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ABSTRACT
Localization is a computer vision task by which the position and

orientation of a camera is determined from an image and environ-

mental map. We propose a method for performing localization in a

privacy preserving manner supporting two scenarios: first, when

the image and map are held by a client who wishes to offload local-

ization to untrusted third parties, and second, when the image and

map are held separately by untrusting parties. Privacy preserving

localization is necessary when the image and map are confidential,

and offloading conserves on-device power and frees resources for

other tasks. To accomplish this we integrate existing localization

methods and secure multi-party computation (MPC), specifically

garbled circuits, yielding proof-based security guarantees in con-

trast to existing obfuscation-based approaches which recent related

work has shown vulnerable. We present two approaches to local-

ization, a baseline data-oblivious adaptation of localization suitable

for garbled circuits and our novel Single Iteration Localization. Our

technique improves overall performance while maintaining confi-

dentiality of the input image, map, and output pose at the expense

of increased communication rounds but reduced computation and

communication required per round. Single Iteration Localization is

over two orders of magnitude faster than a straightforward appli-

cation of garbled circuits to localization enabling real-world usage

in Turbo the Snail, the first robot to offload localization without

revealing input images, environmental map, position, or orientation

to offload servers.
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1 INTRODUCTION
Visual localization algorithms allow devices to infer their position

in a three-dimensional map from features derived from images.

Popular applications include autonomous vehicles, virtual reality,

and robotics where a device with a camera is moving through an

environment and localizing repeatedly on camera frames to infer

its position and orientation over time [1, 15, 36].

Incorporating privacy into visual localization is an active area

of research. Consider a lightweight robot equipped with a camera.

Privacy preserving localization allows the robot to offload the lo-

calization task to more powerful resources without revealing its

location, its map, or images taken by its camera. Offloading con-

serves onboard power and frees resources for other tasks. Privacy is

important in this setting because the robot may inadvertently take

pictures of sensitive information, or people who do not want their

picture taken. Ethical or legal requirements may prevent the images

from being shared outside the device domain. Privacy preserving

localization also enables settings when the map and camera image

are held by different parties, or when both are held by the same

party who is trying to prevent data exfiltration by requiring an

attacker to compromise multiple systems simultaneously. While

technologies have emerged to make privacy preserving localization

more efficient, none make formal security statements and many of

the claimed security properties have been broken [4, 17, 33, 56].

Previous attempts at secure localization rely on techniques based

on obfuscation, like line cloud transformations [56] and adversar-

ial affine subspace embeddings [17]. Such obfuscation-based tech-

niques do not make formal security statements, but they have low

overhead and run efficiently. Consequently, these techniques have

been shown to be vulnerable to attacks which can recover the in-

put image [10, 47]. Recently, differential privacy has been used to

address one such attack however privacy is inversely related to

the amount of data processed sequentially [47]. While this is ap-

propriate for some applications, it is not appropriate for repeated

invocation, common when localizing on sequential camera frames.

As recent innovation demonstrates, applying privacy-preserving

techniques to visual localization that prioritize efficiency over for-

mal security guarantees leaves weaknesses in the protection these

techniques afford. At the same time, general purpose secure com-

putation can present performance obstacles with high computation

overhead and communication costs. Localization is not well suited

to execution under homomorphic encryption due to the algorithm’s

high multiplicative depth, heavy use of division, and requirement
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for floating point data representation. Garbled circuits are a better fit

for localization, however they are communication intensive. What

is needed is a co-design approach that meets privacy expectations

with practical efficiency.

In this work, we investigate privacy preserving visual localiza-

tion using secure multi-party computation (MPC). We first develop

a data-oblivious implementation in which we run a standard visual

localization algorithm underMPC based on non-linear optimization.

This provides the first known implementation of visual localization

with formal security guarantees drawn from general purpose secure

computation. While secure, this naïve approach has inefficiencies

which stem from the iterative nature of localization algorithms. The

popular localization approach we consider (minimizing reprojec-

tion error via non-linear least squares) is composed of two nested

iterative steps which are unfriendly to data-oblivious execution,

one being optimization via gradient descent and the other being

singular value decomposition (SVD). To address the performance

issues these iterative steps present we develop a novel Single Itera-

tion Localization approach, leveraging the fact that localization is

typically run repeatedly on sequential camera frames. We modify

the outer iterative algorithm, gradient descent, to run each iteration

independently in a way which maintains security for a series of lo-

calization runs. Then, we address the inner iterative algorithm, the

SVD, by finding the optimal number of iterations a priori, which in

practice does not depend on secret input data. The resulting secure,
non-linear and iterative localization – SNaIL – runs two orders of

magnitude faster than a naïve adaptation of localization to MPC.

In summary, this work makes the following contributions:

• We design a novel Single Iteration Localization (SIL) method for

visual localizationwhich increases round complexity in exchange

for orders of magnitude runtime improvement and better privacy

properties.

• We present a simulation-based definition of security for privacy

preserving localization
1
.

• We experimentally evaluate SIL against a data-oblivious base-

line using two different visual localization algorithms and two

different MPC frameworks, EMP [61] and ABY [14].

• We demonstrate real-world practicality with Turbo the Snail, the

first robot to offload localization without revealing the view of

its camera or its position and orientation in the environment.

2 PRELIMINARIES
This work builds on the goals of previous works seeking to integrate

privacy-enhancing features into localization. Our specific focus

is the following two privacy goals: 1) preventing image and map

reconstruction and 2) maintaining confidentiality of the pose. These

two goals represent the most illustrative standards with which to

contrast our methods to the existing state-of-the-art [10, 17, 56].

2.1 Secure Computation
Secure computation describes a cryptographic field that seeks to

allow multiple parties to compute a function over secret inputs.

Secure multiparty computation (MPC) protocols serve a similar

purpose as trusted execution environments (TEEs) but do not re-

quire hardware support and are not vulnerable to a class of side

1
Source code available at https://github.com/secret-snail/localization-server

x=(R,t)
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Q𝑖

Figure 1: Depiction of the PnP problem. The goal is to find the
pose x, which minimizes the error dI = ∥Q𝑖 − I𝑖 ∥ between the
image measured points I𝑖 and the map pointsM𝑖 projected
to the image Q𝑖 .

channel attacks that affect TEEs [28, 29, 59]. When applied in prac-

tice, MPC is often collaborative in the sense in that each party has

secret inputs to a function, for example a bid in an auction, and the

function output, e.g. the winning bid, is learned by all participants.

MPC, however, may also be used to offload computation from a

weak device to stronger resources such that the weak device with

the secret inputs plays a minor role in the protocol.

Often MPC protocols are constructed with either Shamir or addi-

tive secret sharing protocols [55], else garbled circuit-based proto-

cols [64, 65] briefly introduced next. Secret share-based approaches

rely on splitting data into pieces in a way that retains homomorphic

properties such that each participant operates on a ciphertext indis-

tinguishable from randomness. Garbled circuit-based approaches

instead structure computation as a boolean circuit where each wire

value, zero or one, is represented by an encryption key. The circuit

is evaluated gate by gate using input wire keys to decrypt output

wires which are themselves input keys to the next level of gates.

In the two party case, one party plays the role of the generator

who creates the garbled circuit and the other party plays the role

of the evaluator, decrypting the wires received from the generator.

The encryption keys for the first set of wires in the circuit corre-

sponding to plaintext inputs owned by the evaluator are sent using

an Oblivious Transfer protocol [49]. This allows the evaluator to

learn the appropriate wire label and ensures that generator does

not learn which label the evaluator is requesting.

