is such that there exists an efficiently computable
function 𝜉 : F𝑚 → [1, 𝑛] ¯𝑘 such that for every input 𝑥 ∈ F𝑚 , C(𝑥) =
C̃𝜉 (𝑥), where C̃𝜉 B C𝜉𝑥 [1] | | · · · | |C𝜉𝑥 [¯𝑘] .

Remark 2. To handle scenarios where the input determines the
number of layers 𝑘 ≤ ¯𝑘 that are activated, we can include a ‘special”
circuit Cid which implements the identity (i.e., just passes the input
through unchanged). We then say that for any 𝑘 ≤ ¯𝑘 , the input 𝑥
has effective layer 𝑘 if the circuits active in the final ¯𝑘 − 𝑘 layers are

319

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

all Cid, i.e. ∀𝑗 ∈ [𝑘, ¯𝑘] C𝜉𝑥 [𝑗] = Cid. In such a situation, one can in
fact require a stronger requirement - that the prover cost grows with
𝑂 (𝑘𝑠) rather than 𝑂 (¯𝑘𝑠). For the rest of this work, we will indeed
consider the effective layer 𝑘 .

The above formalism allows us to contrast between an explicit

representation of the layered branching circuit, which is of size

𝑂 (𝑘𝑛𝑠), and the specific sub-sequence of𝑘 circuits each of size 𝑠 that

are activated for a specific input. Looking ahead, we will utilize the

aforementioned property of layered circuits to construct a proof

system where the prover cost grows with cost of the executed

circuits 𝑂 (𝑘𝑠).
We note that while the example applications discussed in Section

1.3 can be naturally cast into this model, our model is general

enough to handle a larger class of circuits. For instance, a generic

program consisting of nested conditional statements of depth 𝑑

can be recast in our above formulation by appropriately choosing

𝑛 = 2
𝑑
circuits, where the executed path will indeed consist of

𝑑 = 𝑂 (log𝑛) circuits.

2.2 Background on P𝔩𝔬𝔫K
P𝔩𝔬𝔫K [25] is a popular state-of-the-art, pre-processing zkSNARK

with a constant-sized proof. As discussed earlier, our work builds

on P𝔩𝔬𝔫K to design a zkSNARK where the proof generation time

grows only with the size of the active sub-circuit. In this section,

we provide the relevant background on the P𝔩𝔬𝔫K proof system

that will be useful for understanding our construction. Some of the

text in this section is taken verbatim from [25].

P𝔩𝔬𝔫K Constraint System. The P𝔩𝔬𝔫K constraint system is

meant to capture fan-in two arithmetic circuits of unlimited fan-

out with 𝑛 gates and𝑚 wires, but is more general. It is defined as

C = (V,Q), where:
– V is of the formV = (a, b, c) ∈ [𝑚]3𝑛 , which implicitly describe

a permutation (to be explained shortly) on [3𝑛].
– Q = (qL, qR, qO, qM, qC) ∈ (F𝑛)5 where qL, qR, qO, qM, qC ∈ F𝑛
are the selector vectors.

We say x ∈ F𝑚 satisfies C if for each ℓ ∈ [𝑛],
(qL)ℓ · xaℓ + (qR)ℓ · xbℓ + (qO)ℓ · xcℓ

+(qM)ℓ · (xaℓ xbℓ) + (qC)ℓ = 0.

This lets us define relation RC which is a set of pairs x B (x,w),
where x satisfies C .

From Arithmetic Circuits to P𝔩𝔬𝔫K Constraint System. As
an example, we demonstrate how a fan-in two arithmetic circuit

with 𝑛 gates (each one is either an addition or a multiplication gate)

and𝑚 wires (since every gate is assumed to have 2 input wires and

1 output wire associated with it,𝑚 = 3𝑛.) can be captured by the

P𝔩𝔬𝔫K constraint system. For each gate ℓ ∈ [𝑛]
• Let aℓ , bℓ and cℓ denote the index of the left, right and output

wire of the ℓ th gate. Set (qC)ℓ = 0.
8

• Set (qL)ℓ = 0, (qR)ℓ = 0, (qO)ℓ = −1, (qM)ℓ = 1, when the ℓ th

gate is a multiplication gate.

8
We remark that the above is only an example. The P𝔩𝔬𝔫K constraint system is quite

general and can be used to enforce other types of constraints as well (e.g., checking if

some wire value is equal to a public input by setting the corresponding entry in qC to

that public value, or whether a wire value is a boolean value etc.).

• Set (qL)ℓ = 1, (qR)ℓ = 1, (qO)ℓ = −1, (qM)ℓ = 0, when the ℓ th

gate is an addition gate.

A circuit constraint system needs to ensure (1) Correct Gate Evalu-
ation: given the left and right input wires, each gate is evaluated

correctly. This is checked by choosing appropriate entries in the

selector vectors based on the gate types (as described in the above

example). (2) Consistency of Wire Values: if a wire is “split” (for

instance as input to multiple gates or as the output of one gate and

input to another), all the split wires must indeed contain the same

wire value. This is done in the P𝔩𝔬𝔫K proof system via the copy-
check constraints implemented by a permutation 𝜎 : [3𝑛] → [3𝑛].
Specifically, 𝜎 is a collection of cycles (possibly of length 1), where

each cycle is over all wires that are required to contain the same

value as a consequence of the aforementioned “split”.

We note that the P𝔩𝔬𝔫K constraint system can be further gen-

eralized to handle custom gates and gates with arbitrary fan-in.

However, for simplicity of presentation, we only work with the

above simple variant.

Verifier Pre-Processing in P𝔩𝔬𝔫K . The P𝔩𝔬𝔫K protocol for the

above constraint system is defined over a multiplicative subgroup

W = {1, 𝜔, · · · , 𝜔𝑛−1} of size 𝑛. Let 𝑘1 and 𝑘2 be picked such that

𝑘1 ·W and 𝑘2 ·W are distinct cosets ofW.
9
LetW′ = W ∪ (𝑘1 ·

W) ∪ (𝑘2 ·W). Identify [3𝑛] with W′ via ℓ → 𝜔ℓ , ℓ + 𝑛 → 𝑘1 ·
𝜔ℓ , ℓ + 2𝑛 → 𝑘2 · 𝜔ℓ

. Finally, let 𝜎∗ denote the mapping from [3𝑛]
toW′ derived from applying 𝜎 (as described above) and then this

injective mapping intoW′.
The P𝔩𝔬𝔫K protocol requires the following universal trusted

setup (needed for computing KZG commitments [43] throughout

the protocol): (𝜏 · [1]1, . . . , 𝜏𝑛+5 · [1]1), for a randomly chosen 𝜏 . In

addition, in order to keep the verifier cost low, the P𝔩𝔬𝔫K protocol

pre-processes the constraint system to produce the following pre-

processed input, where𝜓𝑖 correspond to the Lagrange polynomials

over multiplicative sub-groupW.

𝑛, (𝑞𝑀ℓ
, 𝑞𝐿ℓ , 𝑞𝑅ℓ

, 𝑞𝑂ℓ
, 𝑞𝐶ℓ
)𝑛ℓ=1

, 𝜎∗,

qM (𝑋) =
𝑛∑︁
ℓ=1

𝑞𝑀ℓ
𝜓ℓ (𝑋), qL (𝑋) =

𝑛∑︁
ℓ=1

𝑞𝐿ℓ𝜓ℓ (𝑋),

qR (𝑋) =
𝑛∑︁
ℓ=1

𝑞𝑅ℓ
𝜓ℓ (𝑋), qO (𝑋) =

𝑛∑︁
ℓ=1

𝑞𝑂ℓ
𝜓ℓ (𝑋),

qC (𝑋) =
𝑛∑︁
ℓ=1

𝑞𝐶ℓ
𝜓ℓ (𝑋), S𝜎 1

(𝑋) =
𝑛∑︁
ℓ=1

𝜎∗ (𝑖)𝜓𝑖 (𝑋),

S𝜎 2
(𝑋) =

𝑛∑︁
ℓ=1

𝜎∗ (𝑛 + ℓ)𝜓ℓ (𝑋), S𝜎 3
(𝑋) =

𝑛∑︁
ℓ=1

𝜎∗ (2𝑛 + ℓ)𝜓ℓ (𝑋)

Here the KZG commitment to these polynomials are sent

to the verifier as [qM (𝜏)]1, [qL (𝜏)]1, [qR (𝜏)]1, [qO (𝜏)]1, [qC (𝜏)]1,
[S𝜎 1
(𝜏)]1, [S𝜎 2

(𝜏)]1, [S𝜎 3
(𝜏)]1. The rest of the protocol proceeds

by assuming that this pre-processing was done honestly, and that

the verifier has access to these commitments, while the prover has

access to the above polynomials.
10

9
Since further details regarding the cosets are not relevant to our discussion, we do

not elaborate here and refer the reader to [25] for details.

10
We omit the discussion on how P𝔩𝔬𝔫K works given the above pre-processing, since

it is not relevant for understanding our techniques.

320

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

Observe that the size of the above polynomials (and hence the

prover work in P𝔩𝔬𝔫K) depends on the “entire” circuit. Look-

ing ahead, we adopt the following high-level approach to reduce

the prover work. Given “some” input-independent verifier pre-

processing (based on the entire circuit), we will allow the prover to

efficiently derive a “smaller” verifier pre-processing material (of the

above form) that only depends on the activated sub-circuit and have

the prover send KZG commitments to this derived pre-processing

material to the verifier, along with a proof that certifies that these

were computed honestly. Finally, given this “smaller” derived pre-

processing, the rest of our protocol will work exactly as P𝔩𝔬𝔫K . A

majority of the rest of this paper is dedicated towards describing

our approach that allows the prover to efficiently derive and con-

vince the verifier that the derived verifier pre-processing for the

activated sub-circuit was honestly computed.

3 SEGMENT-LOOKUP ARGUMENT
In this section, we present an efficient SNARK for segment-lookup.
Looking ahead, in Section 4 we show how this protocol can be

combined with P𝔩𝔬𝔫K to obtain S𝔲𝔟𝔩𝔬𝔫K .

3.1 Overview
We start with an overview of the techniques in our construction.

As discussed in the introduction, the first step towards design-

ing S𝔲𝔟𝔩𝔬𝔫K involves designing a protocol for segment lookup.

Since our protocol borrows techniques developed in 𝔠𝔮[20], we first

briefly recall the 𝔠𝔮 protocol. This will also allow us to pinpoint the

shortcomings that necessitate a segment lookup protocol, which

will allow us to naturally define the properties required from a

segment lookup protocol.

Overview of 𝔠𝔮 [20]. Lookup arguments are succinct proof sys-

tems, where given a commitment to a large lookup table (of size

𝑛), the prover wants to convince the verifier that a commitment

to a vector of 𝑘 values are all contained in the large lookup table

(the vector is allowed to repeat values from the table). 𝔠𝔮 allows the

prover to pre-process the table and generate such proofs in time

proportional to 𝑘 , where the proofs themselves are constant-sized.

The lookup table in 𝔠𝔮 is encoded using a polynomial 𝑇 (𝑋) of
degree at most 𝑛, and the vector is encoded using a polynomial

𝐹 (𝑋). Both these polynomials are committed via the KZG [43]

polynomial-commitment. The pre-processing for the prover in-

volves pre-computing succinct “quotient” commitments based on

𝑇 . These quotient commitments help the prover generate a proof

in the online phase in time that is proportional to �̃� (𝑘).
In more detail, 𝔠𝔮 relies on the following log-derivative lemma

from [37], which essentially says that the values encoded using

polynomial 𝐹 (𝑋) are a subset of the values encoded using polyno-

mial 𝑇 (𝑋) if and only if for some𝑚 ∈ F𝑛∑︁
𝑖∈[𝑛]

𝑚𝑖

𝑋 + 𝑡𝑖
=

∑︁
𝑖∈[𝑘]

1

𝑋 + 𝑓𝑖
,

where 𝑡𝑖 indicates the 𝑖-th entry of the table𝑇 , and correspondingly

𝑓𝑖 indicates the 𝑖-th entry of 𝐹 . Here 𝑚𝑖 essentially encode the

multiplicity of the 𝑖-th element 𝑇 in 𝐹 .

In [20], this identity is checked by letting the verifier evaluate it

at a random 𝛽 by requiring the prover to send polynomial commit-

ments to the following polynomials: (1)𝑀 (𝑋), which is an encoding
of𝑚, and (2) polynomials 𝐴(𝑋) and 𝐵(𝑋), which are encodings of

the summands on the left and right hand sides of the above equation

respectively.

While 𝑀 (𝑋) and 𝐴(𝑋) are both degree 𝑛 − 1 polynomials, the

number of non-zero evaluations of these polynomials over W is

at most 𝑘 (𝐵(𝑋) is only a sum of size 𝑂 (𝑘)). Hence, given pre-

processed commitments to Lagrange polynomials, the prover can

generate a commitment to𝑀 and 𝐴 simply using 𝑂 (𝑘) operations.
The only remaining step in enabling the verifier to check the above

equality is to convince them that the commitment to polynomial

𝐴(𝑋) is well-formed with respect to 𝑇 (𝑋). This is be done by pro-

viding the verifier with a commitment to a quotient polynomial

𝑄𝐴 (𝑋) and letting them check if

𝐴(𝑋) · (𝑇 (𝑋) + 𝛽) −𝑀 (𝑋) ?

= 𝑄𝐴 (𝑋) · 𝑍W (𝑋).
Even though polynomials 𝐴(𝑋), 𝑀 (𝑋) have sparse represen-

tations, computing the 𝑄𝐴 (𝑋) still requires 𝑂 (𝑛) operations. To
reduce this overhead, 𝔠𝔮 introduced the idea of cached quotients.

They show that if one pre-processes commitments to quotients

{𝑄𝑖 (𝑋)}𝑖∈[𝑛] , of the form

𝜓W𝑖 (𝑋) ·𝑇 (𝑋) = 𝑄𝑖 (𝑋) · 𝑍W (𝑋) + 𝑅𝑖 (𝑋),
then it is possible to compute a commitment to 𝑄𝐴 (𝑋) using just
𝑂 (𝑘) operations.

As evidenced from the above equations, the 𝔠𝔮 protocol only

guarantees that the elements encoded via 𝐹 (𝑋) are contained in

𝑇 (𝑋). As described in the introduction, our application for the

lookup protocol requires stronger properties, as described below.

Segment-Lookup.We propose a variant of the standard lookup

problem called the segment-lookup problem. At a high level, the

look-up table of size 𝑛𝑠 is partitioned into 𝑛 segments consisting of

𝑠 elements each. Now the polynomial 𝐹 (𝑋) encoding 𝑘𝑠 elements

must contain 𝑘 segments from 𝑇 (𝑋) in its entirety, ensuring that

the relative order of elements within each segment is maintained.

From our aforementioned discussion of 𝔠𝔮, it does not guarantee

such a property. We formally define our requirements now.

Let W = {𝜔0, . . . , 𝜔𝑛𝑠−1} be a set of 𝑛𝑠th roots of unity and

V = {𝜈0, . . . , 𝜈𝑘𝑠−1} denote the set of 𝑘𝑠th roots of unity. Given

commitments to 𝑛𝑠 −1 degree polynomial𝑇 (𝑋), for each 𝑖 ∈ [0, 𝑛−
1], the 𝑖-th segment is {𝑇 (𝜔𝑖𝑠), · · · ,𝑇 (𝜔 (𝑖+1)𝑠−1)}. Thus, given a

degree 𝑘𝑠 − 1 polynomial 𝐹 (𝑋), the prover in a segment-lookup

protocol wants to convince the verifier that for each 𝑖 ∈ [0, 𝑘 − 1],
𝐹 (𝜈𝑖𝑠+0), . . . , 𝐹 (𝜈 (𝑖+1)𝑠−1) represents one of the original 𝑛 segments

in 𝑇 (𝑋). In other words, the prover wants to prove that 𝐹 (𝑋) is
well-formed, and each segment embedded in 𝐹 (𝑋) is taken from

𝑇 (𝑋).
Considering the above requirement, we want to design an effi-

cient pre-processing SNARKwith a constant proof size and constant

time verification, where the prover work only grows with 𝑘𝑠 .

Our Approach. We now describe our main ideas for designing

such a protocol. For simplicity of notation, for any polynomial 𝑃 (𝑋),
we will denote by 𝑝𝑖 the evaluation at 𝜔𝑖

(the 𝑖-th power of the

corresponding set of roots of unity), i.e., 𝑝𝑖 B 𝑃 (𝜔𝑖). Note that the
321

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

range of 𝑖 will vary depending on the corresponding roots of unity

𝑃 is defined over.

Similar to 𝔠𝔮, we start by defining a polynomial 𝑀 (𝑋) that is
used to indicate which elements of 𝑇 (𝑋) are included in 𝐹 (𝑋) and
how many times. i.e.𝑚𝑖 = #times 𝑡𝑖 appears in (𝑓1, · · · , 𝑓𝑘𝑠). The
number of non-zero entries in𝑀 is bounded above by min{𝑘𝑠, 𝑛𝑠}.