2.2 Visual Localization
Visual localization comprises a series of approaches that infer a

device’s location from local features extracted from visual data,

traditionally derived from a set of 2D or 3D input images depicted

in Figure 1. This process commonly employs structure-based ap-

proaches, representing scenes through point clouds and feature

matching between retrieved 2D images and 3D point clouds. Point

clouds, i.e. maps, may be generated using Structure-from-Motion

(SfM) [63], constructed simultaneously, or stored from previous

https://github.com/secret-snail/localization-server
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mapping of the environment. Such approaches that rely on sharing

image features from local 2D images (such as sending them to an

external server for analysis) risk leaking private information about

the environment to the processing entity, as features are known to

be susceptible to image inversion [62]. In practice, several studies

demonstrate the recovery of image content from gradient-based fea-

ture descriptors, and/or locations, in algorithms such as SIFT [34]

and HOG [2], rendering such methods vulnerable to privacy threats

when revealed, as one can reasonably reconstruct the image.

Alternatives to such structural approaches exist in the realm of

learned localization [33], which replaces part or all of the localiza-

tion pipeline with machine-learning based optimization. Several

emerging families of machine-learning based localization meth-

ods demonstrate high degrees of performance comparable or better

than image retrieval techniques [16]. However, these learning-based

methods currently fail to scale in complexity beyond small and rel-

atively simple scenes [4, 8], and to be as accurate as geometric

methods [50]. Furthermore, such methods are comparably vulnera-

ble to image recovery from model features [46].

Classical techniques i.e., non-learning based, to solve the Perspective-

n-Point (PnP) problem consist of three main approaches. The first

focuses on robust estimation, by removing outliers. A minimal

solver is used in conjunction with a RANSAC [20] loop. In the

context of camera pose estimation, the minimal number of 2D-3D

correspondences required to obtain a solution is three [45]. The

second type of approaches solves for the pose using two-steps 1) es-

timate the 3D points in the camera coordinate system and; 2) solve

the 3D-3D pose problem, which has a closed-form solution [58]. An

example of this type of approach is presented in [30]. The third type

of approach focuses on solving an optimization problem to obtain

the pose. Variants of this approach exploit specific problem formula-

tions as in [35], or in specific solvers, such as Levenberg-Marquardt

(LM) and Gauss Newton (GN).

In the field of computer vision, the PnP problem [30] consists

of estimating the pose (rotation and translation) of a camera with

respect to a world coordinate system. The pose is estimated by

exploiting a set of 2D feature locations (e.g. points in an image) and

their corresponding 3D points (e.g. a 3D map of the environment).

If a camera can move freely in 3D space its pose has six degrees of

freedom, three rotational and three translational, about the three

Cartesian axis. Applications in robotics and AR/VR often use PnP

solvers as part of larger processing pipelines including control [9]

and mapping [52]. This work focuses only on pose estimation with

the PnP problem.

2.3 Privacy-Preserving Localization
Several existing methods implement privacy preserving visual lo-

calization and other image query technologies. Speciale et al. [56]

introduce a line cloud-based method for localization that relies on

transforming 3D point clouds to line clouds to prevent the types of

image inversion techniques described in [62]. This work has been

extended/adapted to applications in Simultaneous Localization and

Mapping (SLAM) [23] and SfM [22] systems. However, the authors

note several limitations to the privacy preservation qualities of this

method themselves, namely that reconstructing the secret image

used as localization input becomes easier with repeated invocation.

Chelani et al. [10] further demonstrate additional threats posed

by this method that undermine its privacy guarantees in that the

secret image can be fully reconstructed in just one invocation. A

comparison to this work is shown in Table 1.

Outside of methods directly implementing privacy-preserving

localization, other work applies privacy-enhancing technologies to

related image query technologies in ways that could be extended

to visual localization algorithms. Dusmanu et al. [17] introduce

a privacy-preserving method for extracting image features using

adversarial affine subspace embeddings. Recently, this approach

was shown to be vulnerable to attacks that can recover the input

image [47] precluding its use for privacy-preserving localization.

The solution proposed to address attacks presented in [47] relies

on differential privacy which is not appropriate for the localization

setting we consider. Since privacy loss increases with the number

of queries, localization on an unchanging sequence of images (like a

stationary camera) may quickly exceed a reasonable privacy budget.

Engelsma et al. [18] demonstrate a homomorphically encrypted

representation search that could be further adapted to existing

visual localization algorithms. This represents a promising frontier,

but is currently in the early stages of application and does not scale

to such processes in its current form.

The performance envelope of privacy preserving localization

proposed in this work is not well suited for time-critical appli-

cations like AR/VR, as we later show. There are, however, better

suited applications which are less time-sensitive such as Google Vi-

sual Positioning System, Facebook Livemaps, and Microsoft Azure

Spatial Anchors [24, 40, 41]. These services offer maps supporting

localization for thier users. Privacy preserving localization would

allow a user to localize an image or video using a mapping service

without the user sharing their image or location for privacy rea-

sons, and without the map provider needing to share their map for

commercial reasons.

As another example of where privacy is important in localization,

consider a delivery robot which must navigate private facilities to

deliver packages. The robot is not trusted to learn the full map of

these facilities, nor is it allowed to share images it has taken as

they may reveal people’s faces or confidential information from

the facility. Privacy preserving localization keeps images on device

and the full map of the facilities off device. The robot may run

MPC-based localization with two map servers where one is owned

by the robot’s manufacturer and the other by the facility who uses

their confidential map as input to the protocol. The robot does not

learn the full map of the facility, nor do the map servers learn the

robot’s location or images.

2.4 Homomorphic Encryption and Localization
The localization algorithms considered are particularly challeng-

ing to adapt to execution via homomorphic encryption (HE). Most

problematic, is that localization is a high depth computation with

significant data dependencies between steps. For example, to per-

form one iteration of Levenberg-Marquardt localization, over 1,000

ciphertext-ciphertext divisions and over 7,000 multiplications are

required in a high depth circuit, as we later show in Figure 4. The

high degree of dependencies between input data does not suit batch-

ing based optimizations for HE schemes popular in BGV, BFV and
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Private

Features

Private

Map

Private

Pose

Round

Complexity

Speed

[56] ✗ [10] ✗ ✗ 1 fastest

[17] ✗ [47] ✗ ✗ 1 fastest

DO ✓ ✓ ✓ 1 slow

SIL ✓ ✓ ✓ data dependent fast

Table 1: Comparison to related privacy preserving localiza-
tion techniques. DO is our data-oblivious garbled circuits
baseline and SIL is our proposed Single Iteration Localiza-
tion technique.

CKKS where multiple plaintexts are encrypted and operated on

together [6, 11, 19]. This, and the large fractional precision required,

suggests localization would best suited for a boolean-based FHE

scheme. A popular implementation of one such scheme is tfhe-rs

which claims to evaluate a boolean gate in 8.5 ms [68]. Given there

are 4979 AND and XOR gates per floating point multiplication,

for example in EMP-Toolkit’s floating point circuits [61], the time

required to perform one iteration of Levenberg-Marquardt based

localization is estimated to be at least 423 seconds for the multipli-

cations alone. For these reasons, homomorphic encryption is not

further considered in favor of an MPC-based approach. While MPC

has higher communication complexity than HE, i.e. communication

is proportional to the size of the computation vs the size of just the

inputs, we later show this cost is practical.

3 SECURITY MODEL
The security guarantees we aim to capture encompass two settings,

as previously mentioned. In the first setting, we envision a light-

weight client who would like to leverage the resources of two or

more capable offload servers. The client has all inputs to the compu-

tation, the camera image and 3D map, and does not trust the offload

servers with its secret input data. Offloading computation from

the client saves power and frees resources for other tasks. In the

second setting, the data is instead split between two parties where

the input images are known to the client and the map is owned

by a third party. The map owner does not want to share the map,

but wants to help devices localize using it. For example, a drone

using visual localization may be captured thus is not trusted to

hold a confidential map, while the map owner should not learn the

drone’s location or camera images. We consider the semi-honest

security model, where participants are not trusted with secrets but

are expected to follow the protocol prescribed of them.

While semi-honest security is often considered a stepping stone

to more robust security models, even achieving semi-honest secu-

rity is difficult especially in a performance sensitive setting. The

authors of [56] note their line cloud transformations technique is

inversely proportional to the amount of data processed in series.

It was later discovered that the secret image can be fully recon-

structed after just one localization run [10]. This was significant

as it showed simply knowledge of which algorithm is used to ex-

tract features from the camera’s image along with the obfuscated

feature coordinates is enough to reasonably recover the image.

Due to this, we find it necessary to introduce the more rigorous,

simulation-based definition of security for privacy preserving local-

ization. Complexity-based cryptography, or provable security, was

first introduced in the context of encryption in 1984 [54]. Schemes

considered secure under this definition are sequentially compos-

able: the schemes can be composed without requiring proving that

the overall scheme is secure. Given computer vision tasks are of-

ten composed e.g. running localization repeatedly on a stream of

camera frames or in combination with random sample consensus

algorithms, we choose this framework in which to define security

for privacy preserving localization.

In MPC, security against semi-honest adversaries is formulated

as a game referred to as the real-ideal paradigm. Informally, there

is an attacker who runs a protocol and remembers all the mes-

sages they receive and send. If another algorithm called a simulator

can generate a convincing set of messages that resembles what a

real attacker would see during protocol execution without actually

running the protocol, the scheme is considered secure. Next we

define this game more formally in the context of localization using

notation and format from Lindell [32, Chapter-6, Section-4.2]. The

inputs to localization, namely the set of features taken from an

image and from a map, as well as the output pose are considered

secret, though the secret map features may be owned by the device

or another party. This definition considers a streaming model where

multiple poses are computed from a set of images and maps. We

note that localization algorithms are deterministic (nonrandomized)

by nature which allows for a slightly simpler definition of security

as the output can always be computed from inputs alone and thus

parties in the protocol may be simulated individually.

• Let 𝑙 (I,M, 𝑥) be a probabilistic deterministic polynomial-time lo-

calization algorithmwhich takes as input a set of I = {i0, . . . , i𝑖−1}
image feature locations, a setM = {m0, . . . ,m𝑖−1} map feature

locations, and initial pose estimate x. 𝑙 returns a refined pose,

x
refined

.

• Let 𝐿(F) compute 𝑙 on every member of a set of 𝑗 image features,

map features, and initial pose estimates

F = {{I,M, x}0, . . . , {I,M, x} 𝑗−1}.
• Let 𝜋 be an 𝑛-party protocol which computes 𝐿. The view of the

𝑘-th party during an execution of 𝜋 is

view
𝜋
𝑘
(F) = (𝑤, 𝑟𝑘 ;𝑚𝑘

0
, . . . ,𝑚𝑘

ℎ
) where 𝑤 is the party’s input,

𝑟𝑘 is the 𝑘-th party’s randomness, and𝑚𝑘
𝑛 represents the 𝑛-th

message that it received. The output of 𝜋 to party 𝑘 is output𝑘

and is implicitly part of the party’s view because 𝜋 is determin-

istic.

Protocol 𝜋 securely computes 𝐿 in the presence of static, semi-

honest adversaries if there exists probabilistic polynomial-time

algorithms 𝑆0, . . . , 𝑆𝑛−1 such that

{𝑆𝑘 (1𝜅 ,𝑤𝑘 , output𝑘 )}F,𝜅
c≡ {view𝜋

𝑘
(F)}F,𝜅 (1)

where, the symbol

c≡ refers to computational indistinguishability

with security parameter𝜅 . Given the two views, the probability they

can be distinguished by a non-uniform polynomial-time algorithm

is negligible, i.e. 𝑂 ( 1
2
𝜅 ).

This definition has some differences compared to a straight for-

ward application of simulation-based definition of security from

generic MPC. First, this definition considers a “streaming” model

where multiple poses are computed from a set of images and maps



Proceedings on Privacy Enhancing Technologies 2024(3) James Choncholas, Pujith Kachana, André Mateus, Gregoire Phillips, and Ada Gavrilovska

F. The streaming model captures temporal dimension where local-

ization is executed multiple times sequentially. This is a common

real-world setting for localization where a device is continuously

localizing on a stream of images from a camera, as in robotics,

AR/VR, etc. Directly applying the standard definition of security to

localization would require each localization execution to be simu-

lated independently. The streaming model however supports more

efficient protocols, as we later show with our Single Iteration Local-

ization approach, because localization executions do not need to be

independent. From a security perspective, it is sufficient that a se-

quence of localization executions do not leak any information about

their inputs, but simulating each independently is unnecessary.

This definition gives insight into where previous privacy pre-

serving localization attempts have failed. Line cloud transforma-

tions of Speciale et. al. cannot be simulated; the lines contained

within the view are not known to the simulator and thus the dif-

ference between the real and simulated views can be easily distin-

guished, as practically proven by Chelani et. al. [10, 56]. Granted,

line clouds were only meant to prevent image reconstruction and

do not attempt to hide map feature locationsM or the output pose x
(see Table 1). However, just considering input feature locations, an

adaptation of the above definition to remove the mapM and output

pose x still suggests line cloud transformations are not secure. Fur-

thermore, line cloud transformations do not consider the streaming

model; authors note their technique is inversely proportional to

the amount of data processed in series. A concrete definition of

security is needed to capture repeated invocation via a streaming

model to avoid this leakage.

4 OVERVIEW OF PRIVACY PRESERVING
LOCALIZATION

Our primary contribution is a practical method and implementa-

tion of privacy preserving localization 𝐿(F) on a set of image and

map features F meeting the security definition in §3. This requires

overcoming two types of challenge, the first being practical chal-

lenges stemming from the large size and depth of the computation

required. Secondly, is addressing the iterative nature of localization,

for which we introduce Single Iteration Localization. But first, we

introduce localization as a functionality.

Algorithm 1 Pose Estimation

Inputs: Image feature locations I,
Map feature locationsM,

Initial pose estimate x.
Output: Pose x

refined
= 𝑙 (I,M, x) .

This work considers privacy preserving localization in two con-

texts. The first is a client-server setting where a lightweight client

wishes to offload localization to more capable servers, e.g. when

the client is a mobile device with limited power or computational

resources. In this setting, the client encrypts its input image and

map features and sends them to the offload servers. The offload

servers compute on the ciphertext and each returns a ciphertext

representing the result back to the client. The client can then con-

struct the plaintext resultant pose including position and orienta-

tion 𝑥 = 𝑙 (I,M). Both input features and output pose are considered

confidential in contrast to related approaches in which only the

input features are secret [56]. The offload servers are expected to be

within different administrative domains, for example two providers

offering private localization as a service. The details of how data is

sent to and retrieved from offload servers depends on the underly-

ing MPC protocol, covered later, however at a high level, protocols

based on secret shares split input data into additive pieces while

garbled circuit protocols send inputs encoded as circuit wire labels.