Since we want the “granularity” of elements selected to corre-

spond to an entire segment, unlike 𝔠𝔮, we want to enforce additional
constraints on𝑀 (𝑋).
• Constraint I: The first constraint we enforce is that the value
{𝑚𝑖 }𝑖∈[𝑗𝑠,(𝑗+1)𝑠−1] in 𝑀 (𝑋) corresponding to each segment,

must all be equal. We capture this by comparing each pair of con-

secutive values in𝑀 , except for the first value in each segment,

since each can have distinct values. The test is then described as,

∀𝑖 ∈ [𝑛𝑠] s.t. 𝑠 ∤ 𝑖,𝑚𝑖 =𝑚𝑖−1. Or, in polynomial terms,

∀𝑥 ∈ W, (𝑥𝑛 − 1) (𝑀 (𝑥) −𝑀 (𝑥/𝜔)) = 0.

By the fact that W consists of 𝑘𝑠-th roots of unity, first term,

(𝑥𝑛 − 1) is 0 if and only if 𝑥 = 𝜔 𝑗𝑠
for some 𝑗 , which ensures:

(i) the equation is trivially satisfied by the starting index of each

segment, which by description is of the form 𝑗𝑠 , i.e. encodes

𝑠 ∤ 𝑖; and (ii) for all other indices 𝑖 , it must be the case that

𝑚𝑖 =𝑚𝑖−1 to ensure the condition holds. This check is encoded

by the polynomial check in Step 2 of Round 1.

• Constraint II: A consequence of how the table lookup protocol

works in 𝔠𝔮 is that the relative ordering of elements in 𝐹 (𝑋) need
not be consistent with the relative ordering of elements in 𝑇 (𝑋).
Since our segment will encode a circuit, it is imperative that we

maintain the relative ordering of the elements within a segment.

We encode this test by first defining a function, 𝐿 : [𝑘𝑠] ↦→ [𝑛𝑠]
which we will encode as a polynomial 𝐿(𝑋) : K ↦→ W (by

overloading notation).
11 𝐿 maps the indices from 𝐹 to their corre-

sponding location within 𝑇 . For relative ordering, we perform a

check akin to that of𝑀 . The indices for consecutive elements in

𝐹 should be consecutive in𝑇 (except for the start of the segment),

∀𝑖 ∈ [𝑘𝑠] s.t. 𝑠 ∤ 𝑖, ℓ𝑖+1 = ℓ𝑖 + 1. In polynomial terms, since we

have 𝑘𝑠-th roots of unity, we can rewrite this as,

∀𝑥 ∈ V, (𝑥𝑘 − 1) (𝐿(𝑥𝜈) − 𝜔𝐿(𝑥)) = 0.

𝐿(𝑋) has degree at most 𝑘𝑠 .

• Constraint III: Unfortunately, the above checks are not yet

sufficient to achieve the desired segment granularity. While the

tests do ensure that relative ordering is maintained within the

segment, it does not enforce that the segments in 𝐹 (𝑋) indeed
start at the specified location, i.e. we want to ensure that ℓ𝑗𝑠 for

each 𝑗 ∈ [𝑘] must map to an index 𝑖𝑠 for some 𝑖 ∈ [𝑛] in 𝑇 .

This will ensure that each segment in 𝐹 indeed corresponds to a

segment in 𝑇 .

We define a polynomial 𝐷 , that selects {ℓ𝑗𝑠 } 𝑗 , i.e. ∀𝑖 ∈ [𝑘], 𝑑𝑖𝑠 =
ℓ𝑖𝑠 . Finally, we need to check that ∀𝑖 ∈ [𝑘], 𝑠 | 𝑑𝑖𝑠 . In polyno-

mial terms, this translates to checking if all of the elements in

{𝑑𝑖𝑠 }𝑖∈[𝑘] are 𝑛-th roots of unity. To perform this check, we

invoke a sub-protocol from [62].

11
Since the same segment can be invoked multiple times, the function is not injective,

and thus 𝐿−1
is not well defined.

Most of the remaining protocol follows the 𝔠𝔮 template, except

that since we need to enforce the above additional constraints, the

log-derivative lemma used in 𝔠𝔮 does not suffice in our setting. We

work with the following modified lemma: Each segment embedded

in 𝐹 is taken from 𝑇 if and only if for some 𝑀 and 𝐿 as defined

above, ∑︁
𝑖∈[𝑛𝑠]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝑌𝜔𝑖
=

∑︁
𝑖∈[𝑘𝑠]

1

𝑋 + 𝑓𝑖 + 𝑌ℓ𝑖

The verifier picks random field elements to replace𝑋,𝑌 . The prover

provides commitments to polynomials 𝐴(𝑋) and 𝐵(𝑋) that encode
the summands in the LHS and RHS, respectively. Similar to 𝔠𝔮, the

verifier then verifies if the above equality holds. Throughout the

protocol, when computing commitments to quotient polynomials

of degree 𝑛𝑠 − 1, we use the idea of cached quotients to reduce

online prover work at the cost of some additional pre-processing.

3.2 Definition
We begin by formally defining Segment-Lookup, secure against

polynomial time adversaries.

Definition 2 (Segment-Lookup). (𝑛, 𝑘, 𝑠)-Segment-Lookup is a
pair (gen, segmentLookup) such that:

• gen(𝑛, 𝑘, 𝑠,𝑇) : This is a PPT algorithm that takes as input integers
𝑛, 𝑘, 𝑠 and a polynomial 𝑇 ∈ F[𝑋] of degree 𝑛𝑠 − 1. It outputs a
string srs of G1 and G2 elements. For a random 𝜏 ∈ F and for
max = max(𝑘, 𝑛), srs consists of {[𝜏𝑖]1, [𝜏𝑖]2}𝑖∈[0,max·𝑠−1] , and
other group and field elements. This algorithm is run in the pre-
processing phase.
• segmentLookup(com, srs,𝑇 , 𝐹 ,V) : This is an interactive public
coin protocol between the Prover and the Verifier, where the prover
has a private input 𝐹 ∈ F[𝑋] of degree 𝑘𝑠 − 1, and both the parties
have access to𝑇, com and srs := gen(𝑛, 𝑘, 𝑠,𝑇), such that it satisfies
the following properties of completeness and knowledge soundness
in the algebraic group model. LetW = {𝜔0, . . . , 𝜔𝑛𝑠−1} be a set of
𝑛𝑠th roots of unity and V = {𝜈0, . . . , 𝜈𝑘𝑠−1} denote the set of 𝑘𝑠th
roots of unity.
– Completeness. If com = [𝐹 (𝜏)]1 (𝜏 as in the srs), and if for
each 𝑖 ∈ [0, 𝑘 − 1], there exists 𝑗 ∈ [0, 𝑛 − 1] such that, for each
𝑞 ∈ [0, 𝑠−1], 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞), then the verfier accepts with
probability 1.

– Knowledge Soundness. The probability of any poly(𝜆)-time
adversary A winning the following game is negl(𝜆).
(1) A chooses integer parameters 𝑛, 𝑘, 𝑠 and the polynomial

𝑇 (𝑋) ∈ F[𝑋] of degree 𝑛𝑠 − 1.
(2) Compute srs := gen(𝑛, 𝑘, 𝑠,𝑇).
(3) A sends a message com and polynomial 𝐹 (𝑋) ∈ F<𝑘𝑠 [𝑋]

such that com = [𝐹 (𝜏)]1. Here, for max = max(𝑘, 𝑛),
all G1 elements in the srs are linear combinations of
{[𝜏𝑖]1}𝑖∈[0,max·𝑠−1] .

(4) A (as the prover) and the verifier run the interactive pro-
tocol segmentLookup(com, srs,𝑇 , 𝐹 ,V), where V ⊂ F is a
subgroup of order 𝑘𝑠 generated by 𝜈 .

(5) A wins if and only if the verifier accepts and there exists some
𝑖 ∈ [0, 𝑘 − 1], such that for each 𝑗 ∈ [0, 𝑛 − 1] there exists at
least one 𝑞 ∈ [0, 𝑠 − 1] such that 𝐹 (𝜈𝑖𝑠+𝑞) ≠ 𝑇 (𝜔 𝑗𝑠+𝑞).

322

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

3.3 Protocol
Due to space constraints, we defer a formal description of our

segment lookup protocol to Section B.2 and prove the following

theorem in Section B.3. The building blocks and instantiations are

described in Section B.1. In Section B.4 we discuss how our protocol

can be easily augmented to achieve zero-knowledge with the caveat

that the effective number of layers 𝑘 is leaked to the verifier.

Theorem 1. Let 𝑛, 𝑘, 𝑠 be integers. Assuming that the
(max(𝑘𝑠, 𝑛𝑠))-DLOG, qSDH, qDHE, and qSFrac assumptions [12, 28]
hold, the aforementioned (gen, segmentLookup) is a (𝑘, 𝑛, 𝑠)-
segment-lookup protocol (see Definition 2) under the algebraic
group model and random oracle model. The gen algorithm requires
𝑂 ((max · 𝑠) + 𝑛𝑠 log(𝑛𝑠)) G1- and F-operations, and𝑂 (max · 𝑠) G2-
operations. The prover computation cost in segmentLookup is
𝑂 (𝑘𝑠 · (log𝑘𝑠 + log𝑛)) G1- and F-operations and the proof size and
verifier time are both 𝑂 (1).

A detailed analysis of the prover cost of our segment-lookup

protocol can be found in Appendix B.3.

4 S𝔲𝔟𝔩𝔬𝔫K: SEGMENT LOOKUP + P𝔩𝔬𝔫K
In this section, we will utilize the segment-lookup protocol de-

scribed in Section 3 in conjunction with the P𝔩𝔬𝔫K proof system

to construct a proof system where, as described in the introduction,

the prover cost grows with the length of the execution path, rather

than the entire circuit. We elaborate on this requirement now. Con-

sider a layered branching circuit C with at most
¯𝑘 layers, where

each layer has the same branch of 𝑛 𝑠-sized circuits C1, . . .C𝑛 . On

a given input, let it be the case that a sequence of 𝑘 ≤ ¯𝑘 circuit

branches C̃ B (C̃(𝑖))𝑖∈[𝑘] (where 𝑘 , as well as the sequence, is pos-
sibly dependent on the input), are executed in order. We want the

prover cost to grow with the size of the total executed sub-circuit

of size 𝑘𝑠 , rather than 𝑘𝑛𝑠 . For simplicity of notation, throughout

the rest of this section, we will assume that the effective number

of layers 𝑘 is fixed in advance (and hence even the pre-processing

algorithm will take 𝑘 as input). At the end of Section C.2, we discuss

how our protocol can be generalized to handle any 𝑘 ≤ ¯𝑘 and hence

the pre-processing of S𝔲𝔟𝔩𝔬𝔫K only needs to take
¯𝑘 as input.

Our solution’s core idea is to store the encoding of the circuit

constraints for each sub-circuit in a segment-lookup table. Given

the input 𝑥 , the prover uses the induced circuit C̃𝑥 to compute the

P𝔩𝔬𝔫K verifier pre-processing for C̃𝑥 , and subsequently, the corre-

sponding segment lookup proof for it, in time �̃� (𝑘𝑠). In more detail,

as discussed in Section 2.2, the P𝔩𝔬𝔫K proof system encodes cir-

cuit constraints via a number of polynomials that are pre-processed

to their KZG commitment (see Section A.2) and provided to the

verifier. Since the output of our segment-lookup protocol in Section

3 is indeed a KZG commitment to the polynomial defined by the

selected segments, this gives the following natural approach to

achieving a sub-linear prover:

(1) We represent each of the circuit branches C1, . . . ,C𝑛 using

the P𝔩𝔬𝔫K constraint system. Generate a table 𝑇 where the

𝑖-th segment contains the P𝔩𝔬𝔫K constraints for C𝑖 , i.e. 𝑇

consists of 𝑛 segments.

(2) Depending on the sequence of activated circuit branches, the

prover can use our segment-lookup protocol (from Section

3) to generate the KZG commitment of the 𝑘 constraints

corresponding to the 𝑘 activated circuit branches along with

a proof of correctness.

(3) The prover post-processes the above derived KZG commit-

ment so that it has the same form as the KZG commitments

received by a P𝔩𝔬𝔫K verifier in the pre-processing phase

for C̃.
(4) Given the above, we can directly rely on the P𝔩𝔬𝔫K protocol

for C̃.

Unfortunately, while this is indeed the template for our protocol,

the details do not work out in such a straightforward manner. We

present the details in this section.

4.1 Pre-Processing Layered Branching Circuit
In this section, we describe how the P𝔩𝔬𝔫K constraints for each of

the circuit branches C1, . . . ,C𝑛 is stored in a table 𝑇 consisting of

𝑛 segments. We start by establishing some notation.

Ensuring Correct Sequence of Activated Circuit
Branches. The activated sub-circuit C̃ (of C on input 𝑥) of

size 𝑘𝑠 is specified by a sequence of 𝑘 activated circuit branches

(C̃(𝑖))𝑖∈[𝑘] . Further, as discussed in Section 2.1, ∃ a function

𝜉 : F𝑚 → [1, 𝑛]𝑘 such that ∀𝑖 ∈ [𝑘], C̃(𝑖) = C𝜉𝑥 (𝑖) (where we

use 𝜉𝑥 to denote 𝜉𝑥). We assume that each circuit branch when

executed, specifies the next circuit branch to be executed in the

next layer. To ensure that the circuit branches are executed in

order, we assume that one of the output wires for C̃(𝑖) outputs
𝜉𝑥 (𝑖 + 1), and each circuit C(𝑖) has hardcoded within it the index 𝑖

to check whether the aforementioned incoming wire into 𝜉𝑥 (𝑖 + 1)
indeed has the hardwired value 𝜉𝑥 (𝑖 + 1).

P𝔩𝔬𝔫K constraints. Let us denote the𝑛 P𝔩𝔬𝔫K constraint systems

for the 𝑛 circuit branches {C𝑖 }𝑖∈[𝑛] as {C (𝑖) = (V (𝑖) ,Q (𝑖))}𝑖∈[𝑛] .
The corresponding pre-processed polynomials (refer to Section

2.2 for notation) are denoted by (qM (𝑖) (𝑋), qL (𝑖) (𝑋), qR (𝑖) (𝑋),
qO (𝑖) (𝑋), qC (𝑖) (𝑋), S𝜎 (𝑖)

1
(𝑋), S𝜎 (𝑖)

2
(𝑋), S𝜎 (𝑖)

3
(𝑋)). These polyno-

mials will be relevant to our subsequent discussion.

Let {xℓ }ℓ∈[3𝑘𝑠] be the extended witness/satisfying assig-

ment for the P𝔩𝔬𝔫K constraints such that for each 𝑗 ∈
[𝑘], {x𝑗𝑠+𝑖 , x𝑘𝑠+𝑗𝑠+𝑖 , x2𝑘𝑠+𝑗𝑠+𝑖 }𝑖∈[𝑠] correspond to the extended-

witnesses for branching circuits C̃(𝑗) (= C(𝜉𝑥 (𝑗))).

Checking Wire-Consistency or Copy-Check Constraints. Re-
call from Section 2.2, that the consistency of wire values in a circuit

is checked in P𝔩𝔬𝔫K using the copy-check constraints. In our

setting, in addition to checking these constraints within each in-

dividual circuit branch, we need an additional copy-constraint. In

particular, in our setting, the 𝑗-th output wire of a circuit C̃(𝑖) must

have the same value as the 𝑗-th input wire of C̃(𝑖+1) . We ensure

this by assuming that the output wires of C̃(𝑖) are not a part of any
cycles induced by the copy-check constraints 𝜎 (𝑖) within C̃(𝑖) . For
instance, this requirement can be satisfied by considering “output

gates” in the final layer of the circuit that pass values unchanged,

but ensure the input and output wire remain in different cycles

within the permutation. Finally, since the (relative) index of the

𝑗-th output wire of C̃(𝑖) is fixed and known to C̃(𝑖+1) , the copy-
constraint for C̃(𝑖+1) is constructed ensuring that the 𝑗-th output

323

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

wire of C̃(𝑖) and 𝑗-th input wire of C̃(𝑖+1) are a part of the same cy-

cle in 𝜎 (𝑖+1) . Thus in each circuit branch C𝑖 , if there are 𝑝 input and

output wires, the permutation within the circuit-branch is defined

to be 𝜎 (𝑖) : [−3𝑝 : 3(𝑠 − 𝑝)] → [−3𝑝 : 3(𝑠 − 𝑝)].
This avoids any potential for cycles across circuit branches, ex-

cept for the ones we discussed, and thus C̃ consists of disjoint

cycles, and thus {𝜎 (𝑖) }𝑖∈[𝑛] remains a permutation. For simplicity

of notation, for the remainder of the section, we treat 𝜎 (𝑖) to be

𝜎 (𝑖) : [3𝑠] → [3𝑠].

Parallel Repeated Version of the Segment-Lookup Proto-
col. Before the next discussion, we remark that in our final

protocol, we will run 9 copies of our segment-lookup protocol

segmentLookup. In particular, we will encode each of the 8 types

of polynomials 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1
, S𝜎 2

, S𝜎 3
} for all the

circuit branches in a separate table (to be described shortly) and run

our segment lookup protocol on each of these 8 tables individually.

Let {𝑇𝑖 }𝑖∈[8] denote the 8 tables. Each of these 𝑇𝑖s has identical

sizes and an identical number of segments. Further, even though

we run separate instances of segmentLookup on each of them, we

require that the same witness polynomial 𝑀 (𝑋) polynomial is used

across each copy of segmentLookup(𝑇𝑖) execution. Note that this
can be done naïvely by running the base segmentLookup protocol

many times and have the prover sending a single round 1 message

(which includes the KZG commitment to [𝑀 (𝜏)]1), which is then

subsequently shared across each execution of the protocol.