The second setting considered is where a client holds the features

extracted from their image I, but the 3D mapM is held by a third

party. The client and third party interact to compute the pose. The

client should not learn anything about the map other than what

can be inferred from the pose, and the third party should learn

(informally) nothing. In the real world, the full mapM
full

likely con-

tains more features than the client’s image I. In order to keep M
full

confidential, we assume the existence of an alignment functionality

to match the client’s features in I to the subset of features shared

by the map M𝑓 𝑢𝑙𝑙 , specifically, M = 𝑎𝑙𝑖𝑔𝑛(I,M𝑓 𝑢𝑙𝑙 ). We believe the

alignment functionality is a reasonably straightforward application

of private information retrieval [12] and leave concrete instantia-

tion to future work. When alignment is composed with localization,

i.e. 𝑥 = 𝑙 (I, align(I,M
full
)), the client learns neither the exact map

featuresM, nor map features which did not have a corresponding

image feature, i.e. {𝑥 : 𝑥 ∈ M
full

and 𝑥 ∉ M}.
In both settings considered, the core challenge to instantiating 𝑙

in a privacy preserving way is in addressing the iterative nature of

localization. Iterative algorithms like localization are not friendly to

running under MPC because they are not data-oblivious, meaning

control flow depends on secret data i.e. the convergence criteria.

To run an iterative algorithm under MPC, an upper bound of it-

erations must be specified a priori, regardless of convergence at

runtime, to ensure the rate of convergence is not leaked. If the

rate of convergence were leaked, it reveals sensitive information

allowing the devices position to be inferred, especially when local-

ization is run repeatedly like on sequential camera frames (as is

common in robotics, AR/VR, and autonomous vehicles). The iter-

ation leakage problem has been studied previously in the context

of privacy preserving SAT solvers [37, 57] and there is no direct

solution; an upper bound of iterations must be executed to hide the

real number of iterations required for convergence. Localization is

particularly problematic as it contains an outer gradient descent

iterative algorithm, each iteration of which computes the singular

value decomposition (SVD) to (pseudo) invert a matrix which is

itself an iterative algorithm. Our Single Iteration Localization ap-

proach addresses this, instantiated using an appropriate localization

algorithm and MPC protocol given the context.

We have identified two key observations to address the wasted

work required by the iterative localization algorithm considered.

The first key is when computing the SVD: our analysis shows the

number of iterations required does not in fact depend on the input

data in the case of the considered localization algorithm. As such,

the optimal number of SVD iterations can be fixed a priori, which

turns out to be data-independent and wastes no work. The second

key is to execute each iteration of the outer gradient decent algo-

rithm independently. Doing so is secure under the assumption that

a certain number of localization executions will be run in series, as

we later show more formally. This turns out to be quite amenable
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to how localization is run in practice. In the context of autonomous

vehicles, robotics, AR/VR, etc. localization is invoked repeatedly

on sequential camera frames. Thus, with these observations and

algorithm-cryptography co-design, we then demonstrate practical-

ity of our approach with Turbo the Snail, a proof of concept robot

which securely offloads localization to navigate its environment.

5 DESIGN
The design of a privacy preserving localization method for MPC

concerns four critical choices: selecting an appropriate localization

algorithm, an MPC protocol and implementation, a data represen-

tation, and addressing issues with data-obliviousness given the

iterative nature of optimization-based localization. The design is

presented in this order as each choice is dependent on the previ-

ous. Design choices are justified them in terms of their wall clock

runtime and security implications, where applicable.

5.1 Localization Algorithm
The vast number of localization algorithms is at odds with the

significant engineering effort required to build them in privacy

preserving frameworks. This process is time-consuming as algo-

rithms must be re-written from scratch to use privacy preserving

data types, be made data-oblivious, and correctly stage data in and

out of the privacy preserving framework. Thus, this work consid-

ers only the most popular approach to localization consisting of

solving a non-linear least-squares problem which minimizes the

reprojection error [26]. Specifically, find the pose x (position and ori-
entation) which minimizes the error dI between the set of projected

image points Q = proj(x,M), and the corresponding measured

image points I. M = [x𝑀 , y𝑀 , z𝑀 ]⊤ is the set of 3D map points.

Notice the one-to-one correspondence between each point in M
and I, i.e., for each 3D point in the map, we can observe it in the

image, a measured 2D point. Formally, the problem is defined as

argmin

x

𝑛∑︁
𝑖=1

dI2, with dI = ∥Q𝑖 − I𝑖 ∥, (2)

where 𝑛 is the number of 2D and 3D points. Subscript 𝑖 denotes

the 𝑖th point Q𝑖 = [𝑥𝑄𝑖 , 𝑦
𝑄

𝑖
] projected into the image plane from

3D pointM𝑖 = [𝑥𝑀𝑖 , 𝑦𝑀
𝑖
, 𝑧𝑀
𝑖
]⊤ and similarly for the 𝑖’th measured

image point I𝑖 = [𝑥 𝐼𝑖 , 𝑦
𝐼
𝑖
].

Point projection is computed with intrinsic camera parameters

(focal length f = [𝑓𝑥 , 𝑓𝑦] and image center c = [𝑐𝑥 , 𝑐𝑦]), pose
x (represented as Euler finite rotation matrix R, and translation

t = [𝑡𝑥 , 𝑡𝑦, 𝑡𝑧]⊤), and 3D world pointM𝑖 as

𝑝𝑟𝑜 𝑗 (x,M𝑖 ) =

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1



𝑟1,1 𝑟1,2 𝑟1,3 𝑡𝑥
𝑟1,1 𝑟2,2 𝑟2,3 𝑡𝑦
𝑟3,1 𝑟3,2 𝑟3,3 𝑡𝑧



𝑥𝑀
𝑖

𝑦𝑀
𝑖

𝑧𝑀
𝑖
1

 , (3)

where 𝑟𝑖 𝑗 represent the entries of R at row 𝑖 and column 𝑗 . A de-

piction of the PnP problem in presented in Fig. 1. For a detailed

explanation of 3D point projection refer to [38, Section 3.3].

To solve the non-linear least-squares problem, we consider two

optimization algorithms: Gauss-Newton (GN) and Levenberg- Mar-

quardt (LM) with Fletcher’s improvement [21]. The pose update dx

for each is defined as

GN: dx = (J⊤J)−1J⊤dI

LM: dx =

(
J⊤J + 𝜆 diag(J⊤J)

)−1
J⊤dI,

(4)

where the Jacobian matrix J is computed numerically from the right-

hand side of Equation (3) by perturbing each element of the pose by

epsilon using a one hot encoded vector and projecting the points

using the perturbed pose. The reprojection error dI is computed

as the difference between the projected image points Q and the

measured points I. LM is presented at a high level in Algorithm 2

with a more detailed description in reference [42]. Note Algorithm 2

computes the pose for a single image and map 𝑙 (I,M), while this
work is concerned with pose estimation for a sequence of images

and maps 𝐿(F) as described by the security model in §3.

Algorithm 2 Levenberg-Marquardt Pose Estimation

Inputs: Image features I, Map features M,

Initial pose estimate x.
Public Parameters: Intrinsic camera parameters f and c.

Convergence criteria 𝑐 , Fletcher’s 𝜆.

Output: Refined pose x
refined

= 𝑙 (I,M, x).
1: while not converged do
2: Q← 𝑝𝑟𝑜 𝑗 (x,M) ⊲ Point projection

3: for each degree of freedom 𝑑 ← 1, 6 do ⊲ Jacobian

4: J[:] [𝑑] ← 𝜕
𝜕x𝑑 𝑝𝑟𝑜 𝑗 (x + (one_hot𝑑 ∗ 𝜖),M),

5: end for
6: dI← Q𝑖 − I𝑖 ⊲ Reprojection error

7: dx←
(
J⊤J + 𝜆 diag(J⊤J)

)−1
J⊤dI

8: x← x + dx ⊲ Pose update

9: if
∑𝑛
𝑖=1 ∥dI∥2 ≤ 𝑐 then ⊲ Convergence criteria

10: Converged. Output x.
11: end if
12: end while

LM is selected for its wide popularity, real-world usage, and gen-

erality as it is the default PnP algorithm in OpenCV [5] and accepts

any number of input point correspondencesmaking it useful in com-

bination with other localization related tasks like RANSAC [20]. GN

is considered as it requires the same set of linear algebra operations

as LM, thus is easy to implement, and also requires fewer matrix

multiplications at the cost of inverting a larger matrix. While there

are many more algorithms, LM and GN are the most popular and

require a narrow variety of operations, i.e., matrix arithmetic (2),

point projection (3), Euler finite rotation transformation (3), and a

matrix (pseudo) inverse via SVD (4). Furthermore, these algorithms

can be directly applied, or easily adjusted, to other computer vision

problems like relative pose estimation [3], homography & image

alignment [26], and Structure-from-Motion (SfM) [52].

5.2 MPC Library
This work compares localization algorithms implemented using

two MPC libraries secure in the semi-honest setting, ABY and EMP.

ABY is a flexible MPC library which performs secure computation

using arithmetic, boolean, and Yao’s garbled circuits [14]. ABY is

flexible in that it supports switching between protocols to allow the
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Figure 2: Time to localize using ABY and EMP secure compu-
tation frameworks on feature data from ETH3D [53]. Each
measurement is an average of three trials using randomly
selected points. The same random sequence of points are
used across measurements. Note the log scale of the x-axis.
The highlighted area is the difference between the slowest
EMP configuration and the fastest of ABY.

most efficient protocol to be used for differnt parts of a computation.

EMP, on the other hand, is a framework with many protocols, one

of which is a highly efficient garbled circuits implementation of the

semi-honestly secure half-gates protocol and optimizations [27, 67].

One major difference between these implementations that is not

immediately clear is ABY pre-generates circuits before executing

them while EMP generates and executes garbled circuits on the fly.

Circuit pre-generation has the disadvantage in that large circuits

require large amounts of memory. Running our data-oblivious LM-

based localizationwith 6 input correspondences and default security

parameter results in out of memory errors consuming over 100 GB

of RAM (including swap) in ABY. EMP on the other hand completes

using less than 1 GB of RAM.

While ABY and EMP’s garbled circuits have similar theoretical

performance, in practice the lightweight nature of EMP gives it

a significant advantage for this application, as shown in Figure 2.

ABY’s circuit pre-generation means that circuit structure can be

re-used after being built in contrast with EMP’s on-the-fly style

execution. This is an artifact of the MPC framework and not the

underlying protocols. However, only considering the online time

of ABY and ignoring all setup costs like base oblivious transfer and

circuit generation, ABY is still two orders magnitude slower than

the total runtime of EMP due to the impact of the library’s heavy

utilization of the memory allocator.

This finding is surprising because in theory the two frameworks

rely on similar garbled circuits protocols yet runtime varies widely.

Simply measuring the number of gates in a localization circuit and

multiplying by the time it takes to evaluate a single logic gate is

not an accurate way to estimate the runtime of frameworks which

pre-generate circuits. The impact of ABY’s memory allocations

reduces the performance of the framework regardless of proto-

col, be it boolean or Yao. Note ABY’s arithmetic protocol is not

of interest in this context because localization requires operating

on floating point data types, as later discussed. We suspect there

are optimizations we could make to our ABY implementation like

aggregating operations across multiple integers to amortize cer-

tain cryptographic overheads and switching between Arithmetic,

Boolean, and Yao protocols dynamically, however, this optimization

process is even more time-consuming than the initial implemen-

tation within the privacy preserving framework and it is unlikely

to make up the orders of magnitude difference to EMP. As such,

further analysis only considers EMP.

5.3 Data Representation
Given promising results from using alternative ways to represent

data in the field of machine learning, we consider various represen-

tations in privacy preserving localization [25, 31]. Plaintext arith-

metic operations on floating point data are accelerated on modern

hardware making localization on floating point data fast (around

10 ms for 10k operations) and thus other representations like fixed

point are not usually considered. In contrast, when performing

floating point operations under the MPC frameworks considered,

there are no floating point functional units. Garbled circuit logic

gates are evaluated in the same manner no matter how data is rep-

resented. For this reason we consider both fixed and floating point

data types of various width for privacy preserving localization.

Pose estimation is typically computed with double precision

floating point therefore the first question is whether localization is

possible using single precision floats and fixed point. The second

question is then of performance. For measurement purposes we use

the ETH3D dataset [53], a 3D map and series of images taken from

known locations commonly used to measure accuracy and perfor-

mance of PnP solvers. Due to integer over/underflow, localization

with 32-bit fixed point precision is not possible. On the other hand,

64-bit fixed point localization does converge but only when the

SVD, a sub-step in both GN and LM, is computed with floating point.

While even larger width fixed point representations may allow the

SVD to converge successfully, performance measurements suggest

even 64-bit fixed point is not useful.

Even though fixed point arithmetic is simpler than floating, com-

paring 64-bit fixed point (the smallest width fixed point represen-

tation for which localization converges) to 32-bit floating is not a

clear performance win due to the increase in data width. In Figure 3

we see 64-bit fixed point addition is faster than 32-bit floating point

but multiplication is slower. This is expected as addition has linear

complexity in the number of bits while multiplication has quadratic.

Thus, determining which offers better performance for localization

requires knowledge of how many of each operation are performed.
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Figure 4 shows multiplication is the dominant operation in both LM

and GN localization, thus it is fastest to compute with floating point

representation. From these results, we project operations using

64-bit fixed point to be over three times slower than 32-bit floating.

We also notice 64-bit fixed point converges 90% less frequently than

32-bit floating point on the ETH3D dataset, suggesting even wider

data types may be necessary to achieve similar convergence prop-

erties to 32-bit floating point. Due to this performance degradation,

we do not further analyze the impact of fixed point on localization

accuracy or the rate of convergence. We leave the exploration of

alternative floating point representations to future work e.g. half

precision or bfloat16 [60], as they have more general implications

to plaintext localization.

5.4 Garbled Circuits for Computation Offload
Garbled circuit protocols are often considered to run between two

parties, each of which has secret inputs to the function being com-

puted. In the offload setting we consider, instead the offload servers

have no inputs to the function and are not allowed to learn the

output. Achieving this requires some minor logistical modifications

to the garbled circuits protocol setup.

Recall two party garbled circuit protocols have two roles, a gener-

ator and an evaluator. The generator creates garbled circuit, which

in practice mostly consists of repeatedly evaluating the AES block-

cipher. The garbled circuit, i.e. a set of ciphertexts, is then sent

to the evaluator who decrypts parts of the received ciphertext, a

process that again mostly consists of evaluating AES. The evaluator

learns a subset of the ciphertext representing inputs called input

wire labels via a primitive named oblivious transfer. The evaluator

then uses the input wire labels to decrypt the garbled circuit.

In the settingwhere all plaintext inputs and outputs are owned by

the client, for whomwe additionally want to minimize computation

and network usage, the simplest way to get the correct input wire

labels from generator to evaluator is to have the generator send all

labels to the client, who then forwards the appropriate label per wire

onwards to the evaluator. We make a slight optimization from the

above approach to reduce the bandwidth requirements of the client.