But we utilize the fact that our segment-lookup protocol inherits

linear homomorphism from 𝔠𝔮. Specifically, once the prover sends

the commitments to the various 𝐹 (𝑋) polynomials, say 𝐹1 (𝑋) and
𝐹2 (𝑋) for tables 𝑇1 (𝑋) and 𝑇2 (𝑋), the verifier samples a random

challenge 𝛾 , the prover and verifier can run the segment-lookup

protocol on 𝐹1 (𝑋) +𝛾𝐹2 (𝑋) for the table𝑇1 (𝑋) +𝛾𝑇2 (𝑋). With this

observation, we only need to run one copy of the segmentLookup
protocol internally.

Polynomials for Segment-Lookup.We are finally ready to de-

scribe how we encode the constraints for each circuit branch

{C𝑖 }𝑖∈[𝑛] in the 8 tables. We define the following 8 table poly-

nomials of degree 𝑛𝑠 − 1 in their value representation form - for

𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1
, S𝜎 2

, S𝜎 3
},

∀𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈ [𝑠], 𝑇𝑌 (𝜔𝑖𝑠+𝑗) B 𝑌 (𝑖) (𝜂 𝑗)

where the set {0, 𝜂, 𝜂2, · · · , 𝜂 (𝑠−1) } B {0, 𝜔𝑛, 𝜔2𝑛, · · · , 𝜔 (𝑠−1)𝑛}
are the 𝑠-th roots of unity. We use W and V as defined in Sec-

tion 3 to be the set of 𝑛𝑠 and 𝑘𝑠 roots of unity respectively. If

we view 𝑇𝑌 as consisting of 𝑛 segments each of size 𝑠 , the above

equation indicates that the 𝑖-th segment consists of {𝑌 (𝑖)
𝑗
} 𝑗 ∈[𝑠] .

Similarly, we define the following 8 𝑘𝑠 − 1-degree polynomials, for

𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1
, S𝜎 2

, S𝜎 3
},

∀𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], 𝐹𝑌 (𝜈𝑖𝑠+𝑗) B 𝑌 (𝜉 (𝑖)) (𝜂 𝑗)

For each 𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1
, S𝜎 2

, S𝜎 3
}, we run in-

stances of segmentLookup as described above. For clarity

of exposition, we abuse notation and denote this as the P
and V executing segmentLookup⊗ℓ ({𝑇𝑖 , }𝑖∈[8]) (shortening from

segmentLookup⊗ℓ ({com𝑖 ,𝑇𝑖 , 𝐹𝑖 }𝑖∈[8] , srs,V)), where the verifier

output is {[𝐹𝑖 (𝜏)]1}𝑖 if the proof accepts.

In Section C.1, we describe how the 𝐹𝑌 polynomials, can be easily

post-processed to obtain a verifier pre-processing identical to that

in P𝔩𝔬𝔫K for the activated sub-circuit 𝐶 .

4.2 S𝔲𝔟𝔩𝔬𝔫K for Layered Branching Circuit
We give a full description of our S𝔲𝔟𝔩𝔬𝔫K protocol and prove the

following theorem in Appendix C.2.

Theorem 2. Given a (𝑠, ¯𝑘, 𝑛, {C𝑖 }𝑛𝑖=1
) layered branching circuit

C, there exists a pre-processing SNARK in the Algebraic Group Model
for C induced by C with a prover cost of 𝑂 (𝑘𝑠 · (log(𝑘𝑠) + log(𝑛)))
G1- and F-operations and a verifier cost and proof size of𝑂 (1), where
𝑘 ≤ ¯𝑘 is the effective layer.

A detailed analysis of the prover cost of our S𝔲𝔟𝔩𝔬𝔫K protocol

can be found in Appendix C.2.

5 IMPLEMENTATION AND EVALUATION
We implement the S𝔲𝔟𝔩𝔬𝔫K proof system in Rust and are working

towards an open-source release. The implementation relies on the

BLS12-377 pairing-based curve as implemented in arkworks [6].

Moreover, we rely on the implementation of P𝔩𝔬𝔫K available at [3].

All experiments are run on a Macbook Pro with M1 Pro 3.2 Ghz

chip and 32 GB RAM.We also report EVM gas costs
12

for publishing

and verifying signatures on-chain.

5.1 Implementing and Evaluating S𝔲𝔟𝔩𝔬𝔫K for
Rollups

We demonstrate the improvement of S𝔲𝔟𝔩𝔬𝔫K on rollup applica-

tions.

DEX Rollups. Consider a typical decentralized exchange (DEX)

smart contract (e.g. Loopring [1]) which allows users to create one

of several types of transactions: deposits, spot trades, transfers,

withdrawals, etc. The logic within each of these transaction types is

encoded as a circuit, typically ranging from 30K to 60K arithmetic

gates – we round up the circuit size to the nearest power of 2 when

modeling as a segment, so we use 2
16

gates
13
. A single instance

of a rollup transaction that is submitted to a layer 1 blockchain

(e.g. Ethereum) can batch together hundreds of such transactions,

along with a single proof attesting to the validity of the next state

transition (i.e., the final state of the DEX contract is attained by

correctly evaluating the hundreds of transactions starting from the

initial state that is recorded on the layer 1 chain). Rollups naturally

map to our layered branching circuit model, where at each step,

the prover executes one of several transaction types (segments).

Additional Rollup Applications In addition to application-

specific rollups, as discussed above with DEX, we experiment with

generic rollup solutions which allow for sequentially composing

multiple different applications. For each of the following applica-

tions (borrowed from [16]), we compose circuits for that application

with other similar-sized mock circuits.

12
Our calculation uses the pre-compiled gas costs for the BLS12-381 curve as defined

in EIP-2537 [2]: G1 additions cost 600, G1 multiplications cost 12000, G2 additions

cost 800, G2 multiplications cost 45000, and 𝑛 pairings cost 115000 + 𝑛 · 23000.

13
This is not a technical limitation, as we could further decompose a segment into a

set of smaller segments, each of size a power of two. We have not implemented this

idea.

324

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

Figure 2: Prover runtime with 𝑘 = 128 segments, with segment choices 𝑛 ∈ {1, 2, 4, 8}, and segments of size 2
10, 2

12, and 2
14

Figure 3: Prover runtime for varying segment sizes

• Proof of knowledge of exponent: each circuit segment en-

codes the statement that the witness, which is the scalar 𝑥 ,

maps to the group element 𝑔𝑥 , which is part of the input. We

use the BLS12-377 curve (group G1). The segment has size

2
12

gates.

• ZCash: each circuit segment encodes the proof circuit for

a ZCash [41] (Sapling) transaction. Here, each segment has

size 2
17

gates.

• Nested conditional branching: we consider a generic pro-

gram containing nested conditional statements, producing

a control flow graph comprising a number of possible seg-

ments that can be exercised by a particular input – for in-

stance, we report performance for an artificial program with

256 total segments, each of size 2
16

gates, where an active

path only exercises 16 segments.

Note that unlike [16], we do not use custom gates in our circuit

encoding, so it results in larger circuits (comparable to the R1CS

encoding).

Prover Time. In our first experiment, we encode the DEX rollup

computation as a sequence of 𝑘 = 128 steps, where each step has a

conditional choice between 𝑛 ∈ {1, 2, 4, 8} segments, each of size

2
16

gates; note that 𝑛 is typically between 4 and 8 for a typical DEX

rollup (see [1]), however we also demonstrate S𝔲𝔟𝔩𝔬𝔫K on smaller

values of 𝑛 to better illustrate its performance tradeoffs.

Figure 2 reports the prover time for both S𝔲𝔟𝔩𝔬𝔫K and the

baseline P𝔩𝔬𝔫K systems. The baseline refers to the invocation of

P𝔩𝔬𝔫K using the conventional encoding where the circuit rep-

resentation of all 𝑛 transaction types are “stitched" together for

each of the 128 steps; i.e., the circuit size is 128 × 𝑛 × 2
16

gates.

S𝔲𝔟𝔩𝔬𝔫K with P𝔩𝔬𝔫K refers to our proof system, which includes

our segment-lookup protocol followed by an invocation of P𝔩𝔬𝔫K .

The overhead incurred by the segment-lookup protocol can be

computed by subtracting the S𝔲𝔟𝔩𝔬𝔫K prover time from the base-

line prover time for 𝑛 = 1. Not surprisingly, as we increase 𝑛, we

find larger speedups from S𝔲𝔟𝔩𝔬𝔫K , with over 4.8x speedup for

𝑛 = 8 and segment size 2
16
. In addition to improvements in the

prover time, we also believe that S𝔲𝔟𝔩𝔬𝔫K enables better scaling

as it reduces the degree of the polynomials that are provided to

the P𝔩𝔬𝔫K sub-procedure, thus reducing the memory needs (and

likely to execute on smaller machines).

More generally, programs with conditional branches observe a

large gap between the total number of segments and the number of

executed segments, which makes S𝔲𝔟𝔩𝔬𝔫K’s improvement even

more significant. As an example, consider a control flow graph

of a program with 256 possible segments, each of size 2
16
. Now

consider the an execution, where the active path only exercised 16

segments. The baselineP𝔩𝔬𝔫K prover requires roughly 175 seconds

to produce a proof, whereas S𝔲𝔟𝔩𝔬𝔫K requires 20.04 seconds; that

marks an improvement in prover time of 8.7×.
Finally, we report prover times for the additional rollup appli-

cations. In Figure 3, we vary the segment size while fixing 𝑘 = 64

and 𝑛 = 4 – i.e., for each application, the rollup consists of mock

circuits of size equal to the segment size, where the rollup prover

can choose between 4 possible statements to prove at each of the

64 steps.

Proof Size. Our proof consists of 42 G1 elements and 12 scalar

F elements, of which 9 G1 and 6 F elements arise from the proof

generated by the P𝔩𝔬𝔫K subprocedure. Concretely, this makes

our proof 2.4 KB in size. While the proof is substantially larger

compared to the P𝔩𝔬𝔫K baseline, which is 624 bytes, we find this to

be a valuable performance tradeoffwhen considering the reductions

in prover time.

325

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

Verification Cost. The primary operations of the verifier include

23 pairings, 26 G1 operations, and 1 G2 operation – if one wishes

to strictly enforce that the verifier must be constant time, then one

could have the prover compute the opening to the vanishing polyno-

mials, but we find the distinction to be minor in practice due to the

efficiency of computing log(𝑛𝑠) field multiplications. A S𝔲𝔟𝔩𝔬𝔫K
proof requires 716.6K EVM gas units to verify on-chain and 50 ms

to verify on a Macbook Pro laptop, where the computation is dom-

inated by the cost to compute pairings. In comparison, verifying

a P𝔩𝔬𝔫K proof requires 2 pairings and 18 G1 multiplications, and

costs 377K EVM gas units to verify on-chain.

ACKNOWLEDGMENTS
The second and the fourth authors are supported in part by DARPA

under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-

0200, NSF CNS Award 1936826, and research grants by the Sloan

Foundation and Visa Inc. The authors would also like to thank

the anonymous reviewers for their valuable comments and helpful

suggestions.

REFERENCES
[1] 2018. Loopring: A Decentralized Token Exchange Protocol. https://loopring.

org/resources/en_whitepaper.pdf

[2] 2020. EIP-2537: Precompile for BLS12-381 curve operations. https://eips.

ethereum.org/EIPS/eip-2537

[3] 2022. Jellyfish: A Rust Implementation of the PLONK ZKP System and Extensions.

https://github.com/EspressoSystems/jellyfish

[4] 2022. Plonky2: Fast Recursive Arguments with PLONK and FRI. https://github.

com/mir-protocol/plonky2/blob/main/plonky2/plonky2.pdf

[5] 2023. Sangria: A Folding Scheme for PLONK. https://geometry.xyz/notebook/

sangria-a-folding-scheme-for-plonk

[6] arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://arkworks.

rs.

[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Fast Reed-

Solomon Interactive Oracle Proofs of Proximity. In ICALP 2018 (LIPIcs, Vol. 107),
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella

(Eds.). Schloss Dagstuhl, 14:1–14:17. https://doi.org/10.4230/LIPIcs.ICALP.2018.14

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,

transparent, and post-quantum secure computational integrity. Cryptology ePrint

Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[9] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[10] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars

Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments for

R1CS. In EUROCRYPT 2019, Part I (LNCS, Vol. 11476), Yuval Ishai and Vincent

Rijmen (Eds.). Springer, Heidelberg, 103–128. https://doi.org/10.1007/978-3-030-

17653-2_4

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad

Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. J. Cryptol. 30, 4
(2017), 989–1066. https://doi.org/10.1007/s00145-016-9241-9

[12] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.

In Advances in Cryptology - EUROCRYPT 2004, International Conference on the
Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3027), Christian
Cachin and Jan Camenisch (Eds.). Springer, 56–73. https://doi.org/10.1007/978-

3-540-24676-3_4

[13] Benedikt Bünz and Binyi Chen. 2023. ProtoStar: Generic Efficient Accumula-

tion/Folding for Special Sound Protocols. Cryptology ePrint Archive, Paper

2023/620. https://eprint.iacr.org/2023/620

[14] Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger Lipmaa.

2023. Lookup Arguments: Improvements, Extensions and Applications to Zero-

Knowledge Decision Trees. Cryptology ePrint Archive, Paper 2023/1518. https:

//eprint.iacr.org/2023/1518 https://eprint.iacr.org/2023/1518.

[15] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).

ACM Press, 2075–2092. https://doi.org/10.1145/3319535.3339820

[16] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. 2023. Hyper-

Plonk: Plonk with Linear-Time Prover and High-Degree Custom Gates. In EU-
ROCRYPT 2023, Part II (LNCS). Springer, Heidelberg, 499–530. https://doi.org/10.

1007/978-3-031-30617-4_17

[17] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and

Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and
Yuval Ishai (Eds.). Springer, Heidelberg, 738–768. https://doi.org/10.1007/978-3-

030-45721-1_26

[18] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,

Michael Naehrig, Bryan Parno, and Samee Zahur. 2015. Geppetto: Versatile

Verifiable Computation. In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 253–270. https:

//doi.org/10.1109/SP.2015.23

[19] Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. 2023. MUXProofs:

Succinct Arguments for Machine Computation from Tuple Lookups. Cryptology

ePrint Archive, Paper 2023/974. https://eprint.iacr.org/2023/974 https://eprint.

iacr.org/2023/974.

[20] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast

lookups. Cryptology ePrint Archive, Report 2022/1763. https://eprint.iacr.org/

2022/1763.

[21] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast

lookups. IACR Cryptol. ePrint Arch., 1763. https://eprint.iacr.org/2022/1763

[22] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group Model

and its Applications. In CRYPTO 2018, Part II (LNCS, Vol. 10992), Hovav Shacham

and Alexandra Boldyreva (Eds.). Springer, Heidelberg, 33–62. https://doi.org/10.

1007/978-3-319-96881-0_2

[23] Ariel Gabizon and Dmitry Khovratovich. 2022. flookup: Fractional decomposition-

based lookups in quasi-linear time independent of table size. Cryptology ePrint

Archive, Report 2022/1447. https://eprint.iacr.org/2022/1447.

[24] Ariel Gabizon and Zachary J. Williamson. 2020. plookup: A simplified polynomial

protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315. https:

//eprint.iacr.org/2020/315.

[25] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. 2019. PLONK: Per-

mutations over Lagrange-bases for Oecumenical Noninteractive arguments of

Knowledge. Cryptology ePrint Archive, Report 2019/953. https://eprint.iacr.org/

2019/953.

[26] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT 2013
(LNCS, Vol. 7881), Thomas Johansson and Phong Q. Nguyen (Eds.). Springer,

Heidelberg, 626–645. https://doi.org/10.1007/978-3-642-38348-9_37

[27] genSTARK. 2020. https://github.com/GuildOfWeavers/genSTARK.

[28] Essam Ghadafi and Jens Groth. 2017. Towards a Classification of Non-interactive

Computational Assumptions in Cyclic Groups. In Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part II (Lecture Notes in Computer Science, Vol. 10625), Tsuyoshi Takagi
and Thomas Peyrin (Eds.). Springer, 66–96. https://doi.org/10.1007/978-3-319-

70697-9_3

[29] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk.

2022. Stacking Sigmas: A Framework to Compose 𝛴-Protocols for Disjunctions.

In EUROCRYPT 2022, Part II (LNCS, Vol. 13276), Orr Dunkelman and Stefan

Dziembowski (Eds.). Springer, Heidelberg, 458–487. https://doi.org/10.1007/978-

3-031-07085-3_16

[30] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner.

2023. Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions.

In EUROCRYPT 2023, Part II (LNCS). Springer, Heidelberg, 347–378. https:

//doi.org/10.1007/978-3-031-30617-4_12

[31] Lior Goldberg, Shahar Papini, and Michael Riabzev. 2021. Cairo – a Turing-

complete STARK-friendly CPU architecture. Cryptology ePrint Archive, Report

2021/1063. https://eprint.iacr.org/2021/1063.

[32] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating

computation: interactive proofs for muggles. In 40th ACM STOC, Richard E.

Ladner and Cynthia Dwork (Eds.). ACM Press, 113–122. https://doi.org/10.1145/

1374376.1374396

[33] MatthewGreen, Mathias Hall-Andersen, Eric Hennenfent, Gabriel Kaptchuk, Ben-

jamin Perez, and Gijs Van Laer. 2023. Efficient Proofs of Software Exploitability

for Real-world Processors. Proc. Priv. Enhancing Technol. 2023, 1 (2023), 627–640.
https://doi.org/10.56553/popets-2023-0036

[34] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Ar-

guments. In ASIACRYPT 2010 (LNCS, Vol. 6477), Masayuki Abe (Ed.). Springer,

Heidelberg, 321–340. https://doi.org/10.1007/978-3-642-17373-8_19

[35] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In

EUROCRYPT 2016, Part II (LNCS, Vol. 9666), Marc Fischlin and Jean-Sébastien

Coron (Eds.). Springer, Heidelberg, 305–326. https://doi.org/10.1007/978-3-662-

49896-5_11

[36] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers.

2018. Updatable and Universal Common Reference Strings with Applications to

326

https://loopring.org/resources/en_whitepaper.pdf
https://loopring.org/resources/en_whitepaper.pdf
https://eips.ethereum.org/EIPS/eip-2537
https://eips.ethereum.org/EIPS/eip-2537
https://github.com/EspressoSystems/jellyfish
https://github.com/mir-protocol/plonky2/blob/main/ plonky2/plonky2.pdf
https://github.com/mir-protocol/plonky2/blob/main/ plonky2/plonky2.pdf
https://geometry.xyz/notebook/sangria-a-folding-scheme- for-plonk
https://geometry.xyz/notebook/sangria-a-folding-scheme- for-plonk
https://arkworks.rs
https://arkworks.rs
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-24676-3_4
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/1518
https://eprint.iacr.org/2023/1518
https://eprint.iacr.org/2023/1518
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://eprint.iacr.org/2023/974
https://eprint.iacr.org/2023/974
https://eprint.iacr.org/2023/974
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1007/978-3-031-30617-4_12
https://eprint.iacr.org/2021/1063
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.56553/popets-2023-0036
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

zk-SNARKs. In CRYPTO 2018, Part III (LNCS, Vol. 10993), Hovav Shacham and

Alexandra Boldyreva (Eds.). Springer, Heidelberg, 698–728. https://doi.org/10.

1007/978-3-319-96878-0_24

[37] Ulrich Haböck. 2022. Multivariate lookups based on logarithmic derivatives.

IACR Cryptol. ePrint Arch., 1530. https://eprint.iacr.org/2022/1530

[38] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz Zero-Knowledge Pro-

cessor with BubbleRAM. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM Press, 2055–2074. https://doi.org/10.1145/

3372297.3417283

[39] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive

Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107), Anne
Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 569–598. https://doi.org/

10.1007/978-3-030-45727-3_19

[40] hodor. 2021. https://github.com/matter-labs/hodor.

[41] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash

protocol specification. GitHub: San Francisco, CA, USA 4 (2016), 220.

[42] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and

Edward W. Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,

1353–1370.

[43] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT 2010 (LNCS,
Vol. 6477), Masayuki Abe (Ed.). Springer, Heidelberg, 177–194. https://doi.org/10.

1007/978-3-642-17373-8_11

[44] Assimakis A. Kattis, Konstantin Panarin, and Alexander Vlasov. 2022. RedShift:

Transparent SNARKs from List Polynomial Commitments. In ACM CCS 2022,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press,

1725–1737. https://doi.org/10.1145/3548606.3560657

[45] Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, andDawn

Song. 2020. MIRAGE: Succinct Arguments for Randomized Algorithms with

Applications to Universal zk-SNARKs. In USENIX Security 2020, Srdjan Capkun

and Franziska Roesner (Eds.). USENIX Association, 2129–2146.

[46] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal

machine executions without universal circuits. Cryptology ePrint Archive, Report

2022/1758. https://eprint.iacr.org/2022/1758.

[47] Abhiram Kothapalli and Srinath Setty. 2023. HyperNova: Recursive arguments

for customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573.

https://eprint.iacr.org/2023/573

[48] AbhiramKothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive Zero-

Knowledge Arguments from Folding Schemes. In CRYPTO 2022, Part IV (LNCS,
Vol. 13510), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Heidelberg,

359–388. https://doi.org/10.1007/978-3-031-15985-5_13

[49] libSTARK. 2018. https://github.com/elibensasson/libSTARK.

[50] Helger Lipmaa. 2016. Prover-Efficient Commit-and-Prove Zero-Knowledge

SNARKs. In AFRICACRYPT 16 (LNCS, Vol. 9646), David Pointcheval, Abder-

rahmane Nitaj, and Tajjeeddine Rachidi (Eds.). Springer, Heidelberg, 185–206.

https://doi.org/10.1007/978-3-319-31517-1_10

[51] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019.

Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable

Structured Reference Strings. In ACM CCS 2019, Lorenzo Cavallaro, Johannes

Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2111–2128.

https://doi.org/10.1145/3319535.3339817

[52] Masip-Ardevol, Héctor, Guzmán-Albiol, Marc, Baylina-Melé, Jordi, and Muñoz-

Tapia, Jose Luis. 2023. eSTARK: Extending STARKs with Arguments. Cryptology

ePrint Archive, Paper 2023/474. https://eprint.iacr.org/2023/474

[53] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In 35th FOCS. IEEE Computer

Society Press, 436–453. https://doi.org/10.1109/SFCS.1994.365746

[54] Assa Naveh and Eran Tromer. 2016. PhotoProof: Cryptographic Image Authenti-

cation for Any Set of Permissible Transformations. In IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society,

255–271. https://doi.org/10.1109/SP.2016.23

[55] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinocchio:

Nearly Practical Verifiable Computation. In 2013 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 238–252. https://doi.org/10.1109/SP.2013.

47

[56] Luke Pearson, Joshua Fitzgerald, HéctorMasip, Marta Bellés-Muñoz, and Jose Luis

Muñoz-Tapia. 2022. PlonKup: Reconciling PlonKwith plookup. Cryptology ePrint

Archive, Report 2022/086. https://eprint.iacr.org/2022/086.

[57] Jim Posen and Assimakis A. Kattis. 2022. Caulk+: Table-independent lookup

arguments. Cryptology ePrint Archive, Report 2022/957. https://eprint.iacr.org/

2022/957.

[58] Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and

Dawn Song. 2022. ZEBRA: Anonymous Credentials with Practical On-chain

Verification and Applications to KYC in DeFi. Cryptology ePrint Archive, Paper

2022/1286. https://eprint.iacr.org/2022/1286 https://eprint.iacr.org/2022/1286.

[59] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. 2023. Unlocking the lookup

singularity with Lasso. IACR Cryptol. ePrint Arch. (2023), 1216.

[60] Meilof Veeningen. 2017. Pinocchio-Based Adaptive zk-SNARKs and Se-

cure/Correct Adaptive Function Evaluation. In AFRICACRYPT 17 (LNCS,
Vol. 10239), Marc Joye and Abderrahmane Nitaj (Eds.). Springer, Heidelberg,

21–39.

[61] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and

Michael Walfish. 2015. Efficient RAM and control flow in verifiable outsourced

computation. In NDSS 2015. The Internet Society.
[62] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nit-

ulescu, and Mark Simkin. 2022. Caulk: Lookup Arguments in Sublinear Time. In

ACM CCS 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.).

ACM Press, 3121–3134. https://doi.org/10.1145/3548606.3560646

[63] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nit-

ulescu, and Mark Simkin. 2022. Caulk: Lookup Arguments in Sublinear Time.

In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 3121–3134.

https://doi.org/10.1145/3548606.3560646

[64] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla

Ràfols. 2022. Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint

Archive, Report 2022/1565. https://eprint.iacr.org/2022/1565.

[65] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero

Knowledge Proofs for Decision Tree Predictions and Accuracy. In ACM CCS 2020,
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press,

2039–2053. https://doi.org/10.1145/3372297.3417278

[66] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. A Zero-Knowledge Version of vSQL. IACR
Cryptol. ePrint Arch. (2017), 1146. http://eprint.iacr.org/2017/1146

[67] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 908–925. https://doi.org/10.1109/SP.2018.00013

[68] ZkRollups. 2021. An incomplete guide to rollups.

https://vitalik.ca/general/2021/01/ 05/rollup.html.

A ADDITIONAL PRELIMINARIES
A.1 Algebraic Group Model
We use the same terminology as prior works [20, 22, 25]. An al-
gebraic adversary A in an SRS-based protocol is a poly(𝜆)-time

algorithm which satisfies the following: For each 𝑖 ∈ {1, 2}, when-
ever A outputs a group element 𝐺 ∈ G𝑖 , it also outputs a vector 𝑣

over F such that 𝐺 = ⟨𝑣, srs𝑖 ⟩. srs is said to have degree 𝑑 if all ele-

ments of srs𝑖 are of the form [𝐹 (𝜏)]𝑖 for 𝐹 ∈ F<𝑑 [𝑋] and uniform

𝜏 ∈ F. In the following, it is assumed that a degree 𝑑 SRS is used.

Let 𝐹𝑖, 𝑗 denote the corresponding polynomial for the 𝑗th element

of srs𝑖 .
We require the following 𝑑-DLOG assumption to ensure that the

srs in our protocol hides the random 𝜏 ∈ F from A.

Definition 3 (𝑑-DLOG Assumption [20, 22]). Fix an inte-
ger 𝑑 . The 𝑑-DLOG assumption for (G1,G2) ensures that given
[1]1 .[𝜏]1, · · · , [𝜏𝑑]1, [1]2, [𝜏]2, · · · , [𝜏𝑑]2 for a uniformly random
𝜏 ∈ F, the probability of A outputting 𝜏 is negl(𝜆).

Furthermore, we require the following lemma from [20] which

ensures that if the “real" pairing checks in our protocol are guar-

anteed to pass, then so would the "ideal" pairing check, where

essentially the algebraic adversaryA also gives a field vector corre-

sponding to the group elements in the pairing check (as described

above).

Lemma 1 ([20]). Assume 𝑑-DLOG assumption for (G1,G2). Given
an algebraic adversary A, and the 𝑑-degree srs from our protocol,
the probability of a real pairing check passing is larger than the
corresponding ideal check, by at most an additive factor of negl(𝜆).
The real and ideal pairing checks are described below.
Real Pairing Check: For F-vectors 𝑎, 𝑏, whose G1,G2 encodings are
given by A during the protocol execution, the real check is of the

327

https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://eprint.iacr.org/2022/1530
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1145/3372297.3417283
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3548606.3560657
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/573
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-319-31517-1_10
https://doi.org/10.1145/3319535.3339817
https://eprint.iacr.org/2023/474
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1109/SP.2013.47
https://eprint.iacr.org/2022/086
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://doi.org/10.1145/3372297.3417278
http://eprint.iacr.org/2017/1146
https://doi.org/10.1109/SP.2018.00013

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

form: (𝑎 · 𝑇1) · (𝑇2 · 𝑏) = 0, for some matrices 𝑇1,𝑇2 over F. Such a
check is done efficiently given the encoded group elements using the
pairing function 𝑒 : G1 × G2 → G𝑡 .
Ideal Pairing Check: Since A is algebraic, for each group encoding
[𝑎 𝑗]𝑖 corresponding to 𝑎 𝑗 in the vector 𝑎, it also outputs a vector 𝑣
such that 𝑎 𝑗 =

∑
𝑣ℓ𝐹𝑖,ℓ (𝜏) = 𝑅𝑖, 𝑗 (𝜏), for 𝑅𝑖, 𝑗 (𝑋) :=

∑
𝑣ℓ𝐹𝑖,ℓ (𝑋) . For

𝑖 ∈ {1, 2}, we denote the vector of polynomials here by 𝑅𝑖 = (𝑅𝑖, 𝑗) 𝑗 .
The ideal check is of the form: (𝑅1 ·𝑇1) · (𝑇2 · 𝑅2) ≡ 0.

A.2 Batched KZG Commitments
Definition 4 (Batched KZG Commitment [25]). A 𝑑-

polynomial commitment scheme consists of
• KZG.Gen(𝑑): randomized algorithm that outputs srs𝑘𝑧𝑔 .
• KZG.Commit(𝑃, srs𝑘𝑧𝑔) : given a polynomial 𝑃 ∈ F<𝑑 [𝑋], out-
puts a commitment com to 𝑃 .
• A public coin protocol between a prover and a verifier. The prover
gets 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋]. Both the parties get the inputs 𝑡 =

poly(𝜆), 𝑧1 · · · , 𝑧𝑡 ∈ F, com1, · · · , com𝑡 , the alleged commitments
to 𝑃1, · · · , 𝑃𝑡 , and 𝑠1, · · · , 𝑠𝑛 ∈ F, the alleged correct openings
𝑃1 (𝑧1), · · · , 𝑃𝑡 (𝑧𝑡). At the end of the protocol the verifier outputs
accept or reject.

such that the following properties hold
• Completeness: Fix integer 𝑡 , 𝑧1, · · · , 𝑧𝑡 ∈ F, 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋].
Suppose that for each 𝑖 ∈ [𝑡], com𝑖 = KZG.Commit(𝑃𝑖 , srs𝑘𝑧𝑔).
Then if the prover and verifier honestly run the protocol with inputs
𝑡, {com𝑖 , 𝑧𝑖 , 𝑠𝑖 = 𝑃𝑖 (𝑧𝑖)}𝑖∈[𝑡] , the verifier accepts w.p. 1.
• Knowledge Soundness in the algebraic groupmodel: The prob-
ability of any efficient algebraic adversaryA winning the following
game is negl(𝜆).
– Given srs𝑘𝑧𝑔 , A outputs 𝑡, com1, · · · , com𝑡 along with polyno-
mials 𝑃1, · · · , 𝑃𝑡 ∈ F<𝑑 [𝑋], corresponding to the commitments.

– A outputs 𝑧1, · · · , 𝑧𝑡 , 𝑠1, · · · , 𝑠𝑡 ∈ F.
– A (as a prover) and the verifier run the commitment protocol
with inputs com1, · · · , com𝑡 , 𝑧1, · · · , 𝑧𝑡 , 𝑠1, · · · , 𝑠𝑡 .

– A wins if and only if the verifier accepts and for some 𝑖 ∈ [𝑡],
𝑠𝑖 ≠ 𝑃𝑖 (𝑧𝑖).

A.3 Pre-processing SNARKs in the Algebraic
Group Model

In this section, we provide a formal definition of the pre-processing

SNARKs in the algebraic group model, as defined in [25].

Definition 5 (SNARKs in the Algebraic Group Model [25]).

Let R be a relation generator that given a security parameter 𝜆 in
unary returns a polynomial time decidable binary relation 𝑅. For pairs
(𝜙,𝑤) ∈ 𝑅 we call 𝜙 the statement and𝑤 the witness. We define R𝜆 to
be the set of possible relations 𝑅 that the relation generator may output
given 1

𝜆 . We will in the following for notational simplicity assume 𝜆
can be deduced from the description of 𝑅. The relation generator may
also output some side information, an auxiliary input 𝑧, which will
be given to the adversary. An efficient prover publicly verifiable non-
interactive argument for R is a quadruple of probabilistic polynomial
algorithms (Setup, Prove,Ver) defined as:
• srs← Setup(1𝜆, 𝑅): The setup takes the security parameter 𝜆 and
the relation 𝑅 as input and produces a structured reference string
srs.

• 𝜋 ← Prove(srs, 𝑅, 𝜙,𝑤): The prover algorithm takes as input srs
and (𝜙,𝑤) ∈ 𝑅 and returns an argument 𝜋 .
• 0/1← Ver(srs, 𝑅, 𝜙, 𝜋): The verification algorithm takes as input
srs, a statement 𝜙 and an argument 𝜋 and returns 0 (reject) or 1
(accept).

We say that Σ = (Setup, Prove,Ver) is a SNARK in the algebraic
group model if it satisifes the following properties.
• Completeness: Given any true statement, an honest prover should
be able to convince an honest verifier. For all 𝜆 ∈ N, 𝑅 ∈ R𝜆 ,
(𝜙,𝑤) ∈ 𝑅

Pr

[
srs← Setup(1𝜆, 𝑅);𝜋 ← Prove(srs, 𝑅, 𝜙,𝑤) :

Ver(srs, 𝑅, 𝜙,𝑤) = 1] ≥ 1 − negl(𝜆).

• Knowledge soundness in the algebraic groupmodel: The prob-
ability of an efficient algebraic adversary winning in the following
game should be negl(𝜆).
– Given the srs and 𝑅,A outputs (𝜙, 𝜋) along with the correspond-
ing witness𝑤 .

– A wins if and only if the verifier accepts and (𝜋,𝑤) ∉ R.
• Succinctness. A non-interactive argument of knowledge where the
verifier runs in polynomial time in 𝜆 + |𝜙 | + log(|𝑅 |) and the proof
size is polynomial in 𝜆 + log(|𝑅 |) is called a pre-processing SNARK.
If we also restrict the srs to be polynomial in 𝜆 + log(|𝑅 |) we say
that the non-interactive argument is a fully succinct SNARK.

A.4 Preliminary Lemmas
We require several properties of polynomials over fields for our

protocol, which are described below. We require the following

lemma on the uniqueness of fractional representations from [20].

Lemma 2. [20, Lemma 4] Let F be an arbitrary field and𝑚1,𝑚2 :

F → F be any functions. Then
∑
𝑧∈F

𝑚1 (𝑧)
𝑋−𝑧 =

∑
𝑧∈F

𝑚2 (𝑧)
𝑋−𝑧 in the

rational field F(𝑋), if and only if,𝑚1 (𝑧) =𝑚2 (𝑧) for every 𝑧 ∈ F.