The client chooses a random seed and sends it to the generator who

uses a pseudorandom function and the seed to create the wire labels

for the garbled circuit. Note that the EMP toolkit framework already

uses a seeded PRF to generate the garbled circuit for performance

reasons (/dev/random is slow); we have instead allowed the client

to choose this seed which is not an issue since the client is the only

party who supplies the secret input. After, the generator creates

the garbled circuit, they send it to the evaluator excluding the

input wire labels. The client, knowing the circuit seed, can generate

the input wire labels without interaction and send them to the

evaluator. The circuit is evaluated as usual and the output labels

are sent back to the client who can decode their plaintext meaning.

This saves the client from needing to receive all wire labels from the

generator. Instead, the client may generate them directly and send

to the evaluator. Since the same seed is used to generate input wire

labels and the rest of the garbled circuit, correctness holds. Note in

the case of EMP and the half-gates protocol, the client must also

know the global circuit delta [27] as part of the generation process.

Intuitively, it is okay for the client to learn the seed and delta as the

client is the only party who supplies secret inputs and is allowed to

learn the output. While this is appropriate for the offload setting, in

the setting where the input image and map are known to different

parties, this optimization is not appropriate.

6 SINGLE ITERATION LOCALIZATION
The localization algorithms considered (i.e. Algorithm 2) are itera-

tive by nature; they run a sequence of gradient descent steps until

convergence is reached. Furthermore, each iteration requires com-

puting the (pseudo) inverse of a matrix which is itself an iterative
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Figure 5: UML diagrams of a naïve data-oblivious adaptation of PnP localization via gradient descent and Single Iteration
Localization. On the left, a constant upper bound of optimization iterations (default of 20 LM iterations in OpenCV) are required.
On the right, the number of optimization iterations is data-dependent which in practice is much fewer than 20 but comes at
the cost of additional round complexity. Regarding the inner SVD algorithm, the number of iterations can be reduced from
a constant upper bound on the left (default of 30 in Eigen/LAPACK) to the optimal number (12) on the right using public
knowledge about the input distribution, namely two QR sweeps per singular value and one singular value for each physical
degree of freedom (2*6).

process when using the popular algorithm from Demmel and Ka-

han [13], used in the Eigen and LAPACK libraries to reduce the

bidiagonal form to singular values. Executing such iterative algo-

rithms in a data-oblivious setting (like under MPC) have a critical

drawback: a fixed number of iterations must be executed regard-

less of the rate of convergence. Either work is wasted by running

more than necessary iterations, or completeness of the solution is

degraded by running too few.

Our approach maintains the invariant that control flow does

not depend on secret data but avoids wasting work by running on

multiple inputs. The outer iterative algorithm, LM optimization

via gradient decent, is broken apart such that each step runs in-

dependently. Then, stringing the steps from multiple localizations

together hides the convergence rate of each individual localization.

The inner algorithm, the SVD, is addressed through finding that

in practice there is a constant and optimal of number of iterations

which does not depend on secret data. We call the combination of

the two techniques Single Iteration Localization.

Concerning the outer gradient decent algorithm, instead of run-

ning the entire decent under MPC, we run each optimization step

individually, hence the name Single Iteration Localization. Specif-

ically, instead of running LM optimization until the pose meets

the convergence criteria, SIL takes a single gradient descent step

towards the optimal pose and returns the intermediate result, as

shown in Figure 5. The client can then decide after each step if

convergence has been met and can refine the pose by running SIL

with the same image and map. When convergence has been met,

they may provide a new image and map and start to localize with

the new inputs. The MPC parties cannot tell whether the client is

refining the pose from the previous step or if they are computing

the first step for a new image, because of the security guarantees of

the MPC protocol. This approach requires that there is a stream of

images to localize on. If the client were to only localize a single im-

age, the offload servers would learn how many iterations it takes to

compute the pose which is a security issue as previously discussed.

Since localization is often evaluated repetitively on a sequence of

camera frames, repeated evaluation is desirable in practice. Later

in §7 we better quantify how many images constitutes a stream

and the security properties.

There is still one remaining problem in SIL as described. A single

gradient descent step requires inverting a matrix which is itself

an iterative algorithm whose convergence is data-dependent. Just

as before, this suggests an upper bound of iterations is required

however the previous solution to reduce the number of iterations

does not work as this problem is nested within the previous. It

turns out there is an optimal number of iterations which is constant

and known beforehand, and thus is easy to encode in the garbled

circuit. To see why, we describe more about how the SVD of a

matrix is computed, the underlying operation in matrix inversion.

To compute the SVD of a matrix it is first reduced to an upper bidi-

agonal form using Householder transformations. Then, the SVD

is computed from the bidiagonal matrix using QR factorization,

eliminating the upper diagonal entries as it sweeps across the di-

agonal in an iterative fashion. The number of iterations taken to

reduce the bidiagonal form to singular values depends on the values

of the matrix being decomposed. A general rule of thumb is two

QR sweeps per singular value [44, p. 165,] but a bidiagonal matrix

whose diagonal entries are equal to the superdiagonal takes fewer

QR factorization iterations [13, Table 2.] The key insight we rely

on is that the number of singular values of the matrix is always six
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as each corresponds to a physical degree of freedom. The question

is then if localization algorithms require inverting a matrix which,

after householder transformations (the first step in computing the

SVD), result in diagonal entries equal to the superdiagonal. The

geometric implication of this phenomenon with respect to local-

ization is not immediately clear, however, for every experiment

performed including real world images and those from the ETH3D

dataset, there are no cases where a single diagonal entry is within

±10−5 of the superdiagonal, much less all diagonal entries. If there

is a case where more QR sweeps are required, the accuracy of the

localization may be affected, however, this suggests the number of

iterations required to compute the SVD is a constant known ahead

of time. Namely, twelve QR sweeps are required for convergence,

two for each singular value, and there are six singular values each

corresponding to a physical degree of freedom. The takeaway is that

the fixed upper bound of iterations required to compute the SVD

can be set as the optimal number of iterations which in practice

does not depend on the secret inputs.

As we later quantify, Single Iteration Localization is faster than

executing one large garbled circuit for each localization run when

considering a stream of images, however it comes at the cost of

additional round complexity. Instead of participants interacting

once per image to share a garbled circuit, they must instead do

so for every intermediate gradient decent step. In practice round

complexity is not an issue as connectivity is already assumed. Fur-

thermore, the network RTT time is much faster than the time to

run one iteration, so the effect of the additional rounds is minimal.

6.1 Implementation
As a baseline, we have implemented a data-oblivious adaptation of

the localization algorithms described in §5.1. The baselinemaintains

the invariant that control flow does not depend on secret data, thus

an upper bound of iterations is encoded for each of the iterative

routines, namely gradient descent and SVD. The upper bounds are

taken from the plaintext algorithms, e.g. the plaintext LM algorithm

from OpenCV runs at most 20 iterations, and the plaintext LAPACK

SVD algorithm runs at most 30 iterations. The baseline is visualized

in Figure 5 and has been implemented for GN and LM localization,

in both the EMP and ABY frameworks.

We compare the baseline against Single Iteration Localization,

also implemented for GN and LM in both ABY and EMP in C++,

all of which are available under the MIT license
2
. The ABY imple-

mentation is 3,887 lines of code, EMP is 1,924 lines, and reference

plaintext implementation used for automated testing is 848 lines.

Each implementation is an independent library that includes all

necessary linear algebra operations depending only on the respec-

tive MPC library, including MPC-based adaptations of the SVD

algorithm from Demmel and Kahan [13].