Sumcheck Lemma.We require the following sumcheck lemma

from [10, 20].

Lemma 3. Let 𝐻 ⊂ F be a multiplicative subgroup of size 𝑡 . For
𝐹 ∈ F<𝑡 [𝑋], we have ∑︁

𝑎∈𝐻
𝐹 (𝑎) = 𝑡 · 𝐹 (0).

We require the following pre-processing lemma that combines

[20, Lemma 3.1] and [20, Theorem 1].

Lemma 4. Let 𝐺 ∈ F<𝑛𝑠 [𝑋] and a subgroup W ⊂ F of size 𝑛𝑠 .
Further, suppose the G1 elements {[𝜏𝑖]1}𝑖∈[0,𝑛𝑠−1] are given. Then,
the following two computations are possible:
(1) For each 𝑖 ∈ [𝑛𝑠], it is possible to compute the elements 𝑞𝑖 :=

[𝑄𝑖 (𝜏)]1, where 𝑄𝑖 (𝑋) ∈ F[𝑋] is such that

𝜓𝑊𝑖 (𝑋) ·𝐺 (𝑋) = 𝑔𝑖 ·𝜓𝑊𝑖 (𝑋) + 𝑍W (𝑋) ·𝑄𝑖 (𝑋),

for 𝑔𝑖 = 𝐺 (𝜔𝑖), in 𝑂 (𝑛𝑠 log(𝑛𝑠)) G1 operations.
(2) Furthermore, there is an algorithm, that takes as input, the 𝑞𝑖 ’s

and [𝜓W
𝑖
(𝜏)]1 for each 𝑖 ∈ [𝑛𝑠] from step 1 above, and a 𝑘𝑠-

sparse polynomial 𝐻 (𝑋) ∈ F<𝑛𝑠 [𝑋] given in the sparse repre-
sentation, and does the following. It takes 𝑂 (𝑘𝑠) F-operations

328

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

and 𝑘𝑠 G1-operations to compute [𝑄𝐴 (𝜏)]1 and [𝑅𝐴 (𝜏)]1, where
𝑄𝐴 (𝑋), 𝑅𝐴 (𝑋) ∈ F<𝑛𝑠 [𝑋] are such that

𝐻 (𝑋)𝐺 (𝑋) = 𝑄𝐻 (𝑋)𝑍W (𝑋) + 𝑅𝐻 (𝑋) .

B PROTOCOL FOR SEGMENT LOOKUP
B.1 Building Blocks
We require two main building blocks for our segment-lookup pro-

tocol, which we state as two lemmas below. The first lemma gives

a protocol that helps check if some polynomial evaluations are all

𝑛-th roots of unity, which can be instantiated using Caulk [62].

The second lemma is a modification of the log-derivative lemma

from [20, 37].

Caulk Multi-Unity Sub-Protocol.We state the instantiation of

Multi-unity sub-protocol from Caulk [62, Theorem 4] in Lemma 5

below and give an informal description of the protocol subsequently.

Lemma 5. If the qSDH, qDHE, and qSFrac assumptions [12, 28]
hold, then there exists a knowledge-sound argument for Runity :=

{(srs, [𝐷]1, {𝜈𝑖𝑠 : 𝑖 ∈ [0, 𝑘 − 1]}, {𝜇𝑖 : 𝑖 ∈ [0, 𝑛 − 1]}) : [𝐷]1 =

[𝐷 (𝜏)] for 𝐷 (𝑥) s.t. ∀𝑖 ∈ [0, 𝑘−1], 𝐷 (𝜈𝑖𝑠) = 𝜇 𝑗 for some 𝑗 ∈ [0, 𝑛−
1]}, where 𝜇 is some𝑛-th root of unity, under the algebraic groupmodel
and random oracle model. Moreover, the prover uses 𝑂 (𝑘𝑠 log𝑛) G1-
and F-operations, while the proof size and verifier cost are constant.

We now give an overview of the Multi-unity sub-protocol from

Caulk. The aim of the protocol is to check if the evaluations of

some polynomial are all roots of unity, i.e., prove that for each 𝑖 ∈
[0, 𝑘−1],𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, . . . , 𝜇𝑛−1}, where 𝜇 = 𝜔𝑠

and {𝜇0, . . . , 𝜇𝑛−1}
are the 𝑛th roots of unity. To do this, the prover defines a vector

®𝑢0 = (𝐷 (1), 𝐷 (𝜈𝑠), . . . , 𝐷 (𝜈 (𝑘−1)𝑠)), and iteratively defines ®𝑢 𝑗 =

®𝑢 𝑗−1 ◦ ®𝑢 𝑗−1, for all 𝑗 ∈ [log𝑛]. This means the following must be

proved:

(1) ®𝑢0 consists of (𝐷 (1), 𝐷 (𝜈𝑠), . . . , 𝐷 (𝜈 (𝑘−1)𝑠)).
(2) ®𝑢 𝑗 = ®𝑢 𝑗−1 ◦ ®𝑢 𝑗−1 for all 𝑗 ∈ [log𝑛 − 1].
(3) ®𝑢

log𝑛−1
◦ ®𝑢

log𝑛−1
= ®1.

Proving these three statements would imply that the initial state-

ment is proved to hold. To prove steps 1-3 in terms of the polynomial

encodings, set𝑈0 (𝑋) = 𝐷 (𝑋), the polynomial with evaluations ®𝑢0

on K, 𝑈
log𝑛 (𝑋) = id(𝑋), where id is the polynomial evaluating to

1 at all points of V, and𝑈 𝑗 (𝑋)’s to encode the intermediate vectors

®𝑢 𝑗 ’s. Then, it needs to be proved that the following equations hold.

𝑈0 (𝑋)𝑈0 (𝑋) −𝑈1 (𝑋) ≡ 𝑍V (𝑋)𝑄𝑈 ,1 (𝑋)
𝑈1 (𝑋)𝑈1 (𝑋) −𝑈2 (𝑋) ≡ 𝑍V (𝑋)𝑄𝑈 ,2 (𝑋)

.

.

.

𝑈
log𝑛−1

(𝑋)𝑈
log𝑛−1

(𝑋) − id(𝑋) ≡ 𝑍V (𝑋)𝑄𝑈 ,log𝑛 (𝑋)

All the above checks are aggregated into one equation, us-

ing lagrange polynomials {Δ𝑖 }𝑖∈[log𝑛] over roots of unity S =

{1, 𝜙, . . . , 𝜙 log𝑛−1} as follows.

(𝑈 2

0
(𝑋)Δ1 (𝑌) +

log𝑛∑︁
𝑗=2

𝑈 2

𝑗−1
(𝑋)Δ 𝑗 (𝑌)) − (

log𝑛−1∑︁
𝑗=1

𝑈 𝑗 (𝑋)

· Δ 𝑗 (𝑌) + id(𝑋)Δlog𝑛 (𝑌)) = 𝑍V (𝑋)𝑄2 (𝑋,𝑌)

for some polynomial𝑄2 (𝑋,𝑌). It needs to be shown that the above

equation holds at some random point (𝜁 , 𝜉) using bivariate KZG.

We refer the reader to Appendix D for a formal description of our

exact instantiation of the above subprotocol along with its prover

cost details.

Log-derivative Method. We use a variant of the log-derivative

method from [20, 37] that is tailored for our segment lookup. We

state the lemma below, whose proof is similar to the log-derivate

lemma from [37].

Lemma 6. Let F be a field with characteristic 𝑝 > max{𝑘𝑠, 𝑛𝑠}.
Given three sequences of field elements 𝑓 = (𝑓𝑖 = 𝐹 (𝜈𝑖))𝑖∈[𝑘𝑠] , ℓ =
(ℓ𝑖 = 𝐿(𝜈𝑖))𝑖∈[𝑘𝑠] , and 𝑡 = (𝑡𝑖 = 𝑇 (𝜔𝑖))𝑖∈[𝑛𝑠] . Consider segments of
𝑠-consecutive elements in 𝑓 and 𝑡 , resulting in 𝑘 and 𝑛 segments of
𝑓 and 𝑡 , respectively. We have that for each 𝑖 ∈ [0, 𝑘 − 1], the 𝑖-th
segment of 𝑓 corresponds to the ℓ𝑖 -th segment of 𝑡 , i.e., ∀𝛿 ∈ F, for
each 𝑖 ∈ [𝑘𝑠], there exists some 𝑗 ∈ [𝑛𝑠] such that 𝑓𝑖 +𝛿ℓ𝑖 = 𝑡 𝑗 +𝛿𝜔 𝑗 ,
if and only if, for some𝑚 ∈ F𝑛𝑠 , the following identity of rational
functions holds.∑︁

𝑖∈[𝑛𝑠]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝛿𝜔𝑖
=

∑︁
𝑖∈[𝑘𝑠]

1

𝑋 + 𝑓𝑖 + 𝛿ℓ𝑖
(1)

Proof. Denote by𝑚𝑓 ,ℓ (𝑧), the multiplicity of field element 𝑧 in

the sequence (𝑓𝑖 + 𝛿ℓ𝑖)𝑖∈[𝑘𝑠] . Since 𝑝 > max{𝑘𝑠, 𝑛𝑠}, the multiplici-

ties will be non-zero elements in F. Suppose that for each 𝑖 ∈ [𝑘𝑠],
there exists some 𝑗 ∈ [𝑛𝑠] such that for each 𝛿 ∈ F, it holds that
𝑓𝑖 + 𝛿ℓ𝑖 = 𝑡 𝑗 + 𝛿𝜔 𝑗

. Then, set𝑚 𝑗 =𝑚𝑓 ,ℓ (𝑡 𝑗 + 𝛿𝜔 𝑗) for the 𝑗 ∈ [𝑛𝑠]
corresponding to the 𝑖’s above, and to be 0 for the remaining 𝑗 ’s in

[𝑛𝑠]. Clearly, for these choice of𝑚 𝑗 ’s, equation 1 holds.

Conversely, suppose equation 1 holds for each 𝛿 ∈ F. By collecting

repeating terms of each of the summands in the field, we get:∑︁
𝑖∈[𝑛𝑠]

𝑚𝑖

𝑋 + 𝑡𝑖 + 𝛿𝜔𝑖
=
∑︁
𝑧∈F

𝑚′(𝑧)
𝑋 + 𝑧 ,∑︁

𝑖∈[𝑘𝑠]

1

𝑋 + 𝑓𝑖 + 𝛿ℓ𝑖
=
∑︁
𝑧∈F

𝑚𝑓 ,ℓ (𝑧)
𝑋 + 𝑧 .

where𝑚′(𝑧) is𝑚𝑡 (𝑧) multiplied with the corresponding𝑚𝑖 ’s. Since,

𝑝 > max{𝑘𝑠, 𝑛𝑠}, for each 𝑧 ∈ {𝑓𝑖 + 𝛿ℓ𝑖 }, we have𝑚𝑓 ,ℓ (𝑧) ≠ 0. By

uniqueness of fractional representations (Lemma 2),𝑚𝑓 (𝑧) =𝑚′(𝑧)
for each 𝑧 ∈ {𝑓𝑖 }. Hence, for each 𝑧 ∈ {𝑓𝑖 + 𝛿ℓ𝑖 }, there must exist

some 𝑗 ∈ [𝑛𝑠] such that 𝑧 = 𝑡 𝑗 + 𝛿𝜔 𝑗
. □

Tables with Repeated Elements A crucial feature implicit in the

proof of Lemma 6 is that it assumes that the table 𝑇 consists of

unique values. We give details of this and show how to handle

repeated table entries below.

An astute reader may have noted that the Lemma 6 only works

if within each segment the table 𝑇 consists of unique values, i.e.

∀𝑖 ∈ [0, 𝑛 − 1]∄ 𝑗, 𝑗 ′ ∈ [𝑠] such that 𝑇 (𝜔𝑖𝑠+𝑗) = 𝑇 (𝜔𝑖𝑠+𝑗 ′). At a
high level, this is implicit in the proof of Lemma 6. Particularly, if

there is a repeated element in a segment, i.e., 2 elements in the table

correspond to the same 𝑡 𝑗 , then the multiplicity count argument

for proving equation 1 in the proof will no longer hold.

Looking ahead, in our application of the segment lookup pro-

tocol, we will indeed deal with tables that will contain repeated

elements with a segment. We now describe how to generically

329

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

start with any table 𝑇 (𝑋), to (i) convert it into a table 𝑇 ′(𝑋)
during the pre-processing step such that each segment consists

of unique values - the prover will run the protocol using 𝐹 ′(𝑋)
derived from 𝑇 ′(𝑋); and (ii) have the verifier perform a single

step to recover 𝐹 (𝑋) from 𝐹 ′(𝑋). The guarantee of our transfor-
mation will be that the witness polynomial is identical in both

cases. Specifically, our segment lookup protocol when run on

𝑇 ′ and 𝐹 ′ ensures that ∃ a function 𝜉 : [𝑘] → [𝑁] such that

∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 ′(𝜈𝑖𝑠+𝑗) = 𝑇 ′(𝜈𝜉 (𝑖)𝑠+𝑗), and our transforma-

tion will ensure that ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 (𝜈𝑖𝑠+𝑗) = 𝑇 (𝜈𝜉 (𝑖)𝑠+𝑗) for
the same function 𝜉 .

Let 𝑇max B max𝑖 |𝑇 (𝜔𝑖) |, and we shall set ∀𝑖 ∈ [0, 𝑛 − 1], 𝑗 ∈
[𝑠],𝑇 ′(𝜔𝑖𝑠+𝑗) B 𝑇 (𝜔𝑖𝑠+𝑗) + 2 · 𝑗 · (𝑇max + 1). This is done by

further defining two polynomials, 𝐸 (𝑋) = ∑𝑛−1

𝑖=0

∑
𝑗 ∈[𝑠] 2· 𝑗 · (𝑇max+

1)𝜓W
𝑖𝑠+𝑗 (𝑋) and 𝐷 (𝑋) =

∑𝑘−1

𝑖=0

∑
𝑗 ∈[𝑠] 2 · 𝑗 · (𝑇max + 1)𝜓V

𝑖𝑠+𝑗 (𝑋). We

define the following function makeUnique:
makeUnique(𝑇, 𝐸): Output 𝑇 ′(𝑋) B 𝑇 (𝑋) + 𝐸 (𝑋).

Within the context of our segment lookup protocol, [𝑇 ′(𝜏)]
and [𝐷 (𝜏)] are computed as a part of pre-processing by run-

ning makeUnique(𝑇, 𝐸), when given 𝑇 (𝑋) as input - the rest of

the pre-processing remains unchanged. The prover sets 𝐹 ′(𝑋)
to be 𝐹 ′(𝑋) = 𝐹 (𝑋) + 𝐷 (𝑋), and the verifier sets [𝐹 ′(𝜏)] =

[𝐹 (𝜏)]+ [𝐷 (𝜏)] to run segmentLookup(com, srs,𝑇 ′, 𝐹 ′,V), and ver-
ifier setting the “output” of the protocol to be [𝐹 (𝜏)]. For correct-
ness, we rely on the following claims.

Claim 1. If𝑇max · (2 · 𝑠 + 1) < |F|, then ∀𝑖 ∈ [𝑁]∄ 𝑗, 𝑗 ′ ∈ [𝑠] such
that 𝑇 ′(𝜔𝑖𝑠+𝑗) = 𝑇 ′(𝜔𝑖𝑠+𝑗 ′).

Proof Sketch. If not, for any distinct 𝑗, 𝑗 ′ ∈ [𝑠] consider
𝑇 ′(𝜔𝑖𝑠+𝑗) −𝑇 ′(𝜔𝑖𝑠+𝑗 ′) = 𝑇 (𝜔𝑖𝑠+𝑗) −𝑇 (𝜔𝑖𝑠+𝑗 ′) +2(𝑇max +1) (𝑗 − 𝑗 ′).
Since by definition, 𝑇 (𝜔𝑖𝑠+𝑗) − 𝑇 (𝜔𝑖𝑠+𝑗 ′) ∈ [−2𝑇max, 2𝑇max], we
have that 𝑇 ′(𝜔𝑖𝑠+𝑗) −𝑇 ′(𝜔𝑖𝑠+𝑗 ′) > 0 if 𝑇max · (2 · 𝑠 + 1) < |F|, and
thus 𝑇 ′(𝜔𝑖𝑠+𝑗) ≠ 𝑇 ′(𝜔𝑖𝑠+𝑗 ′). □

Note that we are assuming that 𝑇max · (2 · 𝑠 + 1) < |F| to avoid
any “wrap-around” in the field. This restriction will not hinder the

applications we consider.

Claim 2. ∃ a function 𝜉 : [𝑘] → [𝑁] such that ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈
[𝑠], 𝐹 ′(𝜈𝑖𝑠+𝑗) = 𝑇 ′(𝜈𝜉 (𝑖)𝑠+𝑗), then ∀𝑖 ∈ [0, 𝑘], 𝑗 ∈ [𝑠], 𝐹 (𝜈𝑖𝑠+𝑗) =
𝑇 (𝜈𝜉 (𝑖)𝑠+𝑗).

The proof of the above claim follows from the definition of the

relevant polynomials.

For the rest of this work, we will assume that we invoke

segmentLookup, we are running the above modified version of

the segment lookup protocol that deals with repeated elements

within a segment. Thus, we ignore this issue henceforth.