7 EVALUATION
Our evaluation is focused on both security and performance. Be-

cause this work leverages existing localization algorithms, we do

not discuss plaintext-related metrics like localization accuracy, abil-

ity to converge, or sensitivity to noise as the privacy preserving

2
https://github.com/secret-snail/localization-server

implementations share these properties with plaintext algorithms

which have been studied extensively [7].

7.1 Security Analysis of Single Iteration
Localization

This security analysis considers an MPC-hybrid model meaning we

assume the underlying garbled circuit protocol is secure and prove

security of Single Iteration Localization according to the definition

in §3. This implies the input feature locations, map, and pose remain

confidential over a single iteration, as it is simply an invocation

of garbled circuits which we assume is secure. It may seem like

assuming the MPC protocol is secure leaves nothing left to prove,

however, this is not the case. Simply running each iteration of

gradient decent under MPC independently to localize one image is

not secure as the number of invocations is leaked. The important

question is regarding security in the streaming setting, i.e. over

multiple invocations of localization.

As an example, suppose a client has one image which requires 8

localization iterations to converge. The MPC participants learn how

many times they were called and in turn have learned something

about the quality of the initial pose estimate. In general, more

iterations are required if the initial pose estimate is far away from

the true pose; fewer are required if the initial pose estimate is

nearby. Convergence speed also depends on tunable algorithm

parameters and the presence of degenerate solutions in the path

of gradient descent. It is unclear if such information could be used

to directly reconstruct the input image similar to attacks on line

cloud obfuscation in previous work [10, 56]. What is clear, however,

is this leakage has a negative impact on a higher level notion of

privacy over time. For example, a camera moving through an area

which is easier to localize compared to the rest of its environment

requires fewer iterations in one specific area. The MPC participants

learn when the client is in the easily-localized area and when it

is not. This leakage is captured by the definition in Equation (1),

namely, the view of participants does not contain 𝑗 which is the

size of F (the number of images and maps). This leakage is critical

to address and is primary focus of our security analysis.

Recall the key insight of Single Iteration Localization is to break

each iteration of gradient descent apart. To estimate the pose of

a single image, SIL must be invoked repeatedly, until the pose

converges. If computing the pose of one image, this would still

reveal the number of invocations to the MPC participants, which is

a security problem as previously discussed. But if computing the

pose on a stream of images, the MPC participants cannot tell which

pose refinement iterations belong to which images. This hides how

many iterations were required to converge for each image. If the

MPC participants also do not know how many images were used as

input, they cannot infer the number of iterations per image, which

addresses the leakage. Decoupling the number of iterations from

the higher level localization executions is the key to security.

There is one issue with the security argument as described. We

have not quantified how many images count as a “stream” or more

specifically, how many times SIL must be invoked to hide the as-

sociation of gradient decent steps to input images. For example, a

stream containing one single image which requires three gradient

https://github.com/secret-snail/localization-server
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decent iterations to compute the pose doesn’t offer very good se-

curity properties because the MPC participants can see only three

iterations were performed and so the initial pose estimate must

have been very close to the true pose. It turns out, it depends on a

public parameter of the LM and GN localization algorithms, namely

the upper bound on the number of gradient decent steps. OpenCV’s

implementation of LM localization defines a maximum number of

iterations of 20 meaning if the pose hasn’t converged after 20 itera-

tions, localization will halt. It follows that if at least 20 iterations are

performed, the probability of an adversary outputting the correct

number of iterations per image is no better than guessing.

More generally, if SIL is invoked 𝑜 times and the publicly known

upper bound of iterations is 𝑐 , the number of images which could

have been used as input is between
𝑜
𝑐 and 𝑜 (where 𝑜 > 𝑐). Thus, the

probability of an adversarial offload server 𝐴 correctly outputting

the number of input images 𝑖 from the number of iterations it ran,

𝑜 , is given by:

Pr[A(o) = i] <
1

𝑜 − 𝑜
𝑐

+ 1

𝑝 (𝜅) (5)

where 𝑝 (𝜅) is a polynomial in security parameter 𝜅, an artifact

which appears due to the negligible advantage an attacker has when

distinguishing garbled circuit wire labels. Thus, we conclude that

Single Iteration Localization is secure when invoked a minimum of

𝑐 times. In practice, the default maximum from OpenCV is 𝑐 = 20

and since localization is often called repeatedly (more than 20 times)

on camera frames, this is not a difficult requirement to meet.

Next, we prove security of Single Iteration Localization in the

simulation-based definition from Equation (1) using the notation

from §3. The proof follows trivially from the previous discussion.

Lemma 7.1. SIL securely implements localization L over a set of
image and map feature sets F in the presence of static semi-honest
adversaries in the MPC-hybrid model when invoked more than 𝑐 times.

Proof. Simulator 𝑆 constructs a view for the offload server by

running one iteration of localization 𝑙 on randomly chosen inputs

I, and M, appending messages of the party’s respective role to

the view. The messages for each iteration of 𝑙 may be simulated

given we consider the MPC-hybrid model. The simulator does this

a random number times which is at least 𝑐 . The sets of messages

corresponding each iteration are indistinguishable from one another

and from those in the real protocol, thus the two ensembles are

indistinguishable. □

There are two important takeaways. First, the more often the

client calls the localization function, the stronger the privacy up

to a maximum of 𝑐 iterations which may be fully simulated. This

is the opposite of prior work where privacy guarantees weaken

with subsequent invocations. Second, the security guarantees of

SIL are in fact stronger than a naïve data-oblivious adaptation.

The latter reveals exactly how many input images were used for

localization. SIL reveals only a probability distribution of howmany

input images were used as input [𝑜, 𝑜𝑐 ].
In summary, Single Iteration Localization does not reveal any

information about the input features (both image and map), or the

pose when run more than 𝑐 times in series which in practice is

20. This is true for any input including the case when the same
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Figure 6: Time to compute localization using data oblivious
and Single Iteration Localization with EMP. Data oblivious
uses a fixed upper-bound of 20 optimization iterations (the
default number of LM iterations in OpenCV) and 30 SVD
iterations (the default in LAPACK) where as Single Iteration
Localization is data dependent.

input image and map is repeating (corresponding to a stationary

camera) or for inputs that change over time (a moving camera). Pre-

vious attacks on privacy preserving localization rely on exploiting

knowledge of the feature locations to reconstruct the input image.

Such attacks are not possible on Single Iteration Localization as

the image features, map features, and all other partial information

remains confidential.

7.2 Performance Evaluation
Server side performance is evaluated using a desktop with an 11th

generation Intel® core-series CPU. Each MPC participant is a pro-

cess on the test machine communicating over localhost where band-

width is limited to 2.5 Gbps and latency is introduced artificially

where noted using traffic control. The rationale for 2.5 Gbps being

it is the maximum theoretical bandwidth of WiFi 6E, the latest stan-

dard at the time of writing. Localization is performed on features

from the ETH3D dataset [53] where each measurement is an aver-

age of randomly selected points where the same random sequence

is used across measurements. Measurements for which convergence

was not achieved are not included in the results (in these cases the

plaintext implementation also did not converge). Reported times

are wall clock and implementations are not multithreaded due to

their high bandwidth requirements as later shown.

The performance advantage of Single Iteration Localization over

the data oblivious baseline are between two and three orders of

magnitude as shown in Figure 6. It is natural to see why running

fewer iterative steps underMPC reduces runtime, but themagnitude

of this difference has implications for the future of applying general

purpose secure computation to localization. Localization with six

points takes 11 seconds to compute rising modestly with small

increases in input size. While 11 seconds is not within a practical

envelope for low latency localization applications like AR, it is

practical for certain robotics applications, as we later demonstrate.
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Next, we consider network communication between client and
offload servers for the client-server computation offload setting.