B.2 Protocol Description
We now give a formal description of our segment-lookup protocol.

gen(𝑛, 𝑘, 𝑠,𝑇): Given 𝑛, 𝑘, 𝑠 and the polynomial 𝑇 (𝑋) ∈ F[𝑋] of
degree𝑛𝑠−1, the pre-processing information is computed as follows:

The pre-processing involves computing all the powers of a random
𝜏 (step 1) which is the only step of pre-processing requiring a trusted
setup. In the remaining steps, these trusted powers of 𝜏 are used to

generate the commitments of the relevant vanishing polynomials, the
Lagrange polynomials, and some quotient polynomials for reducing
prover and verifier work. These quotient polynomial computations
are key to reducing the online prover cost.
(1) Choose a random 𝜏 ∈ F. Let max = max(𝑘, 𝑛). Compute

{[𝜏𝑖]1}𝑖∈[0,max·𝑠−1] and {[𝜏𝑖]2}𝑖∈[0,max·𝑠−1] .
(2) Compute [𝑍W (𝜏)]2, [𝑍V (𝜏)]2 and [𝑍K (𝜏)]2.
(3) Compute and output [𝑇 (𝜏)]2.
(4) For 𝑖 ∈ [𝑛𝑠], use lemma 4 to compute:

(a) 𝑞𝑖,1 = [𝑄𝑖,1 (𝜏)]1 and 𝑞𝑖,2 = [𝑄𝑖,2 (𝜏)]1 such that

𝜓W𝑖 (𝑋) ·𝑇 (𝑋) = 𝑡𝑖 ·𝜓W𝑖 (𝑋) + 𝑍W (𝑋) ·𝑄𝑖,1 (𝑋)

𝜓W𝑖 (𝑋) · 𝑋 = 𝜔𝑖 ·𝜓W𝑖 (𝑋) + 𝑍W (𝑋) ·𝑄𝑖,2 (𝑋)

(b) [𝜓W
𝑖
(𝜏)]1.

(c) [𝜓
W
𝑖
(𝜏)−𝜓W

𝑖
(0)

𝜏]1.
(5) For 𝑖 ∈ [𝑘𝑠], compute the commitments [𝜓V

𝑖
(𝜏)]1, [𝜓V𝑖 (𝜏𝜈)]1,

for all 𝑖 ∈ [𝑘𝑠], corresponding to the set V.
(6) For 𝑖 ∈ [𝑛𝑠], use lemma 4 to compute:

(a) 𝑞𝑖,3 = [𝑄𝑖,3 (𝜏)]1 and 𝑞𝑖,4 = [𝑄𝑖,4 (𝜏)]1 such that:

𝜓W𝑖 (𝑋) · (𝑋
𝑛 − 1) = 𝑔𝑖𝜓

W
𝑖 (𝑋) + 𝑍W (𝑋) ·𝑄𝑖,3 (𝑋)

𝜓W𝑖 (𝑋/𝜔) · (𝑋
𝑛 − 1) = 𝑔𝑖𝜓

W
𝑖 (𝑋/𝜔) + 𝑍W (𝑋) ·𝑄𝑖,4 (𝑋),

where 𝑔𝑖 := (𝜔𝑖𝑛 − 1).
(b) [𝜓W

𝑖
(𝜏/𝜔)]1.

Output srs: {[𝜏𝑖]1, [𝜏𝑖]2}𝑖∈[0,max·𝑠−1] , [𝑍W (𝜏)]2,[𝑍V (𝜏)]2,
[𝑍K (𝜏)]2, [𝑇 (𝜏)]2, 𝑞𝑖,1, 𝑞𝑖,2, 𝑞𝑖,3, 𝑞𝑖,4, [𝜓W𝑖 (𝜏)]1, [𝜓

W
𝑖
(𝜏/𝜔)]1, and

[𝜓
W
𝑖
(𝜏)−𝜓W

𝑖
(0)

𝜏]1 for each 𝑖 ∈ [𝑛𝑠], and [𝜓V
𝑖
(𝜏)]1, [𝜓V𝑖 (𝜏𝜈)]1 for

each 𝑖 ∈ [𝑘𝑠].
segmentLookup(com, srs,𝑇 , 𝐹 ,V): This protocol proceeds as fol-
lows:

In Round 1, the prover first commits to the multiplicity vector
𝑚 from eq. 1. Then, the prover computes the vector ℓ , such that ℓ𝑖
corresponds to the segment of 𝑡 that matches the 𝑖-th segment of 𝑓 ,
and generates commitments of two polynomials encoding ℓ𝑖 : 𝐿, which
helps in checking that within each of the 𝑖-th segment, the consecutive
elements of 𝑓 correspond to consecutive elements of 𝑡 in the ℓ𝑖 -th
segment, and 𝐷 , which helps in checking that 𝐿 is well-formed, i.e.,
the first entries of each segment form a set of 𝑛-th roots of unity. Note
here that all the commitments on 𝜏 (which the prover does not know)
are computed by taking a linear combination of the corresponding
Lagrange commitments, all of which are given in the srs.

Round 1 (Prover→ Verifier). The prover does the following:
(1) Computes a polynomial𝑀 of degree 𝑛𝑠 − 1 as follows: For each

𝑖 ∈ [0, 𝑛 − 1], if 𝑖th segment in 𝑡 is executed 𝑦 times in 𝐹 |V, then
for each 𝑗 ∈ [0, 𝑠 − 1], 𝑀 (𝜔𝑖𝑠+𝑗) = 𝑦, and sends [𝑀 (𝜏)]1 and

[𝑀 (𝜏/𝜔)]1 to the verifier.

(2) Computes and sends [𝑄𝑀 (𝜏)]1 using the srs and lemma 4,

where 𝑄𝑀 (𝑋) is such that
14

(𝑋𝑛 − 1) (𝑀 (𝑋) −𝑀 (𝑋/𝜔)) = 𝑍W (𝑋)𝑄𝑀 (𝑋) (2)

14
Given 𝑞𝑖,3, 𝑞𝑖,4 , [𝜓W𝑖 (𝜏)]1, [𝜓W𝑖 (𝜏/𝜔)]1 , for each 𝑖 ∈ [𝑛𝑠], we can slightly modify

the step 2 of lemma 4 to compute a linear combination and obtain [𝑄𝑀 (𝜏)]1 and the

commitment of the remainder polynomials corresponding to the 𝑘𝑠-sparse polynomial

𝐻 (𝑋) := (𝑀 (𝑋) −𝑀 (𝑋/𝜔)) .
330

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

where 𝑍W (𝑋) denotes the vanishing polynomial corresponding

to the setW.

(3) Computes 𝐿(𝑋) of degree𝑘𝑠−1 as follows: For each 𝑖 ∈ [0, 𝑘−1],
if the segment executed at the 𝑖th step (i.e., the 𝑖th segment in

𝑓 = 𝐹 |V) is the 𝑗 th segment in 𝑡 , then for each 𝑞 ∈ [0, 𝑠 −
1], 𝐿(𝜈𝑖𝑠+𝑞) = 𝜔 𝑗𝑠+𝑞

, and sends [𝐿(𝜏)]1 and [𝐿(𝜏𝜈)]1 to the

verifier.

(4) Computes 𝑄𝐿 (𝑋) such that

(𝑋𝑘 − 1) (𝐿(𝑋𝜈) − 𝜔𝐿(𝑋)) = 𝑍V (𝑋)𝑄𝐿 (𝑋) (3)

where 𝑍V (𝑋) denotes the vanishing polynomial corresponding

to the set V, and sends [𝑄𝐿 (𝜏)]1 to the verifier.

(5) Computes a degree 𝑘 − 1 polynomial 𝐷 (𝑋) such that for each

𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) = 𝐿(𝜈𝑖𝑠), and sends [𝐷 (𝜏)]1 to the verifier.
(6) Computes 𝑄𝐷 such that

𝐿(𝑋) − 𝐷 (𝑋) = 𝑍K (𝑋)𝑄𝐷 (𝑋) (4)

where 𝑍K (𝑋) denotes the vanishing polynomial corresponding

to the set K, and sends [𝑄𝐷 (𝜏)]1 to the verifier.

In Round 2, the verifier checks validity of the equation 2 at 𝜏 . For
soundness, it is important that the eqs 3 and 4 corresponding to 𝐿 and
𝐷 in Round 1 are checked at random challenges. For efficiency reasons,
we combine these checks with the other checks in rounds 14-15.

Round 2 (Verifier). The verifier proceeds to check the following:

𝑒 ([𝑀 (𝜏)]1 − [𝑀 (𝜏/𝜔)]1, [𝜏𝑛]2 − [1]2) = 𝑒 ([𝑄𝑀 (𝜏)]1, [𝑍W (𝜏)]2)

In Rounds 3-8, the prover and verifier run the sub-protocol
from [62, Figure 5], as described in Section B.1 to check that the

first entries of each segment 𝑖 ∈ [0, 𝑘 − 1] of 𝑓 , form the 𝑛-th

roots of unity 𝜈0, . . . , 𝜈𝑛−1
, for 𝜈 = 𝜔𝑠

. Recall, this was needed to

guarantee the correctness of 𝐿.

Round 3-8 (Prover ←→ Verifier). Using the instantiation of

Lemma 5, the prover and verifier engage in a protocol to prove

that the polynomial 𝐿 is well-formed, i.e., for each 𝑖 ∈ [0, 𝑘 − 1],
𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, . . . , 𝜇𝑛−1}, where 𝜇 = 𝜔𝑠

and {𝜇0, . . . , 𝜇𝑛−1} are the
𝑛th roots of unity.

In Rounds 8-10, the prover computes the polynomials 𝐴 and 𝐵

corresponding to the two summations in equation 1, and sends the
needed commitments for the verifier to check the correctness of 𝐴 at
𝜏 , and to perform degree-check of the polynomial that has the least
degree amongst 𝐴 and 𝐵 at 𝜏 . No such degree check is needed if 𝑘 = 𝑛.

Round 9 (Verifier). The verifier sends random 𝛽, 𝛿 ∈ F to the

prover.

Round 10 (Prover→ Verifier). The prover does the following:

(1) The prover computes 𝐴(𝑋) of degree 𝑛𝑠 − 1 such that for each

𝑖 ∈ [0, 𝑛𝑠 − 1],

𝐴(𝜔𝑖) = 𝑀 (𝜔𝑖)
𝛽 +𝑇 (𝜔𝑖) + 𝛿𝜔𝑖

and sends [𝐴(𝜏)]1 to the verifier.

(2) The prover computes [𝑄𝐴 (𝜏)]1 using the srs and step 2 of

lemma 4, where 𝑄𝐴 (𝑋) is such that
15

𝐴(𝑋) (𝛽 +𝑇 (𝑋) + 𝛿𝑋) −𝑀 (𝑋) = 𝑍W (𝑋)𝑄𝐴 (𝑋) .
(3) The prover computes 𝐵(𝑋) of degree 𝑘𝑠 − 1 such that for each

𝑖 ∈ [0, 𝑘𝑠 − 1],

𝐵(𝜈𝑖) = 1

𝛽 + 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖)
and sends [𝐵(𝜏)]1 to the verifier.

(4) The prover computes 𝑄𝐵 (𝑋) such that

𝐵(𝑋) (𝛽 + 𝐹 (𝑋) + 𝛿𝐿(𝑋)) − 1 = 𝑍V (𝑋)𝑄𝐵 (𝑋),
and sends [𝑄𝐵 (𝜏)]1 to the verifier.

(5) The prover computes 𝐵0 (𝑋) = 𝐵 (𝑋)−𝐵 (0)
𝑋

,𝐴0 (𝑋) = 𝐴(𝑋)−𝐴(0)
𝑋

,

and sends [𝐴0 (𝜏)]1, [𝐵0 (𝜏)]1 to the verifier.

(6) For degree check, which is needed only for 𝑘 ≠ 𝑛,

if 𝑛 > 𝑘 : the prover computes 𝑃𝐵 (𝑋) = 𝐵0 (𝑋) · 𝑋𝑛𝑠−(𝑘𝑠+1)
and

sends [𝑃𝐵 (𝜏)]1 to the verfier;

else if 𝑘 > 𝑛: the prover computes 𝑃𝐴 (𝑋) = 𝐴0 (𝑋) ·𝑋𝑘𝑠−(𝑛𝑠+1)

and sends [𝑃𝐴 (𝜏)]1 to the verfier.

Round 11 (Verifier). The verifier proceeds as follows:
(1) Checks that 𝐴 encodes the correct values:

𝑒 ([𝐴(𝜏)]1,[𝑇 (𝜏)]2 + 𝛿 [𝜏]2)
= 𝑒 ([𝑄𝐴 (𝜏)]1, [𝑍W (𝜏)]2) · 𝑒 ([𝑀 (𝜏)]1 − 𝛽 [𝐴(𝜏)]1, [1]2)

(2) Degree Check: If 𝑛 > 𝑘 , check

𝑒 ([𝐵0 (𝜏)]1, [𝜏𝑛𝑠−𝑘𝑠−1]2) = 𝑒 ([𝑃𝐵 (𝜏)]1, [1]2)
else if 𝑘 > 𝑛, check

𝑒 ([𝐴0 (𝜏)]1, [𝜏𝑘𝑠−𝑛𝑠−1]2) = 𝑒 ([𝑃𝐴 (𝜏)]1, [1]2)
(3) Samples random 𝛾 ∈ F and sends them to the prover.

In Rounds 12-15, the prover gives a correctness proof of 𝐵 at a
random challenge. As we mentioned before, we combine this check
with the correctness checks of eqs 3 and 4 to reduce the number of
pairing checks and give the KZG-opening proofs corresponding to all
the involved polynomials evaluated at the random challenge.

Round 12 (Prover). The prover sends 𝑏0,𝛾 = 𝐵0 (𝛾), 𝑓𝛾 = 𝐹 (𝛾),
ℓ𝛾 = 𝐿(𝛾), 𝑎0 = 𝐴(0), ℓ𝛾,𝜈 = 𝐿(𝜈𝛾), 𝑞𝛾,𝐿 = 𝑄𝐿 (𝛾), 𝑑𝛾 = 𝐷 (𝛾),
𝑞𝛾,𝐷 = 𝑄𝐷 (𝛾). to the verifier

16
.

Round 13 (Verifier). Verifier samples a random 𝜂 ∈ F and sends

to the prover.

Round 14 (Prover). The prover computes the following:

𝑃 (𝑋) = 𝐿(𝑋𝜈)+𝜂𝐿(𝑋)+𝜂2𝑄𝐿 (𝑋)+𝜂3𝐷 (𝑋)+𝜂4𝑄𝐷 (𝑋)+𝜂5𝐵0 (𝑋)+
𝜂6𝐹 (𝑋) + 𝜂7𝑄𝐵 (𝑋) and

𝐻𝑃 (𝑋) =
𝑃 (𝑋) − 𝑝𝛾
𝑋 − 𝛾

15
Given 𝑞𝑖,1, 𝑞𝑖,2 , and [𝜓W𝑖 (𝜏)]1 , for each 𝑖 ∈ [𝑛𝑠], we can slightly modify the step 2

of lemma 4 to obtain [𝑄𝐴 (𝜏)]1 and the commitment of the remainder polynomials:

compute a linear combination of the quotients and remainders corresponding to the

division of𝐴(𝑋)𝑇 (𝑋) and𝐴(𝑋)𝑋 by 𝑍W (𝑋) .
16
Given the sparse representation of𝐴, the prover can compute𝐴(0) in time𝑂 (𝑘𝑠) ,

given the pre-computed Lagrange evaluations at 0.

331

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

where 𝑝𝛾 = ℓ𝛾,𝜈 +𝜂ℓ𝛾 +𝜂2𝑞𝛾,𝐿+𝜂3𝑑𝛾 +𝜂4𝑞𝛾,𝐷 +𝜂5𝑏0,𝛾 +𝜂6 · 𝑓𝛾 +𝜂7𝑞𝐵,𝛾 ,

for 𝑏𝛾 = 𝑏0,𝛾 · 𝛾 + 𝐵(0) and

𝑞𝐵,𝛾 =
𝑏𝛾 (𝑓𝛾 + 𝛽 + 𝛿ℓ𝛾) − 1

𝑍V (𝛾)
.

The prover then sends [𝐻𝑃 (𝜏)]1 and [𝑃 (𝜏)]1 to the verifier.

Round 15 (Verifier). The verifier proceeds as follows:
(1) Sets 𝑏0 = 𝑛𝑠 · 𝑎0/𝑘𝑠 .
(2) As part of checking the correctness of 𝐵, it computes 𝑍V (𝛾) =

𝛾𝑘𝑠 − 1, 𝑏𝛾 = 𝑏0,𝛾 · 𝛾 + 𝑏0 and

𝑞𝐵,𝛾 =
𝑏𝛾 (𝑓𝛾 + 𝛽 + 𝛿ℓ𝛾) − 1

𝑍V (𝛾)

(3) Computes 𝑝𝛾 = ℓ𝛾,𝜈 + 𝜂ℓ𝛾 + 𝜂2𝑞𝛾,𝐿 + 𝜂3𝑑𝛾 + 𝜂4𝑞𝛾,𝐷 + 𝜂5𝑏0,𝛾 +
𝜂6 · com + 𝜂7𝑞𝐵,𝛾 .

(4) Checks the following:

𝑒 ([𝐻𝑝 (𝜏)]1, [𝜏]2) = 𝑒 ([𝑃 (𝜏)]1 − 𝑝𝛾 + 𝛾 [𝐻𝑝 (𝜏)]1 .[1]2)
𝑒 ([𝐴(𝜏)]1 − [𝑎0]1, [1]2) = 𝑒 ([𝐴0 (𝜏)]1, [𝜏]2)

(𝛾𝑘 − 1) (ℓ𝛾,𝜈 − 𝜔ℓ𝛾) − 𝑍V (𝛾)𝑞𝛾,𝐿 = 0

ℓ𝛾 − 𝑑𝛾 − 𝑍K (𝛾)𝑞𝛾,𝐷 = 0

B.3 Proof of Theorem 1
Proof. It is easy to check that our protocol is complete, assum-

ing the completeness of the caulk sub-protocol.

Proof of Knowledge Soundness. Suppose A is an efficient alge-

braic adversary attacking the knowledge soundness of our protocol,

as in Definition 2. Since A is algebraic, it will send a polynomial

𝐹 (𝑋) ∈ F<𝑘𝑠 [𝑋] corresponding to com in Step 3) of the knowledge

soundness game. Furthermore, corresponding to all the commit-

ments in the protocol, A sends the corresponding polynomials

of appropriate degree. LetWin denote the event that A wins the

knowledge soundness game and Acc denote the event that the

verifier accepts. Then, Win ⊂ Acc and Acc implies that all the

pairing checks in our protocol verify. By Lemma 1, this means

that the corresponding ideal checks will also verify, except with

a negl(𝜆)-probability. Assuming this, we want to prove that for

each 𝑖 ∈ [0, 𝑘 − 1], there exists 𝑗 ∈ [0, 𝑛 − 1] such that, for each

𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞).
If all the ideal pairing checks verify, then the following holds.

• By the security of KZG commitments, the pairing checks in

Round 15 implies that except with probability𝑘𝑠/|F| over𝛾, 𝜂 ∈ F,
it holds that ℓ𝛾,𝜈 = 𝐿(𝛾𝜈), ℓ𝛾 = 𝐿(𝛾), 𝑞𝛾,𝐿 = 𝑄𝐿 (𝛾), 𝑑𝛾 = 𝐷 (𝛾),
𝑞𝛾,𝐷 = 𝑄𝐷 (𝛾), 𝑏0,𝛾 = 𝐵0 (𝛾), 𝑓𝛾 = 𝐹 (𝛾) and 𝑞𝐵,𝛾 = 𝑄𝐵 (𝛾).
• This implies that the checks in Round 15, Step 4) at the random

point 𝛾 implies that the following equations hold:

𝐵(𝑋) (𝛽 + 𝐹 (𝑋) + 𝛿𝐿(𝑋)) − 1 = 𝑍V (𝑋)𝑄𝐵 (𝑋)

(𝑋𝑘 − 1) (𝐿(𝑋𝜈) − 𝜔𝐿(𝑋)) = 𝑍V (𝑋)𝑄𝐿 (𝑋)
𝐿(𝑋) − 𝐷 (𝑋) = 𝑍K (𝑋)𝑄𝐷 (𝑋)

• By the knowledge soundness of the caulk sub-protocol (c.f. [62,

Theorem 4]), Rounds 3-8 in our protocol guarantee that 𝐿 is well-

formed, i.e., for each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, · · · , 𝜇𝑛−1}, for
𝜇 = 𝜔𝑠

.

• Since the verifier obtains [𝜏𝑘𝑠−𝑛𝑠−1]2, [𝜏𝑛𝑠−𝑘𝑠−1]2 from the srs,
the degree pairing checks in Round 11 imply the the following:

– If 𝑛 > 𝑘 , then 𝑑𝑒𝑔(𝐵0) ≤ 𝑘𝑠 − 2, and if 𝑘 > 𝑛, then 𝑑𝑒𝑔(𝐴0) ≤
𝑛𝑠 − 2.

– In either case above, the other polynomial also satisfies the

degree check because the commitment of the corresponding

power of 𝜏 will be the highest G1-power in srs. This is also
why no degree check is needed if 𝑘 = 𝑛. Furthermore, since

𝐵(𝑋) = 𝐵0 (𝑋)𝑋 + 𝑏0 for 𝑏0 = 𝑛𝑠𝑎0/𝑘𝑠 , 𝑑𝑒𝑔(𝐵) < 𝑘𝑠 .

• In Round 11, we check the following equation at 𝜏 :

𝐴(𝑋) (𝛽 +𝑇 (𝑋) + 𝛿𝑋) −𝑀 (𝑋) = 𝑍W (𝑋)𝑄𝐴 (𝑋)

This implies that 𝐴(𝜔𝑖) = 𝑀 (𝜔𝑖)
𝛽+𝑇 (𝜔𝑖)+𝛿𝜔𝑖 for each 𝑖 ∈ [𝑛𝑠]. Fur-

thermore, since 𝐵 is well-formed, we know that

∑
𝑖∈[𝑘𝑠] 𝐵(𝜈𝑖) =∑

𝑖∈[𝑘𝑠]
1

𝛽+𝐹 (𝜈𝑖)+𝛿𝐿 (𝜈𝑖) . Further, by Lemma 3,

∑
𝑖∈[𝑘𝑠] 𝐵(𝜈𝑖) =

𝑘𝑠 ·𝑏0 and

∑
𝑖∈[𝑛𝑠] 𝐴(𝜔𝑖) = 𝑛𝑠 ·𝑎0. Since, in the protocol 𝑏0 is set

such that 𝑘𝑠 · 𝑏0 = 𝑛𝑠 · 𝑎0, we have that

∑
𝑖∈[𝑛𝑠]

𝑀 (𝜔𝑖)
𝛽+𝑇 (𝜔𝑖)+𝛿𝜔𝑖 =∑

𝑖∈[𝑘𝑠]
1

𝛽+𝐹 (𝜈𝑖)+𝛿𝐿 (𝜈𝑖) . This implies that except with probability

(𝑘𝑠 · 𝑛𝑠)/|F| over 𝛽 ∈ F, the following will hold:∑︁
𝑖∈[𝑛𝑠]

𝑀 (𝜔𝑖)
𝑋 +𝑇 (𝜔𝑖) + 𝛿𝜔𝑖

=
∑︁

𝑖∈[𝑘𝑠]

1

𝑋 + 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖)
(5)

This implies that the following two equation checks on 𝜏 in

Rounds 2 and 15,

(𝑋𝑛 − 1) (𝑀 (𝑋) −𝑀 (𝑋/𝜔)) = 𝑍W (𝑋)𝑄𝑀 (𝑋)
𝐴(𝑋) − 𝑎0 = 𝐴0 (𝑋) · 𝑋

will guarantee that these equations hold and that𝑀 is guaranteed

to be well-formed
17
. Thus, by Lemma 6, eq. 5 implies that for each

𝑖 ∈ [𝑘𝑠], there exists some 𝑗 ∈ [𝑛𝑠] such that 𝐹 (𝜈𝑖) + 𝛿𝐿(𝜈𝑖) =
𝑇 (𝜔 𝑗) + 𝛿𝜔 𝑗 .

• Thus, by the definition of polynomial 𝐿, this implies that for

each 𝑖 ∈ [0, 𝑘 − 1], there exists a 𝑗 ∈ [0, 𝑛 − 1] such that for

each 𝑞 ∈ [0, 𝑠 − 1], 𝐹 (𝜈𝑖𝑠+𝑞) + 𝛿𝜔 𝑗𝑠+𝑞 = 𝑇 (𝜔 𝑗𝑠+𝑞) + 𝛿𝜔 𝑗𝑠+𝑞
, i.e.,

𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞) .
Thus, the event Acc that the verifier accepts implies that all the ideal

pairing checks will verify except with a negl(𝜆) probability. By the

above implications, this in turn implies that for each 𝑖 ∈ [0, 𝑘 − 1],
there exists a 𝑗 ∈ [0, 𝑛 − 1] such that for each 𝑞 ∈ [0, 𝑠 − 1],
𝐹 (𝜈𝑖𝑠+𝑞) = 𝑇 (𝜔 𝑗𝑠+𝑞), except with a negl(𝜆) probability. This proves
the knowledge soundness of our protocol.

Efficiency. The efficiency of gen follows from Lemma 4. The addi-

tional multiplicative log-factor is due to the use of FFTs to compute

the quotient polynomials. By Lemma 4 it is guaranteed that the

online prover cost of our protocol is dominated by the following

two costs: first, the instantiation of Lemma 5 uses 𝑂 (𝑘𝑠 log𝑛) G1-

and F-operations (details in Appendix D); second, the FFT com-

putation for computing the quotient polynomials, on V requires

𝑂 (𝑘𝑠 log𝑘𝑠) F-operations. It is easy to see that our protocol’s proof

size and verifier cost are 𝑂 (1).
□

17
if𝑀 was not correctly formed, and the pairing check of round 2 was set to be true

by A, then the equality guaranteed by eq. 5 will not hold.

332

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

B.4 Adding Zero-Knowledge
Our segment-lookup protocol as described in the previous section,

does not achieve zero-knowledge (i.e., it does not hide the segments

encoded using polynomial 𝐹 (𝑋)). However, as is the case with most

existing efficient SNARKs [17, 20, 25], our protocol can be easily

modified to achieve zero-knowledge with the caveat that it leaks
the effective layer 𝑘 of the input. The main idea is to use randomized

polynomial encodings (as opposed to unique polynomial encod-

ings) when computing commitments to witness-dependent vectors.

The reason why this simple modification suffices for ensuring zero-

knowledge is because, throughout the protocol, the verfier only

sees evaluations of these polynomial encodings at a few random

points. When using higher-degree randomized polynomial encod-

ings, these polynomial evaluations do not leak any information

about the encoded vector.

In more detail, if for instance the verifier receives 𝛼 evaluations

of polynomial 𝐹 (𝑋) in our segment-lookup protocol, then it suffices

for the prover to commit to andworkwith a randomized polynomial

𝐹 (𝑋) = 𝐹 (𝑋) + 𝑅(𝑋) · 𝑍V (𝑋) instead of 𝐹 (𝑋), where 𝑅(𝑋) is a
random polynomial of degree 𝛼 − 1. Our segment-lookup protocol

will achieve zero-knowledge if all witness-dependent polynomials

in the above protocol are randomized in a similar manner. For

simplicity of presentation, we chose to present the protocol in the

previous section without the zero-knowledge property. Since the

primary focus of our work was to reduce the prover run-time, this

allowed us to highlight the main technical ideas without having to

deal with unnecessarily complex notation.

C S𝔲𝔟𝔩𝔬𝔫K PROTOCOL
C.1 Post-Processing 𝐹𝑌 Polynomials
In this section, we describe how the 𝐹𝑌 polynomials, can

be post-processed to obtain a verifier pre-processing identi-

cal to that in P𝔩𝔬𝔫K for the activated sub-circuit 𝐶 . Let

{q̃M, q̃L, q̃R, q̃O, q̃C, S̃𝜎 1
, S̃𝜎 2

, S̃𝜎 3
} denote the P𝔩𝔬𝔫K constraints

for 𝐶 . We prove the following claims.

Selector Polynomials. For 𝑌 ∈ {qM, qL, qR, qO, qC}, we observe
that the corresponding 𝐹𝑌 polynomials are exactly the selector

polynomials {q̃M, q̃L, q̃R, q̃O, q̃C}.

Claim 3. For 𝑌 ∈ {qM, qL, qR, qO, qC}, 𝐹𝑌 (𝑋) = 𝑌 (𝑋).

Proof Sketch. We sketch the proof for q̃M (𝑋) and 𝐹qM (𝑋), and
the proof extends identically to the other polynomials in the claim.

For any 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], it is the case that 𝑞𝑀 (𝜈𝑖𝑠+𝑗) =

𝑞
(𝜉 (𝑖))
𝑀

(𝜂 𝑗) = 𝐹qM (𝜈𝑖𝑠+𝑗), where the first equality follows from the

fact that C̃ = (C(𝜉 (𝑖)))𝑖∈[0,𝑘−1] and the definition of 𝑞
(𝜉 (𝑖))
𝑀

(𝑋),
and the second follows from the definition of 𝐹qM (𝑋).

□

Permutation Polynomials. For 𝑌 ∈ {S𝜎 1
, S𝜎 2

, S𝜎 3
}, we observe

that the corresponding 𝐹𝑌 polynomials are a function of the selector

polynomials {S̃𝜎 1
, S̃𝜎 2

, S̃𝜎 3
}. More formally,

Claim 4. ∀𝑎 ∈ [3],∀𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], 𝐹S𝜎𝑎
(𝜈𝑖𝑠+𝑗) · 𝜈𝑖𝑠 =

S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗)

Proof Sketch. For any 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠], consider
S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗). As described, the permutation 𝜎 for C can be split into

disjoint permutations {𝜎 (𝑖) }𝑖 , where by the definition of P𝔩𝔬𝔫K ,
𝜎 (𝑖) : I𝑖 → I𝑖 for I𝑖 B [𝑖𝑠 + 1, (𝑖 + 1)𝑠] ∪ [𝑘𝑠 + 𝑖𝑠 + 1, 𝑘𝑠 + (𝑖 + 1)𝑠] ∪
[2𝑘𝑠 + 𝑖𝑠 + 1, 2𝑘𝑠 + (𝑖 + 1)𝑠].

This in turn implies that S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗) ∈ {𝜈𝑖𝑠+ℓ , 𝜈𝑖𝑠+ℓ · 𝑘1, 𝜈
𝑖𝑠+ℓ ·

𝑘1}, where ℓ ∈ [𝑠] and 𝑘1 and 𝑘2 are such that 𝑘1V and 𝑘2V are

disjoint cosets ofV (seeP𝔩𝔬𝔫K [25] for details regarding the cosets).

Further, ℓ is determined by 𝜎𝜉 (𝑖) (𝑗), the permutation polynomial

for C(𝜉 (𝑖)) . Therefore, we have for any 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠],

S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗) = 𝜎∗(𝑖) (𝑗) = 𝜈𝑖𝑠𝜎∗(𝜉 (𝑖)) (𝑗)

= 𝜈𝑖𝑠S𝜎
(𝜉 (𝑖))
𝑎 (𝜂 𝑗) = 𝜈𝑖𝑠𝐹S𝜎𝑎

(𝜈𝑖𝑠+𝑗)
□

Post-Processing the P𝔩𝔬𝔫K Permutation Polynomial. From
our previous two claims, it is clear that while the (commitment of

the) selector polynomials output from the segment-lookup protocol

work as is, the same is not true of the permutation polynomial. But

we will utilize Claim 4 to make the prover send the commitment to

the correct permutation polynomial S̃𝜎𝑎 (𝑋), and prove the relation
to 𝐹S𝜎𝑎

(𝑋). To this end, we define a new polynomial

𝑈 (𝑋) B
𝑘−1∑︁
𝑖=0

𝜈𝑖
𝑠∑︁
𝑗=1

𝜓V𝑖𝑠+𝑗 (𝑋).

From Claim 4, we have that 𝑖 ∈ [0, 𝑘 − 1], 𝑗 ∈ [𝑠]
𝐹S𝜎𝑎
(𝜈𝑖𝑠+𝑗) ·𝑈 (𝜈𝑖𝑠+𝑗) − S̃𝜎𝑎 (𝜈𝑖𝑠+𝑗) = 0.

Since the above holds for all 𝜈 ∈ V, it can be represented by the

following polynomial check,

𝐹S𝜎𝑎
(𝑋) ·𝑈 (𝑋) − S̃𝜎𝑎 (𝑋) = 𝑍V (𝑋)𝑄S𝜎𝑎

(𝑋)
Given commitments to the polynomials above, the verifier will

check that the equation is satisfied at a random point, and then

proceed to invoking P𝔩𝔬𝔫K using the commitment to S̃𝜎𝑎 (𝑋). We

note that the commitment to 𝑈 (𝑋) will be produced as a part of

the pre-processing since it is input independent.

C.2 S𝔲𝔟𝔩𝔬𝔫K Protocol Description
We finally describe our full S𝔲𝔟𝔩𝔬𝔫K protocol in Figure 4.

We state our theorem relative to the costs of the segment-lookup

and P𝔩𝔬𝔫K protocols. Specifically, TimesegmentLookup
P (𝑛, 𝑘, 𝑠) de-

notes the prover time for the segment-lookup protocol when pa-

rameterized by 𝑛, 𝑘 and 𝑠 . Similarly TimeP𝔩𝔬𝔫KP (𝑘𝑠) denotes the
prover time when P𝔩𝔬𝔫K is run on a circuit of size 𝑂 (𝑘𝑠). Verifier
time and proof size are denoted in an analogous manner.

Theorem 3. Given a (𝑠, ¯𝑘, 𝑛, {C𝑖 }𝑛𝑖=1
) layered branching circuit C

such that can be partitioned into 𝑛 sub-circuits of size 𝑠 such that the
execution path has length𝑂 (𝑘𝑠), the above protocol is a pre-processing
SNARK in the Algebraic Group Model for C induced by C such that
the following properties hold:
Prover Time: TimesegmentLookup

P (𝑛, 𝑘, 𝑠) + TimeP𝔩𝔬𝔫KP (𝑘𝑠) +
𝑂 (𝑘𝑠 log(𝑘𝑠)) G1 and F operations

Verifier Time: TimesegmentLookup
V (𝑛, 𝑘, 𝑠) + TimeP𝔩𝔬𝔫KV (𝑘𝑠) + 3

Pairings.
333

Proceedings on Privacy Enhancing Technologies 2024(3) Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha

PreProcess(C = (𝑘, {C(𝑖) }𝑖∈[𝑛]))
(1) Define polynomials (𝑇qM (𝑋),𝑇qL (𝑋),𝑇qR (𝑋),𝑇qO (𝑋),

𝑇qC (𝑋),𝑇S𝜎 1
(𝑋),𝑇S𝜎 2

(𝑋),𝑇S𝜎 3
(𝑋)) as described in Section

4.1.