EMP, being based on the half-gates garbled circuits protocol [67],

shares secret inputs via a correlated oblivious transfer protocol.

Localization is a unique case where neither generator nor evaluator

(the two roles in the protocol the offload servers play) have the

secret input data as they are computing on behalf of a client. The

natural approach to garbled circuits is the generator sends all wire

label pairs to the client, who then forwards the appropriate label

from the pair, based on their secret bits, to the evaluator. This

requires the client receive 2𝜅 bits per input bit and send 𝜅 bits per

input bit where 𝜅 is a security parameter, the size of the wire labels

(128 bits by default in EMP’s semi-honest protocol). In the case of six

input point correspondences and EMP’s default security parameters,

this amounts to the client sending 123 Kb and receiving 246 Kb.

We improve upon this by noticing if the client knows the global

circuit delta (a part of the free XOR optimization [27]), and circuit

seed, they may generate labels for the evaluator themselves. From a

security perspective this is not an issue, as the client is considered

a trusted third party and is allowed to learn all inputs and outputs

of the computation in the offload setting we consider. The seed

based approach reduces data the client receives to a constant 2𝜅

bits (circuit delta and seed) while data sent remains 𝜅 bits per input

bit (wire labels). In the case of six input point correspondences this

amounts to 123 Kb of total communication instead of 369 Kb (123 +

246) via the natural approach.

7.3 Limitations
Thus far, performance has been evaluated on small input sizes,

between six and twelve input point correspondences. While this

range is representative of small input sizes for the localization

methods considered and is used by other work [51], the quality of

localization can increase with larger input sizes notably when input

data is noisy. Feature detection algorithms like SIFT [34] typically

extract many more features, around 1000 points per image, but

the number which can be matched to 3D map features is typically

lower. Thus, we consider the performance of input sizes up to 256

points which is reasonable for popular feature detection algorithms.

Prior localization work considers between 100 and 300 points [48].

Figure 7a focuses on the interaction between the two offload servers,

namely how latency affects runtime and the relationship between

input size and network communication.

Localization even on small input sizes takes around 10 seconds

to compute, which likely precludes time-sensitive applications like

AR/VR because the displacement distance, or error accumulated

in the pose as estimated by less accurate means, grows beyond

what is acceptable before the more accurate pose may be computed.

This makes Single Iteration Localization better suited for less time

sensitive applications like robotics or offline processing, for example

those described in §2.3.

Comparing the scalability of GN to LM, both algorithms invert

a matrix on every optimization iteration; the key difference is the

size of the matrix each inverts. GN computes the pseudo-inverse

of a 2𝑛 × 6 Jacobian matrix J where 𝑛 is the number of input point

correspondences and each row represents the partial derivativewith

respect to one degree of freedom in the pose. LM instead inverts

a 6 × 6 matrix (J⊤J plus an offset along the diagonal from [21]).

Because of the performance impact of inverting large matrices, LM

is expected to perform better than GN on large inputs. This behavior

is not explicitly clear for small numbers of points shown in Figure 6,

but becomes important as the input size scales as shown in Figure 7a.

Because LM also outperforms GN on small input sizes, LM is in
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general the better approach. We see each LM iteration of SIL takes

roughly 20 seconds to compute on 256 input points in Figure 7a.

Assuming 8 iterations to converge (a realistic value observed in the

ETH3D dataset), localization completes in 160 seconds.

Given MPC protocols are communication-intensive by nature,

we measure the bytes sent between the twoMPC participants in Fig-

ure 7b. Localization using 256 points using GN sends almost 200 GB

while LM sends 64 GB, again assuming 8 iterations required for con-

vergence. In the client-server offload setting, this communication

is between the two offload servers and does not involve the device,

however, in the multi-party setting where input data is distributed

between the parties, this high communication cost is a limiting

factor precluding large input sizes.

In Single Iteration Localization, we propose executing each iter-

ation of the outer gradient descent algorithm independently. We

argue this approach is secure if invoked a minimum number of

times, a number which depends on a public parameter of the plain-

text algorithm, as discussed in §7.1. This is amenable to repeated

invocation however it could be seen as a limitation of in the case

where a single or few input images must be localized using a large

stream size. In this case, however, SIL is no slower than the naïve

data-oblivious adaptation and still benefits from running fewer SVD

iterations driven by the analysis in §6.

The performance envelope and high network requirements of

the proposed methods are such that localization is best performed

using a small number of high quality feature correspondences. As

such, applying thesemethods likely requires input pre-processing to

eliminate outlier or even unnecessary inlier point correspondences.

Before continuing, we briefly mention performance related to

trusted execution environments (TEEs) like Intel® SGX. Memory

requirements to perform localization on the number of points con-

sidered is small enough to fit into secure enclaves, thus we expect

performance in TEEs to be near native (plaintext) speed, making

Single Iteration Localization orders of magnitude slower than the

10s of milliseconds required to compute in the clear. The “sluggish”

performance of MPC compared to TEE reflects the cost of eliminat-

ing side channels, reducing requirements for specialized hardware,

and eliminating trust required of hardware vendors.

7.4 Proof of Concept: Turbo the Snail
To demonstrate the feasibility of privacy preserving localization,

we built a Raspberry Pi-based robot acting as a lightweight client

which offloads localization. The robot is equipped with one RGB

camera and uses its onboard WiFi module to communicate with

the offload servers, a maximum bandwidth of 100 Mbps. The robot

is programmed to move to a target location defined within its

environment, leveraging the AprilTag library [43] to detect marker

images printed on paper in its environment. The marker corners are

detected in the camera image and then matched to a ground truth

3D map of the marker’s position, yielding the 2D and 3D features

used in localization. Once the pose is known, the robot moves to a

predefined target position using position-based visual servoing [9]

via the ViSP library [39].

In this configuration, the servers learn neither the input feature

locations (2D nor 3D), nor the resultant pose. By using few high

quality input point correspondences, the number of features is

Figure 8: Robotic snail proof of concept. Model adapted
from [66].

kept low. The use of specific markers or patterns is commonly

used in visual servoing [9]. Since privacy preserving localization

takes roughly ten seconds to complete on eight input points as

seen in Figure 6, we allow the robot to move 0.1 meters before re-

localizing and thus, moves at a rate of 0.01 m/s, hence its form – a

snail. We find in practice the snail moves more quickly because the

pose estimate from one localization is used as the initial estimate for

the next, reducing the number of optimization iterations required.

After the initial pose is solved, convergence is frequently achieved

in only one call to SIL.

In the context of localization, power consumption is an impor-

tant metric as devices are often mobile and battery powered. To

quantify this, the servo motors of the robot are disabled and pose

estimation is performed every 20ms. In the case of Single Iteration

Localization, the offload servers return dummy data such that the

rate of localization may be compared to that of plaintext. Energy

consumed by the Raspberry Pi model 3B+ is measured with a TP-

Link K115 energy monitor. Offloading localization reduces power

consumption from 3.7 Watts to 2.8 Watts (24%) with idle power be-

ing 1.7 Watts. We attribute the increase between idle and SIL mostly

to polling the socket while waiting for data to be received from the

offload servers, presenting an opportunity for future optimization.

8 CONCLUSION
In this work we introduce a simulation-based definition of security

for privacy preserving localization, and Single Iteration Localization

(SIL) a secure approach to visual localization. While SIL requires

additional rounds of communication, it reduces the computation

and communication required per round by running each localiza-

tion iteration independently. We then demonstrate the practicality

of SIL with Turbo, the privacy preserving snail.
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