(2) Run pre-processing for the segment-lookup, i.e. for each

𝑌 ∈ {qM, qL, qR, qO, qC, S𝜎 1
, S𝜎 2

, S𝜎 3
},

pre𝑌 = gen(𝑛, 𝑘, 𝑠,𝑇𝑌) .

(3) Compute 𝑈 (𝑋) B ∑𝑘−1

𝑖=0
𝜈𝑖

∑𝑠
𝑗=1

𝜓V
𝑖𝑠+𝑗 (𝑋)

(4) Output pre B {pre𝑌 }𝑌 , [𝑈 (𝜏)]2.

S𝔲𝔟𝔩𝔬𝔫K(pre, 𝜙,C,V,W)

(1) P parses the execution path C̃ = {C̃(𝑖) }𝑖∈[𝑘] , and computes

the function 𝜉 : F𝑚 → [1, 𝑛]𝑘 (on statement and witness

pair 𝑥 = (𝜙,𝑤)), that maps C̃(𝑖) to C𝜉𝑥 (𝑖) .
(2) P uses 𝜉 to compute 𝐹𝑌 (𝑋) for all 𝑌 ∈
{qM, qL, qR, qO, qC, S𝜎 1

, S𝜎 2
, S𝜎 3
}.

(3) P and V run segmentLookup⊗ℓ (𝑇qM ,𝑇qL ,𝑇qR ,
𝑇qO ,𝑇qC ,𝑇S𝜎 1

,𝑇S𝜎 2
,𝑇S𝜎 3

) with verifier output

([𝐹qM (𝜏)]1, [𝐹qL (𝜏)]1, [𝐹qR (𝜏)]1, [𝐹qO (𝜏)]1, [𝐹qC (𝜏)]1,
[𝐹S𝜎 1

(𝜏)]1, [𝐹S𝜎 2
(𝜏)]1, [𝐹S𝜎 3

(𝜏)]1).
(4) P sends [S̃𝜎 1

(𝜏)]1, [S̃𝜎 2
(𝜏)]1, [S̃𝜎 3

(𝜏)]1 to V.
(5) V sends a random 𝛾 ∈ F to P.
(6) P computes for each 𝑎 ∈ [3], [𝑄𝜎𝑎 (𝜏)]1 such that

𝑈 (𝑋) · 𝐹S𝜎𝑎
(𝑋) − S̃𝜎𝑎 (𝑋) = ZV (𝑋) ·𝑄𝜎𝑎 (𝑋)

(7) V checks if the following holds for each 𝑎 ∈ [3],
𝑒 ([𝐹S𝜎𝑎

(𝜏)]1, [𝑈 (𝜏)]2) · 𝑒 ([S̃𝜎𝑎 (𝜏)]1, [1]2)−1

= 𝑒 ([𝑄𝜎𝑎 (𝜏)]1, [ZV (𝜏)]2)
(8) P and V run P𝔩𝔬𝔫K (PP𝔩𝔬𝔫K ,VP𝔩𝔬𝔫K) with pre-

processed inputs

(
[𝐹qM (𝜏)]1, [𝐹qL (𝜏)]1, [𝐹qR (𝜏)]1,

[𝐹qO (𝜏)]1, [𝐹qC (𝜏)]1, [S̃𝜎 1
(𝜏)]1, [S̃𝜎 2

(𝜏)]1, [S̃𝜎 3
(𝜏)]1

)
(9) V accepts if all checks pass.

Figure 4: The S𝔲𝔟𝔩𝔬𝔫K Protocol

Proof Size: SizesegmentLookup
V (𝑛, 𝑘, 𝑠) + SizeP𝔩𝔬𝔫KV (𝑘𝑠) + 13 G1

elements.

Except with negligible probability (over the choice of 𝛾), given

that the verifier check in Step 7 succeeds, the commitments sent

by the prover in Step 4 must be the correct polynomial. Thus the

security of the scheme follows directly from the security of the

underlying schemes.

Plugging in the asymptotic costs of the underlying protocol, we

have the following corollary for Thm 3, which immediately implies

Thm 2.

Corollary 1. The asymptotic costs for the protocol in Theorem
3 is 𝑂 (𝑘𝑠 · (log(𝑘𝑠) + log(𝑛))) G1- and F-operations for prover cost,
and 𝑂 (1) for verifier cost and proof size.

Efficiency of S𝔲𝔟𝔩𝔬𝔫K. The S𝔲𝔟𝔩𝔬𝔫K prover invokes the

segment-lookup protocol in parallel on each of the 8 types of poly-

nomials needed for running the P𝔩𝔬𝔫K protocol. This contributes

to the first component, TimesegmentLookup
P (𝑛, 𝑘, 𝑠), of the prover cost.

Secondly, to compute quotient polynomials and their commitments

in Step 6 of Figure 4, the prover uses FFT, which contributes to

the third component, 𝑂 (𝑘𝑠 log(𝑘𝑠)), of the prover cost. Finally, the
prover runs the P𝔩𝔬𝔫K prover in Step 8, which contributes to the

second component, TimeP𝔩𝔬𝔫KP (𝑘𝑠), of the prover cost. By Thm 1,

we know that TimesegmentLookup
P (𝑛, 𝑘, 𝑠) = 𝑂 (𝑘𝑠 · (log(𝑘𝑠)+log(𝑛)))

G1- and F-operations, which dominates the cost of the P𝔩𝔬𝔫K
prover. Thus, ourS𝔲𝔟𝔩𝔬𝔫K prover cost is𝑂 (𝑘𝑠 · (log(𝑘𝑠) + log(𝑛)))
G1- and F-operations.

Allowing Arbitrary Number of Effective Layers. So far in this

section, we assume that the effective number of layers 𝑘 is fixed in

advance. However, as discussed in Section 2.1, 𝑘 depends on the

input to the circuit C. Our protocol can be easily generalized to

handle this case. In particular, let
¯𝑘 be the maximum number of

layers in C. We can easily modify the pre-processing algorithm in

S𝔲𝔟𝔩𝔬𝔫K to take as input
¯𝑘 , instead of 𝑘 as follows: The modified

pre-processing algorithm does the computation dependent on 𝑛,

as described in Figure 4. For the remaining computation in the

pre-processing phase that depends on 𝑘 , we compute this for every

𝑘 ′ < ¯𝑘 . In the online phase, once the prover learns the value of 𝑘

upon evaluating the circuit on a given statement andwitness, he can

communicate this 𝑘 to the verifier. For the rest of the protocol, both

the prover and verifier work with the pre-processing corresponding

to 𝑘 ′ = 𝑘 and ignore the rest.

D CAULK SUB-PROTOCOL: MULTI-UNITY
PROOF

For the sake of completeness, we give the full protocol description

of [63, Figure 5] whose informal description was given in Section

B.1. We require the following variant of bivariate KZG commitment

from [63] for the sub-protocol.

KZG for Bivariate Polynomials. For a bivariate polynomial

𝑃 (𝑋,𝑌) with degree up to 𝑑1 − 1 in 𝑋 and 𝑑2 − 1 in 𝑌 , this protocol

requires a universal setup with 𝑑1𝑑2 powers. The setup correspond-

ing to the univariate KZG itself can be used for this. To commit

to 𝑃 (𝑋,𝑌), using the commit algorithm of univariate KZG, one

can commit to [𝑃 (𝜏𝑑2 , 𝜏)]1. Opening this commitment requires two

steps: first, partially open 𝑃 (𝑋,𝑌) at some 𝑋 = 𝛼 to a commit-

ment [𝑃 (𝛼, 𝜏)]1. The partial proof is given by [𝐻𝛼 (𝜏𝑑2 , 𝜏)]1, where
𝐻𝛼 (𝑋,𝑌) = 𝑃 (𝑋,𝑌)−𝑃 (𝛼,𝑌)

𝑋−𝛼 ; second, fully evaluate 𝑃 (𝛼,𝑌) at 𝑌 = 𝛽

via standard univariate KZG proof with a degree bound of 𝑑2 − 1

on [𝑃 (𝛼, 𝜏)]1.
The main protocol takes as input the commitment [𝑢0]1 and

polynomial𝑈0 (𝑋), and proves that the commitment indeed corre-

sponds to 𝑈0 (𝑋) that encodes (𝐷 (1), 𝐷 (𝜈𝑠), . . . , 𝐷 (𝜈 (𝑘−1)𝑠)), and
checks that for each 𝑖 ∈ [0, 𝑘 − 1], 𝐷 (𝜈𝑖𝑠) ∈ {𝜇0, · · · , 𝜇𝑛−1}, for
𝜇 = 𝜔𝑠

. As explained in the informal description, this is equivalent

to proving that the following aggregated equation holds:

(𝑈 2

0
(𝑋)Δ1 (𝑌) +

log𝑛∑︁
𝑗=2

𝑈 2

𝑗−1
(𝑋)Δ 𝑗 (𝑌)) − (

log𝑛−1∑︁
𝑗=1

𝑈 𝑗 (𝑋)

· Δ 𝑗 (𝑌) + id(𝑋)Δlog𝑛 (𝑌)) = 𝑍V (𝑋)𝑄2 (𝑋,𝑌)
334

S𝔲𝔟𝔩𝔬𝔫K : Sublinear Prover P𝔩𝔬𝔫K Proceedings on Privacy Enhancing Technologies 2024(3)

for some polynomial 𝑄2 (𝑋,𝑌). We describe the protocol details be-

low, which helps check the above equation at a random point (𝛼, 𝛽).
On a high level, each round of the protocol does the following:

• Checking the above equation for some polynomial 𝑄2 (𝑋,𝑌) at
(𝛼, 𝛽) is equivalent to showing that the following polynomial

evaluates to 0 at 𝑌 = 𝛽 :

𝑃 (𝑌) = (𝑈 2

0
(𝛼)Δ1 (𝛽) +

log𝑛∑︁
ℓ=2

𝑈 2

ℓ−1
(𝛼)Δℓ (𝛽)

+ 𝑍S (𝛽) (−𝑄1 (𝛽) +𝑄1 (𝑌))) − (
log𝑛−1∑︁
ℓ=1

𝑈ℓ (𝛼)Δℓ (𝛽)

+ id(𝛼)Δ
log𝑛 (𝛽)) − 𝑍V (𝛼)𝑄2 (𝛼,𝑌)

for some polynomial 𝑄1 (𝑌). For this, the prover sends commit-

ments and values needed to reconstruct [𝑃 (𝜏)]1 and provides a

proof for opening 𝑃 at 0 and 𝛽 .

• The other observation used is that since Δℓ ’s take 0/1 values, for

each 𝑌 ∈ S, it holds that:

(𝑈 2

0
(𝑋)Δ1 (𝑌) +

log𝑛∑︁
ℓ=2

𝑈 2

ℓ−1
(𝑋)Δℓ (𝑌))

= (𝑈0 (𝑋)Δ1 (𝑌) +
log𝑛∑︁
ℓ=2

𝑈ℓ−1 (𝑋)Δℓ (𝑌))2

In the protocol below, we denote 𝑈 (𝑋,𝑌) =∑log𝑛

ℓ=2
𝑈ℓ−1 (𝑋)Δℓ (𝑌) and𝑈 (𝑋,𝑌) = 𝑈 (𝑋,𝑌) +𝑈0 (𝑋)Δ1 (𝑌).

• Now, the prover takes the univariate polynomials cor-

reponding to 𝑈 and 𝑄2 and sends the commitments

[𝑈 (𝜏 log𝑛, 𝜏)]1, [𝑄2 (𝜏 log𝑛, 𝜏)]1 to the verifier. This is in-

tended to be a bivariate commitment, but we want to reuse the

srs containing only powers of 𝜏 .

• For the remaining rounds, the prover essentially sends the neces-

sary commitments and opening proofs for the remaining poly-

nomials corresponding to the equation above. Additional to the

equation check, one additional check is done for the correctness

of 𝑈 and 𝑈 (check 𝑈 (𝑋, 1) = 0, and then enforce the degree

check).

The protocol uses the srs from our protocol of section B.2. The

common inputs for the prover and verifier is [𝑈0 (𝜏)]1.
Round 1 (Prover→ Verifier). The prover takes the input srs and
𝑈0 (𝑋) and samples 𝑡1, · · · , 𝑡log𝑛 ← F to compute:

(1) For ℓ = 1, · · · , log𝑛,𝑈ℓ (𝑋) =
∑𝑘𝑠

𝑗=1
(𝜇𝑖 𝑗)2ℓΔ 𝑗 (𝑋) + 𝑡ℓ𝑍V (𝑋) .

(2) 𝑈 (𝑋,𝑌) = ∑log𝑛

ℓ=1
𝑈ℓ−1 (𝑋)Δℓ (𝑌).

(3) 𝑈 (𝑋,𝑌) = 𝑈 (𝑋,𝑌) −𝑈0 (𝑋)Δ1 (𝑌).
(4) 𝑄2 (𝑋,𝑌) =

∑log𝑛

ℓ=1
Δℓ (𝑌)𝑄2,ℓ (𝑋), for 𝑄2,ℓ (𝑋) = (𝑈 2

ℓ−1
(𝑋) −

𝑈ℓ (𝑋))/𝑍V (𝑋).
The prover sends [𝑈 (𝜏 log𝑛, 𝜏)]1, [𝑄2 (𝜏 log𝑛, 𝜏)]1 to the verifier.

Round 2 (Verifier). The verifier sends a challenge 𝛼 ∈ F.
Round 3 (Prover → Verifier). The prover computes 𝑄1 (𝑌) =
(𝑈 2 (𝛼,𝑌) − ∑log𝑛

ℓ=1
𝑈 2

ℓ−1
(𝛼)Δℓ (𝑌))/𝑍S (𝑌) and sends [𝑄1 (𝜏)]1 to

the verifier.

Round 4 (Verifier). Sends challenge 𝛽 ∈ F.

Round 5 (Prover→ Verifier). The prover does the following:
(1) Computes 𝑃 (𝑌) = (𝑈 2 (𝛼, 𝛽) −𝑈 (𝛼, 𝛽𝜙) + id(𝛼)Δ

log𝑛 (𝛽)) −
𝑍V (𝛼)𝑄2 (𝛼,𝑌) .

(2) Computes and sends 𝑈0 (𝛼), [𝑈 (𝛼, 𝜏)]1, [𝑄2 (𝛼, 𝜏)]1, and
their KZG opening proofs at 𝛼 : 𝜋1, 𝜋2, 𝜋3, respectively.

(3) Computes and sends 𝑈 (𝛼, 1) = 0,𝑈 (𝛼, 𝛽),𝑈 (𝛼, 𝛽𝜙) along
with their KZG opening proof at (1, 𝛽, 𝛽𝜙): 𝜋4.

(4) Computes and sends 𝑃 (𝛽) = 0, along with its opening proof

at 𝛽 : 𝜋5.

Round 6 (Verifier). The verifier computes [𝑃 (𝜏)]1 =

(𝑈0 (𝛼)Δ1 (𝛽) + 𝑈 (𝛼, 𝛽))2 − [𝑄1 (𝜏)]1𝑍S (𝛽) − (𝑈 (𝛼, 𝛽𝜙) +
id(𝛼)Δ

log𝑛 (𝛽)) − 𝑍V (𝛼) [𝑄2 (𝛼, 𝜏)]1, and accepts if and only if all

the KZG opening proofs 𝜋1, · · · , 𝜋5 verify.

Overview of the Prover Cost Analysis. From the description

above, we can see that the prover defines and commits to log𝑛

polynomials, each of degree 𝑘𝑠 , where the coefficients of these

polynomials are a result of repeatedly squaring the coefficients of

the original polynomial. Committing to these log𝑛 polynomials,

each of degree 𝑘𝑠 requires the prover to perform 𝑂 (𝑘𝑠 log𝑛) G1-

and F-operations. This becomes the dominant cost of this protocol

(and hence our segment-lookup protocol).

335

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Example Applications
	1.4 Related Works

	2 Preliminaries
	2.1 Our Model
	2.2 Background on P lonK

	3 Segment-Lookup Argument
	3.1 Overview
	3.2 Definition
	3.3 Protocol

	4 SublonK: Segment Lookup + P lonK
	4.1 Pre-Processing Layered Branching Circuit
	4.2 SublonK for Layered Branching Circuit

	5 Implementation and Evaluation
	5.1 Implementing and Evaluating SublonK for Rollups

	Acknowledgments
	References
	A Additional Preliminaries
	A.1 Algebraic Group Model
	A.2 Batched KZG Commitments
	A.3 Pre-processing SNARKs in the Algebraic Group Model
	A.4 Preliminary Lemmas

	B Protocol for Segment Lookup
	B.1 Building Blocks
	B.2 Protocol Description
	B.3 Proof of Theorem 1
	B.4 Adding Zero-Knowledge

	C SublonK Protocol
	C.1 Post-Processing FY Polynomials
	C.2 SublonK Protocol Description

	D Caulk Sub-protocol: Multi-unity Proof

